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Quantum-inspired encoding enhances stochastic
sampling of soft matter systems
Francesco Slongo1, Philipp Hauke2,3, Pietro Faccioli4,5*, Cristian Micheletti1*

Quantum advantage in solving physical problems is still hard to assess due to hardware limitations. However,
algorithms designed for quantum computers may engender transformative frameworks for modeling and sim-
ulating paradigmatically hard systems. Here, we show that the quadratic unconstrained binary optimization en-
coding enables tackling classical many-body systems that are challenging for conventional Monte Carlo.
Specifically, in self-assembled melts of rigid lattice ring polymers, the combination of high density, chain
stiffness, and topological constraints results in divergent autocorrelation times for real-space Monte Carlo.
Our quantum-inspired encoding overcomes this problem and enables sampling melts of lattice rings with
fixed curvature and compactness, unveiling counterintuitive topological effects. Tackling the same problems
with the D-Wave quantum annealer leads to substantial performance improvements and advantageous
scaling of sampling computational cost with the size of the self-assembled ring melts.
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INTRODUCTION
Over the last few years, quantum computing has made enormous
strides forward. Still, the central focus of the field continues to be
the demonstration of quantum advantage in the form of a quanti-
fiable speed-up for any specific practical application (1–5). An at
least equally important question, and one with a potentially
farther-reaching scope, is: Can research in quantum computing
produce scientific advantages by opening up routes that would oth-
erwise not have been on the horizon? Although classical supercom-
puters may not yet be outperformed by the current quantum
computers, reformulating physical problems in a way that
quantum hardware can handle may lead to innovative approaches
with groundbreaking implications (6–9).
Past computing innovations have already led to algorithms that,

while initially intended for specialized hardware, have subsequently
sparked revolutionary modeling and simulation paradigms. A
notable example is the development of lattice-Boltzmann schemes
(10, 11), invented to exploit supercomputing architectures with
local topology. The use of lattice discretization in fluid dynamics
made it possible to tackle previously unaddressed physical
systems, such as binary fluids (12): What was initially introduced
as an algorithmic innovation became a paradigm in physical
modeling.
In the context of quantum hardware, a standard algorithmic

framework is the quadratic unconstrained binary optimization
(QUBO), through which a given problem is reformulated in
terms of a set of Ising spins with at most pairwise interactions
(13). The coupling constants of the linear and quadratic terms in
the generalized Ising Hamiltonian are defined so that the low-
energy states encode the properties of the problem under consider-
ation. Although these low-energy states can also be identified with

classical optimization algorithms (14), the QUBO framework pro-
vides a natural encoding for quantum annealing machines (15–19).
It is a critical question whether physical problems exist for which
adopting the QUBO formalism can play a transformative role,
even when resorting to conventional classical computers.
In the first part of this work, we answer this question in the af-

firmative. We show that the QUBO encoding makes it possible to
efficiently sample classes of many-body systems paradigmatically
hard for conventional Monte Carlo (MC) or molecular dynamics
(MD) simulations, such as the self-assembly (20) of melts of rigid
ring polymers. Furthermore, unlike conventional sampling in real
space, the QUBO encoding allows for seamlessly adding or remov-
ing physical constraints to the sampling, such as fixing the stiffness,
density, and compactness of the rings in the melt to any desired
value. We demonstrate that, without changing the complexity
class of the problem, it is possible to direct sampling toward any
region of parameter space, including those sparsely populated at
equilibrium, e.g., ring curvatures at 10 or more standard deviations
(SDs) from the equilibrium average. Thus, a more favorable scaling
performance is achieved for ring melts of several hundred mono-
mers compared to advanced MC sampling methods in real space.
Harnessing this targeted QUBO sampling, we discover a counterin-
tuitive effect of chain stiffness on the linking probability of ring
polymers in self-assembled melts.
In the second part of this work, we show that the above advan-

