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Abstract

In this paper, we study a class of stochastic optimal control problems, where
the drift term of the equation has a linear growth on the control variable, the
cost functional has a quadratic growth, and the control process belongs to the
class of square integrable, adapted processes with no bound assumed on it.
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1. Introduction

Integro partial differential equations are widely used in literature for modelling various techno-
logical applications related to the study of creep of metal, plastic materials, concrete, rock, and
other bodies. In particular, we recall the applications in viscoelasticity theory (see for instance
[21] for several examples on how the state of a mechanical system depends on the whole history
of actions that were performed on it) and fractional diffusion-wave equations.

Let us recall the model for a linear fractional diffusion-wave equation

∂α

∂tα
u(t, x) = b

∂2

∂x2
u(t, x),

where α is a parameter describing the order of the fractional derivative, that is taken in the sense
of Caputo fractional derivative. Altough theoretically α can be any number, we consider here only
the case 0 < α < 1; notice that for α = 1 the above equation represents the standard diffusion
equation. There has been a growing interest to investigate this equation, for various reasons; for
instance [1] quote “modeling of anomalous diffusive and subdiffusive systems” and “description of
fractional random walk”.

The introduction of a stochastic perturbation term is generally motivated in the literature as
a model for random environment or rapidly varying perturbing term or as a model for chaotic
behaviour of the system. In this paper we assume that the noise enters the system when we
introduce a control. The object of this paper is really to study the optimal control problem for an
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integro partial differential equation with a stochastic perturbation of the control; we remark that
several concrete examples, in the fields mentioned above, can be handled within our theory. Let
us briefly introduce the general equation we will deal with.

Throughtout the paper we assume that H,Ξ and U are real separable Hilbert spaces. We are
concerned with the following class of stochastic integral Volterra equation on H

d

dt

∫ t

−∞
a(t− s)u(s) ds = Au(t) + g(t, u(t))

[
r(t, u(t), γ(t)) + Ẇ (t)

]
, t ∈ [0, T ]

u(t) = u0(t), t ≤ 0.
(1.1)

The control problem consists of minimizing a cost functional of the form

J(u0, γ) = E
∫ T

0

l(t, u(t), γ(t)) dt+ E[φ(u(T ))]. (1.2)

To our knowledge, this paper is the first attempt to study optimal control problems for stochastic
Volterra equations in infinite dimensions. In order to handle the control problem, we first restate
equation (1.1) in an evolution setting, by the state space setting first introduced in [19, 9] and
recently revised, for the stochastic case, in [17, 3, 4]. Thus we obtain a stochastic evolution equation
in a (different) Hilbert space. Then we associate to this equation a backward stochastic equation
and we try to solve the control problem via this forward-backward system (FBSE). Nonlinear
backward stochastic differential equations (BSDEs) were first introduced by Pardoux and Peng
[20]. A major application of BSDEs is in stochastic control: see, e.g., [10, 22]. We also refer the
reader to [16, 11] and [15].

In comparison with the existing literature, we must underline the following two facts. The first
is typical of our approach: the forward system has an unbounded operator in the diffusion term,
which makes it harder to solve. Second, we consider a degenerate control problem (since nothing
is assumed on the image of g), essentially in the setting assumed in [13]: we suppose that r has a
linear growth in γ and it is not bounded, l has quadratic growth in u and γ, and φ has quadratic
growth in u; but, differently from them, we treat the infinite dimensional case.

We work under the following set of assumptions:

Hypothesis 1.1.

(i) The kernel a : (0,∞)→ R is completely monotonic, locally integrable, with a(0+) = +∞.
The singularity in 0 shall satisfy some technical conditions that we make precise in Section 2.
As an example, we can consider the fractional derivative kernel a(t) = 1

Γ[ρ] t
ρ−1 for 0 < ρ < 1

2

that was discussed above.

(ii) A : D(A) ⊂ H → H is a sectorial operator in H. Thus A generates an analytic semigroup
etA. Interpolation and extrapolation spaces Hη of H will always be constructed with respect
to A.

(iii) The mapping g : [0, T ] × H → L2(U,H) (the space of Hilbert-Schmidt operators from
U into H) is measurable; moreover there exists a constant C > 0 such that for every t ∈
[0, T ], u, u′ ∈ H

‖g(t, u)− g(t, u′)‖L2(U,H) ≤ C|u− u′|,

‖g(t, u)‖L2(U,H) ≤ C;
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(iv) The function r : [0, T ]×H × Ξ→ U is measurable and there exists C > 0 such that, for
t ∈ [0, T ], u, u′ ∈ H and γ ∈ Ξ, it holds

|r(t, u, γ)− r(t, u′, γ)| ≤ C(1 + |γ|)|u− u′|;

moreover r(t, u, ·) has sub-linear growth: there exists C > 0 such that, for t ∈ [0, T ] and
u ∈ H, it holds

|r(t, u, γ)| ≤ C(1 + |γ|). (1.3)

Finally, for all t ∈ [0, T ], u ∈ H, r(t, u, ·) is a continuous function from Ξ to U .

(v) The initial condition u0(t) belongs to the space X̃0 of admissible initial conditions:

X̃0 =
{
u : R− → H, there exists M > 0 and ω > 0 such that |u(t)| ≤Me−ωt

}
and it satisfies further the assumption:

(a) u0(0) belongs to Hε for some ε ∈ (0, 1
2 ) and there exist M2 > 0 and τ > 0 such that

|u0(t)− u0(0)| ≤M |t| for all t ∈ [−τ, 0]).

(vi) The process {Wt, t ∈ [0, T ]} is a cylindrical Wiener process defined on a complete
probability space (Ω,F , {Ft},P) with values in the Hilbert space U . This means that W (t) is
a linear mapping W (t) : U → L2(Ω) such that (a) for every u ∈ U , {W (t) ·u, t ≥ 0} is a real-
valued Brownian motion and (b) for every u, v ∈ U and t ≥ 0, E[(W (t)·u)(W (t)·v)] = 〈u, v〉U .

(vii) We say that a Ξ-valued, Ft-adapted process γ belongs to the class of admissible controls
if

E
∫ T

0

|γ(s)|2 ds < +∞.

(viii) The functions l and φ which enters the definition of the cost functional are measurable
mappings l : [0, T ]×H × Ξ→ R, φ : H → R, satisfying the bounds

0 ≤ l(t, u, γ) ≤ C(1 + |u|2 + |γ|2) (1.4)

and

0 ≤ φ(u) ≤ C(1 + |u|2) (1.5)

for given constants c, C.
Moreover for all t ∈ [0, T ], u ∈ H, l(t, u, ·) is a continuous function from Ξ to R.

(ix) There exist c > 0 and R > 0 such that for every t ∈ [0, T ], x ∈ H and every control γ
satisfying |γ| > R then

l(t, u, γ) ≥ c(1 + |γ|2) (1.6)

Hence, a control process which is not square summable would have infinite cost.

We consider the following notion of solution for the Volterra equation (1.1).

Definition 2.1 We say that a process u = {u(t), t ∈ [0, T ]} is a solution to (1.1) if u is an
H-valued predictable process with

E
∫ T

0

|u(s)|2 ds < +∞
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and the identity∫ t

−∞
a(t− s)〈u(s), ζ〉H ds = 〈ū, ζ〉H +

∫ t

0

〈u(s), A?ζ〉H ds

+
∫ t

0

〈g(s, u(s))r(s, u(s), γ(s)), ζ〉H ds+
∫ t

0

〈g(s, u(s)) dW (s), ζ〉H (1.7)

holds P-a.s. for arbitrary t ∈ [0, T ], where A? is the adjoint of the operator A and

ū =
∫ 0

−∞
a(−s)u0(s) ds.

Our first result is the existence and uniqueness of the solution for problem (1.1). This will be
the object of Section 4.4; notice that, in order to get this result, we must first prove a general
result concerning existence and uniqueness of the solution for a stochastic evolution equation with
unbounded operator terms. This is an extension of the results in [8], compare also [4].

Theorem 4.2 For every admissible control γ, there exists a unique solution u to problem (1.1).

We proceed with the study of the optimal control problem associated to the stochastic Volterra
equation (1.1)(Section 5). The control problem consists of minimizing a cost functional as intro-
duced in (1.2). While proceeding in the proof of Theorem 4.2, we shall show in Section 3 that we
can associate to (1.1) the controlled state equation

dv(t) =
[
Bv(t) + (I −B)Pg(t, J(v(t))) r(t, J(v(t)), γ(t))

]
dt

+ (I −B)Pg(t, J(v(t))) dWt

v(0) = v0.

(1.8)

Such approach, called state space setting, have the following interpretation. On a different Hilbert
space X, the internal state of the system at time t is recorded into an random variable v(t), which
contains all the informations about the solution up to time t; the state space X is quite large and
does not have a direct interpretation in terms of the original space H. B : D(B) ⊂ X → X is
the operator which governs the evolution from paste into future; it is proven that B generates an
analytic, strongly continuous semigroup on X; we again appeal to interpolation theory in order
to define the spaces Xη = (X,D(B))η,2. The operator J : D(J) ⊂ X → H recovers the original
variable u in terms of v. P : H → X is a linear operator which acts as a sort of projection into
the state space X. For the details, we refer to section 2 or the original papers [9, 3].

Also the control problem can be translated in the state setting: our purpose is to minimize over
all admissible controls the cost functional

J(v0, γ) = E
∫ T

0

l(t, J(v(t)), γ(t)) dt+ E[φ(J(v(T ))]. (1.9)

Now, to solve the control problem we use the forward-backward system approach. We define
in a classical way the Hamiltonian function relative to the above problem:

ψ(t, v, z) = inf{l(t, J(v), γ) + z · r(t, J(v), γ) : γ ∈ Ξ} (1.10)

We take an arbitrary, complete probability space (Ω,F ,P◦) and a Wiener process W ◦ in U with
respect to P◦. We denote by (F◦t ) the associated Brownian filtration, i.e., the filtration generated
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by W ◦ and augmented by the P◦-null sets of F ; (F◦t ) satisfies the usual conditions. We introduce
the forward equation

dv(t) = Bv(t) dt+ (I −B)Pg(t, J(v(t))) dW ◦t
v(0) = v0

(1.11)

whose solution is a continuous (F◦t )-adapted process, which exists and is unique by the results in
Section 3. Next we consider the associated backward equation of parameters (ψ, T, φ(J(vT )))

dYt = ψ(t, vt, Zt) dt+ Zt dW ◦t , t ∈ [0, T ],
YT = φ(J(vT )).

(1.12)

The solution of (1.12) exists in the sense specified by the following proposition.

Proposition 5.3 There exist Borel measurable functions θ and ζ with values in R and U∗,
respectively, with the following property: for an arbitrarily chosen complete probability space
(Ω,F ,P◦) and Wiener process W ◦ in U , denoting by v the solution of (1.11), the processes Y,Z
defined by

Yt = θ(t, vt), Zt = ζ(t, vt)

satisfy

E◦ sup
t∈[0,T ]

|Yt|2 <∞, E◦
∫ T

0

|Zt|2 dt <∞;

moreover, Y is continuous and nonnegative, and P◦-a.s.,

Yt +
∫ T

t

Zs dW ◦s = φ(vT ) +
∫ T

t

ψ(s, vs, Zs) ds, t ∈ [0, T ]. (1.13)

Finally, this solution is the maximal solution among all the solutions (Y’, Z’) of (1.12) satisfying

E◦ sup
t∈[0,T ]

|Y
′

t |2 <∞.

The difficulty here is that the Hamiltonian corresponding to the control problem has quadratic
growth in the gradient and consequently the associated BSDE has quadratic growth in the Z
variable. Well-posedness for this class of BSDEs has been proved in [18] in the case of bounded
terminal value. Since we allow for unbounded terminal cost, to treat such equations we have to
apply the techniques introduced in [5] and used in [13]. This point require a particular attention,
because we can not use directly a monotone stability result (see Prop. 2.4 in [18]), well-known in
finite dimensional framework. We notice that for such BSDEs no general uniqueness results are
known: we replace uniqueness with the selection of a maximal solution.

Our main result is to prove that the optimal feedback control exists and the optimal cost is
given by the value Y0 of the maximal solution (Y, Z) of the BSDE (1.12) with quadratic growth
and unbounded terminal value.

Corollary 5.5 For every admissible control γ and any initial datum x, we have J(γ) ≥ θ(0, x) =
Y0, and the equality holds if and only if the following feedback law holds P-a.s. for almost every
t ∈ [0, T ]:

ψ(t, vt, ζ(t, vt)) = ζ(t, vt) · r(t, J(vt), γt) + l(t, J(vt), γt),

where v is the trajectory starting at x and corresponding to control γ.
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Finally we address the problem of finding a weak solution to the so-called closed loop equation.
If we assume that the infimum in (1.10) is attained, we can prove that there exists a measurable
function µ of t, v, z such that

ψ(t, v, z) = l(t, J(v), µ(t, v, z)) + z · r(t, J(v), µ(t, v, z)). (1.14)

We define γ̄(t, v) = µ(t, v, ζ(t, v)), where ζ is defined in Proposition 5.3. The closed loop
equation is

dv(t) =
[
Bv(t) + (I −B)Pg(t, J(v(t)))Φr(t, J(v(t)), γ̄(t, v))

]
dt

+ (I −B)Pg(t, J(v(t))) Φ dWt

v(0) = v0

(1.15)

By a weak solution we mean a complete probability space (Ω,F ,P) with a filtration (Ft) satisfying
the usual conditions, a Wiener process W in U with respect to P and (Ft), and a continuous (Ft)-
adapted process v with values in X satisfying, P-a.s.,

E
∫ T

0

|γ̄(t, vt)|2dt <∞, (1.16)

and such that (1.15) holds. First of all, we prove the following.

