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Optimal Sub-arraying of Compromise Planar Arrays throughan Innovative ACO-Weighted Proedure
G. Oliveri and L. Poli

AbstratIn this paper, the synthesis of sub-arrayed monopulse planar arrays providing an op-timal sum pattern and best ompromise di�erene patterns is addressed by means ofan innovative lustering approah based on the Ant Colony Optimizer. Exploitingthe similarity properties of optimal and independent sum and di�erene exitationsets, the problem is reformulated into a ombinatorial one where the de�nition of thesub-array on�guration is obtained through the searh of a path within a weightedgraph. Suh a weighting strategy allows one to e�etively sample the solution spaeavoiding bias towards sub-optimal solutions. The sub-array weight oe�ients arethen determined in an optimal way by exploiting the onvexity of the problem athand by means of a onvex programming proedure. Representative results arereported to assess the e�etiveness of the weighted global optimization and its ad-vantages over previous implementations.
Key words: Sum and Di�erene Patterns Synthesis, Monopulse Antennas, Planar Ar-rays, Ant Colony Optimization, Convex Programming.2



1 IntrodutionMonopulse radars present several advantages over other searh-and-trak systems [1℄ basedon onial san or lobe swithing approahes [2℄. Indeed, traking the angular positions ofhigh-speed targets is enabled just proessing a single pulse eho (a monopulse). Moreover,range measurements are generally more reliable beause of eho signals with higher signal-to-noise ratios are dealt with, the sum beam being always direted towards the target.Monopulse radars require the generation of one sum pattern and a ouple of spatially-orthogonal di�erene patterns to trak targets both in azimuth and elevation [3℄. Severalimplementations exploit re�etors or lens antennas [2℄, even if antenna arrays turn out tobe more onvenient for tehnologial (e.g., the main beam an be eletronially steered),implementative (e.g., heavy strutures as re�etors are avoided), and appliative (e.g.,arrays an be made onformal and installed on airrafts) reasons. However, the omplex-ity of the underlying beamforming network (BFN) must be properly taken into aountsine it unavoidably grows beause of the need to generate more than one pattern andto use a large number of elements. To overome these limitations, sub-arraying strategies(e.g., sub-array weighting [4℄ and overlapped sub-arrays [5℄) as well as sharing ommonweights between the sum and di�erene hannels [6℄[7℄ have been proposed. The sub-arrayweighting tehnique has reeived the widest interest as on�rmed by the large number ofpublished researh works [8℄-[17℄. Generally, the problem is formulated as the synthesis ofan optimal sum beam and the �best� ompromise di�erene patterns grouping the arrayelements into suitably weighted sub-arrays. Towards this purpose, several optimizationstrategies have been applied. More spei�ally, the Simulated Annealing (SA) has beenused in [8℄ to ompute the sub-array weights for a-priori �xed element groupings, while aGeneti Algorithm (GA) [9℄ and two di�erent implementations of the Di�erene Evolution(DE) algorithm [10℄[13℄ have been adopted to determine both weights and subarraying.Moreover, an e�etive hybrid method has been proposed in [11℄ to exploit the onvexityof the problem with respet to the sub-array weights. Whether, on one hand, global op-timization is mandatory to deal with the non-onvex part of the problem, on the other,the �brute fore� appliation of stohasti optimizers turns out being omputationally3



umbersome and ine�ient beause of the exponential growth versus the number of arrayelements of the admissible sub-array on�gurations. Suh a bottlenek has been e�-iently solved in [18℄ by means of an exitation mathing strategy where the sub-arrayinggrouping is �guided� by the similarity properties between the exitations providing thesum pattern and a set of referene exitations generating an optimal (referene) di�er-ene pattern. The dimension of the solution spae has been signi�antly redued and the�nal partitioning has been obtained by hoosing Q − 1 ut points (Q being the numberof sub-arrays) in a sorted list of real values eah one related to an antenna element. Insuh a way, the admissible set of sub-array on�gurations grows polynomially versus thenumber of elements with a non-negligible redution of the solution spae if ompared tostandard approahes. Furthermore, the essential solution spae has been represented bymeans of a non-omplete binary tree [18℄ and, suessively, through a more ompat andnon-redundant diret ayli graph (DAG) [19℄. By virtue of its hill limbing behavior(mandatory for non-onvex funtionals), the Ant Colony Optimizer (ACO) [20℄ has beenused to look for the optimal sub-array on�guration both within the solution tree [21℄ aswell as in the DAG [22℄. Although the ACO has shown to outperform the ad-ho deter-ministi method alled Border Element Method (BEM) in both linear [18℄ and planar[19℄ problems, it still presents some ine�ienies when large-dimension problems as forplanar arhitetures. It is worth pointing out that these drawbaks do not depend on therepresentation of the solution spae or its dimension, but mainly on the ontrol of theevolution proess. Indeed, if all edges of the DAG have the same probability of beinghosen at the initialization, some paths (i.e., sub-arraying solutions) turn out having lessprobability of being explored, while other paths are privileged. Suh a bias is undesiredand unavoidably limits the potentialities of the approah. On the other hand, althoughthe non-omplete binary tree [21℄ is not a�eted by suh a drawbak, it is not suitablefor synthesizing large arrays beause of high omputational osts and memory storagerequirements. In this work, a new synthesis approah based on an edge-weighting shemeis proposed to guarantee eah path of the DAG be explored with an equal probability.The rest of the paper is organized as follows. The synthesis problem is mathematially4



