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1.1 Introduction  

Bio-sensors are devices capable to capture the presence of a biological signal and 

transform it into a recordable signal exploiting several available transduction 

mechanisms, such as electrochemical [1], piezoelectric [2], gravimetric [3] or optical 

transducers [4]. Figure 1.1 below explains the general principle of a bio-sensor.  

 

Figure 1.1-Working principal of a biosensor. When an analyte binds to the host matrix, its presence produces a 

signal that is transformed into a measurable signal and detected 

 
 

 Nowadays bio-sensor is a global industrial market that covers nearly all fields e.g. 

medical diagnostics [5], drug delivery, fermentation [6], food and beverage industry [7], 

environmental industry [8] etc.. 

According to market analysis, the global market of bio-sensor was evaluated 9.9 billion 

USD in 2011 and expected to cover 18.9 billion USD with a growth rate by 9.6% to year 

2018 [9]. Furthermore, in recent years, bio-sensing devices using bio-compatible, bio-

degradable membranes and most importantly porous membranes compatible with flow 

through approach, where the liquid is forced to pass across the material rather than flow 

over it, make possible to assemble lab on a chip devices [10]. Porous materials have great 

potential in sensing applications because their high specific surface permits a fine tuning 

of the interaction between the analyte and the host matrix [11]. Devices with state of the 

art sensitivity require a great control over their porous structure to tune the sensor 
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properties and maximize their sensitivity. In these regards porous silicon (PSi) has many 

properties that make it an ideal candidate for the fabrication of highly sensible devices 

[12, 13]. The electrochemical etching mechanism used to render silicon a porous material 

permits to tune the PSi properties over a wide range both in terms of structural (pore size 

can be tuned from few nm to micron scale and surface specific area can achieve up to 

500m
2
/cm

3
 and optical properties (transparency and fabrication of high quality filters and 

resonant structures) [14]. Furthermore silicon chemistry is well known and PSi surface 

properties can be tailored to exhibit highly chemical specificity and reduced nonspecific 

interactions [15-17]. Finally, PSi is fully compatible with CMOS technology, thus it 

could be used to fabricate cheap microarrays which exploit multiplexing capabilities. 

 

1.2 Porous Silicon  

As mentioned above PSi is an ideal material for label free bio-sensing with many 

advantages over other porous materials. PSi was accidently discovered in 1956 at the 

U.S. Bell Laboratories by Arthur Uhlir Jr. and Ingeborg Uhlir during electro-polishing of 

crystalline silicon wafer [18]. However appearance of visible luminescence in PSi under 

UV illumination [19] attracts a large research interest because of the possibility to 

fabricate Si-based active optoelectronic devices. The great technological efforts and the 

flexibility given by the electrochemical etching have permitted a rapid development of 

the PSi fabrication process and samples with a number of different morphologies (i.e. 

pore size and pore morphology) were created [20]. The most popular and less expensive 

PSi fabrication technique is the electrochemical etching [21]. In this method anodization 

of c-silicon (both p- and n-type silicon) is done by means of a solution of hydrofluoric 
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acid (HF) diluted in water or alcohols, with or without illuminating the sample. Either 

current or voltage controlled conditions can be used to induce the oxidation of the surface 

atoms of c-silicon that, in turn, generates a highly anisotropic etching and the formation 

of the pores [21-23]. The modulation of the various etching parameters (i.e. reaction time, 

HF concentration, applied current density/voltage and doping concentration of the silicon 

wafer), permit to control the morphology of PSi structures (more detail of fabrication 

setup and effect of various parameters are discussed in Chapter 2 and in Chapter 3). The 

main point is that, once HF concentration and substrate type are fixed, the pores size is 

determined mainly by the etching current and the porous layer thickness growth roughly 

linear with the etching time. Furthermore depending on pore morphology of PSi 

structure, these structures are divided into three classes: micro≤50nm, 50<meso≥100nm 

and 100nm<macro-porous structure, as shown in Figure 1.2 and can be used to infiltrate 

specific for sensing or filtering applications [24]. Mechanism of dissolution of c-Si to 

fabricate PSi is insulating in Figure 1.3 [25]. 

    

Figure 1.2-SEM images of different types of PSi structure depending on their pore size.(a) micro- PSi, (b) 

macro-PSi and (c) macro-PSi 
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6 

,   

 

Figure 1.3 Mechanism of dissolution of c-Si-In the absence of electron hole, hydrogen saturated surface is 

protected from fluoride ions present in HF acid (1). When a hole reaches to the surface (2), HF attacks the Si-H 

bond and a Si-F bond is formed (3), other Si-H bond can be weakened by other holes (4). This further reduces 

the electron density of remaining Si-Si backbone atoms making them susceptible to be attacked by the HF acid 

(5). Secondary product silicon tetra-fluoride further reacts with HF acid to form highly stable SiF6 ion [25]. 

Furthermore at the same time formation of SiO2 is achieved that readily dissolved by HF acid (6). 

 

Even though the exact dissolution mechanism is still questionable, the requirement of 

holes at silicon surface to initiate the reaction of pore formation is widely accepted. As p-

type silicon have majority carrier as holes, there is no need of an additional illumination 

to generate electron/hole pair. On the other hand on n-type silicon substrate electrons are 

majority carriers and band bending at the interface blocks hole current [26]. As a result p-

type silicon is frequently used to fabricate PSi samples because it does not require 

illumination. Anyway, the main limit of this type of substrate relies on the conical shape 

of the pores that limit the maximum aspect ratio achievable. On the other hand in case of 

n-type silicon pore formation and their quality strongly depend on illumination [25, 26]. 

However recent studies observed that pore formation on substrate with majority carrier 
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concentration is above 10
18

 cm
-1

 can also be done in dark by applying high voltage (>5V) 

[27].  

Nowadays many alternative approaches to the electrochemical etching are available to 

fabricate PSi from a crystalline silicon wafer such as the chemical vapor etching [28], the 

metal-assisted etching [29], and the ‘stain etching’ procedure [30]. But all these technique 

are either quite expensive or suffers of in-homogeneous etching compared to the classic 

method described in this thesis. 

 

  1.3 Sensing with PSi  

Bio-sensors can be fabricated using a very large number of materials and structures [31]. 

Here below I list the most important examples of sensors realized in PSi. As mentioned 

above among all various available transduction techniques for a biosensor, PSi bio-

sensor, electrochemical method and optical method, along with conductivity method are 

the most frequently used mechanisms of detection. Figure 1.4 resumes the most common 

type of PSi sensors. 

 

Figure 1.4-Different type of optical PSi bio-sensor according to their transduction mechanism  
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(1.3.1) PSi electrical and electrochemical-Biosensor  

The very large specific surface together with the possibility to measure its electrical 

properties makes PSi an ideal material to fabricate electrical and/or electrochemical 

biosensors [32]. In a PSi electrical sensor, when an analyte/target species bind the PSi 

structure, it induces changes in its electrical resistance/capacitance that is read by 

appropriately contact the porous sponge. Various gas sensors are the example of 

electrical PSi sensor [33, 34].  

Furthermore electrochemical biosensors are divided in two classes: Potentiometeric and 

Amperometric/Voltammetric biosensor [35]. In Potentiometric biosensors, the main 

parameter is the potential difference between the cathode and the anode in an 

electrochemical cell [36]. In this type of sensor, analyte concentration is related to the 

measured potential applied between the working and reference electrode [36, 37]. On the 

other hand, Amperometric and Voltammetric biosensors consider the redox reaction that 

takes place in the anodization cell, when an analyte of interest is added in the pores of 

PSi. The reaction causes a current to flow between the working and counter electrode and 

the amount of current is proportional to the concentration of analyte [38]. Urea sensors 

and gas sensors are the common examples of PSi based Potentiometeric and 

Amperometric/Voltammetric sensors [39, 40]. A systematic representation of 

electrochemical measurement setup is shown in Figure 1.5 [41].   
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Figure 1.5-Typical measurement system for a PSi based electrochemical sensor, R is the reference electrode, A is 

other electrode (cathode) and w is working electrode using PSi membrane, Reaction of aqueous tributlyrin and 

lipase, butyric acid forms, that changes the pH of solution and measured by the variation of open circuit 

potential between reference electrode and cathode   [41] 

 

 

(1.3.2) PSi optical-Biosensor  

The need to detect chemical and biological species very quickly and at very low 

concentration has stimulated a lot of research to develop highly sensitive PSi-optical 

biosensor device. The simplest class of PSi sensors determines the analyte concentration 

by measuring fluorescence signal intensity by a fluorescent marker molecule [42]. During 

the past years, these types of biosensors were well established in sensor technology, 

however they need the analyte of interest to be labeled and this fact makes the assay more 

complex. Hence nowadays label-free techniques attract more attention in sensor 

technology [43]. Taking the advantage of high sensitivity towards refractive index, in 

label-free PSi optical-biosensor, analyte detection is done by observing the changes in the 

optical properties of the sample either of the spectral interference pattern [44] or of the 

polarization/phase shift of the light [45]. The simplest type of optical-PSi sensor is made 

of a single layer. The interference pattern changes accordingly to the changes in 

refractive index due to the binding of the molecules. Despite its great simplicity, a single 
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layer may show very high sensitivity [45]. Nevertheless the scattering of the light due to 

the porous structure heavily decreases the LoD achievable in PSi samples [45, 46]. Thus 

more complicated multi-layer and resonant structures can be etched by applying 

alternating current density during the electrochemical etching. This generates a periodic 

combination of refractive indexes that induces the formation of narrow resonances in 

predefined spectral positions [47]. The resonant wavelength is extremely sensitive to 

changes in the refractive index of the pores and is a well known mechanism of detection 

as shown in Figure 1.6 and Figure 1.7. This kind of structure offers a far better detection 

limit compare to PSi single layer based optical-Interferometric biosensor and detection 

limit can be pushed down to 0.3ng/mm
2
 [48].      

 
Figure 1.6- Cross-sectional SEM image of multi-layer structure (Scale bar 2µm) [48] 

 

 

Figure 1.7- (a) Relation between resonance shift and analyte concentration and (b) 10nm resonance shift 

corresponding to addition of analyte~1mg/mL for multi-layer PSi structure due to change in refractive index 

within pore [48] 
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Another label-free approach based on waveguide for better accuracy, high sensitivity and 

less response time is proposed [49]. In this case PSi waveguide sensor consist two porous 

layers: a low-index, high porosity layer and a high-index, low porosity layer. The high 

index layer is the waveguide core (the light is confined here by total internal reflection.), 

while the low-index PSi layer (above the silicon substrate) works as a cladding and 

avoids the guided mode to couple with the underlying high index substrate. An incident 

light is coupled using a prism to the PSi waveguide. Incident light gives rise to an 

evanescent wave at the interface between the prism and the optical waveguide. At a 

certain specific incident angles (resonant angles) the propagation constant of the wave 

within the prism matches that of a waveguide mode. This matching produces a dip in the 

angular spectrum of the reflected light, so that each change in the refractive index of 

waveguide layer or any change in thickness at the surface produces a corresponding shift 

in the position of the dip. Figure 1.8 shows the porous silicon based waveguide sensor 

structure [50]. As these structures are quite thin and the optical signal is confined within a 

thin structure where analyte of interest is added, a high sensitivity is achieved [49, 50]. 

Theoretical studies suggest that this waveguide structure is ~ 60 times more sensitive 

than surface Plasmon resonance structure where a metal layer acts a resonant layer [51].  

 

Figure 1.8- PSi based waveguide structure, low porosity layer of thickness d acts as a coupling layer while high 

porosity layer of thickness D acts as resonant layer [50]. 
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1.4 Motivation of this thesis 

Food allergy is one of the most common chronic diseases in all age group over world-

wide [52]. In Europe about 6-8% (17 million people with 3.5 million younger than 25 

years) of total population is affected by food allergies and occurrence is increasing. 

Furthermore many of youngsters and children having food allergy are suffering with life-

threatening reaction as anaphylaxis [53]. Till now most of allergies are undiagnosed and 

are subject of self-help. Even though conventional methods for quantitative analysis of 

allergy are widely available which can identify reaction easily, they either required a few 

ml of blood and their analysis require a laboratory facility [54] or they are tested directly 

on the patient and may induce strong allergic reactions. Thus more research is needed to 

develop analytical strategies compatible with Point of Care (PoC) detection.  

To develop an efficient bio-sensor for PoC a number of aspects needed to be considered, 

from the optical transduction signal to the fluidics design (a direct and effective sample 

injection method as in flow-through approach, reduces the sample consumption, increases 

the sampling rate and reduces the detection time) and the optimization of material 

(tunable pore size and specific area maximize the interaction between analyte and host 

matrix and increase the sensor sensitivity).  

Motivated from above facts this study is a part of an European research project (called 

POSITIVE) that aims is to realize an ideal platform for fast photonic label-free smart 

disposable polarimetric biosensor that are able to exhibit a surface concentration 

detection limit (LoD) below 1 pg/mm
2
 with fluidic structure able to incorporate multiple 

biosensors capable, through scalability, of determining 100s of different analyte with 

parallel references for each on-a-chip.  



Introduction   
 

 Page12 
 

Currently most sensors are still attached to the substrate [55]. Because of this sensor 

require a complex microfluidic circuit to bring the analyte in contact with the active area 

and furthermore they cannot be washed effectively. This fact can reduce significantly the 

sensor response. The above mention problems can be solved using freestanding porous 

structure based bio-sensors, which can be easily fabricated from silicon substrates [56]. In 

addition PSi high surface area is further advantage to achieve such low LoD as 1pg/mm
2
. 

However many random structural factors in the fabrication of PSi have great influence on 

sensing performance of a sensor. In particular, pore shape i.e. cone shaped or branched 

and surface roughness that induces light scattering/depolarization effects results in lower 

sensitivity of the device and poor fluidic properties [57]. Therefore, much careful effort is 

required to elucidate the interesting physics of PSi structure and its morphological effect. 

As mentioned above p-type silicon substrate requires an easier etching setup because they 

do not need back illumination; on the other hand they have well known limitations for the 

maximum pore aspect ratio achievable [26, 27]. Even though these nanoporous samples 

have good optical transparency, their pores are too small to allow any efficient fluidics 

and cannot be used to fabricate LoC devices. However n-type Si substrate constitutes a 

reliable alternative because it allows the fabrication of with pore size in the range 100-

200nm [47]. Their typical length scale and their high aspect ratio permit to maximize the 

interaction between the matrix and the bio-molecules while keeping a good optical 

transparency. Thus n-type Si can be used to fabricate high sensitivity and compact device 

compatible with flow through and microarray technology. On these substrates, we can 

etch straight and smooth pores having dimension lager as analyte size, by adjusting and 

controlling the different etching parameters [47, 58]. 
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However such ideal porous structures are still limited due to the in-availability of 

freestanding membranes. Several articles were published on the fabrication of p-type PSi 

thin free-standing membranes (FSM) [26, 27, 56, 59]. But only very recently the 

fabrication of free standing porous layer on heavily doped n-type (0.001-0.003 Ωcm) 

silicon, has been reported for the first time. Their small pore size (<10nm) render them 

not compatible with flow-through devices [60]. 

During the thesis I optimized an etching protocol to fabricate free standing PSi 

membranes with straight and smooth pores of about 100nm diameter able to sustain 

liquid flow of about 1µl/minute. In collaboration with the University of Valencia we 

demonstrated that such n-type PSi membranes reach a sensitivity of around 1250nm/RIU 

and have long term stability [61]. We further improved the process to increases the pore 

size and at the same time to reduce the pore surface roughness and increases both the 

optical and the fluidic properties. 

1.5 Structure of thesis 

The thesis is organized as follows:  

Chapter1 describes the perspective work and various issues of existing PSi based micro-

fluidic technology and flow-through bio-sensor technology. Issues like sensitivity, 

sample volume, reproducibility and response time have been identified as crucial points 

of the sensor technologies. Factors affecting the possible use of PSi in sensor technology 

and their solutions are also discussed.  

Chapter 2 describes the basic working principles of various characterization techniques 

and fabrication setup used for studied PSi structures. Different methods have been used 

for studying the morphology of the PSi samples such as scanning electron microscopy 
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(SEM) and atomic force microscopy (AFM). Moreover the optical properties of all 

fabricated samples (i.e. refractive index of the layers and spectral response) were 

analyzed using UV-VIS spectroscopy. Sensing measurements were performed using both 

a VIS-NIR spectrometer and a polarimeter. Chemical analysis of samples fabricated were 

performed using UV-VIS and FITR spectrometer and with Micro-Raman. 

Chapter 3 reports the optimization for PSi fabrication and its morphological 

characterization. We found that the stable growth of smooth and straight pores in n-PSi is 

restricted to a narrow range of etching conditions; the lift off of the membrane is a self-

limited process that does not require as large burst of current is required to detach the 

porous layer from the substrate, as generally done in case of p-type substrate. We 

describe an improved etching method that exploits two electrolytic solutions to fabricate 

PSi FSM with the desired thickness and able to fabricate micro, meso and macro-pores in 

moderately doped n-type silicon substrates (0.01-0.02 Ωcm). The method we propose 

opens new possibilities for the fabrication of flow-through sensors and membrane filters.  

 Chapter 4 describes the results obtained in the surface stabilization of PSi by thermal 

oxidation and chemical modification for both samples supported by a Si substrate and 

free standing membranes. As mentioned above that PSi internal surface provides a 

sensible interface that has to be stabilized against the environment. Otherwise 

modifications induced by the ageing of the samples can heavily affect the sensing 

properties and performance. The surface of freshly prepared PSi is strongly reactive with 

air and water, due to presence of unstable silicon hydride “Si-H” species that should be 

stabilized for future use. Different sets of samples were prepared and oxidized at different 

conditions in a dry environment. The oxide grown on the sample surface was thin enough 
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to maintain the sample optical quality and, at the same time, avoid drift in the spectral 

response either after immersion in water for long time or storage in air for several weeks. 

A step towards the fabrication of bio-sensor, functionalization procedures performed 

showed that PSi surfaces can be effectively functionalized using different organic 

molecules, and with simple methods. Here we demonstrates that both polar and non-polar 

molecules can be used to this aim, their main difference of their use being that fresh 

etched samples have to be used in the case non-polar molecules, while aged or thermally 

oxidized PSi is required for the polar molecules. The reaction procedures considered here 

constitute efficient and versatile methods for modifying the surface of the PSi to provide 

an intermediate layer for the attachment of other functional groups. Bio-sensing 

efficiency is evaluated in next sequential chapters.  

In chapter 5, we present a comparative study for MC sensor attached to silicon substrate 

versus free-standing MC. We investigate how the mass transport across the nano-porous 

structure influences the response due to non-specific signal by comparing flow-through 

versus flow-over geometries. Experimental results suggest that sensor on silicon/flow-

over shows higher sensitivity (~0.9nm/mg) to “BSA” dose than free-standing 

sensor/flow-through (~0.4nm/mg) due to residue of protein/impurity that persists in pore. 