Proposition 5.6 There exists a weak solution of the closed loop equation, satisfying in addition

E
∫ T

0

|γ̄(t, vt)|2dt <∞. (1.17)

Moreover, we show that we can construct an optimal feedback in terms of the process Z.

Corollary 5.7 If v is the solution to (1.15) and we set γ∗s = γ̄(s, vs), then J(γ∗) = θ(0, x), and
consequently v is an optimal state, γ∗s is an optimal control, and γ̄ is an optimal feedback.

2. The state equation

The convolution kernel a : (0,∞)→ R in equation (1.1) is completely monotone, with a(0+) =
∞ and

∫ 1

0
a(s) ds <∞. In particular, by Bernstein’s Theorem there exists a measure ν on [0,∞)

such that

a(t) =
∫

[0,∞)

e−κt ν(dκ). (2.1)

From the required singularity of a at 0+ we obtain that ν([0,∞)) = a(0+) = ∞ while for s > 0
the Laplace transform â of a verifies

â(s) =
∫

[0,∞)

1
s+ κ

ν(dκ) <∞.

As stated in the introduction, we also require an assumption on the singularity of a at 0+.



Optimal control for stochastic Volterra equations with completely monotone kernels 7

Hypothesis 2.1. For the completely monotone kernel a we define the following numbers:

α(a) := sup
{
ρ ∈ (0, 1) |

∫ ∞
c

sρ−2 1
â(s)

ds <∞
}
,

δ(a) := inf
{
ρ ∈ (0, 1) |

∫ ∞
c

s−ρâ(s) ds <∞
}
,

(2.2)

for some c > 0. Then we require α(a) >
1
2

.

The definitions of α(a) and δ(a) are independent of the choice of the number c > 0. It is always
true that α(a) ≤ δ(a), but there are completely monotone kernels a with α(a) < δ(a).

These quantities are related to the power of the singularity of the kernel at 0+ as the following
example shows.

Remark 2.1. Let a(t) = e−bt t−ρ

Γ[1−ρ] , where b ≥ 0. This kernel is completely monotone, with
Laplace transform â(λ) = (b+ λ)ρ−1; an easy computation shows that α(a) = ρ, hence we satisfy
Assumption 2.1 whenever we take ρ ∈ ( 1

2 , 1).

Under the assumption of complete monotonicity of the kernel, a semigroup approach to a type
of abstract integro-differential equations encountered in linear viscoelasticity was introduced in
[9]. We recall the extension given in [3] to the case of Hilbert space valued equations. We start
for simplicity with the equation

d

dt

∫ t

−∞
a(t− s)u(s) ds = Au(t) + f(t), t ∈ [0, T ]

u(t) = u0(t), t ≤ 0.
(2.3)

The starting point is the following identity, which follows by Bernstein’s theorem∫ t

−∞
a(t− s)u(s) ds =

∫ t

−∞

∫
[0,∞)

e−κ(t−s) ν(dκ)u(s)ds =
∫

[0,∞)

v(t, κ) ν(dκ)

where we introduce the state variable

v(t, κ) =
∫ t

−∞
e−κ(t−s)u(s) ds. (2.4)

Formal differentiation yields
∂

∂t
v(t, κ) = −κv(t, κ) + u(t), (2.5)

while the integral equation (1.1) can be rewritten∫
[0,∞)

(−κv(t, κ) + u(t)) ν(dκ) = Au(t) + f(t). (2.6)

Now, the idea is to use equation (2.5) as the state equation, with Bv = −κv(κ) + u, while (2.6)
enters in the definition of the domain of B.



8 S. Bonaccorsi, F. Confortola, E. Mastrogiacomo

In our setting, the function v(t, ·) will be considered the state of the system, contained in
the state space X that consists of all Borel measurable functions x̃ : [0,∞) → H such that the
seminorm

‖x̃‖2X :=
∫

[0,∞)

(κ+ 1)|x̃(κ)|2H ν(dκ)

is finite. We shall identify the classes x̃ with respect to equality almost everywhere in ν.
Let us consider the initial condition. On the space X̃0 introduced in Hypothesis 1.1 we define

a positive inner product 〈u, v〉X̃ =
∫ ∫

[a(t + s) − a′(t + s)]〈u(−s), v(−t)〉H dsdt; then, setting
Ñ0 = {u ∈ X̃0 : 〈u, u〉X̃ = 0}, 〈·, ·〉X̃ is a scalar product on X̃0/Ñ0; we define X̃ the completition
of this space with respect to 〈·, ·〉X̃ . We let the operator Q : X̃ → X be given by

v(0, κ)Qu0(κ) =
∫ 0

−∞
eκsu0(s) ds. (2.7)

We quote from [3] the main result concerning the state space setting for stochastic Volterra
equations in infinite dimensions.

Theorem 2.2. (State space setting.) Let A, a, α(a), W be given above; choose numbers η ∈ (0, 1),
θ ∈ (0, 1) such that

η >
1
2

(1− α(a)), θ <
1
2

(1 + α(a)), θ − η > 1
2
.

Then there exist

1) a separable Hilbert space X and an isometric isomorphism Q : X̃ → X,
2) a densely defined sectorial operator B : D(B) ⊂ X → X generating an analytic semigroup
etB,

3) its real interpolation spaces Xρ = (X,D(B))(ρ,2) with their norms ‖ · ‖ρ,
4) linear operators P : H → Xθ, J : Xη → H

such that the following holds:

a) For each v0 ∈ X, the problem (2.3) is equivalent to the evolution equation

v′(t) = Bv(t) + (I −B)Pf(t)
v(0) = v0

(2.8)

in the sense that if u0 ∈ X̃0 and v(t; v0) is the weak solution to Problem (2.8) with v0 = Qu0,
then u(t;u0) = Jv(t; v0) is the unique weak solution to Problem (2.3).

With the same notation as above, but taking into account that we are interested to Eq. (1.1),
we obtain the following stochastic evolution equation in X

dv(t) = [Bv(t) + (I −B)Pg(t, J(v(t))) r(t, J(v(t)), γ(t))] dt
+ (I −B)Pg(t, J(v(t))) dWt

v(0) = v0.

(2.9)
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Definition 2.1. We say that a process u = {u(t), t ∈ [0, T ]} is a solution of (2.9) if u is an
H-valued predictable process with

E
∫ T

0

|u(s)|2 ds < +∞

and the identity∫ t

−∞
a(t− s)〈u(s), ζ〉H ds = 〈ū, ζ〉H +

∫ t

0

〈u(s), A?ζ〉H ds

+
∫ t

0

〈g(s, u(s))r(s, u(s), γ(s)), ζ〉H ds+
∫ t

0

〈g(s, u(s)) dW (s), ζ〉H (2.10)

holds P-a.s. for arbitrary t ∈ [0, T ], where A? is the adjoint of the operator A and

ū =
∫ 0

−∞
a(−s)u0(s) ds.

Then we state the main result of this section. Its proof will be given in Section 4.4.

Theorem 2.3. There exists a unique solution {v(t), t ∈ [0, T ]} of Equation (2.9). Further, the
solution depends continuously on the initial condition v0 ∈ Xη.

3. Stochastic differential equations with unbounded diffusion operator

We first study the uncontrolled equation

dv(t) = Bv(t) dt+ (I −B)Pg(t, J(v(t))) dWt

v(s) = x
(3.1)

for 0 ≤ s ≤ t ≤ T and initial condition x ∈ Xη. The above expression is only formal in Xη since
the coefficients do not belong to the state space; however, we can give a meaning to the mild form
of the equation:

v(t; s, v0) = e(t−s)Bx+
∫ t

s

e(t−σ)B(I −B)Pg(σ, J(v(σ))) dW (σ). (3.2)

Let us state the main existence result for the solution of equation (3.1).

Theorem 3.1. Under the assumptions of Hypothesis 1.1, for every p ≥ 2 there exists a unique
process v ∈ LpF (Ω;C([0, T ];Xη)) solution of (3.1). Moreover, the solution v(t; s, v0) depends
continuously on the initial conditions (s, v0) ∈ [0, T ]×Xη and the estimate

E sup
t∈[s,T ]

‖v(t)‖2η ≤ C(1 + ‖v0‖η)p

holds for some constant C depending on T and the parameters of the problem.

Proof. The result is basically known, see e.g. [4], but we include the proof for completeness
and because it will be useful in the following. The argument is as follows: we define a mapping K
from LpF (Ω;C([0, T ];Xη)) to itself by the formula

K(v)(t) = e(t−s)Bv0 +
∫ t

s

e(t−τ)B(I −B)Pg(τ, J(v(τ))) dW (τ), t ∈ [s, T ]
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and show that it is a contraction, under an equivalent norm. The unique fixed point is the required
solution.

Let us introduce the norm
|||v|||pη = E sup

t∈[0,T ]

e−βpt‖v(t)‖pη,

where β > 0 will be chosen later. In the space LpF (Ω;C([0, T ];Xη)) this norm is equivalent to the
original one.

We define the mapping

Λ(v, s)(t) =
∫ t

s

e(t−τ)B(I −B)Pg(τ, J(v(τ))) dW (τ).

Our first step is to prove that Λ is a well defined mapping on LpF (Ω;C([0, T ];Xη)) and to give
estimates on its norm. Let us stress that in the sequel Λ(v) will be defined for t ∈ [0, T ] by setting
Λ(v)(t) = 0 for t < s.

Lemma 3.2. For every 1
p < θ − η − 1

2 the operator Λ maps LpF (Ω;C([0, T ];Xη)) into itself.

Proof. Let v ∈ LpF (Ω;C([0, T ];Xη)); for simplicity we fix the initial time s = 0 and write
Λ(t) = Λ(v, 0)(t). Further, we remark that the thesis is equivalent to the statement: t 7→ (I −
B)ηΛ(t) ∈ LpF (Ω;C([0, T ];X)). The proof is based on the classical factorization method by Da
Prato and Zabczyk.

Step 1. For given γ ∈ (0, 1) and η ∈ (0, 1), the following identity holds:

(IH −B−1)ηΛ(t) = cγ

∫ t

0

e−β(t−τ)(t− τ)γ−1e(t−τ)Byη(τ) dτ

where yη is the process

yη(τ) =
∫ τ

0

e−βσ(τ − σ)−γe−β(τ−σ)e(τ−σ)B(I −B−1)ηPg(σ, J(v(σ))) dW (σ).

We shall estimate the Lp(Ω;X)-norm of this process:

E|yη(τ)|p = E
∣∣∣∣∫ τ

0

e−βσ(τ − σ)−γe−β(τ−σ)e(τ−σ)B(I −B−1)ηPg(σ, J(v(σ))) dW (σ)
∣∣∣∣p .

Proceeding as in [7, Lemma 7.2] this leads to

E|yη(τ)|p

≤ C E
[∫ τ

0

‖e−βσe(τ−σ)B(I −B−1)ηPg(σ, J((σ))) (τ − σ)−γe−β(τ−σ)‖2L2(U,X) dσ
]p/2

.

Since the semigroup etB is analytic, P maps H into Xθ for arbitrary θ < 1+α(a)
2 and g takes values

in L2(U,H), the following estimate holds:

‖e(τ−σ)B(I −B−1)ηPg(σ, J(v(σ)))‖L2(U,X) ≤ C(τ − σ)θ−1−η‖g(σ, J(v(σ)))‖L2(U,H)

and the process yη is estimated by

E|yη(τ)|p ≤ C E
(∫ τ

0

e−2βσ‖g(σ, J(v(σ)))‖2L2(U,H) e
−2β(τ−σ) (τ − σ)−2(γ+1+η−θ) dσ

)p/2
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We apply Young’s inequality to get

|yη|pLpF (Ω;Lp(0,T ;X))
=

(
E
∫ T

0

|yη(τ)|p dτ

)

≤ CE

(∫ T

0

e−2βσ‖g(σ, J(v(σ)))‖2L2(U,H) dσ

)2/p
p/2

(∫ ∞
0

e−τ (2β)1+2γ−2(θ−η)τ−2(γ+1+η−θ) dτ
)p/2

hence, for any γ < (θ − η)− 1/2 (notice that we can always choose γ > 0 small enough such that
this holds) we obtain

‖yη‖LpF (Ω;Lp(0,T ;H)) ≤ CT (2β)1+2γ−2(θ−η)

(
E

[∫ T

0

e−pβσ‖g(σ, J(v(σ)))‖pL2(U,H) dσ

])1/p

(3.3)

Now, taking into account the assumptions on g and the choice of v ∈ LpF (Ω;C([0, T ];Xη)), we
estimate the integral term above and we finally arrive at

‖yη‖LpF (Ω;Lp(0,T ;X)) ≤ C(2β)1+2γ−2(θ−η)(1 + |||v|||η).

