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Abstract—Numerous analysis methods for quantitative attack tree ana-
lysis have been proposed. These algorithms compute relevant security
metrics, i.e. performance indicators that quantify how good the security
of a system is; typical metrics being the most likely attack, the cheapest,
or the most damaging one. However, existing methods are only geared
towards specific metrics or do not work on general attack trees. This
paper classifies attack trees in two dimensions: proper trees vs. directed
acyclic graphs (i.e. with shared subtrees); and static vs. dynamic gates.
For three out of these four classes, we propose novel algorithms that
work over a generic attribute domain, encompassing a large number of
concrete security metrics defined on the attack tree semantics; dynamic
attack trees with directed acyclic graph structure are left as an open
problem. We also analyse the computational complexity of our methods.

Index Terms—Attack trees, security metrics, BDD algorithms, compu-
tational complexity, formal methods.

1 INTRODUCTION

Attack trees (ATs) are important tools to analyse the security
of complex systems. Their intuitive definition and general
applicability makes them widely studied in academia and
used in industry. ATs are part of many system engineering
frameworks, e.g. UMLsec [1, 2] and SysMLsec [3], and sup-
ported by industrial tools such as Isograph’s AttackTree [4].

An AT is a hierarchical diagram that describes potential
attacks on a system. Its root represents the attacker’s goal,
and the leaves represent basic attack steps: indivisible ac-
tions of the attacker. Intermediate nodes are labeled with
gates, that determine how their children activate them. The
most basic notions of ATs have OR and AND gates only;
many extensions exist to model more elaborate attacks.

Attack trees are often studied via quantitative analysis,
where ATs are assigned a wide range of security metrics.
Typical examples of such metrics are the minimal time
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Figure 1: Nodes
in an attack tree.

[5, 6, 7, 8], minimal cost [9], or maximal probability [10]
of a successful attack, as well as Pareto analyses that study
trade offs among attributes [5, 11]. Calculating such metrics
is essential when comparing alternatives or making trade
offs. This leads to the following research problem:

Question. How can AT metrics be calculated efficiently?

Numerous algorithms have been proposed to address
this question. Such algorithms exploit a plethora of tech-
niques, for instance Petri nets [12], model checking [9],
and Bayesian networks [13]. While these algorithms provide
good ways to compute metrics, they also suffer from several
drawbacks: (1) Many of them are geared to specific attrib-
utes, such as attack time or probability, and the procedure
may not extend to other metrics; (2) Several algorithms
do not exploit the acyclic structure of the AT, especially
approaches based on model checking; (3) Since their applic-
ation is mostly illustrated on small examples, it is unclear
how these approaches scale to larger case studies.

The aim of this work is to answer the question above for
a general class of metrics. The answer hinges on two factors:

1) Static vs. dynamic ATs: Apart from the standard ATs,
which we call static, an important extension are dynamic
ATs. These allow for sequential-AND (SAND) gates,
which require their children to succeed in left-to-right
order [10, 9]. A formal approach to analyse dynamic ATs
requires more rich semantics than for static ATs.

2) Tree vs. DAG structure: Their name notwithstanding, ATs
can be directed acyclic graphs (DAGs), in which a node
may have multiple parents. The additional condition that
an AT is tree-structured allows for considerably faster
computation of metrics.

Thus, our contribution answers the question as follows:

Answer. We provide efficient and generic algorithms to
compute AT metrics, by tailoring them to our 2-dimensional
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Metric Static tree Dynamic tree Static DAG Dynamic DAG

min cost BU [14, 15, 16] BU [10] MTBDD [17] C-BU [18] PTA [5]

min time BU [14, 19] APH [6] BU [10] Petri nets [12] MILP [8]

min skill BU [14, 20] BU [10] C-BU [18] —

max damage BU [14, 19, 20] BU [10] MTBDD [17] DPLL [21] PTA [5]

probability BU [22, 19] APH [6] BDD [23] DPLL [21] I/O-IMC [9]

Pareto fronts BU [24, 19] Lemma 10.4 C-BU [11] Lemma 10.4 PTA [5]

Any of the above Algo. 1: BUSAT Algo. 4: BUDAT Algo. 2: BDDDAG OPEN PROBLEM1

k-top metrics BU-projection [14] BU [25] Lemma 10.3 Algo. 3: BDD_shortest_paths OPEN PROBLEM2

Table 1: Efficient algorithms to compute security metrics on different AT classes (details and abbreviations are in Sec. 11).
1 Algo. 5 reduces runtime for any found method; 2 Lemma 10.3 reduces k-top calculation to metric calculation.

categorisation: static vs. dynamic ATs, and tree-structured
vs. DAG-structured ATs.

On page 3 we give a precise description of our contribu-
tions, presented in accordance to the categorisation above.
Our algorithmic results are summarised in Table 1, and
Sec. 11 provides an elaborate comparison with related work.

There are various naming conventions in the AT literat-
ure. We follow the terminology of works like [14, 17, 26, 27],
akin to fault tree standards on which attack trees were
inspired [28]. Two points to highlight in this respect are our
use of attack tree to refer also to DAG-like structures, and
our use of dynamic to mean ATs with sequential-AND gates.
These and all other terms used in this work are formalised
in Secs. 2.2, 3.1 and 3.2, and Secs. 6.1 to 6.3. In Sec. 11 we
compare our terminology to alternatives in the literature.

Static trees: The simplest category of Attack Trees are
tree-structured static ATs. As shown in a seminal paper by
Mauw & Oosdijk [14], metrics can be computed for these
ATs in a bottom-up fashion, using appropriate operators O
and M on a set V , resp. for the OR and AND gates in the tree.
We show this as Algo. 1. A key insight in [14] is that this
procedure works whenever the algebraic structure (V ,M,O)
constitutes a semiring, i.e. M must distribute over O.
We provide an alternative proof of correctness for this result:
while [14] deploys rewriting rules for attack trees, we show
in Sec. 9 that it directly follows from the validity of modular
analysis on DAG-structured ATs. Furthermore, we propose
new categories of attribute domains, which extend the ap-
plication of the bottom-up algorithm to compute popular
security metrics. Ordered semiring domains constitute an
important category of metrics, for which we show that
derived metrics such as Pareto fronts and k-top values also
fall within the semiring attribute domain framework.

Static DAGs: It is well-known that static ATs with DAG
structure cannot be studied with bottom-up procedures
[23, 29]. Many algorithms exist to tackle such ATs, mostly
geared to specific metrics [9, 17, 12, 21, 18]. Sec. 5 presents
a generic algorithm that works for any semiring attribute
domain (V ,O,M) that is absorbing, i.e. x O (x M y) = x, and
has neutral elements 1O and 1M for operators O and M resp.

Concretely, we exploit a binary decision diagram repres-

entation (BDD) of the attack tree. Our algorithm visits each
BDD node once and is thus linear in its size. The caveat
is that BDDs can be of exponential size in the number of
basic attack steps (BASes), but one cannot hope for faster
algorithms: as we show, computing a minimal attack is an
NP-hard problem. However, in practice the BDD approach
still yields computational gains: we show that we can split
up the calculation according to the modules of the AT, i.e.
subDAGs only connected to the rest of the AT by their root.
This speeds up calculations considerably. Moreover, BDDs
are known to be compact in practice [30], and allow parallel
traversals [31], making them an overall efficient choice.
Furthermore, we show that the bottom-up algorithm—of
linear runtime on any static tree—works also when applied
to DAG ATs, if the operators O and M are idempotent, i.e.
x O x = x M x = x.

Dynamic trees: Metrics for dynamic attack trees (DATs)
are usually decoupled from semantics, and defined either
on the syntactic AT structure, or ad hoc for the selected
computation method [10, 5, 32, 18]. The main obstacle to a
semantics-based approach is to choose semantics for DATs
in a way that supports a proper definition of metric, i.e.
that is compatible with the notion of metric of static ATs,
and that is as generic as the attribute domains from [14].
In particular, the interaction among multiple SAND gates is
nontrivial, because they may impose conflicting execution
orders on the BAS of the tree.

We follow [26, 8] in giving semantics to DATs via par-
tially ordered sets (posets). Each poset 〈A,≺〉 represents
an attack scenario, where A collects all attacks steps to
be performed, and a ≺ b indicates that step a must be
completed before step b starts. This set up enables us to
define a notion of metric for DATs based on their semantics.
A key contribution is defining general metrics for dynamic attack
trees, and showing that tree-structured DATs are analysable by
extending the bottom-up algorithm with an additional operator
(see Algo. 4). Concretely, we use attribute domains with three
operators: O, M, B, where B distributes over O and M, and
M distributes over O. We prove this algorithm correct in our
formal semantics. This is relevant and non-trivial because
(a) earlier algorithms do not provide explicit correctness
results in terms of semantics, and (b) the metrics are form-
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ally defined on the poset semantics of a DAT, while the
algorithm works on its syntactic AT structure.
Dynamic DAGs: Efficient computation of metrics for
DAG-structured DATs is left as future research challenge.
A naïve, inefficient algorithm would enumerate all posets
in the semantics. Instead, one could extend BDD-algorithms
for static DAGs to dynamic ATs. This is non-trivial, as BDDs
ignore the order of attack steps. Thus, efficient analysis of
DAG-structured DATs is an important open problem. Yet
we do show how modular analysis works here as well, and
can be used to speed up any algorithm.
Paper structure: We list our contributions next, and give
minimal background in Sec. 2. Secs. 3 to 5 study static
attack trees, and Secs. 6 to 8 study dynamic attack trees.
Sec. 9 presents modular analysis, and Sec. 10 studies Pareto
fronts and k-top metrics. The paper discuses related work
and concludes in Secs. 11 and 12.

Contributions of [26]: An earlier version of this paper
was published in [26], whose key contributions are:
1. An efficient and generic BDD-based algorithm for

DAG-SATs, working for absorbing semiring attribute
domains with neutral elements (Sec. 5);

2. A theorem proving that computing a minimal success-
ful attack is NP-hard (Sec. 5.1);

3. The adaptation of semiring attribute domains to
DATs, defining general metrics on DATs (Sec. 6);

4. A bottom-up algorithm for tree-structured DATs
(Sec. 7);

5. A BDD-based algorithm to compute k-top metrics on
SATs (Sec. 5.5);

6. Future directions to analyse DAG-DATs efficiently
(identified as an open problem in Sec. 8).

New contributions in this version: Contributions of the
current paper over [26] are:
7. The result that for idempotent semiring domains, bot-

tom-up algorithms—of linear runtime—work even for
DAG-structured SATs (Sec. 5.2);

8. A unified method to calculate multiple metrics simul-
taneously—as needed by Pareto fronts, k-top metrics,
and uncertainty sets—exploiting ordered attribute do-
mains (Sec. 10);

9. General semantics for DATs that cover the entire
universe of models, also less restrictive than [26] for
the well-formedness criterion (Sec. 6.2);

10. A formalised modular analysis technique to improve
the runtime of DAG algorithms, by combining ana-
lysis results for independent subtrees (Sec. 9);

11. An improved description of the BDD-based al-
gorithm, illuminating the intuition behind the method
(Algo. 2 in Sec. 5.3).

We place ourselves in the literature in Table 1 and Sec. 11.

