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Abstract
This paper is concernedwith the construction ofBrownianmotions and related stochas-
tic processes in a star graph, which is a non-Euclidean structure where some features
of the classical modeling fail. We propose a probabilistic construction of the Sticky
Brownian motion by slowing down the Brownian motion when in the vertex of the star
graph. Later, we apply a random change of time to the previous construction, which
leads to a trapping phenomenon in the vertex of the star graph, with characterization of
the trap in terms of a singular measureΦ. The process associated to this time change is
described here and, moreover, we show that it defines a probabilistic representation of
the solution to a heat equation type problem on the star graph with non-local dynamic
conditions in the vertex that can be written in terms of a Caputo-Džrbašjan fractional
derivative defined by the singular measure Φ. Extensions to general graph structures
can be given by applying to our results a localisation technique.

Keywords Brownian motion on graphs (primary) · Dynamic boundary conditions ·
Non-local operators · Fractional differential equations

Mathematics Subject Classification 60J65 (primary) · 58J65 · 34A08 · 05C90

1 Introduction

The problem of a complete characterization and construction of all possible Brownian
motions on intervals was posed by Feller [17], [18], [19] and later solved by Itô and
McKean [24], [25]. Their solution is based on the theories of local time for Brownian
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motion and strongMarkov processes, culminating in a description of Brownianmotion
in terms of the associated infinitesimal generator. More recently, several papers have
addressed the question of extending this construction to graphs, meant as the natural
extension of single intervals. As in the one-dimensional case, the problem does not
lie in the definition of the process but in its construction. In this paper, we continue in
this line of research; our goal is the construction and then the extension of the sticky
Brownianmotion.We shall work in the special case of a star graph, that is, the union of
a finite number of copies of the half-line joined at the origin. In graph terminology, we
say that the star graph has a unique vertex (the origin) and n edges of infinite length.
We shall formalize this construction in the next subsection.

The processes constructed in this space share many similarities with their corre-
spondent one-dimensional counterparts but some adaptations are needed since we are
missing all the tools from martingale theory. To show what can still be achieved, we
discuss the elliptic problems associated with the infinitesimal generators of the pro-
cesses (see also [22], [21] for related results). In mathematical physics, the Laplace’s
problem Δu = 0 and the Poisson’s problem Δu = −g are related to the analysis of
steady states (for the first equation) and conservative fields (the latter). Solutions to
Laplace’s problem are the harmonic functions on a domain with prescribed bound-
ary conditions. There is an important probabilistic representation for the solutions of
both the Laplace’s problem and the Poisson’s problem, which we shall recover in our
setting, see Theorems 6 and 8.

Remark 1 Our choice of working in a star graph is not restrictive and can be justified
as follows. Let G be a generic graph with finite numbers of edges and vertices. Let us
define for each vertex v ∈ G the subgraph Gv of all edges starting from v. This can be
embedded in the star graph with center v having the same number of rays as the edges
incident to v. In order to define a Brownian motion on G, we can proceed by defining
the infinitesimal generator A of the process, compare Theorem 1, by fixing boundary
conditions in every vertex of the graph. The resulting process is a Brownian motion,
possibly with several different kinds of node conditions. Then we proceed with the
construction of the process on the whole graph. We consider a family of Brownian
motions on the star graphs Gv, indexed by the set of vertices v; if the Brownian motion
on the graph starts in a certain vertex v, it behaves like the Brownianmotion defined on
the star graph Gv until the first time it reaches a different vertex. From this moment, the
behaviour of the Brownian motion on the graph coincides with that of the Brownian
motion associated with this new vertex, again stopped at the first time of entering the
set of neighbor vertices. Compare for instance with [20], where the authors introduce
an embedded Markov chain to keep track of the sequence of vertices in the graph
visited by the Brownian motion. We see that this localization procedure generalizes
our construction to the case of a general graph.

Our results can be considered in many fields such as communications, social sci-
ences, biology, and others. Let us recall the trapping problems (see for example [11])
and the well-known Bouchaud trap models ( [4]). There is a vast literature on trap-
ping problems for example in the cases of regular lattices and fractal structures. They
involve a number of traps located in random locations, in these traps we have absorp-
tion. The Bouchaud trap models can be considered as reference models for trapping
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phenomena. They have the same scaling limit as a continuous time random walk lead-
ing to the fractional-kinetic equation and also in this case, there exists a consistent
literature on the long-time behavior of these models. In the present paper, we focus
on sticky behaviors (including the absorption) realized through non-local dynamic
conditions (including the so-called fractional kinetic equation). The non-local effects
act independently on the motion determining holding times with infinite mean values,
i.e., the process spends on average an infinite amount of time in the vertex of the star
graph.

Let us briefly sketch the structure of this work. In the remainder of this section,
we provide all the main definitions and notation needed in the sequel, as well as
a summary of our main results. Section 2 is devoted to present some background
material, which extends to our framework known results about the construction of the
Brownian motion on a star graph. In Section 3 we define the sticky Brownian motion
and we study its properties, with particular emphasis on its infinitesimal generator.
Section 4 is devoted to the construction and analysis of the sticky Brownian motion
with trapping star vertex. In this case the associated infinitesimal generator is a nonlocal
operator described through a fractional dynamic boundary condition.

1.1 The star graph

Let us consider a family of copies of the positive half lines E = {e j = [0,∞), j =
1, . . . , n}. Each point in E is denoted formally by the couple ( j, x), where j is the
relevant ray considered and x is the distance from the origin.

According to [31], we introduce the equivalence relation on E

( j, x) ∼ (k, y) ⇐⇒
{
j = k and x = y

x = y = 0, any j, k.

We define the star graph as the quotient space E = E/ ∼, i.e., we identify the starting
points on all edges and in E the origin 0 ≡ (·, 0) is the unique point that belongs to
all the rays. On every edge, we have an Euclidean structure given by the Euclidean
distance, and a measure structure induced by the Lebesgue measure. These structures
are inherited by the space E: it is a metric space with the distance

d(( j, x), (k, y)) = |x − y|1 j=k + (x + y)1 j �=k

and a measure space with respect to the direct sum measure induced by the Lebesgue
measure on every edge. In particular, this metric-measure structure allows us to
consider spaces of functions defined on the star graph E based on topological and
measure-theoretical notions: in particular, we introduce the space C0(E) of continu-
ous functions f : E → R that vanish at infinity, equipped with the sup norm; and the
Lebesgue spaces L p(E) with respect to the Lebesgue measure.
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Let f : E → R. As a shortcut we let f j (x) = f ( j, x) for j = 1, . . . , n and x > 0
and we define

f ′j (0) = lim
r→0

∂

∂r
f ( j, r). (1.1)

Similarly, we let

f ′′j (x) =
∂2

∂x2
f ( j, x).

We define C̃2
0 (E) the space of functions in C0(E) that are twice continuously

differentiable on each open ray e̊ j = (0,∞) such that there exists finite the limit

f ′′(0) = lim
x→0

f ′′j (x), j = 1, . . . , n

independent from the direction. In particular,

C̃2
0 (E) := { f ∈ C0(E) : f ′ ∈ C0(E \ {0}), f ′′ ∈ C0(E)}. (1.2)

Informally, we shall say that the second derivative f ′′ can be extended to a function
in C0(E).

It shall be evident from the above that any randomvariable (and, therefore, stochastic
process) X with values in E \ {0} is identified by two components, the spherical
component Θ which takes values in {1, . . . , n}, and the radial component X , X > 0.
However, if X = 0, in order to uniquely define the spherical component, we impose
Θ = 1 and X = 0.

1.2 Feller’s Brownianmotion on a star graph

We adapt the following definition from [29], [30] to our setting.

Definition 1 A Brownian motionZ = {Zt , t ∈ [0,∞)} on E is a diffusion process on
E, such that the radial component Z with absorption at 0 is equivalent to a Brownian
motion on the half line R+ with absorption at the origin.

