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Abstract

In this thesis, we focus on building reliable hybrid human-machine classifiers

to be deployed in cost-sensitive classification tasks. The objective is to assess

ML quality in hybrid classification contexts and design the appropriate metrics,

thereby knowing whether we can trust the model predictions and identifying the

subset of items on which the model is well-calibrated and trustworthy. We start

by discussing the key concepts, research questions, challenges, and architec-

ture to design and implement an effective hybrid classification service. We then

present a deeper investigation of each service component along with our solu-

tions and results. We mainly contribute to cost-sensitive hybrid classification,

selective classification, model calibration, and active learning. We highlight

the importance of model calibration in hybrid classification services and pro-

pose novel approaches to improve the calibration of human-machine classifiers.

In addition, we argue that the current accuracy-based metrics are misaligned

with the actual value of machine learning models and propose a novel metric

“value”. We further test the performance of SOTA machine learning models in

NLP tasks with a cost-sensitive hybrid classification context. We show that the

performance of the SOTA models in cost-sensitive tasks significantly drops when

we evaluate them according to value rather than accuracy. Finally, we investi-

gate the quality of hybrid classifiers in the active learning scenarios. We review

the existing active learning strategies, evaluate their effectiveness, and propose

a novel value-aware active learning strategy to improve the performance of se-

lective classifiers in the active learning of cost-sensitive tasks.
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Chapter 1

Introduction

Machine learning (ML) and deep learning (DL) have become a compelling re-
search domain where the researchers aim to develop intelligent systems that can
replace human effort in many complex tasks, from speech recognition to med-
ical diagnosis and autonomous driving. Although we witnessed that artificial
intelligence (AI) can beat humans in many domains1 (e.g. visual recognition,
playing games, and even detecting legal issues in law), this can not be general-
ized to every case.

When we need to build safety-critical systems, it becomes vital to know
whether we can trust the model or not. Consider the case of self-driving cars
in which the ML model should work in a very complex environment where
unexpected things may happen at any time. If the autonomous driving module
is not trustworthy enough, we may end with fatal accidents. Let’s think of the
company Tesla which made appreciable progress in the field of self-driving cars.
Its auto-pilot system has made breakthroughs in recent years, but according to
the New York Post news on August 16, 20212, “there have been 11 accidents
in which Tesla was in autopilot mode and hit the emergency vehicles”. So, the
question remains whether DL in its current state will be enough to overcome all
the challenges of self-driving. Object detection, velocity, and range estimation

1https://tinyurl.com/AI-beats-human
2https://tinyurl.com/Tesla-crashes
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CHAPTER 1. INTRODUCTION

play a big part in driving, but human vision also performs many other complex
functions. DL models also struggle with making causal inferences, which can
be a huge barrier when the models face new situations they have not seen before.
While Tesla created a large and diverse dataset, open roads are very complex
environments where new and unpredictable things can always happen. This
observation motivates the need for humans to make critical decisions in AI.

Humans are almost always involved in the ML loops when we deploy the
ML models into real enterprise scenarios, either to provide ground truth labels
as experts or to give feedback about the machine predictions. Human feedback
becomes more critical if the use case requires some safety-critical decisions
and if an erroneous prediction would cause a high cost. When this is the case,
it becomes crucial to know if we can trust the model.

As Socrates said: “The only true wisdom is in knowing that you know noth-
ing”; there is always more information we can learn, and there is always a
possibility to make wrong inferences even as a human. Considering that some
tasks may be very challenging even for humans, we can accept that machines
are not always reliable. In order to build robust AI systems, we need ML models
that are aware of what they do not know and give alerts in case of being unsure
about critical decisions. However, a principal challenge of DL models today is
being over-confident about their predictions and making a lot of high confidence
errors. Thus, we can not just rely on the confidence of machines, and we need
to build some rejection mechanisms to decide when to reject machine decisions
and involve human judgments to obtain more trustable predictions.

Last but not least, once we include a reject option in ML processes, we need
to rethink and re-evaluate how we can measure the quality of ML models. If the
ML model has a reject option, then accuracy is not the metric to use; we need
novel metrics to assess the real value of ML models in selective model settings.
Moreover, model calibration or the accuracy of confidence estimates becomes
at least as important as accuracy.

2



CHAPTER 1. INTRODUCTION 1.1. THE CONTEXT

1.1 The Context

This thesis focuses on the hybrid human-machine classification contexts where
we solve the classification tasks via combined contribution of humans and ma-
chines, and the main objective is to build reliable hybrid classification services.

1.2 The Problem

Figure 1.1 shows a hybrid classification scenario where the system takes a set of
unclassified documents as input and uses the combined contribution of humans
and machines to reach the classified documents.

Figure 1.1: Hybrid classification

The black-box model of a hybrid classifier includes an ML model that is ei-
ther pre-trained or fine-tuned on the given task and a group of humans. From a
high-level perspective, the model outputs an inference for each document asso-
ciated with confidence scores, and then the system accepts some of the machine
inferences (considering the confidence scores) while leaving the rest for human
verification. Here the assumption is that the model scores are trustable, and the
humans are experts who provide the ground truth labels in every case. However,
these assumptions are not realistic; (i) human labels can be noisy, (ii) the model
may not be well-calibrated to provide realistic confidence scores, and (iii) even

3



1.2. THE PROBLEM CHAPTER 1. INTRODUCTION

if the model outputs are trustable, it is highly challenging to decide a confidence
threshold used to accept or reject a machine inference. Thus, the problem is how
to design a reliable hybrid human-machine classification service that can output
robust inferences given any cost-specific use case, ML model and humans.

Figure 1.2: Typical implementation of ML models into an enterprise workflow (taken from our
paper [122]).

Figure 1.2 shows the typical deployment of AI solutions in an end-to-end en-
terprise workflow. First, we either reuse or fine-tune a pre-trained model or use
it in combination with some task-specific model. Either way, we have some ML
classifier that, given input data, produces a predicted class and confidence (or
distribution of predicted class with confidence scores). Today, there is almost

4



CHAPTER 1. INTRODUCTION 1.3. THE PROPOSED APPROACH

always filtering in model deployment based on whether the model confidence is
higher than some threshold. If so, the prediction is applied else: a default path
comes up. This is true from autonomous driving or reading Xrays to detecting
intents in a chatbot to automatically routing requests, and in nearly any use case
we can imagine. The point is that this is not the exception; this is the rule. That
is almost always how we use ML in practice in any production scenario, and
the notion of having some humans in the loop in the prediction cycle is not the
exception. There are always many humans in many ML loops. At a minimum,
some humans enjoy the benefits of prediction or suffer from consequences. If
we accept this notion that models are almost always implemented as selective

classifiers or selective models, then how we choose one model other than the
other changes.

What we observed from our research is that, first of all, the use case drives
the value of ML models. Given the use case, we have a certain cost for (i)
rejecting a prediction, (ii) applying a correct prediction, and (iii) applying a
wrong prediction. These value parameters help us to decide where we set our
threshold to accept or reject the model prediction. And, because we have a
confidence threshold, model accuracy is not the priority for us; if we have a
well-calibrated model with arbitrarily bad accuracy, we can still get value from
it. The better we can identify the subset of items for which our model is well-
calibrated, the lower the cost for our deployment in an AI workflow. The point
is to trust our model and let it tell us what it knows and what it does not know
indeed.

1.3 The proposed approach

Our approach is to build a hybrid classification service that effectively combines
humans and machines to output reliable predictions. Figure 1.3 (taken from our
paper [120] and modified) shows how we envision such a service.

5



1.3. THE PROPOSED APPROACH CHAPTER 1. INTRODUCTION

Figure 1.3: Hybrid Classification Service

A crowdsourcing platform (CP) provides basic access to users and manages
payment. While in most cases, the CP is also responsible for serving the specific
items to users (workers) for labeling, we need to take control and override that
logic because we want hybrid classification to come into play. Specifically, we
want to be able to decide for which items we ask crowd labels for, and to how
many persons. We also want to dynamically stop asking if the combination of
machine prediction and the votes obtained so far gives us enough confidence to
make a decision. Therefore, the items are loaded externally to the CP, into an
item pool (on the right in the figure).

Processing proceeds in batches. The optimal batch of items is selected via
an “active learning” (AL) component that is peculiar in this case because we
have two sometimes conflicting optimization objectives; asking votes to classify
items in the pool vs. asking votes based on what is best for training an ML
model that can then help us (this is somewhat more nuanced than traditional AL
approaches, and discussed further in [77]).

6
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Once we do have a batch of votes, we then classify items through a combi-
nation of humans and ML. As widely done in crowdsourcing, we can leverage
the many existing techniques that compute workers’ accuracy and aggregate
votes on an item, using a variation of the Expectation-Maximization algorithm,
such as Dawid-Skene [44]. However, the approach we take is to consider the
classifier as a “voter”, much like human workers, that is, characterized by its
own “accuracy”, where the accuracy (unlike workers) varies per item and corre-
sponds to the prediction confidence on that item. Notice that in some cases, the
classifier may be so confident that its vote is sufficient, and we do not need to re-
sort to any crowd vote. Notice also that while workers’ accuracy is independent
of the items (we do not assume the crowdsourcing tasks ask for probabilities,
as that is not commonly done and it would raise a whole set of challenges), ML
classifiers typically do output a per-item probability, and we use it here.

Research questions

Many research questions should be investigated to design and implement such
a hybrid classification service. In this thesis, we specifically focus on the fol-
lowing questions related to different components:

• ML Classification Service

– RQ1. How to measure quality in ML, and is accuracy a good measure
of quality in the hybrid classification context?

– RQ2. How does the model calibration affect the performance of ML
models in hybrid classification contexts? And how can we obtain
well-calibrated hybrid classifiers?

– RQ3. What are the proper metrics for the cost of using ML with
rejection?

– RQ4. How to effectively characterize ML failures?

7



1.4. STRUCTURE OF THE THESIS CHAPTER 1. INTRODUCTION

• Active learning

– RQ5. How to use AL in hybrid classification contexts? Are the exist-
ing AL strategies cost-effective, or do we need novel cost-aware AL
methods for hybrid classification services?

• ML-Human vote aggregation

– RQ6. How to efficiently combine crowdsourcing and machine intelli-
gence?

1.4 Structure of the Thesis

This thesis comprises the work carried out during the 3-years Ph.D. Program in
Information and Communication Technologies at the University of Trento, with
a productive collaboration with Delft University of Technology. The objective
is to build reliable hybrid human-machine classifiers that can be deployed in
hybrid classification services. First, we investigate the effect of calibration in
hybrid classification and propose novel methods to improve the model calibra-
tion. After that, we discuss the idea of rejecting machine decisions to maximize
the value of ML models. Following this, we criticize that accuracy-based met-
rics are not good enough to assess the quality of ML models and propose a novel
metric to evaluate the performance of ML models in cost-sensitive classification
tasks. Then, we motivate and discuss the importance of AL in hybrid clas-
sification settings, analyze the effectiveness of the existing AL strategies, and
propose alternative techniques to improve their adaptabilities to cost-sensitive
hybrid classification problems. Finally, we show how the active learning of
classifiers is affected by the focus on value.

Chapter 2 aims at taking the first step toward science for hybrid classification
services, and particularly focuses on RQ2. We discuss key concepts, challenges,

8
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and architectures and then focus on a central aspect; ML calibration and how it
can be achieved with crowdsourced labels [120].

Chapter 3 motivates why the science of learning to reject model predictions
is central to ML, and why human computation has a lead role in this effort. We
investigate RQ1, RQ2, RQ3, RQ4, and RQ6 from a general perspective and
discuss possible solutions [122].

Chapter 4 argues that the way we have been training and evaluating ML
models so far has substantially forgotten the fact that they are applied in an or-
ganization or societal context because they provide value to people. We make a
deeper investigation of RQ1 and RQ3, and show that when we take this perspec-
tive, we fundamentally change how we evaluate, select and deploy ML models
- and to some extent, even what it means to “learn”. Specifically, we stress that
the notion of value plays a central role in learning and evaluating, and differ-
ent models may require different learning practices and provide different values
based on the application context in which they are applied. We also show how
this concretely impacts how we select and embed models into human workflows
based on experimental datasets [Under review, ACL 2023].

Chapter 5 mainly explores RQ5 by reviewing the existing AL approaches
and presenting the experimental analysis of a set of bench-marking ones on
crowdsourced datasets. We provide a comprehensive and systematic survey
of the recent research on AL in the hybrid human-machine classification set-
ting, where crowd workers contribute labels (often noisy) to either directly clas-
sify data instances or train machine learning models. We identify three cate-
gories of state-of-the-art (SOTA) AL methods according to whether and how
predefined queries are employed for data sampling, namely fixed-strategy ap-
proaches, dynamic-strategy approaches, and strategy-free approaches. We then
conduct an empirical study on their cost-effectiveness, showing that the per-
formance of the existing AL approaches is affected by many factors in hybrid
classification contexts, such as the noise level of data, label fusion technique

9
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used, and the specific characteristics of the task. Finally, we discuss challenges
and identify potential directions to design AL strategies for hybrid classification
problems [121].

Chapter 6 explores how the active learning of selective classifiers is affected
by the value, and how this affects the performance of AL strategies. In par-
ticular, we investigate if uncertainty sampling [81] has an edge over random
sampling, and if simple alternative strategies can outperform both uncertainty
and random sampling. We then propose a novel value-aware AL strategy that
outperforms the state-of-the-art ones when the cost of incorrect predictions sub-
stantially outweighs that of abstaining [Under review, EMNLP 2022].

1.5 Contributions

This thesis contributes to cost-sensitive human-machine (hybrid) classification,
selective classification, model calibration, and active learning. The contribu-
tions can be summarized as follows.

We designed the concepts and architecture of a hybrid classification service
and showed that (i) the service should effectively combine the ML with crowd-
sourcing given the objective of the task (i.e. classify as many items as possible
given a fixed budget or training the model) by controlling the classification pro-
cess and dynamically determining if and how many crowd votes we ask for an
item, (ii) the key metric for the service should be calibration rather than the ac-
curacy; the ability to estimate what crowd and ML can do and which kind of
items they can or cannot classify accurately becomes central to the effectiveness
of the service. We also proposed novel methods to improve the calibration of
human-machine classifiers in contexts where the loss function is skewed and
the cost of errors is high compared to the cost of asking humans.

We discussed that current ML quality metrics are misaligned with the value
and cost of ML models in hybrid classification contexts. We proposed that

10
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we need a new set of metrics as well as a science for learning when to reject
machine inferences. We highlighted the importance of identifying the subsets
of items where we can trust the model.

We criticized that universal quality metrics used for ML model evaluation
can lead to wrong decisions in hybrid classification context. We showed that the
common approach for rejecting predictions (filtering by confidence threshold)
leads to low or even negative model value if applied naively and to a signifi-
cant loss of ”value” concerning what can be achieved. We proposed that this is
true even when calibration methods are applied, and discussed why measures
of calibration errors fail to capture the most important property of confidence
scores, that is, the fact that the probability of confidence is high when predic-
tions are correct (rather than the other way around). Finally, we showed that
simple, decades-old models, especially when trained in-domain even with sim-
ple text encoders, behave very well and often better than large, complex models
and provided some intuition of why that may be.

We published a literature review of AL strategies along with an experimental
analysis of their characteristics and effectiveness. We reported the results of an
extensive experimental evaluation, providing insights into the performance of
existing AL strategies in hybrid human-machine classification contexts. We dis-
cussed the main insights from our analysis and highlighted relevant open chal-
lenges and potential future directions to address them. We further contributed a
library of implementations of state-of-the-art AL strategies and a collection of
benchmarking datasets for human-machine classification3.

We investigated how active learning of selective classifiers is affected by the
focus on value. We showed that the performance of the state-of-the-art active
learning strategies in cost-sensitive tasks drops significantly when we evaluate
them according to value rather than accuracy. Finally, we proposed a novel
value-aware active learning strategy that outperforms the state-of-the-art ones

3https://tinyurl.com/source-code-data-results
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when the cost of incorrect predictions substantially outweighs that of abstaining.
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Chapter 2

Calibration in hybrid classification

Hybrid classification (HC) refers to the process of solving classification prob-
lems by leveraging both humans and ML [75]. Hybrid classification services
have received little attention in the literature but, in our experience are by far the
most common form of classification, especially in an enterprise context. Almost
invariably, when ML is adopted in the enterprise as well as in domains from
medical to automotive, ML attempts an inference, and a decision on whether to
accept the inference or ask a human ensues, based on the prediction confidence.

Model calibration refers to the process of adjusting model parameters so that
the prediction confidence is an accurate estimation of the probability of the pre-
diction being correct [58]. Calibration is extremely important in all cases where
failures are costly and a fallback option to delegate decisions to human exists,
from self-driving cars to automated medical diagnosis and even in work automa-
tion. For example, in enterprise workflow companies, a well-calibrated model
is central to the adoption of AI as it gives customers the peace of mind to know
that they have a model that knows when it doesn’t know. Thus, the platform
can decide, for each inference, when to trust it (because it has high confidence)
and when instead to route the decision problem to a person. More generally,
we argue that any time asking humans is an option, that possibility needs to be
factored in as a first-class citizen and design variable, when training and using
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ML services, along with its cost (effort, money) and benefits (possibly, a more
accurate classification, especially in cases where ML is undecided).

This chapter proposes a crowd-powered hybrid classification service. Our
goal is to take a step in the direction of developing science for services that,
automatically or semi-automatically, combine ML, crowd, and experts in a cost-
efficient and effective way to solve batch (finite item pool) or online (infinite
pool) classification problems.

Specifically, the classes of problems we tackle are those with the following
characteristics1:

• We have the option of asking humans for each classification, though at a
cost. “Humans” can be experts and/or can be “crowd workers”, accessed
through a crowdsourcing platform, such as Mechanical Turk or Toloka.

• We have access to ML classification services, at a cost per classification
that we assume is negligible concerning the cost of asking humans.

• The cost of asking humans is significantly less than the “cost” of either a
false positive or a false negative.

In this very common scenario, given a budget, a crowd of labelers available at
a price, a cost function for errors, and a finite or infinite pool of items to classify,
we aim at defining a service and a policy to efficiently classify items. Again for
ease of expositions (especially where ML and validation are involved), we focus
on tasks that require an understanding of text documents, but the concepts are
generally applicable.

In this paper, we show that such a service has a few key characteristics:

1. The service must combine the crowdsourcing aspects (with the well-known
challenges around it) and the efficient use of ML. As we will see there are
several ways to do this, and in general, the decision on how to process each

1For simplicity of exposition we limit here to binary classification
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item to classify depends on many factors, such as the quality of ML for
that item, the expected accuracy and cost of the crowd, and the error cost
structure[77]. What is common to different strategies is that the ML infer-
ence on an item, coupled with the estimated crowd accuracy in the task,
may dynamically determine if we ask for crowd votes on an item, and how
many (redundancy). None of this is supported by crowd platforms today.

2. At the start of a task, we neither know how well ML performs on that task,
nor how well crowd workers perform. We also do not know how “fast”
(how cheaply, how many labeled examples) ML can learn, something that
is particularly important in a finite pool context, where there is a trade-
off between the best strategy (ordering) for selecting items to label from
the pool if our goal is to train a model versus if our goal is to classify as
many items as possible given a fixed budget. The ability to train a model
efficiently as part of hybrid classification services, be it via the recent “few
shots learning” approaches or the more “traditional” active learning.

3. The key metric for the ML service component is not the accuracy but cali-
bration [58]. Calibration has been largely neglected in ML literature com-
pared to accuracy, but in a hybrid classification where the cost for one type
of error is high (and also high with respect to the cost of asking humans),
knowing if we can trust the ML service is key, just like it is important that
experts tell us, whenever they make a statement, if they are sure or not.
As a consequence, the ability to estimate what crowd and ML can do and
which kind of items they can or cannot classify accurately becomes central
to the effectiveness of the service.

In this chapter, we present the concepts and architecture of a hybrid clas-
sification service and then dig deeper into understanding how the ML service
component, when used in a crowdsourcing context, can be trained to achieve
model calibration and reduce the calibration error.
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2.1 Problem Statement

We formulate the problem as follows. Given a set I of items to classify2, a
cost function λ (that includes the cost of false positives, false negatives, and
cost of asking humans), an ML algorithm m and a crowd of human labelers
h ∈ HL, we aim at devising a hybrid classification policy (and a supporting
system architecture) that classify the items with minimal loss.

While the problem statement is general, the interesting cases - which corre-
spond to many real-life situations - are those where the cost of machine clas-
sification is low, the cost of errors (at least one among false positive and false
negative) is high, or very high, and the cost of asking humans sits in between.
In other words, if Ch is the cost for a human label, Cm is the cost for a machine
inference, Cfp is the cost for a false positive, and Cfn is the cost for a false
negative, we expect that:

Cm << Ch << max(Cfp, Cfn) (2.1)

And in fact, in most cases, it is safe to assume that Cm is very small so that
for practical purposes we can consider it negligible. Assuming that to classify
an item i we ask for n crowd votes on that item, then our loss function is:

λ = Cm + n · Ch +


0 correct classification

Cfp false positive

Cfn false negative

(2.2)

Notice that this is a more general form of the problem we stated in the intro-
duction, where we do not assume that humans are perfect oracles, which is why
we may need multiple opinions. Instead, for simplicity, we assume all persons
have the same costs, while in real settings different levels of competencies may
command different prices.

2Again, for simplicity we assume binary classification but the concepts are generally applicable
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Given the loss function above, if we can compute, for each item i, the proba-
bility P (i ∈ pos) of an item belonging to the positive class, then we can estimate
the expected loss E[λ] if we classify the item as positive (and similarly do the
same if we classify the item as negative). This is simply the cost independent of
our classification decision (Cm+n ·Ch, which is not a random variable) plus the
loss due to a possible classification error E[λe] which is Cfp · (1−P (i ∈ pos)).
For each item, we then choose the classification that minimizes such expected
loss. As P (i ∈ pos) gets close to either 0 or 1, the part of the expected loss
due to classification errors gets closer to zero. In a hybrid classification service,
the way we get such probability closer to the extremes is to either train “better”
models or ask for more crowd votes.

Algorithm

crowdsource more labels

Author AMT Crowd 
workers

Instructions

papers

• Provide input papers 
and filters


• Setup crowdsourcing 
params and strategy

Monitoring

• Instructed on how to 
perform the screening


• Perform task if pass a 
test (tested continuously)

labels

Results

Author

• Monitors the progress of 
the process, and might 
decide to stop


• Configure next iteration

Monitoring

aggregate results

revise 
prior

Features for 
researchers

Navigation only 
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Task

next 
(paper, criteria)

Figure 2.1: Example task workflow, modeled for a crowdsourced systematic literature review
task. On the left column, the task designer writes the classification questions they want
workers to answer, and point to the informed consent URL, along with other crowd task

parameters. The center column shows what the worker would see in a task and the instructions
given to them. The right side shows cost estimates that a platform can provide to the task

designers after an initial crowdsourcing run. Details are provided in the technical report [109]
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As an example, consider Figure 2.1, which shows (center of the figure) a
crowd task aiming at classifying if papers satisfy a search criterion - and, in this
case, if they satisfy all of a set of search criteria. Here we can assume a cost for
asking a scientist or set of crowd workers to do the filtering, a cost for a false
positive (including the paper in our search results), or a false negative, that is,
missing the paper while it is, instead, relevant.

2.2 Approach and Service Architecture

Figure 2.2 shows how we envision a hybrid classification service. A crowd-
sourcing platform (CP) provides basic access to users and manages payment.
There are several such platforms3, with fairly similar features, and we do not
discuss them further here. While in most cases the CP is also responsible for
“serving” the specific items to users (workers) for labeling, here we need to take
control and override that logic because we want hybrid classification to come
into play. Specifically, we want to be able to decide for which items we ask
crowd labels for, and to how many persons. We also want to dynamically stop
asking if the combination of ML and the votes obtained so far gives us enough
confidence to make a decision. Therefore, the items are loaded externally to the
CP, into an item pool (on the right in the figure).

Processing proceeds in batch (also because we typically need to show batches
of items to workers who label them in quick succession - making crowd workers
wait is not a viable option). The optimal batch can be selected via an “active
learning” component which is peculiar in this case because we have two some-
times conflicting optimization objectives, that of asking votes to classify items
in the pool vs asking votes based on what is best for training an ML model
that can then help us. This is somewhat more nuanced than traditional active
learning approaches and we discuss details in the report[77].

3E.g., https://www.mturk.com or https://toloka.ai/
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Figure 2.2: Hybrid classification service.