2 ATTACK TREES

2.1 Attack tree models
Syntactically, an attack tree is a rooted DAG that models an
undesired event caused by a malicious party, e.g. a theft. ATs

Get PIN

cryptoattack

pilfer
notebook

n

intercept
transactions

t

use (weak)
plain RSA

p

(a) A static-tree AT: Ts

Pick pocket

skill luck

fastest
fingers

ff

walk next
to victim

w

car crash
right there

cc

(b) A dynamic-DAG AT: Td

Figure 2: Attack tree models

show a top-down decomposition of a top-level attack—the
root of the DAG—into simpler steps. The leaves are basic
steps carried out by the attacker. The nodes between the
basic steps and the root are intermediate attacks, and are
labelled with gates to indicate how its input nodes (children)
combine to make the intermediate attack succeed.

Basic Attack Steps: The leaves of the AT represent indivis-
ible actions carried out by the attacker, e.g. smash a window,
decrypt a file, etc. These BAS nodes can be enriched with
attributes, such as its execution time, the cost incurred,
and the probability with which the BAS occurs. We model
attributes via an attribution function α : BAS→ V .

Gates: Non-leaf nodes serve to model intermediate steps
that lead to the top-level goal. Each has a logical gate that
describes how its children combine to make it succeed: an
OR gate means that the intermediate attack will succeed
if any of its child nodes succeeds; an AND gate indicates
that all children must succeed, in any order or possibly
in parallel; a SAND gate (viz. sequential-AND) needs all
children to succeed sequentially in a left-to-right order.

Example 2.1. Fig. 2a shows a static attack tree, Ts, that
models how a PIN code can be obtained by either pilfering
a notebook, or via a cryptographic attack. The pilfering is
considered atomic, while the cryptoattack consists of two
steps which must both succeed: intercepting transactions,
and abusing weak RSA encryption. Note that Ts has a plain
tree structure. Instead, Fig. 2b shows a dynamic attack tree,
Td, with a DAG structure. Its TLA is to pick a pocket, which
is achieved either by having “skill” or “luck.” In both cases
the attacker must walk next to the victim, so these gates
share the BAS child w, making Td not a tree. In the case
of “luck” the order of events matters: if the attacker first
walks next to the victim and then a traffic accident happens,
the pick-pocket succeeds. Thus, this intermediate attack is
modelled with a SAND gate. Instead, “fastest fingers” is
an inherent attacker flair that is always present. It is thus
meaningless to speak of an order w.r.t. the attacker-victim
encounter, so an AND gate is used.

Security metrics: A key goal in quantitative security ana-
lysis is to compute relevant security metrics, which quantify
how well a system performs in terms of security. Typical
examples are the cost of the cheapest attack, the probability
of the most likely one, the damage produced by the most
harmful one, and combinations thereof. Security metrics for
ATs are typically obtained by combining the attribute values
α(a) ∈ V assigned to each a ∈ BAS. For instance, the
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cheapest attack is that for which the sum of the cost of its
BASes is minimal. The topic of this paper is how to compute
large classes of security metrics in generic and efficient ways.

2.2 Attack tree syntax
ATs are rooted DAGs with typed nodes: we consider types
T = {BAS, OR, AND, SAND}. The edges of an AT are given by
a function ch that assigns to each node its (possibly empty)
sequence of children. We use set notation for sequences, e.g.
e ∈ (e1, . . . , em) means ∃i. ei = e, and we denote the empty
sequence by ε.

Definition 2.2. An attack tree is a tuple T = (N, t , ch) where:
• N is a finite set of nodes;
• t : N → T gives the type of each node;
• ch : N → N∗ gives the sequence of children of a node.

Moreover, T satisfies the following constraints:
• (N,E) is a connected DAG, where

E =
{
(v, u) ∈ N2 | u ∈ ch(v)

}
;

• T has a unique root, denoted RT :
∃!RT ∈ N. ∀v ∈ N. RT 6∈ ch(v);

• BAST nodes are the leaves of T :
∀v ∈ N. t(v) = BAS⇔ ch(v) = ε.

We omit the subindex T if no ambiguity arises, e.g.
an attack tree T = (N, t , ch) defines a set BAS ⊆ N of
basic attack steps. If u ∈ ch(v) then u is called a child of
v, and v is a parent of u. We write v = AND(v1, . . . , vn)
if t(v) = AND and ch(v) = (v1, . . . , vn), and analogously for
OR and SAND, denoting ch(v)i = vi. Moreover we denote
the universe of ATs by T and call T ∈ T tree-structured
if ∀v, u ∈ N. ch(v) ∩ ch(u) = ε; else we say that T is DAG-
structured. If SAND /∈ t(N) we say that T is a static attack tree
(SAT); else it is a dynamic attack tree (DAT).

3 STATIC ATTACK TREES

In the absence of SAND gates the order of execution of the
BASes is irrelevant. This allows for simple semantics given
in terms of a Boolean function called structure function. The
computation of security metrics, however, crucially depends
on whether the AT is tree- or DAG-structured.

3.1 Semantics for static attack trees
The semantics of a SAT is defined by its successful attack
scenarios, in turn given by its structure function. First, we
define the notions of attack and attack suite.

Definition 3.1. An attack scenario, or shortly an attack, of a
static AT T is a subset of its basic attack steps: A ⊆ BAST .
An attack suite is a set of attacks S ⊆ 2BAST . We denote by
AT = 2BAST the universe of attacks of T , and by ST = 22

BAST

the universe of attack suites of T . We omit the subscripts
when there is no confusion.

Intuitively, an attack suite S ∈ S represents different
ways in which the system can be compromised. From those,
one is interested in attacks A ∈ S that actually represent a
threat. For instance for Ts in Example 2.1 one such attack is
{t, p}. In contrast, {t} is an attack that does not succeed, i.e.
it does not reach the top-level goal. The structure function

fT (v, A) indicates whether the attack A ∈ A succeeds at
node v ∈ N of T . For Booleans we use B = {1, 0}.

Definition 3.2. The structure function fT : N × A → B of a
static attack tree T is given by:

fT (v, A) =


1 if t(v) = OR and ∃u ∈ ch(v). fT (u,A) = 1,

1 if t(v) = AND and ∀u ∈ ch(v). fT (u,A) = 1,

1 if t(v) = BAS and v ∈ A,
0 otherwise.

An attack A is said to reach a node v if fT (v, A) = 1,
i.e. it makes v succeed. If no proper subset of A reaches v,
then A is a minimal attack on v. The set of attacks reaching
v is denoted Sucv , and the set of minimal attacks on v is
denoted JvK. We define fT (A)

.
= fT (RT , A), and attacks that

reach RT are called succesful. We write JT K .
= JRT K and

SucT
.
= SucRT

. Furthermore, the minimal attacks on RT (i.e.
the minimal succesful attacks) are called minimal attacks. The
minimal attacks relate to the structure function in the sense
that

fT (v, A) =
∨

A′∈JvK

∧
a∈A′

δa(A),

where δa(A) = 1 iff a ∈ A. This can also be applied the
other way around: we can represent T by a propositional
formula LT by replacing each a ∈ BAS with the atom δa,
and each node with its corresponding logical connector.
Then the conjunctions in the minimal disjunctive normal
form of LT correspond to the minimal attacks on T .

Definition 3.3. For v ∈ N , the propositional formula LT,v
with atoms in {δa | a ∈ BAST} is given by

LT,v =


∨
w∈ch(v) LT,w if t(v) = OR ,∧
w∈ch(v) LT,w if t(v) = AND,

δv if t(v) = BAS.

Furthermore, we define LT := LT,RT
.

SATs are coherent [33], meaning that adding attack steps
preserves success: if A is successful then so is A ∪ {a} for
any a ∈ BAS. Thus, the suite of successful attacks of an
AT is characterised by its minimal attacks. This was first
formalised in [14], and is called multiset semantics in [34]:

Definition 3.4. The semantics of a SAT T is its suite of
minimal attacks JT K.

Example 3.5. The SAT in Example 2.1, Ts (Fig. 2a), has three
successful attacks: {n}, {t, p}, and {n, t, p}. The first two are
minimal, so we have: JTsK = {{n}, {t, p}}.

An alternative characterisation of this semantics for
tree-structured SATs is shown as Lemma 3.6, which also
provides the key argument for correctness of the bottom-
up procedure (Algo. 1 in Sec. 4). For tree-structured SATs,
Lemma 3.6 can be used to compute the semantics of Def. 3.4
by recursively applying cases 1)–3) to JRT K = JT K. However,
BDD representations provide more compact encodings of
this semantics (see Sec. 5).

We formulate Lemma 3.6 for binary ATs; its extension to
arbitrary trees is straightforward but notationally cumber-
some. The proof of Lemma 3.6 is given in Appendix A.
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Lemma 3.6. Consider a SAT with nodes a ∈ BAS, v1, v2 ∈ N .
Then:

1) JaK = {{a}};
2) JOR(v1, v2)K ⊆ Jv1K ∪ Jv2K;
3) JAND(v1, v2)K ⊆ {A1 ∪ A2 | A1 ∈ Jv1K ∧ A2 ∈ Jv2K};
4) All RHS of cases 1–3 consist of succesful attacks.

If T is tree-structured then furthermore:

5) In cases 2 and 3 the JviK are disjoint, and in case 3 moreover
the Ai are disjoint;

6) Equality holds in cases 2 and 3.

3.2 Security metrics for static attack trees

Lemma 3.6 allows for qualitative analyses, i.e. finding the
successful attacks of minimal size. To enable quantitative
analyses, i.e. computing security metrics such as the minimal
time and cost among all attacks, all BASes are enriched with
attributes. We define security metrics in three steps: first an
attribution α assigns a value to each BAS; then a security
metric α̂ assigns a value to each attack scenario; and finally
the metric qα assigns a value to each attack suite.

Definition 3.7. Given an AT T and a set V of values:

1) an attribution α : BAST → V assigns an attribute value
α(a), or shortly an attribute, to each basic attack step a;

2) a security metric refers both to a function α̂ : AT → V

that assigns a value α̂(A) to each attack A;
and to a function qα : ST → V that assigns a value qα(S)
to each attack suite S .

We write qα(T ) for qα(JT K), setting the metric of an AT to the
metric of its suite of minimal attacks.

Example 3.8. Let V = N denote time, so that α(a) gives
the time required to perform the basic attack step a. Then
the time needed to complete an attack A can be given by
α̂(A) =

∑
a∈A α(a), and the time of the fastest attack in a

suite S is qα(S) = minA∈S α̂(A). If instead V = [0, 1] ⊆ R
denotes probability, then the probability of an attack is given
by α̂(A) =

∏
a∈A α(a), and the probability of the likeliest

attack in a suite is qα(S) = maxA∈S α̂(A).

Def. 3.7 gives a very general notion of metric. For a
more operational definition—which enables computation
for static ATs, but does not depend on their tree/DAG-
structure—one must resort to the semantics. For this we
follow an approach along the lines of Mauw and Oostdijk
[14]. Namely, we define a metric function qα : T → V that
yields a value for each SAT based on its semantics, an
attribution, and two binary operators O and M.

Definition 3.9. Let V be a set:

1) an attribute domain over V is a tuple D = (V ,O,M),
whose disjunctive operator O : V 2 → V , and conjunctive
operator M : V 2 → V , are associative and commutative;

2) the attribute domain is a semiring1 if M distributes over
O, i.e. ∀x, y, z ∈ V . x M (y O z) = (x M y) O (x M z);

1. Since we require M to be commutative, D is in fact a commutative
semiring. Rings often include a neutral element for disjunction and an
absorbing element for conjunction, but these are not needed in Def. 3.9.