We refer to the diffusion process Z as a Markov process on E with continuous
trajectories on [0, ζ ), where ζ is its lifetime. In [29] the following characterization of
a Brownian motion is stated.

Theorem 1 Assume that Z is a Brownian motion on E as defined in Definition 1. Then
there exist constants a, b, {pk}, c ∈ [0, 1], where k = 1, . . . , d, with

n∑
k=1

pk = 1, a + b + c = 1, a �= 1,
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such that the domain D(A) of the generator A of Z in C0(E) consists exactly of those
f ∈ C̃2

0 (E) that satisfies

a f (0) + 1

2
c f ′′(0) = b

n∑
k=1

pk f
′
k(0). (1.3)

Moreover, for f ∈ D(A),

A f ( j,z) = 1

2

∂2

∂z2
f ( j,z).

Definition 2 A standard Brownian motion Z on E is a Feller’s Brownian motion with
domain determined by a = c = 0, b = 1. The values {pk} represent the probability
of finding the Brownian motion on each of the edges ek .

It shall be noted that the boundary condition associated with a standard Brownian
motion is equivalent to Kirchhoff’s first law and states that the sum of all currents
entering and leaving the star-vertex is zero.

As occurs in the case of a real standard Brownian motion, giving the definition
is not sufficient for the existence of such a process. The construction of this process
will be provided in Section 2.3. Heuristically, our construction follows a suggestion
in [23] for the real standard Brownian motion, i.e., glue together a family of possible
“excursions”, chosen with a suitable measure in the space of positive continuous
functions, and assign each of them, independently, to one of the rays of the star-graph.

1.3 Sticky Brownianmotion

According to Theorem 1, the definition of a sticky Brownian motion can be given in
terms of the parameters a, b, and c in formula (1.3). Notice that actually there exists
a family of sticky Brownian motions, depending on a parameter μ = b

c ∈ (0,∞).

Definition 3 We say that a stochastic process X is a μ-sticky Brownian motion on a
graph E if it is a Brownian motion in the sense of Definition 1 and it satisfies a = 0,
b+c = 1, b = μc, such that the domain of the infinitesimal generator A of the process
is given by (1.3).

The construction of a sticky Brownian motion on E will be given in Section 3. The
idea, quite classical in this regards, is to define the process X(t) via a suitable time
change of the standard Brownian motion Z(t), time change which employs the local
time of Z.

Given a ball Br (0) = {x ∈ E : |x | < r}, in Section 3.2 we consider the problem of
finding the distribution of place and time of exit from the ball. It is possible to connect
this problem with the analysis of harmonic functions on the graph (see Theorem 6)
and the study of functions with prescribed second derivative (see Theorem 8).

Once we prove the existence of a sticky Brownian motion, this construction opens
the way to define a further family of processes, by taking a further modification of
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the time change through a subordinator process as given in formula (3.6) below. Time
changes induce transformations of the speed of the motion of the process, thus leading
to more complex and interesting dynamics.

A subordinator H = {Ht , t ≥ 0} is a non-decreasing Lévy process of pure jump
type, that is a process with stationary and independent increments, with trajectories
that are càdlàg. The Laplace transform of Ht is given by

E[e−sHt ] = e−tΦ(s),

where Φ(s) is a Bernstein function, i.e., there exist λ > 0 and a Lévy measure φ on
B(R+) such that

Φ(s) = λs +
∫

(0,∞)

(1− e−κs) φ(dκ),∫
(0,∞)

min{1, κ}φ(dκ) < ∞.

We will assume that

t �→ Ht is strictly increasing, a.s. (1.4)

which requires that φ((0,∞)) = ∞. In this setting, the first passage time of the
subordinator Ht (i.e., the generalized right-inverse of Ht ) is a process Lt

Lt = inf{s > 0 : Hs > t}. (1.5)

Since the sample paths of Ht are a.s. strictly increasing, the process Lt has a.s.
continuous paths, see for instance [2, Section 12.9].

2 The construction of standard Brownianmotion

In their book [23], N. Ikeda and S. Watanabe provided the construction of a Brownian
motion on the real line starting from the collection of all excursions and then construct-
ing the sample paths of the Brownian motion. Here, we shall adapt their construction
to our goal of defining a Brownian motion on the star graph.

2.1 The space of positive excursions

Define W+ the class of all continuous functions w : [0,∞) → R+ with

• w(0) = 0, and
• there exists σ(w) > 0 such that

◦ w(t) > 0, for 0 < t < σ(w),
◦ w(t) = 0 for t ≥ σ(w).
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This space is called the space of positive excursions. It may be endowed with the
Borel σ -field σ(W+) generated by the cylindrical sets.

On the space (W+, σ (W+)) we define a σ -finite measure n+ that satisfies

n+({w ∈ W+ : w(t1) ∈ A1, . . . , w(tn) ∈ An})
=
∫
A1

K (t1, x1) dx1

∫
A2

p0(t2 − t1, x1, x2) dx2 . . .

∫
An

p0(tn − tn−1, xn−1, xn) dxn

where

K (t, x) =
√

2

π t3
x exp

(
−x2/2t

)

is the density (in t) of the first passage time of the Brownian motion through level x ,
and

p0(t, x, y) = gt (x − y) − gt (x + y)

is the density (in y) of the Brownian motion killed in 0, and gt (x) = 1√
2π t

e− x2
2t denote

the Gaussian density.

Lemma 1 The measure of the set of excursions longer than t is finite, and it holds

n+({w ∈ W+ : σ(w) > t}) =
√

2

π t
.

Proof It is sufficient to compute

n+({w ∈ W+ : σ(w) > t}) = n+({w ∈ W+ : w(t) > 0})

=
∫ ∞

0
K (t, x) dx =

√
2

π t
.

��
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2.2 Poisson randommeasures and Poisson point process

Let (W, σ (W)) be a measurable space. A Poisson random measure μ on (W, σ (W))

is a collection of random variables {μ(B), B ∈ σ(W)} such that
• μ(∅) = 0 a.s.;
• for each B ∈ σ(W), μ(B) is Poisson distributed whenever μ(B) < ∞.
• if {Bk} are disjoint elements in σ(W), then μ(∪Bk) =∑μ(Bk) a.s.;
• if {Bk} are disjoint elements in σ(W), then {μ(Bk)} are independent random
variables.

Notice that μ induces a σ -finite measure λ on (W, σ (W)) by setting λ(B) =
E[μ(B)]. λ is the intensity measure associated with μ. The converse result also holds:
given an intensity measure λ, there exists a Poisson random measure with prescribed
intensity measure; see [23, Theorem I.9.1].

Theorem 2 Given a σ -finite measure n on (W, σ (W)), there exists a Poisson random
measure μ on a probability space (Ω,F,P) such that n(A) = E[μ(A)] for all A ∈
σ(W).

Following [23], we add time to the above construction. Consider the space S =
[0,∞) ×W endowed with the σ -algebra A = B([0,∞)) ⊗ σ(W). A Poisson point
process p = (p(t), t ∈ [0,∞)) is a process defined on a filtered probability space
(Ω,F,P) taking values in W such that the random measure

N (t, A) := N ([0, t) × A) = #{0 ≤ s < t : p(s) ∈ A}, for t ≥ 0, A ∈ σ(W),

is a Poisson random measure on S.
We shall denote Dp the countable support of the point measure p (that we can

interpret as the times of jump). Notice that Dp is itself a random set.
The Poisson point process p on (W, σ (W)) is stationary if its intensity measure

E[N (dt, dx)] satisfies

E[N (t, A)] = t n(A)

for some measure n on (W, σ (W)). The compensated Poisson random measure

Ñ (t, A) = N (t, A) − t n(A), fort ≥ 0,A ∈ σ(W)

is a martingale.

2.3 The construction of the standard Brownianmotion on E

For the sake of clarity, we recall that calligraphic letters, like Z, denote processes on
the graph, while roman letters, like Z , denote "associated" processes on the real line.

Let us begin with the excursion space for Z

WZ = {1, . . . , n} ×W+
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(recall the definition of W+ in Section 2.1). In other words, the excursions of Z are
simply the excursions of the reflecting Brownian motion paired with the choice of a
ray in E.