Once we do have a batch of votes, we then classify items, through a combi-
nation of humans and ML. As widely done in crowdsourcing, we can leverage
the many existing techniques that compute workers’ accuracy and aggregate
votes on an item, using a variation of the Expectation-Maximization algorithm,
such as Dawid-Skene [44]. However, the approach we take is to consider the
classifier as a “voter”, much like human workers, that is, characterized by its
own “accuracy”, where the accuracy (unlike workers) varies per item and cor-
responds to the prediction confidence on that item. Once we have the votes and
accuracy we predict the class probability for each item, by first computing the
probability that an item is positive (or negative) via a simple application of the
Bayes rule:

Pcrowd(i ∈ pos|Vi) =
P (Vi|i ∈ pos) · P (i ∈ pos)

P (Vi)
(2.3)

Where Vi is the set of labels given by crowd workers on item i. Given the
workers’ accuracy (and therefore the probability that each worker is correct
given that the item is positive or negative), these quantities can be easily com-
puted as shown for example in equation 4 of [76]. The same paper also esti-
mates how probability changes if we ask for more crowd labels on i. A hybrid
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classification service also has the benefit of machine prediction confidence (or,
analogously, of having the classification service return the probability of the
item being positive). We denote this with Pml(i ∈ pos). At this point, the prob-
ability of interest P (i ∈ pos) can be computed as the average of Pcrowd and
Pml

4

Notice that in some cases the classifier may be so confident that its vote is
sufficient and we do not need to resort to any crowd vote. Notice also that
while workers’ accuracy is independent of the items (we do not assume the
crowdsourcing tasks ask for probabilities, as that is not commonly done and
it would raise a whole set of challenges), ML classifiers typically do output a
per-item probability and we make use of that here.

Figure 2.1 shows an example task workflow. This example shows a crowd
task that performs a systematic literature review and where the strategy for se-
lecting items to offer crowd workers is part of the task definition and controlled
by the hybrid service rather than by the CP because of whether we need more
labels for an item depends on whether the confidence we have thus far based
on ML and current votes and the consequent expected loss. The interface also
shows a component that aims at estimating the cost of classifying items in the
pool.

As it is now apparent, the correct estimation of the classifier confidence for
each prediction is central to minimizing classification loss. Doing so requires
going into how ML algorithms can train well-calibrated classifiers in the pres-
ence of the crowdsourced label. What is interesting - and difficult - here is that
in such a service we have a complex interplay between the information we ob-
tain for the crowd (which is the only source of “truth”, although imperfect - we
do not assume crowds are oracles), the training of the ML model, and the cali-
bration error. This interplay in hybrid classification services is the focus of the
remainder of the chapter. We analyze and discuss this topic in the next sections.

4Possibly weighted, though this requires determining the appropriate weights which is part of our future work.
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2.3 A Recap of Calibration

Hybrid classification is progressively gaining traction with more and more pa-
pers now starting to focus on combining human and ML inputs in classification
problems. Initial work focused on very interesting ways to do this, from learn-
ing crowd vote aggregation models from “features” of the crowd task [71], to
leveraging crowd to learn features of ML models, as in the brilliant paper by
Bernstein and colleagues as well as others [35, 114]. In other works, automa-
tion is used to support the crowd in a variety of task-specific ways. For exam-
ple, Lasecki and colleagues show an effective approach to support the crowd
in speech captioning by determining speech segment lengths optimal for each
worker and merging partial input of each worker [80]. These efforts are comple-
mentary to our work since we do not aim at finding features or assisting workers
in performing a task. Both tasks and ML algorithms are black boxes.

More recently, proposals have emerged based on training an ML model for
a task and then first using that model to classify, then asking humans if that
model’s confidence is not high enough. For example, Callaghan et al [29] com-
bine ML and crowd by automatically labeling items for which the ML confi-
dence is above a defined threshold, and by polling the crowd for the remaining
ones. Variations of this approach are applied in various fields, even in fashion 5.

This belief informs their crowd classification strategy by progressively ad-
justing the number of votes requested on each item based on whether the crowd
confirms or negates such belief. No prior assumption is made on ML classi-
fiers’ accuracy, and the hybrid algorithms are designed to be robust to weak
classifiers. Finally, Nguyen et al. [100] leverage ML to identify which items
to ask votes for, and whom to ask (experts or crowd). Each time their hybrid
algorithm needs to pick up an item to classify and a type of human classifier
(crowd or expert), it computes the value of each (item, classifier type) alter-

5https://multithreaded.stitchfix.com/blog/2016/03/29/hcomp1
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native by estimating the reduction in overall classification loss due to the new
votes obtained divided by the cost of obtaining that loss reduction (experts are
more expensive). The loss reduction is due to two reasons: items become clas-
sified by crowd or expert (both assumed to be more precise than ML, which is
not used to take classification decisions once expert or crowd opinions are pro-
vided), and the additional information is used to train ML which in turn should
ideally reduce the uncertainty and error on the items yet to be classified.

From this prior work, we borrow the general idea of hybrid classifiers and the
specific mechanisms to use ML output in crowd classification, but our contribu-
tion lies in how to leverage the per-item prediction confidence within a service
and how to support model calibration in crowdsourcing contexts.

To tackle model calibration, [131] propose to adopt label smoothing, where
“hard” (1-0) class labels used in cross-entropy loss are smoothed into a probabil-
ity distribution across classes. Such an approach has shown to be effective [58,
97, 156, 155], particularly for NLP, speech, and vision tasks [33, 36, 34, 95].
However, label smoothing and its effectiveness are still to be studied and un-
derstood, since probability amortization in output targets can bring extra noises
[89] and prior art does not provide insights into how to set label smoothing
hyper-parameters.

The remainder of this chapter studies the effect of label smoothing and soft
targets on model calibration in NLP tasks when training labels are crowdsourced.
The typical approach to deal with crowdsourced data is to aggregate votes
for each item into a “gold” label, often using majority voting or expectation-
maximization methods [143, 66]. An alternative approach is that of creating an
empirical distribution over crowd votes. This has been referred to as the soft

target approach [147, 11] and has shown to be effective in improving model
performance in image classification [107] and emotion recognition from audio
[154, 5].

While existing work has found that model performance is sensitive to noise
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in soft targets [149], none has investigated the effect of label fusion methods
(widely used in crowdsourcing to aggregate human answers into one label, e.g.,
D&S [44] and GLAD [144]) on model training.

2.4 The effect of label smoothing and soft targets on model
calibration in NLP tasks

2.4.1 Background

We consider multi-class text classification task with L classes {1, 2, .., L}where
a classifier predicts p(l|x), the probability that document x belongs to class l.
We assume that, as commonly done, training aims at minimizing cross-entropy
loss loss = −

∑L
l log(p(l|x)) · π(l|x), where π(l|x) here takes 1 if l is equal to

the true label l∗ and 0 otherwise, i. e., π(l|x) here is the hard target.

Label Smoothing. In deep learning, label smoothing can be considered as a
regularization technique for preventing the model from overfitting and from
becoming overconfident in the classification decisions [131]. Thus, the ground-
truth label distribution can be smoothed by adjusting π(l|x) as follows:

πls(l|x) =

(1− α) + α
L , l = l∗,

α
L , l ̸= l∗;

(2.4)

where α ∈ [0, 1] is a hyper-parameter determining the amount of smoothing.

2.4.2 Our soft target approaches.

We now introduce our approaches for soft targets leveraging crowd labels. When
a requester crowdsources a dataset, it is common to collect several crowd la-
bels per sample that allow us to infer the probability distribution over classes.
For each pair (x, l), we can compute probabilistic confidence of sample x has
ground-truth label l using a label fusion technique F that aims to map crowd
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votes into a class decision or a probability distribution πf across classes, typ-
ically based on trying to estimate workers’ accuracy A and factor it in while
aggregating crowd votes. Formally, F is a function that takes crowd labels as
input, and outputs a set of workers’ accuracies A and a probability assignment
πf over the classes for every sample:

F : crowd labels→ ⟨πf , A⟩, (2.5)

Common examples of fusion methods are, e.,g., GLAD [144], or D&S [44].
By doing so, we can create soft targets according to Eq. 2.5 and incorporate
them in the loss function. Note that now πf(l|x) comes from the ‘natural’ dis-
tribution of crowd-contributed labels as well as fusion methods, rather than from
arbitrary smoothing with pre-selected hyper-parameters as in label smoothing
methods. Furthermore, each data point is smoothed differently, according to the

ambiguity as perceived by the crowd.

We further propose semi-Hard (sHard) method that does the one-side smooth-
ing, that of the most likely label as identified by the fusion method. This can
be seen as a soft target approach but also as a hard one where samples are
weighted by the ground truth probability of the most likely label (note that in
this case π(l|x) is no longer a valid distribution):

πsh(l|x) =

πf(l|votes,F), l = l∗,

0, l ̸= l∗,
(2.6)

Figure 2.3 shows an overview and comparison of hard targets, label smooth-
ing, soft targets, and semi-Hard targets.

2.4.3 Effect of label fusion techniques

Figure 2.4 shows an example case on the Reuters-21578 dataset to highlight the
effect of using different label fusion techniques for label aggregation.
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Figure 2.3: Different target mass functions for classification problem with three classes (Pos-
positive, Neg- Negative, Net- Neutral classes). The Hard Target is equivalent to one-hot label

encoding, the distribution for Soft Target is obtained from crowd votes via a label fusion
method (e.g., MV or DS).

Figure 2.4: Probabilities assigned to correct classes (Ground Truth) by MV, DS, and GLAD
label fusion methods on Reuters-21578 dataset.

2.4.4 Contribution

The crowdsourcing-label fusion-training pipeline is commonly used and ad-
dressing the impact on calibration is, therefore, crucial to be able to generate
“trustworthy” models. Specifically, in this work, we propose soft target meth-
ods that can incorporate any label fusion method: we present label fusion meth-
ods that accept raw crowd votes and output label probability distributions for
every sample in the dataset, and where these label distributions are then used as
soft targets to train well-calibrated neural models.

We evaluate our approach on 13 crowdsourced datasets and evaluate the ef-
fect of both soft targets and label smoothing in training the multi-layer percep-
tron and DistilBERT, a deep transformer model [119]. Our results show that
soft targets are more effective for model calibration than label smoothing. We
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Figure 2.5: The effect of soft targets on probability calibration for DistilBERT on
Deaths-in-India dataset.

further demonstrate that our proposed soft target methods substantially improve
both model performance and probability calibration across datasets of different
noise levels, and this improvement is more obvious when they are used to train
the deep transformer model. An example is visualized in Figure 2.5, which
shows the distribution of prediction confidence from DistilBERT trained with
hard labels (left figures) and soft targets (right figures): the average prediction
confidence better matches the average accuracy in the case of soft targets (top
right) and the confidence closely approximates accuracy across different confi-
dence levels (bottom right). Results support the fact that deep models tend to
become over-confident and not calibrated [58] when they are trained with hard
targets; top left figure shows that the average accuracy of the model is signifi-
cantly less than the average confidence. This results in having larger error gaps
in the reliability diagram (bottom left).

28



CHAPTER 2. CALIBRATION IN HC 2.5. EXPERIMENTAL SETUP

2.5 Experimental Setup

2.5.1 Datasets

Our study relies on 5 binary and 8 multi-class crowdsourced datasets. As find-
ing public crowdsourced datasets with individual crowd votes is challenging,
we chose ten datasets (Table 2.1) provided by Appen6 for different text classifi-
cation tasks. These datasets come from text-based crowdsourcing tasks (mainly
classification), but the only “ground truth” information available comes from
aggregating workers’ votes. Neither the individual votes nor the details on how
the crowd experiment was run are available.

Dataset Class Train/val/test Noise ratio
1. First GOP debate sentiment analysis (GOP2-sentiment) 2 6195/ 576/ 628 0.07
2. Disasters on social media (Disaster-relevance) 2 7557/ 740/ 684 0.09
3. Do these chemicals contribute to a disease? (Chemicals&Disease) 2 3088/ 186/ 162 0.16
4. Economic news article tone and relevance (News-relevance) 2 5098/ 452/ 526 0.13
5. Corporate messaging (Corporate-messaging) 3 2615/ 120/ 117 0.08
6. First GOP debate sentiment analysis-Sentiment (GOP3-sentiment) 3 11669/ 540/ 348 0.19
7. Twitter sentiment analysis: Self-driving cars (Self-driving-cars) 3 5399/ 150/ 147 0.04
8. Drug relation database (Drug-relation) 3 1866/ 75/ 72 0.01
9. Indian terrorism deaths database (Deaths-in-India) 3 25622/ 300/ 237 0.20
10. GOP tweets subject categorization (debate-subject) 5 1206/ 150/ 135 0.04

Table 2.1: Dataset properties.

This situation required us to examine the ground truth we had and assess how
noisy are the aggregated labels. Two researchers manually re-annotated each
dataset to analyze how accurate the labels are. We checked the content (eg.,
tweets) and annotated it. We observed that on average, we do not agree with
10% of the aggregated crowd labels (and up to 20% for some datasets!). This
indicates that crowdsourced labels can be noisy even after collecting multiple
votes per sample. Our manual annotations of test datasets are presented in the
(anonymized) project repository7.

6https://appen.com/resources/datasets/
7https://github.com/Evgeneus/Label-Smoothing-in-Text-Classification
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The aforementioned datasets give us only one statistic (i.e., confidence) about
the distribution of labels8; however, we wanted to explore if having individual
crowd votes rather than the aggregated ones and employing different label fu-
sion algorithms might give us more insights. To this end, we use three additional
textual datasets with actual crowd labels as well as the ground truths: i) Movie-
Reviews (3-classes) [113], ii) Reuters-21578 (8-classes) [112], iii) Amazon-
Reviews (binary)9.

2.5.2 Configurations and Training

We evaluated: i) a simple one-layer neural network (NN1) with text vectorized
via tf-idf, and ii) fine-tuned the DistilBERT model (D-BERT) [119] (6 layers,
768 hidden dim, 12 heads, 65M parameters) to compare the behavior on differ-
ent models. We trained them with the cross-entropy loss using: i) hard targets
(one-hot encoded labels), ii) label smoothing (Eq. 2.4), and iii) the proposed
soft (Eq. 2.5) targets. We tested the impact of three label fusion methods: i)
Majority Voting (MV), ii) D&S [44], which models worker reliability, and iii)
GLAD [144], which further considers the task difficulty. Following [97, 138],
we considered α = 0.05 and α = 0.1 for label smoothing.

For each (NN1, training target) configuration, we performed a grid search for
the following hyperparameters on the validation set: minimum document Fre-
quency, number of TF-IDF features, word n-gram range, learning rate, weight
decay, and class weights. For each (D-BERT, training target) configuration, us-
ing the validation set we searched for learning rate and a few options for class
weights depending on the class distribution; the rest of the parameters remained
as default. The networks were trained using the ADAM optimizer iterated up
to 500 epochs for NN1 and 100 epochs for D-BERT with early stopping. We
set the batch size of 32 for D-BERT and the sequence length of 512 WordPiece

8https://tinyurl.com/Calculate-a-Confidence-Score
9https://github.com/TrentoCrowdAI/crowdsourced-datasets
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tokens. The experiment details, datasets, and source code are available online7.

Evaluation Metrics: To evaluate both prediction and confidence quality for the
classification models, we use two metrics: i) macro F1 score and ii) ECE, which
measures the difference in expected accuracy and expected confidence [98]. The
smaller the ECE score, the better the calibration of the model.

2.6 Results

2.6.1 Label smoothing vs soft targets

Table 2.2 reports the results of label smoothing and soft targets with NN1 and
D-BERT. Across the ten Appen datasets, results are inconclusive: soft targets
provided comparable results in terms of F1 while gave mixed results for ECE
across the datasets: in many cases label smoothing collapsed ECE score in the
NN1 model (by 0.9% for α=0.05 and 1.5% for α=0.1 on average). The same
applies independently of how we encode text (eg, the cited additional material
report on LSTM encoding)7.

1.GOP2-sentiment 2.Disaster 3.Chemicals&Disease 4.News 5.Corporate Messaging 6.GOP3-sentiment 7.Self-driving cars 8.Drug Relation 9.Deaths in India 10.Debate-subject
F1 ECE F1 ECE F1 ECE F1 ECE F1 ECE F1 ECE F1 ECE F1 ECE F1 ECE F1 ECE

NN1-Hard labels 78,5 11,0 82,4 9,8 74,5 20,4 75,1 13,9 89,8 3,2 65,3 6,4 66,7 6,3 66,0 7,3 83,2 7,4 88,2 4,0
NN1-Soft 79,7 18,3 82,9 20,2 70,4 6,4 75,8 15,3 86,4 5,4 66,6 4,9 66,8 5,8 71,1 3,6 82,1 5,8 88,9 2,1
NN1 (α = 0.05) 73,4 14,3 82,5 17,6 76,5 18,6 73,4 14,3 90,6 5,2 64,9 7,5 70,4 5,0 73,7 3,0 80,5 4,8 88,1 7,4
NN1 (α = 0.1) 73,7 13,2 82,3 19,0 68,7 13,6 73,7 13,2 90,6 9,8 65,5 8,6 70,8 7,8 69,8 8,5 82,3 4,8 88,1 6,0

D-BERT-Hard labels 78,2 8,4 78,5 13,6 75,2 22,3 72,0 21,4 89,7 9,0 59,3 31,8 59,0 25,5 80,7 13,7 81,4 13,3 80,7 18,1
D-BERT-Soft 78,2 11,2 82,3 10,7 71,4 16,4 72,7 18,9 87,9 4,1 63,1 11,1 55,0 17,7 79,4 4,9 84,0 6,0 83,7 3,8
D-BERT (α = 0.05) 59,2 18,2 79,9 12,8 65,6 25,8 72,6 17,5 87,1 6,7 59,9 25,3 52,3 25,2 80,7 8,9 81,2 10,3 80,0 15,4
D-BERT (α = 0.1) 76,6 3,3 81,0 3,5 73,3 26,3 70,3 24,6 89,7 2,3 63,3 18,2 56,0 21,3 79,1 8,0 81,6 5,1 80,7 12,5

Table 2.2: Macro F1 and ECE results in % for NN1 and D-BERT with smoothed and soft
targets.

D-BERT is a more interesting case as we know that calibration issues arise
mainly with deep nets [58]. Although our objective is to investigate how label
smoothing and soft targets perform in terms of improving the ECE score (with-
out sacrificing F1), we observed that using soft targets can also improve the F1
score. For example, results on “Deaths in India” dataset shows that training the
D-BERT model with hard targets obtains 13.3% in ECE and 81.4% in F1 while
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the calibration error is reduced to 6.0% and F1 score is increased to 84.0%
when we use soft targets. Overall, training D-BERT model with soft labels
from crowd gives an improvement in ECE for nine datasets (7.2% of average
improvement across 10 datasets), and a boost in F1 for 6 out of 10 datasets. In
contrast, label smoothing also can improve ECE (from 1% to 9% depending on
the chosen α parameter) but always harm F1 score.

On datasets with individual crowd labels, we can also experiment with dif-
ferent fusion methods. We show the results in Table 2.3. Label smoothing here
shows mixed results (improves on ECE on Movie-Reviews data but does sig-
nificantly worse in ECE on Amazon-Reviews where the training labels are very
accurate - and we do not have results for D-BERT on Reuters-21578 as the data
did not contain raw texts) In contrast, the proposed soft target method improved
ECE (up to 15.7%) across all datasets. Notably, for the GLAD fusion method,
the soft target method enhanced both F1 (up to 15.7%) and ECE (up to 7.1%)
on the D-BERT model across the datasets with both high and low levels of label
noise. This is in part due to the better performance of GLAD in truth inference
and because GLAD generates less skewed label distributions allowing the soft
method to handle the noises.

2.6.2 sHard Targets

We tested sHard (Eq. 2.6) targets following the configurations explained in Sec-
tion 2.5.2. Results show that NN1 with sHard targets always led to improve-
ment of ECE (1.7% on average), while F1 remained comparable to the models
trained on hard labels (Table 2.4). When we compare the ECE performance of
sHard to Soft and label smoothing, we see that sHard outperforms label smooth-

ing on 7 datasets and Soft targets on 6 datasets. Training D-BERT model with
sHard targets provides an improvement of ECE for 8 datasets out of ten (1.8%
of average improvement across 10 datasets), and improves F1 for 7 datasets
as to using Hard labels during the training. Finally, sHard improves ECE on
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Model
Movie-Reviews Reuters-21578 Amazon-Reviews
ECE F1 ECE F1 ECE F1

NN1-Hard labels (MV) 4,2 58,5 4,7 63,6 11,0 95,8
NN1-Soft (MV) 3,1 59,8 5,3 65,1 12,6 95,8
NN1 (α=0.05, MV) 8,2 53,5 6,1 64,6 17,3 95,7
NN1 (α=0.1, MV) 10,4 55,3 5,4 65,5 20,8 95,8

NN1-Hard labels (DS) 14,3 57,6 3,6 72,4 11,0 95,8
NN1-Soft (DS) 8,7 58,5 4,5 70,9 10,6 95,7
NN1 (α=0.05, DS) 9,5 56,1 2,9 70,8 17,3 95,8
NN1 (α=0.1, DS) 8,7 55,2 4,7 69,7 20,8 95,8

NN1-Hard labels (GLAD) 4,5 57,7 3,1 67,1 10,5 96,0
NN1-Soft (GLAD) 6,6 56,9 4,1 70,6 10,9 95,7
NN1 (α=0.05, GLAD) 9,3 52,5 3,7 68,6 17,1 95,8
NN1 (α=0.1, GLAD) 7,0 55,7 4,4 69,6 20,6 95,8

D-BERT-Hard labels (MV) 36,5 56,3 - - 5,9 93,0
D-BERT-Soft (MV) 21,1 54,9 - - 5,3 92,4
D-BERT (α=0.05, MV) 25,7 57 - - 7,3 92,4
D-BERT (α=0.1, MV) 21,6 56,7 - - 11,5 93,0

D-BERT-Hard labels (DS) 34,2 56,5 - - 3,3 92,7
D-BERT-Soft (DS) 34,1 53,6 - - 2,0 93,1
D-BERT (α=0.05, DS) 23,0 58,5 - - 7,7 92,8
D-BERT (α=0.1, DS) 31,6 49,4 - - 10,3 93,1

D-BERT-Hard labels (GLAD) 36,1 56,6 - - 9,2 91,1
D-BERT-Soft (GLAD) 20,4 58,2 - - 2,1 94,1
D-BERT (α=0.05, GLAD) 29,5 54,9 - - 7,7 92,8
D-BERT (α=0.1, GLAD) 24,5 55,6 - - 12,8 93,4

Table 2.3: Performance of NN1 and D-BERT with targets obtained from different fusion
methods.

1.GOP2-sentiment 2.Disaster 3.Chemicals&Disease 4.News 5.Corporate Messaging 6.GOP3-sentiment 7.Self-driving cars 8.Drug Relation 9.Deaths in India 10.Debate-subject
F1 ECE F1 ECE F1 ECE F1 ECE F1 ECE F1 ECE F1 ECE F1 ECE F1 ECE F1 ECE

NN1-sHard 79,8 6,8 82,9 9,2 71,3 15,4 74,9 11,1 90,6 2,0 66,0 5,8 66,0 4,2 66,0 5,6 82,9 4,6 88,9 3,4

D-BERT-sHard 76,8 5,5 80,5 12,4 77,1 20,3 72,6 15,9 90,6 7,6 60,1 28,1 57,0 27,0 80,7 11,9 86,2 9,3 78,7 20,7

Table 2.4: Macro F1 and ECE results in % with sHard targets; bold numbers shows sHard
outperforms hard targets.
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Figure 2.6: The comparison of different target methods against models trained on Hard Targets
for 10 datasets from Appen.

2 datasets that have individual crowd votes while remaining comparable on 1
dataset (Table 2.5).

Model
Movie-Reviews Reuters-21578 Amazon-Reviews
ECE F1 ECE F1 ECE F1

NN1-sHard (MV) 4,3 60,2 5,1 64,3 10,3 95,5
NN1-sHard (DS) 10,5 58,2 3,7 72,3 10,4 95,7
NN1-sHard (GLAD) 5,7 58,6 3,4 67,1 10,8 95,8

D-BERT-sHard (MV) 35,9 57,4 - - 4,9 92,5
D-BERT-sHard (DS) 30,0 57,9 - - 3,3 92,1
D-BERT-sHard (GLAD) 35,2 56,4 - - 5,1 93,3

Table 2.5: Performance of NN1 and D-BERT with sHard targets obtained from different
fusion methods.

2.6.3 Key findings

Figure 2.6 and Table 2.6 summarizes the results by showing the average im-
provement of the models trained on sHard/Soft/Smoothed targets to the models
trained on hard targets (our baselines). Results show that our proposed Soft and
sHard target methods substantially improves the model calibration.