3) let T be a static AT and α an attribution on V . The metric
for S associated to α and D is given by:2

qα(S) =
h

A∈S︸︷︷︸
qα

i

a∈A︸ ︷︷ ︸
α̂

α(a).

4) The metric for T associated to α and D is given by
qα(T )

.
= qα(JT K).

Example 3.10. The fastest attack time metric from Ex-
ample 3.8 comes from the semiring attribute domain
(N,min,+); indeed, the time for an attack is the sum of
the attack times for all constituting BASes (M = +), and
the attack time for the AT is the time of the fastest attack
(O = min). Similarly, the highest attack probability comes
from the semiring attribute domain ([0, 1],max, ·). Consider
the SAT Ts = OR

(
n,AND(t, p)

)
from Fig. 2a. These two

metrics can be calculated as follows.
1) Fastest attack: Recall that JTsK = {{n}, {t, p}}, and con-

sider an attribution α = {n 7→ 1, t 7→ 100, p 7→ 0}. Then:

qα(Ts) = α̂({n}) O α̂({t, p})
= α(n) O

(
α(t) M α(p)

)
= min(1, 100 + 0) = 1.

2) Most probable attack: Now consider an attribution α′ =
{n 7→ 0.07, p 7→ 0.01, t 7→ 0.95} for the same tree:

qα′(Ts) = α′(n) O′
(
α′(t) M′ α′(p)

)
= max(0.07, 0.95 · 0.01) = 0.07.

4 COMPUTATIONS FOR TREE-STRUCTURED SATS

Example 3.10 illustrates how to compute metrics for SATs
using Def. 3.9. However, this method requires to first com-
pute the semantics of the attack tree, which is exponential in
the number of nodes |N |—see Theo. 5.2 or [18].

A key result in [14] is that metrics defined on attribute
domains (V ,O,M) that are semirings, can be computed via
a bottom-up algorithm that is linear in |N | + |E| (assuming
constant time complexity of O and M) as long as the static AT
has a proper tree structure. We repeat this result here, giving
a more direct proof of correctness. We extend the result to
dynamic attack trees in Sec. 5.

4.1 Bottom-up algorithm
First we formulate the procedure as Algo. 1, which propag-
ates the attribute values from the leaves of the SAT to
its root, interpreting OR gates as O and ANDs as M. This
algorithm is linear in |N |+ |E| since each node v in the tree
T is visited once, and at v we have deg(v)− 1 computation
steps. Algo. 1 can be called on any node of T : to compute
the metric qα(T ) it must be called on its root node RT .

We state the correctness of Algo. 1 in Theo. 4.1, which
we prove in Appendix D. This result was proven in [14]
via rewriting rules for ATs with a slightly different structure
denoted “bundles”. Our result concerns attack trees in the

2. This expression motivates our notation α̂ and qα, which are similar
to M and O, respectively. These notations, in turn, were chosen in [14]
to be similar to ∧ and ∨, respectively; the connection between these
operators and the logical connectors is expressed in Theo. 4.1.

5
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Input: Static attack tree T = (N, t , ch),
node v ∈ N ,
attribution α,
semiring attribute domain D = (V ,O,M).

Output: Metric value qα(JvK) ∈ V .

if t(v) = OR then
return

`
u∈ch(v) BUSAT(T , u, α,D)

else if t(v) = AND then
return

a
u∈ch(v) BUSAT(T , u, α,D)

else // t(v) = BAS

return α(v)

Algorithm 1: BUSAT for a tree-structured SAT T

syntax from Def. 2.2, which is more conforming to the broad
literature [15, 16, 22, 21, 35, 17, 5].

Theorem 4.1. Let T be a static AT with tree structure, α
an attribution on V , and D = (V ,O,M) a semiring attribute
domain. Then qα(T ) = BUSAT(T , RT , α,D).

4.2 Metrics as semiring attribute domains
Many relevant metrics for security analyses on SATs can be
formulated as semiring attribute domains. Table 2 shows
examples, where N∞ = N ∪ {∞} includes 0 and ∞.
For instance “min cost” can be formulated in terms of
(N∞,min,+), which is a semiring attribute domain because
+ distributes over min, i.e. a+min(b, c) = min(a+ b, a+ c)
for all a, b, c ∈ N∞. Also, attribute domains can handle
SAND gates if the execution order is irrelevant for the
metric, which happens e.g. for min skill and max damage.

Besides the metrics of Table 2, one can also be interested
in derived concepts, such as the Pareto front of multiple
metrics, or uncertainty sets when the attribute values of
BASes are unknown. We show that such concepts fit into
the semiring attribute domain framework in Sec. 10.

Non-semiring metrics: However, some meaningful met-
rics do fall outside this category. For instance and as noted
in [14], the cost to defend against all attacks is represented
by (N∞,+,min); but Algo. 1 cannot compute this metric
because min does not distribute over +. Less well-known
is that total attack probability—i.e. qα(T ) =

∑
A∈SucT α̂(A)

where α̂(A) =
(∏

a∈A α(a)
)
·
(∏

a6∈A(1 − α(a))
)
—can

neither be formulated as an attribute domain. The problem
is that α̂(A) does not have the shape

a
a∈A α(a), and that

the sum is taken over all succesful attacks rather than just
the minimal ones. Interestingly though, this probability can
still be computed via a bottom-up procedure by taking
qα(AND(v1, v2)) = qα(Sucv1) ·qα(Sucv2) and qα(OR(v1, v2)) =
qα(Sucv1) + qα(Sucv2)− qα(Sucv1 ∩Sucv2).
Stochastic analyses: Semirings form a bicomplete cat-
egory, so finite and infinite products exist [36]. This allows to
propagate not only tuples of attribute values, but also func-
tions over them. In particular, cumulative density functions
that assign a probability t 7→ P [X 6 t] constitute a semiring
[6]. Such functions serve e.g. to consider attack probabilities
(and cost, and damage) as functions that evolve on time.

Absorbing semirings: Although in this paper we calculate
metrics by considering all minimal attacks, one could also

METRIC V O M

min cost N∞ min +
min time (sequential) N∞ min +
min time (parallel) N∞ min max
min skill N∞ min max
max challenge N∞ max max
max damage N∞ max +
discrete prob. [0, 1] max ·
continuous prob. R→ [0, 1] max ·

Table 2: SAT metrics with semiring attribute domains

simply consider all attacks. For many metrics this does not
make a difference: for example, the successful attack with
minimal cost will always be a minimal attack, since adding
BASes can only increase the cost. Therefore, in the calcula-
tion of min cost we may as well take the minimum over all
successful attacks, rather than just minimal attacks. On the
other hand, when calculating max damage one will get a
different answer when taking all attacks into account, as the
full attack of all BASes will do more damage than a smaller
minimal attack. The difference between these metrics can
be described mathematically as follows. We call a semiring
attribute domainD = (V ,O,M) absorbing if xO(xMy) = x for
all x, y ∈ V . If D is absorbing and α is an attribution into D,
then α̂(A)O α̂(A′) = α̂(A) for any two attacks with A ⊆ A′.
It follows that for absorbing semiring attribute domains one
has qα(T ) = qα(SucT ). Note that all metrics in Table 2 are
absorbing except for max challenge and max damage.

5 COMPUTATIONS FOR DAG-STRUCTURED SATS

Attack trees with shared subtrees cannot be analysed via a
bottom-up procedure on its (DAG) structure, as we illustrate
next in Example 5.1. This is a classical result from fault tree
analysis [37], rediscovered for attack trees e.g. in [18].

There are many methods to analyse DAG-structured
ATs: see Table 1 for contributions over the last 15 years,
including [9, 17, 12, 21, 18]. These methods are often geared
to specific metrics, e.g. cost, time, or probability [22, 21, 6].
Others use general-purpose techniques of high complexity
and low efficiency, such as model checking [12, 5].

We present a novel algorithm based on a binary decision
diagram (BDD) representation of the structure function of
the SAT. BDDs offer a very compact encoding of Boolean
functions [30], and are heavily used in model checking [38,
39, 40], as well as for probabilistic fault tree analysis [23, 41].

Our BDD-based approach works for absorbing semiring
attribute domains, with neutral elements for operators O
and M, regardless of the AT structure. It thus extends the
generic and efficient result of [14]—that works for tree-
structure SATs only—to DAG-structured SATs as well.

Our algorithm traverses the BDD bottom-up and it is
linear in its size. However, BDDs can be exponential in
the tree size [42]: but no asymptotically-faster algorithms
exist, since the problem of computing metrics is NP-hard,
as we show below. Moreover, BDDs are among the most
efficient approaches in terms of performance of practical
computation on Boolean formulae [30, 17].
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a b c

Let: α(a) = 3 V = N∞
α(b) = 2 O = min
α(c) = 4 M = +

D

The cheapest attack is {b}: α̂({b}) = 2.

Figure 3: Metrics cannot be computed bottom-up on ATs
with DAG structure. For min cost in this AT, Algo. 1 yields:
BUSAT(T , RT , α,D) = min(3, 2)+min(2, 4) = 4 6= 2 = qα(T ).
The miscomputation stems from counting α(b) twice.

5.1 Computational complexity

We first show why the bottom-up procedure cannot com-
pute metrics for ATs that have shared subtrees.

Example 5.1. Fig. 3 shows how the bottom-up approach
can fail when applied to DAG-structured attack trees. Intuit-
ively, the problem is that a visit to node v in Algo. 1—or any
bottom-up procedure that operates on the AT structure—
can only aggregate information on its descendants. So, the
recursive call for v cannot determine whether a sibling node
(i.e. any node v′ which is not an ancestor nor a descendant
of v) shares a BAS descendant with v. As a result, recursive
computations for both v and v′ may select a shared descend-
ant b ∈ BAS, and use α(b) in (both) their local computations.
This causes the miscomputation in Fig. 3.

Known workarounds to this issue are keeping track of
the BAS selected by the metric at each step [18, 29], and
operating on the AT semantics [14]. In all cases the worst-
case scenario has exponential complexity on the number of
nodes of the attack tree: for [18] this is in the algorithm
input, i.e. determining the sets of necessary and optional
clones; instead for [14] and our Def. 3.9 the complexity lies
in the computation of the semantics.

In general, one cannot hope for faster algorithms:
Theo. 5.2 shows that the core problem—computing minimal
attacks of DAG-structured attack trees—is NP-hard even
in the simplest structure: plain attack trees with AND/OR
gates. The proof (in Appendix E) reduces the satisfiability of
logic formulae in conjunctive normal form, to the computa-
tion of minimal attacks in general SATs.

Theorem 5.2. Given a DAG-structured static AT, the problem
of computing any successful attack of minimal size is NP-hard.

From this we can show that calculating metrics on DAG-
structured SATs is NP-hard. To do this, we define the fol-
lowing attribute domain: for a SAT T , take V = M(BAST ),
the set of multisets on BAST . Let M = ], i.e. multiset union.
We identify M(BAST ) ∼= NBAST , and ] becomes + under
this identification. We furthermore choose an enumeration
BAST = {a1, . . . , an}, so that we may identify V ∼= Nn. We
then define a map µ : V → N by

µ(c) =
n∏
i=1

pcii ,

where pi is the i-th prime; here an element c ∈ V = Nn is
determined by its coefficients ci ∈ N. Define a linear order
� on V by c � c′ iff either

∑
i ci <

∑
i c
′
i, or

∑
i ci =∑

i c
′
i and µ(c) ≤ µ(c′). Let O = min w.r.t. �. One can then

prove (see Appendix F) the following:

Lemma 5.3. (V,O,M) is a semiring attribute domain. Further-
more, let α : BAST → M(BAST ) be given by α(a) = {{a}}.
Then the multiset qα(T ) is a set, and it is the succesful attack of
minimal size.