We introduce the excursion point process as a Poisson point process with intensity
measure given by the product of the Lebesgue measure on [0,∞) with a unique σ -
finite measure n on the excursion space. In our setting, the excursion measure n on
WZ is given by the product measure μ × n+, where n+ is the excursion measure on
W+ and μ is a probability measure on {1, . . . , n} with point masses {p j }. Then, for
any U ⊂ W+ and j ∈ {1, . . . , n} we have

n({ j} ×U ) = p j n+(U ).

As a consequence of Theorem 2 we have

Theorem 3 There exists a stationary Poisson point process p = (α, p+) onWZ with
intensity measure n(dt, { j} ×U ) = dt p j n+(U ).

The standard Brownian motionZ on E is constructed as follows. The radial compo-
nent Z(t) is a standard reflected Brownian motion, defined by the stationary Poisson
point process p+ on W+ with intensity measure n+((0, t] ×U ) = t n+(U ).

We introduce the increasing, right-continuous process associated with the reflected
Brownian motion

A(s) =
∫ s+

0

∫
W+

σ(x) N+(du, dx)

where we recall that σ(x) = inf{t > 0 : x(t) = 0} is the length of the excursion x ,
so that A(s) counts the total length of the excursions touched by the Poisson point
process p on the time interval [0, s].

Denote �(t) = A−1(t) the (pseudo) inverse of A(t):

�(t) = A−1(t) = inf{s ∈ R̄ : A(s) > t}

with

A(�(t)−) = max{A(s) : A(s) ≤ t}

and recall that s �→ A(s) is a.s. strictly increasing.
We define a standard Brownian motion on E as follows

Z(t) = p(0)(t) if 0 < t < A(0+) = σ(p(0))

and in general

Z(t) = p(�(t))(t − A(�(t)−)). (2.1)
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If we denote p(t) = (α(t), p+(t)) ∈ {1, . . . , n} ∈ W+; then we decompose the
Brownian motion Z(t) into the spherical and radial component as follows

Z(t) = p+(�(t))(t − A(�(t)−)), Θ(t) = α(t).

Corollary 1 The above construction, in particular, implies that �Z(t) = �(t) is the
local time at the origin of the standard Brownian motion in E and it coincides with the
local lime �+(t) of the one dimensional reflected Brownian motion.

The reflected Brownian motion Zt starting from 0 satisfies the following properties
(see for instance [26]):

1. the zero set ζ = {t > 0 : Zt = 0} has Lebesgue measure 0;
2. the zero set ζ has cardinality infinite in (0, ε), for every ε > 0.

Let us define τ tk the first time the process Z enters the edge k after time t , i.e.,

τ tk = inf{s > t : Θs = k}.

Then, given Z(0) = 0, it holds that

for every k = 1, . . . , n, τ 0k = 0 almost surely. (2.2)

It is sufficient to prove that τ 0k < ε for every ε > 0. But this follows because on
(0, ε) we have an infinite number of returns to 0, hence for each k, {Θ(t) = k} occurs
infinitely often in (0, ε) almost surely. For the arbitrariness of ε, we obtain the claim.

For t > 0, assume that Θ(t) �= k (otherwise, by the continuity of trajectories, we
have τ tk = t almost surely). Let us denote T t

0 = inf{s > t : Z(s) = 0}. Since Z(t)
has the same distribution of a reflected Brownian motion starting from 0, it follows
that P(Z(t) > 0) = 1, and we can use the following formula obtained by the reflection
principle

P(T 0
0 ∈ dt | Z(0) = x) = x√

2π t3
e−

x2
2t dt

and strong Markov property to get

P(T t
0 ∈ ds) =

∫ ∞

0
P
x (T 0

0 ∈ d(s − t))P(Z(t) ∈ dx)

=
∫ ∞

0

x√
2π(s − t)3

e−
x2

2(s−t)
2√
2π t

e−
x2
2t dx ds = 1

πs
√

s−t
t

ds

or, equivalently, the first entrance time on the edge k is

P(τ tk ∈ ds) =
⎛
⎝δt (s)1{Θ(t)=k} + 1

πs
√

s−t
t

1{Θ(t) �=k}

⎞
⎠ ds.

123



Sticky Brownian motions on star graphs 2869

As a consequence, we see that the restriction of the process Z(t) to the edge k,
defined as

Zk(t) =
{
0 if Θ(t) �= k

Z(t) if Θ(t) = k

is not a strong Markov process, since the waiting time to leave the origin, given
Zk(t) = 0, depends on the past history of the process.

2.4 Infinitesimal generator

In this section, following [29], we prove that the standard Brownian motion defined
in (2.1) has infinitesimal generator that satisfies (1.3) with a = c = 0 as required by
Definition 2.

We shall denote τε(z) the exit time from the ball of radius ε around z ∈ E:

τε(z) = inf{t > 0 : d(Zt , z) ≥ ε}.

Let f be a smooth function f : E → R. Following [26, Theorem 19.23], we have

A f (z) = lim
ε↓0

E[ f (Zτε(z)) − f (z) | Z0 = z]
E
z[τε(z)] .

Assume first that z = ( j, r) for r > 0, and suppose ε < r . Then Z ∼ B behaves
like a one dimensional Brownian motion for small times, and we can use the following
result about the exit time from a ball of the Brownian motion:

E[τε(r)] = ε2

(use the fact that B2
t − t is a martingale) and the symmetry of trajectories of the

Brownian motion to get

A f (z) = lim
ε↓0

1

2

f ( j, r + ε) − 2 f ( j, r) + f ( j, r − ε)]
ε2

= 1

2
f ′′j (r).

Next we see what happens in the origin. First we state a result about the exit time
from the ball that is proved in [29, Lemma 2.1].

Lemma 2 For z = 0 it holds

E
0[τε(0)] = ε2.

Next, let f ∈ C̃2
0 (E) with f ∈ D(A). This entails the existence of the limit

A f (0) = lim
ε↓0

E
0[ f (Zτε(0)) − f (0)]

E
0[τε(0)]

.
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As we have seen before, this is equal to

A f (0) = lim
ε↓0

d∑
k=1

pk
f (k, ε) − f (0)

ε2

and by formally applying Taylor’s formula we obtain

A f (0) = lim
ε↓0

d∑
k=1

pk
ε f ′k(0) + 1

2ε
2 f ′′k (0)

ε2
= 1

2
f ′′(0) + lim

ε↓0
1

ε

d∑
k=1

pk f
′
k(0)

therefore the limit exists and it is equal to A f (0) = 1
2 f ′′(0) if and only if the sum of

the first order derivatives vanishes, thus proving that the Kirchhoff boundary condition
holds in the star-vertex.

3 Sticky Brownianmotion on E

In the first part of this section, we collect some properties of the sticky Brownian
motion X as defined in Definition 3. Following the convention in previous section, we
use X to denote the spatial component of the the E-valued process X. We shall denote
T0 the first passage time from the origin 0 ∈ E. The first property stated in Definition
1 can be equivalently written as

E
(i,x)[ f1(X(t1 ∧ T0)) . . . fk(X(tk ∧ T0))]
= E

x [ f1(i, X(t1 ∧ T0)) . . . fk(i, X(tk ∧ T0))]

for k ∈ N, f1, . . . , fk ∈ C0(E) and 0 ≤ t1 < · · · < tk .
Since X is a diffusion process, it is uniquely determined by either its generator

(AX, D(AX)), the transition semigroup

Qt f (x) = E
x[ f (X(t))], t ≥ 0, x ∈ E, f ∈ C0(E)

or the associated resolvent

Uλ f (x) =
∫ ∞

0
e−λtQt f (x) dt, λ ≥ 0, x ∈ E, f ∈ C0(E).