tages of the QUBO-based sampling with classical solvers can be en-
hanced by using dedicated quantum annealing machines (19, 21–
23). Using the D-Wave quantum solver for assembling maximally
packed ring melts results in substantial computational time savings
compared to classical solvers based on simulated annealing or MC
and MD approaches. This performance improvement grows with
system size N, resulting in a favorable ∼N3 scaling of the computa-
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RESULTS
QUBO sampling of self-assembled ring polymers
Our QUBO-encoded system is inspired by supramolecular self-as-
sembly where limited-valence particles attach to one another,
forming extended polymer-like structures (24, 25) in varying
number and size, as dictated by thermodynamic conditions, e.g.,
particle density. This differs from conventional real-space MC or
MD simulations of polymer systems, where chain length and back-
bone connectivity are permanently fixed.
Lattice models are used to mitigate the above sampling challeng-

es for the following reasons. Piecewise linear chain contours can be
naturally mapped to much longer polymers where the degrees of
freedom at the finer scales have been integrated out (26–28). In ad-
dition, the discrete embedding space lends naturally to efficient
treatment of excluded volume interactions. This property, in turn,
facilitates the design and implementation of efficient nonphysical
MC moves to relax crowded systems (29–35), making it possible
to generate viable equilibrated initial conditions for continuum ap-
proaches (36, 37), or establish scaling relationships otherwise
beyond reach of off-lattice models (38).
For the QUBO-based formulation of lattice models of ring poly-

mers, we follow (39) and introduce binary variables, or equivalently
Ising spins, to denote the occupied or empty state of sites and edges.
As sketched in Fig. 1, single-site variable Γ�i is 0 (inactive) or 1
(active) if site i is empty or occupied by a monomer, respectively.
Likewise, the presence of a bond at the edge joining neighboring
sites i and j > i is encoded by Γ�ij . Finally, ancilla binary variables
are introduced for triplets of sites at lattice corners, Γ⌞

ijk, j being
the nearest neighbor of sites i and k > i.
With this proviso (39), each and all configurations of self-assem-

bled ring polymers of N monomers are in one-to-one correspon-
dence with the degenerate ground states of the following QUBO
Hamiltonian

HN ¼ Am ðΣiΓ�i � NÞ2 þ Ab ðΣhijiΓ�ij � NÞ2

þ Amb ΣhijiΓ�ij ð2 � Γ
�
i � Γ

�
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⌞
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⌞
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�
ij Γ
�
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⌞
ijk ðΓ
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ð1Þ

where summations run over distinct pairs of neighboring sites (⟨ij⟩)

and corner triplets (⟨ljm⟩), the prime indicates ⟨ljm⟩ ≠ ⟨ijk⟩, and the
A’s are strictly positive coefficients so that each of the five quadratic
terms is nonnegative. With respect to the formulation of Micheletti
et al. (39), the basic QUBO Hamiltonian of Eq. 1 dispenses with
binary variables associated to collinear triplets, thus requiring
∼20% fewer binary variables on cubic lattices at arbitrary filling.
By construction, viable assembled configurations correspond to

binary variables that set to zero each term, thus yielding the ground-
state energy,HN = 0. Ground-state solutions correspond to lattice
configurations with N occupied sites (first term), N occupied edges
(second), each bonding two monomers (third), and no more than
two incident bonds per monomer (fourth and fifth terms). A
ground-state solution can be directly rendered as a polymer config-
uration by “marking” the lattice edges associated to nonzero Γ�ij var-
iables. The distinct chains in the configurations can be traced based
on the site–site adjacency matrix encoded by the active Γ�ij variables.
Knowing a priori the ground-state energy allows for identifying

viable solutions of the energy minimization step, typically carried
out with simulated annealing protocols. The annealing perfor-
mance can be enhanced by suitable choices of the nonnegative co-
efficients of the quadratic energy terms (see Supplementary Text).
As we show here, different types of physical constraints can be

seamlessly added to the QUBOHamiltonian of Eq. 1. This perspec-
tive permits performant sampling even in highly constrained and
dense regimes. Specifically, we consider (separate or concurrent)
constraints on the total curvature and melt’s compactness. These
can be enforced by fixing the total number of corner turns ncorners
and contacts ncontacts by adding suitable positive quadratic forms to
HN