With Theo. 5.2 this yields the following corollary:

Corollary 5.4. Computing a metric for a semiring attribute
domain in a DAG-structured SAT is NP-hard.

5.2 Idempotent semiring attribute domains
While in general computing metrics on DAG-structured
SATs is hard, for some metrics the bottom-up algorithm still
works. In Example 5.1 it is seen that BUSAT fails because some
BASes may be counted twice. However, when the operators
O, M are such that multiple occurences of a BAS in a formula
does not impact the calculation, then this is not a problem.
One can express this formally by the following definition:

Definition 5.5 (Idempotent domain). A binary operator
? on a set X is called idempotent if x ? x = x for all
x ∈ X . A semiring attribute domain D = (V ,O,M) is called
idempotent if both operators O and M are idempotent.

Idempotency of the domain is not enough for BUSAT
to work for DAG-structured SATs; we also need D to be
absorbing. The reason for this is that in a DAG, there
might be BASes that are not an element of any min-
imal attack, and hence are not present in the expression
of qα(T ). Nevertheless, these BASes may still be used in
the calculation of BUSAT, as in the following example.

a b

Example 5.6. Consider the SAT to the right,
T = OR(a,AND(a, b)), and consider the do-
main D = (N∞,max,max) for the max chal-
lenge metric; D is idempotent. Take α(a) = 1,
α(b) = 2: since JT K = {{a}} then qα(T ) =
α(a) = 1. However, Algo. 1 calculates BUSAT(T , RT , α,D) =
max(α(a),max(α(a), α(b))) = 2. The miscalculation comes
from the fact that b is not an element of any minimal attack.

Only when D is both idempotent and absorbing, then
BUSAT calculates qα(T ) correctly. A motivating example is
the domain D = (N∞,min,max), which represents the min
time and min skill metrics; another example is (B,∨,∧) from
[18]. The fact that BUSAT works for idempotent absorbing
domains has been proven for the parallel min time metric
in [8]; the theorem below extends this result to the general
case. This result is similar to [18], where it is proven for
Attack–Defense trees under mildly stronger assumptions on
D, namely the existence of identity and absorbing elements
in V .

Theorem 5.7. Let T be a static AT, α an attribution on V , and
D = (V ,O,M) a semiring attribute domain. If D is idempotent
and absorbing then qα(T ) = BUSAT(T ,RT , α,D).

5.3 Binary decision diagrams
BDDs offer a representation of Boolean functions that is
often extremely compact. A BDD is a rooted DAG Bf
that, intuitively, represents a Boolean function f : Bn → B
over variables Vars = {xi}ni=1. The terminal nodes of Bf
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represent the outcomes of f : 0 or 1. A nonterminal node
w ∈ W represents a subfunction fw of f via its Shannon
expansion. That means that w is equipped with a variable
Lab(w) ∈ Vars and two children: Low(w) ∈ W , repres-
enting fw in case that the variable Lab(w) is set to 0; and
High(w), representing fw if Lab(w) is set to 1.

Definition 5.8. A BDD is a tuple B = (W,Low ,High,Lab)
over a set Vars where:
• The set of nodes W is partitioned into terminal nodes

(Wt ) and nonterminal nodes (Wn );
• Low : Wn → W maps each node to its low child;
• High : Wn → W maps each node to its high child;
• Lab : W → {0, 1} ∪ Vars maps terminal nodes to

Booleans, and nonterminal nodes to variables:

Lab(w) ∈
{
{0, 1} if w ∈ Wt ,

Vars if w ∈ Wn .
Moreover, B satisfies the following constraints:
• (W,E) is a connected DAG, where

E = {(w,w′) ∈ W 2 | w′ ∈ {Low(w),High(w)}};
• B has a unique root, denoted RB :

∃!RB ∈ W. ∀w ∈ Wn . RB 6∈ {Low(w),High(w)}.

Given a BDD representing f , and x = (x1, . . . , xn) ∈ Bn,
one calculates f(x) by starting from the root of the BDD,
and at every node w ∈ Wn with Lab(w) = xi, proceed to
High(w) if xi = 1, and to Low(w) if xi = 0. The terminal
node one ends up in, is the value f(x).

Reduced ordered BDDs: We operate with reduced ordered
BDDs, simply denoted BDDs. This requires a total order <
over the variables. For Def. 5.8 this means that:

• Vars comes equipped with a total order, so Bf is
actually defined over a pair 〈Vars, <〉;

• the variable of a node is of lower order than its children:
∀w ∈ Wn . Lab(w) < Lab(Low(w)),Lab(High(w));

• the children of nonterminal nodes are distinct nodes;
• all terminal nodes are distinctly labelled;
• nonterminal nodes are uniquely determined by their

label and children: ∀w,w′ ∈ Wn. (Lab(w) = Lab(w′) ∧
Low(w) = Low(w′)∧High(w) = High(w′))⇒ w = w′.

This has the following consequences in the BDD:
• there are exactly two terminal nodes: Wt = {⊥,>}, with

Lab(⊥) = 0 and Lab(>) = 1;
• the label of the root node RB has the lowest order;
• in any two paths from RB to ⊥ or >, the order of the

variables visited is (increasing and) the same.
Given the ordering < on Vars , there is a unique reduced
ordered BDD that represents f .

Encoding static ATs as BDDs: The semantics of an AT
T can be encoded by its BDD. This is done for fault trees
in [23], and the method works identically for ATs. One as-
sumes an arbitrary order on BAST , and creates the reduced
ordered BDDBT of the propositional formula LT of Sec. 3.1.

A Boolean vector x evaluates to 1 if its corresponding
path in the BDD ends up in the terminal node > that is
labelled 1.3 For BT , this means that an attack A is successful
if and only if there is a path p from RBT

to 1 such that

3. To ease graphical interpretation, we identify the terminal node >
with its label 1 and thus speak of paths RBT → 1.

the High-edges traversed form a subset of A. This can be
phrased as follows:

Theorem 5.9 ([23]). Let P be the set of paths RBT
→ 1 in BT .

Then the map

π : P → A

p 7→ {Lab(w) ∈ BAST | (w,High(w)) ∈ p}

satisfies JT K ⊆ im(π), and π(p) is succesful for all p ∈ P .

Example 5.10. Let n < t < p in Ts from

0 1

t

n

p

Example 2.1: the resulting BDD (BTs) is
illustrated to the right. The children of a
node appear below it (so the root is on
top), and a dashed line from w → w′

means w′ = Low(w), and a solid line means
w′ = High(w). The two paths n→ 1 corres-
pond to the minimal attacks {n}, {t, p}.

An algorithm to find the (reduced ordered) BDD of an
AT is given in [23]. In the worst case, the size of the BDD is
exponential in the number of variables, i.e. the BASes of the
AT [30]. However, DAG-structures that represent Boolean
functions—such as fault trees and ATs—often have small
BDD encodings [17, 42]. The choice of the linear order < on
BAST impacts the size of the BDD: finding the order that
yields the smallest BDD is NP-hard, but several heuristics
exists to find a good order [43, 44].

5.4 BDD-based algorithm for DAG-structured SATs

Algo. 2 (on page 9) computes metrics for DAG-structured
attack trees — a similar algorithm for fault trees and their
failure probability metric was introduced in [23]. Here,
just like BUSAT, Algo. 2 requires D = (V ,O,M) to be
a semiring attribute domain. However, Algo. 2 also re-
quires the definition of neutral elements 1O and 1M for O
and M, i.e. ∀x ∈ V . x O 1O = x M 1M = x; we write D? =
(V ,O,M, 1O, 1M) and call this a unital semiring. We further-
more require the domain to be absorbing — see Sec. 4.2.
These conditions are mild: neutral elements are common
(a semiring without them can always be extended to have
them) [36]. Examples of neutral elements in Table 2 are
1O =∞ and 1M = 0 for min cost, and 1O = 0 and 1M = 1 for
(max) discrete probability. Moreover, most semiring metrics
are absorbing, e.g. all in Table 2 are, except max challenge
and max damage.

The algorithm: To explain the algorithm in more detail,
we first introduce some notation. For w ∈ Wn, let P (w) be
the set of paths w → 1. Furthermore, for p ∈ P (w), define

α̂(p) =
i

w∈Wn:(w,High(w))∈p

α(Lab(w)), (1)

qα(w) =
h

p∈P (w)

α̂(p). (2)

By Theo. 5.9 each path in P (RBT
) corresponds to a succesful

attack, and qα(RBT
) is calculated by performing O over the

metric values of these attacks. These attacks include the
minimal attacks by Theo. 5.9, and because D is absorbing all
other attacks are irrelevant. Hence one has qα(RBT

) = qα(T ).
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This value can be calculated in three steps: 1. determine
P (RBT

); 2. for p ∈ P (RBT
), calculate α̂(p); 3. compute qα(w).

Even though this approach works, it has some ineffi-
ciency built into it: there will typically be paths that share
sections, and on these sections the above method calculates
M twice. Therefore we instead use a bottom-up algorithm on
the BDD, where at every node we use O on the paths up to
that node. The key observation is that paths p ∈ P (w) either
pass through Low(w) or High(w), and from that point on-
wards it is an element of P (Low(w)) or P (High(w)). Also,
in the latter case, we need to add α(Lab(w)) to the M-ation
when calculating α̂(p), because that BAS is included. By
exploiting the distributivity of O over M, one can show that

qα(w) = qα(Low(w)) O
(

qα(High(w)) M α(Lab(w))
)
. (3)

In Algo. 2 we use a bottom-up method to calculate
qα(RBT

) = qα(T ) by repeatedly applying (3) from RBT
. This

is done until we reach the bottom nodes 0 and 1, to which
we assign the values 1O and 1M, respectively.

Input: BDD BT = (W,Low ,High,Lab),
node w ∈ W ,
attribution α,
semiring attribute domain D? = (V ,O,M, 1O, 1M).

Output: Metric value qα(T ) ∈ V .

if Lab(w) = 0 then
return 1O

else if Lab(w) = 1 then
return 1M

else // w ∈ Wn

return BDDDAG(BT ,Low(w), α,D?) O(
BDDDAG(BT ,High(w), α,D?) M α(Lab(w))

)
Algorithm 2: BDDDAG for a DAG-structured SAT T

Example 5.11. For the DAG-structured SAT

0 1

a:3

b:2

c:4

shown in Fig. 3, the order b < a < c of its
BASes yields the BDD to the right. Call it
BT and let us use it to compute the min
cost of T like in Fig. 3, via the attribution
α = {a 7→ 3, b 7→ 2, c 7→ 4} and the domain
(N∞,min,+). Moreover, to use Algo. 2, we
use the neutral elements 1O =∞ for min and 1M = 0 for +,
viz. we use the attribute domain D? = (N∞,min,+,∞, 0) .
Let the nonterminal nodes of BT be Wn = {wa, wb, wc}, and
for w ∈ W let BU(w) be shorthand for BDDDAG(BT , w, α,D?);
this is equal to qα(w). We compute the metric:

BU(RBT
) = min

(
BU(wa), BU(>) + α(b)

)
= min

(
BU(wa), 1M + 2

)
= min

(
BU(wa), 2

)
= min

(
min(BU(⊥), BU(wc) + α(a)), 2

)
= min

(
min(1O, BU(wc) + 3), 2

)
= min

(
BU(wc) + 3, 2

)
= min

(
min(BU(⊥), BU(>) + α(c)) + 3, 2

)
= min

(
min(1O, 1M + 4) + 3, 2

)
= min(4 + 3, 2) = 2.