Recall that the infinitesimal generator (AX, D(AX)) is, by Definition 3,

AX f (x) = f ′′j (x), x = ( j, x)

D(AX) =
{
f ∈ C̃2

0 (E) : 1

2
c f ′′(0) = b

n∑
k=1

pk f
′
k(0)

}
.
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Now we characterize the transition semigroup

Qt f (x) =QD
t fi (x) +

∫ t

0
Qt−s f (0)Px (T0 ∈ ds)

where QD
t f (x) = Ex [ f (XD

t )] is the transition semigroup for the Brownian motion
killed at the origin (Dirichlet semigroup) and the first passage time law depends only
on the radial component x of the starting point x, hence it is known to be [33, page

107] Px (T0 ∈ ds) = x

s
gs(x)ds, and substituting in previous formula we have

Qt f (x) =QD
t fi (x) +

∫ t

0

x

s
gs(x)Qt−s f (0) ds, (3.1)

which means that the knowledge of Qt f (0) = E
0[ f (Xt )] is sufficient to determine

the whole semigroup.
Next, for any t > 0 it holds that Qt f belongs to D(AX). Indeed,

1

2
c(Qt f )

′′(0) = b
n∑

k=1

pk (Qt f )
′ (k, 0) (3.2)

as shown below in Lemma 3. Notice that in the left-hand side we have used the
continuity of the second derivative in order to simplify the notation.

Finally, we consider the resolvent operator. Let us compute the Laplace transform
of (3.1) to get

Uλ f (x) = UD
λ fi (x) +

⎛
⎜⎜⎜⎝
∫ ∞

0
e−λt x

t
gt (x) dt︸ ︷︷ ︸

e−
√
2λx

⎞
⎟⎟⎟⎠Uλ f (0) (3.3)

where the resolvent operator of the killed Brownian motion is

UD
λ ϕ(x) =

∫ ∞

0
e−λt

∫
R+

[gt (x − y) − gt (x + y)]ϕ(y) dy dt

= 1√
2λ

∫
R+

[
e−|x−y|√2λ − e−(x+y)

√
2λ
]

ϕ(y) dy.

Taking the Laplace transform in both sides of (3.2), we aim to obtain the analog
boundary condition for the resolvent operator Uλ(x)

1

2
c
∫ ∞

0
e−λt∂tQt f (0) dt = b

n∑
k=1

pk∂x

∫ ∞

0
e−λt (Qt f ) (k, x) dt

∣∣∣
x=0

. (3.4)
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2872 S. Bonaccorsi, M. D’Ovidio

Our next result provides a more tractable form of the previous formula. In the proof,
we shall use the diffusion equation satisfied pointwise by the transition semigroup,
which will result in computing a first-order time derivative instead of the second-order
space derivative.

Lemma 3 The resolvent operator of the sticky Brownian motion is completely
determined by the following identities:

Uλ f (x) = UD
λ fi (x) + e−

√
2λxUλ f (0), x = (i, x)(

λ + b

c

√
2λ

)
Uλ f (0) = f (0) + 2b

c

n∑
k=1

pk f̂k(
√
2λ).

(3.5)

Proof We can treat the left hand side of (3.4) without computing the transition
semigroup (by an integration by parts):

c
∫ ∞

0
e−λt∂tQt f (0) dt = c (− f (0) + λUλ f (0)) .

The right hand side requires some more efforts.
First, recalling (3.3), we compute the space derivative of the resolvent operator of

the killed Brownian motion

(UD
λ ϕ)′(x) =

[
−
∫

(0,x)
e−(x−y)

√
2λϕ(y) dy +

∫
(x,∞)

e−(y−x)
√
2λϕ(y) dy

+
∫

(0,∞)

e−(x+y)
√
2λϕ(y) dy

]

lim
x↓0(U

D
λ ϕ)′(x) =2

∫
(0,∞)

e−
√
2λyϕ(y) dy.

It follows that

lim
x↓0(Uλ f )

′(i, x) = 2
∫

(0,∞)

e−
√
2λy fi (y) dy −

√
2λUλ fi (0),

if we substitute in (3.4) we obtain the thesis

n∑
k=1

pk∂x (Uλ f ) (k, x)
∣∣∣
x=0

= −√
2λUλ f (0) + 2

n∑
i=1

pi

∫
(0,∞)

e−
√
2λy fi (y) dy.

��
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3.1 The construction of sticky Brownianmotion

Let us define

V (t) = t + μ�Z(t), t ≥ 0, (3.6)

where �Z is the local time at 0 ∈ E of the standard Brownian motion Z on E.
In the following result, we prove that the process X(t) = Z(V−1(t)) is a sticky

Brownian motion, according to definition 1, since its trajectories up to the first passage
in 0 coincide with those of a standard Brownian motion absorbed in 0, and its infinites-
imal generator is the Laplacian operator on C0(E), with b + c = 1. By construction,
the inverse V−1(t) is a strictly increasing function that remains bounded by t , i.e., it
slows down the reflecting Brownian motion Z at the origin. Thus, X is forced to stop
for a random amount of time at the origin.

Theorem 4 The processX(t∧T0) is equivalent in law to a Brownian motion absorbed
at the origin for any starting point x = (i, x) �= 0.

Proof By construction, since X(t) = (Θ(t), X(t)) is the polar representation of the
processX, withΘ(t) being the selected ray at time t and X(t) the corresponding radial
component, it follows that T0 is also the first passage time from 0 of the diffusion
process X on the half-line R+.

In order to get the proof, we consider the resolvent operator

E
x
[∫ ∞

0
e−λt X(t)1(t<T0) dt

]
= E

x
[∫ ∞

0
e−λt Z(V−1(t))1(t<T0) dt

]

= E
x
[∫ ∞

0
e−λV (t)Z(t)1(V (t)<T0) dV (t)

]

and we observe that

P
x
(
1(t<T0)�

Z(t) = 0
)
= 1

or equivalently, we can take V (t) = t in the last integral above, which implies, in
particular,

E
x
[∫ ∞

0
e−λt X(t)1(t<T0) dt

]
= E

x
[∫ ∞

0
e−λt Z(t)1(t<T0) dt

]

hence the radial component X behaves like a standard Brownian motion on (t < T0),
as required. ��

Theorem 5 The process X(t) = Z(V−1(t)) is a sticky Brownian motion according to
Definition 3.
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2874 S. Bonaccorsi, M. D’Ovidio

Proof We shall provide the thesis by proving that the process X(t) = Z(V−1(t)) has
resolvent operator that satisfies the equation (3.5). Let us compute

Uλ f (x) = E
x
[∫ ∞

0
e−λt f (Z(V−1(t))) dt

]

= E
x
[∫ ∞

0
e−λ(t+μ�Z(t)) f (Z(t)) d(t + μ�Z(t))

]
= U1

λ f (x) + U2
λ f (x).

Let us start from

U1
λ f (x) =E

x
[∫ ∞

0
e−λ(t+μ�Z(t)) f (Z(t)) dt

]

=E
x
[∫ T0

0
e−λ(t+μ�Z(t)) f (Z(t)) dt

]
+ E

x
[∫ ∞

T0
e−λ(t+μ�Z(t)) f (Z(t)) dt

]

where T0 is the first passage time from the vertex 0 for the process X, but it coincides
with the first passage time from the vertex 0 for the standard Brownian motion Z, and
it further coincides with the lifetime of a killed Brownian motion W on R+

= E
x
[∫ ∞

0
e−λt fi (W (t)) dt

]
+ E

x
[
e−λT0E0

[∫ ∞

0
e−λt−λμ�Z(t) f (Z(t)) dt

]]

we identify the first term with the resolvent operator of the killed Brownian motion
UD

λ fi (x) and we decompose the second term according to the assigned probability
distribution on the edges

= UD
λ fi (x) + E

x
[
e−λT0

]
E
0

[
n∑

k=1

pk

∫ ∞

0
e−λt−λμ�Z (t) f j (Z(t)) dt

]

we employ the known joint distribution of Z(t) and �Z (t), compare [25, page 45]
P
0(Z(t) ∈ dy, �Z (t) ∈ dω) = 2 y+ω

t gt (y + ω), and we use twice Fubini’s theorem
to get

= UD
λ fi (x) + e−

√
2λx

n∑
k=1

2pk

∫
(0,∞)

∫
(0,∞)

e−λμω fk(y)e
−√

2λ(y+ω) dω dy

U1
λ f (x) = UD

λ fi (x) + 2

λμ +√
2λ

e−
√
2λx

n∑
k=1

pk f̂k(
√
2λ).

