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We consider the binomial decomposition of ordered weighted averaging (OWA) functions 
proposed by Calvo and De Baets (1998) in the framework of Choquet integration. Our aim in 
the paper is to further investigate the equivalence between the two representations of OWA 
functions involved in the binomial decomposition: the usual canonical representation in terms 
of the order statistics, and the binomial representation in terms of the binomial OWA functions. 
We describe and discuss in detail the linear transformations that relate the coefficients of these 
two equivalent representations: the original expression of the weights in terms of the coefficients 
of the binomial representation, and its inverse, the expression of those coefficients in terms of 
the weights. In both cases simple and direct proofs are presented. Moreover, we consider the 
linear transformations between the two representations in the general linear algebra framework 
of unconstrained linear combinations of binomial OWA functions. In this perspective we obtain 
compact matrix expressions for the linear transformations, which also offer new insight on the 
geometry of the coefficient constraints in the binomial representation of OWA functions.

1. Introduction

In the general framework of averaging functions, and particularly in that of Choquet integration [16,17], the ordered weighted 
averaging functions [24,8] have an outstanding theoretical and practical relevance in a variety of modeling contexts [25,26].

The class of Choquet integrals includes both the standard and the ordered weighted averaging functions. The former are generated 
by additive capacities, whereas the latter are generated by symmetric capacities [9], which only depend on the cardinality of the 
coalitions considered. The plain mean is generated by the single capacity which is both additive and symmetric; all the other 
symmetric capacities are nonadditive and this one of the interesting features of ordered weighted averaging functions.

The weights of an ordered weighted averaging (OWA) function, expressed in terms of the values of the associated symmetric 
capacity, correspond to differences between the capacities of consecutive cardinalities. Alternatively, the weights can also be ex-

pressed in terms of the values of the symmetric Möbius transform [5,13,18] associated with that symmetric capacity. In this case, 
the weight dependence on the Möbius transform values is made explicit, thereby clarifying the way in which the interaction pattern 
contributes to the weighting structure. For this reason, the symmetric Möbius transform often plays a central role in the construction 
of nonadditive averaging models.

In the binomial decomposition of OWA functions, introduced in the seminal paper by Calvo and De Baets [4], the authors 
elaborate on the expression of the weights in terms of the symmetric Möbius transform values and introduce the binomial OWA 
functions, whose weights are conveniently defined by means of the binomial coefficients. In dimension 𝑛 ≥ 2, the OWA functions are 
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naturally expressed as constrained linear combinations of the 𝑛 binomial OWA functions 𝐶𝑗 , where the coefficients are essentially the 
values of the associated symmetric Möbius transforms for coalitions of cardinality 𝑗 = 1, ..., 𝑛. The constraints regarding the symmetric 
Möbius transform values reflect the usual weight constraints of OWA functions.

The binomial decomposition provides the ideal representation for the study of nonadditivity in OWA functions, particularly in 
relation with the various levels of 𝑘-additivity [12], with 𝑘 ≤ 𝑛. In these terms, the binomial decomposition can be used to explore 
the 𝑘-additivity of OWA functions in the context of welfare and inequality [1]. The classical Gini welfare function, for instance, is a 
particular 2-additive OWA function, and the binomial decomposition is the natural framework to explore 𝑘-additive generalizations 
of welfare functions and their associated inequality measures.

In this paper we examine the binomial decomposition and further investigate the equivalence between two representations of 
OWA functions: the usual canonical representation in terms of the order statistics, and the binomial representation in terms of 
the binomial OWA functions. We describe and discuss in detail the linear transformations that relate the coefficients of these two 
representations: the original expression of the weights in terms of the coefficients of the binomial representation as in [4], and the 
inverse expression of those coefficients in terms of the weights.

A version of this inverse expression has recently been proposed in [20], with a long and elaborate proof based on strong induction. 
Here we present a common descriptive framework for both the expressions, with straightforward, direct proofs.

Moreover, in the paper we extend the description of the linear transformations between the two representations to the more 
general framework of unconstrained linear combinations of binomial OWA functions. The linear algebra approach provides simple 
and compact expressions for the linear transformations and offers further insight on the usual constrained framework of OWA 
functions. In particular, we discuss the geometry of the vertices and the orness distribution within the simplexes associated with the 
usual weight constraints as written in the binomial representation of OWA functions.

The paper is organized as follows. In Section 2, we recall the definitions and main properties of the binomial OWA functions 
introduced in [4]. In Section 3, we describe the construction of the binomial decomposition of OWA functions [4], focusing on the 
equivalence between the canonical and the binomial representations, and discussing in detail the linear relations which transform 
one representation into the other, with a straightforward, direct proof of the result in [20]. In Section 4, we extend the discussion 
to the case of general linear combinations of binomial OWA functions, with a classical linear algebra approach, and, in Section 5, 
we exploit this material to clarify some aspects of the binomial representation of OWA functions, including a number of illustrative 
graphical and numerical examples. Section 6 contains some concluding remarks.

2. The binomial OWA functions

Consider the standard framework of averaging functions on ℝ𝑛, with 𝑛 ≥ 2.

Notation. Points in ℝ𝑛 are denoted x = (𝑥1, … , 𝑥𝑛), with 1 = (1, … , 1) and 0 = (0, … , 0). Accordingly, for every 𝑥 ∈ ℝ, we have 
𝑥 ⋅ 1 = (𝑥, … , 𝑥). Given x = (𝑥1, … , 𝑥𝑛) ∈ ℝ𝑛, we denote x̃ = (𝑥𝑛, … , 𝑥1) ∈ ℝ𝑛. The coordinates of the point x ∈ ℝ𝑛 arranged in 
ascending or descending order are denoted as 𝑥(1) ≤⋯ ≤ 𝑥(𝑛) or 𝑥[1] ≥⋯ ≥ 𝑥[𝑛], respectively. In particular, 𝑥(1) = min{𝑥1, … , 𝑥𝑛} =
𝑥[𝑛] and 𝑥(𝑛) = max{𝑥1, … , 𝑥𝑛} = 𝑥[1]. The arithmetic mean is denoted 𝑥̄ = (𝑥1 +⋯+ 𝑥𝑛)∕𝑛.

We begin by presenting the definition and some of the fundamental properties of Ordered Weighted Averaging (OWA) functions 
on ℝ𝑛, with 𝑛 ≥ 2 throughout the text.

Definition 1. Given a weighting vector w = (𝑤1, … , 𝑤𝑛) ∈ [0, 1]𝑛, satisfying the normalization condition 
∑𝑛

𝑖=1𝑤𝑖 = 1, the Weighted 
Averaging (WA) function associated with w is the averaging function 𝐴 ∶ℝ𝑛 ⟶ℝ defined as 𝐴(x) =

∑𝑛

𝑖=1𝑤𝑖 𝑥𝑖. In turn, the Ordered 
Weighted Averaging (OWA) function associated with w is the averaging function 𝐴 ∶ℝ𝑛 ⟶ℝ defined as

𝐴(x) =
𝑛∑
𝑖=1

𝑤𝑖 𝑥(𝑖). (1)

The traditional form of OWA functions as introduced in Yager [24] is 𝐴(x) =
∑𝑛

𝑖=1 𝑤̃𝑖 𝑥[𝑖] where 𝑤̃𝑖 =𝑤𝑛−𝑖+1 for 𝑖 = 1, … , 𝑛. Compre-

hensive reviews of the theory and applications of OWA functions can be found in [25,26].

The following is a classical result regarding a form of dominance relation between OWA functions, characterized in terms of the 
majorization relation between the associated weighted structures. The result is mentioned in Calvo and De Baets [4] on the basis of 
the extensive material in Skala [22], a direct proof can be found in Bortot and Marques Pereira [1].

Proposition 1. Consider two OWA functions 𝐴, 𝐵 ∶ ℝ𝑛 → ℝ associated with weighting vectors w𝐴 = (𝑤𝐴
1 , … , 𝑤𝐴

𝑛
) ∈ [0, 1]𝑛 and w𝐵 =

(𝑤𝐵
1 , … , 𝑤𝐵

𝑛
) ∈ [0, 1]𝑛, respectively. It holds that 𝐴(x) ≤ 𝐵(x) for all x ∈ℝ𝑛 if and only if

𝑖∑
𝑘=1

𝑤𝐴
𝑘
≥

𝑖∑
𝑘=1

𝑤𝐵
𝑘

𝑖 = 1,… , 𝑛 (2)
2

where the case 𝑖 = 𝑛 is an equality due to weight normalization.
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Example 1. The following are simple examples for 𝑛 = 3. Consider two OWA functions 𝐴 and 𝐵 associated with the following 
weighting vectors with decreasing weights w𝐴 = (6∕10, 3∕10, 1∕10) ∈ [0, 1]𝑛 and w𝐵 = (5∕10, 3∕10, 2∕10) ∈ [0, 1]𝑛, respectively. The 
weighting vectors satisfy conditions (2). We obtain

𝐵(x) −𝐴(x) = 5𝑥(1) + 3𝑥(2) + 2𝑥(3) − (6𝑥(1) + 3𝑥(2) + 𝑥(3))

= −𝑥(1) + 𝑥(3) ≥ 0

Consider now two OWA functions 𝐴 and 𝐵 associated with the following weighting vectors with increasing weights w
𝐴 =

(2∕10, 3∕10, 5∕10) ∈ [0, 1]𝑛 and w𝐵 = (1∕10, 3∕10, 6∕10) ∈ [0, 1]𝑛, respectively. The weighting vectors satisfy conditions (2). We ob-

tain

𝐵(x) −𝐴(x) = −𝑥(1) + 𝑥(3) ≥ 0 .

