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Abstract

We prove essential self–adjointness of Kolmogorov operators cor-
responding to gradient systems with potentials U such that DU is
not square integrable with respect the invariant measure (irregular
potentials). An application is given to the Cahn–Hilliard-Cook equa-
tion in dimension one. In this case the spectral gap is proved for the
correspondig semigroup. We also obtain a log-Sobolev inequality.

1 Introduction and setting of the problem

Let H be a separable real Hilbert space (norm | · |, inner product 〈·, ·〉). We
are concerned with the following Kolmogorov operator

N0ϕ =
1

2
Tr [D2ϕ(x)] + 〈x,ADϕ(x) − 〈DU,Dϕ〉, ϕ ∈ EA(H),

where D denotes the Fréchet derivative with respect to x. Here A : D(A) ⊂
H → H is a negative self-adjoint operator such that A−1 is of trace class
and U : H → (−∞,+∞] is a semi-convex function. Moreover EA(H) is the
vector space of all linear combinations of functions of the form

cos(〈x, h〉), sin(〈x, h〉), h ∈ D(A).

Let µ be the Gaussian measure in H with mean 0 and covariance operator
Q := −1

2
A−1, we consider the measure

ν(dx) = Z−1 e−2U(x)µ(dx), (1.1)
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where Z is a normalization constant:

Z =

∫

H

e−2U(x)µ(dx) (1.2)

Our goal is to show that, under suitable assumptions on U , the operator
N0 is dissipative in some space Lp(H, ν), p ≥ 1 and that its closure is m–
dissipative.

As well known, the Kolmogorov operator N0 is related to a gradient
system described by the following differential stochastic equation

dX = (AX −DU(X))dt+ dW (t), X(0) = x,

where W (t) is a cylindrical Wiener process on H.
Several papers have been devoted to gradient systems. We recall the

Dirichlet forms approach, [1], [2], [14], and the semigroup approach, see [12]
and references therein. But in all these papers the assumption that (at least)
DU is square integrable with respect to ν:

∫

H

|DU(x)|2ν(dx) < +∞, (1.3)

is made. This assumption is fulfilled in several applications as the reaction–
diffusion equations, but it does not hold for semilinear equations perturbed
by noise where the nonlinearity involves the derivative of the unknown, see
[10] for a discussion on this point. In [10] a concrete case, the Kolmogorov
equation corresponding to the p–laplacian (perturbed by a bilaplacian) was
considered. In the present paper we replace (1.3) with the weaker condition

∫

H

|(−A)−
1

2+2βDU |2+2βdν < +∞, (1.4)

where 0 ≤ β ≤ 1, proving that the closure N1+β of the operator N0 is
m–dissipative in L1+β(H, ν). As an application, we solve the Kolmogorov
equation corresponding to the stochastic Cahn–Hilliard equation.

Let us explain our method. Proceeding as in [9], we consider an approx-
imating equation

λϕα − 1

2
Tr [D2ϕα(x)] − 〈x,ADϕα(x) + 〈DUα, Dϕα〉 = f, (1.5)
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where f ∈ EA(H), λ > 0, and Uα is a smooth approximation of U . We prove
that ϕα ∈ D(N1+β), so that it can be written as

λϕα −N1+βϕα = f + 〈DU −DUα, Dϕα〉. (1.6)

Now the key point is to show that

lim
α→0

〈DU −DUα, Dϕα〉 = 0 in L1+β(H, ν), (1.7)

so that the range of λ−N1+β is dense in L1+β(H, ν) andN1+β ism–dissipative.
In [9], (1.7) was proved using (1.3) and the basic inequality

∫

H

N0ϕ ϕdν = −1

2

∫

H

|Dϕ|2dν, ϕ ∈ EA(H), (1.8)

which yields easily an a–priori estimate for
∫

H
|Dϕ|2dν. In the present situa-

tion, since only (1.4) holds, (1.8) is no longer sufficient. We need a stronger
estimate which is proved in §3.

§2 is devoted to some preliminaries, §4 to an application to the stochastic
Cahn–Hilliard equation in the interval [0, π]. In this case we prove that N0 is
essentially self–adjoint in L2(H, ν). Moreover, we prove the Poincaré and the
log–Sobolev inequalities for the measure ν. This implies that the spectral
gap property holds for N2.