Next

U2
λ f (x) =E

x
[∫ ∞

0
e−λ(t+μ�Z(t)) f (Z(t)) d(μ�Z(t))

]

=− 1

λ
E
x
[∫ ∞

0
e−λt f (0) d(e−λμ�Z(t))

]
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=− f (0)

λ
E
x
[
e−λt−λμ�Z(t)

∣∣∣∞
t=0

+ λ

∫ ∞

0
e−λt−λμ�Z(t) dt

]

= f (0)Ex
[
1

λ
−
∫ ∞

0
e−λt−λμ�Z (t) dt

]
.

By taking x = 0 we obtain

U2
λ f (0) = f (0)

[
1

λ
− 2

∫ ∞

0

∫ ∞

0
e−λt−λμωgt (ω) dt dω

]

= f (0)

[
1

λ
− 2√

2λ

∫ ∞

0
e−

√
2λω−λμω dω

]
= f (0)

[
1

λ
− 2√

2λ

1√
2λ + λμ

]

and putting the above computation together we get

Uλ f (0) = 2

λμ +√
2λ

n∑
k=1

pk f̂k(
√
2λ) + μ

λμ +√
2λ

f (0)

μ

(
λ + 1

μ

√
2λ

)
Uλ f (0) = 2

n∑
k=1

pk f̂k(
√
2λ) + μ f (0)

(
λ + 1

μ

√
2λ

)
Uλ f (0) = 2

1

μ

n∑
k=1

pk f̂k(
√
2λ) + f (0)

which coincides with (3.5) when we take μ = c
b . ��

3.2 Elliptic problems associated to the sticky Brownianmotion

In this section we consider two classical problems associated with a diffusion operator,
namely the Dirichlet problem and the Poisson problem; they are naturally associated
with the exit probabilities and the mean exit time, respectively.

3.2.1 Dirichlet problem

Recall that the infinitesimal generator (AX, D(AX)) is, by Definition 3,

AX f (x) = f ′′j (x), x = ( j, x)

D(AX) =
{
f ∈ C̃2

0 (E) : 1

2
c f ′′(0) = b

n∑
k=1

pk f
′
k(0)

}
.

Let r > 0 and Br = Br (0) the open ball centred at the origin 0 ∈ E and defined
as Br = B/ ∼ with B = {b j = [0, r), j = 1, . . . , n}. We notice that ∂B0(r) =
{(e, r), e = 1, . . . , n} consists of exactly n points. We introduce the first passage
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2876 S. Bonaccorsi, M. D’Ovidio

times

T(e,r) = inf{t > 0 : Z(t) = (e, r)}

and the exit time from the ball

T � = inf{t > 0 : |Z(t)| = r} = min{T(e,r), : e = 1, . . . , n}.

A function u : E → R is denoted u(x) = u j (r) for x = ( j, r). The Dirichlet
problem associated with AX is

⎧⎪⎨
⎪⎩
find u ∈ D(AX) such that

AXu(x) = 0, x ∈ Br
u j (r) = α j , j = 1, . . . , n.

(D)

Let e ∈ {1, . . . , n} be fixed and define the function

u(x) = P(T � = T(e,r) | Z(0) = x) (3.7)

that is the probability that the first exit from the ball occurs along the edge e. Similar
to the case of a real valued Brownian motion, we prove here that u(x) is an harmonic
function for the infinitesimal generator AX of the sticky Brownian motion X.

Theorem 6 The function u(x) defined in (3.7) satisfies the Dirichlet problem (D) on
the ball B0(r) with boundary conditions

ue(r) = 1, u j (r) = 0 j �= e.

Proof Let us first notice that the boundary conditions are obviously satisfied.
It remains to prove that the identity AXu(x) = 0 is satisfied and that u ∈ D(AX).
Maybe not so surprisingly, most of the work is concerned with this last condition.

Suppose for simplicity that x = ( j, x) with |x | > 0; then for small h we have
Bx(h) = {( j, y), |y − x | < h}, and the strong Markov property of X implies

u j (x) =P(T � = T(e,r) | X(TBx(h)) = ( j, x − h))P(X(TBx(h)) = ( j, x − h))

+ P(T � = T(e,r) | X(TBx(h)) = ( j, x + h))P(X(TBx(h)) = ( j, x + h))

=1

2
u j (x − h) + 1

2
u j (x + h)

hence, by Schwarz’s theorem 1

1 Compare, for instance, [10, page 137]:
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Theorem 7 Let f be a continuous function defined in an interval (a, b) such that the
generalised second derivative is well defined, for each x ∈ (a, b) and h > 0 such that
(x − h, x + h) ⊂ (a, b), and satisfies

lim
h→0

f (x + h) − 2 f (x) + f (x − h)

h2
= ϕ(x)

for a continuous function ϕ(x) defined in (a, b). Then f is two times continuously
differentiable and it holds f ′′(x) = ϕ(x) for each x ∈ (a, b).

u′′j (x) = 0, x ∈ (0, r).

In particular, it is u j (x) = αe
j x + βe

j for every ( j, x) with x > 0, and the first
equation in (D) is satisfied.

Now we prove continuity of u in 0 (since the function is linear for |x| > 0, the
continuity is obvious). We have the following representation of u(x): if x = (e, x)
then

ue(x) =P(Tr < T0 | B(0) = x) + P(T0 < Tr | B(0) = x)P(T � = T(e,x) | Z(0) = 0)

= x

r
+
(
1− x

r

)
u(0)

and, for j �= e,

u j (x) = P(T0 < Tr | B(0) = x)P(T � = T(e,x) | Z(0) = 0) =
(
1− x

r

)
u(0)

which implies that u j (x) → u(0) as x → 0, for every j .
Notice that by symmetry, the probability that the process starting in the origin reaches
level r along the edge e equals to pe:

u(0) = pe.

In particular, from the boundary conditions, we get

u j (r) = 0, u j (0) = pe �⇒ u j (x) = pe
(
1− x

r

)
, j �= e,

ue(r) = 1, ue(0) = pe �⇒ ue(x) = pe +
(
1− x

r

)
(1− pe)

We finally obtain, from previous representation, that

1

2

c

b
u′′(0) = 0 =

∑
j �=e

p j

(
− pe

r

)
+ pe

1− pe
r

.

Hence u ∈ D(AX) and the proof is complete. ��
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Remark 2 The general solution of problem (D) is given by a linear combination of the
n different solutions that we obtain from previous theorem by rotating the values of e.

3.2.2 Poisson problem

It is customary to identify functions that satisfy problem (D) with the harmonic func-
tions on E. In this section, we consider the associated Poisson problem associated with
AX ⎧⎪⎨

⎪⎩
find v ∈ D(AX) such that
1
2 AXv(x) = −1, x ∈ Br
u j (r) = 0, j = 1, . . . , n.

(P)

In this section we prove that the solution of the Poisson problem is related to the
mean exit time from the ball Br (0)

v(x) = E[T � | Z(0) = x]. (3.8)

Theorem 8 The function v(x) defined in (3.8) satisfies the Poisson problem (P) on the
ball Br (0).

Proof At first, we notice that v(0) is equal to the first passage time from level r > 0 for
a sticky Brownian motion X(t) in [0,∞) starting from 0, since we are only interested
in the radial part of the process X(t). It holds, by [3]

v(0) = E[T � | Z(0) = 0] = E[Tr | X(0) = 0] = r2 + c

b
r .