H ¼HN þHcontacts þHcurvature ð2Þ

where

Hcurvature ¼ AcurvðΣhijkiΓ
⌞
ijk � ncornersÞ2 ð3Þ

Hcontacts ¼ Að0ÞcontðΣhijiΓBij � ncontactsÞ2
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ΓAij and Γ
B
ij are ancilla binary variables (40) that are required

because Hcontacts cannot be written in quadratic form with the
sole variables HN.
As an example, Fig. 2 presents data for 104 microstates sampled

by repeatedly minimizing HN for a small lattice at 2/3 filling frac-
tion. The data show the joint equilibrium distribution of total cur-
vature and contacts of assembled rings. Microstates with extremal
values of curvature (ncorners = 18) and contacts (ncontacts = 12) are
rarely populated at equilibrium using the Hamiltonian in Eq. 1.
Yet, they can be directly sampled by minimizing the extended Ham-
iltonian of Eq. 2.

Application to entangled rings melts
We now show that this QUBO formulation enables us to character-
ize the entanglement of topologically unrestricted ring polymers at
maximum packing density. This problem is crucial in various re-
search areas, including the design of mechanically bonded metama-
terials (41), aging of active topological glasses (42), anomalous

Fig. 1. QUBO encoding of ring assembly. (A) Schematic representation of active/
inactive binary variables corresponding to lattice sites (Γ�i ), edges (Γ

�
ij ), and corners

(Γ⌞
ijk). (B) Examples of correct (left) and incorrect (right) solutions on a 5 × 3 lattice of

the ring-assembly QUBO problem encoded byHN for N = 12, see also section S2.
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viscoelasticity of ring melts (43), and restructuring of chromosomes
by topoisomerases (44, 45). Despite its relevance, we still lack a
general understanding of basic aspects of the problem, such as
how the incidence of ring–ring entanglement (linking) varies
with system size or ring curvature. At least in part, this is due to
the fact that the computational cost of sampling with conventional
MC or MDmethods grows rapidly with system density. Differently,
in our QUBO formulation, the space-filling constraint not only
does not increase, but even reduces the complexity of the problem
compared to smaller densities. This is because the binary variables
associated with lattice sites and contacts are all “active” at complete
filling and therefore can be dropped from the Hamiltonian.
As a first step, we discuss the equilibrium properties of assem-

bled melts filling cuboids of increasing size N. The results, obtained
by minimizing HN, are shown in Fig. 3A. The average total ring
curvature is found to scale approximately as ⟨ncorners⟩ ∝ N0.57,
while the number of rings grows as ⟨nrings⟩ ∝ N0.99, indicative of
extensivity.
Figure 3B details the probability distribution of the two observ-

ables, computed with an extensive sampling of microstates for a
given lattice size, N = 100. The bivariate distribution is unimodal,
peaked around the ensemble averages, ⟨ncorners⟩ = 77.5 and ⟨nrings⟩
= 4.4.
The correspondingmarginal probability distribution covers only

a limited fraction of the admissible range of ncorners: geometric ar-
guments indicate that, for N = 100, ncorners can range from a

maximum of 100 down to 32, respectively, at approximately 5.2
and 10.5 SDs from the modal value.

Sampling ring melts with and without curvature
constraints
The possibility of varying the average number of corners paves the
way to investigate the effect of the chain’s stiffness in dense polymer
melts. Our QUBO approach allows for directly targeting states at
any curvature value, including the extremal ones, which are expo-
nentially suppressed by entropic effects in the unconstrained en-
semble. The targeted sampling can be accomplished by simply
supplementing HN with Hcurvature, a straightforward operation
that does not require increasing the number of binary variables, a
key determinant of computational complexity. The plot of Fig. 4
presents the size-dependent run times for generating space-filling
melts with the constraint of minimal curvature and without it. De-
pending on how the added quadratic terms sculpt the N-dependent
QUBO energy landscape, the computational cost of sampling states
with added constraints can be larger or smaller than the uncon-
strained case while remaining comparable to it.
For instance, the minimal curvature states for N = 100, which

have a Gaussian estimated probability of <10−19, can be generated
with a typical run time of 4.2 s on standard workstations, while 6.1 s
is required for the unconstrained case. Because of geometric effects,
the order can be reversed for other sizes, such as N = 150. Overall,
the performance over the entire considered range 48 ≤ N ≤ 216 is
remarkably similar and, in both cases, compatible with an N4

scaling. These results strongly suggest that the computational com-
plexity class of the QUBO-based sampling is unchanged by the ad-
dition of even stringent physical constraints.