We notice that the Poincaré and the log–Sobolev inequalities do not fol-
low from the Bakry–Emery criterion, see [3], due to the lack of regularity
of the potential U of the Cahn-Hilliard equation. The main idea to prove
these inequalities is to show that ν is the image of a measure ν0 through
the embedding L2([0, π]) ⊂ H−1([0, π]) where ν0 is the invariant measure
for a reaction–diffusion system for which the Poincaré and the log–Sobolev
inequalities hold.

2 Preliminaries

Let us state our assumptions. Concerning A we shall assume that

Hypothesis 2.1

(i) A is self–adjoint and there exists ω > 0 such that

〈Ax, x〉 ≤ −ω|x|2, x ∈ D(A).
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(ii) A−1 is of trace class.

Remark. From (ii) it follows that there exist a complete orthonormal system
{ek} in H and a sequence of positive numbers {αk} such that

Aek = −αkek, k ∈ N, with
∑

k∈N

1

αk

< +∞.

We consider the operator N0 as a perturbation of the Ornstein–Uhlenbeck
operator L

Lϕ(x) =
1

2
Tr [D2ϕ(x)] + 〈x,ADϕ(x)〉, x ∈ H, ϕ ∈ EA(H),

that is
N0ϕ = Lϕ(x) − 〈DU,Dϕ〉, ϕ ∈ EA(H).

We recall that L is a self–adjoint operator in L2(H, µ) with the property that

∫

H

Lϕψ dµ = −1

2

∫

H

〈Dϕ,Dψ〉 dµ, ϕ, ψ ∈ W 1,2(H, µ). (2.1)

Concerning U we shall make two assumptions.

Hypothesis 2.2

(i) Given U : H → (−∞,+∞], there exists δ > 0 such that the function
x→ U(x) + δ|x|2 is convex .

(ii) The number Z defined by (1.2) is finite and positive.

(iii) There exists a family {Uα}α>0 of C2 class functions such that x →
Uα(x) + δ|x|2 is convex, Uα(x) ≤ U(x) and Uα(x) ↑ U(x) for any
x ∈ H.

We shall denote by να the Borel measure in H defined as

να(dx) = Z−1
α e−2Uα(x)µ(dx),

where

Zα :=

∫

H

e−2Uα(x)µ(dx).
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Hypothesis 2.3

(i) lim
α→0

(−A)−
1

2+2βDUα =: (−A)−
1

2+2βDU in L2+2β(H, ν;H).

(ii) lim
α→0

∫

H

|(−A)−
1

2+2βDUα − (−A)−
1

2+2βDU |2+2βdνα = 0.

(iii) If β = 0, we also assume that there exists ε > 0 such that (−A)−
1
2DU ∈

L2+ε(H, ν;H).

We set
Nαϕ = Lϕ− 〈DUα, Dϕ〉, ϕ ∈ EA(H).

Lemma 2.4 The following identity holds

∫

H

Nαϕ ψ dνα = −1

2

∫

H

〈Dϕ,Dψ〉 dνα, ϕ, ψ ∈ EA(H). (2.2)

In particular, taking ψ = 1, we get

∫

H

Nαϕ dνα = 0, ϕ ∈ EA(H). (2.3)

that is να is infinitesimally invariant for Nα.

Proof. Let ϕ, ψ ∈ EA(H). We have by (2.1)

∫

H

Lϕ ψdνα =

∫

H

Lϕ(ψρα)dµ = −1

2

∫

H

〈Dϕ,D(ψρα)〉dµ

= −1

2

∫

H

〈Dϕ,Dψ〉dνα +

∫

H

〈Dϕ,DUα〉ψdνα = 0,

and the conclusion follows.

We can now prove that the measure ν is infinitesimally invariant for N0.
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Proposition 2.5 We have

∫

H

N0ϕ dν = 0, ϕ ∈ EA(H), (2.4)

and
∫

H

N0ϕ ϕ dν = −1

2

∫

H

|Dϕ|2dν, ϕ ∈ EA(H). (2.5)

Proof. It is enough to prove (2.4), (2.5) follows if we take ϕ2 in (2.4). But
this follows from (2.3) letting α tend to 0 and taking into account Hypothesis
2.3–(ii).

Proposition 2.6 N0 is dissipative in L1+β(H, ν).

Proof. The proof is standard, see [13].

3 m–dissipativity of N1+β

Let us first note that, thanks to Proposition 2.6, N0 is closable in L1+β(H, ν);
we denote by N1+β its closure. We are going to show that N1+β is m–
dissipative.

