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Abstract
We propose an experiment in which the sound of a drumroll is recorded and
analysed according to a simple mechanical model in which the inelastic
restitution coefficient of the collision between the stick and drum surface, as
well as the ongoing kinematics of the drumstick, are considered. The
agreement shows that this model is well suited for describing the most
relevant features of drumstick behaviour during this type of motion.
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1. Introduction
The scientific study of musical instruments, even
if it is not always brought to an appropriate level
of attention inmany textbooks or in the classroom,
can be a valuable benchmark in the physics cur-
riculum from several viewpoints [1–7]. The inter-
pretation of how sound is generated allows one to
discover interesting aspects also on the musical
side [8]. As a consequence, music students and
artists can enrich their experience and acquire
new sensitivity when performing with their instru-
ments, whose specific physics mechanisms are
subject of study [9–12]. In the case of percussive
instruments, and particularly drums, Newtonian
mechanics of rigid bodies plays a fundamental
role in the description and understanding of the
interaction of sticks and drum surfaces in the
acoustic process [13–16]. The way in which the
drummer hits the instrument is of course determ-
inant in establishing the nature and the charac-
ter of sound. The specific actions of the player
can be indeed quite complex ones, where grav-
ity and friction forces, as well as movements of
fingers, wrists and arms are involved. Yet, there

are certain ‘fundamentals’ in the performance of
a drum player which can be taken as a reference
technique to generate sounds which are somewhat
simple and, as such, suited to be treated with relat-
ively straightforwardmodels.Wemention, among
others, the spontaneous drumroll which consists
in letting the stick to bounce on the drum sur-
face without any external interference, besides
the almost frictionless support given by the fin-
gers of the drummer holding the stick. The res-
ulting effect is the repetition of a certain number
of drumbeats in a sequence with increasing fre-
quency and decreasing sound level. The rebounds
of the drumstick can be quite easily described
according to a mechanical model in which one
includes inelastic collisions of the stick tip with
the drum surface. In practice, in order to access
some information on the behaviour of this partic-
ular drum sound, one has to settle an interesting
and intriguing laboratory of Newtonian mechan-
ics, in which the drumstick is treated as a rigid
body rotating around the pivot point as a physical
pendulum; the associated dynamical equations of
motion have to be established and solved. Also,
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theory can be compared with an actual measure-
ment of the kinematics of rebounds, based on an
experiment in which bounce times are obtained by
direct acquisition of acoustical signals.

2. The mechanical model
In this simple study, the stick starts to fall with
zero speed when its centre of gravity is at a cer-
tain height h above the surface of the drum. As
shown in figure 1, one can describe the kinemat-
ics in terms of the rotation angle θ. The drumstick
motion is obtained by solving the rotational New-
ton’s equation for the rigid body,

τO = IOθ̈ (1)

in which we introduce the moment of inertia of
the stick about the pivot O, which can be conveni-
ently written as IO = mK2

O in terms of the radius
of gyration KO. We also introduce the torque τO
of the weight of the stick about the same pivot
O. It is possible to recover, solving equation (1),
the kinetic rotational energy change of the pen-
dulum which also provides the angular velocity
of the stick as a function of the rotation angle
according to

ω (θ) =
1
KO

√
2g(lC − d)sinθ, (2)

where lC denotes the position of the centre of mass
of the drumstick. This result also comes directly
from energy conservation written in the form

E= Ekinetic +Epotential

=
1
2
IOω

2 −mg(lC − d) = 0. (3)

The tip of the stick hits the drum surface when
the geometric condition sinθC = h/(L− d) is sat-
isfied (θC is the contact angle). The corresponding
contact angular velocity is given by

ωC = ω (θC) =
1
KO

√
2gh(lC − d)
(L− d)

. (4)

The time of fall tC can be expressed in terms
of the integral

Figure 1. Dimensions and coordinates used in the rigid
body model of the drumstick: O is the frictionless pivot;
C is the centre of mass.

tC =
KO√

2(lC − d)g

θCˆ

0

dθ√
sinθ

, (5)

which is related to an elliptic form, not analyt-
ically solvable. This last expression is obtained
exploiting the angular velocity definition, ω =
dθ/dt, expressing it as in equation (2) and integ-
rating over the angular interval which goes from
the initial, horizontal position of the stick to the
contact angle θC.

It is convenient, in a simplified framework
also suited to undergraduate students, to linear-
ize the equation of motion in the approximation
for small angles or, equivalently, when h≪ L−
d, see again figure 1. In this case, the integral
equation (5) becomes exactly solvable (in a more
advanced approach, the integral can be numeric-
ally computed and a comparison with the small
angle approximation can be done). In any case, the
linearization is such that, equivalently, the angu-
lar acceleration of the drumstick is constant and is
given by

dω
dt

∼=
(lC − d)g

K2
O

. (6)

This immediately leads to the falling or con-
tact time (for small angles)

tC ∼= KO

√
2θC

(lC − d)g
= KO

√
2h/g

(lC − d)(L− d)
.