This result was verified by measuring similar samples in both flow through and flow over 

configuration, as well as their residual response after blockage of all their active sites. We 

also notice that sensors based on free standing membranes show similar results 

independently from the fact that mass transport is induced by either an external pressure 

source or simply by brownian motions. The present comparative analysis may serve as a 

set of design criteria to help engineers fabricate an efficient biosensor.  
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In chapter 6, an effort is directed towards more sensitive flow-capable polarimetric bio-

sensor. This has been achieved through PSi free-standing membranes as discussed in 

chapter 3 and results were compared with porous alumina membrane. Aim of this work is 

to explore these membranes potentially for efficient and high sensitive real time bio-

sensor. PSi membranes of ~15µm thick with ~100nm pores and porous alumina 

membrane of ~60µm with ~200nm pores were used for real time bio-sensing. For 

anisotropic nature of these PSi and porous alumina membranes, they were characterized 

for both in-plane and out-plane birefringence. Both membranes show anisotropy with in-

plane, originated due to their exposed surfaces that have irregular pores shape than 

perfectly circular one and out-plane birefringence increase with rotational angle with 

respect to incident light direction. Furthermore real time sensing is demonstrated for both 

porous alumina and PSi membranes. Both membranes show easy filtration of liquid 

through them. With polarimetric setup, sensitivity of about 0.32degree/NaCl% and 

0.23degree/NaCl% for porous alumina and PSi membranes was observed. Even though 

both membranes have equal porosity ~50%, considering sensitivity per unit thickness (as 

porous alumina membrane is four time thicker than PSi membrane), PSi membrane 

shows higher sensitivity (0.0053degree/Nacl%-µm and 0.0148degree/NaCl%-µm)   and 

preferable for bio-sensing than porous alumina membranes. The LOD/ µm ~6.0*10
-3

 and 

1.7*10
-2

 are observed for PSi and porous alumina FSMs respectively. Furthermore with 

these FSMs BSA sensing are demonstrated as model system for future LOC devices. The 

work presented in this thesis is summarized in Conclusions. Also the future scope of the 

present work for further study of materials is being discussed.  
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1.6 Summary of study 

In this work we have proposed a PSi based flow through bio-sensor able to perform fast 

and sensitive real time analysis.  The present work is summarized as: 

1. We have presented a simple fabrication method for n-type PSi free-standing 

membranes with straight and smooth pores of up to ~100nm of diameter. 

2. A two solution method is presented to fabricate free-standing porous membranes. 

3. Our process maintains a very good planarity of the interface as demonstrated by the 

fabrication of very thin and large area free standing membranes. No HF concentration 

gradient effect is noticed. 

4. We found that membranes detachment does not require a high current burst but it is a 

self-limited process that involves a thin transitional layer at the bottom of the porous 

region. 

5. Covalent functionalization of silicon surface is found to be suitable used to stabilize 

the porous surface and to act as intermediate layer for binding of other bio-molecules.  

6. Role of non-specific binding in sensing efficiency is analyzed by comparing flow over 

and flow-through sensing for sensor fabricated on silicon substrate and sensor in free-

standing nature.  

7. Real time sensitivity per unit length of 0.0053degree/NaCl% and 0.0148degree/NaCl% 

was observed respectively for porous alumina and PSi membranes and PSi was found 

more suitable and sensitive for bio-sensing applications. 
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2.1 Introduction 

In this chapter, we will discuss the basics working principle of the fabrication and 

characterization techniques used during the present work.  

2.2 Sample fabrication  

In this section we describe in detail all the elements that compose the fabrication system 

and how they affect the quality of PSi samples.  

2.2.1 Electrochemical cell  

                   The electrochemical cell is an important part of the fabrication because the 

homogeneity and quality of the PSi samples depends on its structure. Based on literature 

survey the most common type of cell that has been used for the fabrication process is a 

cylindrical cell with the sample placed at its bottom [1]. The cell body is made of Teflon 

and shaped in a cylindrical-section to avoid electric field in-homogeneities due to edge 

effects. Teflon is chosen because it is a highly acid-resistant polymer [2]. 

In this type of cell silicon wafer is located at the bottom of the cell, as can be observed in 

the diagram of Figure 2.1. The silicon wafer acts as the anode and its back-side is 

modified by ion implantation and aluminum deposition to improve the Ohmic contact. 

The front side of the wafer is sealed with an O-ring, so that only this part of the wafer 

surface is exposed to the electrolyte solution. Platinum grid acts as cathode. The 

electrolyte solution contains hydrofluoric acid in 48% aqueous solution diluted in water 

or ethanol at different concentrations [3]. To get homogeneous porous structure magnetic 

stirrer was used to mix the electrolyte solution during the etching. For aqueous 

hydrofluoric solution the stirrer was used at slow speed because the surfactant (Triton) 

tends to form bubbles that stick at the cathode and enhance the in-homogeneity in PSi 

samples. 



Fabrication and Experimental Techniques 
 

Page 25 
 

The sample homogeneity of PSi layers obtained with this electrochemical cell is pretty 

good as demonstrated by the homogeneous color of the etched area and by the straight 

and smooth interface viewed in cross section SEM images shown in Figure 1.2 of 

Chapter 1.  

 

  

                        (a)                                                              (b) 

Figure 2.1-Optical photograph of electrochemical Teflon cell used to fabricate PSi structures (a) side 

view of the cell (b) top view of the electrochemical cell. In the center, the hole represents the Si area exposed 

electrolytic solution.  In the bottom metallic connector is used to connect with metallic plate attached with Si 

wafer   

 

2.2.2 Programmable constant current source 

Figure 2.2 shows the scheme of the etching setup employed for the fabrication of PSi 

samples. A programmable current/voltage source (Keithley, 2400-Meter, SourceMeter) is 

used. The whole system is controlled by software that continuously monitors and 

registers both current and voltage. These data are used to control the reproducibility of 

the etching. 

The software is controlled by an input file. This is a text delimited file defined by the user 

that lists and the duration time of each step and applied current. The output file registers 

the time duration, the applied current and the measured voltage. 
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Figure 2.2 (a) Sketch diagram of all elements involved in chemical etching of Si. Specific voltage or 

current is forced to flow between two electrodes and visualize on computer screen (b) Optical photograph of 

electrochemical setup used to fabricate PSi structures  
 

 

2.3 Characterization techniques  

     2.3.1 UV-VIS spectroscopy 

The optical properties of the fabricated sample are closely related to the porous structure 

[4]. UV-VIS Spectroscopy is a versatile and a non-destructive technique that reveals 

detailed information about the porous structure [5]. In fact the spectral information 

collected is related to the values of the optical path (i.e. the product between the physical 
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layer thickness and its refractive index) of the layers that compose the PSi sample and are 

used to optimize the etching process and to check the quality of the sample [6].  

General principle 

UV-VIS spectroscopy on PSi thin film is typically used to analyze the interference 

phenomena which the thin film creates [7]. PSi sample consist of single or multi porous 

thin layers that creates interface effects. When a light wave is transmitted/reflected to the 

porous thin layers, on the optical boundaries of thin porous layers, a portion of light is 

transmitted/reflected results two or more light wave interact each other. The light waves 

that are in phase go to constructive interference, while the light wave that is in out phase 

goes to destructive interference. Superposition of these light waves generates an 

interference (fringe) pattern due to their wave nature; the mechanism of interference 

generation is shown in Figure 2.3. Furthermore the quality of the interference of porous 

layer depends on the thickness of layers, their refractive index difference, the number of 

layers and how smooth their interface is. For a single layer sample, depending on layer 

thickness/phase shift induced by layer, the interference pattern varies from sample to 

sample and can be used to determine basic sample optical properties [7, 8]. For a single 

thin layer, the interference pattern directly depends on its refractive index and its 

thickness. Once one of the two is known, the other can be calculated. These 

measurements are typically performed to optimize the etching process. The following 

expression relates the different quantities [8]; 

 



Fabrication and Experimental Techniques 
 

Page 28 
 

Where d is the thickness of porous layer, n is its refractive index, θ is the angle of light 

incidence, m is number of fringes observed and Dn is wave-number region used.  
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                        (a)                                                                                                 (b) 

Figure 2.3  (a)Interference developed by PSi structure; for an air and thin porous layer, two reflected beam, one 

from top surface and other from the interface of porous layer and silicon substrate interact with each other 

resulting an interference pattern: in the right is generated (b)   
          

 

2.3.2 FTIR and micro-Raman Spectroscopy 

As discussed in Chapter1 that sensing properties of PSi strongly depends on its quality of 

porous structure i.e. refractive index that depends on the molecules attached in pores. In 

fact if chemical method is used to stabilize PSi against environment or undesired aging 

effect, one need to confirm about a proper coverage of the porous surface by the 

molecules attached [9]. In this sense Infra-Red Spectroscopy is an extremely reliable 

fingerprinting method for the analysis of proper attachment of chemical compounds to 

PSi wall surface [10]. Both FTIR and micro-Raman technique are used to obtain spectra 

of various organic molecules used to stabilize PSi surface [11]. In this study micro-

Raman is preferred over FTIR technique as many compounds are not IR active. 

Furthermore there is no need to take a special care for sample preparation and very small 

sample i.e. micro dimension can be analyzed with greater accuracy [11, 12]. 
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2.3.2.1 General principle of FTIR 

FTIR is an absorption measurement of IR frequency by the sample [10]. Absorption by 

different functional groups in the infrared region results in changes in vibrational and 

rotational status of the molecules. The absorption frequency depends on the vibrational 

frequency of the molecules, whereas the absorption intensity depends on many factors 

including absorption cross-section (larger the absorption area, larger IR signal), phase 

state of sample and integration time that defines how effectively the infrared photon 

energy is transferred to the molecule [10, 13]. Furthermore, a molecule will absorb 

infrared light only if the absorption causes a change in the dipole moment [13].  

In PSi case, analysis is carried out in a wavelength interval 200-4000cm
-1

 along both 

sample cross-section and top surface. The species of interest have typical characteristic 

absorptions like those listed below [13] 

 

3700-2500 cm
-1 X-H Stretching (X=C, N, O and S) 

2300-2000 cm
-1 C=X Stretching (X=C or N) 

1900-1500 cm
-1 C=X Stretching (X=C, N and O) 

1300-800 cm
-1 C-X Stretching (X=C, N and O) 

 

 

2.3.2.2 General principle of micro-Raman 

As discussed above, rather than direct absorption as in FTIR spectroscopy, micro-Raman 

works on the principle of scattering of monochromatic light [14]. The incident 

monochromatic photon interacts with electron cloud of molecules and further goes either 

elastic (Rayleigh scattering) or inelastic scattering (Raman scattering). During this 
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process energy is exchanged between photon and molecule results the scattered photon 

may have energy lower or higher than the incident photon [15]. The Raman shift in 

energy is the measurement of the vibration energy of molecule. A complex molecule may 

have many vibrational modes and Raman intensity versus Raman shift gives Raman 

spectrum, which is characteristic of each individual material and can be used to identify 

its structure. For a Raman active material, the net molecular polarizability must be 

changed. Moreover as most of the photons collide with molecules with no change in their 

energy than Raman scattering as a result very small signal is observed. However this 

problem is solved using a monochromator with two or three dispersion stage. 

Furthermore since the discovery of Raman spectroscopy a large effort have been made to 

develop this technique.  

Raman spectroscopy combined with microscopy named as micro-Raman uses 180 degree 

sample geometry with an optical microscope [16]. In this technique laser beam is focused 

on the sample with an optical microscope objective that limit the exposed area to its 

diffraction limit, hence spectra can be collected from a small ~1µm dimension. 

Employing backscattering, Raman signal form the sample is collected by the same 

microscope objective and a detection limit of nano-grams with molecular selectivity can 

be achieved. Furthermore confocal microscopy enhances its efficiency and now micro-

Raman has become one of the most analytical tools to have fingerprint of material in 

industry and in research applications.    

 In this study FTIR and micro-Raman technique is used to examine the attachment of bio-

molecules in the pores used for surface stabilization of PSi surface against undesired 

oxidation.  
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2.3.3 Atomic Force Microscopy 

 

Atomic Force Microscopy (AFM) finds widespread application in surface sample 

analysis [17]. With this technique surface roughness and topographic image are acquired. 

In case of Optical properties of PSi layer that strongly depend on its microstructure and 

its topographical structure, AFM plays an important role. Thus AFM analysis is to be 

examined to identify surface topography of PSi samples. Surface morphology and 

roughness of porous samples were investigated using Atomic Force Microscopy (AFM, 

NTMDT mod. P47H) working in contact mode. 

General principle 

Binning et al. in 1986 was invented the atomic force microscopy (AFM) [18]. A sharp tip 

is attached to a cantilever. Due to either attractive or repulsive forces of interaction 

between tip atom and sample surface atom causes positive or negative bending of 

cantilever which is monitored by a laser beam deflection. A schematic block diagram of 

an AFM is shown in Figure 2.4. 

AFM works in three main modes [19]:  

1. Contact Mode: In this mode AFM tip makes a soft physical contact with the surface 

of the sample and deflection in cantilever is proportional to the surface topography. 

2. Non Contact Mode: In this mode the interaction between the tip and the sample is 

minimized. In this mode the tip does not contact the sample surface.  

3. Tapping Mode: In tapping mode the cantilever tip is forced to oscillate at a constant 

resonance frequency.  
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Figure 2.4 Block diagram of AFM set up; Atomic force induces an interaction between sample surface atom and 

tip atoms, results in scanning the surface, incident beam is reflected as per surface morphology,  laser beam 

from cantilever is mapped to image surface topography  

 

 

 2.3.4 Optical Polarimetry 

The rotation of light, when passed through a substance raised a keen interest since long 

time [20].  Optical polarimetry is a very sensitive and non-destructive technique to 

measure the light rotation produced by organic and non-organic substances [21]. These 

types of substances are said optically active and when properly aligned to respect the 

incident light, can be used to rotate the light polarization [21, 22]. PSi is a highly 

birefringent material and is of interest in polarimetry based optical detection [22]. Optical 

polarimetric characterization of the PSi layers was done by in-line, quarter wave plate 

based polarimeter (PAX5710-T THOR LAB.). The complete setup of optical polarimeter 

for PSi samples is shown in Figures 2.5 and Figure 2.6. 
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General principle 

As many crystalline materials have complex crystal structure rather than simple cubic 

structure and this complex arrangement may induce different refractive index 

corresponding to different crystallographic directions [23]. Such materials that have non-

uniform spatial distribution of optical properties are known as birefringent materials i.e. 

calcite and PSi. These materials are further characterized as uniaxial, biaxial material 

depending on directions along which optical isotropy is maintained [23, 24]. In simplest 

case uniaxial birefringent material; optical properties in directions perpendicular to optics 

axis of sample are different due to difference in refractive index in these directions. If the 

incoming light wave is along this optical axis of the sample, the two polarization 

components, ordinary and extra-ordinary mode, do not feel any change in refractive 

index; hence no phase change is observed. As the angle of incidence of light with respect 

to sample optic axis is changes, the effective refractive index and optical path length 

changes for ordinary and extra-ordinary light. As a result when the incident beam cross-

over the sample these two light beam superimpose and generate a light beam of different 

degree of polarization than incident light beam. The observed phase shift between two 

polarization components of incident light, increases as incident angle increase with 

respect to its optical axis. The phase shift () between these two components can be 

written as: 

   
2

d n


     
  

  is the incident wavelength of light, d  the PSi membrane thickness and  n   its 

birefringence. 
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 The optical polarimetric instrument used for characterization of all samples was 

composed by an input laser source, a polarizer to have a well defined polarization state, a 

quarter wave-plate, an analyzer and a photodiode. Quarter wave-plate combined with 

analyzer is used to analyze the state of incoming laser beam. If quarter wave-plate have 

fast axis parallel to analyzer axis and incoming light beam is linearly polarized as a result 

the out-beam will be linear polarized. The light transmitted to photo diode is converted 

into current that is proportional to the optical power and is further analyzed by software. 

Furthermore for the same if in-coming beam phase is modified i.e. 45degree by 

birefringent sample, the transformed output beam will be circularly polarized. As a result 

of fixed axis of quarter wave plate and the analyzer, photon transferred to photodiode will 

be different hence current observed will be different. In conclusion for each change in 

phase of incoming beam, a different current will be observed due to quarter wave plate 

fixed axis and optical phase state of light is calculated by software.   

 

 

 

Figure 2.5 Measurement setup for polarimetric experiment 
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Figure 2.6 Optical photograph of measurement setup for polarimetric experiment with fluidic setup, below in 

the figure, a zoom of setup is shown. 
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3.1 Introduction 

PSi has gained remarkable attention due to its easily tunable optical properties and proves 

it’s self as a potential candidate for optical sensor [1, 2, 3, 4]. The simple fabrication 

method, its bio-compatibility and flexibility in tuning its refractive index/porosity, makes 

it a suitable and promising platform for bio-sensing applications [5]. Furthermore the 

fabrication of free standing membranes (FSM) permits to exploit the flow through 

approach and to achieve multi spot analysis on a microarray configuration. Unfortunately 

the release of free standing membranes is easily achieved on p-type silicon but this type 

of substrate allows for the fabrication of layer of limited thickness because of the lateral 

pore growth [6].  

On the other hand n-type PSi structures provide an alternative material in which macro-

pores larger than 50nm can be realized, while keeping high pore aspect ratio and  smooth 

inner pores surface [7]. This is the ideal structure to fabricate high sensitivity devices and 

to achieve an efficient filtration of bio-molecules in flow through devices [8].On n-type 

substrates; we can etch pores with dimension in the range 50nm to 200nm by adjusting 

and controlling the different parameters (i.e. silicon wafer resistivity, concentration of HF 

solution, current density, anodization time [9]). The pore formation on these substrates is 

partially explained by different models. One of the most used is the so called “space 

charge region” (SCR) model by which pore size and pore spacing are defined by the 

space charge layer created at the silicon-electrolyte junction [10, 11]. However SCR 

model cannot explain several of the pore morphologies which can be etch in PSi (e.g the 

branched structure, when pore grows in <113> direction). Another model is the “Current 

burst model” (CBM) that essentially explains the fabricated PSi as a balance between 
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chemical and electrochemical dissolutions of Si [10, 12]. This model is frequently used to 

explain the fabricated porous structure with electrolytic solution that contains oxidizing 

agent in addition to increase its pore size. Christophersen et al. and Harraz et al. reported 

the fabrication of macroporous structure on n-type substrate with electrolytic solution that 

contains CrO3 and KMnO4 as an oxidant and explains the fabricated porous structure on 

the basis of CBM [13, 14]. In same line D.H.Ge et al. demonstrated the fabrication of 

macro pores with another oxidizer H2O2 with a growth speed up to 1800µm/hour [15]. 

Furthermore by modifying electrolytic solution (HF/H2O2/ethanol), authors were able to 

fabricate smooth macro-pores, branched meso-pores and spongy micro-pores on this 

silicon substrate [16].   

Unfortunately FSM with macroporous structure are difficult to fabricate and no reports 

were published about their fabrication via electrochemical etching method. Recently 

Striemer et al. demonstrated the fabrication and filtration of bio-molecules through 10nm 

thin PSi FSM having pore size ~ 5-25nm [17]. Even more Hassan et al.  fabricated ultra 

thin PSi membrane (1µm, 5µm and 10µm) using xenon difluoride-base isotropic dry 

etching method [18]. Various available technical approaches as electron-beam 

lithography combined with side wall transfer process or thermal annealing of ultra-thin 

amorphous silicon were proposed to produce mesoporous FSM as alternative to the 

electrochemical etched PSi, but they all involve complex and multistep methods with 

limited tunability in term of porous structures attainable [19, 20]. Hence a simple 

technique to fabricate macroporous self-supporting PSi membranes has to be developed.  

As, it is well known that in highly doped p-type silicon wafer, it is quite easy to fabricate 

partial or complete detached FSM using electrochemical etching using and applying a 
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high bust of current at the end of the process [1]. To the best of our knowledge, there is 

no report about the fabrication of high quality free standing membranes having 

structure~100-200nm on n-type silicon substrate using simple electrochemical etching 

method. The goal of this chapter is to describe the optimization we have performed to 

achieve a robust and reliable process to fabricate thin micro/meso/macro-porous silicon 

membranes with tunable pore size and thickness by optimizing the correct etching 

parameters and conditions i.e. solution and current density. 