To compute instead the (max) discrete probability we use
the attribution α′ = {a 7→ 0.1, b 7→ 0.05, c 7→ 0.6} and the
attribute domain D′? = ([0, 1]Q,max, ·, 0, 1). Then computa-
tions are as before until the last line, which here becomes:
max

(
α′(c) · α′(a), α′(b)

)
= max(0.6 · 0.1, 0.05) = 0.06.

Theo. 5.12 states the correctness of Algo. 2, i.e. that it
yields the metric for a static AT given in Def. 3.9 regardless
of its structure. We prove Theo. 5.12 in Appendix D.

Theorem 5.12. Let T be a static AT, BT its BDD encoding over
〈BAS, <〉, α an attribution on V , and D? = (V ,O,M, 1O, 1M)
an absorbing unital semiring attribute domain. Then qα(T ) =
BDDDAG(BT , RBT

, α,D?).

We also note that, when actually implementing Algo. 2,
one can further optimize its efficiency via dynamic program-
ming. That is, by storing the calculated values of nodes so
that this calculation is not repeated unnecessarily for nodes
with multiple parents. We leave such considerations out of
Algo. 2 to highlight the simple structure of the method and
its relation to equation (3).

Algo. 2 has linear complexity in the size of BT , so the
overall complexity of calculating AT metrics via its BDD
is mainly determined by the size of BT . As mentioned in
Sec. 5.3, this is worst-case exponential, but in practice it is
usually a lot faster. This makes the BDD approach a suitable
heuristic for calculating AT metrics. In Sec. 9 we show how
the performance can be further improved by incorporating
modular analysis.

5.5 Computing the k-top metric values

The approach described above can be extended to efficiently
compute the k-top values for a given metric. This problem
asks not only the min/max value of the metrics from Table 2,
but also the next k−1 min/max values, e.g. the cost of the k
cheapest attacks, or the probability of the k most likely ones.

Formally, we can express k-top values in the language
of multisets. For a linearly ordered set X and a multiset
M ∈ NX , we let mink(M) be the multiset of the k smallest
elements of M , with mink(M)

.
= M when |M | 6 k. Given

an attribution α : BAS → X , the top-k metric values of T
are defined as Topk(T , α) = mink({{α̂(A) | A ∈ JT K}})
with {{·}} denoting a multiset. That is, Topk(T , α) is an
element of M(V ), viz. a multiset of (the k smallest) values:
it describes the k-top values when O = min with respect
to the order on X . When O = max, the k-top values are
defined analogously.

The multiset Topk(T , α) can be computed from the BDD
using the k-shortest-paths algorithm for DAGs; this is a
well-known extension of the Dijkstra (or Thorup) algorithm
[45, 46]. For a DAG G with edges weighted by the matrix
Q, shortest_paths(G,Q, s, t, k, ◦) returns the multiset of
weights of the k-shortest paths from a source node s of G,
to a target node t, using operator ◦ to accumulate weight.

By Theo. 5.9 one has that Topk(T , α) = {{α̂(p) | p ∈
P (RBT

)}}. To apply the k-shortest path algorithm, we inter-
pret α̂(p) as the (weighed) length of path p, which is done by
assigning weight α(Lab(w)) to each edge (w,High(w)) in p,
and weight 1M to each edge (w,Low(w)). We accumulate
these values—to compute the length of p—with operator M.
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This way, the k shortest paths are the k paths with the smal-
lest values α̂(p); when O = max, we invert the weights.4

This is encapsulated as Algo. 3, whose correctness is given
by Theo. 5.9 and the shortest_paths algorithm.

Input: BDD BT = (W,Low ,High,Lab),
number of values to compute k ∈ N,
attribute domain D = (V ,O,M),
attribution α.

Output: k-top metric values of T for α and D.

E :=
⋃
w∈Wn

{(w,Low(w)), (w,High(w))}
Q := |W | × |W | matrix filled with 1M
if O = min then sgn := 1 else sgn := −1 // O = max

foreach nonterminal node w ∈ Wn do
Q[w][High(w)] := sgn · α(Lab(w))

return sgn · shortest_paths((W,E), Q, RBT
,>, k,M)

Algorithm 3: k_top metric values for a SAT T

Example 5.13. Consider the DAG-structured SAT from
Fig. 3, T = AND

(
OR(a, b),OR(b, c)

)
. To compute

its two cheapest attacks under the attribution α =
{a 7→ 3, b 7→ 1, c 7→ 4}, let b < a < c s.t. BT is as in
Example 5.11. The Low edge of the root b (that encodes
“not performing b”) is labelled with cost 1M = 0, and the
High edge with cost α(b) = 1; the same is done for a and
c. Then the shortest-weight path from the root of BT to
its 1-labelled leaf is p1 = (b, 1), which yields the cheapest
attack A1 = {b} with cost α̂(A1) = α̂(p1) = α(b) = 1.
Second to that we find the path p2 = (b, a, c, 1), which
yields the second-cheapest attack A2 = {a, c} with cost
α̂(A2) = α̂(p2) = 1M M α(a) M α(c) = 0 + 3 + 4 = 7.

In Sec. 10.2 we introduce another method to calculate
Topk(T, α), by expressing it as a semiring attribute domain
itself. This method also extends to the dynamic case.

6 DYNAMIC ATTACK TREES

In ATs with SAND gates the execution order of the BASes
becomes relevant. This affects primarily the semantics, i.e.
what it means to perform a successful attack, but there are
also metrics sensitive to the sequentiality of events.

6.1 Partially-ordered attacks
As for the static case, the semantics of a dynamic attack tree
(DAT) is given by its successful attack scenarios. However,
DATs necessitate a formal notion of order, because a sequen-
tial gate SAND(v1, . . . , vn) succeeds only if every vi child
is completely executed before vi+1 starts. This models de-
pendencies in the order of events. For example, in Håstad’s
broadcast attack, n messages must first be intercepted, from
which an n-th root (the secret key) may be computed. This
standard interpretation is ordered, and an activated BAS is
uninterruptedly completed. This rules out constructs that
introduce circular dependencies such as SAND(a, b, a).5

4. Technically, we assume that V has an order-inverting bijection −1.
If this is not the case, then one can just invert the linear order on V
when O = max.

5. Cf. Kumar et al. (2015), who separate activation from execution of
a BAS and can therefore operate with SAND(a, b, a) [5].

Thus, an attack scenario that operates with SAND gates
is not just a set A ⊆ BAS, but rather a partially-ordered set
(poset) 〈A,≺〉: here ≺ is a strict partial order, where a ≺ b
indicates that a ∈ Amust be carried out strictly before b ∈ A.
Incomparable basic attack steps can be executed in any
order, or in parallel. Thus, the attack 〈A,≺〉 indicates that all
BAS in A must be executed, and their execution order will
respect≺ . This succinct construct can represent combinator-
ially many execution orders of BAS. For instance 〈{a, b},∅〉
allows three executions: the sequence (a, b), and (b, a), and
the parallel execution a‖b. Instead, 〈{a, b}, {(a, b)}〉 only
allows the execution sequence (a, b). Note that strict partial
orders are irreflexive and transitive, so e.g. SAND(a, b, c)
gives rise to ≺ = {(a, b), (b, c), (a, c)}.

6.2 Semantics for dynamic attack trees

As for SATs we need to define the notions of attacks, suites,
and the structure function. These are given below and are
mostly straightforward analoga of the definitions in Sec. 3.1
in the realm of posets. The semantics as presented here were
first defined in [8].

Definition 6.1. Let T be a DAT.

1) The set AT of attacks on a DAT T is the set of strictly
partially ordered sets O = 〈A,≺〉, where A ⊆ BAST .

2) AT has a partial order 6 given byO 6 O′, forO = 〈A,≺〉
and O′ = 〈A′,≺′〉, if and only if A ⊆ A′ and ≺ ⊆ ≺′.

3) An attack suite is a set of attacks S ⊆ AT . The set of all
attack suites is denoted ST .

Definition 6.2. The structure function fT : N × A → B of a
dynamic AT T for O = 〈A,≺〉 is given by

fT (v,O) =



1 if t(v) = BAS and v ∈ A,
1 if t(v) = OR and ∃u ∈ ch(v). fT (u,O) = 1,

1 if t(v) = AND and ∀u ∈ ch(v). fT (u,O) = 1,

1 if t(v) = SAND and ∀u ∈ ch(v). fT (u,O) = 1

and ∀ 1 6 i < |ch(v)|.
(
a ∈ A ∩ BASch(v)i ∧

a′ ∈ A ∩ BASch(v)i+1

)
⇒ a ≺ a′,

0 otherwise.

where BASv = BAS ∩ ch+(v) are the BAS descendants of v;
and recall that ch(v) is a sequence: ch(v) = (v1, . . . , vn).

Def. 6.2 resembles Def. 3.2 and adds SANDs: a gate
SAND(v1, . . . , vn) succeeds iff all the BAS descendants of
each vi are completed before any BAS descendant of vi+1.

Again we say that attack O reaches v if fT (v,O) = 1, and
write Sucv for the suite of (“successful”) attacks reaching
v. Its minimal elements w.r.t. the partial order 6 are called
minimal attacks, and its set of minimal attacks is denoted
TvU. We let SucT

.
= SucRT

and TTU .
= TRTU. Note that the

set of minimal attacks has a different notation than we used
for SATs; this is because, as we explain below, for DATs the
semantics are not given by the set of minimal attacks.

Example 6.3. Three successful attacks for the DAT
Td of Fig. 2b are: 〈{w , cc}, {(w , cc)}〉, 〈{ff ,w},∅〉, and
〈{ff ,w , cc}, {(w , cc)}〉. The first two are minimal. Attacks
〈{ff , cc},∅〉 and 〈{w , cc}, {(cc,w)}〉 are not successful.
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Satisfiability of DATs: Contrary to the static case, a
dynamic AT may have no successful attacks, for instance
SucSAND(a,a) = ∅. We call T satisfiable if SucT 6= ∅. Satis-
fiability is enforced with a notion of well-formedness in [26],
where only well-formed DATs are given semantics. This
enforces coherence by discarding trees that allow conflicting
execution orders of BASes. However, [26] notes that this
is overly restrictive, since it also discards satisfiable DATs,
e.g. OR(SAND(a, b), SAND(b, a)) where 〈{a, b}, {(a, b)}〉 is
a valid attack. Our definition of semantics avoids this issue:

Definition 6.4. The semantics of a DAT T is its set of success-
ful attacks SucT , denoted JT K .

a b c

Cf. to Def. 3.4, where the semantics of
a SAT T is given by its minimal attacks
∴ JT K = TTU. Instead Def. 6.4 indicates
that, in general, JT ′K ⊇ TT ′U for DAT T ′.
We use this definition because DATs are
not coherent: it is possible that attack O is successful while
O′ > O is not. For instance in the DAT of the picture
to the right, 〈{a, c}, {(a, c)}〉 is a successful attack, but
〈{a, b, c}, {(a, c)}〉 is not: the single SAND-gate has two
children that share a BAS, so not all BAS of the first child
precede those of the second child.