Step 2. In [6, Appendix A] it is proved that for any γ ∈ (0, 1), p large enough such that
γ − 1

p > 0, the linear operator

Rγφ(t) =
∫ t

0

(t− σ)γ−1S(t− σ)φ(σ) dσ

is a bounded operator from Lq(0, T ;X) into C([0, T ];X). Using the results in Step 1. the thesis
follows.

We have proven that Λ is a well defined mapping in the space LpF (Ω;C([0, T ];Xη)). In order
to conclude the proof that K maps LpF (Ω;C([0, T ];Xη)) into itself it is sufficient to recall that the
initial condition x belongs to Xη, hence t 7→ e(t−s)Bx, extended to a constant for t < s:

S(t− s)x = x for t < s

belongs to LpF (Ω;C([0, T ];Xη)).
Next, we prove that K is a contraction in the space LpF (Ω;C([0, T ];Hη)). If v, v1 are processes

belonging to this space, similar passages as those in Lemma 3.2 show that

|||Λ(v)− Λ(v1)|||η ≤ C(2β)1+2γ−2(θ−η)|||v − v1|||η). (3.4)

Moreover, we can find β large enough such that

C(2β)1+2γ−2(θ−η) ≤ δ < 1

so that K becomes a contraction on the time interval [0, T ] and by a classical fixed point argument
we get that there exists a unique solution of the mild equation (3.2) on [0, T ].

Since the solution to (3.2) verifies v = K(v) we also deduce from the above computations that

|||v|||η = |||K(v)|||η ≤ δ(1 + |||v|||η) + C(T )‖x‖η
hence

|||v|||η ≤ C(1 + ‖x‖η).
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Regular dependence on the initial conditions

In the last part of the proof we are concerned with the regular dependence of the solution on
the initial conditions. The results in this section rely on Proposition 2.4 in [14] where a parameter
depending contraction principle is provided.

As before, we introduce the map

K(v, s, x)(t) = e(t−s)Bx+ Λ(v, s)(t)

and we set K(v, s, x)(t) = x for t < s. For a suitable T > 0, we have shown that this mapping
is a contraction in the space LpF (Ω;C([0, T ];Xη)). Now the thesis follows if we prove that, for
every v ∈ LpF (Ω;C([0, T ];Hη)), the mapping (s, x) 7→ K(v, s, x) is continuous as a map from
[0, T ]×Xη → LpF (Ω;C([0, T ];Xη)).

We introduce two sequences {s−n } and {s+
n } such that s−n ↗ s and s+

n ↘ 0. First, recalling that
we extend S(t− s)x = x for t < s, we have

sup
t∈[0,T ]

‖e(t−s+n )Bx− e(t−s−n )Bx‖η = sup
t∈[s−n ,T ]

‖e(t−s+n )B [x− e(s+n−s
−
n )Bx‖η → 0

and also the map x→ {t 7→ e(t−s)Bx} is clearly continuous from Xη into C([0, T ];Xη).
Next, we consider the mapping Λ. Recall that

Λ(v, s)(t) =
∫ t

s

e(t−τ)B(I −B)Pg(τ, J(v(τ))) dW (τ)

and we set Λ(v, s)(t) = 0 for t < s. Our aim is to prove that

E sup
t∈[0,T ]

‖Λ(v, s+
n )− Λ(v, s−n )‖pη −→ 0.

If t < s−n then both terms are zero; for s−n < t < s+
n , the first term disappears and only the second

one remains; finally, for t > s+
n the first integral compensates a part of the second one, and we get

E sup
t∈[0,T ]

‖Λ(v, s+
n )− Λ(v, s−n )‖pη = E sup

t∈[s−n ,s
+
n ]

∥∥∥∥∫ t

s−n

e(t−τ)B(I −B)Pg(τ, J(v(τ))) dW (τ)
∥∥∥∥p
η

using Burkhölder-Davis-Gundy inequality

E sup
t∈[0,T ]

‖Λ(v, s+
n )− Λ(v, s−n )‖pη ≤ cE

∣∣∣∣∣
∫ s+n

s−n

‖e(t−τ)B(I −B)Pg(τ, J(v(τ)))‖2L2(U,Xη) dτ

∣∣∣∣∣
p/2

≤ cE

∣∣∣∣∣
∫ s+n

s−n

‖e(t−τ)B(I −B)1+η−θ‖2L(X)‖g(τ, J(v(τ)))‖2L2(U,H) dτ

∣∣∣∣∣
p/2

≤ cE

[
sup

σ∈[s−n ,s
+
n ]

‖g(σ, J(v(σ)))‖pL2(U,H)

](∫ s+n

s−n

(t− σ)2(θ−η−1) dσ

)p/2
≤ c (s+

n − s−n )2(θ−η)−1(1 + |||v|||pη).

Collecting all the above estimates, the continuity of the mapping (s, x) 7→ K(X, s, x) is proved.



Optimal control for stochastic Volterra equations with completely monotone kernels 13

The last result in this section provides the existence, for every admissible control, of the solution
for the stochastic problem

dv(t) =
[
Bv(t) + (I −B)Pg(t, J(v(t))) r(t, J(v(t)), γ(t))

]
dt+ (I −B)Pg(t, J(v(t))) dWt

v(s) = x
(3.5)

Theorem 3.3. Let γ be an admissible control. Then there exists a unique mild solution v of
equation (3.5) with v ∈ L2

F (Ω;C([0, T ];Xη)).

Proof. We shall use an approximation procedure in order to handle the growth bound of the
function r(t, J(v), γ) in γ. We introduce the sequence of stopping times

τn = inf
{
t ∈ [0, T ] |

∫ t

0

|γ(s)|2 ds > n

}
with the convention that τn = T if the indicated set is empty. Since γ is an admissible control,
i.e., E

∫ T
0
|γ(s)|2 ds < +∞, for P-almost every ω ∈ Ω there exists an integer N(ω) such that

n ≥ N(ω) implies τn(ω) = T. (3.6)

Let us fix γ0 ∈ Ξ and let us define, for every n ∈ N,

γn(t) = γ(t) 1t≤τn + γ0 1t≥τn (3.7)

and we consider the family of equations

dvn(t) =
[
Bvn(t) + (I −B)Pg(t, J(vn(t))) r(t, J(vn(t)), γn(t))

]
dt

+ (I −B)Pg(t, J(vn(t))) dWt

v(s) = x.

(3.8)

For simplicity of notation we fix the initial time s = 0; the solution vn of (3.8) is the fixed point
of the mapping

v 7→ Kn(v, x) = etBx+ Λ(v)(t) + Γn(v)(t),

where Γn(v) is the process defined by

Γn(v)(t) =
∫ t

0

e(t−τ)B(I −B)Pg(τ, J(v(τ))) r(τ, J(v(τ)), γn(τ)) dτ.

We study the properties of the mapping Γn in the following lemma.

Lemma 3.4. For every p the operator Γn maps LpF (Ω;C([0, T ], e−νt;Hη)) into itself and it is a
contraction for every β large enough.

Proof. As in the proof of Lemma 3.2, we consider only the case s = 0 and we write Γn(t) for
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Γn(v)(t) for v ∈ LpF (Ω;C([0, T ];Xη)). The following computation leads to the thesis:

sup
t∈[0,T ]

e−βpt‖Γn(t)‖pη

≤

∣∣∣∣∣ sup
t∈[0,T ]

∫ t

0

e−βσ‖e−β(t−σ)e(t−σ)B(I −B)1+ηPg(σ, J(v(σ)))r(σ, J(v(σ)), γn)‖ dσ

∣∣∣∣∣
p

≤
(∫ ∞

0

e−2βσσ−2(1+η−θ) dσ
)p/2

E

(∫ T

0

‖e−βσg(σ, J(v(σ)))r(σ, J(v(σ)), γn(σ))‖2 dσ

)p/2

≤ C
(

Γ[2(θ − η)− 1](2β)1−2(θ−η)
)p/2

E

(∫ T

0

e−βσ|1 + |γn(σ))|2 dσ

)p/2
by the construction of τn it holds that the last quantity is bounded by C(1 + n)(2β)

p
2 (1−2(θ−η))

hence Γn(v) is well defined.
With the same computation we obtain that

|||Γn(v)− Γn(v′)|||pη ≤ C(1 + n)(2β)
p
2 (1−2(θ−η))|||v − v′|||pη (3.9)

which implies that Γn is a contraction with norm decreasing with β.

Putting together estimates (3.4) and (3.9) we obtain that the mapping v 7→ Kn(v, x) is a
contraction on the space LpF (Ω;C([0, T ];Xη)) and for every n ∈ N there exists a unique solution
vn of the approximate problem (3.8).

Notice that vn(t) = vn+1(t) coincide on the time interval [0, τn] and τn ↗ T almost surely as
n→∞. Hence we can define a process v(t) as

v(t) = vn(t) on [0, τn]

and clearly v is the required solution of (3.5).
It remains to prove that v ∈ L2

F (Ω;C([0, T ];Xη). The claim follows if we prove that

sup
n∈N

E sup
t≤T
‖vn(t)‖2η <∞.

From the mild form of equation (3.8) we obtain

vn(t) = etBx+
∫ t

0

e(t−σ)B(I −B)Pg(σ, Jvn(σ))r(σ, Jvn(σ), γn(σ)) dσ

+
∫ t

0

e(t−σ)B(I −B)Pg(σ, Jvn(σ)) dW (σ).

We first notice that the first integral term on the right hand side can only be estimated in L2(Ω)-
norm:

E sup
t≤T

∥∥∥∥∫ t

0

e(t−σ)B(I −B)Pg(σ, Jvn(σ))r(σ, Jvn(σ), γn(σ)) dσ
∥∥∥∥2

η

≤ E sup
t≤T

∣∣∣∣∫ t

0

(t− σ)−(1+η−θ)(1 + |γn(σ)|) dσ
∣∣∣∣2 ≤ CT 2(θ−η)−1

(∫ T

0

(1 + E|γ(s)|2) ds

)
≤ C
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thanks to the assumptions on the admissible control γ.
As far as the stochastic term is concerned, we can give the estimate also in the L2p(Ω)-norm,

for p ≥ 1; although we only need p = 1 here, the general case will be useful later. It follows, from
an application of Burkholder-Davis-Gundy inequality, that

E sup
t≤T

∥∥∥∥∫ t

0

e(t−σ)B(I −B)Pg(σ, Jvn(σ)) dW (σ)
∥∥∥∥2p

η

≤ C

(∫ T

0

(t− σ)−2(1+η−θ)‖g(σ, Jvn(σ))‖2L2(U,H) dσ

)p/2
≤ C (3.10)

which is bounded, independently of n, using the bound of g in Hypothesis 1.1. We have thus
proven the thesis.

Corollary 3.5. The family of random variables sup
t≤T
|vn(t)|2 is uniformly integrable.

Proof. Proceeding as above, we have that

sup
t≤T
‖vn(t)‖2η ≤ C

(
1 +

∫ T

0

|γ(s)|2 ds+ sup
t≤T
‖Λ(vn, t)‖2η

)
and we notice that the first two terms are integrable, the last is a uniformly integrable family of
random variables, since we have proven in (3.10) that it is uniformly bounded in L2p(Ω)-norm for
some p > 1. Therefore, also supt≤T ‖vn(t)‖2η is uniformly integrable and the claim is proven.

4. The solution of the controlled stochastic Volterra equation

In the next section we show that there exists a unique solution of the original equation (1.1).
The proof follows the line of Theorem 4.4 in [4]; however, under the assumptions in Hypothesis
1.1, it requires to pass through the approximation sequence {vn}.

Theorem 4.1. For every n ∈ N, the process

un(t) =

{
u0(t), t ≤ 0
Jvn(t), t ∈ [0, T ]

(4.1)

where vn is the solution of problem (3.8) given in Theorem 3.3, is the unique solution of the
equation

d

dt

∫ t

−∞
a(t− s)u(s) ds = Au(t) + g(t, u(t))

[
r(t, u(t), γn(t)) + Ẇ (t)

]
, t ∈ [0, T ]

u(t) = u0(t), t ≤ 0.
(4.2)

where γn is the control process defined in (3.7).

Proof. We propose to fulfill the following steps.

Step I The linear equation

d

dt

∫ t

−∞
a(t− s)u(s) ds = Au(t), t ∈ [0, T ]

u(t) = 0, t ≤ 0.
(4.3)
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has a unique solution u ≡ 0.