2.7 Limitations - and the Road Ahead

This work scratches the surfaces of hybrid classification services and the science
behind them. We have shown the centrality of calibration in contexts where the
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Model F1 ECE Model F1 ECE
NN1-sHard 0.04 -1.7 D-BERT-sHard 0.6 -1.8
NN1-Soft 0.1 -0.7 D-BERT-Soft 0.3 -7.2
NN1 (α=0.05) 0.3 0.9 D-BERT (α=0.05) -3.6 -1.1
NN1 (α=0.1) -0.4 1.5 D-BERT (α=0.1) -0.3 -5.2

Table 2.6: Avg. improvement in % to hard labels.

loss function is skewed and where the cost of errors is high compared to the
cost of asking humans. We have also shown the effect of soft and semi-Hard
targets in text classification with crowdsourced data, across several datasets and
fusion methods. The effect on calibration error and the benefits of the proposed
approach are manifest for deep models, that are known to be more affected by
calibration issues. While promising, the initial work requires deeper investiga-
tions: we need to expand the experiment to other deep network architectures
and get a deeper understanding of what drives the behaviors we are seeing.
The same is true for label fusion methods and related datasets and classification
problems, especially the classification problems with a high number of classes
and varying degrees of noise. Finally, we need to integrate the modules into a
hybrid classification service and test it “end to end”, progressively building sci-
ence that can eventually put classification tasks on autopilot so that crowd and
ML, and their integration, become a commodity rather than an art and a hard
challenge.
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Chapter 3

The science of rejection

For decades, the primary way to develop and assess machine learning (ML)
models (and one of the primary avenues to publication) has been based on ac-

curacy metrics (e.g., precision, recall, F1, AUC). The need to beat leader-boards
when publishing, with public datasets and rankings, to some extent exacerbated
this focus on accuracy metrics, at least for classification models. There is noth-
ing bad in efforts to improve model accuracy: they should stay among the main
goals of ML research. But we argue that one of the reasons for the disconnect
between the amazing progress of ML research (and the corresponding expecta-
tions of professionals in any field that are now sky high) and the limited adoption
of ML in the enterprise is the focus on one aspect of the problem only, and on
the fact that we have not paid enough attention to how and why models are used
in practice, and to the aspects and metrics that are relevant to enterprises when
they adopt and deploy a model.

In this chapter, we take an intentionally provocative stance and state that
accuracy metrics are optional, desirable properties of an ML model that are
sometimes marginal with respect to other metrics rarely addressed in the liter-
ature, if at all. To this end, we start by taking a critical look at the use of ML
models in typical enterprise scenarios, and from there abstract a simplified but
general AI workflow followed in practice. We then present an analysis of how
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current metrics— both the accuracy metrics and some more recent proposals—
are misaligned with the value and cost induced by the workflow. We come to

the conclusion that what we need is a new set of cost (loss) metrics as well as

a science for learning when to reject the inferences done by an ML model - and

correspondingly for identifying subsets of items where we can trust the model.

We then switch our discussion to the scientific progress related to those prob-
lems: where are we now and what can human computation do? We start by re-
viewing the ongoing work in ML and human computation, including the recent
effort on data excellence and hybrid human-machine systems. We argue that
human computation can play a lead role in providing methods for model rejec-
tion, yet discussions on this topic are largely missing. We discuss opportunities
for research on metric definition, ML failure detection and characterization, and
building the rejector, all involving crowds.

3.1 AI Workflows and the Metrics that Matter

Figure 3.1 shows the typical way in which AI solutions are deployed in an end-
to-end enterprise workflow. First, we either reuse or fine-tune a pre-trained
model or use it in combination with some task-specific model. Either way, we
have some ML classifier m that, given an input i ∈ I (where I is a possibly
infinite set of items to classify), produces a predicted class and a confidence (or
a distribution of predicted class with confidences). Almost invariably today in
any model deployment there is then the filtering based on whether the confi-
dence is greater than some threshold, and if so the prediction is applied, else a
default path is followed - most often the very same path that was there before
the introduction of AI in the process. This is true from reading Xrays to detect-
ing intents in a chatbot to automatically routing requests and on to nearly any
use case we can imagine.

From this simple description we can draw a few observations: First, the
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Figure 3.1: Typical implementation of ML models into an enterprise workflow.

threshold and the system behavior depend on the “cost” of machine errors and
its relation to the cost of a rejection and the value of a correct machine predic-
tion. Let’s refer to the value of a correct prediction as V , to the value (cost)
of following the default flow as Cd and to the cost of a wrong prediction as
Cw = K · Cd (that is, we express Cw in terms of how ”bad” is an erroneous
prediction compared to the default flow). Also, for simplicity, let’s assume that
V = −Cd (this is both reasonable and to simplify the presentation, but none of
the concepts below depends on this assumption), and let’s normalize by taking
V = 1, again for simplicity. If the enterprise has a sense for the value of K,
then the confidence threshold descends from that, and so does the expected util-
ity we get from each execution of the workflow. The actual math and values are
not relevant to the discussion, but simple math (omitted) shows that the optimal
threshold T is T = K−1

K+1 , assuming the model is well calibrated. Similarly, we
can show that the expected value for each prediction with confidence c is
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E[value] = −1 · ρt + (1− ρt) · (c(K + 1)–K) (3.1)

where ρt is the probability of a prediction confidence being below the selected
threshold t.

The second observation is that if we have a well-calibrated model with arbi-

trarily bad accuracy α, we can still get value from it. Having no model at all
gives us a value of−n to process n items (remember Cd = −1). Having a really
inaccurate (but well-calibrated!) model that, in the rare proportion of cases hc
where it has high confidence is correct, gives us a value of−n·(1−hc)+n∗hc·,
which is higher. In theory hc can be arbitrarily small and we still obtain value.
In practice this is not the case as the decision to adopt AI comes with devel-
opment, deployment, testing and management costs so there is some minimal
value below which AI adoption does not make sense.

Notice that commonly adopted measures of calibration errors, such as the
Expected Calibration Error (ECE) and its variation [101] (eg, based on how we
bin the samples) are not part of the above formulas and it is easy to show that
they do not correspond to the metric we want to improve.

In this, it is important to point out that we are not just referring to far-fetched
corner cases. The “problem” with commonly adopted metrics of calibration er-
ror is that, while they are valuable in helping us to get a sense of the model cali-
bration as a whole and they are independent of any threshold T or cost structure,
that is also their limitation. Indeed, when we apply a model as per the workflow
above we only really care about calibration around the confidence threshold T ,
which either would make predictions we (incorrectly) reject above the thresh-
old or that make predictions we hazardously accept below the threshold, where
they belong. It is not uncommon for calibration techniques such as temperature
scaling to show spectacular ECE results but if our threshold is 0.8, we don’t care
about the error in the 0.1-0.2 range, nor do we care if the confidence is 0.999 or
0.85.
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Other measures of calibration errors seem more meaningful in this regard:
for example, we can measure the difference between expected value as per the
formula above (which does not depend on prediction correctness, only on con-
fidence values) and the actual value measured on a test set given the threshold
T based on actual correctness of predictions. If the model confidences repre-
sent probabilities and the model is calibrated, then the difference is only due
to statistical sampling error, and as the test dataset increases in size, it should
go towards zero. If the model is not calibrated, then the difference has two
sources: the error due to calibration and the error because T was set based on
optimal calibration. Another approach is to select the threshold Tv not based
on the above formula but empirically based on a validation set, by picking the
threshold that minimizes the cost over that dataset. In this case, the difference
between the theoretical threshold T (which assumes calibration) and Tv grows
as the calibration error grows. These are just two examples of metrics around
which we have not developed a theory yet but that seems promising in terms of
defining a notion of calibration error that, when minimized, leads to a higher
expected value.

Last but not least, the same discussion we had above for accuracy (that is:
it’s ok if we are accurate for an arbitrarily small subset of items) also applies to
calibration! In principle, if we had a magic way to know that our model m is
well calibrated for a subset Ic ⊆ I of items, and we knew, given an item i, how
to tell if i ∈ I , then we would have a useful model, no matter what our cost
structure is, no matter the accuracy, and no matter the overall calibration over I .

At some point the problem becomes recursive and we need to draw the line
( knowing Ic is kind of the same thing as saying that we are confident about
our confidence measures). But the main point remains: the better we can iden-
tify the subset of items for which our model m is calibrated - according to the
metrics defined above - the lower is the cost for our deployment of m in an AI
workflow.
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Now, because in this chapter we assume that m is given to us and that the
decision to accept or reject examples is done downstream - as it often is in
reality, this means that we need to equip AI practitioners with a “science of

rejection” that helps build acceptance or rejection logic for each prediction -
either by recalibrating a model and/or by identifying areas of I where we can
and cannot trust m.

3.2 Where Are We Now?

Confidence Calibration aims at making the model prediction confidence to be
representative of the likelihood of the prediction being correct. Typical methods
smooth the training labels by converting a single hard label into a probability
distribution using certain heuristics [131], e.g., by reducing the probability of
the label and amortizing the reduced probability over other labels. Such an
approach has shown to be effective but again our concern is with the metric
that the approaches optimize. Furthermore, it has recently been shown that
while label smoothing can prevent neural nets from becoming over-confident, it
results in loss of information about resemblances between data instances [97].
From the perspective of ML failures, label smoothing only deals with biases in
the label and cannot deal with those in the feature space.

Adversarial Training instead, can reduce such biases in the feature space by
generating adversarial instances [132], also called out-of-distribution instances
as they are not captured in the training data. The idea is developed driven by
the observation that imperceptible differences in the processed data can lead to
prediction failures. The approach however can lead to a skewed distribution
of the generated instances that are similar to existing training instances. In
particular, for certain features that are missing in the training data, it’s unlikely
that adversarial training can generate such data items.

Data Excellence is a recent effort to enhance the quality of training data through
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the human discovery of items that are challenging to ML models, especially
the unknown unknowns (i.e., items on which the model makes high confidence
errors) [7]. Unlike machines that fully rely on knowledge explicitly encoded
in predefined training data, humans excel at leveraging broad, tacit, and con-
textual knowledge in decision-making and justification. Human computation
has, therefore, emerged as a new, promising approach to detecting unknown
unknowns. A seminal work by Attenberg et al. proposes to ask humans to
gather publicly accessible instances that are potentially difficult for the model
to handle [7]. Lakkaraju et al. introduce a data partitioning technique that
first organizes the data into multiple partitions based on feature similarity, and
then uses an explore-exploit strategy to search for unknown unknown instances
across these partitions [79]. An important finding in human computation studies
reveals that unknown unknowns often come with internal consistency, making
them particularly suitable to be described by human language building on top
of concepts [85].

There is recently a surge of interest in this topic from both academia and
industry. HCOMP recently launched the CATS4ML challenge1 to leverage
crowdsourcing for unknown unknowns discovery; Facebook recently introduced
the Dynabench platform2 for a similar purpose.

Despite that, the recent effort has focused on data only, taking a bottom-up
approach, that is: by collecting better data we hope the machines will learn what
is needed. The assumption however comes without any theoretical guarantee or
strong empirical evidence.

Hybrid Human-Machine Systems tackle the process of solving classification
problems by leveraging both humans and machines [108, 145]. Initial work fo-
cused on very interesting ways to do this, from learning crowd vote aggregation
models from “features” of the crowd task [71], to leveraging crowds to learn

1https://cats4ml.humancomputation.com
2https://dynabench.org
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features of ML models, as in the brilliant paper by Bernstein and colleagues
as well as others [35, 114]. More recently, proposals have emerged based on
training an ML model for a task and then first using that model to classify,
then asking humans if that model’s confidence is not high enough [29]. The
effectiveness of such an approach is, consequently, heavily dependent on the
reliability of machine confidence, which has shown to be very poor, especially
for deep learning [58, 17].

3.3 What Can Human Computation Do?

Our literature analysis points to the fact that research from existing efforts only
provides partial solutions to desirable ML systems. The problem of model re-
jection has been seldom discussed in the human computation community.

The problem is closely related to the ML reliability issue that is heatedly
discussed across many other communities, together with other issues such as
transparency and fairness. Within Computer Science, discussions have been
revolving around the relation between systems and people, e.g., the importance
of human centrality. A visible trend is the fast-growing work of human-AI
interaction [4, 84]. Much of those work takes the angle of humans as users or
stakeholders; in comparison, the computational roles of humans in the process
of better making ML systems or the functioning of hybrid human-AI systems
are seemingly less discussed. We note that human involvement in the system
(creation) is key to bridging the gap between the need of stakeholders and the
engineering of the system, hence of great scientific relevance to the engineering
communities on ML, data, and systems.

Human computation started with the very idea of leveraging human intelli-
gence to solve tasks that are beyond the capability of automated systems, con-
sidering specifically the computational roles of humans without ignoring the
personal and social properties. Responding to the model rejection problem, the
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key research question is the following:

RQ: How can human computation provide an approach to tell when machine

learning systems fail? Answers to this question can provide guidance for col-
lecting high-utility data for model training and allow for safe decision delega-
tion to machines. Having such an approach can, therefore, largely benefit data
creation and hybrid decision-making, and together, promise a human-in-the-
loop ML system that can be relied upon. We extrapolate a non-exhaustive list
of sub-questions as follows:

SRQ 1: What are the proper metrics for the cost of using ML with rejection?

Metrics should be re-considered to measure the cost-effectiveness of a hybrid
human-AI system with a selective classifier whose prediction can be rejected.
The following cost needs to be taken into account in the functioning of the
system: 1) cost of wrong predictions by the ML model. Such cost is task-
specific: the false positive and false negative should be weighted according to
the task; 2) cost of human-made decisions. In the creation of the system, the
cost induced by human involvement in creating the classifier and the rejector
should also be considered.

SRQ 2: How to involve the right stakeholders to report on machine learning

failures? We can imagine that not all failures are easily detectable by random
crowds, especially in social contexts where the perception of the quality of the
services is dependent on personal preferences or cultural background. Opening
a channel where stakeholders can effectively report on their experiences is the
first key step to the rejection problem. The “how” in this question is, therefore,
relevant to both the “who” and “through which means”.

SRQ 3: How to effectively characterize machine learning failures? Character-
ization of failures can either be done on a per-item basis, i.e., using examples
as descriptions or on the conceptual level. The latter would be preferred to
provide a cognizable description of “when the model fails” to developers and
stakeholders.
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The feasibility of such a “symbolic” approach is less a concern given the in-
ternal consistency of machine unknowns. In addition to the question of “which
form” the description should be, it is also important to consider “what mate-
rials” to use in human characterization. We argue that the important factor is
the involvement of models, through e.g., explainable AI techniques, such that
the internal mechanism of the model can be exposed to allow for more effec-
tive identification of the failure reasons. Recent work has shown that human
computation can be a favorable approach to explanation itself [16].

SRQ 4: How to build the rejector? A smart rejector can be built based on
human feedback on machine failures. This can be done in a data-driven way
like the usual ML models are trained, or through a hybrid data- and knowledge-
driven method that allows for more explicit control over the items on which
the prediction should be rejected. Reliability of human feedback should be
considered, as to how human-labeled data has been used for ML training.

In summary, we propose a new frame for evaluation where we argue that i)
rejection - and related relevant metrics - should be a first class citizen of ML
research, both theory and practice, that ii) hcomp is a promising way to go,
but that iii) it requires very different methods than human computation for data
labeling.
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Value of ML Models

A few position papers have recently begun to challenge the assumptions that
have driven the notion of quality in ML [122, 31] - namely the predominance
of the notions of accuracy, precision, recall, and various measures of calibration
errors. At the heart of this stance, there are two observations:

1. ML models are almost always applied with a default option, where the
model can abstain or their inference can be rejected as shown in Figure
4.1.

2. The value (cost) of correct inferences, incorrect inferences, or rejections
are in general not a property of the model but of the use case where the
model is applied.

When we see things under this perspective, both the way we evaluate or
select a model and the notion of what we consider to be ”learning” change.

The scenario of Figure 4.1 is central, not a corner case. This obviously ap-
plies to scenarios where errors are costly (medical diagnosis, self-driving cars):
in those cases we ask humans to take control rather than making an inference
that we are not sure of. But it is also the typical path in nearly any application:
Siri and Alexa don’t always return the most likely action if they are unsure. This
is also the norm in enterprise AI applications.
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Figure 4.1: Typical implementation of ML models into an ML solution workflow - borrowed
and edited from [122]

When we think in these terms, and if for simplicity we discuss the problem
in terms of classification (though the concepts are identical for any AI capa-
bility), what we really mean to say is that our model is applied as a selective
classifier [56]. Once we realize that selective AI models are the rule, not the
exception, our approach to model evaluation changes:

An ML model provides a utility to each, and enterprises adopting a model
may come up with some overall notion of utility, or value function. In the
simplest case this value function could be accuracy or F1, but we have already
seen that models are deployed as selective classifiers, and now we see that the
value depends on the application use case, since for example the model being
”wrong” (or right) has different consequences.

1. The “value” of an “ML solution workflow” such as the one of Fig. 4.1, de-
pends on how often the workflow rejects the predictions, on the correctness
patterns of the predictions that the workflow lets through (not rejected),
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and on the “cost” of errors vs the benefits of correct predictions. Notice
that the value of the solution workflow depends on the use case (e.g., on
how costly errors are), so that a workflow w1 may be more valuable than
w2 for use case uc1, but the reverse may be true for uc2.

2. The value of a model therefore depends on the value of the “best” solution
workflows we can build given that model. When we need to take a decision
on which model to deploy given a set of options, value of the resulting
solution workflow is the right driving factor.

This notion of quality is not what model accuracy, F1, or AUC measure. We
may argue that accuracy metrics are a ”good enough” proxy for data science-
led model improvements and for model selection, and that all we need is to
pick the model with the best accuracy and deploy it by filtering out predictions
with confidence below a threshold, but in many cases this is wrong, both in
how we select the model and how we integrate into the workflow, and can even
unknowingly lead to negative utilities (meaning that we are better off without
AI).

To some extent, all this is so trivial that it would not make sense to waste
even a second of the reader’s time. There is nothing special or difficult in having
value functions, or in picking a model out of a set of models (or a set of training
iterations) that performs well given a value function, or in assessing if a model
performs well over a class of value functions. However, in this chapter, we show
that if we accept the points above, then the method we use to measure, compare,
and even train models change, and the implications of such changes are often
neglected in the literature as well as in model leader-boards. In this chapter, we
specifically make the following contributions:

• We show that universal metrics used for model evaluation can lead to
wrong decisions.
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• We show that the common approach to rejecting predictions (filtering by
threshold) if applied naively - as it is often done based on our experience -
leads to low or even negative model value and to significant loss of “value”
with respect to what can be achieved.

• We show that the above is true even when calibration methods are applied
- and briefly discuss why measures of calibration errors fail to capture
the most important property of confidence scores, that is, the fact that the
probability of confidence is high when predictions are correct (rather than
the other way around).

• Finally, we show that simple, decades-old models, especially when trained
in domain even with simple text encoders, behave very well and often
better than large, complex models and provide some intuition of why that
may be.

4.1 Related work

Mimicking the typical use of ML models in many practical applications, a num-
ber of approaches rely on the combination of a ML model making an initial pre-
diction and a human annotator taking over when the model’s confidence is not
high enough [29]. Selective classifiers are specifically conceived for this use, by
including a rejection mechanism to decide when to abstain from making a pre-
diction. The literature on selective classifiers is quite extensive, covering a wide
range of learning algorithms ranging from nearest-neighbour classifiers [62] to
SVM [55] and neural networks [41, 45, 56]. The effectiveness of this solution
is, however, heavily dependent on the reliability of machine confidence, which
has shown to be very poor especially for deep learning [58, 17].

Hybrid Human-AI systems aim at solving classification problems by lever-
aging both humans and machines [108, 145]. Crowds have been extensively
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employed to develop this type of systems, from learning crowd vote aggrega-
tion models from features of the crowd task [71], to leveraging crowds to learn
features of ML models [35, 114].

Understanding the properties of a classifier is a critical step to effectively use
it [68], and crucially relies on the notion of confidence for individual predic-
tions. Various confidence-based techniques exist in the literature to detect those
examples, such as using the entropy of the softmax predictions [133], measur-
ing trust scores of classifiers based on the distance of samples to a calibration
set [68], finding a confidence threshold (using either Shannon entropy [128],
Gini coefficient [20], or norm-based methods [99]) that maximizes the coverage
given a target accuracy [28], and using semantics-preserving data transforma-
tion to estimate confidence [15]. However, these confidence measures should
be complemented with an appropriate value metric in order to assess the utility
of the classifier in real-world applications.

4.2 Measuring model “value”

4.2.1 The setting

Selective classifiers can be implemented in several ways, such as:

(a) We take a model m that outputs a prediction p and a confidence cp (or
a confidence vector c with a confidence for a set of possible answers).
Then, we filter the predictions to take only those above a certain confidence
threshold (Fig. 4.2a).

(b) The model m outputs predictions (and possibly a confidence), but we apply
a second model s (the selector) that decides whether to accept the predic-
tion or not, based on some features of the input item i (Fig. 4.2b).

(c) A hybrid of the two above cases is where the selector is actually a recal-
ibrator r that can either take as input only the prediction and confidence
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measure or also the input features of i and adjust the confidence vector.
We call the first as a feature-agnostic calibrator and the latter as a feature-

aware calibrator (Fig. 4.2c).

(d) The model m is already trained to only output predictions that are “good
enough” and includes an “I don’t know” class (Fig. 4.2d).

Figure 4.2: Typical implementations of selectivity in classification.

The first case is by far the most common, at least in our experience. The
second case is an extension and generalization of the first case, in two ways: it
can take features as input (that is, s can be trained as opposed to “just” being a
formula), and it can filter based on any formula. Both the feature aware rejector
and calibrator require some form of “training” or machine teaching. An impor-
tant conceptual distinction here is that a feature-aware rejector makes sense in
cases where we know the use case, because that knowledge will tell us when
to reject. On the other hand, a feature-aware calibrator can be considered of
general usefulness. However, if we consider feature-aware calibrator, one point
we make is that in that case calibration and learning really are the same thing.
In the end, we have a model m′ = r(m), and one could argue (we do) that
calibration in this case is no different than learning or fine-tuning.
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In formalizing “value”, we will progressively make a few assumptions that i)
allow to simplify the presentation of the problem without altering the essence of
the concepts, ii) are reasonable in many if not most use cases, and iii) make the
definition of the value function easier to understand and interpret for the users
who eventually have to deploy ML into their companies. This is important: peo-
ple understand accuracy because it is simple, and that has value even if accuracy
is “inaccurate” as a metric, and most users will not be able to express complex
value functions. We also scope the conversation on classification problems as it
makes it easy to ground the examples and terminology, and because it is easier
to define a notion of accuracy.

4.2.2 Definition of value

We have a classifier g that operates on items x ∈ D and returns either a predicted
class y ∈ Y or a special label yr, denoting “rejection” of the prediction. Given
the above, we can compute the average value per prediction of applying a model
g over D (so note that what we are talking about here is the value of a solution
workflow). Specifically,

V (g,D) = ρVr + (1− ρ)(αVc + Σij[Ω⊙ Vw]ij) (4.1)

where ρ is the proportion of items inD that are rejected by g (classified as yr), α
is the accuracy for predictions above threshold, Vr and Vc are the value of reject-
ing an item and classifying it correctly respectively, Ω is a matrix denoting the
proportion of predictions (above threshold) in each cell of the confusion matrix,
and Vw is a matrix with the cost for each type of error (set to zero on the main
diagonal corresponding to correct predictions), and ⊙ denotes the Hadamard
(element-wise) product, of which we take the summation across all elements ij.
Notice that ρ, α,Ω all depend on D and g, and we omit the indices to simplify
notation. Also, if our classification problem has |Y| classes, then Ω and Vw are
|Y| × |Y| (yr is not included here). An alternative representation would be to
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just say that V (g,D) = Ω′V ′, where the confusion and value matrices incor-
porate the reject class. This would allow us to model the case where the value
of rejections and of correct predictions is also class-dependent. Instead, if we
only consider costs based on what we misclassify (based on the actual class)
then Ω and Vw become vectors, and in the most common case where all wrong
predictions are considered equally bad in a first approximation, then Ω and Vw

are a scalar, and Ω = 1− α, so in this case the formula simplifies to:

V (g,D) = ρVr + (1− ρ)(αVc + (1− α)Vw) (4.2)

At this point, while we could carry on with this math, we simplify the notation
for several reasons: the first is, well, to simplify the notation. The second is
to remove dimensionality (values can be measured in dollars, but here we care
about relative values because we want to compare models and learning strate-
gies), and the third is to arrive at a formulation that is digestible for process
owners (the people who apply AI in their processes), for whom it may be hard
to come up with the three cost parameters/vectors. None of the above simplifi-
cations change the concepts presented.

Here we depart from [122] and define as baseline the case where we do not
have ML, or, equivalently, we reject any prediction. We set this baseline at 0,
which means that we set Vr = 0. This makes it easy for us to evaluate a model
in terms of whether it improves on the baseline or not - and therefore in terms
of whether we should adopt AI or not for a given problem.

V (g,D) = (1− ρ)(αVc + (1− α)Vw) (4.3)

We also express Vw in terms of Vc, as in Vw = −kVc, where k is a constant that
tells us how ”bad” is an error with respect to getting the correct prediction.