Interesting examples of OWA functions are the binomial OWA functions 𝐶𝑗 , for 𝑗 = 1, … , 𝑛, introduced by Calvo and De Baets 
[4]. In what follows we recall the definition and the main properties of the binomial OWA functions.

In the paper we use the binomial coefficients 
(𝑟
𝑠

)
with integer 𝑟, 𝑠 ≥ 0, under the usual convention that the binomial coefficients 

are null when 𝑟 < 𝑠. Some identities and formulas of the binomial coefficients which are used in the paper are recalled in the 
Appendix.

Definition 2. The binomial OWA functions 𝐶𝑗 ∶ℝ𝑛 ⟶ℝ, for 𝑗 = 1, … , 𝑛, are defined as

𝐶𝑗 (x) =
𝑛∑
𝑖=1

𝑤𝑗𝑖 𝑥(𝑖) =
𝑛∑
𝑖=1

(
𝑛− 𝑖

𝑗 − 1

)(
𝑛

𝑗

)−1
𝑥(𝑖) 𝑗 = 1,… , 𝑛 (3)

where the binomial weights 𝑤𝑗𝑖 ≥ 0, for 𝑖, 𝑗 = 1, … , 𝑛, are given by

𝑤𝑗𝑖 =
(
𝑛− 𝑖

𝑗 − 1

)(
𝑛

𝑗

)−1
𝑖, 𝑗 = 1,… , 𝑛 (4)

and satisfy the normalization conditions 
∑𝑛

𝑖=1𝑤𝑗𝑖 = 1 for 𝑗 = 1, … , 𝑛.

Consider a binomial OWA function 𝐶𝑗 , for some 𝑗 = 1, … , 𝑛. An important feature of the binomial weights 𝑤𝑗𝑖, for 𝑖 = 1, … , 𝑛, is that 
they are null when 𝑖 > 𝑛 − 𝑗 +1, for instance see the simple examples described in Example 2, in the cases 𝑛 = 3 and 𝑛 = 4. Moreover, 
the normalization condition

𝑛∑
𝑖=1

𝑤𝑗𝑖 =
𝑛∑
𝑖=1

(
𝑛− 𝑖

𝑗 − 1

)(
𝑛

𝑗

)−1
𝑗 = 1,… , 𝑛 (5)

=
𝑛−𝑗+1∑
𝑖=1

(
𝑛− 𝑖

𝑗 − 1

)(
𝑛

𝑗

)−1
=
(
𝑛

𝑗

)(
𝑛

𝑗

)−1
= 1

is due to the column-sum formula (A.5) of binomial coefficients.

The first binomial OWA function 𝐶1 has a uniform weighting vector and coincides with the plain mean, 𝐶1(x) = 𝑥̄. The subsequent 
binomial OWA functions 𝐶𝑗 , for 𝑗 = 2, … , 𝑛 have an increasing number 𝑗−1 of null weights, in correspondence with 𝑥(𝑛−𝑗+2), … , 𝑥(𝑛). 
The fact that the last 𝑗 − 1 weights of 𝐶𝑗 are null, for 𝑗 = 1, … , 𝑛, means that each binomial OWA function 𝐶𝑗 depends only on the 
𝑛 − 𝑗 + 1 lowest coordinates of the point x. The last binomial OWA function reduces to 𝐶𝑛(x) = 𝑥(1).

Example 2. In the case 𝑛 = 3 the binomial OWA functions are given by

𝐶1(x) =
1
3
𝑥(1) +

1
3
𝑥(2) +

1
3
𝑥(3) = 𝑥̄

𝐶2(x) =
2
3
𝑥(1) +

1
3
𝑥(2)

𝐶3(x) = 𝑥(1)
3

and in the case 𝑛 = 4 the binomial OWA functions are given by
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𝐶1(x) =
1
4
𝑥(1) +

1
4
𝑥(2) +

1
4
𝑥(3) +

1
4
𝑥(4) = 𝑥̄

𝐶2(x) =
3
6
𝑥(1) +

2
6
𝑥(2) +

1
6
𝑥(3)

𝐶3(x) =
3
4
𝑥(1) +

1
4
𝑥(2)

𝐶4(x) = 𝑥(1) .

The examples above illustrate the fact that the binomial OWA functions 𝐶𝑗 , for 𝑗 = 1, … , 𝑛, have non-increasing weights. After 
the uniform weights of 𝐶1, in the case of 𝑗 = 2, … , 𝑛 − 1 the weight distribution of 𝐶𝑗 progressively focuses on the first 𝑛 − 𝑗 + 1
positive weights 𝑤𝑗1 >𝑤𝑗2 >… >𝑤𝑗,𝑛−𝑗+1, and finally with 𝑗 = 𝑛 the single positive weight of 𝐶𝑛 is 𝑤𝑛1 = 1.

The detailed monotonicity structure of the binomial weights, which has been discussed in Calvo and De Baets [4] and Bortot and 
Marques Pereira [1], is as follows.

Proposition 2. The weighting structures of the binomial OWA functions 𝐶𝑗 , for 𝑗 = 1, … , 𝑛, have the following properties,

1∕𝑛 =𝑤𝑗1 =𝑤𝑗2 =…=𝑤𝑗𝑛 𝑗 = 1

𝑗∕𝑛 =𝑤𝑗1 >𝑤𝑗2 >… >𝑤𝑗,𝑛−𝑗+1 >𝑤𝑗,𝑛−𝑗+2 =…=𝑤𝑗𝑛 = 0 𝑗 = 2,… , 𝑛− 1

1 =𝑤𝑗1 >𝑤𝑗2 =…=𝑤𝑗𝑛 = 0 𝑗 = 𝑛 .

In general, the non-increasingness of the binomial weights 𝑤𝑗1 ≥𝑤𝑗2 ≥… ≥𝑤𝑗𝑛, for 𝑗 = 1, … , 𝑛, means that the binomial OWA 
functions are Schur-concave and can thus be regarded as welfare functions, see for instance Proposition 2 in Bortot and Marques 
Pereira [1] for a detailed discussion in the context of welfare and inequality.

The binomial OWA functions have a natural dominance hierarchy 𝐶1(x) ≥ 𝐶2(x) ≥ … ≥ 𝐶𝑛(x) ≥ 0 for all x ∈ ℝ𝑛. This result 
derives from the combination of a cumulative property of the binomial OWA weights, due to Calvo and De Baets [4], with the classical 
dominance theorem by Skala [22]. The latter is presented here as Proposition 1, formulated in conformity with our convention 
𝑥(1) ≤… ≤ 𝑥(𝑛) in the definition of OWA functions.

Given that the dominance hierarchy of the binomial functions is sensitive1 to the underlying convention, a complete proof is 
presented here, concerning the cumulative property of the binomial weights plus the dominance hierarchy itself.

Proposition 3. The binomial OWA functions 𝐶𝑗 , 𝑗 = 1, … , 𝑛, satisfy the inequalities 𝑥̄ = 𝐶1(x) ≥ 𝐶2(x) ≥… ≥ 𝐶𝑛(x) ≥ 0 for all x ∈ℝ𝑛.

Proof. The above inequalities follow from the fact that the cumulative weights of the binomial OWA functions 𝐶𝑗 are greater or 
equal than the corresponding cumulative weights of the binomial OWA functions 𝐶𝑗−1 for 𝑗 = 2, … , 𝑛,

𝑖∑
𝑘=1

𝑤𝑗𝑘 ≥

𝑖∑
𝑘=1

𝑤𝑗−1,𝑘 𝑖 = 1,… , 𝑛 𝑗 = 2,… , 𝑛 . (6)

We begin by proving the inequality (6) in the simple cases 𝑖 = 1, 𝑖 = 𝑛, and 𝑗 = 𝑛. In the first case the inequality holds since 
(𝑗 − 1) 𝑤𝑗1 = 𝑗 𝑤𝑗−1,1 for 𝑗 = 2, … , 𝑛, in the second case the inequality holds because both cumulative weights are equal to 1, and in 
the third case the inequality holds because all the cumulative weights 

∑𝑖

𝑘=1𝑤𝑛𝑘, for 𝑖 = 1, … , 𝑛, are equal to 1.