Step II The affine equation

d

dt

∫ t

−∞
a(t− s)u(s) ds = Au(t) + g(t, ũ(t))

[
r(t, γn(t), ũ(t)) + Ẇ (t)

]
, t ∈ [0, T ]

u(t) = u0(t), t ≤ 0.
(4.4)

defines a contraction mapping Q : ũ 7→ u on the space L2
F (Ω;C([0, T ];H)). Therefore,

equation (4.2) admits a unique solution.

Step III The process un defined in (4.1) satisfies equation (4.2). Accordingly, by the uniqueness
of the solution, the thesis of the theorem follows.

4.1. Step I. The linear equation

Let us take the Laplace transform in both sides of the linear equation (4.3); we obtain

λâ(λ)û(λ) = Aû(λ), <λ ≥ 0, λ 6= 0;

therefore, û(λ) = R(λâ(λ), A)0.
Let λ = x + iy; recall that, by Bernstein’s theorem, ν is the unique measure associated with

the kernel a. Using [17, Lemma 1.1.7] we have

λâ(λ) =
∫

[0,∞)

(x+ iy)κ+ (x2 + y2)
(κ+ x)2 + y2

ν(dκ)

hence <(λâ(λ)) ≥ 0 for all <λ ≥ 0, λ 6= 0, which means that λâ(λ) ∈ ρ(A) and

û(λ) = 0, <λ ≥ 0, λ 6= 0.

The complex inversion formula for the Laplace transform therefore leads to

u(t) = 0, for a.a. t ≥ 0

as claimed.

4.2. Step II. Stochastic Volterra equation with non-homogeneous terms

In this section, we consider problem (1.1) with coefficients g(t) and f(t) = g(t)r(t, γn(t))
independent of u. The case f(t) ≡ 0 is treated in [3, Theorem 3.7]; we recall here the proof
and extend it to the general case.

Theorem 4.2. In our assumptions, let v0 ∈ Xη for some 1−α(a)
2 < η < 1

2α(a). Given the process

v(t) = etBv0 +
∫ t

0

e(t−s)B(I −B)Pf(s) ds+
∫ t

0

e(t−s)B(I −B)Pg(s) dW (s) (4.5)

we define the process

u(t) =

{
Jv(t), t ≥ 0,
u0(t), t ≤ 0.

(4.6)

Then u(t) is a weak solution to problem (1.1).
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Proof. Again, in our assumption we have by [3, Lemma 3.11] that the operator J0 can be
extended to a bounded operator J : Xη → H. We define Bη to be the restriction of B as an
operator Bη : Xη+1 → Xη. As usual, B∗ is the adjoint of B.

For fixed ζ ∈ D(A∗), we define the vector ξ ∈ X by ξ(κ) = 1
1+κζ. We claim that ξ ∈ D(B∗η).

Actually, for x ∈ Xη+1 we have

〈ξ,Bηx〉X =
∫

[0,∞)

(κ+ 1)
〈

1
1 + κ

ζ, (−κx(κ) + J0(x))
〉
H

ν(dκ)

=

〈
ζ,

∫
[0,∞)

(−κx(κ) + J0(x)) ν(dκ)

〉
H

= 〈ζ,AJ0(x)〉H = 〈A∗ζ, J0(x)〉. (4.7)

Moreover, by [3, Lemma 3.10]

Ψ(t) = (I −B)Pg(t) ∈ L2
F (Ω× (0, T );L2(U,Xθ−1)) for any θ <

α(a) + 1
2

. (4.8)

We have that the process v defined in (4.5) is a weak solution of problem (2.9), hence

〈v(t), ξ〉X = 〈v0, ξ〉X +
∫ t

0

〈B∗ηξ, v(s)〉ds+
∫ t

0

〈ξ, (I −B)Pf(s)〉X ds+
∫ t

0

〈ξ,Ψ(s) dW (s)〉X . (4.9)

We use the above representation in order to prove that u is a weak solution of (1.1).
Let us consider separately the several terms. The initial condition yields

〈v0, ξ〉X =
∫

[0,∞)

〈v(0, κ), ζ〉H ν(dκ) = 〈
∫

[0,∞)

∫
[0,∞)

e−κsu0(−s) ds ν(dκ), ζ〉H = 〈ū, ζ〉H

where ū is defined in Definition 2.1; next, the second integral can be evaluated using equality (4.7)∫ t

0

〈B∗ηξ, v(s)〉X ds =
∫ t

0

〈A∗ζ, Jv(s)〉H ds =
∫ t

0

〈A∗ζ, u(s)〉H ds.

The third integral leads to∫ t

0

〈ξ, (I −B)Pf(s)〉X ds =
∫ t

0

〈ξ, Pf(s)〉X ds−
∫ t

0

〈B∗ξ, Pf(s)〉X ds (4.10)

and we consider the two terms separately:

〈ξ, Pf(s)〉X =
∫

[0,∞)

(κ+ 1)
〈

1
κ+ 1

ζ,
1

κ+ 1
R(â(1), A)f(s)

〉
H

ν(dκ) = 〈ζ, â(1)R(â(1), A)f(s)〉H

and

〈B∗ξ, Pf(s)〉X = 〈ζ,AJ0Pf(s)〉H = 〈ζ,AR(â(1), A)f(s)〉H

hence∫ t

0

〈ξ, (I −B)Pf(s)〉X ds

=
∫ t

0

〈ζ, â(1)R(â(1), A)f(s)〉H ds−
∫ t

0

〈ζ,AR(â(1), A)f(s)〉H ds =
∫ t

0

〈ζ, f(s)〉H ds.



18 S. Bonaccorsi, F. Confortola, E. Mastrogiacomo

We finally turn to the stochastic integral. For an orthonormal basis {ej} in U we let βj(t) =
〈W (t), ej〉U and Ψj(t) = (I −B)Pg(s) · ej ; then∫ t

0

〈ξ,Ψ(s) dW (s)〉X =
∞∑
j=1

∫ t

0

〈ξ,Ψj(s)〉X dβj(s)

=
∞∑
j=1

∫ t

0

〈ξ, (I −B)Pg(s) · ej〉X dβj(s)

This quantity can be treated as we have done for (4.10) and we obtain

∫ t

0

〈ξ,Ψ(s) dW (s)〉X =
∞∑
j=1

∫ t

0

〈ζ, (â(1)−A)R(â(1), A)g(s) · ej〉H dβj(s)

=
∞∑
j=1

∫ t

0

〈ζ, g(s) · ej〉H dβj(s) =
∫ t

0

〈ζ, g(s) dW (s)〉H .

We have proved so far that

〈v(t), ξ〉X = 〈ū, ζ〉H +
∫ t

0

〈A∗ζ, u(s)〉H ds+
∫ t

0

〈ζ, f(s)〉H ds+
∫ t

0

〈ζ, g(s) dW (s)〉H . (4.11)

It only remains to prove∫
[0,∞)

〈v(t, κ), ζ〉H ν(dκ) =
∫ t

−∞
〈a(t− s)u(s), ζ〉H ds.

If we recall the definition of u(t) =

{
Jv(t), t > 0
u0(t), t ≤ 0,

we obtain

∫ t

−∞
〈a(t− s)u(s), ζ〉H ds =

∫ 0

−∞
〈a(t− s)u0(s), ζ〉H ds+

∫ t

0

〈a(t− s)Jv(s), ζ〉H ds.

We then exploit the definition of a(t); the first term becomes∫ 0

−∞
〈a(t− s)u0(s), ζ〉H ds = 〈

∫ 0

−∞

∫
[0,∞)

e−κ(t−s)ν(dκ)u0(s) ds, ζ〉H

= 〈
∫

[0,∞)

e−κt
∫ 0

−∞
e−κ(−s)u0(s) dsν(dκ), ζ〉H = 〈

∫
[0,∞)

e−κtv(0, κ)ν(dκ), ζ〉H ,

the second term becomes∫ t

0

〈a(t− s)Jv(s), ζ〉H ds = 〈
∫ t

0

∫
[0,∞)

e−κ(t−s) ν(dκ) Jv(s) ds, ζ〉H

= 〈
∫

[0,∞)

∫ t

0

e−κ(t−s)Jv(s) ds ν(dκ), ζ〉H ,
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and the thesis follows from the identity of the processes

v(t, κ) = etBv0(κ) +
∫ t

0

[e(t−s)B(I −B)Pf(s)](κ) ds

+
∫ t

0

[e(t−s)B(I −B)Pg(s)](κ) dW (s)

ṽ(t, κ) = e−κtv0(κ) +
∫ t

0

e−κ(t−s)Jv(s) ds.

(4.12)

proved in next lemma.

Lemma 4.3. In our assumptions, let v0 ∈ Xη for some 1−α(a)
2 < η < 1

2α(a). Consider the
processes v and ṽ defined in (4.12). Then ṽ(t) is a modification of v(t).

Proof. The proof follows by a Laplace transform argument which adapts to our case the ideas
in [3, Proposition 3.8].

We shall denote L[f ](s) =
∫

[0,∞)

e−stf(t) dt and similarly L[gẆ ](s) =
∫

[0,∞)

e−stg(t) dW (t); if

we apply the Laplace transform in first line of (4.12) we get

L[v(·, κ)](s) = R(s,B)v0(κ) + [R(s,B)(I −B)PL[f ](s)](κ) + [R(s,B)(I −B)PL[gẆ ](s)](κ)

Now we use the representation formulas stated in [3, (2.14) and (2.17)] to get

L[v(·, κ)](s) =
1

κ+ s
v0(κ) +R(sâ(s), A)

∫
[0,∞)

κ̄

κ̄+ s
v0(κ̄) ν(dκ̄)

+
1

κ+ s
R(sâ(s), A)L[f ](s) +

1
κ+ s

R(sâ(s), A)L[gẆ ](s). (4.13)

Now we turn to the second process in (4.12); we obtain that the Laplace transform is

L[ṽ](s) =
1

κ+ s
v0(κ) +

1
κ+ s

L[Jv](s)

and a direct computation shows that the above quantity is equal to (4.13).

Now we proceed to define the mapping

Q : Lp(Ω;C([0, T ];H))→ Lp(Ω;C([0, T ];H))

where Q(ũ) = u is the solution of the problem

d

dt

∫ t

−∞
a(t− s)u(s) ds = Au(t) + g(t, ũ(t))

[
r(t, ũ(t), γn(t)) + Ẇ (t)

]
, t ∈ [0, T ]

u(t) = u0(t), t ≤ 0.
(4.14)

Theorem 4.4. Let β > 0 be a parameter to be chosen later. Let

|||u|||pH = E sup
t∈[0,T ]

e−βpt|u(t)|p
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be a norm on Lp(Ω;C([0, T ];H)); notice that this norm is equivalent to the natural one. Then
there exists δ < 1 such that

|||u1 − u2|||H = |||Q(ũ1)−Q(ũ2)|||H ≤ δ|||ũ1 − ũ2|||H

for every ũ1, ũ2 ∈ Lp(Ω;C([0, T ];H)).

Proof. It follows from the uniqueness of the solution, proved in Step I, that the solution ui(t)
(i = 1, 2) has the representation

ui(t) =

{
Jvi(t), t ∈ [0, T ]
u0(t), t ≤ 0

where

vi(t) = etBv0 +
∫ t

0

e(t−s)B(I −B)Pg(s, ũi(s))r(s, ũi(s), γn(s)) ds

+
∫ t

0

e(t−s)B(I −B)Pg(s, ũi(s)) dW (s).

In particular,

U(t) = u1(t)− u2(t) =

{
J(v1(t)− v2(t)), t ∈ [0, T ]
0, t ≤ 0;

then

E sup
t∈[0,T ]

e−βpt|U(t)|p ≤ ‖J‖pL(Xη,H)E sup
t∈[0,T ]

e−βpt‖v1(t)− v2(t)‖pη

the quantity on the right hand side can be treated as in Theorem 3.3 and the claim follows.

4.3. Step III. The solution of the stochastic Volterra equation

It follows from Theorem 4.4 that there exists a unique solution u of problem (4.2); in order to
prove Theorem 4.1 it only remains to prove the representation formula (4.1).

Let f̃(s) = g(s, Jvn(s))r(s, Jvn(s), γn(s)) and g̃(s) = g(s, Jvn(s)); it is a consequence of
Theorem 4.2 that u, defined in (4.1), is a weak solution of the problem

d

dt

∫ t

−∞
a(t− s)u(s) ds = Au(t) + f̃(t) + g̃(t)Ẇ (t), t ∈ [0, T ]

u(t) = u0(t), t ≤ 0,
(4.15)

and the definition of f̃ and g̃ implies that u is a weak solution of

d

dt

∫ t

−∞
a(t− s)u(s) ds = Au(t) + g(s, Jvn(s))

[
r(s, Jvn(s), γn(s)) + Ẇ (t)

]
, t ∈ [0, T ]

u(t) = u0(t), t ≤ 0,
(4.16)

that is problem (4.2).
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4.4. The stochastic Volterra equation (1.1)

The proof of the main result concerning existence of the solution for the controlled Volterra
equation (1.1) relies again on the approximation procedure introduced in Section 3, see Theorem
3.3.