formulated in Set. 2 where the edge-weighting sheme for graph searhing is presented,as well. Setion 3 is devoted to the numerial analysis aimed at desribing the behaviorof the proposed approah and assessing its advantages and enhaned potentialities overprevious implementations. Eventually, onlusions are drawn (Set. 4).2 Mathematial FormulationLet us onsider a monopulse planar array of 2M × 2N elements displaed on a regularlattie with inter-element spaing dx and dy along the x and y axes, respetively. Theantenna aperture is subdivided into four symmetrial quadrants whose outputs are om-bined to generate the sum and di�erene mode signals (Fig. 1) for the estimation of theo�-boresight angle (OBA), namely the diretion of the target with respet to the eletrialaxis (i.e., the boresight diretion) of the antenna [2℄[3℄.The summode, used both in transmission (i.e., for the generation of the radar pulses aimedat sensing the surrounding environment) and in reeption (i.e., for deteting the preseneand range of a target through a monopulse omparator), is obtained by summing thesignal from the four quadrants in phase. Under the assumption of quadrantal symmetryfor the exitations [24℄, the sum pattern an be expressed as follows
S (θ, φ) = 4
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λ
is the free-spae wavenumber, λ being the wave-length.The ouple of di�erene mode signals used to determine the azimuthal and elevation OBAare generated summing in phase reversal pairs of quadrants of the optimal exitations βmnthat a�ord a desired di�erene pattern D (θ, φ). More spei�ally, the following di�erenepattern is synthesized
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to trak the target along the azimuthal plane [Daz (θ, φ) = D (θ, φ)℄, while the di�erenepattern for the elevation mode [Del (θ, φ) = D
(

θ, φ+ π
2

)℄ is given by
Del (θ, φ) = 4j
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. (3)Aording to the sub-arraying strategy [4℄, the exitations of the ompromise di�erenepatterns turn out to be
bm,n = αmn

Q
∑

q=1

δcmnqwq ; m = 1, ...,M ; n = 1, ..., N ; q = 1, ..., Q (4)whereC = {cmn; m = 1, ...,M ; n = 1, ..., N} with cmn ∈ [0, Q] andW = {wq; q = 1, ..., Q}are the degrees of freedom of the problem at hand. They are two sets of integer values thatode the element grouping and the weights of the orresponding lusters, respetively. In(4), δcmnq is the Kroneker delta funtion de�ned as: δcmnq = 1 if the element belongs tothe q-th sub-array (i.e., cmn = q) and δcm,nq = 0, otherwise.Following the guidelines desribed in [18℄, given a set of independent exitations A =

{αmn; m = 1, ...,M ; n = 1, ..., N} a�ording an optimal sum pattern, the solution of theompromise between sum and di�erene patterns is obtained by minimizing the followingost funtion
Ψ (C) =
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}2 (5)where gmn ,
βmn

αmn
, m = 1, ...,M , n = 1, ..., N is the set of optimal gains and Γ ≤ M × Nis the number of radiating/ative elements in eah quadrant. Equation (5) de�nes a 'leastsquare' problem and its solution (i.e., the partition that minimizes the ost funtion) isa ontiguous partition whose As for the the unknown weighting vetor W an be it isanalytially omputed for eah trial sub-array on�guration C as follows

wq (C) =
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∑M
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mn

. (6)sine the value minimizing the sum of the square distanes in a ontiguous subset is the6



weighted arithmeti mean of the orresponding gmn values. In order to determine the�optimal� sub-array on�gurations C
opt, Eq. (5) is optimized aording to the followingproedure:

• Step 1 - Contiguous Partition Method (CPM). Exploiting the theory in [23℄for the de�nition of ontiguous partitions least-square grouping of real-valued quan-tities, C
opt is obtained by hoosing Q subsets of the optimal gains gmn sorted on aline [19℄. Towards this end, a list L of Γ referene parameters is generated setting

l1 = minm,n {gmn} and lΓ = maxm,n {gmn}. In suh a way, the number of admis-sible sub-array on�gurations (or ontiguous partitions) belonging to the so-alledessential solution spae ℜ(ess) (1) amounts to U (ess) =







Γ− 1

Q− 1






.