Linking probability in space-filling ring melts
The facile extension of QUBO-based sampling to space-filling and
arbitrary curvature constraints naturally lends itself to tackle previ-
ously unexplored problems. To illustrate this potential, we investi-
gate the incidence of interchain entanglement, i.e., topological links,
in melts with varying effective rigidity of the self-assembled rings.
This question is a generalization of the problem of intrachain topo-
logical entanglement, or knotting, in space-filling curves, which has
bearing in biological contexts such as DNA packaging in viral
capsids (46, 47) and in soft matter ones related to polymers and
self-assembling meta-materials in confinement (48–52). Extending
considerations to the interlocking of self-assembled rings offers a
timely reference also for challenging biological systems, such as
the linked DNA ring assemblies of kinetoplasts (53) and strand
crossings in DNA bundles operated by topoisomerase enzymes
(44, 45, 54).
Figure 5A presents the probability that no homological link is

present in a sampled microstate of rings assembled at complete
filling. The unlinking probability decays exponentially with
system size, with a characteristic length scale of N0 ∼ 890; see Sup-
plementary Text where the decay of the knotting probability is also
presented.
Figure 5B illustrates how the abundance of links varies with ring

curvature. With respect to the plain, fully flexible ensemble, increas-
ing ring stiffness, i.e., lowering ⟨ncorners⟩, can yield a fivefold in-
crease of plink. Thus, the data reveal the unexpected and
counterintuitive effect that increasing the effective ring stiffness
can substantially enhance, rather than suppress, linking. The same

Fig. 2. QUBO-based sampling of rare states. Probability density and marginal
distributions of the number of corner turns and contacts of self-assembled rings
on a 4 × 4 × 3 lattice at 2/3 filling fraction, obtained from 104 samples minimizing
HN, as exemplified by the circled configuration on the right, where distinct rings
are differently colored. The additional Hamiltonian terms of Eq. 2 enable the direct
sampling for atypical, and hence very rare, combinations of curvature and contacts,
e.g., at the intersection of the shaded bands, as exemplified by the circled confi-
guration on the left.
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conclusion holds for alternative definitions of interchain entangle-
ment (see section S7). Incidentally, the results generalize previous
studies of rigidity-enhanced intrachain entanglement (knotting)
in free and noncompact polymers, interpreted as due to the emer-
gence of large loops prone to threadings (55–57).
The fact that interchain entanglement can be boosted by increas-

ing ring stiffness sheds light on a problem that had not been tackled
before, neither off- nor on-lattice, despite having implications in
various contexts, from rationalizing the effect of mere spatial con-
finement or molecular crowding on the decatenation of newly-rep-
licated DNA (44, 45), to inspiring optimized designs of
supramolecular catenanes (58) based on the rigidity of repeat-
ing units.

Constrained sampling: QUBO encoding versus real-
space MC
Sampling systems with multiple layers of physical constraints, such
as ring melts at a given density and curvature or bending rigidity, is
a challenge for MC approaches formulated in real space. The accep-
tance rate of monomer and bond displacements degrades rapidly
with the addition of each constraint of chain connectivity, self-
avoidance, high packing density, and bending rigidity, following
the progressive reduction of accessible conformational space. In
lattice contexts, the shrinking of the conformational space is reflect-
ed in the drop of the connectivity constant going from, e.g., random
walks to self-avoiding (59, 60) and then Hamiltonian walks (61, 62).
By contrast, QUBO-based approaches are ideally suited to tackle
multiply constrained systems, not only because additional quadratic
constraints can be straightforwardly added (13), but especially for
the fact noted above that sampling run time does not diverge, and
can even improve upon adding such terms.
The advantages of working in the abstract space of QUBO binary