3.2 Experimental Details 

N-type silicon wafer with resistivity of either 0.1 Ω-cm or 0.01 Ω-cm were used as the 

initial study material. Wafers were oriented along the [100] direction and one side 

polished. PSi layers and free standing membranes were prepared by electro chemical 

etching method.  The anodization was performed at room temperature in the absence of 

light and computer controlled current source was used to have a precise control over 

applied current density as described in experimental chapter 2. After fabrication of 

porous samples, all samples were rinsed in ethanol and dried in N2 flow.  For structural 

morphology of PSi structures, high-resolution scanning electron microscopy (SEM, 

JEOL mod. JSM 7401F) studies were also performed.  

 3.3 Results and discussions  

3.3.1 Effect of Silicon wafer resistivity 

It is well known that several parameters such as doping concentration and crystal 

orientation of the substrate, electrolyte composition, applied current density and etching 

time play an important role in structural morphology of PSi [8-12, 21]. Silicon wafer 

resistivity is one of the most influencing parameter, which directly affects the 
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homogeneity, porosity, strength/hardness, pore size, thickness of detached membrane and 

etch rate of porous layer. As well known partially and completely detached membranes 

having pore size ~ 40-50nm can be easily achieved on p-type silicon wafer (0.01Ωcm 

(100) aligned) followed by subsequent high applied burst current [1, 22, 23]. On the other 

hand, n-type silicon wafer can produce a large variation in pore size depending on wafer 

resistivity and electrolyte solution.  

As we aimed to fabricate, macropores of about 100-200nm diameter we choose two types 

of n-type silicon wafer with resistivity 0.1Ωcm, 0.01-0.02Ωcm. The electrolytic solution 

contains 25 ml HF acid (48.99%), 200ml de-ionized water and 1 ml “Triton” as a 

surfactant. Figure 3.1, shows SEM cross-sectional and top view of porous layers 

fabricated on 0.1Ωcm and 0.01-0.02Ωcm silicon substrates, respectively. 

For 0.01-0.02Ωcm silicon substrate, pore size, pore smoothness and etching rate 

increases with applied current density as expected because, for a fixed HF concentration, 

a higher applied current density provides a larger number of holes that enhance the 

etching of silicon. Low current density (12mA/cm
2
) gives etching rate of about 

0.01um/sec and produces rough and heavily branched pores of about 20nm of diameter. 

On the other hand larger current density (70mA/cm
2
) increases the etch rate up to 

0.023um/sec and produces smooth pores of about 100nm in diameter. It is of interest to 

note that rough and branched pores persist up to 48mA/cm
2
 current density. The porous 

silicon layers obtained at high current density has a porosity of about 75% (estimate with 

interference method). At larger current density (80mA/cm
2
), we observed the formation 

of smooth macropores with branched structure rather than straight pores.  
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The porous structures obtained on 0.1Ωcm silicon substrate are rather different: pores 

have much larger average diameter. Furthermore pores shape is highly dependent on the 

applied current density, being roughly of cylindrical shape for low applied current density 

and become square shaped at the top and star-like at the bottom at higher applied current 

density. Even in this case the main pore axis grows along the <100> direction but star-

like shape with four branched deformation appear as the applied current density is 

increased (i.e. at 120mA/cm
2
 four branched deformation is clearly visible in SEM image 

of Figure 3.1. The orientation of pore growth on this substrate is shown in Figure 3.1 and 

can be explained in terms of etching anisotropy in <100>, <010> directions [24, 25].  

        
 

  
 

Figure 3.1. SEM images of porous silicon (PSi) monolayer. “a-b shows the top and cross-section of PSi fabricated 

with  37mA/cm
2
 and “c” top and bottom surface morphology fabricated with 120mA/cm

2
 on 0.1Ω-cm (in figure 

inset pore growth direction is shown). “d, e & f” shows the pore structure fabricated with 12, 36 and 70mA/cm
2
 

on 0.01-0.02Ω-cm 
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 Also in this substrate pore size increases with the applied current density i.e. at 

20mA/cm
2
 current density pores have roughly 120nm diameter and it increases up to 

250nm at 40mA/cm
2
 current density. To be sure to have roughly rounded pores the PSi 

layer obtained on high resistivity wafers was etched using current density of 37mA/cm
2
. 

The main limit of these samples is that their porosity is of only 7% as calculated from 

SEM image (shown in Figure 3.1). Figure 3.2 shows the transmittance and absorbance 

characteristic of these FSM (~30µm). From the observed data it can be seen that these 

FSM behaves as completely opaque in the wavelength region of interest (1000-1500nm) 

and cannot be used  for sensing applications. 
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Figure 3.2 (a) Transmittance and (b) absorbance spectra for FSM of ~30µm fabricated on 0.1Ωm-cm silicon 

substrate 

 

 

Furthermore as discussed above pore growth on highly doped n-type silicon substrate is 

explained by either space charge Region (SCR) model or Current Burst Model (CBM) 

[10-12]. In this study, it is observed that for 0.1Ωcm silicon substrate follows SCR model 

as pore wall thickness is about twice the  pore size (~300 nm), whereas for 0.01Ωcm 

substrate theoretical SCR width is ~60nm at 3V that implies pore wall thickness should 
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be ~120nm. This value contradicts the experimental observed pore wall thickness that, 

for the current density used, is of about 10nm [15]. From observed data, it can be 

concluded that the fabrication of macro-porous structures on 0.01Ωcm substrate are not 

due to SCR effect and may be explained with the CBM [11-16]. 

We found that on both substrates pore size increases proportionally to the etching current 

density. The main difference among the two is that on 0.1Ωcm silicon substrate the larger 

the etching current the more pronounced is the etching anisotropy along the <001> and 

the <010> directions that originates a square shaped pores. Based on these morphological 

characterizations i.e. pore size and pore surface, these two silicon substrates are of great 

interest for the fabrication of intermediate porous structure that over the micro/meso and 

macro range and that are suitable to both sensing and filtering applications. Furthermore 

0.1Ωcm silicon substrate is difficult to find, so due to their limited availability, we further 

concentrate more on n-type 0.01Ωcm silicon substrate. 

3.3.2 Effect of electrolyte solution 

In this section the nature of the solvent and the role of HF acid concentration are studied 

in detail. During the etching hydrogen evolves. If the etching solution does not wet the 

pore surface, hydrogen bubble can form and stick within the pore. This fact induces in-

homogeneities on the etching (because bubbles stops the etching process and are hardly 

removed from the pores) [26, 27]. Thus it is important that electrolyte have to easily wet 

the silicon pore surface and penetrate easily within the pores. Keeping these points in 

mind, we add “Triton” as a surfactant in the aqueous based solution. The electrolyte that 

we have used for the fabrication of n-type (100) porous silicon samples is composed of 

high purity HF 48.99% aqueous solution diluted in ethanol and water varying 
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concentration from 11.11% to 33.33% of HF acid). All samples were prepared with a 

fixed current density of 80mA/cm
2
. Figure 3.3 and Figure 3.4 shows the effect of HF acid 

concentration both in water and ethanol based solution i.e. pore size, pore roughness and 

pore morphology.  
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Figure 3.3 (a) Optimized and observed parameters for the fabrication of micro, meso and macro-porous 

structure on n-type (0.01-0.02Ω-cm) silicon substrate for water based solution. (b) Optimized and observed 

parameters for the fabrication of meso-porous structure on n-type (0.01-0.02Ω-cm) silicon substrate for ethanol 

based solution. Note the different y-axis on the two graphs. 

 

                       

         
 

          Pore Size~50-60nm              Pore Size~40-45nm            Pore Size~85-90nm              Pore Size~30-40nm  

                                    

Figure 3.4. SEM images of porous silicon (PSi) monolayer fabricated with different electrolyte (all the samples 

were fabricated with 80mA/cm
2
 and etching lasts for 300s): Image “a” and “b” for Ethanol+HF acid (16.67% 

and 33.33%), Image “c” and “d” for Water+HF acid (16.67% and 33.33%). Scale bar for all images is 500nm. 
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It is observed that with decreasing HF concentration in both solvent i.e. pore size and 

pore wall smoothness increases. With decreasing HF acid concentration a reduction in 

etching rate is observed for these solutions probably because of the reduction of the direct 

dissolution via HF acid. Etch rates decrease from 0.085µm/sec to 0.031µm/sec and from 

0.064µm/sec to 0.028µm/sec for ethanol and water based solution, respectively. With 

11.11% HF acid concentration in aqueous solution, macro-porous (~110nm) structure can 

be fabricated and furthermore increasing the HF acid concentration up to 33.33% of 

solvent a branched morphology is achieved with pore size of roughly 25 nm. On the other 

hand in ethanol based solution pore size of about 50nm-60nm can be fabricated. From the 

observed data for ethanol and water based solution, relative increase in pore size is ~31% 

and 229% as HF acid concentration is relatively reduced by a factor of three. It seems 

that for ethanol based solution HF acid concentration is not a critical parameter whereas it 

largely determines the porous structure i.e. pore size and pore roughness for water based 

solution at large current density (80mA/cm
2
).  

If we compare these two solutions, water based solution provide much smoother pores, 

faster etching speed and high porosity compared to ethanol based solution. This fact is 

probably due to the oxidant nature of the water. Thus we believe that for bigger and 

smoother pore strong oxidant with aqueous solution of low HF concentration is required. 

Based on results observed above we have optimized a mixed “water and ethanol” based 

solution added with a 10% volume concentration of H2O2. In this way we try to exploit 

the wetting capability of the ethanol based solution with an increased oxidant power due 

to the addition of hydrogen peroxide to an aqueous solution to increase pore size, reduce 

pore wall roughness and the bottom surface roughness to get thin free standing 
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membrane. Recently a similar study has been performed by D.H. Ge et al. [15, 16] They 

found that pore formation in such solution are explained by CBM in terms of a balance 

among the direct dissolution of silicon due to HF acid and indirect dissolution obtained 

by oxidant as water (and H2O2 in our case) that partially oxidize pore walls which are 

then readily dissolved in HF solution. If there is an imbalance i.e. indirect dissolution is 

smaller compared to the direct dissolution, then pores will not follow straight path but 

rather they tend to form a branch structure. Moreover D.H. Ge et al varied the ratio 

between HF and H2O2 (HF:H2O2-2:1, 1:1 and 1:2) for a fixed applied current density and 

they found that a stable growth of smooth macropores happened for HF:H2O2=1:2 [16].  

To get an idea about absolute effect of HF:H2O2, the ratio is changed from 1:0.43 to 

1:3.7. During the etching we use the maximum current density that we can apply for 300s 

without entering into the electro-polishing regime. Addition of H2O2 (10.03%) in 

ethanol+HF based solution, it increases pore size from ~45nm to 60nm.  Furthermore 

pore roughness can be reduced further using water in electrolytic solution. With this new 

ethanol/water/H2O2 based solution and because HF concentration is decreased from 

23.07% (2.3:1) to 16.67% (1.5:1), pore wall becomes smooth and pore size increased to 

~80nm as shown in Figure 3.5(a)-(d). Also in this case by decreasing the HF 

concentrations etch rate also decreases from 0.075µm to 0.044µm/sec. 

In brief with increasing H2O2 concentration and decreasing HF concentration, smooth 

macroporous can be fabricated. So we further test two other electrolytic solutions with 

increased H2O2 concentration to ~20.6 and 21.8% and with HF a diminished 

concentration of ~10.7% and ~5.7% respectively. More interestingly as we were 
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expecting, maximum porosity was achieved with 10.71%HF (1.04:2) based solution with 

~100nm pore size with refractive index ~1.6 (calculated with interference method). 

   

(a)                                                                         (b) 

   

(c)                                                                         (d) 

     

(e)                                                                         (f) 

Figure 3.5. SEM images of porous silicon (PSi) monolayer fabricated with different electrolyte (see Table 3.1) 
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Solution HF:H2O2 Current 

density 

(mA/cm
2
) 

Etching 

rate 
(µm/sec) 

Maximum 

Pore size 

Minimum 

membrane 

Thickness 

(a)                    23.07%HF+Ethanol 23.07:0 80 0.057 40-45nm ≥20µm 

(b)                    23.07%HF+Ethanol 

                 +10.03%H2O2 

2.30:1 80 0.050 60-70nm ≥10µm 

(c)         23.07%HF+(Ethanol+H2O) 

+10.03%H2O2 

2.30:1 160 0.075 60-65nm ≥12µm 

(d)        16.67%HF+(Ethanol+H2O) 

+10.87%H2O2 

1.53:1 120 0.044 70-80nm ≥10µm 

(e)      10.71%HF+(Ethanol+ H2O) 

+20.60%H2O2 

0.52:1 80 0.030 ~90-100nm <2> µm 

(f)        5.66%HF+(Ethanol+ H2O) 

+21.77%H2O2 

0.27:1 15 0.005 ~70-80nm <2> µm 

 
Table 3.1: Optimized and observed parameters for the fabrication of meso and macro-porous structure on n-

type (0.01-0.02Ω-cm) silicon substrate for ethanol and water based solutions. For each electrolytic solution cross-

section SEM image of observed porous structure is shown in Figure 3.4.  

 

 

 

Table 3.1 shows the applied and observed parameters with Water+Ethanol+H2O2 based 

solutions. Further decreasing the ratio of HF:H2O2 to 0.27:1, smooth, but branched pores 

are observed. Figure 3.5(e)-(f) shows cross-sectional SEM images of these porous 

samples.  

Thus our experimental results suggest that depending on the HF:H2O2 ratio, different 

porous structure morphology can be obtained. To fabricate macro-porous structure 

~100nm on 0.01-0.02Ωcm silicon substrate using electrolytic solution containing H2O2, 

HF:H2O2 window lies in between 1:1 and 1:2. On the other hand for either too high or too 

low HF/H2O2 ratio branched porous structure is observed.                     

3.3.3 Free standing membranes (FSM)  

FSM are more appealing due to their high selectivity and flow capability are used in 

many separation techniques i.e. extraction, adsorption and ion-exchange etc., however 
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besides their many advantages only few reports are available on fabrication of   thin self 

supporting membranes[16-19, 28], in this section, FSM were achieved on both n-type 

silicon wafer (0.1Ωcm and 0.01Ωcm) substrates. For the first time PSi FSM on these 

substrates were prepared by electro chemical etching method with different types of 

studied electrolyte solution without back side illumination. We also optimized to get thin 

(2µm) FSM with smoother pore~100nm using two electrolytic solutions 

(water+11.11%HF and 10.71%HF + (ethanol+H2O2) at room temperature.  

3.3.3.1 One step-current density model  

 Recently C.S. Solanki et al. also have reported fabrication of self-supported thin films 

for p-type silicon substrate (0.02-0.05Ωcm) and demonstrated that self lift-off may occur 

[6]. Lift-off time depends on HF acid concentration and applied current density [6, 22]. 

The anodization lift-off time is predetermined for each combination of applied current 

density, HF concentration and water content in electrolytic solution. We demonstrated 

that on  n-type silicon wafers (0.1Ωcm and 0.01Ωcm), complete detached FSM with 

water based solution (11.1%HF+Water+Triton) was achieved successfully with one step 

current method using 120mA/cm
2
 and 80mA/cm

2
 for high resistive and low resistive 

silicon wafer respectively. With this solution, the detachment of porous membrane was 

completely self-limiting: on both silicon wafers, membrane detachment was achieved 

after a fixed etching time~1000-1100sec and without applying any high current burst at 

the end. Also in this case the membrane detachment is clearly indicated in the recorded 

voltammogram by a sharp and sudden increase in voltage, as shown in Figure.3.6 (in the 

blue box).   
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Unfortunately these etching conditions show no tunability in the attainable porous 

structure: neither pores size nor membrane thickness can be tuned to fabricate FSM with 

different properties. Furthermore on 0.1Ohmcm substrates the self limiting etching 

conditions of 120 and 80mA/cm
2
 in H2O +HF (12.5%) creates a thick FSM (>60µm) 

with deformed (star like pores as shown in Figure 3.1). Such branched pores are not 

valuable for bio-sensing and filtering. Moreover as discussed above these FSM behave as 

opaque material due to small porosity ~7%. Furthermore due to the limited availability of 

0.1Ωm-cm silicon substrates, we concentrate on 0.01Ωm-cm substrate to have thin 

transparent FSM.  

 

Figure 3.6. Voltage-time domain for one step current model for 0.1Ωcm and 0.01Ωcm silicon substarte. Inset 

shows the cross-sectional SEM image of partially detached porous layer on 0.1Ωcm substrate 

 

 

As discussed in previous section 3.3.2 that porosity is inversely proportional to HF acid 

concentration and it can be further improved with addition of an oxidant i.e. H2O2. So we 

decided to optimize to get thin FSM on 0.01Ωm-cm substrate. We use two electrolytic 

solutions (5.7%HF+ethanol+H2O+H2O2 and 10.7%HF+ethanol+H2O+H2O2) with 

different HF concentration.  Initially we used 5.7% HF acid solutions. This HF 
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concentration shows etch rate of only 3 nm/s whilst applying the largest current density 

(14mA/cm
2
) that allows the etching of samples several microns thick, without electro-

polish them. Moreover pores are highly branched. We found that the 10.7% HF 

concentration is the concentration that permits to obtain the larger pore size and, at the 

same time, the etching of very thick samples with stable pore structure while keeping the 

possibility to detach membranes. 

 

(a)                                           (b)  

     

(c)                                               (d)  

Figure 3.7 Panels (a), (b) and (c) show cross-sectional SEM images of n-type PSi etched using ethanoic solution. 

Current densities are, respectively, 4mA/cm
2
, 20 mA/cm

2
 and 80mA/cm

2
. Similar structures are obtained using 

aqueous solutions. (d) Cross section of a macroporous , mesoporous  and microporous multilayer structure. The 

thin dark layer at the bottom is the low porosity microporous region. 
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Figure.3.7 (a-c) summarizes the limiting structures that can be obtained using ethanoic 

solutions at low and large current densities, respectively. As expected, both pores size 

and etching rate increase with current density. Rough and tree-like (micro-meso) porous 

structure develops at low current density using both types of solutions, while smooth and 

straight macro-pores grow if the current is increased. Very similar structures are obtained 

using aqueous based solution. The most important differences induced by the use of 

water based solutions are: a shift in the current density required to obtained smooth pores 

(larger current are required), slightly larger pore size and faster etch rates. Figure 3.8 

summarizes these key features as a function of current density for both investigated 

solvents below.  

                                         

                                (a)                                                                                              (b) 

Figure 3.8. Structural key parameters and etching rate of PSi samples. (Left axis) Black open squares indicate 

pore diameter, while red open circles pore wall thickness. (Right axis) Green filled triangles indicate etch rates. 

(a) Data for samples etched in ethanol based solution, (b) data for mixed solution.  

 

Etch rates range from 15nm/s to 30nm/s, respectively at 20mA/cm
2
 and 80mA/cm

2
 and 

are similar for both solvents. When using the ethanoic based solution the resulting pores 

have nearly 35nm pore diameter at 20mA/cm
2
, which increases to around 80nm using 

current density of 60mA/cm
2
. On the other hand using aqueous solution the pores are 
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slightly larger (up to 100nm). This fact is probably due to the higher polishing current 

density that is sustained by solutions containing oxidants. In fact the threshold to obtain 

straight and smooth pores depends on the solution composition: it is smaller with 

ethanoic solution (60mA/cm
2
) and increase with aqueous solution (80mA/cm

2
). To note 

that pores are perfectly open up to the surface of the PSi. Both pore size and etch rate is 

larger for aqueous based solutions compared to ethanoic one. 