Next, let x = ( j, x) and choose h small enough that (x − h, x + h) ⊂ (0, r). Then

v j (x) =E[T � − T(0,r) | X(0) = x] + E[T(0,r) | X(0) = x]
=E[(T � − T(0,r))1{T(0,r)=T0} | X(0) = x] + E[T(0,r) | X(0) = x]
=E[T � − T(0,r) | X(T(0,r) = 0,X(0) = x]P(X(T(0,r) = 0 | X(0) = x)

+ E[T(0,r) | X(0) = x]

In the first expectation, we use the strong Markov property of the sticky Brownian
motion; in the second and last term, we use the known results for a one-dimensional
Brownian motion to get

v j (x) = v(0) r−x
r + x(r − x).

We observe, passing by, that the function v j (x) is independent of j , i.e., the solu-
tion is homogeneous in the various edges. Since v(0) is known, we have an explicit
representation for the solution

v j (x) = r2 − x2 + c

b
(r − x),
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which implies v j (0) = v(0) and v′′j (0) = −2 for every j , hence v ∈ C2
0 (Br ) and

1
2v

′′
j (x) = −1, hence the equation in problem (P) is satisfied; it remains to check, in

order to prove that v ∈ D(AX), the condition in 0

1

2
cv′′(0) = −c = b

n∑
k=1

pk
(
− c

b

)

and the proof is complete. ��
Remark 3 A similar result holds for the Brownian motion Z(t), which means taking
c = 0 in the definition of the domain, and in which case it holds E[T � | Z(0) = x] =
r2 − |x |2.

4 Sticky Brownianmotion with trapping star vertex

In this section,wemodify the time changeused in (3.6) to construct the stickyBrownian
motion, in order to allow a random time change of the form

VH (t) = t + H ◦ μ�Z(t), t ≥ 0, (4.1)

where �Z is the local time at 0 ∈ E of the standard Brownian motion Z on E and
H = {Ht , t ≥ 0} is a subordinator independent from Z. We denote by

Φ(λ) =
∫ ∞

0

(
1− e−λy)φ(dy), λ > 0

the symbol of H written in terms of the so-called associated Lévy measure φ. Thus,
it holds that

E[e−λHt ] = e−tΦ(λ), λ > 0, t ≥ 0.

The inverse process L is defined as Lt : = inf{s ≥ 0 : Hs > t}. The process H has
strictly increasing path and continuous right-inverse L . Moreover, the subordinator
H may have jumps, so that the inverse L may have plateaux. We also remark the
known result that the stable subordinator is identified with the symbol Φ(λ) = λα , for
0 < α < 1.

The resulting process Y(t) = Z(V−1
H (t)) can be associated with a sticky Brownian

motion and can be regarded as a Brownian motion with trap in the origin 0 ∈ E. In
particular, we are interested in the (local) Cauchy problem with non-local condition
at the origin that we may associate to this process.

Recall that a standard Brownian motionZ on the star graph has a radial component
Z that is a reflected Brownian motion on the positive half-line. We shall use consistent
notation for the two objects (so we denote the local times �Z and �Z , first passage
times from the vertex/origin T0 and T0).
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In the one dimensional case, we know that the inverse to V (t) = t +μ�Z (t) slows
down the reflecting Brownian motion Z at the origin. Thus, Y (t) = Z ◦ V−1

H (t) is
forced to stop for a random amount of time at the origin. Since H is independent from
the couple (Z , �Z ), the holding time at the sticky point 0 is independent from Z .

Remark 4 If we assume that τ is the holding time (at zero) for the sticky Brownian
motion X = {Xt , t ≥ 0} on [0,∞), then

P0(τ > t |Xτ ) = exp(−μt)

for the positive rate μ = b
c . This result has been discussed in [24]: the exponential

law guarantees the semigroup property and the definition of holding time follows
by considering that, with the process X starting at x = 0, the probability P0(τ >

t |Xτ > 0) describes the time the process spends at x = 0. Moreover, the process
enjoys the Markov property and the sequence {τ i , i ∈ N} of holding times for X
are independent and identically distributed. For the process Y we can introduce the
sequence {τ iY , i ∈ N} of holding times for which (see [14])

P0(τ
i
Y > t |Yτ iY

> 0) = P0(Hτ i > t |Yτ iY
> 0) = P0(τ

i > Lt |Yτ iY
> 0)

where we used the fact that L = H−1 is an inverse process. As Φ(λ) = λ the process
Ht becomes the elementary subordinator and Yt = Xt in law. Since H is independent
from Z , then H is independent from τ . In particular, the process Y moves on the path
of X (or Z ) but it stops at x = 0 for a longer amount of time according with the new
holding time τ iY = H ◦ τ i . We can therefore write

P0(τ
i > Lt |Yτ iY

> 0) = P0(τ
i > Lt |Xτ i > 0) = E0[exp(−μLt )], ∀ i . (4.2)

The holding times τ iY are independent and identically distributed: the independence
follows immediately by observing that

Hτ 1 = Hτ 0+τ 1 − Hτ 0 ⊥ Hτ 1+τ 2 − Hτ 1 = Hτ 2

where we used the properties of the subordinator H . We refer to [14, Theorem 4.3]
for a detailed discussion. The process L depends on the symbol Φ and we can study
the mean amount of time the process spends on the sticky point in terms of Φ, that is
we may have finite and infinite mean amount of time (at x = 0) and in case of infinite
holding time we are able to characterize the tail behavior in (4.2).

We conclude our discussion by recalling that, in case Φ(λ) = λα , that is H is a
stable subordinator, we have that

E0[exp(−(b/c)Lt )] = Eα(−(b/c)tα) =
∑
k≥0

(−(b/c)tα)k

Γ (αk + 1)
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is the well-known Mittag-Leffler function. We know that Eα /∈ L1(0,∞) and the
mean amount of (holding) time given by E0[τ iY ] is infinite. The process Y spends an
infinite mean amount of time at x = 0.

In general the behavior on the boundary point (or boundary set, in higher dimension)
can be associated with a delayed or a rushed effect depending on Φ as discussed in
[5].

4.1 Probabilistic construction

In the next result we discuss the equivalence of the excursions between the processes
Y and Y during an excursion (i.e., far from the origin).

Lemma 4 Assume that Y(0) = (e, x) with x > 0. Then, for every function f ∈ C0(E)
and λ > 0 it holds

E
(e,x)

∫ T0

0
e−λt f (Yt ) dt = E

x
∫ T0

0
e−λt f (e,Yt ) dt .

Proof Let us briefly remark that if f ∈ C0(E) then f (e, ·) ∈ C0(R+) for every
e ∈ {1, . . . , n}. We start by a change of variable

E
(e,x)

∫ T0

0
e−λt f (Yt ) dt =E

(e,x)
∫ T0

0
e−λt f (Z ◦ V−1

H (t)) dt

=E
(e,x)

∫ VH (T0)

0
e−λVH (t) f (Zt ) dVH (t)

but on [0, T0) we have �Z(t) = 0, hence VH (t) = t and we get

E
(e,x)

∫ T0

0
e−λt f (Yt ) dt = E

(e,x)
∫ T0

0
e−λt f (Zt ) dt .

Now, since we have (by construction!) equivalence between excursions of the
processes Z and Z , we have

E
(e,x)

∫ T0

0
e−λt f (Zt ) dt = E

x
∫ T0

0
e−λt f (Zt ) dt,

and the thesis follows by using analog equalities for the reflected Brownian motion. ��
Theorem 9 The λ-potential of the process Y equals the resolvent operator of the
process X̃, that is a sticky Brownian motion on the star graph (according to Definition
3) with parameters b′ and c′ such that

c′

b′
= c

b

Φ(λ)

λ
.
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Proof The proof is based on a direct computation, and makes use of the independence
between the subordinator and the Brownian motion Z. Assume that f is a continuous
and bounded function on E. We start by computing

Uλ f (x) = E
x
[∫ ∞

0
e−λt f (Yt ) dt

]

written as

Uλ f (x) = U1
λ f (x) + U2

λ(x)

where

U1
λ f (x) = E

x
[∫ T0

0
e−λt f (Z ◦ V−1

H (t)) dt

]

and

U2
λ(x) = E

x
[
e−λT0

]
E
0
[∫ t

0
e−λt f (Z ◦ V−1

H (t)) dt

]
.