• Step 2 - Solution Spae Representation. Thanks to the sorted list de�ned atStep 1 , the solutions in ℜ(ess) are oded into a Diret Ayli Graph (DAG) [28℄.The graph G (Γ, Q,Ψ) represented in Fig. 2 is haraterized by:� Q rows eah one ontaining V = (Γ−Q+ 1) vertexes, V being the maximumnumber of elements that an be grouped in a sub-array;� a maximum depth Γ equal to the number of levels of the DAG and to thedimension of the list L as well as the number of vertexes along eah r-th path
Pr, r = 1, ..., U (ess) in G;� a suitability funtion Ψ (5) aimed at evaluating the goodness of eah path Pr,
r = 1, ..., U (ess).The levels of the DAG map one-to-one the elements in L. A vertex vq,lq , q = 1, ..., Q,

lq = q, ..., q + V − 1 is identi�ed by its row index, q, and the depth index, lq.Moreover, its argument, arg
(

vq,lq

)

= q, indiates the sub-array membership of eaharray element of the list L. A path P of Γ vertexes and Γ − 1 edges odes a trialsolution C. As shown in Fig. 2, e+q,lq
is the edge (if present) onneting the vertexes

(1) Essential with respet to the solution spae whih an be sampled using standard global optimizerswhose dimension is U = QΓ. 7



vq,lq and vq,lq+1 on the same row of the DAG, while e−q,lq
is the edge (if admissible)between the vertexes vq,lq and vq+1,lq on two di�erent rows of the DAG;

• Step 3 - Edge Weighting. In [22℄, the ACO was used to explore the DAG foridentifying the best sub-array on�guration C
opt. Sine the quantity of pheromone

τ±q,lq
(0), q = 1, ..., Q, lq = q, ..., q + V − 1 was uniformly set, the edges e±q,lq

(0),
q = 1, ..., Q, lq = q, ..., q + V − 1 have at the initialization the same probability ofbeing explored. Beause of the DAG struture and the value of the ratio V

Q
, suh ahoie a�ets in a non-negligible way the ACO-based sampling of the DAG. Indeed,some edges paths have a higher probability of being sampled sine the vertexes ouldbelong to a di�erent number of paths. As representative examples, the DAGs ofthe ases (Γ = 8, Q = 3) and (Γ = 8, Q = 6), both having U (ess) = 21, are reportedin Fig. 3(a) and Fig. 3(b), respetively. By sake of larity, the number of solutionsto whih edge belongs to is indiated.In order A proper edge weighting sheme is here adopted to assure a uniform prob-ability of sampling to eah solution/path and to allow an unbiased searh a properedge weighting sheme is neessary. Towards this end, The e�et is that of inreas-ing/reduing the level of pheromone on eah edge is inreased/redued proportion-ally to the number of di�erent ontiguous partition de�ned through that edge. Letus observe that the number of paths leaving the root vertex v1,1 orresponds tothe dimension of the whole solution spae Ω1,1 = U (ess) =







Γ− 1

Q− 1






, while thosedeparting from the vertex v1,2 [Fig. 4(a)℄ and v2,2 [Fig. 4(b)℄ are Ω1,2 =







Γ− 2

Q− 1





and Ω2,2 =







Γ− 2

Q− 2






, namely the number of path through G (Γ− 1, Q,Ψ) and

G (Γ− 1, Q− 1,Ψ), respetively. Generalizing, the number Ω of paths/solutions
8



available from the generi vertex vq,lq is equal to
Ωq,lq =







Γ− lq

Q− q






. (7)Therefore, the edge-weighting sheme is applied at the initialization (j = 0) asfollows: Aordingly, the level of pheromone on edge e+q,lq

is set to
τ+
q,lq

(j) =
Ωq,lq+1

Ωq,lq

(8)while on the edge e−q,lq

τ−q,lq
(j) =

Ωq+1,lq

Ωq,lq

. (9)It is worth noting that Ωq,lq = Ωq,lq+1 + Ωq+1,lq .
• Step 4 - DAG ACO-Sampling. Iteratively, the ACO [20℄[25℄ explores the DAG to�nd C

opt. Eah ant of the olony A (j) = {at (j) ; t = 1, ..., T}, T being the olonydimension, samples the graph starting from the root v1,1 and hoosing the next edgewith probability
η±q,lq