Theorem 4.1 states the existence of a family of processes {un(t), t ∈ [0, T ]}n∈N, such that
un(t) = un+1(t) on the time interval [0, τn] and τn ↗ T almost surely as n → ∞. Hence we can
define a process u(t) as

u(t) = un(t) on [0, τn]

and clearly u is the required solution of (1.1). Further, by the uniqueness of the solution, it follows
that u(t) = Jv(t) for t ∈ [0, T ], where v is the process constructed in Theorem 3.3.

It remains to verify that u ∈ L2
F (Ω;C([0, T ];H), which follows from the representation u(t) =

Jv(t) for t ∈ [0, T ] and the claim v ∈ L2
F (Ω;C([0, T ];Xη) proved in Theorem 3.3.

5. The optimal control problem

We define in a classical way the Hamiltonian function relative to the above problem: for all
t ∈ [0, T ], v ∈ Xη, z ∈ U∗,

ψ(t, v, z) = inf {l(t, J(v), γ) + zr(t, J(v), γ) : γ ∈ Ξ} (5.1)

and the set of minimizers in (5.1):

Γ(t, v, z) = {γ ∈ Ξ : l(t, J(v), γ) + zr(t, J(v), γ) = ψ(t, v, z)} . (5.2)

The map ψ ia a Borel measurable function from [0, T ]×Xη×U∗ to R. In fact, by the continuity
of r and l with respect to γ, we have

ψ(t, v, z) = inf
γ∈K

[l(t, J(v), γ) + zr(t, J(v), γ)], for t ∈ [0, T ], v ∈ Xη, z ∈ U∗,

where K is any countable dense subset of Ξ.
Moreover, by a direct computation using the assumptions on l and r (see also [13, Lemma 3.1])

we can show that there exists a constant C > 0 such that

−C(1 + |z|2) ≤ ψ(t, v, z) ≤ l(t, J(v), γ) + C|z|(1 + |γ|) ∀γ ∈ Ξ. (5.3)

We require moreover

Hypothesis 5.1. Γ(t, v, z) is non empty for all t ∈ [0, T ], v ∈ Xη and z ∈ U∗.

We can prove that, if Hypothesis 5.1 holds, then

ψ(t, v, z) = min
γ∈Ξ,|γ|≤C(1+|v|+|z|)

[l(t, J(v), γ) + zr(t, J(v), γ)] t ∈ [0, T ], v ∈ Xη, z ∈ U∗, (5.4)

that is the infimum in (5.1) is attained in a ball of radius C(1 + |v|+ |z|), and

ψ(t, v, z) < l(t, J(v), γ) + zr(t, J(v), γ) if |γ| > C(1 + |v|+ |z|). (5.5)

Moreover from (5.4) it follows that for every t ∈ [0, T ] and v ∈ Xη, the map z → ψ(t, v, z) is
continuous on U∗ .

Before giving the proof of Proposition 5.3, we state the following proposition which gives the
main argument of the existence of the solution of (1.12).
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Proposition 5.2. Let τ be a stopping time and let (ψ, τ, ξ) be a set of parameters and let (ψn, τ, ξn)n
be a sequence of parameters such that:

(i) There exists k : R+ → R+ such that for all T > 0, k ∈ L1[0, T ] and there exists C > 0 such
that

∀n ∈ N, ∀(t, v, z) ∈ R+ ×Xη × U∗, |ψn(t, v, z)| ≤ kt + C|z|2. (5.6)

(ii) For each n, the BSDE with parameters (ψn, τ, ξn) has a solution (Y n, Zn) such that Y n is

almost surely bounded, for almost every t, and E
∫ T

0

|Znt |2 dt < ∞; the sequence (Y n)n is

monotonic, and there exists M > 0 such that for all n ∈ N, ||Y n||∞ ≤M ;

(iii) for almost all ω ∈ Ω and t ∈ [0, τ ]

lim
n→∞

ψn(t, Y nt , Z
n
t ) = ψ(t, Yt, Zt); (5.7)

ξn ∈ L∞(Ω) and ξn converges to ξ in L∞(Ω).

(iv) The stopping time τ is such that τ <∞ P-a.s.

Then there exists a pair of processes (Y,Z) such that Y is almost surely bounded, for almost every
t, while

E
∫ T

0

|Zt|2 dt <∞

and for all T ∈ R+

lim
n→∞

Y n = Y uniformly on [0, T ]

(Zn)n converges to Z in L2(Ω× [0, τ ];U∗)

and (Y, Z) is a solution of the BSDE with parameters (ψ, τ, ξ). In particular, if for each n, Y n

has continuous paths, also the process Y has continuous paths.

Remark 5.1. We note that in previous proposition we have essentially the same assumptions of
[18, Proposition 2.4 (Monotone stability)], although we require condition (5.7) instead of locally
uniform convergence of (ψn)n to ψ. The proof is similar. For the sake of completeness, we shall
sketch it in the appendix.

Proposition 5.3. Assume that g, l, r, φ satisfy Hypothesis 1.1. Then there exist Borel measurable
functions θ and ζ with values in R and U∗, respectively,

θ : [0, T ]×Xη → R and ζ : [0, T ]×Xη → U∗

with the following property: for an arbitrarily chosen complete probability space (Ω,F ,P◦) and
Wiener process W ◦ in U , denoting by v the solution of (1.11), the processes Y,Z defined by

Yt = θ(t, v(t)), Zt = ζ(t, v(t))

satisfy

E◦ sup
t∈[0,T ]

|Yt|2 <∞, E◦
∫ T

0

|Zt|2 dt <∞;
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moreover, Y is continuous and nonnegative, and P◦-a.s.,

Yt +
∫ T

t

Zs dW ◦s = φ(v(t)) +
∫ T

t

ψ(s, v(s), Zs) ds, t ∈ [0, T ]. (5.8)

Finally, this solution is the maximal solution among all the solutions (Y’, Z’) of (1.12) satisfying

E◦ sup
t∈[0,T ]

|Y
′

t |2 <∞.

Proof. We proceed as in [13, Proposition 3.2]. We adopt the same strategy as that in [5] to
construct a maximal solution to

dYt = ψ(t, v(t), Zt) dt+ Zt dW ◦t , t ∈ [0, T ],
YT = φ(J(v(t))).

(5.9)

v is the solution of the forward equation

dv(t) = Bv(t) dt+ (I −B)Pg(t, J(v(t))) dW ◦t
v(0) = v0

(5.10)

whose solution is a continuous (F◦t )-adapted process, which exists and is unique by the results in
Section 3. First we note that

E◦ sup
t∈[0,T ]

||v(t)||2η <∞ ∀p ≥ 2.

Moreover, from the (5.3) there exists a constant C > 0 such that

−C(1 + |z|2) ≤ ψ(t, v, z) ≤ l(t, J(v), γ0) + C(1 + |γ0|)|z|. (5.11)

For each n ≥ C, we define the globally Lipschitz continuous function,

ψn(t, v, z) = sup{ψ(t, v, q)− n|q − z| : q ∈ U∗ ∩H},

where H is a numerable subset dense in U∗. ψn is decreasing and converges to ψ; then by (Y n, Zn)
we denote the unique solution to the BSDE with Lipschitz coefficient ψn,

dY nt = −ψn(t, v(t), Znt ) dt+ Znt dW ◦t , t ∈ [0, T ],
Y nT = φ(J(v(t))),

and by (Y S , ZS) the unique solution to the BSDE,

dY St = −[l(t, J(v(t)), γ0) + C(1 + |γ0|)|ZSt |] dt+ ZSt dW ◦t , t ∈ [0, T ],

Y ST = φ(J(v(t))),

where C is the same as in (5.3). We notice that, since ψn(t, v, 0) ≥ ψ(t, v, 0) ≥ 0 and by an
application of the comparison theorem (see [4]), it holds 0 ≤ Y nt ≤ Y St . Let us introduce the
following stopping times: for k ≥ 1,

τk = inf{t ∈ [0, T ] : max(|v(t)|, Y St ) > k},
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with the convention that τk = T if the indicated set is empty.
Then (Y nk , Z

n
k ) := (Y nt∧τk , Z

n
t∧τk) satisfies the following BSDE:

Y nk (t) = ξnk +
∫ T

t

1s≤τkψn(s, v(s), Znk (s)) ds−
∫ T

t

Znk (s) dW ◦s ,

where of course ξnk = Y nk (T ) = Y nτk .
Now we fix k and prove, using Proposition 5.2, that there exists a process (Yk, Zk) such that

Yk is a continuous process, E
∫ T

0
|Zk(s)|2 ds <∞,

lim
n→∞

sup
[0,T ]

|Y nk (t)− Yk(t)| = 0 lim
n→∞

E◦
∫ T

0

|Znk (t)− Zk(t)|2 dt = 0

and (Yk, Zk) solves the BSDE

Yk(t) = ξk +
∫ T

t

1s≤τkψ(s, v(s), Zk(s)) ds−
∫ T

t

Zk(s) dW ◦s , (5.12)

where ξk = infn Y nτk .
We note that, for fixed k, Y nk is decreasing in n and remains bounded by k. Moreover, as in

the proof of Proposition 5.2 (see Appendix), we can show that Znk converges in L2(Ω× [0, T ]) to
a process which we denote Zk. In order to apply Proposition 5.2, we have only to check that for
almost all ω ∈ Ω and t ∈ [0, τk],

lim
n→∞

ψn(t, v(t), Znk (t)) = ψ(t, v(t), Zk(t)).

For all n we set Z̄nk (t) = argsup{ψ(t, v(t), q)− n|q − Znk (t)|}, so that

ψn(t, v(t), Znk (t)) = ψ(t, v(t), Z̄nk (t))− n|Z̄nk (t)− Znk (t)|

and
n|Z̄nk (t)− Znk (t)| = ψ(t, v(t), Z̄nk (t))− ψn(t, v(t), Znk (t)) ≥ 0. (5.13)

It follows, by (5.11) and by the fact that ψn(t, v, z) ≥ ψ(t, v, z), that

n|Z̄nk (t)− Znk (t)| = ψ(t, v(t), Z̄nk (t))− ψn(t, v(t), Znk (t))

≤ l(t, J(v(t)), γ0) + C(1 + |γ0|)|Z̄nk (t)|+ C(1 + |Znk (t)|2)

≤ C(1 + |v(t)|2 + |γ0|2) + C(1 + |γ0|)|Z̄nk (t)− Znk (t)|
+ C(1 + |γ0|)|Znk (t)|+ C(1 + |Znk (t)|2)

(5.14)

hence for n > C(1 + |γ0|):

(n− C(1 + |γ0|))|Z̄nk (t)− Znk (t)| ≤ C(1 + |v(t)|2 + |γ0|2) + C(1 + |γ0|)|Znk (t)|
+ C(1 + |Znk (t)|2). (5.15)

We state that
∀ε > 0 ∃n0 s.t. ∀n ≥ n0 |Z̄nk (t)− Znk (t)| < ε, dt⊗ dP-a.s. (5.16)
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If it were not true there shall exist ε > 0 such that ∀n0 we can find n ≥ n0 with

|Z̄nk (t)− Znk (t)| ≥ ε dt⊗ dP-a.s.

hence we can construct a sequence {nj}j∈N increasing to infinity and such that

|Z̄njk (t)− Znjk (t)| ≥ ε dt⊗ dP-a.s.

but then by (5.15) we get

0 < ε ≤ |Z̄njk (t)− Znjk (t)|

≤ 1
(nj − C(1 + |γ0|))

C(1 + |v(t)|2 + |γ0|2) + C(1 + |γ0|)|Z
nj
k (t)|+ C(1 + |Znjk (t)|2). (5.17)

Now, if in the previous inequality we take the expectation and send j to infinity we have a
contradiction. In fact we recall that there exists a constant K̃ such that, for all n ∈ N,

E
∫ T

0

|Znk (s)|2 ds ≤ K̃.

So we can conclude that Z̄nk converges to Zk dt⊗ dP-a.s.: in fact by (5.16) and from the fact that
Znk converges to Z dt⊗ dP-a.s. we have

|Z̄nk (t)− Zk(t)| ≤ |Z̄nk (t)− Znk (t)|+ |Znk (t)− Zk(t)| ≤ ε.

It follows by (5.13) and from the definition of ψn

ψ(t, v(t), Z̄nk (t)) ≥ ψn(t, v(t), Znk (t)) ≥ ψ(t, v(t), Znk (t))

and by continuity of ψ with respect to z we get

ψ(t, v(t), Zk(t)) ≥ lim
n→∞

ψn(t, v(t), Znk (t)) ≥ ψ(t, v(t), Zk(t))

and the claim is proved.
Now we fix our attention on the equation (5.12). From the definition of (Y nk , Z

n
k ), noting that

τk ≤ τk+1, we have

Y nk+1(t ∧ τk) = Y nk (t), Znk+1(t)1t≤τk = Znk (t).

Sending n to infinity, we get

Yk+1(t ∧ τk) = Yk(t), Zk+1(t)1t≤τk = Zk(t).

Now we define Y and Z on [0, T ] by setting

Yt = Yk(t), Zt = Zk(t) if t ∈ [0, τk].