Let α, λ > 0, f ∈ C1
b (H) and consider the approximating equation

λϕα − L1+βϕα + 〈DUα, Dϕα〉 = f, λ > 0. (3.1)

Lemma 3.1 If λ > δ equation (3.1) has a unique solution ϕα ∈ C1
b (H) ∩

D(N1+β) and

N1+βϕα(x) = L1+βϕα(x) − 〈DU(x), Dϕα(x)〉, x ∈ H, (3.2)

and

‖Dϕα‖0 ≤
1

λ− δ
‖Df‖0, (3.3)
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where ‖ · ‖0 denotes the sup norm.

Proof. Step 1. ϕα ∈ C1
b (H) and (3.3) holds.

It is well known that

ϕα(x) =

∫ ∞

0

e−λt
E[f(Xα(t, x))] dt

where Xα(t, x) is the solution to the following stochastic differential equation

dXα = (AXα −DUα(Xα))dt+ dWt, Xα(0) = x.

Then for any h ∈ H

〈Dϕα(x), h〉 =

∫ ∞

0

e−λt
E[〈Df(Xα(t, x), ηh

α(t, x)〉] dt (3.4)

where ηh
α(t, x) is the solution to the following equation

d

dt
ηh

α = Aηh
α −D2Uα(Xα) · ηh

α, ηh
α(0) = h. (3.5)

Consequently ϕα ∈ C1
b (H). Moreover, multiplying both sides of equation

(3.5) by ηh
α and taking in account the dissipativity of A and the convexity of

x→ Uα(x) + δ|x|2, yields

|ηh
α| ≤ eδt|h|, t > 0.

Using (3.4) we get

|〈Dϕα(x), h〉| ≤ 1

λ− δ
|h| ‖Df‖0,

and (3.3) is proved.

Step 2. ϕα ∈ D(L1+β) where L1+β is the infinitesimal generator of the
Ornstein–Uhlenbeck semigroup in L1+β(H, µ),

Rtϕ(x) =

∫

H

ϕ(etAx + y) N(0, Qt)(dy), ϕ ∈ Cb(H),

where
Qt = −1

2
A−1(1 − e2tA), t ∈ [0,+∞];
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and observing that Q∞ = Q.

We need a further approximating equation:

λϕα,β − L1+βϕα,β +
1

1 + β|DUα|2
〈DUα, Dϕα,β〉 = f, λ > 0. (3.6)

By [12, Proposition 6.6.4], equation (3.6) has a unique solution ϕα,β ∈ Cb(H).
Moreover

‖ϕα,β‖0 ≤ ‖f‖0,

and there exists C > 0 such that

‖Dϕα,β‖0 ≤
C

λ− δ
‖f‖1.

Since DUα has linear growth, there exists C(α, ‖f‖1) > 0 such that

|L1+βϕα,β(x)| ≤ C(α, ‖f‖1)(1 + |x|), x ∈ H.

It follows that
∫

H

|L1+βϕα,β(x)|2µ(dx) ≤ C(α, ‖f‖1)(1 + Tr Q).

By a standard argument this implies that ϕα ∈ D(L1+β).

Step 3. ϕα ∈ D(N1+β) and (3.2) holds.

Let us first consider the case when β ∈ (0, 1]. We recall that, see [11],

〈DRtϕ, h〉 =

∫

H

〈Λ(t)h,Q
−1/2
t y〉 ϕ(etAx+ y) N(0, Qt)(dy), ϕ ∈ Lp(H, µ),

with
Λ(t) = Q

−1/2
t etA.

Hence,

〈(−A)
1

2+2βDRtϕ, h〉 =

∫

H

〈(−A)
1

2+2β Λ(t)h,Q
−1/2
t y〉 ϕ(etAx+ y) N(0, Qt)(dy)

and, for p ≥ 1,

|〈(−A)
1

2+2βDRtϕ, h〉|p ≤
∫

H

|ϕ(etAx + y)|p N(0, Qt)(dy)

(
∫

H

|〈(−A)
1

2+2β Λ(t)h,Q
−1/2
t y〉|q N(0, Qt)(dy)

)
p
q

,
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where q is the conjugate exponent of p. It follows that

|(−A)
1

2+2βDRtϕ|p ≤ Ct−p 2+β
2+2βRt(ϕ)p(x), ϕ ∈ Lp(H, µ),

which, integrating with respect to µ and taking the Laplace tranform, yields

‖(−A)
1

2+2βD(λ− L1+β)f‖Lp(H,µ) ≤ C(λ)‖f‖Lp(H,µ), ϕ ∈ Lp(H, µ). (3.7)

We are now ready to prove that that ϕα ∈ D(N1+β).
Since EA(H) is a core for L1+β, see [5], there exists a sequence {ϕn} ⊂

EA(H) such that,

lim
n→∞

ϕn = ϕα, lim
n→∞

L1+βϕn = L1+βϕα, in L1+β(H, µ).