The careful optimization of porous structure allows us to obtain homogeneous PSi layers 

and, thus, the fabrication of large area, free-standing porous layer (micro-meso-macro) on 

the same substrate. Figure 3.7d shows the fabricated multilayer micro-meso and macro 

porous structure, 4mA/cm
2
 for low porous micro layer, 40mA/cm

2
 to etch meso-porous 

layer following 60 and 80mA/cm
2
 for high porosity macro-porous layer and to detach it 

from silicon substrate. A flat interface between micro-meso and macro can be seen in 

SEM image 3.7 (d). Current density 80mA/cm
2
 and 60mA/cm

2
 for respective solutions 

i.e. water and ethanolic solution was sufficient to fabricate a very thin porous layer 

(~couple of um) and to detached this layer from the silicon substrate. At these current 

densities, etching was completely self-limiting. However this recipe can be applied to 

detach any fabricated porous layer on this “n-type (0.01-0.02Ωcm silicon” substrate. 

Figure 3.9 (a)-(b) shows the voltage behavior during fabrication and variation of lift-off 

time with applied current density for respective solutions.  

 

 

 

 



Fabrication and physical properties of free-standing membranes 
 

Page 56 
 

 

40 50 60 70 80 90 100 110 120
0

50

100

150

200

250

 

  Ethanoic solution

T
L
 (

se
c
)

I(mA/cm
2
)

 

 

  aqueous solution

 

(a)                                                      (b) 

Figure 3.9. (a) Voltage-time domain observed with ethanolic solutions, an increase in voltage is observed as 

porous layer is separated from silicon substrate. Inset shows the photograph of partially detached layer (b) lift 

off time of FSM Vs applied current density for studied solution. Lift off time decrease as applied current density 

is increased. 
 

 

 3.3.3.2 Two step-current density method 

We found that the aqueous solution of 11.11%HF was the optimum because it permits to 

fabricate macro-porous layer with cylindrical pore of about 200nm of diameter in the 

high-resistivity wafer (at 37mA/cm
2
) and pores of about 110nm of diameter on the low-

resistivity wafer (at 70mA/cm
2
). It is known that, for a fixed HF acid concentration, 

porosity mainly depends on the applied current density. Thus, on p-type substrates, FSM 

are usually obtained by applying a very high current density at the end of the etching (the 

so-called current burst). Such large current density completely dissolves the silicon at the 

end of the porous layer and produces the detachment of the porous layer itself [1, 6, 22]. 

The random selection of high burst current density cannot be used for n-type silicon 

substrates as it generally damages the porous layer without detaching it from substrate. 

However completely detached free standing macro-porous membrane were achieved with 

an optimized two step current density method: initially a current density is applied to 
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obtain the chosen pore size, then in a second step a very thin high porosity translational 

layer is fabricated by applying a larger current density to either partially or completely 

detach the porous layer from silicon substrate. The main difference to respect the p-type 

case is that this second step of current density is strongly dependent on the first step 

applied, and cannot be chosen at will. If we choose a much larger current density to 

detach the porous layer, we got it damaged. This is because to detach the membrane we 

don’t need to suddenly enter into the electro-polishing regime and completely dissolve 

the silicon, rather we have to etch a thin and highly porous layer at the bottom of the PSi 

sample. In summary for each specific first step current density, a second step current 

density has to be properly optimized. We found that the optimum values of the two 

current steps for the current densities generally used by use are the following: for the high 

resistivity wafer if an etching current of 37mA/cm
2
 is used the 2

nd
 step have to be of 

80mA/cm
2
; while for the low resistivity wafer if the 1

st
 step if of 60mA/cm

2
 the 2

nd
 have 

to be of 200mA/cm
2
).  Detachment of porous layer is traced by the voltammogram with a 

sharp and sudden increase in the voltage as shown in Figure 3.10. Similar behavior was 

also observed by Searson et al. during the etching of whole wafer for self-supporting 

porous layer [18]. Unfortunately with these applied etching conditions, membrane 

thickness cannot be tuned much in order to get high quality thin transparent macro-

porous (~100-200nm) self-supporting membranes and only porous layer thicker than 

30um could be detached in a reproducible manner on 0.1Ωm-cm silicon substrate. 

Furthermore we tried this two step current method to both ethanolHF+H2O2 and 

water+ethanol+HF+H2O2 based solutions (optimized as described in section 3.3.1 and 

3.3.2) to detach thin FSM on 0.01Ωm-cm substrate. We found that with applied current 
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density of 80mA/cm
2
-200mA/cm

2 
for ethanol+HF(23.07%) solution membrane thickness 

can be tuned from 60 µm  down to ~20µm. From cross-sectional SEM image shown in 

Figure 3.11, it is observed that second step current density produces a thin and highly 

porous layer with pore size~110 at the bottom. Such fragile interface layer helps the 

detachment of the first porous layer. 

   
 

Figure 3.10. Voltage-time domain for two step current model: “in first step porous layer is fabricated with 

desired structure and then in second step, current density is applied to detach porous layer from silicon 

substrate”  

 

  

 (a)                                                     (b) 

Figure 3.11. SEM image of n-type PSi macro-structure with ethanol+23.07%HF just before detachment, SEM 

image of lower high porous layer at higher magnification is shown in the right  
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On the other hand using the ethanol+ H2O2+HF(23.07%) solution and applying 

80mA/cm
2
-200mA/cm

2
, transparent and thinner membrane (10µm) can be fabricated. 

However pores are quite rough and limited to ~60nm. We found that the best structure is 

obtained using the Water+Ethanol+H2O2+HF(16.67%) solution, with 120mA/cm
2
-

200mA/cm
2
  of applied current densities. In fact smooth pores of about 80nm of diameter 

can be further etched, as shown in Figure 3.12. With these solutions, we successfully 

were able to tune membrane thickness and we are able to fabricate membranes as thin as 

10m.  

 

 
Figure 3.12. SEM image of n-type PSi macro-structure with ethanol+23.07%HF just before detachment. Inset 

shows the cross-sectional SEM at higher magnification. 

 

During the fabrication of FSM we noticed a reproducible change of the voltage versus 

time that indicates the separation of the porous layer from the silicon substrate as shown 

in Figure 3.10. Optimized minimum membrane thicknesses are listed in Table 3.1 for 

studied electrolytic solutions.  
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3.3.3.3 Two solution model  

 Realizing from above optimization, furthermore we optimized to fabricated FSM of 

variable thickness from couple of µm to tens of µm thickness with previously optimized 

etching solution (Water+Ethanol+H2O2+HF(10.71%) having straight and smooth 

macropores. With two solution methods, we first etch a high quality macroporous layer 

with cylindrical and smooth pores (as optimized in Sec. 3.3.1)  and then they were 

detached using the Water+Ethanol+H2O2+HF(10.71%)  solution. We successfully 

fabricate high quality transparent FSMs, with thickness tunable from couple of m up to 

tens of m. Figure 3.12(a) shows the observed voltage behavior during the etching and 

when FSM is detached.SEM image of cross-section of partially detached porous layer 

fabricated and optical photograph of transparent thin FSM with improvements made with 

this etching method is shown in Figure 3.13 (b-d). Because of large pore size, we believe 

that these free-standing membranes could be of great interest and could be more 

advantageous in sensing application because of their freestanding nature.  
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(c)                                                      (d) 

Figure 3.13. (a) Voltage-time domain observed with two solutions (inset shows FSM glued on metallic holder) 

and (b) cross-section SEM of n-type PSi membrane. (c) Improvement graph made on n-type PSi membrane and 

(d) photo-graph of thin transparent (~3um) detached n-type membrane 

 

 

 

3.3.4 Effect of oxidant in addition to electrolyte solution/POST etching 

Considering the upper limit of pore size achievable using a single step etching method 

(on the order of 70 - 80nm) from a 0.01Ωcm wafer, we also tried a radically different 

approach and adopted a post etching treatment to increase pore size. After PSi etching, 

we immersed the porous samples in a dilute solution of either Potassium Hydroxide 

(KOH) or Tetra Methyl Ammonium Hydroxide (TMAH), both known reagents for 

anisotropic etching of silicon [29, 30]. Despite being predominantly used for patterning 

silicon based microstructures, we exploited their anisotropic etching in order to reduce 

the inner pore roughness and, at the same time, to increase pore diameter. 

We noticed a large difference between the behaviors of these two solutions. SEM images 

of PSi fabricated and treated with different solution are shown in Figure 3.14 and in 

Figure 3.15. We notice that porous layer fabricated with ethanol HF solution have no 

effect on its pore morphology, where as PSi fabricated with H2O2 is strongly affected 
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with these two oxidants.  KOH increased pore size but etched away also a thick amount 

of the porous layer; on the other hand it seems that TMAH does not affect the porous 

layer thickness but pore size still increases. In both using KOH and TMAH pores 

enlarged by about 20-25% from 70-80 nm to more than 100 nm. Experimental data is 

summarized in Tables. 3.2 and 3.3 

 
Solution  Oxidant  Treatment 

Time (minute) 

Etch thickness Pore size  

 

 

 

 

30%HF+Ethanol  

NO - 21.71um 25-30nm 

KOH  1 16.05um  ~30nm  

KOH  2 10.97um  ~35nm  

TMAH  5 21.56um  ~30nm  

TMAH 10 21.61um  `30nm  

Table.3.2 Effect of the post etching treatment on samples etched in ethanolic solution 

 

From Table 3.2 it is clear that the post etching treatments have no effect on the pore size 

of freshly etched samples. From the aggressive nature of the solutions used, and 

considering the decrease of PSi thickness when the sample is brought in contact with 

KOH solution, it is reasonable to assume that both KOH and TMAH solution does not 

enter inside the pores of freshly etched samples because of the highly hydrophobic nature 

of the surfaces. The pore size remains constant after the post etching and only a reduction 

in PSi thickness treated with KOH is noted due to etching of the superficial layer which is 

directly in contact with the KOH solution (the reason why TMAH seems not to affect the 

PSi thickness is not yet clear and deserves further investigations). 
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Reference sample 

 
 

1minute KOH (1.73%) post-treatment            2minute KOH (1.73%) post-treatment 

         
 
                   5minute TMAH (1.56%) post-treatment             10 minute TMAH (1.56%) post-treatment 

                        
 

 
Figure 3.14.  SEM images of sample after post etching with KOH and sample after TMAH based post etching. 

Scale bar: 200 nm. 
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Reference sample 

  

 

 
 
 

 
 

 

 
                       1minute KOH (1.73%) post-treatment                           2minute KOH (1.73%) post-treatment 

          
 

5minute TMAH (1.56%) post-treatment       10minute TMAH (1.56%) post-treatment        

           
 

Figure 3.15.  SEM images of sample after post etching with KOH and sample after TMAH based post etching. 

Scale bar: 200 nm. 
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Solution  Oxidant  Treatment 

Time 

(minute) 

Etch 

thickness  

Pore size  

 

 

 

 

16.7%HF+32.05%Ethanol+32.05%H2O 

+19.23%H2O2  

 

NO - 15.43um 70-80nm 

KOH  1 6.95um  80-90nm  

KOH  2 3.69um 90-120nm  

TMAH  5 15.66um  75-85nm  

TMAH 10 15.52um  90-110nm  

Table.3.3 Effect of the post etching treatment on samples etched in water ethanolic solution 

 

On the other hand post etching of samples that were fabricated using H2O2 containing 

solution shows a completely different behavior [15, 16, 31]. In this case we expect the 

pore surface to be much smoother and partially covered by silicon oxide, and thus to have 

a different surface polarity compared to samples etched without oxidizing agents. In fact 

the post etching treatments show a significant increase of pore sizes from initial 70 to 80 

nm values, up to more than 100 nm in post etched samples. The main results obtained on 

PSi samples etched using H2O2 are reported in Table 3.3. 

Thus the etching performed using hydrogen peroxide and the post etching treatment using 

KOH or TMAH is found to be a reliable method to both increase pore size and reduce 

their surface roughness by removing the branched structure of the pores, as can be seen in 

the SEM images of Figure 3.15. Despite the increase in the average pore size using these 

post etching methods, we cannot obtain pores larger than 100-110nm, because their initial 

density is mainly defined by the substrate resistivity and longer post etching treatments 

will produce a complete dissolution of the PSi layer (demonstrated by the PSi thickness 

reduction). In particular long post etching increased the sample porosity and rendered the 

membranes extremely fragile. 
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Another advantage of post etching treatment is that it allows the fabrication of thicker 

samples. In fact samples with 70 to 80nm pores cannot be etched for very long time, thus 

they have a limited maximum thickness. This is because direct chemical dissolution of 

the silicon in HF always produces a slow but continuous increase in pore size due to 

lateral etching (this is a severe and well known problem of p-type substrate but it is 

present in n-type as well). Post etching permits to etch long and smaller pores that are 

subsequently enlarged to the desired size.  

 

3.4. Conclusions  

In conclusion, to have better interface for sensing device and flow through sensing, thin 

self-supporting PSi membranes with pores from 40nm to 200nm are fabricated with 

optimized electrolyte solution on n-type silicon substrates. Experimental results suggest 

that water based solution produces larger pores, whereas ethanol based solution helps to 

detach thinner porous layers. A range of volumetric proportions of H2O2 and HF-acid are 

tested to achieve straight and smooth pores of about 100nm of diameter. Thin (~10µm) 

free standing membranes, with pores size around 70-80nm (porosity of 65%) are 

routinely fabricated using H2O +ethanol+ H2O2+HF(16.67%) based solution with two 

step  current density method. This method permits the fabrication of FSM as thin as 2 m 

and of cm-sized diameter (the aspect ratio is of about 6000) with straight and smooth 

100nm pores. 
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4.1 Introduction 

The large specific area of PSi allows the bonding of bio-molecules in a small volume and 

hence achievement of large sensitivity on very compact devices [1, 2, 3]. In particular PSi 

surface properties can be easily stabilized in order to get a reproducible optical response.  

The surface of freshly prepared PSi is strongly reactive due to presence of unstable 

silicon hydride “Si-H” species and easily oxidizes when exposed to air. In turn this 

results in a continuous change of the sensor optical properties [4]. In order to achieve 

stable sensor signal/performance, one needs to stabilize the PSi pore surface [5].  This 

can be achieved by using chemical treatment that substitutes the Si-H bond with a more 

robust ligand (e.g. by silanization methods), or with an oxidation step that induces a 

controlled growth of a thin oxide layer on the sample surface [6, 7, 8,].  This layer 

stabilizes the silicon surface against any other surface modification and allows the 

realization of a stable device with well controlled chemical and optical properties. To 

grow an oxide layer, two methods are commonly employed: the thermal and the electro-

chemical ones [9, 10]. With the electrochemical method, the sample is immersed in a 

sulphuric acid solution and a current is applied to the cell [10]. Silicon oxidation occurs 

and a layer of oxide forms on the pore surface. However, electrochemically grown oxide 

has a limited reproducibility, in terms of both electrical and structural properties [311, 

12]. To develop working devices, it is fundamental to have a very good control over the 

oxide properties because it has a strong impact on the final properties of the detection 

scheme. 

Due to its simplicity and good control over oxide thickness, thermal oxidation method is 

used to stabilize PSi surface in this work [13]. Once samples are placed within an oven 
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the water presents in the atmosphere reacts with PSi surface and produces a thin layer of 

SiO2 [14]. In addition chemical modification method is also studied using both polar and 

non-polar molecules [15, 16, 17[. In this study, oxidation treatment is followed by a 

silanization step to introduce suitable functional groups i.e. CH3, COOH or N-H on PSi 

surface. 

The goal of this chapter is to describe PSi surface modification obtained by thermal 

oxidation and hydro-carbonization. Different chemical functionalization reactions are 

considered for covering the PSi surface with different organic molecular layers. These 

layers serve as an intermediate functional interface for attaching the target specific 

binding layer.  

4.2 Synthesis and Experimental Details 

Porous silicon layers and free standing membranes were prepared by electro chemical 

etching method as discussed in Chapter 3.  After fabrication of porous samples, all 

samples were rinsed in ethanol and dried in N2 flow. For structural morphology of PSi 

structure, high-resolution scanning electron microscopy (SEM, JEOL mod. JSM 7401F) 

studies were performed.    

 

 

4.3 Results and discussions  

4.3.1 Thermal oxidation 

PSi oxidation was performed in ambient atmosphere and in dry environment. To optimize 

the oxide layer, we prepared multilayer samples [18]. Such structures are difficult to 

stabilize because of the presence of several thin low porosity layers that can act as an 

efficient diffusion barrier for oxidation allows us to find the thermal treatment that 
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assures an efficient and complete oxidation of the surface. So, we maximized the 

refractive index differences between the low and high porosity layers, by using the larger 

current interval that the silicon substrate can sustain in order to obtain a high reflection 

stop band compatible with the fabrication of samples, robust enough to be further handle 

and functionalized.  

The growth of an oxide layer produces an increased volume of the solid fraction and 

reduces the pore volume [19]. Moreover the oxide induces a compressive stress into the 

silicon phase that could bring about the sample’s collapse [19, 20]. For these reasons we 

found that the maximum temperature that PSi sample can sustain is around 500 °C (but 

this value depends on the sample’s structure). Furthermore in order to avoid sample 

damage, heating cannot be performed too fast, so slow heating rates 3 to 5°C/min have 

been used. 

The extremely slow oxide growth rate that occurs at this low temperature allow us a fine 

tuning of the oxide thickness because we have to find the minimum oxide thickness that 

will assure a complete and stable passivation of the porous surface without degrading too 

much the optical contrast. In fact the presence of the oxide reduces the average refractive 

index of each layer and their refractive index contrast, in proportion to the oxide 

thickness [21] 

Two types of samples were prepared as described in experimental chapter 2: a multilayer 

MC sample with a thin and low porosity defect layer and a Distributed Bragg Reflector 

(DBR) structure composed of 10 periods are shown in SEM images of the PSi sample 

below in Figure 4.1.  
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        (a)      (b) 

Figure 4.1.  The cross section of a 10 periods MC: (a) total cross section of the sample. The silicon substrate is 

visible in the left side. The cavity layer is centered within the multilayer (scale bar 1000nm). (b) A magnified 

view of the last periods. The gray are on the left side is the silicon substrate (scale bar = 500nm).  

 

We prepared a set of four samples and oxidized them at 350 °C for different times (1, 2, 3 

hours and multi-layer DBR was oxidized for 2 hour).  The oxidation produces a definite 

blue shift of the spectral features due to the lower average effective index of the entire 

structure because of the oxide growth [21]. The amount of the shift depends strongly on 

the type of structure that is oxidized. In fact the dynamic of the oxidation process is 

strongly dependent on both pore sizes and layer porosity (because the rate of the process 

depends on gas diffusion coefficients [13, 19, 22]). 

The shift of the spectral response is not rigid as should be expected from a theoretical 

point of view but is proportional to the energy range considered [23]. Such a small 

difference from the expected behavior could be due to an anisotropic oxidation rate that 

produces a more efficient oxide growth near the sample surface exposed upward in the 

oven and a thinner layer in the bottom part of the sample. 
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The wavelength shifts of the spectra ranges from 20 nm (at low energy side of the 

spectra) to 60 nm (high energy side) with comparable magnitude for all the analyzed 

samples are observed. The knowledge of these shift’s magnitude enables the design of 

samples that will show the desired optical spectra after the oxidation treatment. The trend 

appears in shift magnitudes for each sample is shown in Figure. 4.2.  