For P◦-a.s. ω, there exists an integer K(ω) such that for k ≥ K(ω), τk(ω) = T .
Thus Y is a continuous process, YT = φ(v(t)), and

∫ T
0
|Zt|2 ds <∞ P◦-a.s. From (5.12), (Y,Z)

satisfies

Yt∧τk = Yτk +
∫ τk

t∧τk
ψ(s, v(s), Z(s)) ds−

∫ τk

t∧τk
Z(s) dW ◦s .
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By sending k to infinity, we deduce that (Y,Z) is a solution of (5.8) and

lim
n

sup
t∈[0,T ]

|Y nt − Yt| = 0, lim
n

∫ T

0

|Znt − Zt|2 dt = 0, P◦-a.s.

Thus |Zn − Z| converges to zero in measure dP ⊗ dt, and passing, if needed, to a subsequence
(that by abuse of language we still denote Zn), we can assume that |Zn −Z| → 0, dP⊗ dt almost
everywhere.

Now, as ψn is globally Lipschitz continuous, from [12] there exist Borel measurable functions

θn : [0, T ]×Xη → R, ζn : [0, T ]×Xη → U

such that

Y nt = θn(t, v(t)), Znt = ζ(t, v(t)).

It suffices to define

θ(t, v) = lim inf
n→∞

θn(t, v) and ζ(t, x) = lim inf
n→∞

ζn(t, x)

to get

Yt = θ(t, v(t)), Zt = ζ(t, v(t)),

which implies that (θ, ζ) is the Borel function we look for. Finally, 0 ≤ Yt ≤ Y St implies that

E sup
t∈[0,T ]

|Yt|2 <∞,

and from the equation

|Yt|2 +
∫ τk

t

|Zs|2 ds = 2
∫ τk

t

Ysψ(s, v(s), Zs) ds− 2
∫ τk

t

YsZs dW ◦s ,

taking into consideration that

Ysψ(s, v(s), Zs) ≤ Ys(l(s, J(v(s)), γ0) + C(1 + |γ0|)|Zs|)
≤ Y Ss (l(s, J(v(s)), γ0) + C(1 + |γ0|)|Zs|),

we deduce, by standard arguments, that

E◦
∫ T

0

|Zt|2 dt <∞.

Moreover, this solution is the maximal solution among all the solutions (Y ′, Z ′) satisfying

E◦[ sup
t∈[0,T ]

|Y ′t |2] < +∞,

and it suffices to apply [5, Proposition 5] to deduce that Y n ≥ Y ′ and then Y ≥ Y ′.
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5.1. The fundamental relation.

In this section we still assume that Hypothesis 1.1 holds.

Proposition 5.4. Let θ, ζ denote the functions in the statement of Proposition 5.3. Then for
every admissible control γ and for the corresponding trajectory v starting at v0, we have

J(γ) = θ(0, v0) + E
∫ T

0

[−ψ(t, v(t), ζ(t, v(t))) + ζ(t, v(t)) · r(t, J(v(t)), γt) + l(t, J(v(t)), γt)] dt.

Proof. We introduce stopping times τn and control processes γn as in the proof of Theorem 3.3,
and we denote by vn the solution to (3.8). Let us define

Wn
t = Wt +

∫ t

0

r(s, J(vn(s)), γn(s)) ds.

From the definition of τn and from (1.3), it follows that

∫ T

0

|r(s, J(vn(s)), γn(s))|2 ds ≤ C
∫ T

0

(1 + |γn(s)|)2 ds

≤ C
∫ τn

0

(1 + |γn(s)|)2 ds+ C ≤ C + Cn. (5.18)

Therefore, by defining

ρn = exp

(∫ T

0

r(s, J(vn(s)), γn(s) dWs −
1
2

∫ T

0

|r(s, J(vn(s)), γn(s)|2 ds

)
,

the Novikov condition implies that Eρn = 1. Setting dPn = ρndP, by Girsanov’s theorem Wn is a
Wiener process under Pn. Let us denote by (Fnt ) its natural augmented filtration. Since for all n

dvn(t) = Bvn(t) dt+ (I −B)Pg(t, J(vn(t))) dWn
t

vn(0) = v0

has a solution by Theorem 3.1, the process vn is also Fnt adapted. Let us define

Y nt = θ(t, vn(t)), Znt = ζ(t, vn(t));

then, by Proposition 5.3, we have

dY nt = Znt dWn
t − ψ(t, vn(t), Znt ) dt, t ∈ [0, T ],

Y nT = φ(J(vn(T )))
(5.19)

and En
∫ T

0

|Znt |2 dt <∞, where En denotes expectation with respect to Pn. It follows that

Y nτn = φ(J(vn(T ))) +
∫ T

τn

ψ(t, vn(t), Znt ) dt−
∫ T

τn

Znt dWt −
∫ T

τn

Znt r(t, J(vn(t)), γn(t)) dt. (5.20)
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We note that for every p ∈ [1,∞) we have

ρ−pn = exp

(
p

∫ T

0

r(s, J(vn(s)), γn(s)) dWn
s −

p2

2

∫ T

0

|r(s, J(vn(s)), γn(s))|2 ds

)

· exp

(
p2 − p

2

∫ T

0

|r(s, J(vn(s)), γn(s))|2 ds

)
. (5.21)

By (5.18) the second exponential is bounded by a constant depending only on n and p, while the
first one has Pn-expectation equal to 1. So we conclude that Enρ−pn <∞. It follows that

E

(∫ T

0

|Znt )|2 dt

)1/2

≤ Enρ−2
n

(∫ T

0

|Znt |2 dt

)1/2

≤ (Enρ−2
n )1/2En

(∫ T

0

|Znt |2 dt

)1/2

<∞,

and the stochastic integral in (5.20) has zero P-expectation. Hence we obtain

EY nτn = Eφ(J(vn(T ))) + E
∫ T

τn

[ψ(t, vn(t), Znt )− Znt r(t, J(vn(t)), γn(t))] dt.

Since by definition it is ψ(t, v, z)− zr(t, J(v), γ)− l(t, J(v), γ) ≤ 0, we have

EY nτn ≤ Eφ(J(vn(T ))) + E
∫ T

τn

l(t, J(vn(t)), γn(t)) dt. (5.22)

Now we let n→∞: by the definition of γn, from (1.4) and using the fact that J is bounded from
Xη to H (see [3, Lemma 3.11]) we get

E
∫ T

τn

l(t, J(vn(t)), γn(t)) dt = E
∫ T

0

111{s>τn}l(t, J(vn(t)), γ0) dt

≤ CE
∫ T

0

111{s>τn}(1 + |J(vn(t))|2 + |γ0|2) ds ≤ C E
[
(T − τn)

(
1 + sup |vn(t)|2

)]
(5.23)

and the right-hand side tends to 0 by the uniform integrability of sup
t∈[0,T ]

|vn(t)|2 (see Corollary 3.5)

and by (3.6).
Next we note that, again by (3.6), for n ≥ N(ω) we have τn(ω) = T and

φ(J(vn(T ))) = φ(J(vn(τn))) = φ(J(v(τn))) = φ(v(t)).

We deduce, thanks to (1.5) and again to [3, Lemma 3.11], that

|φ(J(vn(T )))| ≤ C(1 + |vn(T )|2) ≤ C(1 + sup
t∈[0,T ]

|vn(t)|2),

and by the uniform integrability of sup
t∈[0,T ]

|vn(t)|2, the right hand side is uniformly integrable.

We deduce that Eφ(J(vn(T ))) → Eφ(J(v(T ))), and from (5.22) we conclude that lim sup
n→∞

EY nτn ≤

Eφ(J(v(T ))). On the other hand, for n ≥ N(ω) we have τn(ω) = T and

Y nτn = Y nT = φ(J(vn(T ))) = φ(J(v(T ))).
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Since Y n is positive, by an application of Fatou’s lemma it follows that Eφ(J(v(T ))) ≤ lim inf
n→∞

EY nτn .
We have thus proved that

lim
n→∞

EY nτn = Eφ(J(v(T ))). (5.24)

Now we return to (5.19) and write

Y nτn = Y n0 +
∫ τn

0

−ψ(t, vn(t), Znt ) dt+
∫ τn

0

Znt dWt +
∫ τn

0

Znt r(t, J(vn(t)), γn(t)) dt.

Arguing as before, we conclude that the stochastic integral has zero P-expectation. Moreover,
we have Y n0 = θ(0, v0), and, for t ≤ τn, we also have γn(t) = γ(t) = γt, vn(t) = v(t), and
Znt = ζ(t, v(t)). Thus we obtain

EY nτn = θ(0, v0) + E
∫ τn

0

[−ψ(t, v(t), ζ(t, v(t))) + ζ(t, v(t))r(t, J(vt), γt)] dt,

and by adding to both sides the quantity E
∫ τn

0
l(t, J(v(t)), γt) dt we get

E
∫ τn

0

l(t, J(v(t)), γt) dt+ EY nτn = θ(0, v0)

+ E
∫ τn

0

[−ψ(t, v(t), ζ(t, v(t))) + ζ(t, v(t))r(t, J(vt), γt) + l(t, J(v(t)), γt)] dt

Noting that −ψ(t, v(t), ζ(t, v(t))) + ζ(t, v(t)) r(t, J(vt), γt) + l(t, J(v(t)), γt) ≥ 0 and recalling that
l(t, u, γ) ≥ 0, by (5.24) and the monotone convergence theorem we obtain, for n→∞,

E
∫ T

0

l(t, J(v(t)), γt) dt+ Eφ(J(v(t)))

= θ(0, v0) + E
∫ T

0

[−ψ(t, v(t), ζ(t, v(t))) + ζ(t, v(t))r(t, J(vt), γt) + l(t, J(v(t)), γt)] dt (5.25)

which gives the required conclusion.

Corollary 5.5. For every admissible control γ and any initial datum v0, we have J(v0, γ) ≥
θ(0, v0), and the equality holds if and only if the following feedback law holds P-a.s. for almost
every t ∈ [0, T ]:

ψ(t, v(t), ζ(t, v(t))) = ζ(t, v(t)) r(t, J(v(t)), γt) + l(t, J(v(t)), γt),

where v is the trajectory starting at v0 and corresponding to control γ.

5.2. Existence of optimal controls: the closed loop equation.

The aim of this subsection is to find a weak solution to the so-called closed loop equation. We are
assuming that Hypothesis 5.1 holds. Then, by the Filippov Theorem (see, e.g., [2, Thm. 8.2.10, p.
316]) there exists a measurable selection of Γ, a Borel measurable function µ : [0, T ]×Xη×U → Ξ
such that

ψ(t, v, z) = l(t, J(v), µ(t, v, z)) + z r(t, J(v), µ(t, v, z)) t ∈ [0, T ], v ∈ Xη, z ∈ U∗. (5.26)

By (5.5), we have
|µ(t, v, z)| ≤ C(1 + |v|+ |z|). (5.27)
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We define

γ̄(t, v) = µ(t, v, ζ(t, v)) t ∈ [0, T ], v ∈ Xη,

where ζ is defined in Proposition 5.3. The closed loop equation is

dv(t) =
[
Bv(t) + (I −B)Pg(t, J(v(t)))r(t, J(v(t)), γ̄(t, v))

]
dt

+ (I −B)Pg(t, J(v(t))) dWt

v(0) = v0

(5.28)

By a weak solution we mean a complete probability space (Ω,F ,P) with a filtration (Ft)t≥0

satisfying the usual conditions, a Wiener process W in U with respect to P and (Ft), and a
continuous (Ft)-adapted process v with values in H satisfying, P-a.s.,

E
∫ T

0

|γ̄(t, v(t))|2 dt <∞, (5.29)

and such that (5.28) holds. We note that by (1.3) it also follows that

E
∫ T

0

|r(t, v(t), γ̄(t, v(t)))|dt <∞, P-a.s., (5.30)

so that (5.28) makes sense.

Proposition 5.6. Assume that Hypothesis 1.1 holds. Then there exists a weak solution of the
closed loop equation, satisfying in addition

E
∫ T

0

|γ̄(t, v(t))|2 dt <∞. (5.31)

Proof. Let us take an arbitrary complete probability space (Ω,F ,P◦) and a Wiener process W ◦

in U with respect to P◦. Let (F◦t ) be the associated Brownian filtration. We define the process v
as the solution of the equation

dv(t) = Bv(t) dt+ (I −B)Pg(t, J(v(t)) dW ◦t ∈ t ∈ [0, T ],
v(0) = v0

(5.32)

The solution is a continuous (F◦t )-adapted process, which exists and is unique by Theorem 3.1.