Hence and contrary to SATs, the full semantics of a DAT
cannot be recovered from just its minimal attacks. While the
noncoherence of DAT semantics is a drawback compared
to SAT semantics, it is needed in order to define semantics
for all DAG-structured DATs, and not just the well-formed
ones like in [26]. For well-formed DATs our semantics are
coherent; in fact this is true for all DATs in which no two
children of a SAND gate share BASes.

Note also that in spite of being laxer than [26, Def. 10],
Def. 6.4 still rules out some feasible interleavings in
the execution of high-level SAND gates. Consider e.g.
T ′ = SAND

(
a,AND(b, c)

)
, where Def. 6.2 forces a to oc-

cur before any of {b, c}. However, one might argue that
AND(b, c) is only executed once both b and c are complete,
and an attack should also be considered successful as long
as a is executed before AND(b, c). Under this interpretation
(b, a, c) would be a valid execution sequence in T ′. To allow
this kind of sequences we need a more complex notion of
strict partial order, as we discuss in Sec. 12. However, this
work is about the efficient computation of metrics, and as
we show next these metrics are invariant for the different
valid orders of execution of BAS. Therefore, here we use the
stricter but simpler semantics that stems from Def. 6.2.

Finally, Lemma 6.5 characterises the minimal attacks
resulting from Def. 6.2, analogously to how Lemma 3.6 does
it for static tree-structured ATs. This is key to prove the cor-
rectness of linear-time algorithms that compute metrics on
tree-structured DATs. We prove this lemma in Appendix A.
We note that a generalization to DAG-structured DATs,
similar to Lemma 3.6, also exists, although its formulation
is considerably more complicated [8]; we give the full state-
ment in Appendix A.

Lemma 6.5. Consider a tree-structured DAT with nodes
a ∈ BAS, v1, v2 ∈ N . Then:

1) TaU = {〈{a},∅〉};
2) TOR(v1, v2)U = Tv1U ∪ Tv2U;

3) TAND(v1, v2)U = {〈A1∪A2,≺1∪≺2〉 | 〈Ai,≺i〉 ∈ TviU};
4) TSAND(v1, v2)U = {〈A1 ∪ A2 , ≺1 ∪ ≺2 ∪ A1 × A2〉 · · ·

· · · | 〈Ai,≺i〉 ∈ TviU};
5) In cases 2)–4) above the TviU are disjoint, and in cases 3)

and 4) moreover the Ai are disjoint.

Comparison with literature: The semantics for dynamic
ATs resulting from Def. 6.4 resembles the so-called series-
parallel graphs from [10]. We adhere to [26, 8] and define
dynamic attacks as posets for a number of reasons:
• they are a succinct, natural lifting of the SAT concepts,

that facilitate the extension of earlier results such as the
characterisation of T·U in Lemma 6.5;

• metrics can be formally defined on this semantics, de-
coupling specific algorithms from a notion of correctness;

• this allows us to define algorithms to compute metrics
regardless of the tree- or DAG-structure of the DAT.

The latter is different for [10], which does not work for DAG-
structured DATs as noted in [18]. In the series-parallel graph
semantics, BASes will occur multiple times when they have
multiple parents. When calculating metrics, this leads to
double counting as in Example 5.1. In contrast, posets entail
a formal definition of metric over DAT semantics—given
now in Sec. 6.3—which in particular yields the expected
result even for DAG-structured DATs.

6.3 Security metrics for dynamic attack trees
The same fundamental concepts of metric for static ATs
work for dynamic ATs: from the attributes of every BAS,
obtain a metric for each attack in TTU, and from these values
compute the metric for T . Thus, the generic notion of metric
given by Def. 3.7 (Sec. 3.2) carries on to this section.

However, attribute domains do not suffice for DATs:
metrics such as min attack time are sensitive to sequential
execution of BASes. This calls for an additional sequential op-
erator B : V 2 → V , to compute values of sequential parts in
an attack. Therefore, metrics computation has an extra step:

0) first, an attribution α assigns a value to each BAS;
1) then, a sequential metric~α uses the operator B to assign

a value to each sequential part of an attack;
2) then, a parallel metric α̂ uses M to assign a value to each

attack, as the parallel execution of its sequential parts;
3) finally, the metric qα uses O to assign a value to the

whole attack suite, considering all its parallel attacks.
To formalise this operational intuition consider an attack

O = 〈A,≺〉: a maximal chain is a sequence (a1, . . . , an) in A

s.t. a1 is minimal under ≺, an is maximal, and ai+1 is a
direct successor of ai for each i < n. The set of maximal
chains in O is denoted MCO . Thus, the 4-steps computation
described above can be reinterpreted as follows:

1) ~α uses B on each maximal chain, yielding one value
sC ∈ V for each C ∈ MCO;

2) α̂ uses M on the values {sC}C∈MCO
, yielding a metric

for the attack O;
3) qα uses O on the metrics of all attacks in a suite S ,

yielding the metric for S .
We use these concepts to define the metric qα(TTU) of

a dynamic AT T , which we denote qα(T ) in order to map
Def. 6.6 to the generic notion of metric given in Def. 3.7.
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Definition 6.6. Let O,M,B be three associative and com-
mutative operators over a set V : we call D = (V ,O,M,B) a
dynamic attribute domain. Let T be a satisfiable dynamic AT
and α an attribution on V . Let S be an attack suite on T . The
metric for S associated to D and α is given by:

qα(S) =
h

O∈S︸︷︷︸
qα

i

C∈MCO︸ ︷︷ ︸
α̂

h

a∈C︸ ︷︷ ︸
~α

α(a) (4)

where MCO is the set of maximal chains in the poset O. The
metric for T is defined as qα(T )

.
= qα(TTU).

As for SATs, metrics are defined in terms of the minimal
attacks, rather than all successful attacks. This causes a
slight mismatch between the definition of metrics of DATs
(based on minimal attacks) and their semantics (based on
succesful attacks). We have chosen to define DAT metrics
as in Def. 6.6 for consistency with SATs: in particular, when
SATs are interpreted as DATs without SAND-gates, metrics
such as max damage have the same value as SAT-metric
and as DAT-metric. Note that when a DAT metric satisfies
a suitable absorption axiom, similar to Sec. 4.2, it does not
matter whether the metric is calculated from JT K or TTU.

Example 6.7. The minimal attacks for the dynamic
AT from Example 2.1 are TTdU = {O1, O2} =
{〈{ff ,w},∅〉 , 〈{w , cc}, {w ≺ cc}〉}. The Hasse diagrams of
these attacks—which resp. have one and two MCs—are
shown in Figs. 4a and 4b. To compute the min time metric of
Td consider the attribution α = {ff 7→ 3,w 7→ 15, cc 7→ 1}
and the dynamic attribute domain D = (N,min,max,+).
Then the time of the fastest attack for D and α is:

qα(Td) =
h

O∈TTU

i

C∈MCO

h

a∈C
α(a)

=

( i

C∈MCO1

h

a∈C
α(a)

)
O

( i

C∈MCO2

h

a∈C
α(a)

)
=
(
α(ff ) M α(w)

)
O
(
α(w)B α(cc)

)
= min(max(3, 15), 15 + 1) = 15.

Note that attack O1 = 〈{ff ,w},∅〉 has two parallel steps:
two maximal chains with one node each—see Fig. 4b—so
operator M has two operands with one node each: C = {ff }
and C′ = {w}. In contrast, O2 = 〈{w , cc}, {w ≺ cc}〉 has
one maximal chain with two nodes, so operator M has one
operand but B has two: α(w) and α(cc). Finally, the min time
of Td is the O = min of these two metrics: the one for O1.
Now consider the min skill metric with the attributes
α′ = {ff 7→ 42,w 7→ 10, cc 7→ 0}. This metric is oblivious
of sequential order: the skill needed to perform a task is
independent of whether it must wait for the completion of
other tasks. So, to compute the min skill metric of Td we
use the dynamic attribute domain D′ = (N,min,max,max),
where the operators M and B are the same. This results in:

qα′(Td) =
(
α′(ff ) M′ α′(w)

)
O′
(
α′(w)B′ α′(cc)

)
= min(max(42, 10),max(10, 0)) = 10.

Note that the order of execution of the BASes in the MC
of an attack is irrelevant for the value of a metric. This is a
consequence of the commutativity of the B operator.

ff w

(a) HO1

w

cc

(b) HO2

ff w

cc

(c) HO3

Figure 4: Hasse diagrams of attacks of Td:O1 = 〈{ff ,w},∅〉,
O2 = 〈{w , cc}, {(w , cc)}〉, O3 = 〈{ff ,w , cc}, {(w , cc)}〉.

As for SATs, in order to be able to actually compute met-
rics, we need additional structure on (V,O,M,B). More pre-
cisely, for a bottom-up algorithm to work on tree-structured
DATs (see Theo. 7.1), we again need distributivity:

Definition 6.8. A semiring dynamic attribute domain is a
dynamic attribute domain D = (V ,O,M,B) where operator
B distributes over M and O, and also M distributes over O.

Note that min time and min skill—used in Example 6.7
above—are both semiring dynamic attribute domains.

Relation to SAT metrics: Many metrics are like min skill
in Example 6.7: insensitive to the sequentiality of events.
We can calculate these metrics for a DAT T by changing
all SAND-gates into AND-gates, and applying our theory
on (static) attribute domains. Alternatively, if (V ,O,M) is a
semiring attribute domain with idempotent M (such as min
skill), then the metric can be calculated via Def. 6.6 for the
dynamic attribute domain (V ,O,M,M).

On the other hand, any SAT T is also a DAT without
SAND-gates: we disambiguate by writing Td for the DAT
interpretation. Note then that A ∈ JT K iff 〈A,∅〉 ∈ TTdU.
Let then α be an attribution on a semiring attribute domain
D = (V ,M,O). One can extend D into a semiring dynamic
attribute domain (Ṽ , Õ, M̃, B̃) with V ⊆ Ṽ , s.t. qα(T ) = qα(Td);
for details see Appendix A. As a consequence, results
proved for metrics on DATs also hold for SATs.

7 COMPUTATIONS FOR TREE-STRUCTURED DATS

Earlier in Example 6.7, the computation of metrics for dy-
namic ATs was illustrated using Def. 6.6, which is worst-
case exponential in the number of nodes. However and as
for SATs, there is a bottom-up algorithm to compute metrics
for tree-structured DATs, that is linear in the number of
nodes of the attack tree. We present a recursive version in
Algo. 4 (page 13), and state its correctness in Theo. 7.1.

The proof of Theo. 7.1 (in Appendix D) relies on
Theo. 9.2, whose proof in turn uses the distributivity of
operator B over O and M. Thus the fact that (V ,O,M,B)
is a semiring dynamic attribute domain is crucial.

Theorem 7.1. Let T be a dynamic AT with tree structure, α
an attribution on V , and D = (V ,O,M,B) a semiring dynamic
attribute domain. Then qα(T ) = BUDAT(T , RT , α,D).