 

 

0

25

50

75

100
b

After oxidation

2Hour

  

 

 

0

25

50

75

100

a

3Hour

  

 

 

1000 1500 2000 2500
0

25

50

75

100

c

R
ef

le
ct

io
n

%

Wavelength (nm)

1Hour

 

 

 

 

Wavelength (nm)

R
ef

le
ct

io
n

%

1000 1500 2000 2500
0

25

50

75

100

d 2Hour

  

 

 

 

Figure 4.2. Effect of the thermal oxidation on sample with a MC-like structure annealed for different time (all 

sample were annealed at 350 °C) for 1 hour (a), 2 hour (b), 3 hours (c) and a DBR composed by 20 periods (d). 
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Figure 4.3 (a) Wavelength shift of the side lobe minima as a function of their wavelength. The different datasets 

refer to the different samples realized as indicates in the legend. The inset clarify that the shift is not rigid over 

the entire wavelength range but it’s proportional to the energy. (b) Left axis - Values of the reflectance before 

(red data) and after oxidation (black data). The reflectance systematically decreases after the oxidation because 

of the reduced refractive index contrast. Right axis – This reduction can be quantified in 20 to 40%, with such 

oscillations dependent on the area of the sample. 

 

 

Figure 4.3a shows that MC-like structures oxidized for 1, 2 and 3 hours at 350 °C show 

similar wavelength shift, while 3 hours thermal treatment create a systematically larger 

shift, probably due to a thicker oxide layer. The single DBR, oxidized for 2 hours, shift 

more than the corresponding MC-like sample, presumably because it lacks of the central 

defect layer. Furthermore it is found that shift of side lobe minima is proportional to 

energy as clearly shown in inset of Figure 4.3a. Figure 4.3b shows the reduction in the 

value of the reflectance induced by the oxidation. It is clear that the oxide thickness have 

to be minimized in order to maintain the highest reflectance value that in turn, determines 

the cavity Q-factor. The oscillation in the reflectance value is due to in-homogeneities in 

the sample surface and depends on the fraction of area investigated during the optical 

characterization [24].  

4.3.1.1 Reproducibility of thermal oxidation data 

During the measurements some discrepancies between spectra acquired on the same 

sample were noted. These arise from in-homogeneities on the surface of the porous 
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samples. By measuring different points on same sample we get an estimation of the data 

dispersion. 

Figure 4.4a shows a series of measurements taken along the 6 mm diameter of a sample 

and a zoom view around 1770nm is shown in Figure 4.4b. Because of the low quality of 

these first MC samples, we choose as a spectral reference the first minima on the right of 

the stop band (at 1770 nm). We have then monitored its position after each thermal 

treatment. 

 

Figure 4.4 (a) Set of 6 measurements taken along the diameter of the same porous silicon sample. The minima at 

1770nm indicate the area enlarged in the next panel. (b) Zoomed view of the first minima on the right of the 

fundamental stop band: all minima spread over a narrow range of 11 nm. 

 

A set of six nominally identical samples was prepared and each of those was measured at 

6 different positions randomly (an area of nearly 1 mm
2
 is investigated during each 

measurement). The largest standard deviation (SD) found on a single sample was of 

about 12 nm. If the entire set of measurements is considered, the largest interval (LI) that 

contains all the reference points is of about 43 nm, while the standard deviation of the 

entire set is 13.5 nm. Of the 6 samples, three were oxidized at 300 °C for 1 hour, while 

the other three for 2 hours. After the oxidation the reference point shift of 34 nm for the 

samples treated for 1 hour (SD: 8.3 nm and LI: 25.6 nm) and of 57 nm for the samples 

treated for 2 hours (SD: 4.1 nm and LI: 14.5 nm).  
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In summary an oxidation step of at least two hours is required to efficiently stabilize the 

porous silicon samples 

4.3.1.2 Simulated aging by immersion in water  

To check the effectiveness of the surface passivation, we simulate samples ageing by 

immersing them in water and then monitoring their optical properties at different times. 

The results are shown in Figure 4.5. Spectra were normalized to make it easier the 

comparison among the samples. Reflectivity values within the complete set of samples 

varied up to 40% (as underlined previously). The optical shift of the reference point is 

within 20 nm and is thus compatible with the wavelength spreading induced by the 

surface sample in-homogeneities [24]. Moreover it is of interest to note that, for the set of 

measurements considered here, the comparison between the oxidized samples and those 

immersed for 15 hours in water always falls within only 12 nm of shift. This value is 

comparable with the data reproducibility and indicates a complete porous silicon 

oxidation. 

 

Figure 4.5 Shift of the reference point in the samples annealed at 350 °C for different times. Two hours of 

thermal treatment is the minimum duration to efficiently passivate the porous surface. 
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The analysis of the reference points shifts across the multilayer samples can be used to 

estimate the completeness of the oxidation process. The clear correlation between the 

duration of the thermal treatment and the shift of the spectra suggest that the oxidation 

process is nearly completed after just two hour of annealing, despite the low process 

temperature. The results found are compatible with already published data [4]. A second 

point to note is that the shift between the oxidized sample and those immersed in water 

for 5 or 15 hours is always within the uncertainties due to sample in-homogeneities. Also 

this fact indicates that despite the aging in an oxidizing agent, the optical properties of the 

samples do not change in time and that the porous surface can be considered stabilized. 

4.3.1.3 Thermal oxidation of free-standing MC structure 

It is important to note that so far all the oxidation process was performed on samples 

bound to the bulk silicon substrate and that the same process performed on free standing 

membranes should give a more homogeneous oxidation of the structure, due to its thin 

and open sided structure. However, the handling of such membranes is particularly 

difficult and so does not allow this kind of analysis. This problem was solved with a new 

set of multilayer samples, composed of free standing MC membranes which were fixed 

between two metal plates and exposed only a small area of about 1mm
2
. In this way we 

obtained two results: we reduced the error homogeneity by measuring always the same 

sensor area and the small suspended area improves the mechanical strength of the 

samples. Figure 4.6 shows resonance shift observed due to thermal oxidation for different 

time duration.  
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Figure 4.6. (a)Effect of the thermal oxidation on sample with a MC-like structure in freestanding nature 

annealed for different time (all sample were annealed at 350 °C) for 0.5 hour, 1 hour and 2 hours) composed by 

10 periods. (b) Graphical representation for MC oxidation for different time for two studied samples 

 

For an oxidation of 30 minute at 350
0
C, the two samples shows a shift of about 28.6nm 

and 37.2nm respectively and could be due to different sensitivities of these MC samples 

or slightly different morphological (top and bottom) surfaces. However the shift in the 

resonance observed after this first oxidation is strongly correlated and additional ~2nm 

and 5nm of shift are observed in both samples after treating them for 60minute and 120 

minute, respectively. We believe that during the first oxidation treatment the surface is 

somehow stabilized and treating them further, thermal process induces reproducible 

oxide growth. These results further confirm that a stable and adequate oxide layer is 

achieved in 2 hour at 350 °C during thermal oxidation as previous study suggest.  

In conclusion, an oxidation step of at least two hours at 350
 
°C is required to efficiently 

stabilize the porous silicon samples.  

4.3.2 Chemical surface modification 

Thermal oxidation as described in previous section is usually done to stabilize the porous 

structure with good control over final samples properties. However under some 
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conditions thermal oxidation may not work i.e. silicon oxide degrades the Q factor of MC 

structures to a much low value [25, 26]. In fact a thin layer of organic molecules 

(compatible with the PSi chemistry) allows the immobilization of different chemical and 

biological molecules onto its surface without affecting the quality of the photonic 

structure [7, 8]. Since the first report of chemical modification by Chidsey et al., large 

efforts have been made to find effective methods to replace the unstable Si-H species 

with an organic layer [27]. 

Hydro-silanization method and silanization methods provides an alternative to thermal 

process to stabilize PSi surface and to cover the pore surface with a proper functional 

layer [7, 8]. 

4.3.2.1 Sample fabrication for Chemical surface modification 

  

MOLECULE TYPE OF SAMPLE 

Dodecene Multilayer 

10-undecenoic acid Single layer 

Heptenoic acid Single layer 

10-undecylenic acid Multilayer 

Amino-silane Single layer, Multilayer (MC) 

 

Table 4.1 Resume of the molecules used to infiltrate the fabricated samples. 

 

 

 

Hydrosilyation.  Hydrosilyation involves the substitution of a silicon-hydride bond with 

an unsaturated carbon-carbon bond [7]. Thus the reaction requires a silicon surface 

passivate with hydrogen that will react with organic molecules having double or triple 

carbon-carbon bond. Different molecules were considered as a surface modification 

reagents:  Dodecene, 10-undecenoic acid, heptenoic acid and 10-undecynoic acid in 
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toluene were used as surface modification reagents, with 0.1, 0.3, 0.3 and 0.3M (Aldrich 

chemicals, used without any further purification step). The molecules used and the type 

of samples are treated with are summarized in Table. 4.1 

The hydrosilylation reactions we have considered are performed in liquid phase, thus the 

freshly prepared PSi samples were placed in the flask and the reagent dissolved in toluene 

was added. For 10-undecenoic acid and heptenoic acid all the reactions were allowed to 

proceed for 1 hour at boiling temperature (70°C) of toluene. After removing the solution, 

the samples were rinsed with high purity toluene, and then dried under a stream of high-

purity N2. 

Silanization. An alternative well known reaction is the silanization [8, 27, 28]. Silane 

based coupling agent contains both organic and inorganic reactivity in the same 

molecule. Silane molecule has a hydrozable group  such as methoxy and ethoxy that can 

form silioxane bonding (Si-O-Si) with other hydrozable grop. Evidently the substrate 

must have hydroxyl groups on its surface in order to achieve silanization [27, 28]. We 

used amino-silane (3-(diethoxymethyl-silyl) propylamine) as silane reagent. Amino-

silane was dissolved in toluene with a volume concentration of 2%. The PSi  terminated 

with OH (OH bonds were produced by putting porous silicon in water/Ethanol solution 

for three days or for 72 hours and sequent washed by water/Methanol, Methanol/toluene 

and finally in toluene) immersed in solution for one hour at 70°C . Finally the samples 

were rinsed with high purity toluene at the same temperature and allowed to cool to room 

temperature. Furthermore functionalized samples were subsequently washed in a solution 

of toluene/methanol and then pure methanol at room temperature. Then the sample was 

immersed for 2 hours in 5 ml fluorescein isothiocyanate (Fluorescent Dye) dissolved in 1 
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mM in carbonate buffer 0.1M, pH 9. After that it was rinsed first in a solution made by 

phosphate buffer 0.05M + NaCl 0.5M + TritonX-100 0.1%, then with water and finally 

dried with N2.  

Both single layer and multilayer porous silicon samples were fabricated for subsequent 

functionalization procedures. Figure 4.7 shows the structure of one of the multilayer 

samples used in the functionalization procedures. Low and high porosity layers are 

clearly visible as dark and bright layers, respectively. Pore sizes used during the 

functionalization processes were deliberately made smaller, to check PSi modification in 

extreme constrained conditions. 

 
(a)                                                 (b) 

Figure 4.7. SEM images of multilayer {a) and monolayer (b) PSi sample. (a) Current used to etch high porosity 

layers (darker layers~40ma/cm
2
) is the double~80ma/cm

2
 of that used for the low porosity ones (brighter layers). 

(b) On the right SEM image (top and cross-section) of PSi monolayer fabricated on 0.1Ωcm substrate. 

 

4.3.2.2 Optical characterization 

Infrared spectroscopic characterization: Samples were analyzed both with IR and 

micro-Raman spectroscopy. In particular IR spectroscopy was used to initially 

characterize the presence of the organic molecules on surface modified samples, while 
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micro-Raman analysis was performed to investigate the homogeneity of the 

functionalization along the entire cross-section of porous structures. 

Theoretical Approach. 

Both Raman and infrared spectra of all the considered molecules were theoretically 

simulated using Gaussian 03 software with 6-31(d,p) basis set. DFT calculations were 

carried out using B3LYP [29, 30]. To reduce the computational problem complexities, 

we substitute the functional molecule group that react with silicon atom with a single Si 

atom, and do not consider the presence of the bulk silicon phase attached to the molecule. 

The optimized molecular structures (with substituted Si atom) are shown below in Figure 

4.8 and 4.9. 

                         (a)                                                                                                  (b) 

Figure 4.8. 10-undecenoic acid before (a) and after (b) the addition of a silicon atom to the double bond reactive 

site 

 

                                   (a)                                                                                                  (b) 

Figure 4.9.  Dodecene before (a) and (b) after the addition of a silicon atom to the double bond reactive site 

 

Experimental results 

Figure 4.10 shows the theoretical infrared and Raman spectra for carboxylic acid. Black 

and red datasets indicate the pure gas phase and the carboxylic acid with a Si atom 

substituted to carboxyl group, respectively. Along with three main bands C=O vibration 
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band at 1845cm
-1

 and asymmetric and symmetric stretching of CH2 at 3031 and 3075cm
-1

  

are observed respectively [31].  

The experimental Attenuated Total Reflection infrared spectra obtained from the PSi 

samples surface functionalized with carboxylic acid is shown in Figure 4.11. The analysis 

performed clearly shows the presence of  four main peaks that are visible only in 

functionalized samples and cannot be ascribed to the underlying PSi: at 1093 cm-1  the 

band can be ascribed to Si-O bonds, the resonance near 1695 cm-1 is the C=O vibration 

band [31]. The CH2 stretching peaks are red shifted compared to the theoretical spectra 

and corresponds to experimental observed vibrations band at 2841 and 2920 cm
-1

. The 

deep at 2351 cm
-1

 is due to CO2 [31, 32]. The differences in vibration frequencies 

energies between theoretical and experimental data are most probably due to fact that 

theoretical analysis take into account molecules in gas phase, whereas the experimental 

measurements reflect the presence of the bulk silicon as a substrate. Nevertheless the 

observed and calculated data are quite in agreement with each other.  

 

Figure 4.10. Simulated infrared and Raman spectra of carboxylic acid. Black dataset refer to pure gas phase, 

while red lines are for molecules with carboxy group substituted by a Si atom. 
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Figure 4.11 Theoretical and Experimental ATR spectra of a functionalized and reference PS samples. The 

intense band around 1093 cm
-1

 is due to Si-O bonds, while the deep around 2351 cm
-1

 is due to CO2. In inset 

shows the shift in vibration bands may be attributed due to different phase: In theory calculation are made in 

gas phase and in experimental spectra is observed in solid phase.  

 

Figure 4.12 shows the ATR of four PSi samples two of which were treated with both 

carboxylic acid and the other two functionalized with Dodecen. C-H and Si-H peaks are 

visible on both molecules. Asymmetric and symmetric stretching of CH2 is clearly visible 

at 3031 and 3075 cm
-1

, respectively. As expected C=O resonance are present only in 

carboxylic acid spectra at 1695 cm
-1

. The similarity between the spectra confirms the 

good reproducibility of the functionalization technique. In both pristine porous silicon 

and functionalized porous silicon, the two intense peaks at 2099 cm
-1

 and 919 cm
-1

 

correspond to Si-H vibration modes [33]. 
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Figure 4.12 IR spectra of two samples functionalized with carboxylic acid and of two other samples treated with 

Dodecen 

 

 

Micro-Raman cross sectional characterization:  

 A more detailed analysis of the silanized samples was performed using the micro-Raman 

technique. If compared with IR techniques, a Raman spectrometer coupled to an optical 

microscope permit to achieve a high spatial resolution (~1µm). Thus micro-Raman 

experiment enables a spatially resolved mapping analysis along sample cross section. 

Due to the roughness of the cleaved surface and of the underlying PSi sample, is 

extremely difficult to get quantitative measurements, because the collection efficiency of 

the optical system varies from point to point. Moreover some of the PSi investigated 
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show an intrinsic photoluminescence (PL) [34]. This broad and intense background 

heavily influences the Raman spectra and hidden most of the Raman transition, so that 

only the most intense transitions can be seen. An He:Ne laser was used as excitation 

source to minimize the intensity of the PL band, nevertheless its intensity is at least of 

comparable magnitude to that of the Raman signal. For these reasons we cannot perform 

a quantitative analysis. 

The functionalized samples were cleaved and the freshly exposed (100) surface was 

investigated. For each sample a certain number of profiles were realized on different 

positions along the cleaved surface, to check for the presence of the organic layer versus 

samples depth and the homogeneity of the functionalization reaction on samples area. 

Figure 4.13a, 4.13b and 4.13c show Raman depth profiles for a PSi samples treated with 

dodecene. Profiles were acquired along three different lines. Figure 4.13d shows the 

spectra of a silicon sample taken as reference. Each sample was analyzed by checking for 

the presence of the organic molecules at five different positions (corresponding to the 

five dataset of each graphics). A resonance located near 3000 cm
-1

 is present in all treated 

samples, whereas is absent in reference sample. Those features are reasonably due to CH2 

stretching modes [31].  
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Figure 4.13 Raman spectra of PS samples treated with Dodecen. Panels (a), (b) and (c) are three depth profiles 

taken at different positions along the porous area. Dashed lines indicate the spectral position of the 

characteristic CH2 vibronic transitions around 3000 cm
-1

 that is absent in reference sample (d). 

 

Figure 4.14 shows the characterization of PSi samples treated with carboxylic acid. The 

main result with this molecule is the fact that micro-Raman technique does not have 

enough sensitivity to detect COOH group, even from the sample surface. As suggested 

above, the strong PL background could hide the peak. But another possible reason may 

be the following: carboxylic acid chain has a diameter of about 4.8 Å due to its COOH 

group, on the other hand Si-H (the binding site) is separated by 3.84 Å with each other, so 

that only half of available site could be functionalized by carboxylic groups [35]. As a 

result due to their low concentration of molecules could be possible reason for low 

intensity. Furthermore the absence of C=O mode may be due to its low intensity, as it 
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strongly depends on reduced mass of functional group. Due to larger reduced mass, a 

small change in moment will be observed as a result low intensity will be observed.  This 

fact could be supported as due to small reduced mass as in previous study (in case of 

dodecene)  asymmetric and symmetric stretching of CH2 bond can be easily observed that 

have strong Raman signal as shown in Figure 4.13.  

 

 

Figure 4.14 Raman spectra of PS samples treated with carboxylic acid. Panels (a), (b) and (c) are three depth 

profiles taken at different positions along the porous area. No peak is observed for C=O at 1695 cm
-1

. Dashed 

lines indicate the spectral position of characteristic vibronic transitions around 3000 cm
-1

 for CH2 stretching 

that is absent in all treated and in reference sample (d). 
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We perform similar functionalization treatments with two other types of acid molecules. 

Results are shown in Figures 4.15 and 4.16 for undecylenic and heptenoic acids, 

respectively.  

 

 

Figure 4.15 Raman spectra of PSi samples treated with 10-undecenoic acid. Panels (a), (b) and (c) are three 

depth profiles taken at different positions along the porous area. Dashed lines indicate the spectral position of 

characteristic vibronic transitions around 3000 cm
-1

for CH2 stretching that is absent in reference sample (d). 

 

In both cases we are able to observe the broad peak that may refers to CH2 bond vibration 

frequency [31]. For both molecules an evident shoulder appears near 3000 cm
-1

. 

Reference PSi samples always show a broad PL band without any lateral shoulder. It is, 

thus, reasonable to assume that the broad shoulder around 3000 cm
-1

 is due to CH2 

vibration modes that is usually one of the most intense Raman mode in carboxylic acids. 
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For heptenoic acid the intensity of the Raman signal from the surface was order of 

magnitude stronger than that of the spectra acquired inside the porous layer. In Figure 

4.16 the intensity of the spectra acquired near the surface were reduced by the factor 

shown in the graph. This fact could indicate a certain difficult of the heptenoic molecules 

to penetrate inside the pores. Nevertheless Raman analysis indicates that PSi surface is 

functionalized by organic molecules because of the presence of the CH2 band. 

 

 

Figure 4.16 Raman spectra of PSi samples treated with heptenoic acid. Panels (a), (b) and (c) are three depth 

profiles taken at different positions along the porous area. As before, dashed lines indicate the spectral position 

of characteristic vibronic transitions around 3000 cm
-1

. CH2 stretching is absent in reference sample (d). 