variables rather than in real space are illustrated in Fig. 6 for the
challenging case of ring melts of minimal curvature in fully filled
cuboids of sizeN. The QUBO-based data are the same as previously
discussed in Fig. 4, which were obtained with a general simulated

annealing protocol. To avail of the best-performing algorithms
for real-space sampling, we used a replica exchange method (63,
64) based on long-range plaquette-flip MC moves (see section
S9). The plaquette-flips are long-range moves (33, 65, 66) specifi-
cally designed for cubic lattices at complete filling, where they
allow for changing the number, length, and conformation of the
rings without incurring in rejections. These unique advantages
cannot be reaped on general lattices or on cubic ones at partial
filling, where plaquette-flip moves are not ergodic. These features
make particularly stringent the comparison with the QUBO-
based sampling plus simulated annealing, which is a more generally
applicable combination for sampling.
In the examined regime of Fig. 6, the performance of the special-

ized real-space sampling with ad hoc moves scales approximately as
∼N5, while the general QUBO-based one has the more favorable
scaling of ∼N4, as noted above. Thanks to the scaling advantage,
the latter scheme outperforms the former already for lattices with
N ∼ 200.

Quantum versus classical solvers
The QUBO-based formulation of polymer sampling is purposely
primed for use with quantum annealing machines. Using the D-
Wave hybrid (classical-quantum) QUBO solver, we observe major
improvements over classical solvers based on simulated annealing,
again in the D-Wave implementation. Figure 7 compares the char-
acteristic run times for generating space-filling melts with the
hybrid solver and with the classical one. To best assess the potential
of the latter, we also considered an optimized annealing schedule
besides the default one, while the hybrid solver was exclusively
used with default settings.
As the data in Fig. 7 show, for the considered range of N, hybrid

solvers improve the sampling rate by up to three orders of magni-
tude compared to the classical solver with default settings, and by
up to one for the optimized schedule. In both cases, the difference
increases with the considered system size: While the optimized clas-
sical performance grows as ∼N4, the one of the hybrid solver scales

Fig. 3. Ring melts with fixed and free curvature. (A) Average number of rings and corner turns (curvature) of space-filling rings assembled in cuboids of size N. Data
points are averages over 104 states ormore. (B) Probability distribution, with smoothed contour lines, computed from>3 × 105 statesminimizingHN on a 5 × 5 × 4 cuboid
(N = 100). The marginal curvature distribution (top graph) has SD σcorners = 4.3. We addressed rare states, from 3 to >10σs from the average (yellow), by minimizingHN +
Hcurvature, typically collecting 10

4 states at given ncorners (blue bands). Green data points and spline show the average number of rings computed using states without
(with) fixed curvature close to (far from) the modal value.
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as ∼N3. This notable improvement sets the premises for treating
complex polymer systems well beyond the sizes addressable by con-
ventional real-space sampling.
In this regard, we recall that, in general MC andMD approaches,

the sole evaluation of excluded-volume interactions has a cost of
order N2. Performative algorithms include MC sampling of “cross-
ing rings” at half-filling fraction (67, 68), where the physical relax-
ation times of individual rings grow at least quadratically with their
contour length, approaching the relaxation dynamics of Rouse
chains. This quadratic estimate can be ported to our system,
where assembled rings’ length scales as N0.39 (see section S6). Com-
pounding it with the aforementioned N2 expenditure yields an es-
timated lower bound of ≃N2.78 for the cost of decorrelating single
rings in the melt. The observed N3 scaling of hybrid solvers, which
instead refers to the entire melt, compares well with the
above bound.
Further comparisons can be made with Hamiltonian paths, for