We claim that

lim
n→∞

N1+βϕn = L1+βϕα − 〈DU(x), Dϕα〉 in L1+β(H, ν),

which proves that ϕα ∈ D(N1+β).

Since by (3.7) we know that (−A)
1

2+2βDϕn → (−A)
1

2+2βDϕ in L1+β(H, µ),
it is enough to show , in view of the Vitali theorem, that

∫

H

|〈DU(x), Dϕn〉|1+β+εν(dx),

is bounded, for some ε > 0. We have in fact
∫

H

|〈DU(x), Dϕn〉|1+β+εν(dx)

≤
∫

H

|(−A)−
1

2+2βDU(x)|1+β+ε|(−A)
1

2+2βDϕn|1+β+εν(dx)

≤
(

∫

H

|(−A)−
1

2+2βDU(x)|2+2βν(dx)

)
1+β+ε
2+2β

×
(

∫

H

|(−A)
1

2+2βDϕn|
2(1+β+ε)(1+β)

1+β−ε ν(dx)

)
1+β−ε
2+2β

.

Now the claim follows from (3.7).
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Let us now consider the case β = 0.
Since EA(H) is a core for L2, there exists a sequence {ϕn} ⊂ EA(H) such

that,
lim

n→∞
ϕn = ϕα, lim

n→∞
L2ϕn = L2ϕα, in L2(H, µ).

It follows that for all ψ ∈ D(L2) we have, see [12, page 215], |(−A)1/2Dψ| ∈
L2(H, µ) and there exists c > 0 such that

∫

H

|(−A)1/2Dψ|2dµ ≤ c

∫

H

|L2ψ|2dµ, ∀ ψ ∈ D(L2). (3.8)

Consequently, by (3.8) it follows that

lim
n→∞

(−A)1/2Dϕn = (−A)1/2Dϕα in L2(H, µ;H), (3.9)

and there exists c > 0 such that
∫

H

|(−A)1/2Dϕn|2dµ ≤ c.

We claim that

lim
n→∞

N0ϕn = L2ϕα − 〈DU(x), Dϕα〉 in L1(H, ν).

This will imply that ϕα ∈ D(N1). It is enough to show that

∫

H

|〈DU(x), Dϕn(x)〉|1+γdν,

is bounded, for some γ > 0. We have in fact

∫

H

|〈DU(x), Dϕn(x)〉|1+γdν ≤

(
∫

H

|(−A)−
1
2DU(x)|2+

4γ
1−γ dν

)
1−γ

2
(

∫

H

|(−A)
1
2Dϕn|2dν

)
1+γ
2

,

hence, because of Hypothesis (2.3)-(iii) in the case β = 0, we can apply the
Vitali theorem choosing γ = ε

4+ε
.

The following identity for Dϕα is central in the proof of our main result.
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Proposition 3.2 Let f ∈ C2
b (H) and let ϕα be the solution of (3.1). Then

we have

λ

∫

H

|Dϕα|2dνα +
1

2

∫

H

Tr [(D2ϕα)2]dνα+

∫

H

|(−A)1/2Dϕα|2dνα +

∫

H

〈D2UαDϕα, Dϕα〉dνα =

∫

H

〈Dϕα, Df〉dνα = 2

∫

H

f(f − λϕα)dνα.

(3.10)

Proof. Let f ∈ C1
b (H) and let ϕα be the solution of (3.1). Let us differentiate

both sides of (3.1) with respect to Dk, k ∈ N, where Dk is the derivative in
the direction of ek. We obtain

λDkϕα − LDkϕα + 〈DUα, DDkϕα〉+µk Dkϕα + 〈DDkUα, Dϕα〉 = Dkf.

Multiplying by Dkϕα, integrating with respect to να and taking into account
(2.2), we find that

λ

∫

H

|Dkϕα|2dνα +
1

2

∫

H

|DDkϕα|2 dνα

+µk

∫

H

|Dkϕα|2 dνα +

∫

H

〈DDkUα, Dϕα〉Dkϕα dνα

=

∫

H

DkϕαDkf dνα.

