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Recommendations for Better Quality
Ontology Matching Evaluations'

Aliaksandr Autayeu and Vincenzo Maltese and Pierre Andrews

Abstract. Evaluating and comparing different ontology matching
techniques is a complex multifaceted problem. Currently, diverse
golden standards and various practices are used for evaluations. In
this paper we show that, by following certain rules, the quality of the
evaluations can be significantly improved, particularly in regard to
the accuracy of precision and recall measures obtained.

1 Introduction

In the recent years, several matching tools have been proposed as so-
lutions to the semantic heterogeneity problem. We focus on the prob-
lem of evaluating semantic matching techniques [10] which find rich
mappings, that is, mappings which contain disjointness, equivalence,
less general and more general links.

Most of the tools for semantic matching identify only equivalence,
some identify less and more generality, but only a few include ex-
plicit disjointness [23]. Reflecting this, an overwhelming majority of
available golden standards are targeted at evaluating mappings with
equivalence links only. In this paper we explain why evaluating a rich
mapping using such a golden standard makes results imprecise and
propose some recommendations to make evaluations and comparison
between different tools fairer and more accurate.

In addition, we address important issues concerning the coverage
of a golden standard and the presence of redundant links, namely
links which can be logically inferred from the others in the mapping,
and how they can influence the quality measures.

The rest of the paper is organized as follows. In Section 2 we
present state of the art approaches. Section 3 shows how to conduct
the evaluation according to the characteristics of the golden standard
used. Section 4 focuses on the importance of maximizing both the
mapping and the golden standard for an optimal evaluation. Finally,
Section 5 concludes the paper and outlines future work.

2 Related Work

With matching techniques being the main focus of the ontology
matching field, a few initiatives® pay attention to evaluation. On the
one hand, general [22, 6] and domain-specific [18, 17] evaluation
experiments are reported, without discussing the evaluation method-
ology. On the other hand, considerable attention has been paid to
appropriateness and quality of the measures [8, 9, 4].

Attention has also been brought to the mapping itself. In [20] the
authors propose to complement the precision and recall with new
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measures to take into account possible mapping incoherence, thus
addressing the issues of internal logical problems of the mapping and
the lack of reference mappings. In [24] two evaluation techniques are
proposed. The first is practice-oriented and evaluates the behaviour
of the mapping in use. The second focuses on the manual evaluation
of a mapping sample and the generalization of the results.

Closer to our work, Sabou and Gracia [23] raise the issue of eval-
uating non-equivalence links, pointing out that several systems also
produce subsumption and disjointness links. In particular, they dis-
cuss the issue of evaluating a mapping that contains redundant links,
that is, links that can be logically derived from the others in the map-
ping. They compute precision both for the original set and the set
from which the redundant links are removed. We extend and improve
their conclusions.

3 Computing Precision and Recall

Golden standards are fundamental for computing the well-known
precision and recall measures [4]. Typically, hand-made positive
(GS™) and negative (G.S™) golden standards contain links consid-
ered correct and incorrect, respectively. Ideally, GS™ complements
GS™, leading to a precise evaluation. Yet, annotating all links in big
datasets (with thousands or millions of links) is impossible and there-
fore the golden standard is often composed of three sets:

GST the set of links considered correct;
G S~ the set of links considered incorrect;
Unk the pairs of nodes for which the semantic relation is unknown.

If we denote the result of the matcher (the mapping) with Res,
precision and recall can be computed as follows [14]:

Precision = TP — |Res N GS™| M
_TP+FP_ |R680GS+‘+|R680GS,|
TP |ResnGS™|
fecall = TP+FN  |GS+] )
where:

TP (True Positives) is the set of links found by the algorithm that
hold;

F P (False Positives) is the set of links found by the algorithm that
do not hold;

F N (False Negatives) is the set of links that hold, but which were
not found by the algorithm.

For the cases in which G'S™ is not available, precision can be ap-
proximated as follows:

|Res N GS™|

| Res| ®)

Precision =



These sets are illustrated in Figure 1. For example, if for sake of
simplicity we use numbers to indicate links, we could have:

Res = {1,2,3,4} Unk = {}
GS™ ={3,4,6,8} GS* =1{1,2,5,7,9,10}

=0.5 Recall = 2 =0.33 4)

Precision = 2+2) =

Unknown

True Positives False Positives

All Mappings

Figure 1. True Positives, False Positives and Golden Standards

The precision gives an indication of the amount of noise that is re-
trieved by the matching algorithm (how many correct links it returns)
while the recall is a measure of the coverage of the algorithm (how
many links the algorithm found and missed).