In the remaining cases 𝑖, 𝑗 = 2, … , 𝑛 − 1, the left-hand side of inequality (6) can be written as

𝑖∑
𝑘=1

(
𝑛− 𝑘

𝑗 − 1

)(
𝑛

𝑗

)−1
=

𝑛−1∑
𝑘=𝑛−𝑖

(
𝑘

𝑗 − 1

)(
𝑛

𝑗

)−1
(7)

=
( 𝑛−1∑
𝑘=0

(
𝑘

𝑗 − 1

)
−

𝑛−𝑖−1∑
𝑘=0

(
𝑘

𝑗 − 1

))(
𝑛

𝑗

)−1
(8)

=
((

𝑛

𝑗

)
−
(
𝑛− 𝑖

𝑗

))(
𝑛

𝑗

)−1
(9)

where from (8) to (9) we have used the column-sum formula (A.5). Analogously, for 𝑖, 𝑗 = 2, … , 𝑛 −1, the right-hand side of inequality 
(6) can be written as

1 The interested reader will notice that the dominance hierarchy in Calvo and De Baets [4] appears in the inverse order. This is due to the fact that Skala [22] refers 
to the original convention regarding the definition of OWA functions in Yager [24], in which the coordinates are arranged in descending order. In particular, the 
classical dominance theorem by Skala [22], presented in [4] as Theorem 3, is formulated in that original convention, which is different from the convention generally 
4

used in [4], for instance in the definition of OWA functions.
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𝑖∑
𝑘=1

(
𝑛− 𝑘

𝑗 − 2

)(
𝑛

𝑗 − 1

)−1
=
((

𝑛

𝑗 − 1

)
−
(
𝑛− 𝑖

𝑗 − 1

))(
𝑛

𝑗 − 1

)−1
. (10)

Therefore, after simplifying the common terms in (9) and (10), the inequality (6) reduces to(
𝑛

𝑗 − 1

)(
𝑛− 𝑖

𝑗

)
≤

(
𝑛

𝑗

)(
𝑛− 𝑖

𝑗 − 1

)
𝑖, 𝑗 = 2,… , 𝑛− 1 (11)

which is a particular case of the balance property (A.20), with 𝑟 = 𝑛, 𝑠 = 𝑛 − 𝑖, and 𝑡 = 𝑗.

Finally, considering the cumulative property (6) in the framework of Proposition 1, with 𝑤𝑗𝑘 =𝑤𝐴
𝑘

and 𝑤𝑗−1,𝑘 =𝑤𝐵
𝑘

, we conclude that 
𝐶𝑗 (x) ≤ 𝐶𝑗−1(x) for 𝑗 = 2, … , 𝑛. Accordingly, the binomial OWA functions satisfy the inequalities 𝑥̄ = 𝐶1(x) ≥ 𝐶2(x) ≥… ≥ 𝐶𝑛(x) ≥ 0
for all x ∈ℝ𝑛. □

Example 3. As a simple example consider the case 𝑛 = 3, in which

𝐶1(x) −𝐶2(x) =
1
3
(𝑥(3) − 𝑥(1)) ≥ 0

𝐶2(x) −𝐶3(x) =
1
3
(𝑥(2) − 𝑥(1)) ≥ 0

using the explicit form of 𝐶1, 𝐶2, and 𝐶3 in Example 2.

In the seminal paper by Yager [24], the author introduces the concept of orness as a characteristic index of the weighting structure 
of an OWA function.

Definition 3. The orness of an OWA function 𝐴 ∶ℝ𝑛 ⟶ℝ is defined as

Orness (𝐴) =
𝑛∑
𝑖=1

𝑖− 1
𝑛− 1

𝑤𝑖 . (12)

In particular, the orness of the binomial OWA functions is given by

Orness (𝐶𝑗 ) =
𝑛− 𝑗

(𝑛− 1)(𝑗 + 1)
𝑗 = 1,… , 𝑛 . (13)

Example 4. In the case 𝑛 = 3 we have

Orness (𝐶1) =
1
2
, Orness (𝐶2) =

1
6
, Orness (𝐶3) = 0

whereas in the case 𝑛 = 4 we have

Orness (𝐶1) =
1
2
, Orness (𝐶2) =

2
9
, Orness (𝐶3) =

1
12

, Orness (𝐶4) = 0 .

In general, the orness of the binomial OWA functions is strictly decreasing with respect to 𝑗 = 1, … , 𝑛, from Orness (𝐶1) = 1∕2 to 
Orness (𝐶𝑛) = 0, see Bortot, Fedrizzi, Marques Pereira and Nguyen [2].

3. The binomial representation of OWA functions

We begin with a brief review of some of the fundamental definitions of the Choquet integration framework, focusing on the 
relation between the capacity representation and the Möbius transform representation. Excellent reviews of Choquet integration can 
be found in Grabisch and Labreuche [14,16,17], and Grabisch, Kojadinovich, and Meyer [15].

We then consider the particular case of symmetric Choquet integration and recall the binomial decomposition of OWA functions 
due to Calvo and De Baets [4], as well as a complementary result due to Nguyen [20].

Our aim in this section is to present a comprehensive description of the binomial representation of OWA functions, explicitating 
both the linear transformations that relate the weights of the canonical representation to the coefficients of the binomial representa-

tion and vice versa, with a new straightforward proof of the complementary result by Nguyen [20].

Consider a finite set of interacting elements 𝑁 = {1, 2, … , 𝑛}. The subsets 𝑆, 𝑇 ⊆ 𝑁 with cardinalities 0 ≤ 𝑠, 𝑡 ≤ 𝑛 are usually 
called coalitions. The concepts of Choquet capacity and integral are due to Choquet [6], Sugeno [23], Denneberg [7], and Grabisch 
[10,11], the concept and properties of the Möbius transform in Choquet integration are due to Rota [21], Chateauneuf and Jaffray 
[5], Grabisch [13], Marichal [18], and Miranda and Grabisch [19].

A capacity on the set 𝑁 is a set function 𝜇 ∶ 2𝑁 ⟶ [0, 1] satisfying the boundary conditions 𝜇(∅) = 0, 𝜇(𝑁) = 1 and the mono-
5

tonicity conditions 𝜇(𝑇 ∪ {𝑖}) − 𝜇(𝑇 ) ≥ 0 for each 𝑖 ∈𝑁 and all coalitions 𝑇 ⊆𝑁 ⧵ {𝑖}.
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A capacity 𝜇 can be equivalently represented by its associated Möbius transform 𝑚𝜇 ∶ 2𝑁 ⟶ℝ which is defined as

𝑚𝜇(𝑇 ) =
∑
𝑆⊆𝑇

(−1)𝑡−𝑠𝜇(𝑆) 𝑇 ⊆𝑁 (14)

where 𝑠 and 𝑡 denote the cardinality of the coalitions 𝑆 and 𝑇 , respectively. Conversely, given the Möbius transform 𝑚𝜇 , the 
associated capacity 𝜇 is obtained as

𝜇(𝑇 ) =
∑
𝑆⊆𝑇

𝑚𝜇(𝑆) 𝑇 ⊆𝑁 . (15)

In the Möbius representation, the boundary conditions are written as 𝑚𝜇(∅) = 0, 
∑

𝑇⊆𝑁 𝑚𝜇(𝑇 ) = 1 and the monotonicity conditions 
are 

∑
𝑆⊆𝑇 𝑚𝜇(𝑆 ∪ {𝑖}) ≥ 0 for each 𝑖 ∈𝑁 and all coalitions 𝑇 ⊆𝑁 ⧵ {𝑖}.

Defining a capacity 𝜇 on a set 𝑁 of n elements requires 2𝑛 − 2 real coefficients, corresponding to the capacity values 𝜇(𝑇 ) for 
𝑇 ⊆ 𝑁 . In order to control exponential complexity, Grabisch [12] introduced the concept of 𝑘-additive capacities. A capacity 𝜇 on 
the set N is said to be 𝑘-additive if its Möbius transform satisfies 𝑚𝜇(𝑇 ) = 0 for all 𝑇 ⊆ 𝑁 with 𝑡 > 𝑘, and there exists at least one 
coalition 𝑇 ⊆𝑁 with 𝑡 = 𝑘 such that 𝑚𝜇(𝑇 ) ≠ 0.

A capacity 𝜇 is said to be symmetric if its values 𝜇(𝑇 ) for all 𝑇 ⊆𝑁 depend only on the cardinality of the coalition considered, in 
which case we use the simplified notation 𝜇(𝑇 ) = 𝜇(𝑡) where 𝑡 = |𝑇 |. The boundary and monotonicity conditions take the form

𝜇(0) = 0 𝜇(𝑛) = 1 (16)

𝜇(𝑡) − 𝜇(𝑡− 1) ≥ 0 𝑡 = 1,… , 𝑛 . (17)

Analogously, for the symmetric Möbius transform 𝑚𝜇 associated with a symmetric capacity 𝜇 we use the notation 𝑚𝜇(𝑇 ) = 𝑚𝜇(𝑡)
where 𝑡 = |𝑇 |. The expression (14) for the symmetric Möbius transform 𝑚𝜇 in terms of the symmetric capacity 𝜇 reduces to

𝑚𝜇(𝑡) =
𝑡∑

𝑠=1
(−1)𝑡−𝑠

(
𝑡

𝑠

)
𝜇(𝑠) 𝑡 = 1,… , 𝑛 (18)

and the expression (15) for the symmetric capacity 𝜇 in terms of the symmetric Möbius transform 𝑚𝜇 reduces to

𝜇(𝑡) =
𝑡∑

𝑠=1

(
𝑡

𝑠

)
𝑚𝜇(𝑠) 𝑡 = 1,… , 𝑛 . (19)

Moreover, the boundary and monotonicity conditions take the form

𝑚𝜇(0) = 0
𝑛∑

𝑠=1

(
𝑛

𝑠

)
𝑚𝜇(𝑠) = 1 (20)

𝑡∑
𝑠=1

(
𝑡− 1
𝑠− 1

)
𝑚𝜇(𝑠) ≥ 0 𝑡 = 1,… , 𝑛 . (21)

The Choquet integral with respect to a symmetric capacity 𝜇 reduces to an OWA function, see Fodor, Marichal, and Roubens [9], 
and Yager [24],

𝜇(x) =
𝑛∑
𝑖=1

(𝜇(𝑛− 𝑖+ 1) − 𝜇(𝑛− 𝑖))𝑥(𝑖) =
𝑛∑
𝑖=1

𝑤𝑖 𝑥(𝑖) =𝐴(x) (22)

where the weights

𝑤𝑖 = 𝜇(𝑛− 𝑖+ 1) − 𝜇(𝑛− 𝑖) 𝑖 = 1,… , 𝑛 (23)

satisfy 𝑤𝑖 ≥ 0 for 𝑖 = 1, … , 𝑛 due to the monotonicity of the symmetric capacity 𝜇, and 
∑𝑛

𝑖=1𝑤𝑖 = 1 due to the boundary conditions. 
Conversely, it holds that

𝜇(𝑖) =
𝑖∑

𝑗=1
𝑤𝑛−𝑗+1 𝑖 = 1,… , 𝑛 . (24)

We will now discuss the direct relation between the weights and the symmetric Möbius transform values associated with the 
symmetric capacity 𝜇.