Moreover, it satisfies E◦
[

sup
t∈[0,T ]

||v(t)||pXη

]
<∞ for every p ∈ [2,∞). By Proposition 5.3, setting

Yt = θ(t, v(t)) Zt = ζ(t, v(t)),

the following backward equation holds:

dYt = −ψ(t, v(t), Zt) dt+ Zt dW ◦t , t ∈ [0, T ],
YT = φ(J(v(t))),

(5.33)

and we have

E◦
∫ T

0

|Zt|2 dt <∞. (5.34)
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By (1.3) we have |r(t, v(t), γ̄(t, v(t)))| ≤ C(1 + |γ̄(t, v(t))|), and by (5.3),

|γ̄(t, v(t))| = |µ(t, v(t), ζ(t, v(t)))| ≤ C (1 + |v(t)|+ |ζ(t, v(t))|) = C (1 + |v(t)|+ |Zt|) . (5.35)

Now let us define the family of stopping times

τn = inf
{
t ∈ [0, T ] :

∫ t

0

|γ̄(s, v(s)))|2 ds > n

}
with the convention that τn = T if the indicated set is empty. By (5.34) and (5.35), for P◦-a.e.
ω ∈ Ω, there exists an integer N(ω) depending on ω such that τ(ω) = T for n ≥ N(ω). Let us fix
γ0 ∈ Ξ, and for every n let us define

γn(t) = γ̄(t, v(t)))111{t≤τn} + γ0 111{t≥τn}

Mn
t = exp

(∫ t

0

r(s, J(v(s)), γn(s)) dW ◦s −
1
2

∫ t

0

|r(s, J(v(s)), γn(s))|2 ds
)
,

Mt =
(∫ t

0

r(s, J(v(s)), γ̄(t, v(t))) dW ◦s −
1
2

∫ t

0

|r(s, J(v(s)), γ̄(t, v(t)))|2 ds
)
,

Wn
t = W ◦t −

∫ t

0

r(s, J(v(s)), γn(s)) ds,

Wt = W ◦t −
∫ t

0

r(s, J(v(s)), γ̄(s, v(s))) ds.

By previous estimates, Mn,M,Wn, and W are well defined; moreover,∫ T

0

|r(s, J(v(s)), γn(s))− r(s, J(v(s)), γ̄(s, v(s)))|2 ds→ 0 P◦-a.s.

and consequently Mn
T →MT in probability and sup

t∈[0,T ]

|Wn
t −Wt| → 0, P◦-a.s.

We will conclude the proof by showing that there exists a probability P such that W is a Wiener
process with respect to P and (F◦t ). The definition of τn and the Novikov condition imply that
E◦[Mn

T ] = 1. Setting dPn = Mn
T dP◦, by Girsanov’s theorem Wn is a Wiener process with respect

to Pn and (F◦t ). Writing the backward equation with respect to Wn, we obtain

Yτn = Y0 +
∫ τn

0

−ψ(t, v(t), Zt) dt+
∫ τn

0

Zt dWn
t +

∫ τn

0

Znt r(t, J(vt), γnt ) dt.

Arguing as in the proof of Proposition 5.4, we conclude that the stochastic integral has zero
expectation with respect to Pn. Taking into account that γn(t) = γ̄(t, v(t)) for t ≤ τn, we obtain

EnYτn + En
∫ τn

0

l(t, v(t), γ̄(t, v(t))) dt

= Y0 + En
∫ τn

0

[−ψ(t, v(t), Zt) dt+ Zt · r(t, J(vt), γ̄(t, v(t))) + l(t, v(t), γ̄(t, v(t))] dt = Y0

with the last equality coming from the definition of γ̄. Recalling that Y is nonnegative, it follows
that

En
∫ τn

0

l(t, v(t), γ̄(t, v(t))) dt ≤ C
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for some constant C independent of n. By (1.4) we also deduce

En
∫ τn

0

|γ̄(t, v(t))|2 dt ≤ C. (5.36)

Next we prove that the family (Mn
T )n≥1 is uniformly integrable by showing that E◦[Mn

T111{Mn
T>c}]→

0 as c→∞, uniformly with respect to n. We have

E◦[Mn
T111{Mn

T>c}] = E◦[Mn
T111{Mn

T>c,τn=T}] + E◦[Mn
T111{Mn

T>c,τn<T}]. (5.37)

The first term in the right-hand side tends to 0 uniformly with respect to n: it is

E◦[Mn
T111{Mn

T>c,τn=T}] = E◦[MT111{MT>c,τn=T}] ≤ E◦[MT111{MT>c}]→ 0

since it holds E◦[Mn
T ] = 1 and then Fatou’s lemma implies that E◦[MT ] ≤ 1. The second term in

the right-hand side of (5.37) can be estimated as follows:

E◦[Mn
T111{Mn

T>c,τn<T}] ≤ E◦[Mn
T111{τn<T}] = Pn(τn < T )

≤ Pn
(∫ τn

0

|γ̄(t, v(t))|2 dt > n

)
≤ 1
n

En
∫ τn

0

|γ̄(t, v(t))|2 dt ≤ C

n
(5.38)

with the last inequality coming from (5.36). The required uniform integrability follows immedi-
ately. Recalling that Mn

T → MT in probability, we conclude that E◦|Mn
T − MT | → 0, and in

particular E◦[MT ] = 1, and M is a P◦-martingale. Thus we can define a probability P by setting
dP = MT dP◦ and by Girsanov’s theorem we conclude that W is a Wiener process with respect
to P and (F◦t ).

It remains to prove (5.31). We define the stopping times

σn = inf
{
t ∈ [0, T ] :

∫ t

0

|Zs|2 ds > n

}
with the convention that σn = T if the indicated set is empty. Writing the backward equation
with respect to W , we obtain

Yσn = Y0 −
∫ σn

0

ψ(t, v(t), Zt) dt+
∫ σn

0

Zt dWt +
∫ σn

0

Ztr(t, J(vt), γ̄(t, v(t))) dt

from which we deduce that

EnYσn + En
∫ σn

0

l(t, v(t), γ̄(t, v(t))) dt

= Y0 + En
∫ σn

0

[−ψ(t, v(t), Zt) + Zt · r(t, J(vt), γ̄(t, v(t))) + l(t, J(v(t)), γ̄(t, v(t))] dt = Y0

with the last equality coming from the definition of γ̄. Recalling that Y is nonnegative, it follows
that

E
∫ σn

0

l(t, J(v(t)), γ̄(t, v(t))) dt ≤ C

for some constant C independent of n. By (1.4) and by sending n to infinity, we finally prove
(5.31).
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Corollary 5.7. By Corollary 5.5 it immediately follows that if v is the solution to (5.28) and we
set γ∗s = γ̄(s, vs), then J(v0, γ

∗) = θ(0, v0), and consequently v is an optimal state, γ∗s is an optimal
control, and γ̄ is an optimal feedback.

Now we prove uniqueness in law for the closed loop equation. We remark that condition (5.29)
is part of our definition of a weak solution.

Proposition 5.8. Assume that g, l, r, φ satisfy Hypothesis 1.1. Fix µ : [0, T ] × Xη × U∗ → Ξ
satisfying (5.26) (and consequently (5.27)) and let γ̄(t, v) = µ(t, v, ζ(t, v)). Then the weak solution
of the closed loop equation (5.28) is unique in law.

Proof. Let (Ω,F , (Ft)t∈[0,T ],P, (Wt)t∈[0,T ], (v(t))t∈[0,T ]) be a weak solution of (5.28). Let us
define

MT = exp

(
−
∫ T

0

r(s, v(s), γ̄(s, v(s))) dWs −
1
2

∫ T

0

|r(s, v(s), γ̄(s, v(s)))|2 ds

)
,

W ◦t = Wt +
∫ T

0

r(s, v(s), γ̄(s, v(s))) ds.

By (1.3) and (5.29), MT and W ◦ are well defined. We claim that EMT = 1. Assuming the claim
for a moment, and setting dP ◦ = MT dP, we know by Girsanov’s theorem that W ◦ is a Wiener
process under P ◦, and further v solves

dv(t) = Bv(t) dt+ (I −B)Pg(t, J(v(t))) dW ◦t
v(0) = v0

and

MT = exp

(
−
∫ T

0

r(s, v(s), γ̄(s, v(s))) dW ◦s +
1
2

∫ T

0

|r(s, v(s), γ̄(s, v(s)))|2 ds

)
.

By Theorem 3.1 the law of (v,W ◦) under P ◦ is uniquely determined by g and v0. Taking into
account the last displayed formula, we conclude that the law of (v,W ◦,MT ) under P ◦ is also
uniquely determined, and consequently so it is the law of v under P.

To conclude the proof it remains to show that E[MT ] = 1. We define the stopping times

τn = inf
{
t ∈ [0, T ] :

∫ t

0

|γ̄(s, v(s))|2 ds > n

}
,

with the convention that τn = T if the indicated set is empty. By (5.29), for P-almost every ω ∈ Ω
there exists an integer N(ω) depending on ω such that τn(ω) = T for n ≥ N(ω).

Let us fix γ0 ∈ Ξ and let us define, for every n ∈ N,

γn(t) = γ̄(t, v(t)) 1t≤τn + γ0 1t≥τn

Mn
T = exp

(
−
∫ T

0

r(s, J(vn(s)), γn(s) dWs −
1
2

∫ T

0

|r(s, J(vn(s)), γn(s)|2 ds

)
.

By (1.3) and the definition of τn, the Novikov condition shows that EMn
T = 1. Moreover, we have∫ T

0

|r(s, v(s), γn(s))− r(s, v(s), γ̄(s, v(s)))|2 ds→ 0, P-a.s.,
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and consequently Mn
T →MT in probability. In order to conclude the proof it is therefore enough to

show that the family (Mn
T )n≥1 is uniformly integrable. To prepare for this, let us set dPn = Mn

T dP
and note that, by Girsanov’s theorem, the process Wn

t = Wt +
∫ t

0
r(s, v(s), γns ) ds is a Wiener

process under Pn. Since v solves

dv(t) = Bv(t) dt+ (I −B)Pg(t, J(v(t))) dWn
t

v(0) = v0,

it follows that v is adapted to the Brownian filtration (Fnt ) associated to Wn, and its law under
Pn is uniquely determined by g and v0. In particular, the quantities

C ′ := En
∫ T

0

|v(t)|2 dt, C ′′ := En
∫ T

0

|ζ(t, v(t))|2 dt

do not depend on n (here En denotes, of course, the expectation with respect to Pn). C ′ is clearly
finite. By Proposition 5.3, setting Zt = ζ(t, v(t)), we have En

∫ T
0
|ζ(t, v(t))|2 dt = En

∫ T
0
|Zt|2 dt <

∞, and it follows that C ′′ is also finite. Now let us prove the uniform integrability of the family
(Mn

T )n≥1 by showing that that E[Mn
T111{Mn

T>c}] → 0 as c → ∞, uniformly with respect to n. We
have

E[Mn
T111{Mn

T>c}] = E[Mn
T111{Mn

T>c,τn=T}] + E[Mn
T 1{Mn

T>c,τn<T}].

The first term in the right-hand side tends to 0 uniformly with respect to n, since

E[Mn
T111{Mn

T>c,τn=T}] = E[MT111{MT>c,τn=T}] ≤ E[MT111{MT>c}]→ 0,

due to the fact that the equality E[Mn
T ] = 1 and Fatou’s lemma imply that E[MT ] ≤ 1. The second

term in the right-hand side of (5.39) can be estimated as follows:

E[Mn
T111{Mn

T>c,τn<T}] ≤ E[Mn
T111{τn<T}] = Pn(τn < T )

≤ Pn
(∫ τn

0

|γ̄(t, v(t))|2 dt > n

)
≤ 1
n

En
∫ τn

0

|γ̄(t, v(t))|2 dt. (5.39)

By (5.27) we have

|γ̄(t, v(t))|2 = |µ(t, v(t), ζ(t, v(t)))|2 ≤ C(1 + |v(t)|2 + |ζ(t, v(t))|2)

for some constant C, and it follows that

E[Mn
T111{Mn

T>c,τn<T}] ≤
C

n
En
∫ 0

T

(1 + |v(t)|2 + |ζ(t, v(t))|2) dt =
C

n
(T + C ′ + C ′′),

with C ′ and C ′′ defined as above. The required uniform integrability follows immediately and this
completes the proof.

6. Appendix. Proof of Proposition 5.2

Proposition 5.2 gives a result of monotone stability that is very close to the result contained in
[18, Proposition 2.4]; the main difference is that we require that for almost all ω ∈ Ω and t ∈ [0, τ ]

lim
n→∞

ψn(t, Y nt , Z
n
t ) = ψ(t, Yt, Zt)
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instead of locally uniform convergence of (ψn)n to ψ.
We sketch the proof.
Since for all t ∈ R+ the sequence Y nt is monotonic and bounded, it has a limit which we denote

Yt. In view of an extension to the infinite dimensional case of [18, Proposition 2.1], there exists a
constant K̃ such that, for all n ∈ N,

E
∫ T

0

|Zn(s)|2 ds ≤ K̃.

Therefore there exists a process Zk ∈ L2(Ω× [0, T ], U∗) and a subsequence Znj of Z such that

Znj ⇀ Z weakly in L2(Ω× [0, T ], U∗). (6.1)

The point is now to show that in fact the whole sequence converges strongly to Zk in L2(Ω ×
[0, T ], U∗). Since

|ψn(t, v, z)| ≤ C̃(1 + |z|2), (6.2)

setting K = 5C̃ we have

|ψn(t, v, z)− ψm(t, v′, z′)| ≤ 2C̃ +K(|z − z′|2 + |z′ − z′′|2 + |z′′|2).