This leads us to:

V (g,D) = Vc(1− ρ)(α− k(1− α)) (4.4)
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Vc is a scaling factor for the above value formula. When reasoning about an AI-
powered solution workflow we do not really care about that factor, we can think
in terms of value “per unit of Vc dollars”, or equivalently assume magnitude
of Vc, so we can focus on value. From now on we therefore focus on “value
per dollar unit of rejection cost” V ′ = V/Vc. We avoid introducing a new
symbol and, without loss of generality with respect to the above equations, we
set Vc = 1 and get:

V (g,D) = (1− ρ)(α− k(1− α)) (4.5)

Notice that nothing really changes in the concepts we want to stress between
equations 4.1 and 4.5, but the latter simplifies the presentation.

4.2.3 Filtering by threshold

We focus now on the most common situation observed in practice, the one in
which the model selectivity is applied by thresholding confidence values and
rejecting predictions that have confidence c less than a threshold τ (case (a) in
Figure 4.2). In this setting, we are given a model m that processes items x ∈ D
and returns a vector of confidences (one per class). Typically this is the output
of a softmax. Specifically, for each x, we consider the pair ŷ, ĉ corresponding
to the top level prediction of m(x) and the confidence associated with such
prediction. Given a threshold t, we define a function s as:

s(ŷ, ĉ, t) =

ŷ, ĉ ≥ t,

yr, otherwise.

where yr is a special class label denoting ”rejection” of the prediction. Our
classifier g is therefore now expressed in terms of m and t. This means that we
can express the value as a function of m,D, t.

In a given use case, when we are given a model m and have knowledge of Ω
(or of k in the simplified case), we select the threshold τ ∈ [0, 1] that optimizes
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V (g,D) (We assume here τ is unique, or that we randomly pick one if not). This
means that we can express the value of our classification logic as a function of
(m,D, k)

V (m,D, k) = (1− ρτ)(ατ − k(1− ατ)) (4.6)

Notice that τ can be set empirically on some tuning dataset D (it depends on
m,D, k), and ρτ and ατ reflect the proportions ρ and α given τ . However, if we
are aware of properties of the confidence vectors, we can set τ regardless of D.
For example, if we assume perfect calibration (where the expected accuracy for
a prediction of confidence c is c), then we know that the threshold is at the point
where the value of accepting a prediction is greater than zero. If calibration
is perfect, then ατ = τ . This means that to have V (m,D, k) > 0 we need
τ − k + kτ > 0, which means τ > k/(k + 1).

This conforms to intuition: if k is large, it never makes sense to predict,
better go with the default. If k=0 (no cost for errors), we might as well always
predict. If k=1 (errors are the mirror image of correct predictions), then our
threshold is 0.5.

4.3 Experiments

There are many angles we can experiment with based on the concepts described.
In this chapter, we explore:

• whether accuracy is indicative of model quality, and if a less accurate
model may be preferable than a more accurate one, thereby implying that
making decisions and determining leader-boards based on accuracy could
be a limiting perspective at best.

• how to set confidence threshold based on value, and the extent to which
calibration or threshold tuning affect value.
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• which models and in which use cases perform well for different values of
k

Specifically, we analyze both the behavior of simple as well as state of the
art models over various datasets, models, and text encoders and provide insights
on what model developers and process owners should look for in a model and
in how to deploy it in a selective fashion. We refer the reader to our GitHub
repo1 for the companion code.

Task Dataset(s) Models Model details

Hate speech recognition Hate-speech detection [14], [3] Leader-board models
Hate Speech&Offensive Language LogR, MLP1, MLP4 from scikit-learn library

Clickbait recognition Clickbait detection fullnetconc, weNet, lingNet, fullNet Leader-board models
Sentiment analysis Multi-Domain Sentiment Analysis (MDS) mttri [116] Leader-board

Google’s T5-base fine-tuned for sentiment analysis
SieBERT [61] fine-tuned RoBERTa-large [88]

LogR, MLP1, MLP4 from scikit-learn library
GPT-3 we fine-tuned for binary sentiment analysis

Twitter US Airline Sentiment LogR, MLP1, MLP4 from scikit-learn library
Coronavirus tweets NLP LogR, MLP1, MLP4 from scikit-learn library

Content classification DBPedia Classes LogR, MLP1, MLP4 from scikit-learn library
Yelp-5 LogR, MLP1, MLP4 from scikit-learn library

News Category Dataset LogR, MLP1, MLP4 from scikit-learn library
Intent classification Clinc150 LogR, MLP1, MLP4 from scikit-learn library

Table 4.1: Tasks, datasets and models used in the experiments

4.3.1 Experimental Setup

Tasks, Datasets and Leaderboards We experimented on a set of text classifi-
cation tasks where making errors is especially harmful. In Table 4.1 - and more
in detail in the appendix, Table A.1 and Algorithm 3 - we list the tasks, datasets,
and the algorithm experimented with for each task and dataset.

Hate-speech detection on Twitter. [6] analyzed two widely used models
([3, 14]) and tested on popular twitter hate-speech datasets ([142, 43, 157])
with different settings.We replicated the original tests of the two models in Ex-

1https://tinyurl.com/rethinking-value-of-ml-models
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periment 1 and then analyzed their performance under the settings by [6] in
Experiment 2 (more details in the appendix A.1.3)

Clickbait detection. The Clickbait Challenge on the Webis Clickbait Corpus

20172 was classifying Twitter posts as a clickbait or not. Both training and test
sets are publicly available3, while each team was free to choose a subset of the
training set for validation (we followed the ”blobfish” team).

Multi-Domain Sentiment Analysis - and Dataset (MDS). Sentiment analysis
based on a publicly available dataset for domain adaptation4. The data includes
four categories of Amazon products (DVD, Books, Electronics, and Kitchen),
and the task is to learn from one of these domains and analyze the sentiment on
the others.

In addition to the above binary classification problems and data, we used
seven publicly available multi-class datasets with different class distributions
(see Table A.1 in the appendix for details).

Models. We used various models for each task in our experiments (see Table 4.1
and appendix A.1.2 for the details). For the Hate Speech and Clickbait datasets,
we tested the leader-board models. For MDS dataset, we used the leader-board
model ”Multi-task tri-training (mttri)” by [116], two transformer models (a T5-
base model fine-tuned for sentiment analysis5 and SieBERT [61], a fine-tuned
checkpoint of RoBERTa-large [88]), as well as a simple Logistic Regression
(LogR) model and two multi-layer perceptron models from the scikit-learn li-
brary6 with one (MLP1) and four (MLP4) hidden layers respectively. We used
LogR, MLP1 and MLP4 for the multi-class datasets. We tested simple models
with different text encoders: (i) TF-IDF, (ii) MPNET, and (iii) nnlm (details in
A.1.4), but for simplicity we show the results with TF-IDF (see the appendix-
Figure A.11 for further results).

2https://webis.de/data/webis-clickbait-17.html
3https://zenodo.org/record/5530410#.YWcFtC8RrRV
4http://nlpprogress.com/english/domain adaptation.html
5https://tinyurl.com/t5-base-finetuned-sentiment
6https://scikit-learn.org/
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Cost Settings. Following the simplification in Section 4.2.2, we set Vr = 0

and Vc = 1, and then test the models using different values of k ∈ [0, 10]). In
binary tasks, we consider the cost of false positives (kfp) and false negatives
(kfn) separately.

4.3.2 Results

Accuracy vs Value

We first investigated the extent to which models are robust across varying cost
factors k, and consequently also whether we can use accuracy metrics to select
the ”best” model to deploy in an ML platform. We did so both for challenges/
leader-board models and for the set of small/simple and larger models as de-
scribed. As an example, Table 4.2 shows results on MDS dataset that even for
fairly small and very realistic cost factors, the model we would choose with
a value oriented approach differ from what we would choose based on accu-
racy. The appendix show many other cases where this happens - as well as
cases where instead the model with the best accuracy also has best value across
several costs metrics. Notice that k = 4 is actually a very small and realistic
cost factor: it means that ”being wrong is 4 times as bad” with respect to the
advantage of being right. Most scenarios have values of k way more extreme.
Notice also that accuracy corresponds to the case where we do not reject any
predictions. This is equivalent to setting k = 0. Indeed, not filtering examples
(accepting even low confidence predictions) means that we do not care about be-
ing wrong. Another important observation is that in many cases, across models
and datasets, we often find that even leader-board models have negative value,
and even for cost factors of k = 1.
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MODEL ACCURACY
VALUE

K=1 K=2 K=4 K=8 K=10

LOGREG 0.762 0.524 0.339 0.162 0.053 0.033
MLP1 0.749 0.497 0.327 0.18 0.081 0.062
MLP4 0.735 0.47 0.24 -0.143 -0.78 -1.06
MTTRI 0.808 0.616 0.441 0.148 -0.354 -0.58
T5 0.784 0.568 0.352 -0.08 -0.944 -1.376
SIEBERT 0.842 0.685 0.527 0.217 -0.397 -0.705

Table 4.2: Performance of models on MDS Dataset, TARGET = Electronics (using theoretical
threshold)

Calibration vs Threshold Optimization

As explained in Section 4.2.3, we expect that the theoretical threshold would
maximize the value of a model if it is well-calibrated. If this assumption is not
true, then we should either find an “optimal” threshold empirically by tuning it
on a validation set, or we should first calibrate the model (e.g., via temperature
scaling [58] or other methods) and then maximize expected value by filtering
based on the theoretical threshold. We compared how accuracy and value are
affected by either calibrating the model or tuning the threshold on a “valida-
tion” dataset. For calibration, we first calibrate models via temperature scal-
ing and then use the theoretical threshold to compute the values. For tuning,
we investigated how empirically choosing the confidence threshold for each
(model, task) pair affects value. We used a validation set to find the thresh-
old that maximizes the model’s value for every single k, and then used those
thresholds to compute the values on test set.

Figure 4.3 shows the results for uncalibrated models, calibrated models (sec-
ond column) and threshold tuning (third column) for the hate speech and click-
bait cases (and again more results in the appendix and additional material). No-
tice that calibration helps but still leads to very low, zero, and sometime negative
values even at low cost factors (this is the case for Hate speech dataset when we
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Figure 4.3: Value curves of binary datasets for increasing k.

61



4.3. EXPERIMENTS CHAPTER 4. VALUE OF ML MODELS

run Experiment 2 -see Figure 4.3, second column). The empirical threshold
found on the validation set provides equal or better values than the theoretical
threshold in almost all cases.

The rightmost column of Figure 4.3 reports the highest achievable results,
obtained by optimizing the threshold on the test set itself, showing how tuning
the threshold on the validation set is close to optimal in most cases. Still, there
are cases (Hate-speech, Exp. 2) in which the models are useless (Value=0, all
predictions rejected) for most values of k. We report results on all the datasets
in the Appendix A.1.6 and show that they are consistent with these findings.

MODEL
TARGET

DVD BOOKS ELECTRONICS KITCHEN

LOGREG 0.74 0.704 0.762 0.782
MLP1 0.728 0.691 0.749 0.765
MLP4 0.72 0.696 0.735 0.761
MTTRI 0.753 0.742 0.808 0.821
T5 0.788 0.770 0.783 0.777
SIEBERT 0.836 0.826 0.842 0.865

Table 4.3: Average accuracy of models on MDS Dataset.

The effect of complexity and out-of-distribution data.

We investigated why models that rank high in terms of accuracy drop in quality
when the cost ratio increased, while others are more ”robust. As an example,
we show results from an experiment on the MDS dataset to see the impact on
cross-over domains (on out-of-distribution samples). The leaderboard model
for this task is ”mttri” [116] but we also tested two transformer models (a fine-
tuned T5-base and SieBERT), LogR, MLP1 and MLP4 as explained in Section
4.3.1. We trained all the models (except T5 and SieBERT) on each domain and
tested on the other 3 domains separately (so that we have 12 different cases of
<source domain,target domain> pairs). We then calculated the average values
of each model on each target domain (see Table 4.3 for the average accuracy of
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Figure 4.4: Value curves on MDS dataset for increasing k, using theoretical threshold after
calibration (left column) and empirical threshold on validation set (right column). Values are

averaged except the ’SieBERT’ model.
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each model). SieBERT is the best one (even better than the leader-board mttri

model) based on accuracy, but this is not the case in terms of value.

Figure 4.4 shows the results. In most of the cases simple LogR and MLP1
models with simple text encoders (i.e. TF-IDF) have better value than the com-
plex models for high k values. We also tested a fine-tuned version of T5− base

model for sentiment analysis (which does not output the confidence values as-
sociated to each prediction), that is why we could only measure its value by
accepting all the predictions (see Figure 4.5a). Related to this, notice how the
inability to filter (reject) predictions lead to negative value, even with the fine-
tuned T5 that performs very well in terms of accuracy.

(a) Transformer models on MDS dataset, no
threshold.

(b) Multi-class datasets, simple models with
theoretical threshold

Figure 4.5: Value curves for increasing k.

We repeated the experiments also on seven multi-class datasets and observed
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that for example the MLP4 model is worse than a simple MLP1 model over
almost all datasets. Furthermore, MLP4 is even worse than a simple Logistic
Regression model on four datasets (please see Figure 4.5b for an example for
each case, and the rest can be found in the Appendix-Figure A.9).

The pattern in the experiments seem to suggest that simple models (usu-
ally thought to be naturally well calibrated) perform relatively well when errors
are costly, and that for high cost factors models trained on a different domain
also tend to perform poorly, which suggests that even simple models trained on
domain can be preferable. This observation is crucial in enterprise AI, where
each company and each vertical has its own ”language” skew. Interestingly and
perhaps not surprisingly, large pretrained language models that are not bottle-
necked by insufficient training data perform well across the board. This can be
due to two reasons (besides the models being very powerful): first, we know
that large models with very large train datasets are reasonably well calibrated
(e.g. see [69]). Second, when the training data is so large, fewer examples
are out of distribution in terms of language. For example, GPT-37 is trained
on about 45TB of text data from various datasets and it performs very well on
MDS dataset (see Table 4.4 - and the appendix A.1.5 and Figure A.3). The
reason is that the MDS dataset is quite old and probably GPT-3 model has al-
ready learned it (so MDS dataset does not include out-of-distribution samples
for GPT-3 model). However, such models may be too costly or impractical due
to their scale, and the problem still remains for enterprise datasets which may be
quite different from what the large pretrained model has seen. Furthermore, as
the cost grows, the difference with respect to simple models drop significantly.

7https://openai.com/api/
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TARGET ACCURACY
VALUE

K=1 K=2 K=4 K=8 K=10

DVD 0.832 0.664 0.534 0.367 0.164 0.089
BOOKS 0.806 0.613 0.46 0.272 0.077 0.004
ELECTRONICS 0.82 0.641 0.499 0.322 0.127 0.051
KITCHEN 0.853 0.706 0.599 0.464 0.308 0.251

Table 4.4: Performance of fine-tuned GPT-3 on MDS Dataset (Average values using
theoretical threshold)

4.4 Limitations and Conclusion

The takeaway from our experiments is that using accuracy-oriented metrics (that
is, metrics that assume models are applied without rejection) is as a minimum
a risky proposition - and this is true even for models widely acknowledged as
“leaders”. We should always assess models over a range of cost factors, and at
least for reasonable cost factors we expect based on the set of application use
cases we are targeting. k = 0 (accuracy) is almost never a reasonable one. We
also saw how applying models without thresholding can lead to negative value,
and that threshold tuning seems to perform better than calibration. We also
hypothesize and have obtained some support for identifying complexity and
out-of-distribution as factors that may lead to rapid model quality degradation
for higher cost factors.

This being said, we see this work more as providing evidence of a problem
and outlining the research needs: more studies (especially with large models
and in vs out of distribution datasets) are needed to validate the hypothesis and
a deeper understanding of how calibration, confidence distribution, and size of
validation set affect model value.
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Chapter 5

Active learning

Despite remarkable advances in ML, training data remains a key bottleneck
for the successful application of ML techniques. Obtaining a large amount of
high-quality training data is usually a long, laborious, and costly process. AL
provides an effective means to accelerate the process, by iterating data label-
ing and model training, and identifying at each iteration which data to label
next, to converge more rapidly and effectively to an accurate model. Crowd-

sourcing is often used in conjunction with ML, both as a way to collect labeled
data efficiently and as a way to assist trained models for predictions where the
model confidence is not deemed sufficient ([29, 77]). Despite their joint usage,
the interaction between AL and crowdsourcing has been largely unexplored.
This interaction is non-trivial for many reasons: for example, crowdsourcing
typically produces rather noisy labels and the impact of such noise on ML al-
gorithm confidence estimation and calibration is still unclear. Furthermore, at
every AL iteration, we are faced with several choices, from how to aggregate
crowd votes on a label to whether we should ask the crowd to label new data
items or verify (reduce the noise on) already labeled items - and these choices
may impact AL performance.

This chapter reviews existing AL approaches and investigates their perfor-
mance in the hybrid human-machine classification setting, where crowd work-
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ers contribute labels (often noisy) to either directly classify data instances or
to train an ML model for classification. Unlike existing surveys ([125, 2]) that
focus on the algorithmic design of AL and the review paper about integrat-
ing AL with deep learning ([27]), here we aim at re-evaluating existing AL
approaches in terms of cost-effectiveness when data labels are crowdsourced,
and so given the constraints of a limited crowdsourcing budget and noisiness of
worker-contributed labels.

To this end, we first review existing AL approaches under three categories,
based on their reliance on a strategy, that is, specific queries to get the sample
of interest from the data. These categories are: (i) fixed-strategy approaches,
that apply a specific item selection method regardless of the data or problem,
(ii) dynamic-strategy approaches that have a portfolio of strategies and choose
one each time they need to sample a batch of items for labeling, based on past
performance on that specific problem and data, (iii) strategy-free approaches
that do not have any apriori selected portfolio of strategies, but rather learn the
best strategy from scratch based on the problem, data, and prior experiences.
We also review proposals in the literature that discuss how AL can deal with
noisy labels. We then report the results of an extensive experimental comparison
evaluating the performance of the different AL approaches in human-machine
classification.

We evaluate the performance of AL approaches under two different scenar-
ios: 1) ML only: this is the “traditional” approach of training a model with AL
and then testing its performance on a pool of items. 2) Hybrid, where crowd and
ML interact also in the classification phase, not just in data labeling. Indeed,
many problems we face have a finite pool, where the set of items to classify is
finite, and there is, therefore, a trade-off between spending our budget or effort
to train an ML model (using AL methods) versus spending that budget to di-
rectly classify items in the pool via the crowd, or using a combination of crowd
and ML.
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To run this comparison, we developed a library of AL approaches collecting
implementations provided by the authors when available, and re-implementing
them when we could not find existing code. As part of this process, we also cre-
ated a collection of crowdsourced datasets containing micro-level information
(i.e., individual crowd votes), by aggregating the publicly available ones and
adding the ones we collected (note that most available crowdsourced datasets
do not make individual votes available). Both the software library 1 and the
collection of benchmarking datasets 2 are made freely available to the scientific
community. We believe that both the implementations and the crowdsourced
micro-data will be an important contribution in their own right given the diffi-
culty we had in obtaining both, despite extensive searches.

An important lesson learned from the experimentation is that prior conclu-
sions on the performance of AL approaches obtained in non-crowd labeling set-
tings cannot be blindly extended to crowdsourced data. Specifically, strategy-
free approaches that have shown to be effective in many contexts do not achieve
the best performances across crowdsourced datasets. We speculate that this can
be due to the impact of noise in ML model calibration and uncertainty estima-
tion. We also observed that hybrid classification improves the performance of
AL approaches over crowdsourced datasets.

In summary, we make the following contributions:

• We identify three categories of AL approaches in the literature and analyze
their characteristics and effectiveness.

• We contribute a library of implementations of state-of-the-art AL algo-
rithms and a collection of benchmarking datasets for human-machine clas-
sification.

• We report the results of an extensive experimental evaluation, providing
1https://tinyurl.com/source-code-data-results
2https://github.com/TrentoCrowdAI/crowdsourced-datasets
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insights into the performance of existing AL strategies in hybrid human-
machine classification contexts.

• We provide a critical discussion on the main insights that emerged from
our analysis, highlighting relevant open challenges and potential future
directions to address them.

5.1 Active Learning Strategies: A Review

AL ([39]) has been a very lively research field over the last decade. Given a
set of items I and an ML algorithm M , AL aims at defining a strategy to pro-
gressively sample items from I on which to obtain true labels, so that M can
be trained with a smaller dataset with respect to random item sampling. The
underlying assumption is that obtaining training data is costly, and therefore
minimizing the size of such dataset for a given target accuracy is highly bene-
ficial ([70]). In the following, we review existing AL approaches by grouping
them in terms of the type of strategy used to choose the sample of interest.

5.1.1 Fixed-Strategy Approaches

Pioneering fixed-strategy approaches have been proposed in the 1990s. [127]
proposed the query by committee (QBC) approach, which polls a committee of
different classifiers trained on the current set of labeled items to predict the label
of each unlabeled item. Then, items to label are selected based on the maximum
degree of disagreement among the classifiers. They showed that the prediction
error decreases exponentially fast in the number of queries. The approach and
experimentation are however limited to parametric learning models with contin-
uously varying weights and cases where learning is perfectly realizable, and the
learning algorithm is the Gibbs algorithm ([60]). In [54], they proved that QBC

such an exponential decrease is guaranteed for a general class of learning prob-
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lems. They used two machine classifiers as the “committee”, and determined
general bounds on both the number of queries and the number of instances
to be labeled. Specifically, the paper defines higher and lower bounds for the
expected information gain of QBC and proves that if the queries have a high
expected information gain then the prediction error is guaranteed to decrease
rapidly with the number of queries. [94] follow a similar “committee-based”
approach but apply expectation-maximization (EM) in to determine class prob-
abilities and the extent to which classifiers disagree, and weigh item selection
by their density, defined as the distance from a document to the others. With
this approach, they reduced the required number of labeled documents by 42%
over the previous QBC approaches.

[81] presented the idea of uncertainty sampling, where the intuition is to
sample items on which a model M is more uncertain, and this approach has
long been a de-facto standard in the AL literature. They showed that aiming
at reducing the uncertainty of M significantly decreases the number of items
that must be labeled to achieve the target accuracy. [38] proposed selective

sampling, based on the idea of identifying uncertain regions in a vector space
used to represent items and then selecting items (points in space) from such
uncertain regions to minimize them. In the case of support vector machines,
uncertainty sampling is implemented by selecting instances that are closest to
the decision boundary ([135]).

[115] introduced the error-reduction sampling approach, aiming at selecting
items that will reduce the expected error of the active learner in the next test
examples. They computed the expected error rate of an item either by using
the entropy of the posterior class distribution (log-loss) or by using the poste-
rior probability of the most likely class (0-1 loss). [96] focused on the same
objective and proposed the MinExpError approach that uses the theory of non-
parametric bootstrap ([49]) to design generic and scalable sampling strategies.
First, bootstraps are created and assigned to different classifiers; then, the ex-
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pected error of these classifiers for every single item in the unlabeled data is
computed; finally, the items that minimize the expected error are selected. The
authors showed that the MinExpError algorithm requires significantly fewer la-
beled items than existing approaches back then.

Probabilistic Active Learning (PAL) ([47]) combined the idea of uncertainty
sampling and the expected error reduction with smoothness assumption ([32]).
The underlying assumption is that if two items are close in the feature space,
then their labels should also be close. An item is represented by two attributes;
(i) the total number of labeled instances in the neighborhood of the item, and
(ii) the posterior estimate for the total number of the positive labeled neighbor
set. This approach uses probabilistic estimates to investigate the neighborhood
statistics of an item (label statistics) and measures the overall gain in classifi-
cation performance (probabilistic gain) in terms of a user-defined point classi-
fication performance ([105]). It then selects items that improve the expected
probabilistic gain most within their neighborhood. Its time complexity is com-
parable to uncertainty sampling, and it provides fast and stable performance.

[118] proposed the Bootstrap-LV approach, which detects the variance in the
probability estimates of bootstrap samples and uses weighted sampling to find
the most informative items. Another weighted-sampling approach is known as
Importance-Weighted Active Learning (IWAL) ([21]) which applies an adaptive
rejection sampling to each instance and assigns an importance weight (the in-
verse probability of being retained) to each retained item. [22] improved IWAL

by using a rejection threshold based on the importance-weighted error estimates
that minimize the prediction error. They showed that this approach improves the
label complexity which reflects the intrinsic difficulty of the learning problem
([140, 150]).

Additional strategies include clustering instances and selecting cluster repre-
sentatives as the most informative items ([26]), or combining representativeness
and informativeness of instances to minimize the maximum possible classifica-
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tion loss (i.e. Query Informative and Representative Examples (QUIRE) ([65])).
Although many of these approaches explicitly target generalization perfor-

mance improvement, by means of expected error reduction ([115, 163, 59, 96]),
or variance reduction ([124, 126, 63]), fixed-strategy approaches are unlikely to
work on all scenarios ([18, 64]). The reason is that they rely on intuitions and
heuristics that do not generalize to all datasets and ML problems. For example,
even in our experiments, discussed next, uncertainty sampling performs well
when false positives and false negatives have the same ”cost”, but less so when
errors, and specifically errors of a specific type are more costly than others. This
reveals that fixed-strategy approaches are not able to adapt to the data and the
problem at hand.