We obtain the weights 𝑤𝑖 for 𝑖 = 1, … , 𝑛 in terms of the symmetric Möbius transform values 𝑚𝜇(𝑗), for 𝑗 = 1, … , 𝑛, using (23)

and (19), starting from the expression of the weights in terms of the symmetric capacity and then the expression of the symmetric 
capacity in terms of its symmetric Möbius transform,
6

𝑤𝑖 = 𝜇(𝑛− 𝑖+ 1) − 𝜇(𝑛− 𝑖) (25)
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=
𝑛−𝑖+1∑
𝑗=1

(
𝑛− 𝑖+ 1

𝑗

)
𝑚𝜇(𝑗) −

𝑛−𝑖∑
𝑗=1

(
𝑛− 𝑖

𝑗

)
𝑚𝜇(𝑗) (26)

=
𝑛−𝑖+1∑
𝑗=1

((
𝑛− 𝑖+ 1

𝑗

)
−
(
𝑛− 𝑖

𝑗

))
𝑚𝜇(𝑗) (27)

=
𝑛−𝑖+1∑
𝑗=1

(
𝑛− 𝑖

𝑗 − 1

)
𝑚𝜇(𝑗) 𝑖 = 1,… , 𝑛 . (28)

where from (27) to (28) we have used the recurrence identity (A.3).

Conversely, we obtain the symmetric Möbius transform values 𝑚𝜇(𝑗) for 𝑗 = 1, … , 𝑛 in terms of the weights 𝑤𝑖 for 𝑖 = 1, … , 𝑛
using (18) and (24),

𝑚𝜇(𝑗) =
𝑗∑

𝑖=1
(−1)𝑗−𝑖

(
𝑗

𝑖

)
𝜇(𝑖) (29)

=
𝑗∑

𝑖=1
(−1)𝑗−𝑖

(
𝑗

𝑖

)(
𝑤𝑛 +…+𝑤𝑛−𝑖+1

)
(30)

= (−1)𝑗−1
(
𝑗

1

)
(𝑤𝑛) + (−1)𝑗−2

(
𝑗

2

)
(𝑤𝑛 +𝑤𝑛−1)

+…+ (−1)𝑗−𝑖
(
𝑗

𝑖

)
(𝑤𝑛 +…+𝑤𝑛−𝑖+1) +… (31)

+(−1)𝑗−𝑗
(
𝑗

𝑗

)
(𝑤𝑛 +…+𝑤𝑛−𝑖+1 +…+𝑤𝑛−𝑗+1)

=
𝑗∑

𝑖=1

( 𝑗∑
𝑘=𝑖

(−1)𝑗−𝑘
(
𝑗

𝑘

))
𝑤𝑛−𝑖+1 (32)

=
𝑗∑

𝑖=1
(−1)𝑗−𝑖

(
𝑗 − 1
𝑗 − 1

)
𝑤𝑛−𝑖+1 (33)

=
𝑗∑

𝑖=1
(−1)𝑗−𝑖

(
𝑗 − 1
𝑖− 1

)
𝑤𝑛−𝑖+1 (34)

where from (31) to (32) we have collected the coefficients of 𝑤𝑛−𝑖+1 for 𝑖 = 1, … , 𝑗, and from (32) to (34) we have first used the 
formula (A.14) for the partial alternating row-sums of binomial coefficients, and then we have used the symmetry identity (A.1), see 
the Appendix.

In the framework of Choquet integration with respect to symmetric capacities, the above relations (25)-(28) and (29)-(34) between 
the weights of an OWA function 𝐴 and the symmetric Möbius transform values of the associated symmetric capacity 𝜇 are the basis of 
the binomial decomposition of OWA functions due to Calvo and De Baets [4], see also Bortot and Marques Pereira [1] for a detailed 
discussion in the context of welfare and inequality.

The binomial decomposition establishes an equivalence between the canonical representation of an OWA function, that is, the 
usual constrained linear combination of the order statistics, and the binomial representation of the OWA function, which is a con-

strained linear combination of the binomial OWA functions. The original result in Calvo and De Baets [4] is based on the expression 
of the weights in terms of the values of the symmetric Möbius transform associated with the symmetric capacity which generates the 
OWA function.

More recently, the inverse expression of those coefficients in terms of the weights has been derived in Nguyen [20]. However, the 
proof in Nguyen [20] of this inverse relation is rather long and elaborate and this fact has motivated the search for a simpler proof. 
In the following proposition we present a comprehensive version of the binomial decomposition in which both the original and the 
inverse relations are derived with simple direct proofs.

Proposition 4 (Binomial decomposition). An OWA function 𝐴 ∶ℝ𝑛 ⟶ℝ written in the canonical representation as

𝐴(x) =
𝑛∑
𝑖=1

𝑤𝑖 𝑥(𝑖) x ∈ℝ𝑛 (35)

where the weights 𝑤𝑖, for 𝑖 = 1, … , 𝑛, are subject to the constraints

𝑤𝑖 ≥ 0 𝑖 = 1,… , 𝑛 and

𝑛∑
𝑖=1

𝑤𝑖 = 1 (36)
7

can be equivalently written in the binomial representation as
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𝐴(x) =
𝑛∑

𝑗=1
𝛼𝑗 𝐶𝑗 (x) x ∈ℝ𝑛 (37)

where the coefficients 𝛼𝑗 , for 𝑗 = 1, … , 𝑛, are in turn subject to the constraints

𝑛−𝑖+1∑
𝑗=1

(
𝑛− 𝑖

𝑗 − 1

)(
𝑛

𝑗

)−1
𝛼𝑗 ≥ 0 𝑖 = 1,… , 𝑛 and

𝑛∑
𝑗=1

𝛼𝑗 = 1 . (38)

The equivalence between the canonical representation (35)-(36) and the binomial representation (37)-(38) is based on the linear transfor-

mations

𝑤𝑖 =
𝑛−𝑖+1∑
𝑗=1

(
𝑛− 𝑖

𝑗 − 1

)(
𝑛

𝑗

)−1
𝛼𝑗 𝑖 = 1,… , 𝑛 (39)

𝛼𝑗 =
(
𝑛

𝑗

) 𝑗∑
𝑖=1

(−1)𝑗−𝑖
(
𝑗 − 1
𝑖− 1

)
𝑤𝑛−𝑖+1 𝑗 = 1,… , 𝑛 . (40)

which ensure the uniqueness of the correspondence between the two representations.

Proof. The proof is based on the expression of the weights in terms of the Möbius transform values (25)-(28), and conversely on the 
expression of the Möbius transform values in terms of the weights (29)-(34). For simplicity we extend all the summations involved 
in the proof to the full index range, under the usual convention that the binomial coefficients are null when the upper value is less 
than the lower value.