Summing up on k gives, taking again into account (2.2), the conclusion fol-
lows.

Corollary 3.3 There exists c1 > 0 such that for any f ∈ C2
b (H)

∫

H

|(−A)1/2Dϕα|2dνα ≤ c1‖f‖2
0,

where ϕα is the solution to (3.1).
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Theorem 3.4 The closure N1+β of N0 in L1+β(H, ν), is m–dissipative in
L1+β(H, ν).

Proof. Let λ > δ, f ∈ C2
b (H), α > 0, and let ϕα be the solution to (3.1).

Since by Lemma 3.1 ϕα ∈ D(N1+β) we can write

λϕα −N1+βϕα = 〈(−A)−1/2(DU −DUα), (−A)1/2Dϕα〉 + f.

We claim that

lim
α→0

〈DU −DUα, Dϕα〉 = 0 in L1+β(H, ν), (3.11)

This will conclude the proof by applying the classical result of Lumer and
Phillips, [15].

Let us prove (3.11). Since Uα(x) ≤ U(x) and limα→0 Zα = Z, Corollary 3.3
implies

∫

H

|(−A)1/2Dϕα|2dν = Z−1

∫

H

|(−A)1/2Dϕα|2e−2U(x)µ(dx)

≤ Z−1

∫

H

|(−A)1/2Dϕα|2e−2Uα(x)µ(dx) ≤ Zα

Z
c1 ≤ c,

where c is a suitable positive constant. Then, by the Hölder inequality we
obtain,

∫

H

|〈DU −DUα, Dϕα〉|1+β dν

≤
[
∫

H

|((−A)−
1

2+2β (DU −DUα)|2+2βdν

]
1
2

[
∫

H

|(−A)
1

2+2βDϕα|2+2β dν

]
1
2

.

Now we use the well known interpolatory estimate

|(−A)
1

2+2β x|2+2β ≤ C |x|2β |(−A)
1
2x|2, x ∈ D((−A)

1
2 ),
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and find
∫

H

|〈DU −DUα, Dϕα〉|1+β dν

≤ C

[
∫

H

|((−A)−
1

2+2β (DU −DUα)|2+2βdν

]
1
2

[
∫

H

|Dϕα|2β|(−A)
1
2Dϕα|2 dν

]
1
2

≤ C

(λ− δ)β
‖Df‖β

0 ‖f‖0

(
∫

H

|(−A)−
1

2+2β (DU −DUα)|2+2βdν

)1/2

.

thanks to (3.3) and Corollary 3.3. The proof is complete thanks to Hypoth-
esis 2.3 i).

4 The stochastic Cahn–Hilliard equation

4.1 m–dissipativity

The Cahn–Hilliard equation is a phenomenological model for various types
of non equilibrium phase transitions as the early stage of spinodal decompo-
sition, a physical phenomenon that arises when we rapidly quench an alloy
from the stable region (high temperature) to the unstable region (low tem-
perature). Cook took into account also the thermal fluctuations introducing
the stochastic Cahn–Hilliard equation, which in the litterature is known also
as the Cahn–Hilliard–Cook equation.

This equation has been intensively studied, see e.g. [4], [6], [7], and the
references cited therein.

We will apply the abstract results of §3 to the following stochastic Cahn–
Hilliard equation:















































dX = D2
ξ(−D2

ξX + f(X))dt+ dW (t), in [0,+∞) × [0, π],

∫ π

0

X(ξ) dξ = 0

DξX(t, 0) = D3
ξX(t, 0) = DξX(t, π) = D3

ξX(t, π) = 0,

X(0, ·) = x,

(4.1)
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where W (t) is a cylindrical white noise (in time and in space), and where
f ∈ C2(R) is such that

|f(r)| ≤ a(1 + |r|2m−1), (4.2)

for some a and the function

g(r) =

∫ r

0

f(s)ds

is semiconvex. Typically g is a polynomial with positive leading coefficient
of even order (greater then or equal to 4). In order to avoid technical com-
plications below, we make the additional assumption that f is monotone,
however all our results hold in the more general case of the derivative of a
semiconvex function.

The stochastic Cahn–Hilliard equation with periodic boundary conditions
can be treated in the same way.