Recall that VH (t) = t + H ◦ μ�Z(t), hence on [0, T0) it holds VH (t) = t ; therefore

U1
λ f (x) = E

x
[∫ T0

0
e−λt f (Z(t)) dt

]
.

Moreover, a standard computation leads to

E
x
[
e−λT0

]
= e−

√
2λx .

It remains to examine the last term. Since VH (t) is a continuous and strictly increasing,
the same holds for its inverse process, and we can write

E
0
[∫ ∞

0
e−λt f (Z ◦ V−1

H (t)) dt

]

= E
0
[∫ ∞

0
e−λVH (t) f (Z(t)) dVH (t)

]
= E

0
[
−1

λ

∫ ∞

0
f (Z(t)) de−λVH (t)

]

= −1

λ
E
0
[
e−λVH (t) f (Z(t))

∣∣∣∞
t=0

−
∫ t

0
e−λVH (t) d f (Z(t))

]

= 1

λ
E
0
[
f (0) +

∫ t

0
e−λVH (t) d f (Z(t))

]
.

123



Sticky Brownian motions on star graphs 2883

Now, since H and Z are independent, by taking a conditional expectation in the last
term it is possible to write

E
0
[∫ t

0
e−λVH (t) d f (Z(t))

]
=E

0
[∫ t

0
E

[
e−λVH (t)

]
d f (Z(t))

]

=E
0
[∫ t

0
e−λt−Φ(λ)μ�Zt d f (Z(t))

]
.

Let us define a time change

T (t) = t + μ
Φ(λ)

λ
�Zt ;

a second application of the integration by parts formula implies

E
0
[∫ ∞

0
e−λt f (Z ◦ V−1

H (t)) dt

]
= 1

λ
E
0
[
f (0) +

∫ t

0
e−λT (t) d f (Z(t))

]

= 1

λ
E
0
[∫ t

0
e−λT (t) f (Z(t)) dT (t)

]
= 1

λ
E
0
[∫ t

0
e−λt f (Z ◦ T−1(t)) dt

]
.

Summing up, we obtain

Uλ f (x) =E
x
[∫ T0

0
e−λt f (Z ◦ T−1(t)) dt

]

+ E
x
[
e−λT0

]
E
0
[∫ t

0
e−λt f (Z ◦ T−1(t)) dt

]

=E
x
[∫ ∞

0
e−λt f (X̃t ) dt

]
.

Notice that the relations

c′

b′
= c

b

Φ(λ)

λ
, b′ + c′ = 1

univocally identify the sticky Brownian motion X̃. ��

4.2 Non-local operators in time with dynamic conditions

In the literature, several alternative definitions and formulations of fractional
derivatives have been proposed, such as the Riemann-Liouville [32] and Grünwald-
Letnikov [12] derivatives; in this paper, we consider a Caputo-Džrbašjan type operator
associated with the Lévy measure φ of a subordinator H through the formula

DΦ
t u(t, x) =

∫ t

0

∂u

∂s
(s, x) φ(t − s) ds, t > 0, x ∈ D (4.3)
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whereφ(z) = φ(z,∞) is the tail ofφ. The operatorDΦ
t coincideswith thewell-known

Caputo or Caputo-Džrbašjan derivative asΦ(z) = zα with α ∈ (0, 1)which is the case
of stable subordinators. The convolution-type operator known as Caputo-Džrbašjan
derivative has been introduced by the first author in the works [6], [7], [8] and by the
second author who actively investigated this operator starting from the papers [15],
[16]. The general operator in (4.3) has been considered in [27] and after in [9], [28],
[34].

It is well-known that the relation between the fractional derivative operator DΦ
t

and the subordinator H (and its inverse L) allows an analysis of PDEs with local
boundary conditions and the probabilistic representation of their solutions. The well-
known theory can be referred to as non-local initial value problems or non-local
Cauchyproblems.Herewedealwith local problems equippedwith non-local boundary
conditions, and we call them non-local boundary value problems. Despite the vast
contributions on non-local initial value problems, the literature on non-local boundary
value problems seems to be scarce.

Non-local initial value problems on the positive half line involving such an operator
have been considered for example in [9], [27], [34]. Their definitions of DΦ

t slightly
differ as well as the characterization of their results.

A standard condition for (4.3) to be well defined is usually given by requiring
that t �→ u(t, ·) belongs to the set W 1,∞(0,∞) of essentially bounded functions
with essentially bounded derivatives. This requirement well agrees with the Laplace
machinery. Indeed, by considering that (4.3) is defined as a convolution-type operator,
we get

∫ ∞

0
e−λtDΦ

t u(t, x) dt = (λu(λ, x) − u(0, x)
) (∫ ∞

0
e−λt φ̄(t)dt

)

where ( [1])

∫ ∞

0
e−λt φ̄(t)dt = Φ(λ)

λ
, λ > 0 (4.4)

and u(λ, x) is the Laplace transform of u(t, x). If u, u′ are bounded, then the Laplace
transforms of u, u′ are well-defined. Thus, we consider u ∈ W 1,∞(0,∞)∩C(D) for
a bounded set D ⊂ R

d , d ≥ 1. We introduce a further characterization by asking for
the following condition to be satisfied:

∃MD > 0 :
∣∣∣∣∂u∂s (s, x)

∣∣∣∣ ≤ MD
κ(ds)

ds
(4.5)

where

κ(ds) =
∫ ∞

0
P
0(Ht ∈ ds)dt
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is the potential measure for the subordinator H with symbol Φ. Since κ and φ̄ are
associated Sonine kernels for which∫ t

0
φ̄(t − s)κ(ds) = 1

and

|DΦ
t u(t, x)| ≤ MD

∫ t

0
φ̄(t − s)κ(ds), (4.6)

then we obtain that |DΦ
t u(t, x)| is uniformly bounded on (0,∞) × D.

Moving on the star graph, for the operator

DΦ
t u(t, x) =

∫ t

0

∂u

∂s
(s, x)φ̄(t − s)ds, t > 0, x ∈ E

we may consider u ∈ W 1,∞(0,∞) ∩ Cb(E). By following the previous arguments,
we consider the following condition:

∃ME > 0 :
∣∣∣∣∂u∂s (s, x)

∣∣∣∣ ≤ ME
κ(ds)

ds
. (4.7)

Remark 5 For the positive solutions u(t, x) and u(t, x) respectively under (4.5) and
(4.7), we observe that:

i) u(s, x) ≤ MD κ((0, s]) = MD E
0[Ls], s ≥ 0, x ∈ D;

ii) u(s, x) ≤ ME κ((0, s]) = ME E
0[Ls], s ≥ 0, x ∈ E.

Indeed,

κ((0, s]) =
∫ s

0
κ(dz) =

∫ ∞

0
P
0(Ht < s)dt =

∫ ∞

0
P
0(t < Ls)dt = E

0[Ls]

where we used the fact that L is the inverse of H .

We are now ready to focus on the problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
(t, x) = 1

2

∂2u

∂x2
(t, x), t > 0, x ∈ E \ {0}

cDΦ
t u(t, 0) = b

n∑
k=1

pku
′
k(t, 0), t > 0

u(0, x) = u0(x), x ∈ E, u0 ∈ C0(E)

(NL)

which involves a non-local operator in the boundary condition as a non-local dynamic
condition. Thus, we are dealing with a non-local boundary value problem.
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A diffusion problem on the half-line, with fractional dynamic boundary condition,
described in terms of a time-fractional derivative (the Caputo derivative Dα

t depending
on Φ(z) = zα , α ∈ (0, 1)) has been recently introduced in [13], [14]. We extend the
construction provided in these papers, as our aim is to show that the solution to the
non-local boundary value problem (NL) can be written as

u(t, x) = E
x[u0(Yt )] = E

x
[
u0(Z ◦ V−1

H (t))
]
, t > 0, x ∈ E (4.8)

where Z, VH and Y = Z ◦ V−1
H have been previously introduced. We also recall the

λ-potential

Uλu0(x) = E
x
[∫ ∞

0
e−λt u0(Yt ) dt

]
, λ > 0, x ∈ E.