Using (25)-(28) we obtain

𝑛∑
𝑖=1

𝑤𝑖 𝑥(𝑖) =
𝑛∑
𝑖=1

( 𝑛∑
𝑗=1

(
𝑛− 𝑖

𝑗 − 1

)
𝑚𝜇(𝑗)

)
𝑥(𝑖) (41)

=
𝑛∑

𝑗=1

(
𝑛

𝑗

)
𝑚𝜇(𝑗)

( 𝑛∑
𝑖=1

(
𝑛− 𝑖

𝑗 − 1

)(
𝑛

𝑗

)−1
𝑥(𝑖)

)
(42)

=
𝑛∑

𝑗=1
𝛼𝑗 𝐶𝑗 (x) (43)

where the coefficients 𝛼𝑗 , for 𝑗 = 1, … , 𝑛, are conveniently defined as

𝛼𝑗 =
(
𝑛

𝑗

)
𝑚𝜇(𝑗) 𝑗 = 1,… , 𝑛 . (44)

Conversely, using (29)-(34) we obtain

𝑛∑
𝑗=1

𝛼𝑗 𝐶𝑗 (x) =
𝑛∑

𝑗=1

(
𝑛

𝑗

)
𝑚𝜇(𝑗)

( 𝑛∑
𝑖=1

(
𝑛− 𝑖

𝑗 − 1

)(
𝑛

𝑗

)−1
𝑥(𝑖)

)
(45)

=
𝑛∑

𝑗=1

( 𝑛∑
𝑘=1

(−1)𝑗−𝑘
(
𝑗 − 1
𝑘− 1

)
𝑤𝑛−𝑘+1

)( 𝑛∑
𝑖=1

(
𝑛− 𝑖

𝑗 − 1

)
𝑥(𝑖)

)
(46)

=
𝑛∑
𝑖=1

( 𝑛∑
𝑘=1

( 𝑛∑
𝑗=1

(−1)𝑗−𝑘
(
𝑗 − 1
𝑘− 1

)(
𝑛− 𝑖

𝑗 − 1

))
𝑤𝑛−𝑘+1

)
𝑥(𝑖) (47)

=
𝑛∑
𝑖=1

( 𝑛∑
𝑘=1

𝛿𝑛−𝑖,𝑘−1𝑤𝑛−𝑘+1

)
𝑥(𝑖) (48)

=
𝑛∑
𝑖=1

𝑤𝑖 𝑥(𝑖) (49)

where from (47) to (48) we have used the binomial inversion property (A.8).

Moreover, the linear transformations (39) and (40) follow respectively from (25)-(28) and (29)-(34), plus the definition (44) of the 
coefficients 𝛼𝑗 in terms of the Möbius transform values 𝑚𝜇(𝑗), for 𝑗 = 1, … , 𝑛.

Note that in (39) each weight 𝑤𝑖 depends only on the coefficients 𝛼1, … , 𝛼𝑛−𝑖+1 for 𝑖 = 1, … , 𝑛. In particular, 𝑤𝑛 depends only on 
the coefficient 𝛼1, 𝑤𝑛−1 depends only on the coefficients 𝛼1 and 𝛼2, etc. Conversely, in (40) each coefficient 𝛼𝑗 depends only on the 
weights 𝑤𝑛−𝑗+1, … , 𝑤𝑛 for 𝑗 = 1, … , 𝑛. In particular, 𝛼1 depends only on the weight 𝑤𝑛, 𝛼2 depends only on the weights 𝑤𝑛−1 and 
𝑤𝑛, etc. This form of nonsingular triangular dependency ensures the uniqueness of the linear transformations between the weights 
8

in the canonical representation (35)-(36) and the coefficients in the binomial representation (37)-(38).
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Finally, the boundary and monotonicity constraints regarding the coefficients 𝛼𝑗 in (38), for 𝑗 = 1, … , 𝑛, are due to those concerning 
the weights 𝑤𝑖 in (36), for 𝑖 = 1, … , 𝑛. This follows immediately from the expression (39) of the weights in terms of the coefficients, 
plus the fact that the sum of the weights coincides with the sum of the coefficients,

𝑛∑
𝑖=1

𝑤𝑖 =
𝑛∑
𝑖=1

( 𝑛∑
𝑗=1

(
𝑛− 𝑖

𝑗 − 1

)(
𝑛

𝑗

)−1
𝛼𝑗

)
(50)

=
𝑛∑

𝑗=1

( 𝑛∑
𝑖=1

(
𝑛− 𝑖

𝑗 − 1

))(
𝑛

𝑗

)−1
𝛼𝑗 (51)

=
𝑛∑

𝑗=1

( 𝑛∑
𝑘=1

(
𝑘− 1
𝑗 − 1

))(
𝑛

𝑗

)−1
𝛼𝑗 (52)

=
𝑛∑

𝑗=1

(
𝑛

𝑗

)(
𝑛

𝑗

)−1
𝛼𝑗 =

𝑛∑
𝑗=1

𝛼𝑗 (53)

where from (52) to (53) we have used the column-sum formula (A.5). □

We will now discuss the equivalence between the equation (40) and the original result in Nguyen [20],

𝛼𝑗 =
(
𝑛

𝑗

) 𝑗−1∑
𝑘=0

(−1)𝑗−𝑘−1
(

𝑗 − 1
𝑗 − 𝑘− 1

)
𝑤𝑛−𝑘 𝑗 = 1,… , 𝑛 . (54)

In terms of the new summation index 𝑖 = 𝑘 + 1, for 𝑖 = 1, … , 𝑗, we obtain

𝛼𝑗 =
(
𝑛

𝑗

) 𝑗∑
𝑖=1

(−1)𝑗−(𝑖−1)−1
(

𝑗 − 1
𝑗 − (𝑖− 1) − 1

)
𝑤𝑛−(𝑖−1) (55)

=
(
𝑛

𝑗

) 𝑗∑
𝑖=1

(−1)𝑗−𝑖
(
𝑗 − 1
𝑗 − 𝑖

)
𝑤𝑛−𝑖+1 (56)

=
(
𝑛

𝑗

) 𝑗∑
𝑖=1

(−1)𝑗−𝑖
(
𝑗 − 1
𝑖− 1

)
𝑤𝑛−𝑖+1 𝑗 = 1,… , 𝑛 (57)

as in (40), where from (56) to (57) we have used the binomial symmetry identity. We conclude that the original result in Nguyen 
[20], i.e. Proposition 3.17, with a long and elaborate proof based on the principle of strong induction, corresponds precisely to 
equation (40) in our Proposition 4.

The two linear transformations (39) and (40) translate between the canonical and the binomial representations. The linear 
transformation (40), in particular, provides the values of the symmetric Möbius transform associated with the weighting structure 
of an OWA function. This has an immediate relevance in the various contexts in which the weighting structure is known and one 
wishes to have some information on the underlying interactions as expressed by the symmetric Möbius transform. A simple example 
is that of the classical Gini welfare functions,

𝐴𝑐(x) =
𝑛∑
𝑖=1

𝑤𝑐
𝑖
𝑥(𝑖) where 𝑤𝑐

𝑖
= 2(𝑛− 𝑖) + 1

𝑛2
. (58)

Using the linear transformation (40), we obtain

𝛼𝑗 =
(
𝑛

𝑗

) 𝑗∑
𝑖=1

(−1)𝑗−𝑖
(
𝑗 − 1
𝑖− 1

)
2𝑖− 1
𝑛2

(59)

=
(
𝑛

𝑗

) 𝑗∑
𝑖=1

(−1)(𝑗−1)−(𝑖−1)
(
𝑗 − 1
𝑖− 1

)
1
𝑛2

(60)

+
(
𝑛

𝑗

) 𝑗∑
𝑖=1

(−1)(𝑗−1)−(𝑖−1)
(
𝑗 − 1
𝑖− 1

)
2(𝑖− 1)

𝑛2

= 1
𝑛2

(−1)𝑗−1
(
𝑛

𝑗

) 𝑗∑
𝑖=1

(−1)𝑖−1
(
𝑗 − 1
𝑖− 1

)
(61)

2 𝑗−1
(
𝑛
) 𝑗∑

𝑖−1
(
𝑗 − 1

)

9

+
𝑛2

(−1)
𝑗

𝑖=1
(−1)

𝑖− 1
(𝑖− 1)
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= 1
𝑛2

(−1)𝑗−1
(
𝑛

𝑗

)
(𝛿𝑗−1,0) +

2
𝑛2

(−1)𝑗−1
(
𝑛

𝑗

)
(−𝛿𝑗−1,1) (62)

= 1
𝑛
𝛿𝑗1 +

𝑛− 1
𝑛

𝛿𝑗2 (63)

where from (61) to (62) we have used (A.12) and (A.13). This means that 𝛼1 = 1∕𝑛 and 𝛼2 = (𝑛 − 1)∕𝑛, with 𝛼𝑘 = 0 for 𝑘 = 3, … , 𝑛. 
In other words, the classical Gini welfare function is 2-additive and can be written as

𝐴𝑐(x) = 1
𝑛
𝐶1(x) +

𝑛− 1
𝑛

𝐶2(x) (64)

see Bortot and Marques Pereira [1] for further details.

The binomial decomposition of OWA functions, in the form (37), allows us to express the orness of an OWA function as in (12)

in the following way,

Orness (𝐴) =
𝑛∑

𝑗=1
𝛼𝑗 Orness (𝐶𝑗 ) =

𝑛∑
𝑗=1

𝑛− 𝑗

(𝑛− 1) (𝑗 + 1)
𝛼𝑗 (65)

Example 5. Considering the orness of the binomial OWA functions in the cases 𝑛 = 3 and 𝑛 = 4 described in Example 4, we can thus 
write

Orness (𝐴) = 1
2
𝛼1 +

1
6
𝛼2

Orness (𝐴) = 1
2
𝛼1 +

2
9
𝛼2 +

1
12

𝛼3

in the cases 𝑛 = 3, 4, respectively. Notice that the missing contribution of 𝛼𝑛 in each case is due to the fact that the orness of the 
corresponding OWA function 𝐶𝑛 is null.

4. Linear combinations of binomial OWA functions

In this section we consider general linear combinations of the binomial OWA functions and we prove that they correspond 
precisely, on a one-to-one basis, to all the functions 𝐹 ∶ ℝ𝑛 ⟶ ℝ of the form 𝐹 (x) =

∑𝑛

𝑖=1 𝑢𝑖 𝑥(𝑖) with u ∈ ℝ𝑛. In other words, we 
prove that the binomial OWA functions constitute a basis for the linear space of such functions 𝐹 .