5.1.2 Dynamic-Strategy Approaches

Approaches to dynamic strategy selection are in essence based on progressively
learning which AL approach works best for the data at hand. This kind of
“learning to learn” approach was first proposed by [18], who showed that one
single strategy cannot perform well on all problems. Their approach, named
COMB, combines a group of AL strategies and dynamically evaluates them to
achieve the best possible performance on the problem at hand. Although the on-
line selection of strategies expedites the AL process, combining multiple strate-
gies and evaluating their individual performance brings two challenges ([18]).
First, as dynamic strategies choose the next action by estimating the perfor-
mance of each AL approach given the current state and the past observations,
the quality of such estimation becomes crucial. However, items selected by the
active learner are biased to be the “hard” ones and do not reflect the exact dis-
tribution of the items, and as such the quality estimation in absence of a test
dataset (which is rarely available in AL) is biased. Second, at each batch only
the label of the instances proposed by the selected AL approach are available;
there is no way to know the consequences of labeling other instances proposed
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by other strategies. To handle these challenges, COMB ([18]) is designed as
an adversarial multi-armed bandit problem (MAB) ([9, 10, 8]) combined with
the EXP4 algorithm ([10]), where AL strategies are considered as “experts” and
unlabeled items are the “slot machines”. Thus, the selection of an item is based
on the opinion of all experts.

[64] proposed the Active Learning by Learning (ALBL) algorithm as an ex-
tension of COMB. It represents each bandit machine as an AL approach, and
uses the EXP4.P algorithm ([23]) to select a machine adaptively. The main dif-
ferences between COMB and ALBL are as follows: (i) while COMB represents
each machine as a single unlabeled instance, a machine corresponds to an AL
approach in ALBL, (ii) both COMB and ALBL adopt the EXP4 algorithm, but
COMB restricts each machine to being pulled only once, while a machine can
be pulled many times in ALBL, and (iii) COMB uses human-designed evalua-
tion criteria based on entropy, while ALBL uses an unbiased estimator of the
test accuracy (weighted accuracy) to decide the rewards of the single strategies.
[64] showed that ALBL gives either comparable or better results than COMB. In
general, the above papers show that ALBL works better than fixed-strategy ap-
proaches when the problem is easier to learn, while it is comparable for harder
problems (where strategy selection is also more challenging).

While ALBL probabilistically blends the items suggested by different AL
strategies to select the most informative one, [37] proposed blending the strate-
gies themselves to build an aggregated strategy. Their approach, called LSA

(Linear Strategy Aggregation), combines LinUCB (linear upper confidence
bound) ([82]), a state of the art MAB approach, with the task at hand. They rep-
resent experience as the weights with which to aggregate strategies, and adap-
tively adjust these weights when tackling a new problem. They aim to transfer
this experience learned from the model to other AL tasks through biased regu-
larization. They proved that the transfer of the learned experience is beneficial
to achieve better performance.
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Although dynamic-strategy approaches use bandits to ensemble multiple
strategies in the learning process ([18, 64, 37]), they still assume that there is
a single best combination in each batch (stationary bandits). In so doing they
are not robust to non-stationary cases, where the weighting proportions must be
adapted over time in the learning process. Recently, strategy-free approaches
have been proposed to overcome these limitations.

5.1.3 Strategy-Free Approaches

Strategy-free AL processes use prior experience (meta-data) to learn new tasks
(active meta learning). The main difference between dynamic and strategy-free

approaches is that the latter does not rely on any human-designed strategies.
In this category, [72] devised a novel data-driven AL algorithm, named Learn-

ing Active Learning (LAL). LAL is formulated as a regression problem that
learns how to predict the reduction in the expected generalization error when
we add a new label to the training set. It uses Monte-Carlo sampling to corre-
late the test performance directly with the classifier and item properties. Both
the classifier and the items are represented with a set of parameters so that LAL

can sense any change in the training set. As a result, the learning state is con-
tinuously tracked as a vector whose elements depend on the state of the cur-
rent classifier and on the selected item. A drawback of this algorithm is being
classifier-specific, that is designed as a random forest regressor.

[146] and [51] use reinforcement learning (RL) for learning an active learner
in a data-driven approach. They adopted a stream-based AL process in which
the agent observes the data in sequence and decides whether a single item
should be labeled by the agent itself or it should be asked to an oracle. Based
on the decision, the agent receives a reward and a prediction model is adopted
to be used in new tasks. They improved the performance of models, but they
tend to learn only from related datasets and domains ([73].

Many other data-driven approaches for pool-based AL processes have been
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proposed recently. While [13] and [103] used RL to build the learning model,
[86] formulated learning AL strategies as an imitation learning problem (i.e.,
the machine is trained to perform a task from demonstrations by learning a
mapping between observations and actions), [40] and [111] applied few-shot

learning (i.e. classifying a new data having seen only a few training examples),
and [102] extended the LSA approach using non-stationary multi-armed bandit
with expert advice.

Active meta-learning approaches have also been developed in application-
specific scenarios. [130] developed (ActivMetaL), an active meta-learning rec-
ommender system. ActivMetaL keeps the scores of multiple AL approaches
on given tasks in a sparsely populated collaborative matrix, predicts the perfor-
mance of each approach for a new task, and then fills the corresponding row of
the matrix for this task. In this way, they predict which algorithm will perform
best for the new task/dataset.

While capable of generalizing across learning tasks, these meta-learning ap-
proaches still have many limitations, such as being classifier specific ([13, 40,
111]), having a greedy approach by missing a long-term reward ([86]), or be-
ing limited to specific domains (i.e. imitation learning, or few-shot learning)
([13, 51, 86, 130]).

To overcome these limitations, [73] proposed an RL variant of their LAL al-
gorithm, named LAL-RL, that defines AL as a Markov Decision Process and
tries to find the optimal and general-purpose strategy. LAL-RL is independent
of dataset and ML classifier (contrarily to LAL that is designed for Random
Forests), and its objective does not depend on a specific performance measure.
The authors show how LAL-RL can transfer learned strategies across substan-
tially different datasets.

Recently, [48] tested the performance of LAL-RL on 20 real-world datasets
and compared it to random sampling and uncertainty sampling. Although LAL-

RL shows very good performance on average, it is not always better than ran-

76



CHAPTER 5. ACTIVE LEARNING 5.1. AL STRATEGIES

dom sampling, especially in the case of highly unbalanced datasets ([48]). In
addition, their results show that the choice of the model is decisive (i.e. random
forest classifier gives better results than logistic regression). They also report
that LAL-RL is sensitive to the metric used to evaluate the performance, and
it requires optimizing many hyper-parameters. This analysis shows that even
general-purpose strategy-free approaches have limitations when dealing with
real-world problems.

Although the main objective of these meta-learning approaches is to adapt
the prediction/learning model to new environments/tasks, they do not consider
the characteristics of the target environment in the prediction model. Hence,
they are likely to be effective in similar environments only. [139] proposed a
new approach that learns a good policy directly based on the target environment
either by using a pre-trained AL model or learning a new policy from scratch
considering the budget for human annotation. They showed that this approach
is more effective than the previous work ([51, 86]) when the source task and
the target task are different. [117] proposed a deep Q-learning approach that
is capable of dealing with multiple environments by learning a multi-modal
AL strategy. They focus on the task of engagement estimation from real-world
child-robot interactions during autism therapy. They employ an LSTM network
to classify the individual modalities into engagement levels (i.e. low, medium,
or high) and feed its predictions into the deep RL agent, making it capable of
efficiently personalizing the interaction strategy to the target user.

In summary, the state of the art shows that the existing active meta learn-

ing approaches can outperform the fixed-strategy and strategy-free approaches,
especially when the dataset is not highly unbalanced. However, most of them
do not present comprehensive benchmarks to prove the transferability of the
learned policies into real-world tasks (i.e. when we do not have a separate test
set) ([48]). While showing a noticeable improvement in terms of generaliza-
tion ability with respect to previous approaches, meta-learning approaches still
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cannot cope with all challenges that are to be faced in real-world scenarios.
Specifically, nearly any real-world application we encountered has two as-

pects that haven’t received much attention so far in AL research: the first is that
the amount of noise in the labels is much higher with respect to standard set-
tings where labels are provided by domain experts, and in crowdsourcing, there
are several trade-offs we can make to reduce the noise and to balance budget vs
noise trade-offs (for example, we can collect more votes for the same items and
aggregate them to get a more reliable label, or we can pay more budget to ask
for highly rated workers, or we can instead focus on getting a larger number of
items labeled at low cost, although with higher noise). The second is that the
cost of false positives and false negatives (and more generally of different types
of errors) is rarely the same and that low calibration error is often a key quality
of a good ML model. There are however a few contributions to dealing with
noisy labels and we discuss them next.

5.1.4 Dealing with Noisy Labels

While crowdsourced labels can be made to be very precise via redundancy and
aggressive worker selection/crowd testing strategies, the individual votes are
often noisy. There indeed exists a line of work in the AL community that ex-
plicitly focuses on dealing with noisy labels. [159] proposed combining uncer-
tainty and inconsistency (entropy of the label distribution) measures to select
instances. The underlying idea is that the learning strategy should select items
that are in unexplored regions or near the ones that may have been mislabeled.
They also propose relabeling the mislabeled items via crowdsourcing. They
show that when the labels are noisy and the aggregated label is not trustful
(i.e. the aggregated label is provided by less than 50% of the workers, who
annotated the corresponding item, in a binary classification setting), then rela-
beling significantly improves the performance of AL. [24] proposed a method
for identifying and mitigating mislabeling errors, where they derive an infor-
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mativeness measure to see how much a queried label would be useful if it was
corrected. They show that this approach is more efficient in characterizing label
noise compared to the commonly used entropy measure. Then, [25] extended
this approach by measuring how much the queried item’s label is likely to be
wrong, based on disagreement with the current classification model, without
relying on crowdsourcing.

A related line of work aims at addressing label noise by explicitly model-
ing the uncertainty of annotators. [152] introduce a model that jointly learns a
classifier and infers annotators reliability, in an active learning setting that in-
volves both data instance and annotators selection. [52] consider the case when
annotators can learn from one another to improve their annotation reliability.
[161] model a scenario where workers can explicitly express their annotation
confidence, by allowing them to choose an unsure option. [151] further con-
sider labeler properties such as consistency. [153] extend the problem to en-
abling deep active learning from crowds, i.e., enabling deep neural networks
to actively learn from crowd workers. However, none of them tried to actively
estimate the noise level of data during the learning process.

5.2 Experimental Work

As we have seen, the near totality of existing AL approaches i) assume that
oracles provide the gold (ground truth) labels, ii) strive for accuracy as a metric,
and iii) assume classification is done by ML only. In reality, the situation and
needs are different, especially when we have access to a large set of human
annotators of different reliability. First, labels can be noisy; second, the trade-
off between the benefit of correct classification and the cost of an error varies
greatly by application, and achieving a low calibration error may be as important
as achieving high accuracy; finally, in many scenarios, we do have the option
of relying on human classification when ML is uncertain, and in those contexts,
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ML must learn to know when it doesn’t know.

In this section, we examine the behavior of AL approaches in crowdsourcing
settings. Specifically, we focus on problems where we start from a blank slate,
have a pool of items to classify and a crowd at our disposal, and need not only to
choose/assess AL approaches but also to assess if the crowd is leveraged only to
get labeled data for training or also to perform classification at inference time,
as done in hybrid classification contexts ([75, 29]).

5.2.1 Problem Formulation

We focus on hybrid binary classification problems where classification is ac-
complished via the combined contribution of humans and machines. The prob-
lem can be formulated as follows. We are given a tuple of (I,M,Q,B), where:

• I is a pool of unlabeled items to be classified.

• M is an untrained ML classifier.

• Q is an AL query strategy.

• B is the budget available (expressed in terms of total number of crowd
votes we can ask).

Our aim is to classify all items I via the ML classifier M or/and crowd
workers, assuming we do not have any training data to start with. To achieve
this, we apply AL strategy Q for querying the most informative items T ⊂ I

that will be annotated by crowd workers on money B. The annotated items T
will be used as training data for machine M and finally I will be classified based
on M and the feedback collected from the crowd. Our hybrid AL workflow is
described in detail in Algorithm 1.
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Algorithm 1 Hybrid AL workflow
Input: I , M , Q, B

1: LI, UI ← {}, I − labeled and unlabeled items
2: T ← {} − training dataset, {(item, label), ..}
3: V otesAll← {} − set of crowd votes on items, {(item, worker, vote), ..}
4: b← 0 − budget spent
5: while b < B do
6: batch← select batchSize items from I(i.e., LI ∪ UI) via Q

7: V otesBatch← collect crowd votes for items batch
8: V otesAll← V otesAll ∪ V otesBatch

9: T ← AggregateV otes(V otesAll) − build training dataset
10: train M on T

11: test M on I

12: update UI, LI, b

13: end while
14: classify I based on M and V otesAll

15: return M, Classified Items

5.2.2 A new approach: Block Certainty

Most of the AL approaches do not consider cost-sensitive learning scenarios,
in which different types of errors can be associated with different costs. This
is the typical scenario in medical screening tests for instance, where we try to
uncover the presence of a disease. A false negative (FN) error (or missed alarm)
is in this case extremely critical and much more costly than a false positive (FP)
one (false alarm). The same is true in many enterprise contexts such as the ones
some of the authors face daily, where companies are ok if a customer request
is not understood and has to be routed to an agent, but not ok if ML predicts
the wrong intent and gives the wrong answer to the customer. An effective
ML classifier for this scenario should be trained using a cost-sensitive loss, that
potentially trades precision for recall. We thus propose a simple cost-sensitive
AL approach, that we name “Block Certainty”, which intrinsically considers the
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relative harm of FN over FP errors during the AL process.

Let k indicate the relative harm of FN over FP errors, i.e., a single FN error
is k times more costly than a FP one. Let p be the probability of an item being
positive according to the machine M . Let d be the decision threshold for M . We
first investigate how to set d so as to minimize the risk of the classifier M given
k. Assuming p > d (item classified as positive), we define the risk score for
this item as risk = 1− p. Similarly, the probability of an item being negative is
1−p. Assuming p ≤ d (item classified as negative), the risk score for this item
will be risk = k ·p. Figure 5.1 shows the relation between p and the risk score.
The optimal classification threshold d is given by the value of p for which the
lines risk = k · p and risk = 1− p intersect, i.e., d = 1/(1 + k).

p

Ri
sk

10 d =	1	/	(1+k)

Figure 5.1: Risk score Vs. p

Then, in Algorithm 2 we define the “Block Certainty” sampling, where at
every AL iteration, we query predicted positive and negative items with the
lowest risk score (according to k) for further annotation.

Algorithm 2 Block Certainty Sampling
Input: I , M , batchSize, k

1: p := M.predictProba(I)

2: d:= 1
1+k

3: predPos := [p[i]>d for i in I]
4: predNeg := [p[i]≤d for i in I]
5: PosId := argmax(predPos, size=d·batchSize)
6: NegId := argmax(predNeg, size=(1-d)·batchSize)
7: return PosId + NegId
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5.2.3 AL approaches and ML classifier

We examine the following seven AL approaches: (i) random (R) (items are
randomly sampled), (ii) uncertainty (UC) ([81]), (iii) certainty (C) (the reverse
of uncertainty sampling, i.e., the most certain items are sampled), (iv) block

certainty (BC) (our proposal for cost-sensitive sampling), (v) QUIRE (Q) ([65]),
(vi) MinExpError (MinExp) ([96]), and (vii) meta learning (LAL) ([72]). We
used R, UC, C, Q, and MinExp as the SOTA fixed-strategies that have been used
in the most of the comparative analysis in the literature. Since [72] already
proved that LAL approach outperforms the SOTA dynamic strategy approach
ALBL ([64]), we tested only LAL to have an intuition about adaptive approaches.

Since the LAL ([72]) approach is specifically designed to work with the ran-
dom forest classifier, we chose random forests as the underlying classifier for
all AL approaches. We used the implementation provided by the scikit-learn

library ([106]) with the following parameters: n estimators = 100, criterion =
“gini”, max depth = None, bootstrap = True, class weight = “balanced”, and
random state = 2020. In order to evaluate the effect of the choice of the classifier
on the performance, we additionally evaluated a subset of the AL approaches
(excluding LAL) using a support vector machine as the underlying classifier.

5.2.4 Crowdsourcing and Evaluation

Crowdsourcing scenarios.

We consider the following two crowdsourcing scenarios in our experiments:

• Unlimited votes. Every single item can be selected an unlimited number
of times for a crowdsourced vote, as long as we have available budget and
voters.

• Limited votes. There is a maximum number of votes maxV ote that each
single item can receive (maxV ote = 3 in the experiments). Upon reaching
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this limit, the corresponding item is removed from I and cannot be queried
anymore. In principle, this limit could be automatically inferred via meta-
learning approaches, but this is out of the scope of this thesis.

Evaluation scenarios.

We evaluate the results under two different cases:

• ML (only): We use the trained M to predict the label of each item in the
pool I and evaluate its performance compared to the ground truth labels.

• ML+C: We take crowdsourced labels for items LI and use M to predict
the label of the unlabelled items in UI . We evaluate the performance of
this combined crowd-machine classifier by comparing its predictions with
the ground truth labels.

Label fusion methods

Since we use crowd answers instead of gold labels in the learning phase, it is
important to consider that they may yield low-quality or noisy labels ([160]).
In the crowdsourcing literature, this problem is addressed by assigning each
task to multiple crowd workers and then aggregating the votes (answers) to
obtain the correct label. This process is called truth inference and relies on
an aggregation strategy to combine labels. Several label fusion strategies have
been investigated in the literature ([12, 46, 30, 50, 83, 87, 90]).

Because of its simplicity and effectiveness, the most popular label fusion
method is Majority Voting (MV) ([137]), which selects the label voted by the
majority of the workers as the correct answer ([53, 104, 91]). We thus use MV
as the label fusion strategy in our experimental evaluation. A known limitation
of MV is the fact that it assumes that all workers provide the same quality of an-
swers. To measure whether the results depend on this simplifying assumption,
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we also ran an additional experimental investigation using a more refined label
fusion method (Section 5.2.7).

Metrics.

We use F1, F3, Accuracy, and Loss metrics to evaluate the performance of the
machine classifier (ML) and of the hybrid crowd-machine classifier (ML+C).
We define the Loss of classification as the following ([100, 76]):

Loss =
1

|I|
· (k ∗ FNN + FPN), (5.1)

where k denotes how much the cost of a false negative outweighs the one of
a false positive, FNN is the number of false negatives, FPN is the number
of false positives, and |I| is the number of items in I . The Loss summarizes
the subjective perspective of the risks for False Positive/Negative errors. This
is especially common in real-world applications, such as potential credit card
fraud, identifying tweets linked to criminal activities, or literature reviews where
screening out a relevant paper is considered to be a serious error affecting the
quality of the review, while a falsely included paper just requires some extra
work by the authors.

5.2.5 Datasets

Crowdsourced datasets can either include the answer (label) of each crowd
worker to each item or just provide the aggregated labels (a single discrete label
for each item, determined by combining votes from multiple crowd workers).
The latter type of dataset is less informative and doesn’t allow to test strate-
gies that involve queries to individual workers. However, most of the available
crowdsourced datasets are of this type. We thus created an open repository2

of the available crowdsourced datasets with individual crowd votes; we also
added the datasets we collected. We provide a standard format for accessing
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Figure 5.2: Label distributions of datasets
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Datasets

RTE Emotion Amazon-1 Amazon-2 Crisis-1 Crisis-2 Crisis-3 Exergame

Tasks 800 100 1000 998 1948 1948 949 93
Workers 164 38 263 263 79 79 93 38
Total votes 8000 1000 4908 4873 6000 6000 4003 286
Min. vote 10 10 2 2 3 3 3 2
Data (+/-) 400/400 4/96 612/388 99/899 347/1601 883/1065 516/433 53/40
Batch count 40 5 50 50 90 90 50 5
Batch size 20 20 20 20 20 20 20 20
Exp. count 20 20 20 20 20 20 20 20

Table 5.1: Properties of the datasets

the datasets so that they can be used in the experiments without any work-
load in preprocessing. Researchers can benefit from this repository for hy-
brid human-machine classification and ranking tasks, truth discovery based on
crowdsourced data, estimation of the crowd bias, and active learning.

Table 5.1 shows the properties of each dataset we used in our experiments;
the number of tasks, number of workers, total number of votes, minimum vote
count per item, data proportion in terms of the number of positives and nega-
tives, batch count (a batch is a predefined number of instances, where the batch
count is the number of batches that defines the total number of iterations), size
of a batch, and the number of experiments (repetitions) for each dataset. We
show the distribution of labels for each dataset in Figure 5.2.

The task in the Recognizing Textual Entailment (RTE) dataset ([129]) is to
identify whether a given hypothesis sentence is implied by the information in
the given text3.

The Emotion3 dataset ([129]) is about rating the emotion (“anger”) of a given
text. Each rating is a value between 0 and 100, and we converted them to binary
form (0 if rating ≤ 49, else 1).

The Amazon Sentiment-14 dataset ([75]) includes annotations about deciding
3https://sites.google.com/site/nlpannotations/
4https://tinyurl.com/AmazonSentiment
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whether the given product review belongs to a book or not. Similarly, the Ama-

zon Sentiment-24 dataset ([75]) includes annotations about whether the given
product review has a negative or positive sentiment.

The Crisis-15 dataset ([67]) consists of human-labeled tweets collected dur-
ing the 2012 Hurricane Sandy and the 2011 Joplin tornado. The task is to decide
whether the author of the tweet seems to be an eye witness of the event. Sim-
ilarly, Crisis-25 dataset ([67]) contains annotations about deciding the type of
the message (tweet). The task in Crisis-35 dataset ([67]) is to analyze hurricane-
related tweets and decide whether the tweet is informative or not.

Finally, the Exergame dataset includes annotations about whether the given
paper describes a study that uses an exergame. An exergame is a form of inter-
active gaming where people do physical activities while playing a video game,
that is, physical exercises by way of video games.

5.2.6 Results

The elaborated experiment results, all datasets, and the source code for repro-
ducing the experiments are available online1. In addition, we present the visual
experiment results in a notebook6, while summarizing the important outcomes
below.

Table 5.2 and Table 5.3 shows F1 scores of each AL approach in Scenario 1
and Scenario 2, respectively. We observed that ML+C prediction outperforms
the ML prediction on each dataset, regardless of the AL approach. When we
compare F1 and F3 scores, the best AL approach remains the same. That is
why, we present F1 scores here, while F3 scores can be seen in the results
sheet7.

Comparing the Loss with different k values, we noticed that (i) when the

5https://crisisnlp.qcri.org/
6https://tinyurl.com/ALExperimentResults
7https://tinyurl.com/ALResultSheet
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harm of FP and FN is the same (k = 1) uncertainty sampling performs 35%
better on average than other approaches, (ii) when the problem is characterized
by high k value (k ≥ 10) then block certainty sampling provides 25% better
performance on average on five datasets, while uncertainty sampling provides
36% better performance on average across all datasets, and (iii) block certainty
sampling approach outperforms others on five datasets with small k values (k ≤
0.1) with an improvement of 34.5% with respect to the average performance.
We only present the results for k = 100 here (see Table 5.4), while keeping
others in the notebook6.

When we analyze the performance of the approaches individually, we draw
the following conclusions:

1. Block certainty has an outstanding performance with very big and very
small k values (k ≥ 100 and k ≤ 0.01) on RTE, Emotion, and Exergame
datasets; so it can be used in domains where the harm of a false nega-
tive and false positive is very different, such as in literature reviews, or
medicine.

2. Certainty and QUIRE ([65]) approaches did not show a promising perfor-
mance over crowdsourced data in terms of accuracy, F1 and F3 scores.

3. Random sampling performed comparable or sometimes better (i.e. in the
Crisis-1 dataset) over imbalanced data with more negatives.

4. Although it is claimed that LAL ([72]) approach outperforms uncertainty
sampling ([81]), results show that uncertainty sampling outperforms others
in most cases for the finite-pool hybrid classification over crowdsourced
data.

5. Table 5.5 shows that uncertainty sampling and random sampling created
the biggest number of training sets (note that we may relabel the training
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data and we may end up with a different number of votes per item; this
affects the size of training data after the learning process ends).

6. The limited votes scenario increased the size of training sets for all cases.
This shows that sampling strategies may be stuck at some items if we do
not limit the maximum number of votes per item.