 

Lastly, we test silanization reactions to modify the PSi surface [8, 27, 28]. We investigate 

this type of reactions on several types of samples (both single layer and multi-layer either 
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attached on silicon substrate or free-standing membranes).  Single layer was chemically 

modified and characterize along the cross-section to check for the effectiveness of the 

reaction. The chemical modification was verified by micro-Raman along the cross-

section as shown in Figure 4.17.   

 

 

Figure 4.17 Raman spectra of PSi samples treated with amino-silane. Panels (a), (b) and (c) are three depth 

profiles taken at different positions along the porous area. As before, dashed lines indicate the spectral position 

of characteristic vibronic transitions around 3000 cm
-1

.  CH2 stretching is absent in reference sample (d). 

 

The CH2 vibrational modes around ~3000cm
-1

 are visible in all the acquired spectra at 

different points. The un-reacted hydrated species Si-H at 2090cm
-1

 are also apparent in all 

[33]. However the presence of CH2 mode clearly indicates the presence of organic 

molecules on the PSi surface along the pore length [31]. Fluorescein isothiocyanate is 
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used to confirm silane modified surface [37]. The sample was immersed for 2 hours in 

Fluorescent Dye, and fluorescent molecules bind with the silane within porous structure. 

Cross-sectional florescence image are shown in Figure 4.18 below, acquired with Leica 

microscope mounting a filter.  

     

(a)                                                                                          (b) 

Figure 4.18. Optical image of PSi surface (a) before and (b) after attaching the fluorescent dye to the amino-

silane molecules (Scale bar is 1µm) 

 

Florescence signal is clearly seen from the whole sample cross-section (Figure. 4.18b) 

and clearly indicates that silane successfully modified the entire porous layer. 

The effectiveness of the silanization reaction was tested on MC samples. The shift in 

resonance position clearly and easily verifies the presence of silane molecules attached to 

the porous layer [38]. As a proof of functionalized process, MC structures (both free-

standing and attached to the silicon substrate) were fabricated as discussed in section 

4.3.1.4.  We fabricate three MC samples: two were released from the substrate and one 

was left attached on the bulk SI. Figure 4.19 shows the transmission and reflectance 

spectra of MC structure for each step carried out for functionalization. 
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(c)                                                                                   (d) 

 
Figure 4.19. Effect of the surface modification at each step on sample with a MC-like structure in freestanding 

nature (a and b) and attached with the substrate shown in panel (c) (all sample were annealed at 350 °C for one 

hour before functionalization). Inset of Figure shows the zoom view around resonance peak. (d) Graphical 

representation for all samples for surface modification. 

 

As already discussed in Section 4.3.1.4, oxidation introduces a blue shift of the spectra. 

Further adding silane layer to the porous MC structure produces a red shift of the 

resonance peak due to the added material within the pores. A monolayer of silane results 

in a red shift of about 25nm for both free-standing MC and for MC on silicon substrate.  

These observed results further confirm the successful activation of silane layer. Thus the 

reaction procedures considered here constitute an efficient and versatile method to 

modify the surface of the PSi and to serve as an intermediate layer to attach other 

functional groups or analyte. 
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4.4. Conclusions  

In conclusion, the main results achieved in this chapter are the followings: we found 

thermal oxidation to be an effective method to passivate the PSi surface and to stabilize 

the optical properties of the sample against aging processes. The oxide grown on the 

sample surface is thin enough to maintain the sample optical quality and, at the same 

time, it avoids drift in the spectral response either after sample immersion in water for 

long time or storage in air for days. Moreover the functionalization procedures performed 

shown that PSi surface can be effectively functionalized using different organic 

molecules and with rather simple method. This chapter concludes that both polar and 

non-polar molecules can be used to modify porous silicon surface. The main difference 

being the state of the PSi surface prior to the functionalization process: fresh etched 

samples have to be used in the case non polar molecules, while aged or thermally 

oxidized PSi is required with polar molecules. The developed thermal stabilization and 

chemical stabilization process allows a safer storage conditions in the device context for 

the sensing devices. 
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5.1 Introduction 

The complex functionalities foreseen in the future lab-on-chip (LoC) and point-of-care 

(PoC) devices require robust and reliable assay mechanisms. Sensors based on physical 

detection mechanisms (such as optical or electrical) have the advantage to be applicable 

to a widespread type of analysis [1-3] but show a poor chemical specificity. They require 

a proper functional interface to generate a signal proportional to the number of detection 

events. As in every type of sensors this functional layer should compete with the non-

specific binding in order to generate reliable signals. However, this non-specific signal 

(NSS) is more pronounced in LoC and PoC devices because their rugged structure often 

renders them incompatible with reference channels and complex sample pretreatments. 

Different approaches have been explored so far to minimize the role of the NSS, like the 

use of antifouling materials [4], the development of specific assay procedures [5, 6] and 

the use of reference channels [7] or complex devices with sample pretreatment [8]. For 

sensing applications, porous materials have several advantages compared to flat surfaces 

based sensors. The tailoring of their nanostructure allows a fine tuning in the interaction 

strength between the analyte and the matrix and their large specific area can be exploited 

to maximize the sensor response. Both these factors increase the sensor detection limit 

compared to flat surface devices [9-14]. Furthermore porous materials can be used as 

filter to remove part of the contaminants and to reduce the net effect of the NSS on the 

signal generated by the sensor [15]. 

Porous materials can be used in either flow-over (FO) or flow-through (FT) geometry. 

FO technique allows clear and easy measurements but suffers from severe limitations in 

real devices. The weaknesses are mainly due to a poor homogenous binding of the 
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molecular species to the active area, and to the dependence of both response and 

detection limit on the dynamic of the measurement [16] and on the geometry of the 

reaction chamber [17]. On the other hand, FT approach can be used on sensors based on 

free standing membrane and composed by open-ended pores. This geometry maximizes 

the efficiency of the binding reactions because of a forced diffusion of the analyte over 

the entire porous material surface. Furthermore the sample can be thoroughly rinsed after 

the assay to quantitatively remove the not bound material from the porous host. 

Several materials were proposed so far as host matrices to fabricate nanoporous sensors 

[18-20]. Among all, Porous Silicon (PSi) is an ideal candidate for the fabrication of 

sensors because of the large tunability of its porous structure, its high optical quality and 

the multi-parametric sensor development opportunity and because of its well versatile 

surface chemistry [21-29]. In this chapter, we fabricate and investigate good quality 

factor (Q-factor) n-type PSi microcavity (MC) either bound to Si substrate (FO approach) 

or in FSM configuration (FT approach). 

Recently, even if size exclusion based separation was demonstrated in [30] for p-type 

freestanding single layer porous silicon membrane, the study of FT based FSM sensors 

has not been exposed convincingly [31]. Furthermore, using an innovative fabrication 

protocol as discussed in chapter 3, we obtain large membranes of PSi of high optical 

quality and pore size compatible with liquid mass transport. These membranes behave as 

excellent reflectance cavities. Moreover they can be detached from the silicon substrate 

and their mechanical strength permits the operation under FT conditions, even by 

applying a pressure gradient. In this way, we investigated the performances of the FO 

versus the FT approach using PSi as analytical sensing substrate. In the first part, we 
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optimize the fabrication of freestanding MCs with large pores. Free-standing MCs were 

fabricated with the configuration, consist of two Bragg mirrors (three different sample 

composed by five, seven and ten periods) surrounding a defect layer with pore size of 

about 40 and 110nm in the low and high porosity layers respectively. In this way we 

facilitate the penetration of molecules and we were able to quantify a detection limit of 

1.5*10
-4

RIU (RIU stands for Refractive Index Unit) using methanol/ethanol solution in 

FO condition (and considering an instrumental resolution of 0.1nm). Furthermore we 

obtained quantitative data demonstrating that NSS is strongly reduced under FT 

conditions. Conversely, FO conditions lead to a systematic overestimation of the device 

sensitivity. These results support the superiority of the FT sensing scheme while raise 

some questions about the reliability of FO analyses performed on porous substrates. 

5.2 Synthesis and Experimental Details 

 N-type silicon wafer (0.01-0.02 Ω-cm) was used as the initial study material and MCs 

were fabricated with water based solution contains 12.5% HF as discussed in Chapter 3. 

To detach thin MC from silicon substrate 12%HF + ethanol + 30%H2O2 solution was 

used. After fabrication of PSi, all samples were rinsed in ethanol and dried in N2 flow.  

For structural morphology of PSi structure high-resolution Scanning Electron 

Microscopy (SEM, JEOL mod. JSM 7401F) studies were also performed.  Optical 

characterization was carried out with Varian Cray-5000 UV-VIS-NIR Spectrophotometer 

with halogen VIS-NIR lamp source.   

5.3 Results and Discussions  

5.3.1 Organic Vapor Sensing with PSi MC Structure  
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5.3.1.1 Fabrication of n-type freestanding multi-layer micro-cavity (MC) structures 

λ/4 MC structures consists of two Bragg mirrors, which are periodic stacks of quarter 

wavelength optical thickness layers of two different porosity layers (according to 

Bruggeman approximation [32]). The cavity is formed by adding a defect layer 

sandwiched in between the two Bragg mirrors. MC structure acts as highly selective 

wavelength filter, defined by its resonance in its stop band. MC PSi sample was 

fabricated using 40mA/cm
2
 and 80mA/cm

2
 current density for higher refractive 

index/lower porosity (2.2/30%) and low refractive index/higher porosity (1.7/45%) 

porous layers respectively. Etching time for these current densities were 9.26 seconds and 

8.14 seconds. Cross-sectional SEM image of MC is shown in Figure 5.1. Pore diameter 

measured from SEM image for these MCs was 40nm and 100nm for two layers that is 

sufficient for any analyte infiltration within this diameter. 

     
                                     (a)                                                                                        (b) 

 

Figure 5.1. (a) SEM images of porous silicon (PSi) multi-layer fabricated on N-type high resistive wafer 

(0.02Ωcm) with water based solution (Right) (b) zoom image of multi-layer structure 

 

MCs of different quality factor (Q=30, 50 and 70) were fabricated depending on the 

number of pair of alternating layers i.e. 10 layer, 14 layer and 20 layer. Transmittance 
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spectrum of these MC (Q=30, 50 and 70) are shown in Figure 5.3, Figure 5.4 and Figure 

5.5. The resonance for the three samples is observed at ~1488, ~1448 and ~1515nm, 

respectively. Ideally the quality of the MC can be further improved by introducing higher 

refractive index contrast between the two alternating layers or by increasing number of 

alternating. However a larger refractive index contrast limits the size of the analyte that 

could be infiltrated. Moreover the maximum number of layers is also limited, in fact we 

were not able to etch MC with more than 20 layer because of an (increasing number of 

alternating layer, it destroys spectral quality of MC structure). To detach the MC 

structures from the silicon substrate, we use another solution having 12% HF acid with a 

strong oxidizer H2O2 with an applied current density of 60mA/cm
2
. With this current 

density porous layer detaches from the substrate in 25sec. However by increasing applied 

current density separation time can be reduced (100mA/cm
2
 separation time reduces to 

~8sec). More detail study with this etching solution was already discussed in Chapter 3. 

Photograph of free-standing MC structure and glued on a metallic holder are shown in 

Figure 5.2. 

 

Figure 5.2 Photograph of free-standing PSi MC Structure glued on a metallic holder 
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5.3.1.2 Organic sensing with freestanding multi-layer micro-cavity (MC) structure 

It is known that electrochemical etching produces in-homogeneities on the silicon 

substrate, so to get an idea about the homogeneity of the optical response; we optically 

characterized the MCs at different points on their surface. We found an irregular optical 

response both in intensity and resonance position. Moving from the center of the porous 

area to the edges, reflectance decreases and an average shift of up to 36nm is observed. 

Figure 5.3 shows the observed reflectance spectra of MC (Q=50) synthesized with water 

based electrolyte solution.  This optical in-homogeneity should be taken into account and 

always keep in mind, if we are moving our samples during the analysis. However by 

fixing the exposed area, we can overcome these limitations. 
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Figure 5.3. Reflectance spectra of MC sample fabricated on 0.01-0.02Ωcm resistive silicon wafer.  A resonance at 

1518nm in the middle of the stop band is observed. Reflectance spectra of MC sample at different points chosen 

randomly. 
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Figure 5.4. Transmittance spectra of MC Q=30 and resonance red shift due to methanol and methanol-ethanol 

solutions. Resonance shift of MC after expose to various concentrations of ethanol (in Inset) and linear 

fit represents the sensitivity of this structure. 
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Figure 5.5. Transmittance spectra of MC Q=50 and resonance red shift due to methanol and methanol-ethanol 

solutions. Resonance shift of MC after expose to various concentrations of ethanol (in Inset) and liner 

fit represents the sensitivity of this structure. 
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Figure 5.6. Transmittance spectra of MC Q=70 and resonance red shift due to methanol and methanol-ethanol 

solutions. Resonance shift of MC after expose to various concentrations of ethanol (in Inset) and liner 

fit represents the sensitivity of this structure.  
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Figure 5.4, Figure 5.5 and Figure 5.6 show the shift of the MC resonance position when 

MCs with Q=30, Q=50 and Q=70 are exposed to methanol and methanol-ethanol mixed 

solutions in FO condition. A red shift is observed due to the change in refractive index 

within the porous structure as liquid fills the pores and results in an increase of the 

effective material refractive index. A shift of ~186.3nm, 194.7nm and 200nm is observed 

when MCs Q=30, 50 and 70 are filled with methanol. Furthermore MC with 5 layer and 

10 layer shows a resonance shift of 13.18nm and 17.29nm respectively due to change in 

refractive index (0.03 RIU), when exposed to ethanol.  In addition on exposing to organic 

liquids, MCs quality also degrades to Q=24 for 5 layer and to Q=47 from Q=50 for 10 

layer.  To check further the sensitivity of the devices against organic liquids, we tested 

these MCs to methanol-ethanol mix solution. The refractive index of the solutions was 

calculated according to their volume fraction and assuming a linear relation. An increase 

of ethanol volume proportion in methanol (from 0% to 100%) shows a red shift with 

respect to increase in refractive index. Figure 5.4, Figure 5.5 and Figure 5.6 shows a red 

shift exposing to methanol-ethanol solution with an increase in ethanol concentration. To 

quantify these results, we calculate relative wavelength-shift refractive index sensitivity 

by plotting the magnitude of optical shift Vs the refractive index of methanol-ethanol 

solution. We notice a linear relation between the parameters and the slope of the straight 

line quantifies the sensitivity of the photonic structure due to change in refractive index. 

Sensitivity of ~2.4*10
-4

, 1.9*10
-4 

and 8.3*10
-5

 is calculated from the observed slope of 

415.5, 511.5 and 1206.5nm/RIU for three fabricated MC samples respectively (resolution 

limit of instrument ~0.1nm). To compare sensitivity of these MCs with available 

structure in literature, Δλ (resonance shift due to change in refractive index within pores) 
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is calculated and is found that the observed shift of ~186.3nm, 194.7nm and 200nm for 

respective MCs are well comparable to ~180nm with p-type MC structures as reported by 

Luigi et al.  [33, 34].  

Furthermore the reversibility of sensor is also tested by let it drying and monitoring the 

optical response should be return of to its original state after evaporation of the liquid. As 

shown in Figure 5.4 and 5.7, the observed resonance initially before exposing to organic 

liquid was at 1487.30nm and shifts to higher wavelength to 1673.6nm after exposing it. 

Then sample is allowed to dry and the resonance of MC returns back to nearly initial 

position at 1489.58nm after drying.  

In summary because of pore sizes compatible with many biological samples and having 

good sensitivity, these n-type MC structures could be of great interest for bio-sensing 

applications.  
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Figure 5.7. Reversibility of MC, Resonance shift of MC Q=30 to higher wavelength due to increase refractive 

index corresponding to methanol and methanol-ethanol solutions. As MC pores dry again, resonance returns 

back to its zero position. (Meth - Methanol. Eth - Ethanol) 
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5.3.2 Bio-sensing with MC structure 

5.3.2.1 Fabrication of n-type multilayer MC structure for BSA sensing 

 

 

Figure 5.8(a) SEM image of a multilayer PSi MC consisting of 7 period Bragg mirrors. The bottom layer clearly 

has a larger porosity (darker color) and is the layer used to detach the FSM from the substrate.  (b) Zoom of the 

alternating low and high porosity layers. (c) SEM image of top surface after the detachment of MC. Each pore is 
clearly visible and perfectly opened up to the surface of the sample. 

 

As discussed in Chapter 2-3, by introducing changes in the applied etching current, we 

can create multiple porous silicon layers with different refractive index n, leading to the 

fabrication of MCs. Our PSi MCs, as shown in Figure 5.8a, consist of two Bragg mirrors 

(each one composed by seven periods) surrounding a defect layer with a total device 

thickness of only 5.5 m. The fabrication of samples with high optical quality compatible 

with FT operations requires etching of high porosity layers (50 and 70% for the high and 

low refractive index layer, respectively). Thus the Bragg mirrors consist of alternating 

layers of low porosity (pore diameter of about 30nm, 20mA/cm
2
 for 12 s, n=2.2) with a 

thickness of 150 nm and high porosity (pore diameter of about 80nm, 80mA/cm
2
 for 9.5 

s, n=1.7) with a thickness of 200 nm. A zoomed SEM image of the alternating layers is 

presented in Fig. 5.8b. The central defect layer has a thickness of around 300 nm and the 

same porosity as the low porous ones (20mA/cm
2
 for 24s). The top surface of the MC is 

shown in Fig. 5.8c. 
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5.3.2.2 Surface modification and sensing  

Amino terminations were introduces on the PSi surface using a slightly modified 

silanization procedure reported by Howarter et al. [35]. Briefly, the samples (which are 

FSM in case of the FT configuration and MCs bound to Si substrate for the FO method) 

were dipped in toluene containing 2%v/v 3-aminopropyltrietoxysilane (APTES) for 1 

hour at 70°C. After rinsing in deionized water, the samples were immersed in PBS (pH 

7.4) containing 2.5% glutraldehyde (GA). The reaction was left to proceed for 2 hours at 

room temperature, then the samples were thoroughly rinsed three times with PBS and 

water, respectively and dipped in PBS containing Bovine Serum Albumin (BSA, 

Sigma)at various concentrations. After 2 hours, the samples were thoroughly rinsed with 

water and gently dried under nitrogen flow. 

Optical characterization measurements were performed using a bench top Varian Cary-

5000 UV-VIS-NIR Spectrophotometer (spectral bandwidth of 0.5 nm) with the FSMs 

suspended over a 1 mm large pinhole in order to have a large S/N ratio. Because of the 

intrinsic fragility of the membranes, we dipped the MCs sequentially in protein solutions 

with different concentration and measured the shift of the resonance after each dip. Even 

if this is a nonstandard assay, the samples were exposed to the same amount of analyte 

and their comparison can be used to extract reliable information about the effect due to 

NSS [36]. 

5.3.2.3 Optical characterization of PSi MCs in FT and FO configurations 

It is well known that the electrochemical etching produces a certain degree of in-

homogeneities on the sample surface so that the optical response depends on the sampled 

area. To overcome this problem, we fixed the sample between two metal plates with a 1 

mm hole in the center. In this way we measured always the same area and avoid 
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uncertainties due to surface in-homogeneities, which results in good response linearity for 

all samples fabricated. In the case of the FO configuration, reflectance spectra were 

obtained on MCs bound to Si substrate in a wavelength range from 1000 to 2000 nm, 

with a cavity Q-factor of about 60 centered at around 1560 nm (Figure 5.9(a), red 

squares). For the FT experiments, transmittance spectra were performed in the same 

wavelength range on MCs free standing membranes and a similar cavity Q-factor was 

observed (Figure 5.9b, red squares). The resonance peak is centered at around 1480 nm. 