We begin by introducing two lower triangular square matrices of order 𝑛 and proving that both these matrices are nonsingular 
and reciprocally inverse.

Proposition 5. The square matrices 𝐀 = (𝑎𝑖𝑗 ∈ℝ)𝑛×𝑛 and 𝐁 = (𝑏𝑖𝑗 ∈ℝ)𝑛×𝑛 defined as

𝑎𝑖𝑗 =
(
𝑖− 1
𝑗 − 1

)(
𝑛

𝑗

)−1
𝑖, 𝑗 = 1,… , 𝑛 (66)

𝑏𝑖𝑗 = (−1)𝑖−𝑗
(
𝑖− 1
𝑗 − 1

)(
𝑛

𝑖

)
𝑖, 𝑗 = 1,… , 𝑛 (67)

are both nonsingular lower triangular and reciprocally inverse matrices, that is, 𝐀𝐁 = 𝐈 = 𝐁𝐀.

Proof. The diagonal elements of 𝐀 and 𝐁 are given by

𝑎𝑖𝑖 =
(
𝑛

𝑖

)−1
𝑏𝑖𝑖 =

(
𝑛

𝑖

)
𝑖 = 1,… , 𝑛 (68)

and the (strictly) upper triangular elements of both matrices are null due to the binomial coefficients in their definition. Therefore, 
the determinant of both matrices, which is given by the product of their diagonal elements, is nonzero.

The proof that the product of the two matrices is the identity matrix,

𝑛∑
𝑘=1

𝑎𝑖𝑘 𝑏𝑘𝑗 (69)

=
𝑛∑

𝑘=1
(−1)𝑘−𝑗

(
𝑖− 1
𝑘− 1

)(
𝑘− 1
𝑗 − 1

)
(70)

=
𝑖∑

𝑘=𝑗
(−1)𝑘−𝑗

(
𝑖− 1
𝑘− 1

)(
𝑘− 1
𝑗 − 1

)
(71)

= 𝛿𝑖−1,𝑗−1 = 𝛿𝑖𝑗 𝑖, 𝑗 = 1,… , 𝑛 (72)
10

relies on the binomial inversion property (A.8). □
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We now consider functions 𝐹 ∶ ℝ𝑛 ⟶ ℝ of the general form 𝐹 (x) =
∑𝑛

𝑖=1 𝑢𝑖 𝑥(𝑖) with u ∈ ℝ𝑛. In the central result of this paper 
we prove that the functions 𝐹 of this general form are in one-to-one correspondence with the linear combinations 

∑𝑛

𝑗=1 𝑣𝑗 𝐶𝑗 of the 
binomial OWA functions, with v ∈ ℝ𝑛. The square matrices 𝐀, 𝐁 in Proposition 5 translate from the vectors u to the vectors v and 
vice versa.

Proposition 6. Given a vector u ∈ℝ𝑛 and the associated function 𝐹 ∶ℝ𝑛 ⟶ℝ of the form

𝐹 (x) =
𝑛∑
𝑖=1

𝑢𝑖 𝑥(𝑖) x ∈ℝ𝑛 (73)

there exists a unique vector v ∈ℝ𝑛 such that

𝐹 (x) =
𝑛∑

𝑗=1
𝑣𝑗 𝐶𝑗 (x) x ∈ℝ𝑛 (74)

and the two vectors u, v ∈ℝ𝑛 are related by the linear transformations

𝑢𝑛−𝑖+1 =
𝑛∑

𝑗=1
𝑎𝑖𝑗 𝑣𝑗 and 𝑣𝑗 =

𝑛∑
𝑖=1

𝑏𝑗𝑖 𝑢𝑛−𝑖+1 𝑖, 𝑗 = 1,… , 𝑛 . (75)

The linear transformations (75) can be written as ũ = 𝐀v and v = 𝐁ũ, where 𝐀 and 𝐁 are the nonsingular and reciprocally inverse square 
matrices introduced in (66) and (67).

Proof. The fact that the function 𝐹 can be written as a linear combination of the binomial OWA functions is expressed by

𝐹 (x) =
𝑛∑
𝑖=1

𝑢𝑖 𝑥(𝑖) =
𝑛∑

𝑖,𝑗=1
𝑣𝑗 𝑤𝑗𝑖 𝑥(𝑖) =

𝑛∑
𝑗=1

𝑣𝑗 𝐶𝑗 (x) (76)

for all x ∈ℝ𝑛. By means of appropriate choices of the points x, for instance the 𝑛 points x(1) = (1, 0, 0, … , 0), x(2) = (1, 1, 0, … , 0), ... , 
x
(𝑛) = (1, 1, 1, … , 1), one can easily show that the functional equation (76) is equivalent to the linear system

𝑢𝑖 =
𝑛∑

𝑗=1
𝑣𝑗 𝑤𝑗𝑖 𝑖 = 1,… , 𝑛 (77)

and therefore

𝑢𝑛−𝑖+1 =
𝑛∑

𝑗=1
𝑣𝑗 𝑤𝑗,𝑛−𝑖+1 =

𝑛∑
𝑗=1

𝑎𝑖𝑗 𝑣𝑗 𝑖 = 1,… , 𝑛 (78)

where 𝑎𝑖𝑗 =𝑤𝑗,𝑛−𝑖+1 according to definitions (4) and (66), for 𝑖, 𝑗 = 1, … , 𝑛.

The linear system (78) can be written in matrix form as

ũ =𝐀v (79)

where 𝑢̃𝑖 = 𝑢𝑛−𝑖+1, for 𝑖 = 1, … , 𝑛. Given that 𝐀 and 𝐁 are two nonsingular and reciprocally inverse square matrices, as shown in 
Proposition 5, we can invert the linear system (79) as

v = 𝐁ũ (80)

which can be written as

𝑣𝑗 =
𝑛∑
𝑖=1

𝑏𝑗𝑖 𝑢𝑛−𝑖+1 𝑗 = 1,… , 𝑛 (81)

thus concluding the proof. □

For illustrative purposes, we provide two simple numerical examples of this construction and we illustrate the form of the linear 
systems involved in (74) in dimensions 𝑛 = 3, 4.

Example 6. Consider the case 𝑛 = 3. The matrices 𝐀 and 𝐁 are given by

𝐀 =

⎡⎢⎢⎢⎢
1∕3 0 0

1∕3 1∕3 0

⎤⎥⎥⎥⎥ 𝐁 =

⎡⎢⎢⎢⎢
3 0 0

−3 3 0

⎤⎥⎥⎥⎥

11

⎢⎣ 1∕3 2∕3 1 ⎥⎦ ⎣ 1 −2 1 ⎦
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and we can see that they are both lower triangular and reciprocally inverse matrices, with 𝐁 =𝐀−1 and vice versa. The linear systems 
ũ =𝐀v and v = 𝐁ũ are written respectively as

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑢3 = 𝑣1∕3

𝑢2 = 𝑣1∕3 + 𝑣2∕3

𝑢1 = 𝑣1∕3 + 2𝑣2∕3 + 𝑣3

⎧⎪⎪⎨⎪⎪⎩

𝑣1 = 3𝑢3

𝑣2 = 3𝑢2 − 3𝑢3

𝑣3 = 𝑢1 − 2𝑢2 + 𝑢3

and the explicit form of the linear systems shows clearly that the matrices 𝐀 and 𝐁 relate directly the vector ũ = (𝑢3, 𝑢2, 𝑢1) with 
the vector v = (𝑣1, 𝑣2, 𝑣3). As a result, the component 𝑢𝑖 depends on the components 𝑣1, … , 𝑣𝑛−𝑖+1, for 𝑖 = 1, 2, 3. Conversely, the 
component 𝑣𝑖 depends on the components 𝑢𝑛−𝑖+1, … , 𝑢𝑛, for 𝑖 = 1, 2, 3.

Example 7. Consider the case 𝑛 = 4. The matrices 𝐀 and 𝐁 are given by

𝐀 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1∕4 0 0 0

1∕4 1∕6 0 0

1∕4 1∕3 1∕4 0

1∕4 1∕2 3∕4 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
𝐁 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

4 0 0 0

−6 6 0 0

4 −8 4 0

−1 3 −3 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
and we can see that they are both lower triangular and reciprocally inverse matrices, with 𝐁 =𝐀−1 and vice versa. The linear systems 
ũ =𝐀v and v = 𝐁ũ are written respectively as

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝑢4 = 𝑣1∕4

𝑢3 = 𝑣1∕4 + 𝑣2∕6

𝑢2 = 𝑣1∕4 + 𝑣2∕3 + 𝑣3∕4

𝑢1 = 𝑣1∕4 + 𝑣2∕2 + 3𝑣3∕4 + 𝑣4

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝑣1 = 4𝑢4

𝑣2 = 6𝑢3 − 6𝑢4

𝑣3 = 4𝑢2 − 8𝑢3 + 4𝑢4

𝑣4 = 𝑢1 − 3𝑢2 + 3𝑢3 − 𝑢4

and the explicit form of the linear systems shows clearly that the matrices 𝐀 and 𝐁 relate directly the vector ũ = (𝑢4, 𝑢3, 𝑢2, 𝑢1) with 
the vector v = (𝑣1, 𝑣2, 𝑣3, 𝑣4). As a result, the component 𝑢𝑖 depends on the components 𝑣1, … , 𝑣𝑛−𝑖+1, for 𝑖 = 1, 2, 3, 4. Conversely, 
the component 𝑣𝑖 depends on the components 𝑢𝑛−𝑖+1, … , 𝑢𝑛, for 𝑖 = 1, 2, 3, 4.