Let us consider the space

DL :=
{
ϕ ∈ C((0,∞) × E) with � = ϕ|x=0 such that

d�

ds
(s)φ̄(t − s) ∈ L1(0, t), t > s > 0

}
.

Theorem 10 The solution u ∈ C((0,∞) × E) ∩ DL to the problem (NL) has the
probabilistic representation (4.8).

Proof First we write Uλu0 = U1
λu0+U2

λu0 as in the proof of Theorem (9). Now notice
that U1

λu0 belongs to the domain of the Dirichlet Laplacian (with Dirichlet boundary
condition at 0 = ( j, 0) ∀ j ∈ {1, 2, . . . , n}). That is

AU1
λu0(x) = λU1

λu0(x) − u0(x)

(where, as usual, A is the differential operator A f (x) = 1
2 f ′′j (x), j = 1, 2, . . . , n)

and U1
λ is the resolvent operator of the Brownian motion killed in the origin. A direct

computation leads to

AU2
λu0(x) = λU2

λu0(x);
therefore

AUλu0(x) = λUλu0(x) − u0(x)

and we identify the heat equation on E \ {0}.
Next, we determine the boundary condition. In particular, by Definition 3 and

Theorem 9,

Uλu0 ∈
{
f ∈ C̃2

0 (E) : 1

2
c
Φ(λ)

λ
f ′′(0) = b

n∑
k=1

pk f
′
k(0)

}
. (4.9)
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Indeed, we recall from formula (3.5) applied to the sticky Brownian motion X̃ that

(
λ + b′

c′
√
2λ

)
Uλ f (0) = f (0) + 2b′

c′
n∑

k=1

pk f̂k(
√
2λ)

which, by passing through

λUλ f (0) − f (0) = b′

c′

(
−√

2λUλ f (0) +
n∑

k=1

pk f̂k(
√
2λ)

)
,

takes the form

Φ(λ)

λ
(λUλ f (0) − f (0)) = b

c

(
−√

2λUλ f (0) +
n∑

k=1

pk f̂k(
√
2λ)

)
.

By comparison, we recognize in the left hand side the Laplace transform of the non-
local operator DΦ

t u(t, 0) and in the right hand side (see the computation in Lemma
3) that of

b

c

n∑
k=1

pku
′
k(t, 0),

which implies (4.9). As simple arguments show, we observe that, ∀ t > 0,

lim
x→0∈ED

Φ
t u(t, x) = DΦ

t �(t)

where

�(t) = lim
x→0∈E u(t, x).

Since u ∈ DL , then DΦ
t � is well-defined. This identifies the non-local (dynamic)

equation on the vertex 0 ∈ E.
Notice that u0 ∈ C0(E) implies (U1

λu0)
′′ ∈ C0(E) via Dirichlet semigroup. More-

over, (Uλu0)′′ ∈ C0(E). This is a direct consequence of the equivalence between X on
E and X on [0,∞).

Uniqueness follows from the Laplace techniques: there exists at most one
continuous inverse, since our inverse u to Uλu0 is continuous, then u is
unique. ��
Theorem 11 For the sequence of holding times {τ i }i at 0 ∈ E of the process Y on E, it
holds that:

i) τ i are i.i.d. random variables whose distribution is given below;
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ii) x = 0 ∈ E implies

P
x(τ 1 > t |Yτ 1 ∈ E \ {x}) = E

0[exp(−μLt )], t > 0;

iii) E[τ 1] < ∞ iff μ = b
c < ∞ and

lim
λ→0

Φ(λ)

λ
< ∞;

iv) E[τ 1] < ∞ and t �→ u(t, ·) in W 1,1(0,∞) imply that t �→ DΦ
t u(t, ·) is in

L1(0,∞);
v) E[τ 1] > 0 and t �→ u̇(t, ·) is bounded (u ∈ DL) imply that t �→ DΦ

t u(t, ·) is
bounded (uniformly bounded).

Proof The holding time for Y on the vertex 0 ∈ E is given by the holding time of Y
at zero. For the process Y we have introduced the sequence {τ iY , i ∈ N} of holding
times for which (see Remark 4)

P
0(τ iY > t |Yτ iY

> 0) = P
0(τ i > Lt |Yτ iY

> 0).

Since Y moves along the path of X , we have the equivalence (Yτ iY
> 0) ≡ (Xτ iX

> 0)

where, here, {τ iX }i is the sequence of holding times for X introduced in Remark (4).
Thus, we get formula (4.2),

P
0(τ i > Lt |Yτ iY

> 0) = E
0[exp(−μLt )], ∀ i . (4.10)

On each edge e j ∈ E, we can therefore write, ∀ i ,

P
0(τ i > t |Yτ i ∈ e j \ {0}) = P

0(τ iY > t |Yτ iY
> 0) = E

0[exp(−μLt )]

for j = 1, 2, . . . , n. In particular,

P
0(τ i > t |Yτ i ∈ E \ {0}) =

n∑
j=1

p j E
0[exp(−μLt )] = E

0[exp(−μLt )], ∀ i

and we get the claim.
The point iii) can be proved by observing that

∫ ∞

0
e−λt

E
0[exp(−μLt )] dt = Φ(λ)

λ

1

μ + Φ(λ)
, λ > 0.

As λ → 0 we get E[τ 1]. Since Φ(0) = 0, we only need to check for the limit of
Φ(λ)/λ as λ → 0.
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For the point iv) we first notice that

∫ ∞

0
e−λt DΦ

t u(t, x) dt =
(∫ ∞

0
e−λt ∂u

∂t
(t, x) dt

)(∫ ∞

0
e−λt φ̄(t) dt

)

and

|DΦ
t u(t, x)| ≤

∫ t

0

∣∣∣∣∂u∂s (s, x)

∣∣∣∣ φ̄(s) ds, t > 0, x ∈ E.

Thus, we get, for x ∈ E,

∫ ∞

0
|DΦ

t u(t, x)|dt ≤
(∫ ∞

0

∣∣∣∣∂u∂t (t, x)

∣∣∣∣dt
)(

lim
λ→0

∫ ∞

0
e−λt φ̄(t)dt

)

=
∥∥∥∥∂u

∂t
(·, x)

∥∥∥∥
L1(0,∞)

(
lim
λ→0

Φ(λ)

λ

)
.

Since u solves the heat equation on E \ {0} and Au ∈ C(E) we write

‖DΦ
t u(·, 0)‖L1(0,∞) ≤

∥∥∥∥∂u

∂t
(·, 0)

∥∥∥∥
L1(0,∞)

(
lim
λ→0

Φ(λ)

λ

)
.

Assume that Φ(λ)/λ is finite as λ → 0. We conclude that u(·, 0) ∈ W 1,1(0,∞)

implies DΦ
t u(·, 0) ∈ L1(0,∞).

Point v) basically says that we have no restriction on the symbol Φ. Indeed, ∀Φ,
that is forE[τ 1] > 0, Theorem 10 and formula (4.6) hold true. This is the case u ∈ DL .
In case t �→ u̇(t, ·) is bounded (for example of exponential order w > 0, |u̇| ≤ Mewt

) we simply get, at x = 0 for instance,

|DΦ
t u(t, 0)| ≤ M

∫ t

0
ews φ̄(t − s)ds < ∞.

��

Remark 6 Let us consider Φ(λ) = a ln(1+ λ/b). We remark that

lim
λ→0

Φ(λ)

λ
= a

b
< ∞.

Thus, the mean holding time is finite in case of Gamma subordinators with a, b ∈
(0,∞).

Remark 7 Observe that t �→ u(t, ·) ∈ W 1,1(0,∞) implies t �→ u(t, ·) ∈ L∞(0,∞).
Thus, in point iv) of Theorem 11 we are still working with bounded functions.
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