(7)

From this last result, it is instructive to
observe that the stick behaves as a point mass
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which falls under the action of gravity from an
effective initial height given by

heff = h
K2
O

(lC − d)(L− d)
. (8)

One can also point out that, when the pivot
is located in the centre of mass (d = lC), the fall
time becomes infinitely long as the stick stands in
equilibrium, eventually motionless.

We describe now the bounce of the stick
according to a simple inelastic collision model in
which the angular velocity ωi after the rebound is
expressed as a fraction α, to be interpreted as the
coefficient of restitution [17, 18], with 0⩽ α⩽ 1,
of the contact value of the angular velocity, i.e.

ωi = αωC. (9)

Within this approximation, the time required
for the stick to complete its first bounce after the
initial fall will be given by

t(1)B = αtB = 2αtC (10)

where we introduce the first-rebound time
tB = 2tC. Further bounces happen at every con-
tact with a progressive decrease of both the initial
velocity and of the rebound duration since the
restitution coefficient α is multiplied by itself to

provide, for the Nth collision, a geometric pro-
gression as in

t(N)B = αNtB = 2αNtC. (11)

We thus obtain that, within this approximation,
bouncing times decreases according to a simple
power law. If the drumstick is treated as a homo-
genous thin bar with negligible radius in compar-
ison with its length L, the radius of gyration and
the centre of mass coordinate are given by

KO =

√
L2

3
+ d2 −Ld, lC =

L
2
. (12)

Here, the radius of gyration is obtained via
direct application of the Huygens–Steiner (paral-
lel axis) theorem when calculating the moment of
inertia according to

IO = IC +m(L/2− d)2 = mL2/12+m(L/2− d)2.
(13)

It is however possible to adopt a more real-
istic model for the shape of the drumstick, i.e. a
cylinder of finite radius R and length l1 with a
conical tip with length l2, as sketched in figure 2.
It is an interesting exercise—suited for an under-
graduate class—to obtain the moment of inertia
in terms of the radius of gyration K ′

O according to
the expression

K ′
O =

√√√√3l1
[
1
4

(
R2 +

l21
3

)
+
(
l1
2 − d

)2]
+ l2

[
3
80

(
4R2 + l22

)
+
(
l1 − d+ l2

4

)2]
3l1 + l2

. (14)

In this case, the Huygens–Steiner theorem
has been applied twice since there are now two
rotating bodies, i.e. the cylinder and the conical
tip, at different distances from the common rota-
tion axis. In equation (14), the contribution of
the cylinder is in the first term whilst the cone
generates the second term. The moments of iner-
tia of simple rigid bodies, including the conical
shape, can be found in any introductory mechan-
ics textbook as well as in several sites [19]. More

explicitly, equation (14) derives from the follow-
ing expressions:

Icylinder = mcylinderl
2
1/12; Icone = 3mcone

(
4r2 + l22

)
/80

(15)

in which the moments are computed about rota-
tion axes perpendicular to the common longitud-
inal axis of the bodies and passing through their
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Figure 2. Dimensions of the cylindrical-conical
shaped drumstick.

centres of mass. The result of equation (14) will
be of a certain practical significance for the spe-
cific case of study here. As it will be further dis-
cussed in the next section, the size of an actual
drumstick, with the conical shaped tip, is such that
the moment of inertia computed according to the
thin cylinder model of equation (12) differs from
that obtained with equation (14) above by about
15% (when the pivot point O is located at around
one third of the stick total length). The kinemat-
ics of the falling drumstick also changes since the
centre of mass is not anymore in the middle of the
stick. Its position along the axis is easily obtained
according to

l ′C =
mcyl

l1
2 +mcone

(
l1 +

l2
4

)
mcyl +mcone

=
6l21 + l2 (4l1 + l2)

4(3l1 + l2)
,

(16)

which comes directly from the definition of centre
of mass, expressed as the mass-weighted position
of the two centres of mass coordinates of the cyl-
indrical body and of the conical tip. This is the
value to be used in the equations above which
give the falling velocity and bouncing times of the
drumstick. Numerical differences with the case
of a cylindrical shape (lC = L/2) are of the order
of 10%.

3. Experimental results
A simple experiment is done and bouncing times
are measured and compared with the theoretical
model. It is certainly possible to proceed in a tra-
ditional way, for example by tracking a video of
the bouncing drumstick obtaining the position of
its tip as a function of time. This approach is
in principle a straightforward one. Yet, it is not
immediate and could become quite a tricky one
since it requires to shoot a slow-motion video and
to proceed with a careful determination of the

Figure 3. The drumstick support and its free-fall
bounces on the snare drum.

stick position during its movement. In this work,
we acquire directly the bouncing times through
the sounds which are generated by the drumroll.
This method, which resemble the time-of-flight
approach, is quite well known and it can be real-
ized with either a smartphone, a tablet or a per-
sonal computer acting as a digital audio recorder
[20]. In this work, a standard sound card was con-
nected to a computer to acquire relatively precise
signals (the audio card records with a sampling
rate up to 96 kHz and a digital resolution of 32 bit,
even if such level of accuracy is not really needed
for this experiment). A drumstick was drilled with
a series of equally spaced holes: a pin was inserted
in a chosen hole to allow the free rotation of the
stick about the pin itself, see figure 3. The stick is
dropped and the drum sounds are digitally recor-
ded. It is possible to vary the distance d by choos-
ing different holes along the stick. It is also pos-
sible to change the initial height of the centre of
mass or, equivalently, the initial angle of the stick
referred to the horizontal surface of the drum. This
is quite an important option since it allows to sim-
ulate a non-zero initial speed/kinetic energy of the
stick: drummers usually play hitting the drumwith
a wrist movement which in fact provides energy to
the stick. In our model, this can be simply accoun-
ted by inserting in equations (4) and (7) different
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Figure 4. Sound signals of a typical drumroll
sequence.