5. Back to the binomial representation

In the light of the general result presented in the previous section, that is, Proposition 6, the binomial decomposition described 
in Proposition 4 can be formulated as follows.

Given a weighting vector w ∈ [0, 1]𝑛 and the associated OWA function 𝐴 ∶ℝ𝑛 ⟶ℝ of the form 𝐴(x) =
∑𝑛

𝑖=1𝑤𝑖 𝑥(𝑖), there exists 
a unique coefficient vector 𝜶 ∈ℝ𝑛 such that

𝐴(x) =
𝑛∑

𝑗=1
𝛼𝑗 𝐶𝑗 (x) x ∈ℝ𝑛 (82)

where the two vectors w ∈ [0, 1]𝑛 and 𝜶 ∈ℝ𝑛 are related by the linear transformations

𝑤𝑛−𝑖+1 =
𝑛∑

𝑗=1
𝑎𝑖𝑗 𝛼𝑗 and 𝛼𝑗 =

𝑛∑
𝑖=1

𝑏𝑗𝑖 𝑤𝑛−𝑖+1 𝑖, 𝑗 = 1,… , 𝑛 (83)

which can be written as

w̃ =𝐀𝜶 𝜶 = 𝐁w̃ (84)

where 𝐀, 𝐁 are the nonsingular and reciprocally inverse square matrices introduced in (66) and (67). Moreover, the two vectors 
w ∈ [0, 1]𝑛 and 𝜶 ∈ℝ𝑛 satisfy the constraints

𝑤 =
𝑛∑
𝑎 𝛼 ≥ 0 𝑖 = 1,… , 𝑛

𝑛∑
𝑤 = 1 =

𝑛∑
𝛼 . (85)
12

𝑛−𝑖+1
𝑗=1

𝑖𝑗 𝑗

𝑖=1
𝑖

𝑗=1
𝑗



Fuzzy Sets and Systems 488 (2024) 109010S. Bortot and R.A. Marques Pereira

Fig. 1. Feasible region associated with conditions (86) in the case 𝑛 = 3.

The weighting vectors w under constraints (85) constitute an (𝑛 − 1)-dimensional simplex in 𝑛 dimensions, whose 𝑛 vertices are 
the unit vectors of the canonical basis w(1), w(2), … , w(𝑛). The corresponding vectors 𝜶 containing the coefficients of the binomial 
decomposition satisfy constraints (85) and analogously constitute an (𝑛 − 1)-dimensional simplex in 𝑛 dimensions, whose 𝑛 vertices 
are 𝜶(1), 𝜶(2), … , 𝜶(𝑛).

The two sets of 𝑛 vertices are related by the linear transformations w̃ = 𝐀𝜶 and 𝜶 = 𝐁w̃ as indicated in (84). Denoting 𝜶(𝑘) =
𝐁w̃

(𝑘) = 𝐁w
(𝑛−𝑘+1), for 𝑘 = 1, … , 𝑛, note that the vertex 𝜶(𝑘) coincides with the (𝑛 − 𝑘 + 1) column of the matrix 𝐁.

Given that the coefficients 𝛼𝑗 , for 𝑗 = 1, … , 𝑛 are constrained only by conditions (85), the binomial decomposition (82) does not 
express a simple convex combination of the binomial OWA functions, as the second part of (85) might suggest. In fact, conditions 
(85) allow for negative 𝛼 values, as we see in the following examples.

Example 8. Consider the case 𝑛 = 3. Using the condition 𝛼1 + 𝛼2 + 𝛼3 = 1, we can write the inequality constraints in (85) only in 
terms of 𝛼1 and 𝛼2,

⎧⎪⎨⎪⎩
𝛼1 ≥ 0
𝛼1 + 𝛼2 ≥ 0
2𝛼1 + 𝛼2 ≤ 3

(86)

and the corresponding feasible region in the 𝛼1, 𝛼2 plane is illustrated in Fig. 1, where the two subregions of low (blue) and high 
(orange) orness are divided by the line associated with OWA functions with Orness (𝐴) = 1∕2.

The three vertices of the feasible region depicted in Fig. 1 are given by

w
(1) = (1,0,0) 𝜶

(1) = 𝐁w̃
(1) = 𝐁w

(3) = (0,0,1)
w
(2) = (0,1,0) 𝜶

(2) = 𝐁w̃
(2) = 𝐁w

(2) = (0,3,−2)
w
(3) = (0,0,1) 𝜶

(3) = 𝐁w̃
(3) = 𝐁w

(1) = (3,−3,1)

Note that each vertex 𝜶(𝑘), for 𝑘 = 1, 2, 3, corresponds to the (𝑛 − 𝑘 + 1) column of the matrix 𝐁 in dimension 𝑛 = 3.

Two important particular cases are those of OWA functions with monotonic weights, which means non-decreasing weights 𝑤1 ≤
𝑤2 ≤𝑤3 or non-increasing weights 𝑤1 ≥𝑤2 ≥𝑤3. Each case adds two inequalities to the basic three inequalities in (86), respectively{

3𝛼1 + 2𝛼2 ≥ 3
𝛼2 ≤ 0

{
3𝛼1 + 2𝛼2 ≤ 3
𝛼2 ≥ 0 (87)

where the inequalities on the left regard the case of non-decreasing weights and those on the right regard the case of non-increasing 
weights. The corresponding subregions of the basic feasible region in Fig. 1 are depicted in Fig. 2, where the subregion associated 
with non-decreasing weights is indicated in red and the subregion associated with non-increasing weights is indicated in green.

Example 9. Consider the case 𝑛 = 4. Using the condition 𝛼1 + 𝛼2 + 𝛼3 + 𝛼4 = 1, we can write the inequality constraints in (85) only 
in terms of 𝛼1, 𝛼2, and 𝛼3,

⎧⎪⎨
𝛼1 ≥ 0
3𝛼1 + 2𝛼2 ≥ 0
3𝛼1 + 4𝛼2 + 3𝛼3 ≥ 0 (88)
13

⎪⎩ 3𝛼1 + 2𝛼2 + 𝛼3 ≤ 4
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Fig. 2. Feasible region associated with conditions (86) and (87) and in the case 𝑛 = 3.

The four vertices of the feasible region are given by

w
(1) = (1,0,0,0) 𝜶

(1) = 𝐁w̃
(1) = 𝐁w

(4) = (0,0,0,1)
w
(2) = (0,1,0,0) 𝜶

(2) = 𝐁w̃
(2) = 𝐁w

(3) = (0,0,4,−3)
w
(3) = (0,0,1,0) 𝜶

(3) = 𝐁w̃
(3) = 𝐁w

(2) = (0,6,−8,3)
w
(4) = (0,0,0,1) 𝜶

(4) = 𝐁w̃
(4) = 𝐁w

(1) = (4,−6,4,−1)

Note that each vertex 𝜶(𝑘), for 𝑘 = 1, … , 4, corresponds to the (𝑛 − 𝑘 + 1) column of the matrix 𝐁 in dimension 𝑛 = 4.

As before, two important particular cases are those of OWA functions with monotonic weights, which means non-decreasing 
weights 𝑤1 ≤ 𝑤2 ≤ 𝑤3 ≤ 𝑤4 or non-increasing weights 𝑤1 ≥ 𝑤2 ≥ 𝑤3 ≥ 𝑤4. Each case adds three inequalities to the basic four 
inequalities in (88), respectively

⎧⎪⎨⎪⎩
6𝛼1 + 5𝛼2 + 3𝛼3 ≥ 6
2𝛼2 + 3𝛼3 ≤ 0
𝛼2 ≤ 0

⎧⎪⎨⎪⎩
6𝛼1 + 5𝛼2 + 3𝛼3 ≤ 6
2𝛼2 + 3𝛼3 ≥ 0
𝛼2 ≥ 0

(89)

where the inequalities on the left regard the case of non-decreasing weights and those on the right regard the case of non-increasing 
weights.

In the previous examples we have examined the cases 𝑛 = 3 and 𝑛 = 4 and in each case we have determined that the feasible 
regions associated with the weights 𝑤𝑖 for 𝑖 = 1, … , 𝑛 and the coefficients 𝛼𝑗 for 𝑗 = 1, … , 𝑛 are (𝑛 − 1) dimensional simplexes with 𝑛
vertices w(1), … , w(𝑛) and 𝜶(1), … , 𝜶(𝑛), respectively. Moreover, as illustrated in Fig. 1, the simplexes associated with the 𝛼 coefficients 
contain points with negative coefficients.