8 COMPUTATIONS FOR DAG-STRUCTURED DATS

Algo. 4 does not work for dynamic ATs with a DAG-
structure, for the same reasons exposed for SATs in Sec. 5.
Neither is it possible to propose algorithms based on stand-
ard BDD theory, because the computation of metrics for
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Input: Dynamic attack tree T = (N, t , ch),
node v ∈ N ,
attribution α,
semiring dynamic attr. dom. D = (V ,O,M,B).

Output: Metric value qα(T ) ∈ V .

if t(v) = OR then
return

`
u∈ch(v) BUDAT(T , u, α,D)

else if t(v) = AND then
return

a
u∈ch(v) BUDAT(T , u, α,D)

else if t(v) = SAND then
return ` u∈ch(v) BUDAT(T , u, α,D)

else // t(v) = BAS

return α(v)

Algorithm 4: BUDAT for a tree-structured DAT T

DATs needs a notion of order among their BASes, that is
not present in standard BDD-based data types.

As discussed in Sec. 1, some general approaches do
exist to compute metrics on DAG-structured DATs [5, 9].
However, these often overshoot in terms of computation
complexity. For SATs and from a procedural (rather than
semantic) angle, [18] proposes a more efficient, ingenious
approach that computes and then corrects a metric value by
traversing the AT bottom-up repeatedly. It may be possible
to extend this algorithm to cover SAND gates as well [34].

Alternatively, Def. 6.6 of DAT metric could be encoded
into a naïve algorithm. This would enumerate all posets
from TTU, and compute the value qα(T ) using three nested
loops to traverse the corresponding Hasse diagrams. We do
not expect such approach to be computationally efficient.

Instead and as in the static case, we expect that BDD
encodings of the DAT offer better solutions. This requires
BDD-like structures also sensitive to variable orderings. In
that sense, the so-called sequential-BDDs recently presen-
ted for dynamic fault trees seem promising [47]. A first
challenge would be to extend them to attributes other than
failure (viz. attack) probability. Another—harder—challenge
to apply this approach efficiently is the combinatorial explo-
sion, that stems for the different possible orderings of BAS
descendants of SAND gates.

In view of these considerations, we regard the al-
gorithmic analysis for DAG-structured dynamic attack trees
as an important open problem for future research. Instead,
we now discuss modular analysis: a simplification strategy
that can be used in any algorithm that calculates metrics.

9 MODULAR ANALYSIS

In this section we show that the calculation of metrics
can be split up according to the modules of an AT. The
resulting modular analysis is a well-established method for
quantitative analysis of fault trees and ATs [48, 49, 50, 8]. We
exploit modular analysis in the general semiring (dynamic)
attribute domain setting, leading to improved performance
in calculating these metrics.

For v ∈ N we let Tv be the subDAG of T consisting of all
descendants of v, with v as the root. Intuitively, a module is
an inner node v such that all paths from T \ Tv to Tv pass
through v. This is formalised in the following definition.

Definition 9.1. Let v ∈ N \ BAS. We call node v a module if
Tv ∩ Tw ∈ {Tv, Tw,∅} for all w ∈ N .

Note that the root of T is always a module. The modules
of an AT T can be found in linear time [48]. These modules
aid calculation in the following manner: Let v be a module,
then v is the only node within Tv with parents outside of
Tv . This means that we can create a tree T v by replacing Tv
within T by a new single BAS ṽ. Then the parents of ṽ in T v

are the parents of v in T , see Fig. 5. This allows to calculate
a metric qα(T ) by first calculating the metric on Tv , and then
on T v . This is formalized in Theo. 9.2.

Figure 5: To compute
qα(T ) first compute the
metric qα(Tv) for mod-
ule v, then compute
qαv(T v) as in Theo. 9.2.

Theorem 9.2. Let v be a module in an AT T , and α an attribution
into a (dynamic) attribute domain V . Let T v = (Nv, Ev) be
the AT obtained by replacing Tv by a new single BAS ṽ. Let
αv : Nv → V be an attribution for T v given by

αv(v′) =

{
α(v′) if v′ 6= v,

qα(Tv) if v′ = ṽ.

Then qα(T ) = qαv(T v).

Theo. 9.2 allows us to split up metric computation by
splitting up the attack tree T . This can be used to paral-
lelise—at least partially—any algorithm A that calculates a
metric. More generally, when the time complexity of A is
high, e.g. exponential in the number of nodes of T , then
splitting the calculation in the modules of T will result
in a lower computation time. This result is non-trivial, as
it requires to express the minimal attacks of T (and their
maximal chains) in terms of the minimal attacks of T v and
Tv : this is encoded in Theo. 9.2 (proved in Appendix B).

This result can be implemented by identifying all mod-
ules v of T as in [48], and then calculating qα(Tv) for them
using any algorithm A. By doing this bottom-up, we can
use the result for lower modules in the calculation of higher
ones. The resulting method is presented as Algo. 5; its
correctness is stated in the following corollary of Theo. 9.2:

Corollary 9.3. Algo. 5 correctly calculates qα(T ).

Example 9.4. Recall the DAT from Fig. 2b,

a

ff

i

cc

Td, and refine the BAS w (“walk next to
victim”) to consist of two steps: “identify
possible target” (i) and “approach victim”
(a). Then instead of w ∈ BAS, the sub-
tree shared by gates “skill” and “luck”
becomes v = SAND(i, a), yielding the
DAT T ′ = OR

(
AND(ff , v), SAND(v, cc)

)
. Consider the min

time metric given by the semiring dynamic attribute domain
(N,min,max,+), and attribution α = {ff 7→ 3, i 7→ 10,
a 7→ 5, cc 7→ 1}. Then qα(T ′v) = α(i) + α(a) = 15 , and since
the truncated DAT T ′v is isomorphic to Td, by Theo. 9.2
we get qα(T ′) = qα(Td) = 15 (see Example 6.7). In contrast,
applying eq. (4) directly to T ′ would have computed qα(v)
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Input: Static or dynamic attack tree T ,
attribution α,
algorithm A to calculate metric qα

Output: qα(T ).

U := Modules(T )
while U 6= ∅ do

Extract minimal v from U
qα(Tv) := A(Tv, α) // Compute metric for module v
(T , α) := (T v, αv) // Update α and remove module v

return α(RT ) // RT is a BAS now

Algorithm 5: Modular analysis. Notation (T v, αv) is
from Theo. 9.2; Modules is an algorithm that lists all
modules, e.g. the one from [48].

twice. The gain of this approach is proportional to the
amount of repetitions of each module, times their size.

Note that if T has tree structure, each node is a module.
In this case Algo. 5 becomes a bottom-up method, and so
Theo. 9.2 is an important result for Theorems 4.1 and 7.1.

Algo. 5 does not solve the problem of calculating metrics
for DAG-structured DATs, since it assumes the existence
of an algorithm A that computes qα. However, it can speed
up any found algorithm, including the enumeration of all
minimal attacks to calculate the metric from these.

10 MULTIPLE METRICS SIMULTANEOUSLY

An important class of metrics are those which assign to an
AT not a single metric value, but a set of metric values.
Typical examples are the following (stated below for SATs
but applicable to DATs as well):

1) Uncertainty sets: Suppose that the α(a) are not known
exactly, but instead we only have bounds α(a) ∈
[La, Ua] for all a ∈ BAS. For instance, we might only
have a confidence interval for α(a). In this case, we are
interested in finding qL, qU such that qα(T ) ∈ [qL, qU ].

2) k-top metrics: The k-lowest (or -highest) values of a
given metric, see Sec. 5.5.

3) Pareto front: Attributes can be opposed, e.g. attack A1

may be less expensive than A2, but take more time. To
understand the tradeoffs between different metrics one
studies its Pareto front: the set of metric values of attacks
that are not dominated in all metrics by another attack.

Such metrics relate to partial orders on the domain: We
now give a framework to express the examples above as
semiring attribute domain metrics, via their ordering. This
allows us to run once any algorithm that calculates semiring
metrics, e.g. Algos. 1, 2 and 4, to compute all elements of these
(multi) sets simulaneously — proofs are in Appendix C.

Definition 10.1. 1) A partially ordered semigroup (POSG) is
a tuple (X,�,M) such that:

a) (X,�) is a poset;
b) M is a commutative associative operation on X ;
c) If x, y ∈ X are such that x � y, then xM z � yM z for

all z ∈ X .
If � is a linear order, we call (X,�,M) a linearly ordered
semigroup (LOSG).

2) A dynamic partially ordered semigroup (DPOSG) is a
tuple (X,�,M,B) such that (X,�,M) and (X,�,B) are
POSGs and B distributes over M. If � is a linear order,
we call (X,�,M,B) a dynamic linearly ordered semigroup
(DLOSG).

There are different ways to create semiring attribute
domains out of POSGs, and semiring dynamic attribute
domains out of DPOSG. In the case that the partial order
is linear this can be done directly:

Lemma 10.2. 1) If (X,�,M) is an LOSG, then (X,min,M)
is a semiring attribute domain.

2) If (X,�,M,B) is a DLOSG, then (X,min,M,B) is a
semiring dynamic attribute domain.

Semiring attribute domains from LOSGs are ubiquit-
ous: all examples in Table 2 come from the construction
in Lemma 10.2 (reverting the natural order to change
min into max if necessary). In the following we explain
how examples 1)–3) mentioned above can be calculated
using semiring (dynamic) attribute domains derived from
(D)POSGs. We only give the dynamic statements below, but
the static cases are completely analogous.

10.1 Uncertainty sets
Let (X,�,M,B) be a DLOSG. Suppose that α is not known
exactly; instead for every a ∈ BAS we have La, Ua ∈ X
for which we know La � α(a) � Ua. In this case, we are
interested in

qLT
.
= inf{qα(T ) | ∀a.La � α(a) � Ua}

qUT
.
= sup{qα(T ) | ∀a.La � α(a) � Ua}.

We find this as follows: let D = (X,min,M,B) be
the semiring dynamic attribute domain from Lemma 10.2.
Consider the semiring dynamic attribute domain D2, which
has underlying set X2 and on which every operator acts
componentwise. Define an attribution β with values in X2

by β(a) = (La, Ua); then qβ(T ) = (qLT , qUT ). The key obser-
vation to prove this is that for every T , the map α 7→ qα(T )
is monotonous in each α(a).

10.2 k-top metrics
Let (X,�,M,B) be a DLOSG: we want to find the k-top
metric Topk(T, α) ∈ M(X) from Sec. 5.5. This can be done
via a semiring metric as follows. Let Mk(X) be the set
of multisets in X of cardinality at most k. Define three
operations Ok, Mk and Bk on Mk(X) by

M1 O
kM2 = mink(M1 ]M2)

M1 M
kM2 = mink{{x1 M x2 | x1 ∈M1, x2 ∈M2}}

M1 B
kM2 = mink{{x1 B x2 | x1 ∈M1, x2 ∈M2}}.

Here ] denotes multiset union. Furthermore, define a map
β : BAS → M(X) by β(a) = {{α(a)}}. Then Topk(T , α) can
be found as follows:

Lemma 10.3. The tuple (Mk(X),Ok,Mk,Bk) is a semiring
dynamic attribute domain, and qβ(T ) = Topk(T , α).