3.1 Coverage of the Golden Standard

Given two ontologies of size n and m, the size of a mapping and the
golden standards range in [0, n x m]. To enable precise computation
of precision and recall, one should inspect all n x m combinations of
nodes and consider all possible semantic relations that can hold be-
tween them. For large ontologies this is practically impossible. The
huge effort required for their construction is the main reason why
only a few golden standards are available and evaluation campaigns
tend to use very small ontologies, risking a loss of statistical signifi-
cance of the results and biasing towards one algorithm or the other.

When setting up exhaustive GS* and G'S™ is not possible, the
common practice is to inspect only a subset of the n X m node pairs
[2, 14]. Partial coverage leads to an approximated evaluation. In par-
ticular, we cannot say anything about the subset Res N Unk of the
links. However, if GS™ and GS™ are sampled properly, the preci-
sion and recall should still be evaluated in a statistically significant
manner. For example, we could have reduced coverage compared to
the previous example, as follows:

Res={1,2,3,4} GST ={1,2,7} GS™ ={3,6,8}
Unk ={4,5,9,10} ResNUnk = {4}
.. 2 2
Precision = m =0.66 Recall = 3= 0.66

As it turns out (compare the measures with those in (4)), such evalu-
ations may be very different from the real values, therefore:

Recommendation 1. Use large golden standards. Include G.S™
for a good approximation of the precision and recall. To be sta-
tistically significant, cover in GS™ and G'S™ an adequate por-
tion of all node pairs.

In a sampled GS, reliability of results depends on: (a) the portion
of the pairs covered by the golden standard; (b) the ratio between the
size of the GS™ and the G'S™ and (c) their quality (see Section 4).

3.2 Comparing Semantic Relations

Current state of the art tools output different kinds of relations. While
most of the matching tools, such as Similarity Flooding [21], Cupid
[19] and COMA [7] only produce equivalence, some tools, such as
AROMA [5] also produce less general and more general relations.
At the best of our knowledge only ctxMatch [3], S-Match [12], Min
S-Match [11] and Spider [23] also produce explicit disjointness.

Currently, different tools are usually compared without distin-
guishing among the different semantic relations produced and only
the presence or absence of a relation between a pair of nodes is eval-
uated. This means, for instance, that subsumption and equivalence
are considered as the same. This approach can be used to compare
heterogeneous mappings, but leads to imprecise results.

A particular discourse has to be made for disjointness relations.
Typically disjointness links are seen as a negative result, that is, a
clear indication of two completely unrelated nodes. Thus, the major-
ity of matching tools do not consider them interesting to the users.
As a consequence they do not compute them at all, but correspond-
ing node pairs are rather put in the G.S™. Moreover, they are often
confused with overlap.
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Figure 2. Overlap between nodes A and B. Natural language labels are in
bold with a corresponding DL formulas under them.

Consider the example in Figure 2. The link < A, C, 3> is a cor-
rect result and as such should be part of the GS™. In fact, given the
semantics of lightweight ontologies [16], the meaning of the node C
includes the meaning of the node B above it. What about the relation
between A and B then? They are not disjoint as they share C. The
relation is rather an overlap (namely AN B # ).

Discriminating the two cases above is fundamental both to con-
clude the right relations between the nodes and to correctly evaluate
precision and recall of disjointness relations when they are explic-
itly computed by the matching tool. In fact, the main problem is that
negative golden standards (when available) typically contain undif-
ferentiated links. For instance, the authors of [14] make no difference
between disjointness and overlap relations. To the best of our knowl-
edge, no evaluations take disjointness and overlap relations into ac-
count when measuring precision and recall. To summarize:

Recommendation 2. When presenting evaluation results, spec-
ify whether and how the evaluation takes into account the kinds
of the semantic relations.

4 Maximized and Minimized Golden Standards

We use the notion of minimal mapping [11] to judge the quality of a
golden standard. The basic idea is that among all possible links be-
tween two ontologies there are some redundant ones, which can be
logically inferred from the others. The minimal mapping is defined



as the minimal set of (non-redundant) links such that all the other
(redundant) links can be logically inferred from the non-redundant
ones [11, 13]. We use the Min(mapping) function to remove the re-
dundant links from the mapping (producing the minimized mapping)
and the Max(mapping) function to add all the redundant links (pro-
ducing the maximized mapping).

Natural resources OA 1= > @ Natural resources
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natural_resources#l natural_resources#l
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Figure 3. The mapping between two lightweight ontologies. Original
natural language labels are in bold.

Consider the example in Figure 3 taken from [13]. It shows the
minimal mapping (the solid arrows) and the mapping of maximum
size (including the maximum number of redundant links, represented
as dashed arrows) computed between two lightweight ontologies.

In the following we provide three observations.

The first observation is that following [11] and staying within
lightweight ontologies guarantees that the maximized mapping is al-
ways finite and thus corresponding precision and recall can always
be computed.