An interesting result is that those points 𝜶 = (𝛼1, … , 𝛼𝑛) whose coefficients are all non-negative are associated to points w =
(𝑤1, … , 𝑤𝑛) whose weights are non-increasing, although the converse is not true. The fact that the non-negativity of the coefficients 
implies the non-increaseness of the weights is easily proved using the linear systems on the left of (83) as follows,

𝑤𝑛−𝑖 −𝑤𝑛−𝑖+1 =
𝑛∑

𝑗=1
𝑎𝑖+1,𝑗 𝛼𝑗 −

𝑛∑
𝑗=1

𝑎𝑖𝑗 𝛼𝑗

=
𝑛∑

𝑗=1

((
𝑖

𝑗 − 1

)
−
(
𝑖− 1
𝑗 − 1

))(
𝑛

𝑗

)−1
𝛼𝑗 (90)

=
𝑛∑

𝑗=2

(
𝑖− 1
𝑗 − 2

)(
𝑛

𝑗

)−1
𝛼𝑗 ≥ 0 𝑖 = 1,… , 𝑛− 1

due to the recurrence identity (A.3). Conversely, using the linear systems on the right of (83), in the simple case 𝑛 = 3 we see that 
the point w = (𝑤1 = 0.5, 𝑤2 = 0.4, 𝑤3 = 0.1) with decreasing weights is associated with the point 𝜶 = (𝛼1 = 0.3, 𝛼2 = 0.9, 𝛼3 = −0.2) in 
which one of the coefficients is negative. This means that non-increasing weights can also be obtained when some of the 𝛼 coefficients 
are negative. Clear numerical and graphical evidence of this fact, in the context of generalized Gini welfare functions, is discussed in 
14

Bortot, Fedrizzi, Marques Pereira, and Nguyen [2] and Bortot, Marques Pereira, and Nguyen [3].
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These properties of the relations between the points w and the corresponding points 𝜶 in the equivalent canonical and binomial 
representations of OWA functions are relevant, for instance, in the context of welfare and inequality. The reason is that OWA 
functions which non-increasing weights are Schur-concave [1] and constitute the class of generalized Gini welfare functions.

6. Conclusions

The material presented in the paper has a twofold character. On the one hand, we have considered the binomial decomposition 
of OWA functions introduced in [4] and we have examined it from the point of view of the equivalence between the canonical and 
the binomial representations of OWA functions. In this perspective, we have discussed the derivation of the linear transformations 
from one representation to the other, including expressions, the original one in [4] and its the inverse expression recently proposed 
in [20], with a long and elaborate proof based on strong induction. The material of this discussion, in a uniform formulation which 
includes a straightforward, direct proof of the inverse expression, is presented in Proposition 4.

On the other hand, we have extended the original framework of the binomial decomposition, involving constrained linear combi-

nations of the binomial OWA functions, to the general framework of unconstrained linear combinations of binomial OWA functions. 
In this different perspective, in which the linear transformation from the canonical to the binomial representation corresponds to a 
change of basis in the description of a functional vector space, we have used the natural matrix formulation of linear algebra in order 
to express the linear transformations from the canonical to the binomial representation, and vice versa, by means of simple matrix 
multiplication. This material is presented in Proposition 6.

The linear algebra formulation of the general unconstrained framework can be useful, back in the original constrained framework 
of the binomial decomposition of OWA functions, to provide new insight on the geometry of the vertices and the orness distribution 
within the simplexes described by (38) in the binomial representation of OWA functions.

The paper contains various graphical and numerical examples, and along the text we mention some natural applications [1,2] in 
the context of generalized Gini welfare functions.
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Appendix A

In the paper we use the binomial coefficients 
(𝑟
𝑠

)
for 𝑟, 𝑠 ≥ 0, with the understanding that they are null when 𝑟 < 𝑠. For the 

convenience of the readers, we present here, in a uniform notation, the basic binomial identities and formulas used in the paper.

The relevant binomial identities referred in the text are

symmetry identity

(
𝑟

𝑠

)
=
(

𝑟

𝑟− 𝑠

)
𝑟 ≥ 𝑠 ≥ 0 (A.1)

product identity

(
𝑟

𝑡

)(
𝑡

𝑠

)
=
(
𝑟− 𝑠

𝑡− 𝑠

)(
𝑟

𝑠

)
𝑟 ≥ 𝑡 ≥ 𝑠 ≥ 0 (A.2)

recurrence identity

(
𝑟+ 1
𝑠+ 1

)
=
(
𝑟

𝑠

)
+
(

𝑟

𝑠+ 1

)
𝑟 ≥ 𝑠 ≥ 0 (A.3)

and the relevant binomial formulas involving summations are

row-sum formula

𝑟∑
𝑡=0

(
𝑟

𝑡

)
= 2𝑟 𝑟 ≥ 0 (A.4)

column-sum formula

𝑟∑
𝑡=0

(
𝑡

𝑠

)
=

𝑟∑
𝑡=𝑠

(
𝑡

𝑠

)
=
(
𝑟+ 1
𝑠+ 1

)
𝑟 ≥ 𝑠 ≥ 0 (A.5)

alternating

row-sum formula

𝑟∑
𝑡=0

(−1)𝑡
(
𝑟

𝑡

)
=
{

1 if 𝑟 = 0
0 otherwise

𝑟 ≥ 0 (A.6)

partial alternating
𝑟−𝑠∑

𝑡

(
𝑟
)

𝑟−𝑠
(
𝑟− 1

)
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row-sum formula
𝑡=0

(−1)
𝑡

= (−1)
𝑟− 𝑠

𝑟 ≥ 𝑠 ≥ 1 . (A.7)
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In the paper we use the following binomial inversion formula,

𝑟∑
𝑡=𝑠

(−1)𝑡−𝑠
(
𝑟

𝑡

)(
𝑡

𝑠

)
= 𝛿𝑟𝑠 𝑟 ≥ 𝑠 ≥ 0 (A.8)

where 𝛿𝑟𝑠 is the Kronecker delta, with 𝛿𝑟𝑠 = 1 if 𝑟 = 𝑠, and 0 otherwise. The proof proceeds as follows,

𝑟∑
𝑡=𝑠

(−1)𝑡−𝑠
(
𝑟

𝑡

)(
𝑡

𝑠

)
=

𝑟∑
𝑡=𝑠

(−1)𝑡−𝑠
(
𝑟− 𝑠

𝑡− 𝑠

)(
𝑟

𝑠

)
(A.9)

=
(
𝑟

𝑠

) 𝑟−𝑠∑
𝑙=0

(−1)𝑙
(
𝑟− 𝑠

𝑙

)
(A.10)

=
(
𝑟

𝑠

)
𝛿𝑟𝑠 = 𝛿𝑟𝑠 (A.11)

where in (A.9) we have used the product identity (A.2), and from (A.10) to (A.11) we have used the alternating row-sum formula 
(A.6), which can be written as

𝑟∑
𝑡=0

(−1)𝑡
(
𝑟

𝑡

)
= 𝛿𝑟0 𝑟 ≥ 0 . (A.12)

Note that this formula corresponds to the particular case 𝑠 = 0 of the general formula (A.8). Another interesting particular case of 
(A.8) corresponds to 𝑠 = 1, in which case we have

𝑟∑
𝑡=1

(−1)𝑡
(
𝑟

𝑡

)
𝑡 = −𝛿𝑟1 𝑟 ≥ 1 . (A.13)

In the paper we also use the following formula for the partial alternating row-sums of binomial coefficients,

𝑟∑
𝑡=𝑠

(−1)𝑟−𝑡
(
𝑟

𝑡

)
= (−1)𝑟−𝑠

(
𝑟− 1
𝑠− 1

)
𝑟 ≥ 𝑠 ≥ 1 . (A.14)

The proof proceeds as follows,

𝑟∑
𝑡=𝑠

(−1)𝑟−𝑡
(
𝑟

𝑡

)
=

𝑟∑
𝑡=𝑠

(−1)𝑟−𝑡
(

𝑟

𝑟− 𝑡

)
(A.15)

=
𝑟−𝑠∑
𝑙=0

(−1)𝑙
(
𝑟

𝑙

)
(A.16)

= (−1)𝑟−𝑠
(
𝑟− 1
𝑟− 𝑠

)
= (−1)𝑟−𝑠

(
𝑟− 1
𝑠− 1

)
(A.17)

where from (A.16) to (A.17) we have used the partial alternating row-sum formula (A.7) and the symmetry identity (A.1). Note that 
the full summation in (A.15) is null, that is,

𝑟∑
𝑡=0

(−1)𝑟−𝑡
(
𝑟

𝑡

)
= (−1)𝑟

(
𝑟

0

)
+

𝑟∑
𝑡=1

(−1)𝑟−𝑡
(
𝑟

𝑡

)
(A.18)

= (−1)𝑟 + (−1)𝑟−1 = 0 (A.19)

where from (A.18) to (A.19) we have used (A.14) with 𝑠 = 1.

Finally, in the paper we use the following balance property,(
𝑟

𝑡− 1

)(
𝑠

𝑡

)
≤

(
𝑟

𝑡

)(
𝑠

𝑡− 1

)
𝑟 ≥ 𝑠 ≥ 1 and 𝑡 ≥ 1 . (A.20)

The proof proceeds as follows. Let 𝑟 ≥ 𝑠 ≥ 1. If 𝑡 ≤ 𝑠, the various factorial terms can be almost entirely simplified and the inequality 
(A.20) reduces to 𝑠 ≤ 𝑟, which is assumed to be true. Otherwise, if 𝑡 > 𝑠, the inequality holds trivially in any case.
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