Step 1. The strong convergence of Znk in L2(Ω× [0, T ], U∗). We have, for all n,m ∈ N,

|ψn(t, vt, Zn(t))− ψm(t, vt, Zm(t))| ≤ 2C̃ +K(|Zn − Zm|2 + |Zm − Z|2 + |Z|2).

Let us apply Ito’s formula to the process (Y n(t) − Y m(t))t∈[0,T ] for n,m ∈ N, n ≤ m and to an
increasing function F ∈ C2[0, 2k], such that F ′(0) = 0 and F (0) = 0.

The function F is yet to be chosen: (we omit the dependence on k for the moment and write
Y nk (t) = Y nt )

F (Y n0 − Y m0 ) = F (Y nT − Y mT ) +
∫ T∧τ

0

F ′(Y ns − Y ms )(ψn(s, vs, Zns )− ψm(s, vs, Zms )) ds

− 1
2

∫ T∧τ

0

F ′′(Y ns − Y ms )|Zns − Zms |2 ds−
∫ T∧τ

0

F ′(Y ns − Y ms )(Zns − Zms ) dWs. (6.3)

As F ′(Y ns − Y ms ) ≥ 0, it follows

F (Y n0 − Y m0 ) ≤ F (Y nT − Y mT )

+
∫ T∧τ

0

F ′(Y ns − Y ms )(2C +K(|Zns − Zms |2 + |Zms − Zs|2 + |Zs|2)) ds

− 1
2

∫ T∧τ

0

F ′′(Y ns − Y ms )|Zns − Zms |2 ds−
∫ T∧τ

0

F ′(Y ns − Y ms )(Zns − Zms ) dWs. (6.4)

Now since Y n − Y m is bounded,

E
∫ T∧τ

0

F ′(Y ns − Y ms )(Zns − Zms ) dWs = 0
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and we get

EF (Y n0 − Y m0 ) + E
∫ T∧τ

0

[
1
2
F ′′ −KF ′](Y ns − Y ms )|Zns − Zms |2 −KF ′](Y ns − Y ms )|Zms − Zs|2 ds

≤ EF (Y nT − Y mT ) + E
∫ T∧τ

0

F ′(Y ns − Y ms )(2C +K|Zs|2)ds. (6.5)

We want to pass to the limit as m → ∞ along the subsequence nj defined in (6.1). The
convergence of Y m → Y being pointwise, and Y m being bounded, one has, by Lebesgue’s
dominated convergence theorem,

EF (Y n0 − Y0) + lim inf
m→∞

E
∫ T∧τ

0

[
1
2
F ′′ −KF ′](Y ns − Ys)|Zns − Zms |2 ds

− E
∫ T∧τk

0

KF ′(Y ns − Ys)|Zns − Zs|2 ds

≤ EF (Y nT − YT ) + E
∫ T∧τ

0

F ′(Y ns − Ys)(2C̃ +K|Zs|2) ds (6.6)

and from the limit

lim inf
m→∞

[−E
∫ T∧τ

0

F ′(Y ns − Ys)|Zns − Zms |2 ds ≤ −E
∫ T∧τ

0

F ′(Y ns − Ys)|Zns − Zs|2 ds (6.7)

we obtain

EF (Y n0 − Y0) + lim inf
m→∞

E
∫ T∧τ

0

[
1
2
F ′′ − 2KF ′](Y ns − Ys)|Zns − Zms |2 ds

≤ EF (Y nT − YT ) + E
∫ T∧τ

0

F ′(Y ns − Ys)(2C̃ +K|Zs|2) ds. (6.8)

We now choose F such that 1
2F
′′−2KF ′ = 1: in particular, by setting F ′(0) = F (0) = 0, we obtain

F (x) = 1
4K (e4x − 4Kx− 1). It is straightforward to check that F is a C∞ function, increasing on

[0, 2k]. Noting that by the convexity of the l.s.c. functional

Θ(Z) = E
∫ T∧τ

0

|Zns − Zs|2 ds

one has

E
∫ T∧τ

0

|Zns − Zs|2 ds ≤ lim inf
m→∞,m∈(nj)

E
∫ T∧τ

0

|Zns − Zms |2 ds,

we obtain

EF (Y n0 − Y0) + E
∫ T∧τ

0

|Zns − Zs|2 ds

≤ EF (Y nT − YT ) + E
∫ T∧τ

0

F ′(Y ns − Ys)(2C̃ +K|Zs|2)ds (6.9)
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By Lebesgue’s dominated convergence theorem, the right-hand side of this inequality converges to
0 as n → ∞, as well as the first term of the left-hand side. Now, passing to the limit as n → ∞,
we find, for all T > 0,

lim sup
n→∞

E
∫ T∧τ

0

|Zns − Zs|2 ds = 0.

Consequently the whole sequence Zn converges to Z in L2(Ω× [0, T ], U∗).
Step 2. The uniform convergence of a subsequence of Y n to Y .
At this stage of the proof we know that (Y nt )n converges pointwise: for all t ∈ [0, T ], lim

n→∞
Y nt =

Yt; also, the sequence (Zn)n converges to Z in L2(Ω× [0, T ], U∗).
We proceed proving the following result.

Lemma 6.1. There exists a subsequence Znj of Zn such that Znj converges almost surely to Z
and such that Z̃ = supj Znj ∈ L2(Ω× [0, T ], U∗).

Proof. For the reader’s convenience we sketch the proof of this lemma. Extracting if necessary a
subsequence, we may assume without loss of generality that the sequence (Zn)n converges almost
surely to Z. Since Zn is a Cauchy sequence in L2(Ω × [0, T ], U∗), we can extract a subsequence
Znj such that ||Znj+1 − Znj ||L2 ≤ 1

2j for j ∈ N. Then we set

g = |Zn0 |+
∞∑
j=0

|Znj+1 − Znj |;

from the properties of the sequence Znj , we have

||g||L2 ≤ ||Zn0 ||L2 +
∞∑
j=0

||Znj+1−Znj ||L2 ≤ ||Zn0 ||L2 +
∞∑
j=0

1
2j

<∞.

Moreover, for any p ∈ N, we also have

|Znp | ≤ |Zn0 |+
p∑
j=0

|Znj+1−Znj | ≤ g;

therefore, Z̃ = supj |Znj | ∈ L2(Ω× [0, T ], U∗) and the proof is complete.

In order to keep notation simpler, we still denote by (Zn) the subsequence (Znj ) given by
Lemma 6.1 [resp. (Y n)n and (ψn)n the sequences (Y nj )j and (ψnj )j ] and therefore we have

Zn → Z a.s. dt⊗ dP and Z̃ = sup
n
|Zn| ∈ L2(Ω× [0, T ], U∗).

Since ψn satisfies condition (6.2), we have

|ψn(t, vt, Znt )| ≤ 2C̃(1 + sup
n
|Znt |2) = 2C̃(1 + Z̃2).

By assumption, for almost all ω ∈ Ω and t ∈ [0, τ ]:

lim
n→∞

ψn(t, Y nt , Z
n
t ) = ψ(t, Yt, Zt) (6.10)
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thus, for almost all ω ∈ Ω and, uniformly in t ∈ [0, τ ] , Lebesgue’s dominated convergence theorem
gives

lim
n→∞

∫ t∧τ

0

ψn(s, vs, Zns ) =
∫ t∧τ

0

ψ(s, vs, Zs) ds.

On the other hand, from the continuity properties of stochastic integral, we get

lim
n→∞

sup
0≤t≤T

∫ t∧τ

0

Zns dWs −
∫ t∧τ

0

Zs dWs = 0 in probability.

Extracting again a subsequence if necessary, we may assume that the last convergence is P◦-a.s.
Finally,

|Y nt − Y mt | ≤ |Y nT − Y mT |+
∫ t∧τ

0

|ψn(s, vs, Zns )− ψm(s, vs, Zms )|ds

+ |
∫ t∧τ

0

Zns dW ◦s −
∫ t∧τ

0

Zms dW ◦s |. (6.11)

Therefore, taking limits on m and supremum over t ∈ [0, T ], we get, for almost all ω ∈ Ω

sup
0≤t≤T

|Y nt − Yt| ≤ |Y nT − YT |+
∫ t∧τ

0

|ψn(s, vs, Zns )− ψ(s, vs, Zs)|ds

+ sup
0≤t≤T

|
∫ t∧τ

0

Zns dW ◦s −
∫ t∧τ

0

Zs dW ◦s | (6.12)

from which we deduce that (Y n)n converges to Y uniformly for t ∈ [0, T ] (in particular Y is a
continuous process if the Y n are).

References

[1] Agrawal, O. P. (2002). Solution for a Fractional Diffusion-Wave Equation Defined in a Bounded Domain.
Nonlinear Dynamics 29, 145–155.

[2] Ambrosetti, A. and Prodi, G. (1995). A primer of nonlinear analysis. Cambridge Studies in Advanced
Mathematics, 34. Cambridge University Press, Cambridge.

[3] Bonaccorsi, S. and Desch, W. (2006). Volterra equations perturbed by noise. Technical Report UTM 698,
June 2006, Matematica, University of Trento. Available at http://eprints.biblio.unitn.it/archive/00001021/

[4] Bonaccorsi, S. and Mastrogiacomo, E. (2009). An analytic approach to stochastic Volterra equations with
completely monotone kernels. Journal of Evolution Equations 9, pp.315–339.

[5] Briand, Ph. and Hu, Y. (2006). BSDE with quadratic growth and unbounded terminal value. Probab. Theory
Related Fields 136, n. 4, pp. 604–618.

[6] Da Prato, G. and Zabczyk, J. (1996). Ergodicity for Infinite Dimensional Systems. Cambridge Univ. Press,
Cambridge.

[7] Da Prato, G. and Zabczyk, J. (1992). Stochastic Equations in Infinite Dimensions. Cambridge Univ. Press,
Cambridge.

[8] Debussche, A., Fuhrman, M. and Tessitore, G. (2007). Optimal Control of a Stochastic Heat Equation
with Boundary-noise and Boundary-control. ESAIM Control Optim. Calc. Var. 13, no. 1, 178–205 (electronic).



Optimal control for stochastic Volterra equations with completely monotone kernels 39

[9] Desch, W. and Miller, R.K. (1988). Exponential stabilization of Volterra integral equations with singular
kernels. J. Integral Equations Appl. 1, pp.397–433.

[10] El Karoui, N., Peng, S. and Quenez, M. C. (1997). Backward stochastic differential equations in finance.
Math. Finance, 7, n. 1, pp. 1–71.

[11] El Karoui, N. and Hamadène, S. (2003). BSDEs and risk-sensitive control, zero-sum and nonzerosum game
problems of stochastic functional differential equations. Stochastic Proc. Appl., 107, pp. 145–169.

[12] Fuhrman, M. (2003). A class of stochastic optimal control problems in Hilbert spaces: BSDEs and optimal
control laws, state constraints, conditioned processes. Stochastic Process. Appl. 108, n. 2, pp. 263–298.

[13] Fuhrman, M., Hu, Y. and Tessitore, G. (2006). On a class of stochastic optimal control problems related
to BSDEs with quadratic growth. SIAM J. Control Optim. 45, 1279–1296 (electronic).

[14] Fuhrman, M. and Tessitore, G. (2002). Nonlinear Kolmogorov equations in infinite dimensional spaces: the
backward stochastic differential equations approach and applications to optimal control. Ann. Probab. 30,
n.3, pp.1397–1465.

[15] Fuhrman, M. and Tessitore, G. (2004). Existence of optimal stochastic controls and global solutions of
forward-backward stochastic differential equations- SIAM J. Control Optim., 43, pp. 813–830.

[16] Hamadène, S. and Lepeltier, J.-P. (1995). Backward equations, stochastic control and zero-sum stochastic
differential games. Stochastics Stochastics Rep., 54, pp. 221–231.

[17] Homan, K. W. (2003). An Analytic Semigroup Approach to Convolution Volterra Equations. Ph.D. Thesis,
Delft University Press.

[18] Kobylanski, Y. (2000). Backward stochastic differential equations and partial differential equations with
quadratic growth. Ann. Probab. 28, n. 2, pp. 558–602.

[19] Miller, R.K. (1974). Linear Volterra integrodifferential equations as semigroups. Funkcial. Ekvac. 17, pp.39–
55.

[20] Pardoux, E. and Peng, S. (1990). Adapted solution of a backward stochastic differential equation. Systems
Control Lett., 14, pp.55–61.

[21] Prüss, J. (1993). Evolutionary integral equations and applications. Monographs in Mathematics, 87. Birkhuser
Verlag, Basel.

[22] Yong, J. and Zhou, X. Y. (1999). Stochastic controls. Hamiltonian systems and HJB equations. Applications
of Mathematics (New York), 43. Springer-Verlag, New York.