AL approach
Dataset Evaluation R UC C BC (k=1) Q LAL-R LAL-I MinExp

RTE
ML 66,3 69,7 55,4 60 67,2 64 62,9 64,8
ML+C 68,4 72,1 56,7 61,1 67,4 66,7 65,5 66,8

Emotion
ML 32,8 53 44,8 51,7 32,7 42,4 44 33,8
ML+C 42,2 68,4 60,2 70 48,5 60,2 56,6 42,7

Amazon-1
ML 93,9 96,2 58,6 74,3 70 92,5 92,7 92,4
ML+C 93,9 96,3 59,1 74,5 70,4 92,6 92,8 92,5

Amazon-2
ML 55 63,5 35 36,4 26 67,6 65,7 32,1
ML+C 60,7 70,1 40,2 42,5 31 72,5 71,4 34,2

Crisis-1
ML 31,4 7,5 14,9 5,9 7,7 27 28,5 11,8
ML+C 38,5 10,3 17,9 9,4 8,2 30,6 32,4 14,2

Crisis-2
ML 80,8 85,5 61,8 66,9 15,7 66,1 61,5 79,7
ML+C 81 86 62 67 16,1 66,3 61,6 79,9

Crisis-3
ML 85,2 89,5 69,8 68,7 47,6 69,4 73,1 84,1
ML+C 85,7 90,2 69,9 68,7 47,8 69,6 73,3 84,3

Exergame
ML 79,4 81,5 74,9 73,4 79,4 77,8 77,4 78,5
ML+C 80,3 81,7 75 73,8 79,4 78,1 77,8 78,7

Table 5.2: F1 Scores in percentage (Scenario 1: Unlimited votes)

5.2.7 Further analysis

The previous experimental analysis was run using random forests as the un-
derlying classifier and majority voting as the label fusion strategy. In this sec-
tion, we investigate whether changing the classifier or fusion strategy affects
the overall picture. Since the LAL ([72]) approach is specifically designed to
be used with random forests, we omit it from the following analysis. We also
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AL approach
Dataset Evaluation R UC C BC (k=1) Q LAL-R LAL-I MinExp

RTE
ML 65,4 70,2 61,5 64,9 57,6 63,9 63,7 65,6
ML+C 67,9 72,5 63,5 66,7 58,7 66,7 66,4 67,7

Emotion
ML 35,4 44,2 35,8 44,9 38,8 41,7 41,1 35,7
ML+C 44,5 54,6 49,1 59,8 51,4 56,9 53,4 47

Amazon-1
ML 93,7 96,2 65,8 84,6 80,2 94,3 92,9 94
ML+C 93,8 96,3 66,2 84,8 80,7 94,5 92,9 94,1

Amazon-2
ML 56,6 70,3 43,6 63,9 42,8 67,1 66,6 52,9
ML+C 62,6 76,7 50,3 70,7 49,8 72,8 72 59

Crisis-1
ML 32,2 22,6 31 21,6 18,8 30,3 28,5 20,9
ML+C 39,6 28,6 36,7 27,1 24,5 35,5 34,5 25,2

Crisis-2
ML 81 86 71,1 69,2 73,1 73,7 73,2 80,7
ML+C 81,1 86,3 71,2 69,4 73,3 73,9 73,4 80,8

Crisis-3
ML 85,1 89,5 74,5 74,2 68 77,5 77,4 85,2
ML+C 85,3 90,1 74,7 74,6 68,3 77,8 77,5 85,5

Exergame
ML 79,8 84 75,3 76,1 80 78,7 78,4 78
ML+C 79,9 84,5 75,4 76,1 80,3 79,5 79,1 78,3

Table 5.3: F1 Scores in percentage (Scenario 2: Limited votes)

AL approach
Dataset R UC C BC (k=1) Q LAL-R LAL-I MinExp
RTE 628,08 427 747,46 158 884,11 702,72 712,82 621,86
Emotion 6,24 5,2 5,55 4,74 5,3 5,39 5,39 6,14
Amazon-1 274,29 169,1 1465,4 1522,11 859,26 260,98 292,06 265,15
Amazon-2 256,16 176,7 335,31 347,77 342,4 188,39 189,2 291,47
Crisis-1 1400,06 1513 1406,86 1529,07 1553,88 1423,26 1446,3 3062,11
Crisis-2 756,29 460,36 1278,99 1454,45 1046,7 1287,1 1302,9 1543,61
Crisis-3 391,57 240,9 735,25 597,34 1113,8 685,46 667,1 393,94
Exergame 59,2 45,9 75,97 42,32 58,2 66,16 63,23 62,28

Table 5.4: Loss (k = 100) (Scenario 2: Limited votes)
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Dataset
AL approach RTE Emotion Amazon 1 Amazon 2 Crisis 1 Crisis 2 Crisis 3 Exergame

R 523.6 70.5 649.55 649 1199.9 1197.9 638.6 72.3
UC 645.2 58.45 806.85 742.95 1129.3 1478.8 768.25 84.9
C 351.65 51.05 404.9 491.6 837.45 772.3 421.65 57.95
BC (k=1) 356.95 50.45 416.75 582.25 976 779.4 423.75 58.7
Q 283.7 52.05 357.85 358.8 622.65 622.65 354.55 61.75
LAL-R 495.65 55.5 629.2 714.25 1191.3 786.05 441 63.8
LAL-I 496.45 59.35 581.5 710.25 1183.6 794.15 434.85 65.15
MinExp 510.2 59 640 474,9 747,4 1181,7 630.15 73.8

Table 5.5: Size of training set (Scenario 2: Limited votes)

Metric
Dataset F Accuracy F1 Loss (K=100)

RTE
MV

RF,UC
0,69

RF,UC
0,725

SVM,R
134

DS
RF,UC
0,701

RF,UC
0,701

SVM,Q
184

Emotion
MV

SVM,Q
0,945

SVM,UC
0,599

RF,BC
4,7

DS
RF,BC
0,96

RF,BC
0,96

RF,BC
4,8

Amazon-1
MV

SVM,UC
0,961

SVM,UC
0,968

SVM,UC
152

DS
RF,UC
0,954

SVM,UC
0,959

RF,UC
185

Amazon-2
MV

SVM,UC
0,955

RF,UC
0,767

RF,UC
177

DS
RF,UC
0,956

RF,UC
0,956

SVM,UC
145

Crisis-1
MV

RF,R
0,866

RF,R
0,396

RF,R
1731

DS
SVM,R
0,859

RF,R
0,858

RF,C
1441

Crisis-2
MV

RF,UC
0,87

SVM,UC
0,865

SVM,C
172,3

DS
SVM,UC

0,88
RF,UC
0,872

SVM,UC
492

Crisis-3
MV

SVM,UC
0,901

SVM,UC
0,911

SVM,UC
241

DS
SVM,UC

0,904
SVM,UC

0,914
RF,BC

173

Exergame
MV

RF,UC
0,825

RF,UC
0,845

SVM,BC
33,2

DS
RF,UC
0,796

SVM,UC
0,812

SVM,BC
35,2

Table 5.6: Best performance results in ML + C prediction
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omit minExpError ([96]) as its complexity is very high and it did not show to be
competitive with less expensive approaches. Hence, we focused on the follow-
ing AL approaches: (i) random (R), (ii) uncertainty (UC) [81], (iii) certainty

(C), (iv) block certainty (BC), and (v) QUIRE (Q) ([65]).

We repeated all experiments using an SVM classifier, utilizing an implemen-
tation provided by scikit-learn library ([106]) with the following parameters:
class weight =“balanced” and C=0.1. As an alternative to majority voting we
used the Dawid-Skene (DS) ([44]) strategy, a popular label fusion method that
models each worker as a confusion matrix and uses an expectation-maximization
approach to decide the correct label.

Results8 confirmed that the combination of humans and the machine (ML

+ C) outperforms the machine only case (ML only). For this reason, in the
following we discuss only the results of the ML + C case.

Table 5.6 shows which (classifier, AL approach) pair performs best on each
dataset in terms of Accuracy, F1, and Loss (K=100) metrics. We evaluate results
in two different conditions; when we aggregate votes using (i) majority voting
(MV), and (ii) Dawid-Skene (DS). Results show that this pair may change even
on the same dataset with respect to the metric used. For example, when we
look at the Crisis-1 dataset, random sampling with SVM classifier and DS label
fusion method performs best in terms of accuracy while uncertainty sampling
with RF classifier is the best in terms of F1 score.

Summing up, these results suggest that the performance that AL strategies
exhibit in standard settings cannot be directly transferred to hybrid classification
problems. Many factors may affect the behavior of an AL approach, such as
the machine classifier being used, the amount of labeling noise in the data, the
characteristics of the problem, and the label fusion method. For example, when
we look at the F1 scores in Table 5.2 and Table 5.3, we see that uncertainty
sampling is not the best method for Emotion, Amazon-2 (in Scenario 1) and

8https://tinyurl.com/ComparisonOfAggTech
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Crisis-1 datasets. These three datasets are the most unbalanced datasets we
used. In addition, the noise level in Emotion and Crisis-1 datasets are very high
(please see the Figure 5.2). These observations show that uncertainty sampling
performs best when the dataset is balanced and the noise level of the data is low.

5.3 Conclusions and Open Issues

In this chapter, we first reviewed the existing AL approaches under three cat-
egories: (i) fixed-strategy approaches, (ii) dynamic-strategy approaches, and
(iii) strategy-free approaches. We then investigated the performance of a set of
representative approaches for different strategies in the hybrid human-machine
classification setting. The aim was to discover if and how the performance of
the existing approaches can be transferred into the hybrid classification context.

Experimental results showed that as expected, hybrid human-machine classi-
fication always improves over purely machine-based classification. When com-
paring different AL approaches, however, no clear winner emerges. Even a
SOTA meta-learning approach like LAL fails to show consistent improvements
over the alternatives when evaluated across different datasets. We observed that
if we have a finite pool classification problem with noisy crowd labels (i.e. RTE,
Emotion, Crisis-1, and Crisis-2 datasets), then we can simply start by picking
the RF classifier, UC approach, and DS label fusion method to achieve an ac-
ceptable performance (see Table 5.6). In addition, if the cost of FN and FP
errors are very different for the problem at hand, then we can consider using a
BC approach instead of UC (see Table 5.4, where BC improved the performance
on RTE, Emotion, and Exergame datasets with a big k value).

Hybrid crowd-machine classification is promising but needs more investi-
gation. Most of the existing AL approaches assume that enough high-quality
labeled data exist. However, gathering high-quality labeled data is challenging,
and labels, especially if crowdsourced, can be noisy. For this reason, we an-
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alyzed what happens if we use noisy labels instead of gold data in finite-pool
hybrid classification problems. We have shown that in the presence of noisy
data the conclusions from the SOTA need to be revisited and cannot be taken
at face value when data is crowdsourced. This points to the need for further
work in the community on what is the role of noise in the success of specific
AL algorithms and how much noise they can tolerate before the assumptions
and intuitions on which they are based do not hold any longer. The community
also needs to analyze how different types of noise (i.e. random noise or biased
crowdsourced answers) in data affect the performance of AL, and how the ef-
fect of such noise can be smoothed. Indeed, label smoothing can be a promising
direction to pursue as it helps to improve the calibration of ML models, which
is central for many AL algorithms.

In addition, our analysis highlights several open issues and challenges that
we believe can shape future research on this topic, specifically: i) what are the
trade-offs between having a smaller but accurately labeled dataset vs a larger
but more noisy one? ii) Would a dynamic assessment of crowd accuracy help
strategy-free approaches? and, iii) How do we operate at the start of an AL
process when we have no idea of the crowd accuracy?

Another direction is that of balancing the AL and human vs machine con-
tribution in hybrid crowd-ML classification problems where the pool of items
to classify is finite: here the challenge is deciding when to stop spending our
budget for collecting samples to optimize our AL process and obtain a stronger
ML model and spend the budget for classifying the remaining items in the pool,
by applying the current ML model and resorting to humans for items on which
the ML model is unsure about.

In summary, this chapter has pointed to several interesting research paths that
we need to undertake if we want to address problems that companies face when
developing their ML solutions and that are needed to make AL a mainstream
part of ML pipelines.
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Chapter 6

Value-aware active learning

6.1 Model Value and Active Learning

Recent papers have outlined the massive practical importance of selective clas-
sifier, where machine learning (ML) models have the option of saying “I don’t
know” and therefore the workflows proceed with a default class [31, 122]. In-
deed it is also our experience that, in enterprise workflows, deploying models
as selective classifiers is the rule, not the exception. What follows from these
simple observations is that accuracy and ROC-related metrics are inadequate
to capture the value an ML model brings to a use case, both because we have
now an “I don’t know option”, and because correct, wrong, and “I don’t know”
answer have different “costs” in practice. Therefore, we need a different way to
assess ML.

Model value. In this chapter, we follow the literature in terms of how a
model value is defined and measured [122]. We assume that the value of a
model is given by the following formula:

V = ρVr + (1− ρ)(αVc + (1− α)Vw) (6.1)

where Vr, Vc, and Vw are the value of rejecting an item, classifying it correctly,
and classifying it wrongly, respectively. ρ is the proportion of predictions that
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are rejected and α is the accuracy.

Reality can be more complex in terms of how the cost is assigned as de-
scribed in the original paper [122], but this simplified model is both good enough
for our purposes and is anyway already at the limit of the level of complexity
that business process owners can accept when thinking of the benefit of ML in
production.

If we set the value of not having AI (before we put our ML model into
production) to 0, and we consider that not having ML is equivalent to having a
model that rejects all predictions, then we have Vr = 0. We can then define Vw

in terms of Vc without loss of generality, as Vw = −kV̇c, where k is a cost ratio
of how bad is an error with respect to how good is a correct prediction. With
this value formula, ML is helpful if value is positive. With these changes, then
the value formula becomes:

V = Vc(1− ρ)(α− k(1− α)) (6.2)

In the following we assume that rejection of predictions is performed by
having the classifier emit a prediction score or confidence, and by having the
ML solution workflow filter predictions with confidence lower than a threshold
t. This is the case in nearly all approaches we have seen. In this setting, if the
model is well calibrated and scores correspond to probability of being correct,
then theory shows us that we maximize value by setting t = k/(k + 1). If that
is not the case, then we can set the threshold by using a validation set, picking
the t that maximizes value on that dataset.

Directly from the formulas descend the fact that the greater is k, the more
selective we should be in accepting predictions. k is a parameter of the busi-
ness problem, not of the model, and in general, given an ML model, the value
will decrease linearly as k increases if t remains constant. If we adjust t as k

increases, then value decreases sub-linearly.

Active learning in the age of value. In this chapter, we study how the
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fact that value, and not accuracy, is what we look for in a model and it affects
active learning strategies. In particular, we investigate if uncertainty sampling
[81] has an edge over random sampling, and if simple alternative strategies can
outperform both uncertainty and random sampling. The intuition that drives
our work is as follows: the value of a model increases when we increase the
proportion of correct classifications above thresholds. This means that value is
provided by i) pushing correct low-confidence classifications above thresholds,
ii) pushing above-threshold wrong classifications to go below t, and iii) turning
wrong classification into correct one that are above threshold. This is different
than the “traditional” learning goal of turning wrong into right, which is not
even present in the three options above. However, the objectives we stated are
what matters in practice, and the case where customers set t = 0 ( which occurs
when k=0, an unrealistic cost) are virtually non existent.

What follows from this is that uncertainty sampling may not be the best ap-
proach if it tries to focus on low confidence examples, as we may never be able
to take examples in that low-confidence region to go above t. In contrast, we
may instead decide to focus the attention on examples around t. Furthermore,
if k is high, this means that the cost of errors is high. In this case, we may actu-
ally attempt to do “certainty sampling”, or “above threshold sampling”, where
the goal is to examine above threshold examples because we cannot afford mis-
takes there. In all this, an underlying problem is that to increase value we need
a model that estimates confidences well, so learning to do that is as important
as getting the prediction correct.

Contributions. In this chapter, we make two focused but important points:
i) uncertainty sampling performs well for unrealistic cost ratios k very close to
zero, but is often worse than random sampling even for fairly small values of k;
and ii) Threshold Oriented Sampling (TOS) performs well across many datasets
when k grows to 1 and above. We show this for a variety of natural language
datasets. We also show how the selection of text encoders affects the value of
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the resulting model. The companion code is available online1.

6.2 Related Works

[57] proposed the idea of cost-sensitive AL where the model is charged by a cost
for every query and it should learn how to improve the model by compensating
the cost of asking labels. This scheme has been improved by assigning different
costs per samples either based on the annotation time [134] or based on the
number of dialogue turns in dialogue systems [148]. Various approaches have
been proposed to minimize the annotation cost, such as using a tree-structured
model to jointly estimate the utility and cost of each sample [136], or using
a theoretical statistical method to limit the optimal number of samples for a
particular class [141]. [93] further proposed an algorithm that minimizes the
joint cost of mislabeling and annotating.

The cost-sensitiveness has also been referred as the prediction cost in AL.
To minimize the prediction cost, [74] used a regressor trained on the labeled
data to predict the cost of possible classes and annotate it with the class that
has the smallest estimated prediction cost, and [1] used selective sampling to
minimize loss. Researchers also proposed algorithms to define various costs
for different types of classification errors and minimize the expected loss [162,
158]. However, none of them evaluated the problem from a value perspective
to study the impact of the reject option on the quality of AL strategies.

6.3 Experimental Work

6.3.1 Experiment Design

Research questions. We have two goals: i) assess if uncertainty sampling
performs as well as indicated in the literature as the cost ratio changes, and ii)

1https://tinyurl.com/value-aware-AL
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see if and when threshold-oriented sampling outperforms uncertainty sampling.
We aim at establishing the above across a range of textual datasets and different
text encoders.

Dataset Task Classes (Distributions in %) Training/Validation/Test size
Hate Speech&Offensive Language Classify tweets as hate-speech/offensive/neither 3 (5.77%, 77.43%,16.8%) 14869/4957/4957

Twitter US Airlines Detect sentiment of tweets about US Airlines 3 (63%, 21%,16%) 8784/2928/2928
DBPedia Classes Extract content from Wikipedia 9 (52.3%,8.49%,18.8%,9%,0.7%,7.9%,2.4%,0.15%,0.26%) 15000/5000/5000

Clinc150 Intent classification from text 150 (Balanced) 15000/5000/5000
Coronavirus tweets NLP Detect sentiment of tweets about coronavirus 5 (13.5%,16%,24.4%,18.6%,27.5%) 26972/8991/8991

News Category Identify news type based on short descriptions 41 (Unbalanced, 3 dominant classes with 16.7%, 8.5%, 8.1%) 10888/3591/3584

Table 6.1: Statistics of the datasets used in the experiments

AL strategies. Besides using the random sampling (selecting instances ran-
domly from a given unlabeled pool), uncertainty sampling [81], and certainty
sampling, we also propose two novel threshold-oriented AL strategies.
Uncertainty sampling. In [81] [125, 121], the idea is to sample instances on
which the ML model is the most uncertain about. Uncertainty is measured via
different techniques, such as entropy [128], margin [123], and the least confi-
dence [81]. We use the margin-based uncertainty sampling which is known to
be suitable for multi-class uncertainty sampling [125]: For each item in the un-
labeled pool, we measure the margin between the confidence score of the two
most likely classes and then select instances with the minimum margin.
Certainty sampling is the opposite of margin-based uncertainty sampling; we
pick instances on which the two most likely classes have the max margin.
Threshold-oriented sampling (TOS) is a new method we propose, where the idea
is to select instances on which the model confidence on the most likely class is
the closest to the theoretical confidence threshold t = k/(k + 1).
TOS-Below is a variation of TOS and it selects the samples below t that are
closest to t - in an attempt to learn how to push samples in that region above
the threshold, to positively contribute to value while reducing the problem of
sparsity (and thus lack of diversity) in sampling over the threshold for high
values of k.
AL setup. We randomly selected one example per class for each dataset before
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the AL starts to seed the model. We fix the batch size to 100 and stop AL
when all unlabeled samples are selected. We investigate the performance of AL
strategies in multi-class classification tasks given k ∈ [0, 100].

Datasets. Table 6.1 shows the multi-class datasets (with various class distribu-
tions) we use; Clinc150 is a balanced dataset while the rest is unbalanced.

ML models. We use Logistic Regression (LogReg) on top of the text encoders
because it is simple and can learn from small datasets, a frequent need in AL
scenarios. Furthermore, it learns calibrated predictions satisfying our assump-
tion for using the theoretical threshold. In the appendix, we also report results
on RoBERTa model.

Text Encoders. We use default Tf-Idf vectorizer from scikit-learn2 with the
ngram range of (1, 3), and the MPNet from Hugging Face3.

6.3.2 Results

Insights on SOTA AL strategies. We present results in the early batches using
TF-IDF as the text encoder. Results with MPNet are qualitatively similar in
terms of behavior of AL strategies, and are reported in Appendix A.2.1. Table
6.2 shows results on 4 datasets on which the SOTA strategies have >= 75%

accuracy. On News Category and Corona datasets LogReg perform poorly
(regardless of AL strategy), so the differences are small (see appendix A.2.5)
but still confirms the results we report here. As we can see, random and cer-
tainty sampling outperform uncertainty sampling, and we speculate that this
is because uncertainty sampling cannot manage to throw samples above the
confidence threshold in most cases. Note that the performance of uncertainty
sampling drops significantly even for fairly low value of k, and it catches up
other strategies in the later batches, when the number of samples is so high that
the AL strategy does not matter much. We obtain the same results if we use

2https://tinyurl.com/sklearn-tfidf-vectorizer
3huggingface.co/docs/transformers/model doc/mpnet
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MPNet instead of TF-IDF. The additional difference is that MPNet generally
performs better, but the conclusions in terms of AL strategy selection do not
change across all datasets for all cost settings. We report the full AL pipelines
on each dataset with different models and text encoders as figures in Appendix
A.2.3.

AL STRATEGY BATCH

US AIRLINE CLINC150 DBPEDIA HATE SPEECH

VALUE VALUE VALUE VALUE

K=0 K=2 K=4 K=8 K=0 K=2 K=4 K=8 K=0 K=2 K=4 K=8 K=0 K=2 K=4 K=8
UNCERTAINTY 5 0.719 0.14 0.03 0.002 0.173 0.0 0.0 0.0 0.835 0.125 0.014 0.002 0.796 0.456 0.366 0.064

10 0.732 0.243 0.066 0.01 0.451 0.0 0.0 0.0 0.898 0.271 0.058 0.011 0.869 0.537 0.249 0.073
20 0.752 0.321 0.149 0.054 0.665 0.0 0.0 0.0 0.934 0.536 0.221 0.057 0.891 0.632 0.35 0.128
30 0.761 0.363 0.21 0.095 0.721 0.001 0.0 0.0 0.942 0.699 0.431 0.182 0.896 0.68 0.45 0.191

RANDOM 5 0.694 0.276 0.081 0.003 0.405 0.0 0.0 0.0 0.753 0.36 0.147 0.018 0.795 0.51 0.493 0.198
10 0.72 0.304 0.165 0.054 0.541 0.0 0.0 0.0 0.834 0.506 0.289 0.117 0.83 0.565 0.521 0.332
20 0.738 0.353 0.24 0.119 0.658 0.006 0.0 0.0 0.883 0.639 0.448 0.246 0.85 0.632 0.551 0.385
30 0.748 0.367 0.254 0.135 0.704 0.023 0.005 0.0 0.905 0.706 0.53 0.33 0.865 0.66 0.574 0.408

CERTAINTY 5 0.635 0.064 0.056 0.032 0.052 0.026 0.016 0.01 0.157 0.055 0.042 0.031 0.777 0.35 0.053 0.247
10 0.631 -0.063 -0.336 0.067 0.075 0.04 0.03 0.016 0.143 0.081 0.082 0.069 0.778 0.351 0.01 0.015
20 0.632 -0.027 -0.238 -0.016 0.14 0.055 0.036 0.022 0.625 0.142 0.119 0.095 0.777 0.338 -0.042 -0.479
30 0.635 0.101 0.036 0.126 0.207 0.073 0.047 0.021 0.436 0.193 0.172 0.144 0.777 0.335 -0.062 -0.734

TOS 5 0.689 0.237 0.14 0.049 0.141 0.004 0.006 0.005 0.794 0.337 0.28 0.023 0.787 0.578 0.454 0.226
10 0.732 0.31 0.193 0.102 0.387 0.011 0.016 0.014 0.869 0.437 0.381 0.197 0.856 0.628 0.549 0.41
20 0.746 0.346 0.212 0.15 0.643 0.034 0.032 0.015 0.93 0.596 0.416 0.376 0.893 0.683 0.574 0.484
30 0.762 0.367 0.244 0.176 0.669 0.059 0.045 0.02 0.94 0.72 0.438 0.392 0.896 0.708 0.585 0.502

TOS-BELOW 5 0.255 0.277 0.159 0.077 0.361 0.002 0.003 0.011 0.283 0.396 0.315 0.1 0.388 0.602 0.463 0.375
10 0.255 0.313 0.204 0.11 0.361 0.014 0.006 0.017 0.283 0.442 0.393 0.302 0.388 0.658 0.558 0.455
20 0.255 0.361 0.217 0.125 0.361 0.027 0.023 0.022 0.283 0.617 0.423 0.378 0.388 0.696 0.582 0.487
30 0.255 0.377 0.254 0.155 0.361 0.058 0.04 0.03 0.283 0.726 0.479 0.381 0.388 0.717 0.587 0.497

Table 6.2: Performance of AL strategies with LogReg + TF-IDF (using theoretical threshold)

TOS quality. Table 6.2 also shows the performance of TOS and TOS-Below

(the corresponding figures can be found in Appendix A.2.4). Results show that
TOS and TOS-Below have a robust behavior across all datasets, showing the
best performance for even for a low cost ratio of 2. We speculate that the poor
performance of uncertainty sampling may be in part due to using a batch-mode
in AL, because uncertainty sampling is biased towards a specific region of the
pool and it tends to select correlated samples within a batch [42]. However,
performing AL in batches is common in practice.
Tuning threshold on test set. AL quality when model quality is assessed on
value rather than accuracy may be due to the quality of model calibration - or
lack thereof. To assess this, we experiment AL strategies assuming we ”magi-
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cally” pick the threshold that optimizes value, that is, if we could pick it based
on the test set.