It would be interesting to study the Cahn–Hilliard equation in two (or more)
dimensions. This would require a renormalization procedure, which we will
try to study in a future paper.

In general X denotes concentraction, for instance in the case of a binary
alloy (Cu,Zn), X can be the concentration of Cu. In the deterministic case the
Cahn-Hilliard equation has the property that the total concentration - which
corresponds to the spatial average of X - is a conserved quantity. Without
loss of generality, we assume that this average is zero. It is natural to require
that the noise does not destroy this property. Thus we work in spaces of zero
average functions and introduce H1(0, π), the space of functions in H1(0, π)
whose average is zero, and its dual H−1(0, π).

It is natural to study this problem in the space H = H−1(0, π) because,
with this choice, the equation is of gradient type and the corresponding
transition semigroup is reversible.

We also consider the Hilbert space L̇2(0, π) of all square integrable func-
tions ϕ on [0, π] with zero average. Its inner product is denoted by 〈·, ·〉.

Let {ek}k∈N∗ (1) be the orthonormal basis on L̇2(0, π) defined by

ek(ξ) = (π/2)−1/2 cos(kξ), k ∈ N
∗,

and, for any x ∈ L2(0, π), set

xk = 〈x, ek〉, k ∈ N
∗.

1N∗ = 1, 2, . . .
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We shall identify L̇2(0, π) with `2(N∗) and then we shall consider L̇2(0, π) as
a subspace of RN∗

.
Moreover, for any r ∈ R we shall denote by Hr the subspace of RN

∗

of all
sequences x = {xk}k∈N∗ such that

|x|2r :=
∑

k∈N∗

(1 + |k|2)r |xk|2 < +∞.

Hr is a Hilbert space with the inner product

〈x, y〉r :=
∑

k∈N∗

|k|2r xkyk, x, y ∈ Hr. (4.3)

The corresponding norm is denoted by | · |r. Notice that L̇2(0, π) = H0,
H1(0, π) = H1, H−1(0, π) = H−1 and setting

fk(ξ) = (1 + |k|2)1/2ek(ξ), k ∈ N
∗,

then {fk}k∈N∗ is a complete orthonormal basis on H−1. Clearly, if r1 ≥ r2,

|x|r1 ≤ |x|r2.

Moreover we assume that W (t) is the cylindrical Wiener process on H−1

defined (formally) by

W (t) =
∑

k∈N∗

fkβk,

where {βk}k∈N∗ is a sequence of mutually independent standard Brownian
motions.

Let us define the linear (unbounded) operators A and B in H = H−1 by
setting

Bfk = k2fk, k ∈ N
∗,

and
Afk = −k4fk, k ∈ N

∗.

Notice that
D(B) = H1, D(A) = H3,

and that B = (−A)1/2.
Moreover, let us introduce the potential U : H−1 7→ [0,+∞]

U(x) =















∫ π

0

g(x(ξ))dξ, if x ∈ D(U),

+∞ otherwise ,

(4.4)
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where
D(U) = {y ∈ L̇2([0, π]) : g(y) ∈ L1([0, π])},

and g(r) =
∫ r

0
f(s)ds.

We have

DU(x) · y =

∫ π

0

g(ξ)dξ.

We denote by DHr the gradient in Hr, then

DH−1U = (−A)1/2DU = Bf(x).

For r = −1, we also set D = DH−1 . Thus, equation (4.1) can be written as







dX = (AX −DU(X))dt+ dW (t),

X(0) = x,
(4.5)

Now we can consider the Kolmogorov operator

N0ϕ(x) =
1

2
Tr [D2ϕ(x)] + 〈x,ADϕ(x)〉 − 〈DU(x), Dϕ(x)〉, ϕ ∈ EA(H)

which we shall write also as

N0ϕ(x) =
1

2
Tr [D2ϕ(x)] + 〈x,ADϕ(x)〉 + 〈f(x), BDϕ(x)〉. (4.6)

We set µ = NQ where Q = − 1
2
A−1. We have

Theorem 4.1 Let N0 be the Kolmogorov operator defined by (4.6), and let
ν the probability measure defined by (1.1). Then N0 is essentially self-adjoint
in L2(H−1, ν).