values of the initial height h. We show in figure 4 a
typical audio recording: the sequence of peaks has
a regular, decreasing time spacing. We observe
also that the sequence of the heights of peaks,
which is related to the sound intensity, decreases
with time. This can be put in more precise connec-
tion with the acoustical characteristics of the drum
head [13] but this will not be of further interest in
the present work.

The sequence of time intervals can be fitted
to the power law of equation (11): the result is
particularly instructive in a demonstrative laborat-
ory activity, since it allows to make a prediction of
the restitution coefficient α, i.e. of the drum head
(in)elasticity, as well as of the collision time tC,
which is related basically to the geometric charac-
teristics of the drumstick, i.e. the initial height and
the position of the pivot point, as clearly expressed
by equation (7).

For concreteness, we consider three series of
data obtained when the drumstick rotates about
three different holes (the used stick has a radius
R = 7.5 mm and lengths l1 = 348 ± 1 mm,
l2 = 60 ± 1 mm). The measurements show the
variation of the bouncing time, whilst the estim-
ated restitution coefficient is much less influ-
enced, as expected. Comparison between fitted
and computed bouncing times are reported in
table 1. We notice, despite the very simple exper-
imental setup, quite a satisfying agreement. The
initial height/angle of the drumstick, with a fixed

Table 1. Rebound times tB (theory and fit from the
experiment) for three different pivot positions d with
fixed height, h = 80 mm. The restitution coefficient is
only slightly affected.

d (mm) Computed tB (s) exp tB (s)
Restitution
coefficient

110 ± 2 0.22 ± 0.01 0.21 ± 0.01 0.86 ± 0.01
131 ± 2 0.24 ± 0.01 0.26 ± 0.01 0.88 ± 0.01
152 ± 2 0.30 ± 0.02 0.30 ± 0.02 0.84 ± 0.01

Table 2. Rebound times tB (theory and fit from the
experiment) for three different initial heights h of the
centre of mass with fixed pivot position, d = 131 mm.
The restitution coefficient is only slightly affected.

h (mm) Computed tB (s) exp tB (s)
Restitution
coefficient

50 ± 3 0.20 ± 0.01 0.20 ± 0.01 0.90 ± 0.01
80 ± 3 0.25 ± 0.01 0.24 ± 0.01 0.90 ± 0.01
110 ± 3 0.29 ± 0.01 0.29 ± 0.01 0.89 ± 0.01

pivot position, has also been varied. Once again,
this will affect the collision time as shown in the
measured data reported in table 2. As a further
measure, we modified to some extent the resti-
tution coefficient by varying the drum head ten-
sion. This can be done by acting on the tension-
ing keys of the snare drum which are used by
the drummer to calibrate the response (and tun-
ing) of the instrument according to his/her needs
and preference. In this way, the varying charac-
teristic in our experiment will be the restitution
coefficient: in the present setup, with two different
tensioning of the drumhead, we obtained, accord-
ing to the fitting procedure, that the coefficient
changes from 0.860 ± 0.005 (‘soft’ drumhead) to
0.899 ± 0.002 (‘hard’ drumhead), i.e. an increase
by 4%. We summarize and show in figure 5 how
rebound times vary under the abovementioned
geometric changes (position of the pivot and ini-
tial angle/height) as well as a function of the
drumhead tension. We observe, in general, at least
judging from the overall quality of the numerical
fits, that the simple inelastic model based on the
restitution coefficient introduced in equation (9),
is indeed well suited for the description of the
most relevant kinematic features of the drumroll.
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Figure 5. Bounce duration series: two different pivot positions, fixed height h = 80 mm (left); two different fall
heights, fixed pivot d = 131 mm (centre); two different drumhead tensions, h = 80 mm, d = 131 mm (right).
Continuous lines are the best-fit curves based on the inelastic mechanical model of equation (11).

4. Conclusions
The sound of an actual snare drum was digit-
ally recorded to discuss the validity of a simple
mechanical model for the drumroll generated by
spontaneous rebounds of the drumstick. Despite
its simplicity, this experiment and the associated
theoretical interpretation constitute quite a con-
crete example of how a demonstration laborat-
ory activity can be carried out. Here, the inelastic
collisions of the drumstick with the drumhead
have been shown to be fairly well reproduced in
terms of a single restitution coefficient which has
been estimated in our measurements. Also, the
Newtonian dynamics of the rigid body rotation
has been put in evidence and adapted to describe
the observed bounce sequence of the drumstick
and to provide support for a practical connection
between physics and music.
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ary files).
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