which several generation methods exist, from exhaustive enumera-
tion to stochastic sampling with and without heuristic speed-ups
(32, 69–73). The unbiased (ergodic) method of Mansfield (33) has
achieved a remarkable ∼N3 cost for Hamiltonian cycles on hyper-
cubic lattices by harnessing features unique to such embeddings at
complete filling, analogously to the plaquette-flip moves discussed
before. The reported scaling is thus a best-case scenario, given that
the system-specific improvements are not transferable to different
filling fractions or different regular or irregular lattices. Instead,
the QUBO-based sampling is seamlessly applicable to all such
diverse contexts. Considering this and the simplicity of adding
physical constraints to the QUBO model, the observed ∼N3 perfor-
mance of the hybrid solver is remarkable.
We conclude by noting that the improved scaling exponent of

the performance of the hybrid solver compared to classical anneal-
ing should not be construed as a demonstration of quantum advan-
tage. In particular, it cannot be ruled out that the quantum-based

Fig. 4. QUBO-based sampling with and without curvature constraints. Char-
acteristic run time required by the D-Wave classical solver to generate ring melts
filling cuboids of size N with and without the quadratic constraint of minimal cur-
vature. The times refer to the D-Wave classical solver run on standard Intel-based
workstations with optimized simulated annealing schedule and coefficients of the
potential (see section S8). Estimated relative statistical errors are at most 15%. The
indicated scalings are from power-law best fits to the data (solid lines).

Fig. 5. Linking properties of space-filling ring melts. (A) Probability that all ring
pairs in space-filling ring melts of size N are unconcatenaned, i.e., with zero Gauss-
ian linking number. Single rings, i.e., Hamiltonian cycles, are excluded. (B) Comple-
mentary linking probability versus curvature for a 5 × 5 × 4 lattice, N = 100, with
blue bands denoting sampling at fixed curvature (the line is a spline to the data
points). The yellow point marks the equilibrium ensemble average. Circled are
typical configurations at the indicated values of N and ncorners, where distinct
rings are differently colored. The rings’ linked state is schematically represented
on the side. Counterintuitively, increasing the effective ring stiffness can substan-
tially enhance linking.

Fig. 6. QUBO-based sampling versus ad hoc real-space MC. Characteristic run
time per independent sample required by QUBO-based and real-space MC
schemes to generate minimal-curvature states filling cuboids of size N. The
QUBO-based run time is based on the D-Wave neal classical solver with optimized
annealing schedule and Hamiltonian coefficients. The real-space MC run time is
based on a replica exchange scheme with optimized temperatures and exchange
rates and using plaquette-flip moves ad hoc tailored for cubic lattices at complete
filling. The run times were measured on a standard Intel-based workstation, and
details of the optimized algorithms are provided in section S8. Estimated relative
statistical errors are at most 15%. The indicated scalings are from power-law best
fits to the data (solid lines).
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scaling could be matched or surpassed by performative classical al-
gorithms, including those that might be foreseeably developed for
particular versions of our QUBO-based models. Such solvers,
besides improving the rate of returning QUBO solutions, should
satisfy the stringent requirement of uniform coverage of the
ground-state manifold. As we verified for systems with few exactly
enumerable states, this requirement is not necessarily met when
heuristic speed-ups are used in otherwise general optimization
strategies (see section S5). Instead, we verified for the same
systems that uniform sampling is achieved with classical minimizers
based on simulating-annealing as well as quantum ones.

DISCUSSION
In summary, we have introduced a QUBO-based sampling ofmany-
body systems to demonstrate that, even when resorting to purely
classical machines, quantum-inspired encoding can lower the com-
putational complexity of soft matter problems hard to tackle with
conventional, real-space sampling methods.
As a paradigmatic case, we have considered the problem of sam-

pling self-assembled ring polymers at various lattice filling frac-
tions, with and without constraints for the number of contacts
and total ring curvature. The QUBO model has enabled us to
study melts of rings at maximum packing and high effective
bending rigidity, reporting for the first time a stiffness-induced
boost for interchain entanglement. Despite the ramifications in dif-
ferent fundamental and applicative contexts, this challenging
problem has hitherto remained unexplored with real-space MC
and MD sampling methods. Finally, we have shown that, even
with the currently available architectures, quantum hardware can
substantially enhance the sampling rate for challenging polymer
systems, which, in the accessible regimes, is consistent with a
more favorable resource scaling with system size than classical sim-
ulated annealing and real-space MC or MD approaches.
In our family of QUBO-encoded polymer models, multiple con-