Proof. We shall apply Theorem 3.4, verifying the required assumptions for
β = 1 and δ = 0.
Verification of Hypothesis 2.1. It follows from the identity

Tr Q =
1

2

∑

k∈N∗

k−4 < +∞.
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Verification of Hypothesis 2.2–(ii). For this it is convenient to write x(ξ) in a
suitable form. Given x ∈ H−1 we start from the obvious identity

x(ξ) =
∑

k∈N∗

〈x, fk〉−1fk = 1√
2

〈

Q−1/2x,
∑

k∈N∗

1
k2 fk(ξ)fk

〉

−1

= ρ(ξ)Wηξ
(x),

where W represents the white noise function, ηξ is the element in H−1 defined
by

ηξ =
1√

2ρ(ξ)

∑

k∈N∗

1

k2
fk(ξ)fk, (4.7)

and

ρ2(ξ) =
1

2

∑

k∈N∗

1 + k2

k4
ek(ξ)

2. (4.8)

Now we can prove that

Z =

∫

H

e−2U(x)µ(dx) > 0.

For this it is enough to show that
∫

H

U(x)µ(dx) < +∞. (4.9)

We have in fact
∫

H

U(x)µ(dx) =

∫

H

∫ π

0

g(x(ξ)) dξ µ(dx) =

∫ π

0

dξ

∫

H

g(ρ(ξ)Wηξ
(x)) µ(dx)

= (2π)−
1
2

∫ π

0

dξ

∫ +∞

−∞
e−

r2

2 g(ρ(ξ)r) dr < +∞,

in view of (4.2), and Hypothesis 2.2–(ii) is fulfilled.

Verification of Hypothesis 2.2–(iii).
Let us define approximations Uα of U . Let gα be the Moreau-Yosida approx-
imations of g

gα(r) = inf
{

g(s) + 1
2α

(r − s)2 : s ∈ R
}

.

We set

Uα(x) =

∫ π

0

gα

(

(1 + αB)−1 x(ξ)
)

dξ, α > 0. (4.10)
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Then Uα is of class C2. Moreover, Uα ≤ U . In fact, since

(1 + αB)−1x(ξ) =

∫ π

0

k(ξ, η) x(η) dη

with k(ξ, η) ≥ 0, we have that
∫ π

0
k(ξ, η) dη = 1: this allows us to apply

Jensen inequality to get

gα((1 + αB)−1x) ≤ g((1 + αB)−1x) ≤ (1 + αB)−1g(x).

Hence
Uα(x) ≤ U(x).

Verification of Hypothesis 2.2–(iv). Firstly we observe that

DUα(x) · y =

∫ π

0

g′α((1 + αB)−1x(ξ)) (1 + αB)−1y(ξ) dξ,

so that

DH−1Uα = (−A)1/2DH0Uα = B(1 + αB)−1g′α((1 + αB)−1).

We have to show that

lim
α→0

∫

H−1

|(−A)1/4DH−1(U − Uα)|4−1dν = lim
α→0

∫

H−1

|DH0(U − Uα)|40dν = 0.

In view of the dominated convergence theorem it is enough to show that
|DH0Uα|40 can be estimated, uniformly in α by a ν–integrable function. We
have in fact, using the Jensen inequality

|DH0Uα|40 =

(
∫ π

0

DH0Uα(x)(ξ)2dξ

)2

=

(
∫ π

0

fα((1 + αB)−1x)(ξ)2dξ

)2

≤
(

∫ π

0

f((1 + αB)−1x)(ξ)2dξ

)2

≤
(

∫ π

0

f(x)(ξ)2dξ

)2

.

It remains to show that

∫

H−1

(
∫ π

0

f(x)(ξ)2dξ

)2

dν < +∞.
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We have in fact, thanks to (4.2), and proceeding as in the proof of (4.9),

∫

H−1

(
∫ π

0

f(x(ξ))2dξ

)2

dν ≤ π

∫ π

0

dξ

∫

H−1

f(x(ξ))4dν

≤ aπ

(

π +

∫ π

0

dξ

∫

H−1

(x(ξ))8m−4dν

)

= aπ

(

π + (2π)−
1
2

(8m− 4)!

24m−2(4m− 2)!

∫ π

0

ρ(ξ)8m−4dξ

)

,

which is finite. The proof is complete.

4.2 Spectral gap

We consider here the invariant measure ν of the Cahn-Hilliard-Cook equation
(4.5) in H−1, that is

ν(dx) = Z−1 exp (−U(x)) µ(dx),

where U is defined by (4.4).
We recall that for a sufficiently smooth function x, we have the following

relationship between the derivatives in H0 = L̇2(0, π) and in H−1 :

DH−1x = BDH0x.