Compared to Algo. 3, this method is more general in the
sense that it also works for DATs, but it comes at a com-
plexity cost for SATs: once the BDD (W,Low,High, Lab)
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Metric Static tree Dynamic tree Static DAG Dynamic DAG

min cost BU [14, 15, 16] BU [10] MTBDD [17] C-BU [18] PTA [5]

min time BU [14, 19] APH [6] BU [10] Petri nets [12] MILP [8]

min skill BU [14, 20] BU [10] C-BU [18] —

max damage BU [14, 19, 20] BU [10] MTBDD [17] DPLL [21] PTA [5]

probability BU [22, 19] APH [6] BDD [23] DPLL [21] I/O-IMC [9]

Pareto fronts BU [24, 19] Lemma 10.4 C-BU [11] Lemma 10.4 PTA [5]

Any of the above Algo. 1: BUSAT Algo. 4: BUDAT Algo. 2: BDDDAG OPEN PROBLEM1

k-top metrics BU-projection [14] BU [25] Lemma 10.3 Algo. 3: BDD_shortest_paths OPEN PROBLEM2

Table 3: Algorithms for metrics on different AT classes (replica of Table 1)

BU: bottom-up on the AT structure. APH: acyclic phase-type (time distribution). BDD: binary decision
diagram. MTBDD: multi-terminal BDD. CCC-BU: repeated BU, identifying clones. DPLL: DPPL SAT-solving
in the AT formula. PTA: priced time automata (semantics). MILP: mixed-integer linear programming.
I/O-IMC: input/output interactive Markov chains (semantics). 1 Algo. 5 reduces runtime for any found
method; 2 Lemma 10.3 reduces k-top calculation to metric calculation.

corresponding to T has been constructed, Algo. 3 has com-
plexity O(|W | + k), while applying Algo. 2 to Lemma 10.3
has complexity O(k2|W |).

10.3 The antichain semiring

If (X,�,M,B) is a DLOSG, then we can interpret it as
a semiring attribute domain (X,min,M,B). We cannot do
the same when it is a DPOSG, because min(x, y) may
not exist. To create a semiring attribute domain out of a
DPOSG we need a more elaborate construction. Specifically,
let ACX be the set of antichains in (X,�), i.e. sets of pairwise
incomparable elements:

ACX = {S ∈ 2X | ∀x, x′ ∈ S : x′ 6≺ x}.

Furthermore, define a map m : 2X → ACX that sends a set
to the antichain of its minimal elements:

m(S) = {x ∈ S | ∀x′ ∈ S : x′ 6≺ x}.

We also define three operations OAC,MAC,BAC on ACX by

S1 OAC S2 = m(S1 ∪ S2)

S1 MAC S2 = m({x1 M x2 | x1 ∈ S1, x2 ∈ S2})
S1 BAC S2 = m({x1 B x2 | x1 ∈ S1, x2 ∈ S2}).

The following lemma is an extension of [11], where it is
shown for the static case under mild assumptions on X .

Lemma 10.4. The tuple (ACX ,OAC,MAC,BAC) is a semiring
dynamic attribute domain.

This has a number of applications:

1) If (X,�,M,B) is a DLOSG, then every antichain is a
singleton, and the map X → ACX given by x 7→ {x} is
an isomorphism of semiring dynamic attribute domains.

2) For a SAT T , consider the static POSG (2BAS,⊆,∪) and
the attribute β : BAS → AC2BAS given by β(a) = {{a}};
then qβ(T ) = JT K. The elements of AC2BAS are suites, and

for any semiring attribute domain (V ,O,M), each attri-
bution α : BAS → V induces a morphism of semiring
attribute domains qα : AC2BAS → V .

3) Let (X1,�1,M1,B1), . . . , (Xn,�n,Mn,Bn) be a collec-
tion of LOSGs. Let X =

∏
iXi, on which we have

a partial order � and binary operations M,B defined
componentwise. Then (X,�,M,B) is a DPOSG and so
(ACX ,OAC,MAC,BAC) is a semiring dynamic attribute
domain. Let T be a SAT, and for each i let αi : BAS→ Xi

be an attribution; let α : BAS → X be the product map.
Define α̂(A) = (α̂1(A), . . . , α̂n(A)) for A ∈ JT K. Then the
Pareto front of T w.r.t. the αi is the subset of X given by:

PF(T , α) = {α̂(A) | A ∈ TTU,∀A′ ∈ TTU : α̂(A′) 6≺ α̂(A)}.

Finally, consider the map β : BAS → ACX given by
β(a) = {α(a)}. Then qβ(T ) = PF(T , α).

11 RELATED WORK

Surveys on attack trees are [51, 34]: the latter covers AT
analysis via formal methods, from which we are close to
quantitative model checking—cf. simulation studies such as
[12, 52]. Concrete case studies have been reported in [53].

Terminology in the AT literature is not uniform. In
particular, some works study DAG-like structures but pre-
serve the term “attack tree” [14, 17, 26]. Others restrict the
syntactic structures to be actual trees, replicating parts of the
tree—e.g. via so-called cloned nodes and repeated labels—
to model the use of the same resource in several parts of an
attack [13, 29, 18]. We follow the former convention, which is
akin to the treatment of common cause failures in fault tree
analysis [28, Sec. 8]. Thus, we write “attack tree” to refer to
both tree- and DAG-like structures.

Similarly, the term dynamic attack tree has recently been
used to refer to a set of ATs that share the main attacker’s
goal [54, 55]. These resemble the attack-tree series from
[56], where “dynamic attack tree analysis” refers to the
study of attack-tree series. Instead, in this work we follow
[26, 27] and call an AT dynamic when its structure includes
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a sequential-AND gate—so its semantics must distinguish
among different execution orders of the basic attack steps.
This is akin to the notions used in fault tree analysis, where
dynamic gates like priority-AND in dynamic fault trees
have similar semantics to sequential-AND in ATs [28, 57].

Regarding AT metrics, Table 3 condenses literature refer-
ences on quantitative analyses of ATs, classified by the struc-
ture and (dynamic) gates of the ATs where they operate. For
each metric and AT class, the table cites the earliest relevant
contributions that include some computation procedure.

Works [22, 21] are among the first to model and compute
the cost and probability of attacks: their algorithms have
EXPTIME complexity regardless of the AT structure. In [5, 7]
an attack is moreover characterised by the time it takes. This
allows for richer Pareto analyses but introduces one clock
per BAS in the Priced Time Automata semantics: algorithms
have thus EXPTIME & PSPACE complexity [58, 59]. The cur-
rent work improves these bounds via specialised procedures
tailored for the specific AT class, e.g. Algos. 1 and 4 resp. for
tree-structured SATs and DATs have LINTIME complexity.

Indeed, all algorithms specialised on tree-structured ATs
implement a bottom-up traversal on its syntactic structure:
we denote these BU in Table 3. Pareto analyses are polyno-
mial, where the exponent is the number of parameters being
optimised. Most works are on static ATs, with the relevant
exception of [6, 10, 25] which include sequential-AND gates.

For DAG-structured static ATs the algorithmic spectrum
is broader, owing to the NP-hardness of the problem (see
Sec. 5.1). Such algorithms range from classical BDD en-
codings for probabilities, and extensions to multi-terminal
BDDs, to logic-based semantics that exploit DPLL, including
an encoding of SATs as generalised stochastic Petri nets.
Prominent contributions are [29] and [18, Alg. 1]: after
computing so-called optional and necessary clones, com-
putations are exponential on the number of shared BAS
(only). As discussed in Sec. 5.1, in this case the exponential
complexity—on the number of nodes of the complete AT—
lies in the input of the algorithm, i.e. clone computation.
This approach is used in [11] to calculate Pareto fronts; in
Lemma 10.4 we use a similar strategy but instead apply
Algo. 2, whose exponential explosion lies in computing the
BDD that encodes the AT.

The computation of security metrics for dynamic attack
trees is more recent than for SATs: here we find open
problems in the literature, indicated in two cells of Table 3.
These open problems are not easy to overcome, although
efficient solutions have been presented for specific cases,
such as the series-parallel graph semantics of [10] which
works for tree-structured DATs. However, as we discuss in
Sec. 6.2 (page 11), this does not extend to DAG-structured
dynamic attack trees. Another example is [9], which en-
codes a DAT as a (variant of a) Markov chain to compute
attack probability. Min time is phrased in [8] as a mixed-
integer linear programming problem. For other metrics, [5]
encodes the AT as a network of PTA and solves the resulting
cost-optimal reachability problem. As earlier stated, these
very powerful and general approaches are in detriment
of computational efficiency. Alternatively and as shown in
Secs. 7 and 9, efficient (linear) bottom-up algorithms can
correctly compute metrics in tree-structured DATs. This is
implemented for instance in ADTool 2.0, which can also

create a ranking of attacks—e.g. to find the k-top values—
under the expected conditions for the operators O,M,B [25].

Regarding DAG-strutured DATs, where the open prob-
lems of Table 3 lie, recent related results encode dynamic
fault trees as so-called sequential-BDDs, to compute the
probability of system failure [47]. However, such safety-
oriented works are hard to map to security analysis such as
AT metrics because: 1) they can compute probability—and
possibly parallel time—only; 2) the dynamic gates are not
the same than those in dynamic ATs; 3) the standard logical
gates are interpreted differently. Still, it might be feasible to
adapt [47] to compute AT metrics, e.g. to compare it against
the algorithms here presented. Probably the main detriment
is that sequential-BDDs expand sequence dependencies of
every pair of events, adding a combinatorial blow-up on top
of the already exponential explosion incurred by BDD rep-
resentations of DAGs. This leads us to believe that even the
EXPTIME complexity of our Algo. 2 can be more efficient.

12 CONCLUSIONS

This paper presents algorithms to compute quantitative
security metrics on attack trees. This is done in two steps:
first, we revise and consolidate semantics in line with the
literature, and we define metrics on these semantics, provid-
ing formal grounds on which to demonstrate the correctness
of any devised computation method. A key contribution
here is the adaptation of non-restrictive poset semantics for
dynamic attack trees (Sec. 6.2), which allows for a formal
definition of general metrics on a wide range of DATs.

Second, we introduce efficient and unifying algorithms
that can compute many popular metrics, including sets of
metrics (i.e. several metrics simultaneously as in k-top and
Pareto analyses). Here, the BDD-based approach for general
metrics of Algo. 2 is a prominent result, together with
Lemmas 10.3 and 10.4 that show how to use single-value
algorithms for the computation of set metrics.

We noted — in Sec. 6.2 — that our DAT semantics rules
out some interleavings in the execution of SAND gates,
e.g. (b, a, c) for SAND

(
a,AND(b, c)

)
, even when these se-

quences would arguably result in a succesful attack. To
allow such sequences it is necessary to use formulae —
rather than individual BASes— as elements of the partial
order. For the DAT above, this would yield the relation
a ≺ (b ∧ c), which allows (b, a, c) because the formulae in
that sequence are satisfied in the order “first a, then b ∧ c.”
Such ordering graphs are a promising research direction.

Further lines for future work also include: developing
efficient algorithms to compute metrics on DAG-structured
dynamic ATs; extending our AT syntax to include sequential-
OR gates [5, 60]; and extending our general metrics to
Attack–Defense Trees [35, 61]. Other important future work
is to implement the methods and algorithms from this
paper in real-life case studies. Interesting future work in the
opposite direction would be to frame attack tree metrics in
a wider, category-theoretical framework. Operad algebras
may form a useful tool for research in this direction, as
attribute domains can be regarded as algebras of the operad
of (dynamic) attack trees.
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