The second observation is that, in contrast with [23], we argue (and
show with an example) that comparing the minimized versions of
the mapping and the golden standards is not informative. The reason
is that minimization can significantly reduce the amount of links in
their intersection. In other words, they can share a few non-redundant
links still generating a significant amount of redundant links in com-
mon. Notice that different non-redundant links can generate the same
redundant links.

(@) GST

(b) Res

Figure 4. Minimization changing precision and recall

Consider the examples in the Figure 4. Suppose that all the dis-
played links are correct. Notice that links 2 and 3 follow from link
1. Suppose that our golden standard (Figure 4a), as it often happens
with large datasets, is incomplete (it contains only the links 2 and
3, while link 1 is unknown) and thus we use precision formula (3)
which returns an approximated value. Suppose that the matcher, be-
ing good enough, finds all displayed links (Figure 4b). By computing
the precision and recall figures first on the original and then on the

minimized versions of the mapping and the golden standard we ob-
tain:

GST ={2,3} Res={1,2,3}

Precision = 0.66 Recall =1 5)
Min(GS') ={2,3} Min(Res) = {1}
Precision =0 Recall =0 6)

Compare the normal situation (5) with (6) that shows the situa-
tion when minimized sets are used to calculate precision and recall
figures. From this example we see that precision and recall figures
computed on the minimized versions are far from the real values and
are unreliable.

Our last observation is that using maximized sets gives no prefer-
ence to redundant or non-redundant links and leads to more accurate
results. In particular, recall figure better shows the amount of infor-
mation actually found by the system. If we maximize the sets we
also decrease the number of unknown links and therefore we obtain
a more accurate result.

(a) GS* (b) Res

Figure 5. Maximization changing precision and recall

Consider now the example in Figure 5. The precision and recall
figures are given in (7) for the original sets and in (8) for the maxi-
mized ones.

GS* ={1,2} Res={1,3}

Precision = 0.5 Recall = 0.5 7
Max(GS™) = {1,2,3} Max(Res) = {1,2,3}
Precision =1 Recall =1 ®)

Maximizing a golden standard can also reveal some unexpected
problems and inconsistencies. For instance, we can discover that
even if GS™ and GS™ are disjoint, Maz(GS™) and Maz(GS™)
are not, namely, Maz(GS™) N Maxz(GS™) # 0. During our ex-
periments with the TaxME2 golden standard [14], we discovered that
there are two links in the intersection of G.S* and G.S™~ and 2187 in
the intersection of their maximized versions.

We conducted several experiments to study the differences be-
tween precision and recall measures when comparing the minimized
and maximized versions of the golden standards with the minimized
and maximized versions of the mapping returned by S-Match [15].

We used three different golden standards [1] already used in sev-
eral evaluations. The first two datasets come from OAEI; they de-
scribe publications, contain few nodes and corresponding golden
standard is exhaustive. It only contains equivalence links. The sec-
ond two come from the arts domain and the golden standard is crafted
by experts manually. The third two datasets have been extracted from
the Looksmart, Google and Yahoo! web directories. The golden stan-
dard is part of the TaxME2 and is extensively described in [14]. Un-
fortunately, all these golden standards suffer to a certain degree from



Table 1. Precision and Recall for minimized, normal, and maximized sets
. Precision, % Recall, %
Dataset pair
min res max min res max
101/304 32.47 9.75 69.67 | 86.21 93.10 92.79
Topia/lcon 16.87 486 4542 | 10.73 20.00 42.11
Source/Target  74.88  52.03 48.40 | 1035 40.74 53.30

the problems described in the previous sections, thus the measures
obtained must be considered as indicative.

Table 1 contains precision and recall figures calculated using stan-
dard precision and recall formulas (1) and (2). For the cases where no
GS™ is provided, (3) is used instead of (1). In particular, these fig-
ures are the result of the comparison of the minimized mapping with
the minimized golden standards (min), the original mapping with the
original golden standards (res) and the maximized mapping with the
maximized golden standards (max) respectively. As it can be noted
from the measures obtained comparing the maximized versions with
the original versions, the performance of the algorithm is on average
better than expected. To summarize:

Recommendation 3. To obtain accurate measures it is funda-
mental to maximize both the golden standard and the matching
result.

5 Conclusions and future work

In this paper, we proposed some recommendations to follow when
building golden standards and to effectively use them to evaluate
matching algorithms. Following these recommendations will make
the evaluation and comparison of different algorithms more accurate.

We also discussed the issue of evaluating mappings with disjoint-
ness. In the current state of the art, no golden standard is available
that explicitly provides true disjointness links. Moreover, disjoint-
ness is often confused with overlap. Thus, it is currently impossible
to evaluate the performance of such algorithms.

In the future we will explore how the size of the golden standard
influences the evaluation and how large should be the part covered
by GS™T and G'S™ to be statistically significant as well as describe
the methodology for evaluating rich mappings by supporting our rec-
ommendations with further experimental results.
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