It is important to note that the Q-factor of fabricated n-type MC is well comparable to the 

ones reported earlier and is enough high to sense a shift down to 1 nm [36] 

As both BSA and GA molecules are small enough to easily penetrate inside the pores 

[37], we used them as model system. Figures 5.9(a) and 5.9(b) show the reflectance and 

transmittance MC resonance in FO and FT configuration respectively, after 

functionalization, GA activation and two hour incubation in a BSA solution. The spectra 

showed a remarkable red shift of the resonance peak of the functionalized and GA 

activated MCs exposed to BSA which increases at increasing BSA concentration (i.e. 20 

µM, 230 µM and 460 µM). Transmittance and reflectance measurements were repeated 

on three different samples (with the same cavity Q-factor) and the average shift was 

calculated for each BSA concentration. Figure 5.9(c) shows that a linear relationship 

between the relative resonance shift and the BSA concentration holds for both FO and FT 

configurations. From the slope, we estimated the sensitivity of our sensor to be 57pm/µM 

for FO configuration and 23pm/µM for the FT configuration. This difference in 

sensitivity is unexpected for FO and FT cavities with very similar Q-factors. This effect 

was noticed also by De Louise et al. [38] for p-type MC structure; however, the authors 
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did not justify this large difference. We assumed the FO approach to be more sensitive 

mainly because of a greater contribution of the NSS, due to a non effective rinsing of the 

closed-ended pores. 

 

Figure 5.9(a) Reflectivity spectra versus wavelength for MCs bound to silicon substrate after two hours 

incubation in solutions of variable BSA concentration. The inset shows a scheme of the FO experiment (b) 

Transmission spectra versus wavelength for MCs free standing membranes after two hours dipping in solutions 

of variable BSA concentration. The inset shows a scheme of the FT experiment (c) Relative resonance shift as a 

function of the BSA concentration for both FO and FT configurations (d)  Relative resonance shift as a function 
of the dipping time of MCs bound to silicon substrate in a solution containing 460 µM BSA . 

To prove our hypothesis, first we demonstrated that the linear relationship between the 

sensor response and the BSA concentration could be due to the non-saturation regime 

under which we are working, so that the entrapment of molecular species by the porous 

sponge is proportional to the assay time as predicted by a simple diffusion model. To 

demonstrate that all these measurements were done in the non-saturation regime, we 

performed time-varying experiments. Functionalized MCs bound to Si substrate have 

been incubated in the 460 µM BSA solution for different intervals of time and the shifts 
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in the reflectance spectrum after each dipping process are reported in Figure 5.9(d). The 

relative shift saturates after 6 hours dipping, which is far beyond the dipping time used in 

the experiments previously described (2 hours) confirming that they have been performed 

under diffusion-controlled regime. Under these conditions, physisorption of the un-

reacted BSA molecules can occur, thus contributing to the apparent sensor sensitivity. 

We also noticed that the large errors bars near the saturation regime are due to the 

different dynamics of the binding for the different samples. In fact the actual structure of 

the porous surface varies from sample to sample because of the aforementioned 

difficulties in the fabrication of the FSM. Errors bar decrease significantly with the 

saturation of the samples and are greatly reduced at the end of the assay when most of the 

active sites have reacted (the total shift being dependent on the specific surface area and 

on the density of the binding sites). 

Finally, we checked the amount of NSS in the case of saturated sensors in both FO and 

FT configurations. We blocked first all the available reactive sites of the functionalized 

FO and FT sensors by dipping them in a solution containing glycine (35mM) and BSA 

(1%) for a whole night. Then the sensors were washed in order to remove all the unbound 

particles and exposed again to a highly concentrated solution of BSA (460 µM). After 

this second dipping the FO sensor showed a further positive shift of 2 nm which can’t be 

due to BSA covalently bound (since no reactive sites are still available) but surface 

physisorbed. It is important to notice that such a positive shift did not occur in the 

previous experiment (Figure 5.9(d) as a result of the complete filling of all MC pores. 

Conversely, the FT sensors showed a small negative shift of 0.5 nm, probably due to 

sample oxidation during the second immersion in BSA solution [39] or the removal of a 
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small amount of bounded-BSA molecules during the rinsing. This experiment confirms 

the influence of NSS in the sensitivity of FO systems unlike in FT configuration. 

5.3.2.4 Forced flow-through sensing with n-type freestanding MC structure 

Having demonstrated previously that free-standing membranes sensor with high aspect 

ratio pores are easily fabricated with low cost electrochemical etching method on n-type 

Si substrate, we now established for the first time the realization of n-type freestanding 

FT MC based sensor. This further test allows us to check the validity of our previous 

assumption by comparing two type of assay realized in FT membranes. 

The features of the free standing membranes we were able to obtain on n-type Si 

substrate (i.e. high aspect ratio and open-ended pores, efficient rinse, low NSS of proteins 

together with easy fabrication and low cost) suggest their successful use in FT sensor 

devices. We explored if the superior characteristics of these membranes are maintained 

under forced FT operation. Two free standing MCs were prepared as explained in section 

5.3.2.1. Samples were placed in a sample holder chamber filled with a BSA solution; a 

pressure was applied to achieve forced FT operation. Optical characterization 

measurements were performed for each BSA concentration.  
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Figure 5.10(a, b) Transmission spectra versus wavelength for MCs free standing membranes after two hours 

fluxing in various BSA concentrations with applied pressure (forced FT) (c, d) Relative resonance shift in 

function of the BSA concentration for forced FT configuration. 

 

The results of these measurements are shown in Figure 5.10a and 5.10b and were 

compared with those of the previous FT configurations used above. We noticed that when 

the freestanding MC sensors were exposed to different BSA concentration in the forced 

FT configuration, as expected, MC resonance shifted to longer wavelength proportionally 

to the concentration of the BSA. Figure 5.10c and d shows the sensitivity of these 

samples exposed to different BSA concentrations. These resonance shifts are very similar 

to those obtained with FT approach (Figure. 5.10c) and described in the previous section. 

From the linear fit of the experimental points two slopes of 19.7pm/µM, 17.9pm/µM for 

forced FT sensors are observed. Again, these data are very similar to those obtained by 

simply diffusion of molecules within the porous structures of the FT membranes. The fact 
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that the FT sensitivity does not varies significantly between the "forced" and the 

"diffusive" test is probably due to the limited thickness of the samples (around 5 m). 

5.4. Conclusions  

In conclusion, the main results achieved in this chapter are: Compared to various MC 

Photonics structure on n-type silicon substrate with among the highest quality factor 

(Q=70) and sensitivity of 606nm RIU
-1

 has been observed. The quality and sensitivity of 

MCs Q=30, 50 and 70 are quantified with methanol-ethanol solution and change of 

~2.4*10
-4

, 1.9*10
-4 

and 8.9*10
-5

 RIU can be sensed in refractive index. Furthermore the 

role of NSS is investigated and quantified in nanoporous silicon by comparing FO and FT 

geometries. By performing three different types of measurements (FO, FT and forced 

FT), we demonstrate that the FO approach in porous material systematically 

overestimates the real sensor sensitivity because of a poor removal of non-specifically 

bound molecules. We notice that, despite its complete different origin, the magnitude of 

the NSS is linearly proportional to the assay time and it is easily confused with specific 

signal. Moreover, we demonstrated that FT approach - either performed by pumping the 

liquid through the sensor or by simply dipping the MC- produces a linear response of the 

sensor with similar sensitivity, which is probably due to the limited thickness of the 

sample.  

This preliminary investigation provides the first study of NSS effect in porous based 

sensors and is the basis for further investigation of more sophisticated and adequate free-

standing nanoporous structures.  

 

 



Sensing with porous silicon micro-cavity (MC) structure 
 

Page 119 
 

References 

[1]P. Xie, Q. Xiong, Y. Fang, Q. Qing & Charles M. Lieber, “Local electrical potential 

detection of DNA by nanowire–nanopore sensors,” Nature Nanotechnology 7, pp 119–

125 (2012). 

[2]T. Someya, A. Dodabalapur, J. Huang, K. C. See, H. E. Katz, “Chemical and Physical 

Sensing by Organic Field-Effect Transistors and Related Devices,” Advanced materials 

22(34), pp 3799-3811 (2010). 

[3]T. Kang, S. M. Yoo, I. Yoon, S. Y. Lee, B. Kim, “Patterned Multiplex Pathogen DNA 

Detection by Au Particle-on-Wire SERS Sensor,” Nano Letters 10 (4), pp 1189–1193 

(2010). 

 

[4]J. Piehler, A. Brecht, R. Valiokas, B. Liedberg,G. Gauglitz, “A high-density 

poly(ethylene glycol) polymer brush for immobilization on glass-type surfaces” 

Biosensors & bioelectronics 15 (9-10), pp 473-481 (2000). 

 

[5]H. Dai, M. Meyer, S. Stepaniants, M. Ziman, R. Stoughtona, “Use of hybridization 

kinetics for differentiating specific from non-specific binding to oligonucleotide 

microarrays,” Nucleic Acids Research 30(16), pp e86 (2002). 

 

[6]F. Lasne, “Double-blotting: a solution to the problem of nonspecific binding of 

secondary antibodies in immunoblotting procedures,” Journal of immunological methods 

253 (1-2), pp 125-131 (2001). 

 

[7]B. H. Schneider, E. L. Dickinson, M. D. Vach, J. V. Hoijer, L.V. Howard, “Highly 

sensitive optical chip immunoassays in human serum,” Biosensors & Bioelectronics 

15(1-2), pp 13-22 (2000). 

 

[8]E. Stern, A. Vacic, N. K. Rajan, J. M. Criscione, J. Park, B. R. Ilic, D. J. Mooney, M. 

A. Reed, T. M. Fahmy, “Label-free biomarker detection from whole blood,” Nature 

nanotechnology 5(2), pp 138-142 (2010). 

 

[9]C. Pacholski, “Photonic Crystal Sensors Based on Porous Silicon,” Sensors 13(4), pp 

4694-4713 (2013). 

 

[10]L. Jia, W. Cai, “Micro/Nanostructured Ordered Porous Films and Their Structurally 

Induced Control of the Gas Sensing Performances,” Advanced Functional Materials 20 

(21), pp 3765-3773 (2010). 

 

[11]C. Sanchez, C. Boissiere, D. Grosso,  C. Laberty, L. Nicole, “Design, synthesis, and 

properties of inorganic and hybrid thin films having periodically organized 

nanoporosity,” Chemistry of materials 20 (3), pp 682-737 (2008).  

 



Sensing with porous silicon micro-cavity (MC) structure 
 

Page 120 
 

[12]B. J. Melde, B. J. Johnson, P. T. Charles, “Mesoporous silicate materials in sensing” 

Sensors 8 (8), pp 5202-5228 (2008).  

 

[13]F. Jia, C. Yu, Z. Ai, L. Zhang, “Fabrication of nanoporous gold film electrodes with 

ultrahigh surface area and electrochemical activity,” Chemistry of materials, 19(15), pp 

3648-3653 (2007). 

 

[14]A. Palaniappan, X. Li, F. E. H. Tay, J. Li, X. Su, “Cyclodextrin functionalized 

mesoporous silica films on quartz crystal microbalance for enhanced gas sensing,” 

Sensors and actuators B-chemical 119 (1), pp 220-226 (2006).  

 

[15]K. Bonroy, J. M. Friedt, F. Frederix, W. Laureyn, S. Langerock, A. Campitelli, M. 

Sára, G. Borghs, B. Goddeeris, P. Declerck, “Realization and characterization of porous 

gold for increased protein coverage on acoustic sensors,” Analytical chemistry, 76(15), 

pp 4299-4306 (2004). 

 

[16]M. Zhao, X. Wang, D. Nolte, “Mass transport limitations in spot-based microarrays,” 

Biomedical Optics Express 1(3), pp 983-997 (2010). 

 

[17]N. S. Lynn, H. Šípová, P. Adam, J. Homola, “Enhancement of affinity-based 

biosensor: effects of sensing chamber geometry on sensitity,” Lab on a Chip 13, pp 1413-

1421 (2013). 

 

[18]E.D. Gaspera, D. Buso, M. Guglielmi, A. Martucci, V. Bello, G. Mattei, M.L. Post, 

C. Cantalini, S. Agnoli, G. Granozzi, A.Z. Sadek, K. Kalantar-zadeh, W. Wlodarski, 

“Comparison study of conductometric, optical and SAW gas sensors based 

on porous sol–gel silica films doped with NiO and Au nanocrystals,” Sensors and 

Actuators B: Chemical 143(2), pp 567-573 (2010). 

 

[19]T. N. Huan, T. Ganesh, K. S. Kim, S. Kim, S. H. Han, H. Chung, “A three-

dimensional gold nanodendrite network porous structure and its application for an 

electrochemical sensing,” Biosensors & Bioelectronics 27(1), pp 183-186 (2011). 

 

[20]M. Scampicchio, A. Arecchi, A. Bianco, A. Bulbarello, C. Bertarelli, S. Mannino, 

“Nylon nanofibrous biosensors for glucose determination,” Electroanalysis 22(10), pp 

1056-1060 (2010). 

 

[21]J. Alvarez, P. Bettotti, I. Suarez, N. Kumar, D. Hill, V. Chirvony, L. Pavesi, J. 

Martinez Pastor, “Birefringent porous silicon membranes for optical sensing,” Optics 

Express 19(27), pp 26106-26116 (2011). 

 

[22]M. Lee, P.M. Fauchet, “Two-dimensional silicon photonic crystal based biosensing 

platform for protein detection,” 15(8), pp 4530-4535 (2007). 

 



Sensing with porous silicon micro-cavity (MC) structure 
 

Page 121 
 

[23]J. Alvarez, N.Kumar, P. Bettotti, D. Hill, J. Martinez-Pastor, "Phase-Sensitive 

Detection for Optical Sensing With Porous Silicon,” IEEE Photonics Journal 4(3), pp 

986-995. 

 

[24]X. Lv, L. Chen, H. Zhang, J. Mo, F. Zhong, C. Lv, J. Ma, Z. Jia, “Hybridization 

assay of insect antifreezing protein gene by novel multilayered porous silicon nucleic 

acid biosensor,” Biosensors and Bioelectronics 39(1), pp 329-333 (2013). 

 

[25]H. Zhang, Z. Jia, X. Lv, J. Zhou, L. Chen, R. Liu, J. Ma, “Porous silicon optical 

microcavity biosensor on silicon-on-insulator wafer for sensitive DNA detection,” 

Biosensors and Bioelectronics 44(1), pp 89-94 (2013). 

 

[26]T. Jalkanen, E. Makila, Y. I. Suzuki, T. Urata, K. Fukami, T.Sakka, J. Salonen and Y. 

H. Ogata, “Studies on Chemical Modification of Porous Silicon-Based Graded-Index 

Optical Microcavities for Improved Stability Under Alkaline Conditions,” Advanced 

Functional Materials 22(18), pp 3890-3898 (2012). 

 

[27]M. Ghulinyan, C. J. Oton, G. Bonetti, Z. Gaburro, L. Pavesi, “Free-standing porous 

silicon single and multiple optical cavities,” Journal of Applied Physics 93(12), pp 9724-

9729 (2003). 

 

[28]P. C. Searson, J. M. Macaulay, F. M. Ross, “Pore morphology and the mechanism of 

pore formation in n-type silicon,” Journal Applied Physics 72(1), pp 253-258 (1992). 

 

[29]H. J. Kim, Y. Y. Kim, K. W. Lee, S. H. Park, “A distributed Bragg reflector porous 

silicon layer for optical interferometric sensing of organic vapor,” Sensors and Actuators 

B, 155(2), pp 673-678 (2011). 

 

[30]L. Velleman, C. J. Shearer, A. V. Ellis, D. Losic, N. H. Voelcker, J. G. Shapter, 

“Fabrication of self-supporting porous silicon membranes and tuning transport properties 

by surface functionalization,” Nanoscale 2(9), pp 1756-1761 (2010). 

 

[31]J. De Jong, R. G. H. Lammertink, M. Wessling, “Membranes and microfluidics: a 

review,” Lab on a Chip 6(9), pp 1125-1139 (2006). 

 

[32]M. J. Sailor, “Properties of porous silicon, INSPEC, London, 1997, pp. 364-370   

[34]Luigi Moretti, Llaria Rea, Luca De Stefano and Lvo Rendina, “Periodic 

versusaperiodic:Enhancing the sensitivity of porous silicon based optical sensors” Appl. 

Phys. Lett. 90, pp 191112 (2007) 

 

[35]John A. Howarter and Jeffery P. Youngblood, “Optimization of Silica Silanization by 

3-Aminopropyltriethoxysilane,” Langmuir 22(26), pp 11142-11147 (2006). 

 

[36]H. Ouyang, M. Christophersen, R. Viard, B. L. Miller, P. M. Faucher, “Macroporous 

Silicon Microcavities for Macromolecule Detection,” Advanced Functional Materials 

15(11), pp 1851-1859 (2005).  



Sensing with porous silicon micro-cavity (MC) structure 
 

Page 122 
 

 

[37]M. Hiraoui, M. Guendouz, N. Lorrain, A. Moadhen, L. Haji, M. Oueslati, 

“Spectroscopy studies of functionalized oxidized porous silicon surface for biosensing 

applications,” Materials Chemistry and Physics 128(1-2), pp 151-156 (2011).  

 

[38]L. A. De Louise, P. M. Fauchet, B. L. Miller, A. A. Pentland, “Hydrogel-Supported 

Optical-Microcavity Sensors,” Advanced Materials 17(18), pp 2199-2203 (2005).  

 

[39]L.Tay, N. L. Rowell, D. J. Lockwood, R. Boukherroub, “Bovine serum albumin 

adsorption on functionalized porous silicon surfaces,” Proceeding SPIE 5578, pp 99-184 

(2004). 

 

 



Polarimetry sensing with porous silicon/alumina membranes 
 

 

Chapter 6 

 
 
 
 

Polarimetry sensing with 

porous silicon/alumina 

membranes 
   
   

  

 
 
 
 
  
 
 
 
 
 
 
 
 
 



Polarimetry sensing with porous silicon/alumina membranes 
 

 Page 124 
 

6.1 Introduction 

Porous membranes based photonic devices have recently attracted significant attention 

due to its large surface to volume ratio that permits higher sensitivity of device [1]. 

Porous silicon (PSi) and porous alumina are important materials in this category. Since 

the discovery these materials, this material have been focused for many lab on chip 

devices [2, 3]. Besides their electrical properties by measuring change in capacitance or 

change in electrical conductivity, special attention on these materials is due to their high 

sensitivity towards refractive index changes due to species confined within their porous 

structure [4, 5]. Numerous articles have been published on bio-sensing, gas/vapor sensing 

and other sensing applications using these materials [6, 7, 8].These porous materials can 

be used in either flow-over (FO) or flow-through (FT) geometry. In FO sensing 

applications, spectroscopic ellipsometry technique is mainly used to sense change in 

refractive index induced by analyte [9].   The weakness of this technique is mainly due to 

a poor homogenous binding of the analyte species throughout the active sites within the 

pores [10]. However FT approach provides an alternative for more accurate and fast 

sensing over FO approach [11]. Furthermore open-ended pores on both sides in FT 

approach based on free standing membrane (FSM), maximizes the efficiency of the 

binding reactions over the entire porous material surface that enhances their sensitivity 

and reduces the response time.  

Both PSi and porous alumina materials are optically birefringent. This optical property is 

well studied and explained by well ordered skeleton of their porous structure [12]. 

Several articles are published on the presence of birefringence in these porous materials 

[13, 14]. Among these, most of study is focused on p-type <110> silicon substrates, 
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which is not compatible to flow-through application because of their small pore size. 