straints, such as those on minimal curvature and complete filling,
can be added seamlessly and without altering the computational

complexity of the problem. These advantageous properties hinge
on general features of the QUBO encoding and classical annealers.
Thus, we anticipate that they ought to unlock the study of a broader
repertoire of constrained physical systems. We hope the results can
also inform and stimulate the development and application of ded-
icated solvers based on the QUBO formulation, such as digital an-
nealers (6, 74, 75), especially with an eye on assessing whether the
enhancement of polymer sampling with hybrid annealers can be
matched or even improved upon. Either outcome will be exciting
and consequential: Finding a class of physically relevant models
where a practical quantum advantage emerges would mark a mile-
stone in the development of scientific applications of quantum
computing; On the other hand, in the opposite scenario, the bench-
marks based on quantum-inspired encodings will have substantially
pushed forward the boundaries of classical algorithms and model-
ing, providing a well-defined challenge for quantum computing
application.

MATERIALS AND METHODS
QUBO-based sampling with classical and quantum solvers
The QUBO Hamiltonians for self-assembled rings at various filling
fractions of the cubic lattice, with or without constrained total cur-
vature, were minimized with classical, quantum, and hybrid classi-
cal-quantum solvers. For the classical solver, we used the neal
minimizer developed by D-Wave, which is based on simulated an-
nealing. Annealing runs for N ≤ 100 were performed on the D-
Wave Leap platform, while for longer systems, we used a standard
Intel-based workstation. In the latter case, the workstation run time
was converted to the Leap-equivalent one based on the scaling of
run time with the number of sweeps. For the hybrid and fully
quantum solvers, we respectively used the LeapHybridSampler
and DWaveSampler minimizers developed by D-Wave, which
were run exclusively on the Leap platform. The performance of
the QUBO-based sampling of polymer systems was quantified
with two characteristic measures of the time to solution, namely,
τ1/2 and topt. The former is the solver run time required to yield a
correct solution (i.e., a ground state) in 50% of the trials. In general,
this characteristic time does not coincide with the run time yielding
the largest number of correct solutions per unit time, topt, which was
thus additionally considered. For purposes of maximum productiv-
ity, both the coefficients of the potentials, which shape the energy
landscape, and the annealing schedules were optimized (section S8).

Real-space sampling with the replica exchange method
A replica exchange method was implemented for the real-space
sampling of ring melts in cuboids at complete filling and with the
minimum curvature constraint. The conformations were evolved
with plaquette-flips, a set of moves designed for cubic lattices at
complete filling, where they are particularly efficient (section S9).
The moves preserve the number of bonds while allowing the
chain connectivity, the number of rings, and number of corners
to fluctuate. The moves thus allow for exploring the same confor-
mational space sampled with the QUBO models with unrestricted
curvature, with the proviso of initializing the replica exchange
system to a statewith the correct number of bonds. The energy func-
tion was set equal to total curvature, i.e., the number of corners. The
number of replicas and their temperatures were optimized for an
efficient coverage of a broad range of energy (curvature) values.

Fig. 7. Classical simulated annealing versus hybrid quantum QUBO solver.
Characteristic run times required by D-Wave’s purely classical and hybrid (classi-
cal-quantum) solvers to minimize HN for filled cuboids of size N. The τ1/2 data
for both types of solvers correspond to the run times yielding a 50% hit rate
with default parameters. The topt data are the same as in Fig. 4 and correspond
to the characteristic run times per independent sample required by the classical
solver with an optimized annealing schedule. The indicated scalings are from
power-law best fits to the data (solid lines).
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Exchanges were proposed at time intervals at least 100 times smaller
than the autocorrelation time, τ, of the lowest-temperature replica,
which served as a collector for the lowest-energy solutions. The au-
tocorrelation time, τ, was used to compute the typical run time re-
quired per uncorrelated solution on a standard Intel-based
workstation.
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Tables S1 to S4
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