To do this we simply searched the t in [0, 1] that maximizes value. If two
different thresholds give the maximum value, we arbitrarily picked the smaller
one to maximize the coverage of the selective classifier. The threshold differs
only for the DBPedia dataset, where the empirical t is considerably smaller
than the theoretical t. On this dataset the model is very accurate and we tend to
underestimate confidence. Since we lower the threshold, the performance of un-
certainty sampling improves, not because the AL process changes (it doesn’t),
but because we now do manage to raise the confidence of samples above the
threshold. (see Appendix A.2.2). This being said, of course in reality we cannot
use a test set for model parameter setting, and in AL scenarios we also likely do
not have a large validation set for optimizing thresholds, so we have to do with
the theoretical one.

Results with fine-tuned RoBERTa We further investigated what happens if we
use AL to fine-tune a large language model rather than keeping the encoding
fixed. We used RoBERTa-base model4 and fine-tuned it for sentiment analy-
sis on the US Airlines dataset. We took the RoBERTa-base model and added
one linear layer “Linear(in features = 768, out features = 768, bias =

True)” as the pre-classifier, followed by another linear layer “Linear(in
features = 768, out features = 3, bias = True)” as the classifier. At every
batch, we loaded the network from scratch and trained with the current train-
ing set. Results indicate that all AL strategies perform roughly the same in this
setting (see Appendix A.2.6). This is in line with the findings of a recent paper
[92] that shows that the performance of different AL strategies become very
close when applied to the fine-tuning of large language models that have been
pre-trained on large enough datasets. They obviously need little learning, or, it
is hard to find significant differences with the AL strategies we examine.

4https://huggingface.co/roberta-base

104



CHAPTER 6. VALUE-AWARE ACTIVE LEARNING 6.4. LIMITATION&CONCLUSION

6.4 Limitations and Conclusions

In this chapter, we are just scratching the surface of value-oriented AL. We
tested a limited number of NLP datasets and a limited set of encoders and al-
gorithms. For this reason, even if TOS seems superior we cannot claim this as
a fact with any sort of generality. What we can say however is that we believe
we have provided enough evidence to reconsider the superiority of uncertainty
sampling, propose TOS as a valid contender, and lay down the motivations for
larger scale investigation on both outcomes and reasons behind the outcomes.
This is important because i) uncertainty sampling is very widely adopted, but ii)
model thresholding is also ubiquitous in practice, and from what we have seen
even random sampling is often preferable, and starting from low cost ratio.
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Chapter 7

Conclusions and Future Work

In this closing chapter, we summarize our contributions by addressing our solu-
tions to each research question we investigated. Then, we discuss the limitations
of our work and present the planned future work.

7.1 Recap of research questions and responses

RQ1. & RQ3. How to measure quality in ML, and is accuracy a good measure
of quality in the hybrid classification context? What are the proper metrics for
the cost of using ML with rejection?

We discussed that accuracy metrics are optional when ML models are adopted
in real-world enterprise scenarios. There is nothing bad in efforts to improve
model accuracy: they should stay among the main goals of ML research. How-
ever, we argued that one of the reasons for the disconnect between the amazing
progress of ML research and the limited adoption of ML in the enterprise is
the focus on one aspect of the problem only, and on the fact that we have not
paid enough attention to how and why models are used in practice, and to the
aspects and metrics that are relevant to enterprises when they adopt and deploy
a model. We highlighted that we almost always apply ML models as selective
classifiers in enterprise AI workflows, and we need to define reasonable confi-
dence thresholds that depend on the cost of machine errors and their relation to
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the cost of rejection and the value of a correct machine prediction. This being
the case, we proposed that we are not really focusing on the overall accuracy
of the ML models, instead, we care about the accuracy around the confidence
threshold. We further proposed the “value” metric to assess the performance of
models and showed that a well-calibrated model can have a good value, even if
it has arbitrarily bad accuracy.

RQ2. How does the model calibration affect the performance of ML models in
hybrid classification contexts? And how can we obtain well-calibrated hybrid
classifiers?

We proposed a crowd-powered hybrid classification service that automati-
cally or semi-automatically combines the machine, crowd, and experts in cost-
efficient and effective way to solve a finite or infinite pool of classification prob-
lems. The classes of tasks we addressed have the option of asking the class of
a particular item to humans, though at a cost. Humans can be experts or crowd
workers who interact with the system via a crowdsourcing platform (i.e. Ama-
zon Mechanical Turk). In addition, the service has an ML classification com-
ponent which provides predictions with a negligible cost concerning the cost of
asking humans, and the cost of asking humans is significantly less than the cost
of making errors.

Having this service at hand, we observed that the prevelant metric for the ML
service component is not the accuracy but calibration. In hybrid classification
where the cost for one type of error is high (and also high concerning the cost of
asking humans), knowing if we can trust the ML service is the key. Furthermore,
the ability to estimate what crowd and ML can do and which kind of items they
can or cannot classify accurately becomes central to the effectiveness of the
service.

We then investigated how the ML service component can be trained to achieve
model calibration and reduce the calibration error. We first evaluated the ex-
isting label smoothing and soft-target techniques from the calibration point of

108



CHAPTER 7. CONCLUSIONS AND FUTURE WORK 7.1. RECAP OF RQ

view and showed that they improve the model calibration in hybrid classifica-
tion. We further proposed novel soft-target techniques that take crowd labels as
input and output a set of workers’ accuracies and a probability assignment (via
label fusion techniques) over the classes for every sample. We showed that our
proposed soft-target methods improve the model calibration and decrease the
expected calibration errors of deep models.

RQ4. How to effectively characterize ML failures?

When we think of ML failures, we can characterize them as “known un-
knowns” and “unknown unknowns”. Known unknowns are the ones that the
machine has low confidence in, and we already have a signal that the machine
does not know about these particular items. On the other hand, unknown un-
knowns are the ones that machine makes high confidence predictions but are
indeed wrong. We can also refer to this case as high confidence errors, and we
know that especially deep learning models generally suffer from this.

With AL techniques, we can solve the known unknowns problem because
the model is already aware that it does not have enough confidence in those
particular items. Thus, we can use our proposed value-aware AL strategy to
address the “known unknowns” problem in the hybrid classification services.

For the problem of “unknown unknowns”, we collaborated with Delft Uni-
versity of Technology (TU Delft) and participated in the CATS4ML challenge1

organized by Google in 2021. During this work, we discovered and submitted
the adverse images known as AI blindspots or the unknown unknowns for the
machines. We had a part of the Open Images dataset and discovered blindspot
examples guided by a list of preselected target labels. Our approach comprises
(i) an identification and characterization of image atypicality task that is pre-
sented to the crowd worker both as a local view of visually similar images and
a global view of images from the class of interest, and ii) an automatic im-
age sampling method that selects a diverse set of atypical images based on vi-

1cats4ml.humancomputation.com/
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sual features. We showed the effectiveness and cost-efficiency of our approach
through controlled crowdsourcing experiments and provided a characterization
of image atypicality based on human annotations of 10K images from the Open
Images dataset. This work is out of the scope of this thesis, that is why we only
provided an abstract of what we did. The full paper is currently under review
for CSCW 2022.

RQ5. How to use AL in hybrid classification contexts? Are the existing AL
strategies cost-effective, or do we need novel cost-aware AL methods for hybrid
classification services?

We reviewed the AL literature and tested the performance of the SOTA AL
strategies over crowdsourced datasets within cost-sensitive hybrid classifica-
tion contexts under two different scenarios: (i) ML only and (ii) hybrid (hu-
man+machine). As part of this process, we also created a collection of crowd-
sourced datasets containing micro-level information (i.e., individual crowd votes)
by aggregating the publicly available ones and adding the ones we collected.
Results showed two important observations; (i) the SOTA AL strategies do not
achieve similar performances across crowdsourced datasets, and (ii) the hybrid
classification scenario improves the performance of AL approaches over crowd-
sourced datasets.

Based on our observations, we designed a novel value(cost)-aware AL strat-
egy -threshold oriented sampling (TOS)- which selects items on which the model
confidence is closest to the confidence threshold defined by the cost-sensitiveness
of the given task. We showed that TOS outperforms the state-of-the-art ones
when the cost of incorrect predictions substantially outweighs that of abstain-
ing.

RQ6. How to efficiently combine crowdsourcing and machine intelligence?

We explored this research question in a separate research line and investi-
gated how to efficiently combine crowdsourcing and machine intelligence for
the problem of document screening, where we need to screen documents with
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a set of ML filters. Specifically, we focused on building a set of ML classifiers
that review and screen the documents efficiently. We proposed a multi-label AL
strategy, named objective-aware sampling, for querying unlabelled documents
to annotate. Our method makes a decision on which the machine filter needs
more training data and how to choose unlabeled items to annotate for minimiz-
ing the risk of overall classification errors, rather than a single filter error. We
showed that objective-aware sampling significantly outperforms the SOTA AL
strategies [78].

7.2 Contributions

Our contributions are summarized below:

1. We proposed a design of a hybrid classification service and showed that the
system should include (i) an active learning component to decide which
items to classify, (ii) a machine classification component to ensure trust-
worthy selective classification, and (iii) a hybrid intelligence component
that efficiently combines human (crowd) and machine intelligence given
an objective (e.g. classify as many items as possible given a fixed budget
or training the model) [120].

2. We highlighted the importance of calibration in hybrid classification and
proposed novel techniques to improve the calibration of human-machine
classifiers in cost-sensitive tasks [120].

3. We criticized that current accuracy-based performance metrics do not mea-
sure the actual value of hybrid ML models and proposed a novel metric
“value” to assess the performance of hybrid classifiers [122].

4. We conducted an extensive experimental study to compare the perfor-
mance of SOTA ML models and AL strategies on NLP tasks with cost-
sensitive scenarios. We showed that the performance of SOTA models
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with a high accuracy significantly drops when we use the “value” metric
with various cost settings. We further showed that simple models tend to
have a better value than complex well-known language models when the
cost of errors is high compared to the cost of asking humans.

5. We published a review and experimental analysis of AL strategies over
crowdsourced data and showed that hybrid classification improves the over-
all performance of AL strategies in cost-sensitive hybrid classification prob-
lems. We further discussed the open challenges and future research direc-
tions and released a library of implementations of the SOTA AL strategies
and a collection of benchmarking datasets for hybrid human-machine clas-
sification [121].

6. We proposed a value-aware AL strategy to improve the performance in
active learning of selective classifiers in cost-sensitive classification tasks.

7.3 Limitations

Our work on building reliable hybrid human-machine classifiers has several
limitations.

We first discuss the limitations related to tests for model calibration (Chap-
ter 2); while our experiments and results are promising, they require a deeper
investigations. We need to expand experiment to other deep network architec-
tures and get a deeper understanding of what drives the behaviors we are seeing.
The same is true for label fusion methods and related datasets and classification
problems, including especially the classification problems with a high number
of classes and varying degree of noise. Finally, we need to integrate the mod-
ules into an hybrid classification service and test it “end to end”, progressively
building a science that can eventually put classification tasks on autopilot so
that crowd and ML, and their integration, becomes a commodity rather than an
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art and a hard challenge.
We also have some limitations in our work on rethinking and reevaluating

the value of ML models (Chapter 4). We see this work as providing evidence
of the problem and outlining the research needs: more studies (especially with
large models and in vs out of distribution datasets) are needed to validate the hy-
pothesis and a deeper understanding of how calibration, confidence distribution,
and size of validation set affect model value.

Finally, we highlight the limitations in our value-aware AL work (Chapter
6). We have limited insights on fine-tuning pretrained language models in AL
setup, and limited set of ML models, text encoders, and AL strategies. We
have experimented with simple models, but then with a complex model (i.e.
RoBERTa) we may need way more data and AL may be less reasonable in
general.

7.4 Future Work

We are planning to continue our work on value-aware AL and explore the per-
formance of pre-trained large language models in cost-sensitive AL tasks.

We further aim at designing a new metric to measure the calibration error
of hybrid classifiers. We believe that the existing metrics for model calibration
are not applicable in the context of hybrid classification because they rely on
accuracy-based metrics.

Finally, we plan to build a smart rejector based on human feedback on ma-
chine failures. This can be done in a data-driven way like the usual ML models
are trained, or through a hybrid data- and knowledge-driven method that al-
lows for more explicit control over the items on which the prediction should be
rejected. The reliability of human feedback should be considered, as to how
human-labeled data has been used for ML training.

113





Bibliography

[1] Alekh Agarwal. Selective sampling algorithms for cost-sensitive mul-
ticlass prediction. In Sanjoy Dasgupta and David McAllester, editors,
Proceedings of the 30th International Conference on Machine Learning,
volume 28 of Proceedings of Machine Learning Research, pages 1220–
1228, Atlanta, Georgia, USA, 17–19 Jun 2013. PMLR.

[2] Charu C. Aggarwal, Xiangnan Kong, Quanquan Gu, Jiawei Han, and
Philip S. Yu. Chapter 22 active learning: A survey, 2014.

[3] Sweta Agrawal and Amit Awekar. Deep learning for detecting cyberbul-
lying across multiple social media platforms. In Gabriella Pasi, Benjamin
Piwowarski, Leif Azzopardi, and Allan Hanbury, editors, Advances in In-

formation Retrieval, pages 141–153, Cham, 2018. Springer International
Publishing.

[4] Saleema Amershi, Dan Weld, Mihaela Vorvoreanu, Adam Fourney, Be-
smira Nushi, Penny Collisson, Jina Suh, Shamsi Iqbal, Paul N Bennett,
Kori Inkpen, et al. Guidelines for human-ai interaction. In CHI’19, pages
1–13, 2019.

[5] Atsushi Ando, Satoshi Kobashikawa, Hosana Kamiyama, Ryo Ma-
sumura, Yusuke Ijima, and Yushi Aono. Soft-target training with ambigu-
ous emotional utterances for dnn-based speech emotion classification. In
2018 IEEE ICASSP, pages 4964–4968. IEEE, 2018.

115



BIBLIOGRAPHY BIBLIOGRAPHY
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Appendix A

Appendices

A.1 Supplemental material for Chapter 4

A.1.1 Datasets and the experiment flow

Algorithm 3 shows the flow of our experiments. Table A.1 shows the details of
each dataset used in our experiments.

Algorithm 3 Experiment flow

1: for each (model, task) pair do
2: Train or fine-tune the model using the training set
3: Analyze the model’s confidence distribution on the test set
4: Analyze the model’s performance on the test set based on traditional metrics, such as

accuracy, precision, ECE, etc.
5: Perform a value-based analysis considering different values of k:
6: for each k do
7: Find the theoretical confidence threshold t based on k (t = k/k + 1)
8: Find the empirical confidence threshold tempirical on the validation set (find the

threshold that maximizes the value)
9: Find the value (based on t) and the empirical value (based on tempirical) on the test

set
10: end for
11: Output the Value function (plot Value vs k)
12: Plot confidence distributions
13: end for
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Dataset Task Classes Distribution Train/Val/Test size
Hate-speech detection Classifying tweets as ”hate”, and ”non-hate” 2 Unbalanced (7734/5068)/(967/1000)/(967/3000)

Clickbait detection Classifying Twitter posts to detect clickbait 2 Unbalanced 17600/4395/18979
Multi-Domain Sentiment Analysis Sentiment analysis on Amazon product reviews (DVD, Books, Electronics, Kitchen) 2 Balanced 2000/200/(3386/4265/5481/5745)

DBPedia Classes1 Extract structured content from the information created in Wikipedia 9 Highly unbalanced 240942/36003/60794
Yelp-52 Classify yelp text reviews to 5-star ratings 5 Balanced 600000/50000/50000

Hate Speech&Offensive Language3 Classifying tweets as hate-speech, offensive language, or neither 3 Unbalanced 14869/4957/4957
Twitter US Airline Sentiment4 Detect the sentiment of tweets about major US Airlines 3 Unbalanced 8784/2928/2928

Coronavirus tweets NLP5 Detect sentiment of tweets about coronavirus 5 Slightly balanced 26972/8991/8991
News Category Dataset6 Identify the type of news based on short descriptions 41 Unbalanced 10888/3591/3584

Clinc1507 Intent classification from text 150 Balanced 15000/5000/5000

Table A.1: Statistics of the datasets used in the experiments

A.1.2 Models

For each task, we tested various models as explained below:

• For the hate-speech dataset, we test the following SOTA models: (i) Bad-
jatiya et al. [14] which uses a Recurrent Neural Network (an Embedding
Layer (dimension=200) followed by an LSTM network (dimension=50)
and a fully connected layer with 3 neurons plus a Softmax) to construct
word embeddings and then classify them with Gradient-Boosted Decision
Tree. In the original paper, test accuracy is measured as the average of
the ten folds in cross validation; however, in our reproduction we sepa-
rated validation and test set before cross validation, and they are used for
evaluation only after training. (ii) one model from Agrawal and Awekar
[3] which is composed of an Embedding Layer (dimension=50), followed
by a Bidirectional LSTM network (dimension=50), and a fully connected
layer of 3 neurons with a Softmax activation. Both models use Dropout
(probabilities 0.25 and 0.5, respectively) for regularization, cross-entropy
as the loss function, and the Adam optimizer (10 epochs).

1www.kaggle.com/datasets/danofer/dbpedia-classes
2huggingface.co/datasets/yelp review full
3https://tinyurl.com/hateSpeech-and-Offensive
4https://tinyurl.com/twitterAirlineSentimentDataset
5https://tinyurl.com/covid19NLPData
6www.kaggle.com/datasets/rmisra/news-category-dataset
7archive.ics.uci.edu/ml/datasets/CLINC150
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• For the clickbait detection dataset, we test 4 models from one leaderboard
team on clickbait challenge: ”fullnetconc”, ”weNet”, ”lingNet”, and ”full-
Net” which are published on Github8. This team modified the task into
binary classification - they categorized items with a score under 0.5 into
”non-clickbaiting”, vice versa.

• For the MDS dataset, we referred to the leaderboard for the sentiment anal-
ysis task of ”Domain adaptation”9 and tested the best-performing leader-
board model ”Multi-task tri-training (mttri)” by Ruder et. al. [116] that
is an MLP model with one hidden layer of 50 dimensions, sigmoid activa-
tions, and a softmax output. There were 3 other models in the list but their
source codes were not published. We further tested two transformer mod-
els: (i) Google’s T5-base model10 (12-layers, 768-hidden-state, 3072 feed-
forward hidden-state, 12-heads, 220M parameters) fine-tuned on IMDB
dataset11 for sentiment analysis task, and (ii) SieBERT12 [61]: a fine-tuned
version of RoBERTa-large13 model [88] (24-layer, 1024-hidden-state, 16-
heads, 355M parameters) for sentiment analysis task that is fine-tuned and
evaluated on 15 diverse text sources. Finally, we tested the simple Logistic
Regression (LogR) and 2 different MLP models from scikit-learn library14

(all parameters we used are explained below).

• For the 7 multi-class datasets, we tested the LogR and 2 MLP models from
scikit-learn with the following parameters:

– LogR: We use the default parameters except the max iter. We in-
creased the max iter from 100 to 1000 as it did not converge on some

8github.com/clickbait-challenge/blobfish
9nlpprogress.com/english/domain adaptation.html

10https://tinyurl.com/t5-base-finetuned-sentiment
11huggingface.co/datasets/imdb
12https://tinyurl.com/SieBERT-sentiment
13https://huggingface.co/roberta-large
14https://scikit-learn.org/
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datasets with 100 iterations.

– MLP1: We use the default parameters except one; we set early
stopping = True in our experiments.

– MLP4: The only difference from MLP1 is the modification on the
number of hidden layers; we set hidden layer sizes = (100, 100, 100,

100). This parameter is set to hidden layer sizes = (768, 384, 192,

192) in MDS experiments.

A.1.3 Experiment details on Hate Speech Dataset

We conducted two different experiments on Hate Speech dataset:

• Experiment 1: We used [142] dataset for training, validation, and test set,
but we could only recover 9671 of the tweets as of October 2021 (the
dataset size is 14949 in the original paper).

• Experiment 2: We further analyzed their performance in Experiment 2

based on the observations of Arango et al. [6]: we used their new dataset
(5068 retrieved) as training set. For validation and test set, used the Se-
mEval 2019 dataset from the “Multilingual detection of hate speech against
immigrants and women in Twitter” task [19].

A.1.4 Text encoders

We used various text encoders:

• TF-IDF: The TfIdf vectorizer of sklearn15 with the following parameters;
”min df=0, max features = 1024, strip accents=’unicode’, analyzer=’word’,
token pattern=r′w{1, }′, ngram range=(1, 1), use idf=1, smooth idf=1,
sublinear tf=1, stop words=’english’, lowercase=False”,

15https://tinyurl.com/sklearn-tfidf-vectorizer
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• MPNET: The transformer model from Hugging Face16 with default pa-
rameters,

• nnlm: Google’s universal sentence embedding model that is trained on
English Google News 200B corpus, accessible via TensorFlow17.

A.1.5 GPT-3 Experiments

Since GPT-3 is producing human-like text given an input, we fine-tuned it using
the OpenAI API18. First, we prepared the MDS dataset for GPT-3; we cleaned
sentences that have more than 2049 tokens, and renamed the text column as
”prompt” and the ground truth column as ”completion”. Then, we used Ope-
nAI API to fine-tune GPT-3 seperately on each of the 4 domains (DVD, books,
electronics, and kitchen). We specified ”classification n classes” parameter
as 2 and classification positive class as ’ 1’, so that the API tunes GPT-3 for
a binary sentiment analysis. Fine-tuning 4 models on MDS dataset costs a total
of $7.15.

16huggingface.co/docs/transformers/model doc/mpnet
17https://tinyurl.com/google-nnlm
18https://openai.com/api/
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In order to test the fine-tuned models on different target domains, we speci-
fied the prompt in the format of ”sentence + -> ” because the API itself uses ”
->” sign to teach GPT-3 that the sentiment for a prompt is (’ ->’) the comple-

tion. Thus, fine-tuned GPT-3 models produces either 0 or 1 for the given input.
Testing each fine-tuned model on the other 3 domains (so, 12 cases in total)
costs $43.89. We provide our source code on Github19 to show every step of
using GPT-3 in our experiments. Figure A.3 shows the average values of GPT-3
on each domain.

A.1.6 Further Results

Binary datasets - Supplementary Results

Figure A.1: Value curves of binary datasets for increasing k.

19https://tinyurl.com/rethinking-value-of-ml-models
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TASK MODEL ACCURACY VALUE1 VALUE2 VALUE4 VALUE8 VALUE10

(kfn = kfp = 0) (kfn = 1) (kfn = 2) (kfn = 4) (kfn = 8) (kfn = 10)

HATE-SPEECH BADJ. ET AL., Exp. 1 0.822 0.644 0.545 0.389 0.315 0.278
AGR. ET AL., Exp. 1 0.732 0.464 0.405 0.32 0.157 0.098
BADJ. ET AL., Exp. 2 0.489 -0.022 -0.248 -0.473 -0.537 -0.516
AGR. ET AL., Exp. 2 0.42 -0.16 -0.16 -0.16 -0.16 -0.16

CLICKBAIT FULLNETCONC 0.857 0.715 0.608 0.368 0.131 0.103
WENET 0.852 0.703 0.604 0.381 0.124 0.094
LINGNET 0.82 0.64 0.467 0.125 0.052 0.052
FULLNET 0.856 0.713 0.631 0.446 0.15 0.103

Table A.2: Performance of SOTA models, with theoretical threshold (kfp is set to 1, and
kfn ∈ {1, 2, 4, 8, 10}).