Only few are on n-type silicon self-supporting membranes [15]. Using FT geometry with 

PSi and porous alumina membranes along with polarimetric approach to sense the 

presence of analyte, fast and highly sensitive sensor can be assembled [16]. A major 

difficulty encountered with medium and highly doped n-type silicon substrates lies in the 

fact that free-standing membranes fabrication requires a more careful tuning of the 

experimental conditions compared to p-type PSi [17]. Furthermore due to complexities in 

flow through for PSi and measurement, only few groups are so far able to demonstrate 

real time sensing applications. Recently we have reported PSi membranes with sensitivity 

as high as 1245nm/RIU at 1500nm wavelength using various organic solutions [18]. 

However porous structure was quite rough and an improvement in pore roughness along 

with pore size was needed.  In the same line very recently Alvarez et al. demonstrated 

flow through real time sensing with free standing porous alumina membrane  (of 200nm 

pore diameter) and a sensitivity of ~10
-6

 RIU [16].  

In this chapter, we compare PSi and porous alumina (Whatman-anodisc membranes of 

thickness 60µm and pore diameter of 200nm) freestanding membranes in flow through 

configuration for real time sensing applications. Both “in-plane and out-plane 

birefringence” is studied for both type of FSM. NaCl solution with constant flow rate was 

allowed to flow through PSi FSMs (15.54µm thick) and porous alumina FSM (60µm 

thick). A sensitivity of 0.25°/%NaCl and 0.30°/ % NaCl was achieved for the two sensing 

platforms. Lastly flow through BSA sensor as model system for LOC devices is 

demonstrated in PSi and porous alumina FSM. Concluding the results observed supports 

the higher sensitivity achieved in PSi FSM compared to the porous alumina membranes. 
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6.2 Synthesis and Experimental Details 

N-type silicon wafer (0.01-0.02 Ω-cm) was used as the initial study material and porous 

layers were fabricated with water based solution contains 25ml HF acid (48.99%), 200ml 

de-ionized water and 1ml “Triton” as a surfactant as discussed in Chapter 3. After 

fabrication of PSi, all samples were rinsed in ethanol and dried in N2 flow.  For BSA 

sensing all samples (PSi and porous alumina membranes) were functionalized as 

discussed in Chapter 5. Optical characterization/Phase shift is measured using PAX570-T 

Free space polarimeter with an accuracy of 0.02° at 1525nm and at 1350nm wavelength. 

  6.3 Results and Discussions  

6.3.1 In-plane and Out-plane birefringence of PSi and porous Alumina FSM  

The setup for the measurement of phase shift of PSi and porous alumina FSM is shown in 

Chapter 2. Linearly polarized light of wavelength 1525nm is incident on the sample in a 

direction perpendicular to its surface. Because of the form birefringence induced by the 

porosity, light that travel across the membrane may show phase delay between the two 

orthogonal polarization states, depending on their orientation to respect the refractive 

index ellipsoid [19].  In a (100) oriented PSi sample the optical axis is demonstrated to be 

perpendicularly oriented to respect the surface [20]. Thus PSi sample should not shows 

any birefringence if illuminated perpendicularly and mapped azimuthally. 
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(e)                                                                        (f) 

Figure 6.1 Normalized Phase shift as a function of sample rotation relative to its surface (a) PSi sample with 

60mA/cm
2
 (b) PSi sample with 40mA/cm

2
 (c) PSi sample with 20mA/cm

2
 (d) Porous alumina sample and (e) 

glass substrate. For the analysis, area composed by the curve is calculated (f) 

 



Polarimetry sensing with porous silicon/alumina membranes 
 

 Page 128 
 

 

 
 

Figure 6.2. SEM images of cross-section (left) and (Right) top surface of (a) PSi sample with 60mA/cm
2
 (b) PSi 

sample with 40mA/cm
2
 (c) PSi sample with 20mA/cm

2
 (d) Porous alumina sample 
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Phase shift is measured as a function of in-plane rotation angle shown in Figure 6.1 a, b, c 

for three different type of PSi sample etch with different current density i.e. 60mA/cm
2
, 

40mA/cm
2
 and 20mA/cm

2
, hence different pore morphology i.e. a straight 100nm pore 

(a) and  dendrite structures with 60nm (b) and 20nm (c). Figure 6.1d show the results for 

a porous alumina FSM with straight pores of 200 nm of diameter. Figure 6.1e reports the 

data for a homogeneous glass slide. For the analysis, area composed by the curve of each 

sample is calculated (f). Area integrated within the curve increases as spatial isotropy for 

in-plane increases, further more calculated area composed by porous alumina FSM and 

PSi FSM fabricated with 20mA/cm
2
 is nearly equal. For all the studied samples an 

azimuthal rotation of the FSM does not give a homogeneous response as it should be 

expected. Initially we supposed that the crystalline structure of the Si could induce a 

square like shape to the pores (as in the extreme case of the star-like pores). In this case 

we do expect to see the same symmetry in the optical response of the material, too. But 

experimental does not show any periodicity in the birefringence (i.e. a π/4 periodic 

relation is never observed) [21].  

In-homogeneous birefringence is observed for all studied FSM sample for in-plane 

rotation. Furthermore it is well known that electrochemical etching have different etching 

rates along different crystalline plane (i.e. 100:16:1=(100):(110):(111)) thus this fact may 

be related with observed phase anisotropy [22]. Figure 6.2 shows the SEM images of 

cross-section of PSi samples fabricated with different current density. It is clearly 

observed that PSi fabricated at lower current density have more rough pores with dendrite 

like structure whereas, samples etched at higher current density have smooth and straight 

pores (as already discussed about pore growth in Chapter 3). Thus a possible reason for 
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the anisotropy could be due to their inner pore morphology. Because the inner porous 

structure is not perfectly smooth the scattering generated by the small pore branching 

may induces an inhomogeneous phase shift versus in-plane rotation. Recently Shichi et al 

reported a correlation between the porous structure and the in-plane birefringence for p-

type <110> PSi samples and demonstrated that inner pore morphology strongly affects 

the shape of index ellipsoid [23].  

At a first sight a direct relation between pore roughness and in plane anisotropy can be 

observed. For rough pores observed for 20mA/cm
2
, 40mA/cm

2
, several maxima and 

minima are observed for azimuthal mapping of the birefringence, possibly induced by 

dendrite structure. However more straight and smooth pore reduces the in-plane 

anisotropy of the phase shifts (i.e. PSi fabricated with 60mA/cm
2
 with ~100nm pore as 

shown in Figure 6.1a supports this view). The two samples produces similar behavior 

indicates that observed optical property is independent of PSi sample and related with 

their structural morphology.  

Furthermore anisotropic nature of the porous alumina in plane birefringence is also 

studied. Circular pores observed from SEM image shown in Figure 6.2e. As pore seems 

nearly circular, we expect a nearly constant phase change. Contradictory Porous alumina 

FSM shows asymmetric nature for in-plane rotation and an elongated pattern is observed. 

Such results not fully understood and could be either due to top surface or pore growth 

that is not perfectly along the incident direction of light.   

The reliability of the experimental setup is demonstrated by looking at the in-plane 

pattern obtained from a glass slide. In this case the birefringence is nearly homogeneous 

and only small deviations can be seen from the ideality. For any sensing purpose this 
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limitation should be taken into account for more accurate sensing, if sample is not fixed 

and may have in-plane rotation.  

In order to exploit its maximum birefringence, a (100) aligned PSi sample have to be 

tilted to respect the incident light. The maximum birefringence is achieved at 45° of tilt. 

The general relation that describes the phase delay accumulated by light beams that travel 

across the sample is given by: 

   
2

d n


     


                       (1) 

  is the incident wavelength of light, d is the PSi membrane thickness and  n   is its 

birefringence. Given a certain PSi refractive index, phase shift can be calculated for a 

known incident angle. Among various available methods i.e. Maxwell-Garnett theory, 

Looyenga method and the Bruggman model can be used to calculate theoretically 

birefringence for porous materials [18].  Figure 6.3 shows the observed phase shift 

(normalized for the sample thickness) for both PSi and porous alumina FSM as a function 

of incident angle. For all studied samples phase shift increases as incident angle increase 

as expected. Effect of pore morphology can be deducted by comparing the normalized 

birefringence: straight and smooth pores are more sensitive because of smaller 

depolarization factors due to less rough pores. Furthermore porosity of sample also has 

strong effect on phase sensitivity of FSM and has maxima for 50% porosity [18, 16]. 

Different porosity of PSi samples also have contribution in observed phase change as 

20mA/cm
2
, 40mA/cm

2
 and 60mA/cm

2
 have 30%, 36% and 48% porosity respectively 

calculated by reflectance Interferometric spectroscopy (RIFS) [24]. However PSi FSM 

fabricated with 60mA/cm
2
 and porous alumina has nearly same porosity, but PSi sample 
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shows higher sensitivity/degree than porous alumina membrane that could be understand 

in terms of larger refractive index difference between birefringent material and air as 

porous alumina FSM have refractive index of about ~1.6 than PSi (refractive index~1.7) 

FSM and due to its smaller pore size. From these observed results PSi FSM with 100nm 

pores seems more suitable for bio-sensing than porous alumina FSM. 

 

Figure 6.3 Phase shift as a function of sample rotation relative to incident light for PSi sample with 60mA/cm
2
, 

PSi sample with 40mA/cm
2
, PSi sample with 20mA/cm

2
 and Porous alumina FSM at 1525nm 

 

6.3.2 Sensing with PSi and porous Alumina FSM  

To our best knowledge there are only few reports of liquid flux through a PSi FSM of 

submicron pore size. The difficult is due to both its hydrophobic nature and to the narrow 

pore size [16, 25, 26]. Taking the advantage of the straight and smooth pores PSi 

membranes were first characterize for flow of water as shown in Figure 6.4. It is 

important to note that freshly prepared FSM does not allow for flow through, a thermal 

oxidation is required to change its wet-ability. Three different samples were characterized 
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for liquid flow: two rough and narrow pores with ~30nm (thickness of FSM~5.5µm) and 

50nm size (thickness of FSM~6.1µm), and a sample with smooth and straight pore of 

~100nm (thickness of FSM~8.7µm) in size. Flow up to 1µl/minute can easily be obtained 

on these PSi FSMs. As expected smooth pores required lower differential pressure than 

rough and narrow pores and encourages further to the use for flow-through sensing 

application. 
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Figure 6.4 Water transport as a function of pressure applied for PSi sample fabricated with 60mA/cm
2
, PSi 

sample fabricated with 40mA/cm
2
, PSi sample fabricated with 20mA/cm

2
 and Porous alumina FSM 

 

W tested the sensitivity of both PSi and porous alumina membranes by flowing through 

them liquid of different refractive index. Optical photograph of complete experimental 

setup is shown in Figure 6.5. PSi FSM of 15.54µm thick with ~100nm pore and porous 

alumina FSM of 60µm thickness with 200nm pore was mounted on a perforated 

aluminum plate with PMMA resist. The mounted FSM were then placed in a glass flow 

cell at an angle of 40° (As shown in previous section 6.3.1 that maxima is obtained at 

45°, but at this angle, transparency the alignment of the setup becomes very difficult . So 

we use 40° for sensing experiment), in which liquid flows with a constant flow rate of 
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either 0.5µl/minute or 1.5µl/minute for PSi and porous alumina samples, respectively. All 

these measurement were carried out at a wavelength of 1350nm to reduce the absorption 

of light by water. As water fills the pore of PSi and porous alumina FSM, phase shift of 

~40.50° and ~108.25° is observed for respective membrane, as shown in Figure 6.6a and 

6.7a. As the liquid flowing through the membrane is exchanged with solutions of 

different NaCl concentration (we tested 5, 10 and 15% of NaCl), a proportional phase 

shift is recorded. 

 
 

Figure 6.5 Optical photograph of measurement setup for polarimetric experiment with fluidic setup (For more 

detail see chapter 2)  
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(a)                                                                                               (b) 

Figure 6.6a Real time sensing with PSi FSM fabricated with 60mA/cm
2
 at a wavelength of 1350nm, Phase shift 

increases as NaCl concentration in water increases due to increase in refractive index within porous structure. 

(b) Phase change as a function of NaCl concentration in water. Linear fit (R
2
=0.9944) shows a sensitivity of 

0.226°/%NaCl 
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(a)                                                                                               (b) 

6.7a Real time sensing with Porous alumina FSM at a wavelength of 1350nm, Phase shift increases as NaCl 

concentration in water increases due to increase in refractive index within porous structure.(b) Phase change as 

a function of NaCl concentration. Linear fit (R
2
=0.9920) shows a sensitivity of 0.316°/%NaCl. 

 

 

For PSi FSM a negative phase shift of 0.98°, 2.10° and 3.39° is observed for 5%, 10% 

and 15% NaCl, respectively, whereas porous alumina shows shifts of 1.73°, 3.45° and 

4.70° for the three solutions (the uncertainty in these measurements is of ±0.02° detection 

limit as calculated for the instrument without an sample). Sensitivity of these FSM can be 

obtained from the slope of phase shift versus NaCl concentration. From linear fit of 

curves in Figure 6.6b and Figure 6.7b a sensitivity of 0.23°/NaCl% and 0.32°/NaCl% is 

observed for PSi and porous alumina membrane respectively. The refractive index 

change of NaCl solution is 0.001747RIU/%NaCl at 632nm [16]. We assume that the 

value measured in the visible is also valid at the wavelength of 1350nm. In terms of RIU 

the observed sensitivity is 129.36°/RIU and 180.88°/RIU for PSi and porous alumina 

FSM, respectively. LOD for refractive index change observed for PSi membranes is 

~3.8*10
-4

, where as for porous alumina membrane LOD is 2.7*10
-4

. Although observed 

bulk sensitivity is higher for porous alumina FSM, considering the thickness of these two 

studied sample PSi FSM is ~3 times more sensitive. In fact if we normalize the sensitivity 
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for the thickness of the FSM we obtain:  1.48E-2 °/NaCl%/µm (correspondent to an LOD 

of about 6.0*10
-3

) for PSi and 0.53E-2 °/NaCl%/µm (LOD~1.7*10
-2

) for porous alumina. 

Finally we made some preliminary tests using BSA molecules. Both PSi and porous 

alumina membrane were functionalized with 2%v/v 3-aminopropyltrietoxysilane 

(APTES) for 1 hour at 70°C as discussed in Chapter 5. After rinsing in de-ionized water, 

the samples were immersed in PBS (pH 7.4) containing 2.5% glutraldehyde (GA). The 

reaction was left to proceed for 2 hours at room temperature, and then the samples were 

thoroughly rinsed with PBS and finally washed with water before BSA binding in FT 

geometry. 10µl of each BSA concentration were fluxed through PSi and 40µl for porous 

alumina membrane. The membranes were rinsed in FT with water. Figure 6.8a and 6.8b 

shows the variation of phase shift of FSM as BSA molecules are added into the pores. 

Phase shift increases as BSA concentration increases (i.e. BSA concentration is increased 

from 0.075mg/ml to 2.5mg/ml for PSi and from 10mg/ml to 30mg/ml for porous alumina 

FSM) and nearly saturate for higher BSA concentration i.e. 2.5mg/ml and 30mg/ml. We 

checked the reproducibility of BSA sensing on another set of FSMs. In both cases we 

measure a response which is proportional to the BSA concentration. Unfortunately 

reproducibility is not very good and it requires more precise and careful study. The 

results observed for this second set of FSM is shown in Figure 6.9a and 6.9b for PSi and 

porous alumina FSM sample respectively. 
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6.8 (a) Real time sensing with PSi FSM, and (b) sensing with Porous alumina FSM at a wavelength of 

1350nm, Phase shift increases as BSA molecules are attached within pores due to increase in refractive 

index within porous structure. 
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6.9 (a) Real time sensing with another PSi and porous alumina FSM sample (b), Phase shift increases as 

BSA molecules are attached within porous structure. For porous alumina FSM a continuous change in 

phase is observed, that could be due to fluidic behavior. 
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6.4. Conclusions  

A highly sensitive device for refractive index sensing is demonstrated. PSi freestanding 

membranes with different pore morphology and porous alumina membrane are 

characterized for both in-plane and out-plane optical anisotropy. A qualitatively 

description of the in-plane anisotropy is described in terms of pore morphological effects 

and pore alignment with respect to incident beam. PSi with straight and smooth pore 

shows a better isotropic azimuthal behavior. Similarly out-plane anisotropy increases as 

pores become smoother. Real time sensing experiment carried out with PSi FSM and 

with porous alumina membranes using NaCl solution shows that PSi FSM shows higher 

sensitivity compared to porous alumina membrane because of their larger specific area 

and due to large contrast between refractive index on birefringent material (PSi~1.7 and 

porous alumina~1.6) and NaCl solution. Sensitivity of 8.32°/RIU-µm and 3.01°/RIU-µm 

is observed for respective FSM. Refractive index change of ~10
-4

 is experimentally 

sensed with our system resolution. Furthermore experimentally, we demonstrated a label-

free sensor. Because of the ease of the proposed FT geometry; sensor requires small 

volume of analyte solution, and has a reasonable fast detection time. Furthermore it may 

significantly reduce NSS compared to FO geometry. These experimental demonstrations 

opens new possibilities for the development of PSi based LOC devices with fast and low 

detection/highly sensitive sensing as well. 
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Conclusions  

Here I summarize the main results about fabrication and sensing with n-type porous 

silicon freestanding membranes. 

First, we described an improved etching method to fabricate porous silicon freestanding 

sample with highly controlled morphology in moderately doped n-type silicon substrates 

(0.01-0.02 Ω-cm). Our protocol enables the realization of porous film that combine 

micro-meso and macro pores to be etched within the same structure, so that pore size can 

be tuned from few tens up to around 100 nm in diameter. Of particular interest thin as 

2µm and thick porous membranes up to 60µm with straight and smooth 100nm pores is 

fabricated with two solution method. A notable difference compared to p-type substrates 

is that the porous layer lift-off does not require any high burst of current but is a self 

limited process, mainly dependent from the solution composition.   

The fabricated PSi structures were stabilized by both thermal oxidation and chemical 

surface modification. This study is needed to develop a stable sensing platform. 

Furthermore the chemically modified PSi layer acts as intermediate layer for further 

binding of other bio-molecule i.e. BSA.  

Finally sensing capabilities of PSi porous layers are demonstrated with multilayer micro-

cavity structure and with single porous layer via polarimetric approach. The quality and 

sensitivity of PSi MCs with different quality factor=30, 50 and 70 are quantified with 

methanol-ethanol solution and a sensitivity of about 10
-4

 RIU is demonstrated. 

Furthermore the role of non-specific signal (NSS) is investigated in nanoporous silicon 

by comparing flow-over (FO) and flow-through (FT) geometries. For the first time we 

demonstrate that in FO geometry, NSS strongly contributes in the final output sensing 
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signal and this preliminary investigation provides the first study of NSS effect in 

nanopores-based sensors.   

At last, we were able to design and characterize a FT optical polarimetry sensor based on 

PSi FSM and results are compared with porous alumina FT sensor. We have quantified 

the birefringence of PSi and porous alumina FSM with aqueous NaCl solutions. 

Sensitivity of 8.32°/RIUµm and 3.01°/RIUµm is achieved for PSi and porous alumina 

FSM, respectively. BSA sensing is also demonstrated as a model system for future lab on 

chip (LOC) devices.   

As a final outcome, the length scale of the porous structure investigated here is of interest 

in many application fields: from biosensor able to detect large molecules, to filtering 

device and self cleaning surfaces. Furthermore in this thesis experimental demonstration 

of flow-through sensing opens new possibilities for the development of PSi based LOC 

devices with fast and low detection/highly sensitive sensing as well. 
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