Let T be the natural imbedding of H0 into H−1. It is easily checked that
the adjoint T ′ of T is given by T ′y = −B−1y.

Let us consider on H0 the Gaussian measure µ0 = N(0, Q0) with Q0 =
−1

2
B−1 and set

ν0(dy) = Z−1
0 exp (−U(y)) µ0(dy)

and

Z0 =

∫

H

exp (−U(y)) µ0(dy).

By the Bakry-Emery criterion, [3], see also [8], it follows that ν0 is the unique
invariant measure of the following stochastic differential equation

dX = (BX − f(X))dt+ dW0.

We need the following lemma
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Lemma 4.2 The image measure of ν0 through the natural imbedding T : H0 →
H−1 coincides with ν.

Proof. We first prove that
µ(H0) = 1. (4.11)

We have in fact
∫

H−1

|x|2H0µ(dx) =

∫

H−1

|
√
Bx|2H−1µ(dx) = Tr (B−1) < +∞.

To prove the lemma it is enough to show that for any Borel bounded function
ϕ : H−1 → R we have

∫

H0

ϕ(y)ν0(dy) =

∫

H−1

ϕ(x)ν(dx). (4.12)

To prove (4.12) we consider a sequence {Pn} of finite dimensional approxi-
mations of the identity in H0 and we set P ′

n = TPn, n ∈ N
∗. Then by the

change of variables formula in finite dimensional spaces, we get
∫

PnH0

ϕ(Pny) e
−2U(Pny) N(0, PnQ0)(dy) =

∫

P ′

nH−1

ϕ(P ′
nx) e

−2U(P ′

nx) N(0, P ′
nQ)(dx).

Now, letting n tend to infinity and taking into account (4.11), we find (4.12).

Let us prove now the Poincaré inequality for the measure ν.

Theorem 4.3 For any ϕ ∈ C1
b (H−1) we have

∫

H−1

|ϕ(x) − ϕ(x)|2ν(dx) ≤ 1

2

∫

H−1

|DH−1ϕ(x)|2H−1ν(dx), (4.13)

where

ϕ =

∫

H−1

ϕ(x)ν(dx).

Proof. It is well known, see [3], [8], that the Poincaré inequality holds for
the measure ν0. Therefore, for any ϕ ∈ C1

b (H0) we have
∫

H0

|ϕ(y)− ϕ(y)|2ν0(dy) ≤
1

2

∫

H0

|DH0ϕ(x)|2H0ν(dy), (4.14)
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where

ϕ =

∫

H0

ϕ(y)ν0(dy).

On the other hand we have, by the change of variables formula, that ϕ = ϕ.
Consequently

1

2

∫

H−1

|DH−1ϕ(x)|2H−1ν(dx) =
1

2

∫

H−1

|BDH0ϕ(x)|2H−1ν(dx)

≥ 1

2

∫

H−1

|DH0ϕ(x)|2H0ν(dx) =
1

2

∫

H0

|DH0ϕ(x)|2H0ν0(dx)

≥
∫

H0

|ϕ(x) − ϕ(x)|2ν0(dx) =

∫

H−1

|ϕ(x) − ϕ(x)|2ν(dx),

by the change of variables formula.

The spectral gap follows now easily, see [3].

Corollary 4.4 Let N2 be the closure of N0 in L2(H, ν) and let σ(N2) be its
spectrum. Then we have

σ(N2)\{0} ⊂ {λ ∈ C : Re λ < −1}.

In the same way we obtain the log–Sobolev inequality.

Theorem 4.5 For any ϕ ∈ C1
b (H−1) we have

∫

H−1

ϕ2 logϕ2dν ≤
∫

H−1

|DH−1ϕ(x)|2H−1dν +

∫

H−1

ϕ2dν log

(
∫

H−1

ϕ2dν

)

.

(4.15)

Remark 4.6 As already mentionned, all our results hold if we do not as-
sume that the nonlinear term f in (4.1) is monotone but simply that it is the
derivative of a semiconvex function, which is the case if f is a polynomial
of odd degree with positive leading coefficient. In this case, in the proof of
Theorem 4.1 we have to choose δ > 0. The construction of the approxima-
tions Uα also has to be modified. The proof of theorem 4.3 and 4.5 do not
use this assumption since it is known that ν0 satisfy the spectral property
and a log-Sobolev inequality also in that case.
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