TASK MODEL ACCURACY VALUE1 VALUE2 VALUE4 VALUE8 VALUE10

(kfn = kfp = 0) (kfn = 1) (kfn = 2) (kfn = 4) (kfn = 8) (kfn = 10)

HATE-SPEECH BADJ. ET AL., Exp. 1 0.822 0.644 0.51 0.362 0.272 0.217
AGR. ET AL., Exp. 1 0.732 0.464 0.22 -0.213 -1.081 -1.499
BADJ. ET AL., Exp. 2 0.489 -0.022 -0.469 -1.077 -1.793 -2.06
AGR. ET AL., Exp. 2 0.42 -0.16 -0.74 -1.901 -4.221 -5.382

CLICKBAIT FULLNETCONC 0.857 0.715 0.564 0.286 0.041 0.013
WENET 0.852 0.703 0.561 0.306 0.04 0.011
LINGNET 0.82 0.64 0.442 0.079 0.0 0.0
FULLNET 0.856 0.713 0.588 0.367 0.061 0.015

Table A.3: Performance of SOTA models, with theoretical threshold (kfp =
kfn ∈ {1, 2, 4, 8, 10}).

TASK MODEL ACCURACY VALUE1 VALUE2 VALUE4 VALUE8 VALUE10

(kfn = kfp = 0) (kfn = 1) (kfn = 2) (kfn = 4) (kfn = 8) (kfn = 10)

HATE-SPEECH BADJ. ET AL., Exp. 1 0.822 0.644 0.545 0.417 0.309 0.278
AGR. ET AL., Exp. 1 0.732 0.464 0.367 0.005 0.005 0.005
BADJ. ET AL., Exp. 2 0.489 -0.022 0.077 0.077 0.077 0.077
AGR. ET AL., Exp. 2 0.42 -0.16 -0.16 -0.16 -0.16 -0.16

CLICKBAIT FULLNETCONC 0.857 0.715 0.647 0.562 0.464 0.424
WENET 0.852 0.703 0.635 0.55 0.447 0.414
LINGNET 0.82 0.64 0.528 0.391 0.224 0.171
FULLNET 0.856 0.713 0.64 0.558 0.458 0.419

Table A.4: Performance of SOTA models after temperature scaling, with theoretical threshold
(kfp is set to 1)
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TASK MODEL ACCURACY VALUE1 VALUE2 VALUE4 VALUE8 VALUE10

(kfn = kfp = 0) (kfn = 1) (kfn = 2) (kfn = 4) (kfn = 8) (kfn = 10)

HATE-SPEECH BADJ. ET AL., Exp. 1 0.822 0.644 0.513 0.359 0.268 0.218
AGR. ET AL., Exp. 1 0.732 0.464 0.207 0.0 0.0 0.0
BADJ. ET AL., Exp. 2 0.489 -0.022 0.0 0.0 0.0 0.0
AGR. ET AL., Exp. 2 0.42 -0.16 0.0 0.0 0.0 0.0

CLICKBAIT FULLNETCONC 0.857 0.715 0.608 0.488 0.374 0.331
WENET 0.852 0.703 0.597 0.472 0.357 0.326
LINGNET 0.82 0.64 0.499 0.348 0.173 0.115
FULLNET 0.856 0.713 0.6 0.488 0.372 0.335

Table A.5: Performance of SOTA models after temperature scaling, with theoretical threshold
(kfp = kfn)

.

TASK MODEL ACCURACY VALUE1 VALUE2 VALUE4 VALUE8 VALUE10

(kfn = kfp = 0) (kfn = 1) (kfn = 2) (kfn = 4) (kfn = 8) (kfn = 10)

HATE-SPEECH BADJ. ET AL., Exp. 1 0.822 0.646 0.548 0.41 0.312 0.29
AGR. ET AL., Exp. 1 0.732 0.503 0.449 0.357 0.194 0.16
BADJ. ET AL., Exp. 2 0.489 0.077 0.077 0.077 0.077 0.077
AGR. ET AL., Exp. 2 0.42 0.0 0.0 0.0 0.0 0.0

CLICKBAIT FULLNETCONC 0.857 0.715 0.648 0.556 0.46 0.42
WENET 0.852 0.703 0.638 0.554 0.454 0.414
LINGNET 0.82 0.639 0.535 0.381 0.232 0.188
FULLNET 0.856 0.712 0.637 0.554 0.439 0.418

Table A.6: Performance of SOTA models, with empirical threshold (found on the validation
set, kfp is set to 1)
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TASK MODEL ACCURACY VALUE1 VALUE2 VALUE4 VALUE8 VALUE10

(kfn = kfp = 0) (kfn = 1) (kfn = 2) (kfn = 4) (kfn = 8) (kfn = 10)

HATE-SPEECH BADJ. ET AL., Exp. 1 0.822 0.646 0.539 0.38 0.259 0.228
AGR. ET AL., Exp. 1 0.732 0.503 0.405 0.313 0.151 0.117
BADJ. ET AL., Exp. 2 0.489 0.077 -0.107 0.0 0.0 0.0
AGR. ET AL., Exp. 2 0.42 0.0 0.0 0.0 0.0 0.0

CLICKBAIT FULLNETCONC 0.857 0.715 0.612 0.488 0.375 0.332
WENET 0.852 0.703 0.597 0.486 0.371 0.328
LINGNET 0.82 0.639 0.51 0.34 0.179 0.134
FULLNET 0.856 0.712 0.6 0.489 0.357 0.33

Table A.7: Performance of SOTA models with empirical threshold (found on validation set,
kfp = kfn)

.

TASK MODEL ACCURACY VALUE1 VALUE2 VALUE4 VALUE8 VALUE10

(kfn = kfp = 0) (kfn = 1) (kfn = 2) (kfn = 4) (kfn = 8) (kfn = 10)

HATE-SPEECH BADJ. ET AL., Exp. 1 0.822 0.653 0.552 0.422 0.328 0.297
AGR. ET AL., Exp. 1 0.732 0.503 0.452 0.363 0.225 0.16
BADJ. ET AL., Exp. 2 0.489 0.077 0.077 0.077 0.077 0.077
AGR. ET AL., Exp. 2 0.42 0.0 0.0 0.0 0.0 0.0

CLICKBAIT FULLNETCONC 0.857 0.716 0.649 0.565 0.468 0.438
WENET 0.852 0.706 0.638 0.555 0.456 0.428
LINGNET 0.82 0.643 0.536 0.394 0.242 0.198
FULLNET 0.856 0.714 0.641 0.559 0.46 0.429

Table A.8: Performance of SOTA models, with empirical threshold (found on the test set, kfp
is set to 1)

TASK MODEL ACCURACY VALUE1 VALUE2 VALUE4 VALUE8 VALUE10

(kfn = kfp = 0) (kfn = 1) (kfn = 2) (kfn = 4) (kfn = 8) (kfn = 10)

HATE-SPEECH BADJ. ET AL., Exp. 1 0.822 0.653 0.542 0.399 0.284 0.243
AGR. ET AL., Exp. 1 0.732 0.503 0.408 0.32 0.182 0.117
BADJ. ET AL., Exp. 2 0.489 0.077 0.0 0.0 0.0 0.0
AGR. ET AL., Exp. 2 0.42 0.0 0.0 0.0 0.0 0.0

CLICKBAIT FULLNETCONC 0.857 0.716 0.613 0.497 0.384 0.351
WENET 0.852 0.706 0.599 0.487 0.373 0.343
LINGNET 0.82 0.643 0.511 0.352 0.188 0.143
FULLNET 0.856 0.714 0.603 0.493 0.379 0.344

Table A.9: Performance of SOTA models after temperature scaling, with empirical threshold
(on test set, kfp = kfn)

147



A.1. SUPPLEMENTAL MATERIAL FOR CHAPTER 4 APPENDIX A. APPENDICES

MDS dataset - Supplementary Results

MODEL ACCURACY
VALUE

K=1 K=2 K=4 K=8 K=10

LOGREG 0.74 0.48 0.375 0.295 0.255 0.251
MLP1 0.728 0.457 0.36 0.298 0.26 0.251
MLP4 0.72 0.439 0.327 0.16 -0.089 -0.193
MTTRI 0.753 0.506 0.352 0.072 -0.431 -0.663
T5 0.789 0.578 0.47 0.253 -0.179 -0.395
SIEBERT 0.836 0.672 0.577 0.392 0.029 -0.15

Table A.10: Performance of models on Multi
Domain Sentiment Dataset, TARGET = DVD,

kfp = 1, kfn = k (Value with theoretical
threshold)

MODEL ACCURACY
VALUE

K=1 K=2 K=4 K=8 K=10

LOGREG 0.74 0.48 0.283 0.122 0.038 0.027
MLP1 0.728 0.457 0.274 0.133 0.054 0.038
MLP4 0.72 0.439 0.202 -0.158 -0.737 -0.981
MTTRI 0.753 0.506 0.28 -0.123 -0.84 -1.166
T5 0.789 0.578 0.367 -0.056 -0.9 -1.323
SIEBERT 0.836 0.672 0.508 0.193 -0.436 -0.747

Table A.11: Performance of models on Multi
Domain Sentiment Dataset, TARGET = DVD,

kfp = kfn = k (Value with theoretical
threshold)

MODEL ACCURACY
VALUE

K=1 K=2 K=4 K=8 K=10

LOGREG 0.704 0.408 0.332 0.269 0.222 0.219
MLP1 0.691 0.382 0.272 0.197 0.18 0.183
MLP4 0.696 0.393 0.258 0.081 -0.183 -0.283
MTTRI 0.742 0.484 0.32 0.018 -0.52 -0.789
T5 0.77 0.541 0.468 0.321 0.029 -0.117
SIEBERT 0.826 0.652 0.564 0.389 0.038 -0.131

Table A.12: Performance of models on Multi
Domain Sentiment Dataset, TARGET =

Books, kfp = 1, kfn = k (Value with
theoretical threshold)

MODEL ACCURACY
VALUE

K=1 K=2 K=4 K=8 K=10

LOGREG 0.704 0.408 0.228 0.102 0.022 0.015
MLP1 0.691 0.382 0.134 0.013 -0.017 -0.013
MLP4 0.696 0.393 0.154 -0.171 -0.666 -0.86
MTTRI 0.742 0.484 0.254 -0.16 -0.869 -1.215
T5 0.77 0.541 0.311 -0.148 -1.066 -1.525
SIEBERT 0.826 0.652 0.479 0.136 -0.547 -0.879

Table A.13: Performance of models on Multi
Domain Sentiment Dataset, TARGET =

Books, kfp = kfn = k (Value with theoretical
threshold)

MODEL ACCURACY
VALUE

K=1 K=2 K=4 K=8 K=10

LOGREG 0.762 0.524 0.442 0.355 0.293 0.282
MLP1 0.749 0.497 0.413 0.338 0.284 0.274
MLP4 0.735 0.47 0.33 0.09 -0.313 -0.492
MTTRI 0.808 0.616 0.495 0.286 -0.085 -0.245
T5 0.784 0.568 0.417 0.116 -0.486 -0.787
SIEBERT 0.842 0.685 0.572 0.349 -0.093 -0.314

Table A.14: Performance of models on Multi
Domain Sentiment Dataset, TARGET =

Electronics, kfp = 1, kfn = k (Value with
theoretical threshold)

MODEL ACCURACY
VALUE

K=1 K=2 K=4 K=8 K=10

LOGREG 0.762 0.524 0.339 0.162 0.053 0.033
MLP1 0.749 0.497 0.327 0.18 0.081 0.062
MLP4 0.735 0.47 0.24 -0.143 -0.78 -1.06
MTTRI 0.808 0.616 0.441 0.148 -0.354 -0.58
T5 0.784 0.568 0.352 -0.08 -0.944 -1.376
SIEBERT 0.842 0.685 0.527 0.217 -0.397 -0.705

Table A.15: Performance of models on Multi
Domain Sentiment Dataset, TARGET =
Electronics, kfp = kfn = k (Value with

theoretical threshold)
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MODEL ACCURACY
VALUE

K=1 K=2 K=4 K=8 K=10

LOGREG 0.782 0.565 0.466 0.365 0.306 0.295
MLP1 0.765 0.53 0.433 0.339 0.292 0.279
MLP4 0.761 0.521 0.416 0.263 0.026 -0.076
MTTRI 0.821 0.642 0.589 0.503 0.376 0.31
T5 0.777 0.555 0.427 0.172 -0.338 -0.594
SIEBERT 0.865 0.73 0.644 0.477 0.147 -0.018

Table A.16: Performance of models on Multi
Domain Sentiment Dataset, TARGET =
Kitchen, kfp = 1, kfn = k (Value with

theoretical threshold)

MODEL ACCURACY
VALUE

K=1 K=2 K=4 K=8 K=10

LOGREG 0.782 0.565 0.374 0.176 0.06 0.034
MLP1 0.765 0.53 0.337 0.164 0.07 0.044
MLP4 0.761 0.521 0.312 0.003 -0.478 -0.685
MTTRI 0.821 0.642 0.489 0.235 -0.192 -0.384
T5 0.777 0.555 0.332 -0.113 -1.004 -1.449
SIEBERT 0.865 0.73 0.595 0.328 -0.195 -0.454

Table A.17: Performance of models on Multi
Domain Sentiment Dataset, TARGET =

Kitchen, kfp = kfn = k (Value with
theoretical threshold)

SOURCE

DVD BOOKS ELECTRONICS KITCHEN

TARGET

DVD - 0.782 0.716 0.723
BOOKS 0.718 - 0.694 0.7

ELECTRONICS 0.731 0.723 - 0.831
KITCHEN 0.762 0.746 0.839 -

Table A.18: Accuracy of LogReg model on
Multi Domain Sentiment Dataset.

SOURCE

DVD BOOKS ELECTRONICS KITCHEN

TARGET

DVD - 0.761 0.704 0.72
BOOKS 0.711 - 0.68 0.683

ELECTRONICS 0.712 0.706 - 0.828
KITCHEN 0.743 0.722 0.83 -

Table A.19: Accuracy of MLP1 model on
Multi Domain Sentiment Dataset.

SOURCE

DVD BOOKS ELECTRONICS KITCHEN

TARGET

DVD - 0.763 0.692 0.704
BOOKS 0.714 - 0.681 0.695

ELECTRONICS 0.689 0.683 - 0.832
KITCHEN 0.74 0.715 0.827 -

Table A.20: Accuracy of MLP4 model on
Multi Domain Sentiment Dataset.

SOURCE

DVD BOOKS ELECTRONICS KITCHEN

TARGET

DVD - 0.808 0.727 0.724
BOOKS 0.753 - 0.733 0.741

ELECTRONICS 0.761 0.801 - 0.862
KITCHEN 0.828 0.777 0.859 -

Table A.21: Accuracy of mttri model on Multi
Domain Sentiment Dataset
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Figure A.2: Value curves on Multi Domain Sentiment dataset for increasing kfn, Values are
averaged for simple models, the ’mttri’ model, and GPT-3.
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Figure A.3: Value curves on Multi Domain Sentiment dataset for increasing kfn, Values are
averaged for simple models, the ’mttri’ model, and GPT-3.
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Figure A.4: Value curves on Multi Domain Sentiment dataset for increasing kfn, TARGET =
’DVD’. We use S-SOURCE T-TARGET format in the sub-figure titles, values show the
performance of each model trained on a source domain and tested on a target domain.
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Figure A.5: Value curves on Multi Domain Sentiment dataset for increasing kfn, TARGET =
’Books’. We use S-SOURCE T-TARGET format in the sub-figure titles, values show the

performance of each model trained on a source domain and tested on a target domain.
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Figure A.6: Value curves on Multi Domain Sentiment dataset for increasing kfn, TARGET =
’Electronics’. We use S-SOURCE T-TARGET format in the sub-figure titles, values show the

performance of each model trained on a source domain and tested on a target domain.
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Figure A.7: Value curves on Multi Domain Sentiment dataset for increasing kfn, TARGET =
’Kitchen’. We use S-SOURCE T-TARGET format in the sub-figure titles, values show the

performance of each model trained on a source domain and tested on a target domain.
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Multi-class datasets - Supplementary Results

Figure A.8: Value curves of multi-class datasets for increasing k.
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Figure A.9: Value curves with theoretical threshold for increasing k.
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Figure A.10: Value curves with theoretical and empirical threshold (on the validation set) for
increasing k.
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Figure A.11: Effect of using different text encoders. Value curves with theoretical and
empirical threshold (on the validation set) for increasing k.
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A.2 Supplemental material for Chapter 6

A.2.1 Results - Table with LogReg+MPNet results, using theoretical thresh-
old

AL STRATEGY BATCH

US AIRLINE CLINC150 DBPEDIA HATE SPEECH

VALUE VALUE VALUE VALUE

K=0 K=2 K=4 K=8 K=0 K=2 K=4 K=8 K=0 K=2 K=4 K=8 K=0 K=2 K=4 K=8
UNCERTAINTY 5 0.8 0.391 0.219 0.082 0.608 0.0 0.0 0.0 0.933 0.369 0.083 0.003 0.87 0.641 0.456 0.237

10 0.814 0.451 0.298 0.148 0.869 0.0 0.0 0.0 0.961 0.566 0.212 0.037 0.883 0.659 0.495 0.297
20 0.815 0.485 0.336 0.224 0.943 0.0 0.0 0.0 0.971 0.776 0.487 0.187 0.885 0.683 0.545 0.353
30 0.819 0.511 0.362 0.271 0.96 0.0 0.0 0.0 0.972 0.863 0.702 0.452 0.888 0.699 0.578 0.411

RANDOM 5 0.784 0.405 0.273 0.153 0.519 0.0 0.0 0.0 0.852 0.502 0.324 0.191 0.853 0.616 0.502 0.348
10 0.795 0.455 0.314 0.22 0.716 0.0 0.0 0.0 0.899 0.643 0.468 0.304 0.868 0.642 0.532 0.401
20 0.802 0.488 0.362 0.256 0.882 0.002 0.0 0.0 0.927 0.74 0.605 0.434 0.873 0.663 0.556 0.432
30 0.805 0.502 0.365 0.278 0.919 0.015 0.0 0.0 0.942 0.79 0.672 0.513 0.877 0.676 0.571 0.453

CERTAINTY 5 0.653 0.199 0.177 0.139 0.095 0.022 0.018 0.009 0.442 0.098 0.076 0.055 0.784 0.389 0.217 0.201
10 0.639 0.112 -0.036 -0.003 0.121 0.051 0.039 0.021 0.443 0.078 0.071 0.073 0.781 0.371 0.11 0.036
20 0.635 0.084 -0.079 -0.045 0.16 0.104 0.076 0.03 0.609 0.359 0.302 0.226 0.778 0.355 0.032 -0.193
30 0.644 0.206 0.161 0.178 0.219 0.153 0.11 0.048 0.609 0.336 0.329 0.297 0.778 0.354 0.04 -0.206

TOS 5 0.796 0.373 0.313 0.233 0.284 0.015 0.013 0.015 0.909 0.394 0.333 0.064 0.855 0.631 0.51 0.341
10 0.805 0.444 0.328 0.241 0.62 0.036 0.026 0.021 0.952 0.584 0.452 0.119 0.876 0.671 0.523 0.396
20 0.813 0.493 0.355 0.27 0.9 0.075 0.057 0.027 0.97 0.742 0.557 0.148 0.885 0.693 0.567 0.441
30 0.822 0.511 0.376 0.274 0.94 0.123 0.079 0.034 0.971 0.857 0.592 0.42 0.888 0.697 0.588 0.451

TOS-BELOW 5 0.485 0.409 0.307 0.213 0.701 0.024 0.009 0.012 0.342 0.451 0.354 0.263 0.216 0.641 0.503 0.361
10 0.485 0.46 0.331 0.249 0.701 0.048 0.017 0.022 0.342 0.592 0.428 0.35 0.216 0.671 0.536 0.41
20 0.485 0.501 0.362 0.271 0.701 0.085 0.051 0.03 0.342 0.746 0.525 0.415 0.216 0.691 0.573 0.44
30 0.485 0.512 0.378 0.291 0.701 0.129 0.087 0.041 0.342 0.858 0.6 0.43 0.216 0.699 0.586 0.461

Table A.22: Performance of AL strategies with LogReg + MPNet (using theoretical threshold)
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A.2.2 Results using empirical threshold

AL STRATEGY BATCH

US AIRLINE CLINC150 DBPEDIA HATE SPEECH

VALUE VALUE VALUE VALUE

K=0 K=2 K=4 K=8 K=0 K=2 K=4 K=8 K=0 K=2 K=4 K=8 K=0 K=2 K=4 K=8
UNCERTAINTY 5 0.719 0.285 0.121 0.032 0.173 0.008 0.0 0.0 0.835 0.586 0.468 0.329 0.796 0.517 0.392 0.236

10 0.732 0.331 0.171 0.076 0.451 0.063 0.008 0.0 0.898 0.726 0.636 0.499 0.869 0.64 0.494 0.303
20 0.752 0.357 0.211 0.094 0.665 0.216 0.011 0.001 0.934 0.82 0.754 0.676 0.891 0.702 0.559 0.358
30 0.761 0.381 0.253 0.143 0.721 0.296 0.054 0.003 0.942 0.841 0.783 0.712 0.896 0.703 0.581 0.419

RANDOM 5 0.694 0.29 0.19 0.095 0.405 0.043 0.005 0.004 0.753 0.464 0.386 0.321 0.795 0.583 0.497 0.386
10 0.72 0.313 0.223 0.127 0.541 0.14 0.031 0.006 0.834 0.601 0.53 0.467 0.83 0.602 0.521 0.418
20 0.738 0.357 0.258 0.167 0.658 0.279 0.119 0.024 0.883 0.712 0.643 0.569 0.85 0.636 0.556 0.442
30 0.748 0.367 0.259 0.182 0.704 0.344 0.182 0.059 0.905 0.761 0.693 0.625 0.865 0.659 0.58 0.466

CERTAINTY 5 0.635 0.201 0.104 0.055 0.052 0.036 0.034 0.034 0.157 0.056 0.045 0.042 0.777 0.479 0.371 0.282
10 0.631 0.256 0.168 0.095 0.075 0.053 0.052 0.05 0.143 0.086 0.083 0.078 0.778 0.49 0.405 0.317
20 0.632 0.273 0.19 0.137 0.14 0.078 0.068 0.054 0.625 0.205 0.14 0.121 0.777 0.449 0.379 0.301
30 0.635 0.296 0.212 0.147 0.207 0.105 0.084 0.062 0.436 0.197 0.176 0.155 0.777 0.422 0.323 0.23

TOS 5 0.689 0.244 0.145 0.05 0.141 0.005 0.016 0.026 0.794 0.344 0.285 0.076 0.787 0.579 0.454 0.249
10 0.732 0.315 0.198 0.115 0.387 0.016 0.03 0.039 0.869 0.442 0.382 0.242 0.856 0.63 0.549 0.41
20 0.746 0.348 0.214 0.153 0.643 0.045 0.053 0.057 0.93 0.634 0.416 0.379 0.893 0.688 0.574 0.485
30 0.762 0.373 0.248 0.182 0.669 0.084 0.072 0.078 0.94 0.756 0.444 0.392 0.896 0.71 0.585 0.503

TOS-BELOW 5 0.255 0.276 0.159 0.084 0.361 0.013 0.009 0.024 0.283 0.396 0.325 0.154 0.388 0.604 0.494 0.374
10 0.255 0.314 0.204 0.12 0.361 0.023 0.014 0.04 0.283 0.446 0.393 0.308 0.388 0.659 0.558 0.454
20 0.255 0.366 0.217 0.122 0.361 0.043 0.042 0.066 0.283 0.648 0.423 0.387 0.388 0.701 0.583 0.487
30 0.255 0.388 0.254 0.165 0.361 0.085 0.079 0.085 0.283 0.771 0.498 0.396 0.388 0.72 0.595 0.503

Table A.23: Performance of AL strategies with LogReg + TF-IDF (using empirical threshold
tuned on test set)

A.2.3 Results - Performance of SOTA AL Strategies

Figure A.12 shows the performance of SOTA AL strategies over 4 multi-class
datasets with Logistic Regression combined with TF-IDF or MPNet. While
uncertainty sampling shows an outstanding performance in terms of accuracy,
we observed that this is not the case when we change the metric to value and
test with various cost settings. For high k values, we observed that the random
sampling and in some cases even certainty sampling becomes better than uncer-
tainty sampling in the early batches (when the model does not have enough data
to learn the task). We show results for theoretical value where we assume the
model is calibrated and the threshold is found based on the following equation:
t = k/(k + 1).
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Figure A.12: Value curves with theoretical threshold for increasing number of AL batch.
Model: Logistic Regression.
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A.2.4 Results - TOS

Figure A.13: Value curves with theoretical threshold for increasing number of AL batch.
Model: Logistic Regression.
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A.2.5 Results on News Category and Coronavirus Datasets

Figure A.14: Value curves with theoretical threshold for increasing number of AL batch.
Model: Logistic Regression.
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A.2.6 Results on US Airlines Dataset with fine-tuned RoBERTa

Figure A.15: Value curves with theoretical threshold for increasing number of AL batch.
Model: Fine-tuned RoBERTa.
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