(j) =
τ±q,lq

(j)

τ+
q,lq

(j) + τ−q,lq
(j)

, q = 1, ..., Q; lq = q, ..., q + V − 1. (10)The set of vertexes visited by an ant, at (j), from the root to the end of the graphodes a path Pt (j) =
{

vq,lq ; q = 1, ..., Q; lq = 1, ...,Γ
} of Γ vertexes omposed by

Γ−1 edges that identi�es a trial sub-array on�guration Ct (j) = arg {Pt (j)}. Theoptimality of eah trial solution is quanti�ed by the value of the ost funtion inorrespondene with the orresponding subarray on�guration, Ψ (Ct (j)). Suh aninformation is exploited to update the pheromone level on the edges of the DAG as
τ±q,lq

(j + 1)← (1− ρ)

[

τ±q,lq
(j) +

T
∑

t=1

H ×Ψmin
j

Ψ (Ct (j))

] (11)9



where either e+q,lq
or e−q,lq

∈ Pt (j) and Ψmin
j = mint=1,...,T {Ψ (Ct (j))}. Moreover,

ρ ∈ (0, 1] and H are positive indexes that ontrol the pheromone evaporation anddeposition on the edges of the DAG. The algorithm stops when a maximum numberof iterations Jmax is reahed or the minimization of the ost funtion reahes astationary point (j = Jstat), then C
opt hosen as

C
opt = arg [minjmint {Ψ (Ct (j))}] . (12)

3 Numerial ResultsA set of numerial experiments has been arried out to point out the potentialities of theproposed approah as well as its improvements over previous implementations.The �rst example deals with the synthesis of a small array in order to detail in a ompar-ative fashion the behavior of the edge-weighted approah versus the uniform tehnique[22℄. The array elements are loated on a regular lattie with M = N = 3 (dx = dy = λ
2
)and belong to a irular support of radius R = 1.5λ suh that the resulting arrangementis omposed by Γ = 32 radiators (8 for eah quadrant). The exitations of the sum mode(Fig. 5) have been hosen to a�ord a Taylor pattern with SLL = −35 dB and n̄ = 6[24℄. As far as the referene di�erene beam D (θ, φ) is onerned, a Bayliss pattern with

SLL = −30 dB and n̄ = 7 [24℄ has been used by setting the exitation distribution as inFig. 6.The ompromise di�erene beam has been synthesized varying the number of sub-arraysin the range Q ∈ [2, 6] to analyze the performane of the proposed method. First, the
Γ optimal gains have been omputed and the list L generated (Fig. 7) aording to the
CPM .Figure 8 shows the values of the ost funtion for the best solutions found by the proposedweighted-graph ACO-based (WG − ACO) approah and the ACO version in [22℄ whenrunning 10 di�erent simulations for eah value of Q. The ACO parameters have been set10



aording to the outomes from [22℄: T = 0.1 × U (ess) with a minimum value equal to
Tmin = 5 to exploit the ooperative behavior of the olony, Jmax = 1000, H = 1, and ρ =

0.05. It is worth noting that both methods �nd the global optimum when Q is smaller than
Γ (e.g., Q = {2, 3, 4}) as on�rmed by the plot in Fig. 9(a) that shows the ost funtionvalues for all the solutions belonging to ℜ(ess) (Γ = 8, Q = {2, 3, 4}). Nevertheless, thebare ACO does not reah the global solution when Q ≃ Γ (Γ = 8, Q = {5, 6}) sine it getsstuk in a loal minimum [Fig. 9(b)℄. As a matter of fat, Ψopt

WG−ACO

∣

∣

Q=5
= 5.023×10−4 vs.

Ψopt
ACO

∣

∣

Q=5
= 5.438×10−4 and Ψopt

WG−ACO

∣

∣

Q=6
= 1.685×10−4 vs. Ψopt

ACO

∣

∣

Q=6
= 4.965×10−4.The orresponding paths within theDAG are as follows: P opt

WG−ACO

∣

∣

Q=5
= {11123445} vs.

P
opt
ACO

∣

∣

Q=5
= {12234445} and P opt

WG−ACO

∣

∣

Q=6
= {12234556} vs. P opt

ACO

∣

∣

Q=6
= {11123456}.Let us notie that, despite the dimension of the solution spae does not vary from Q = 3up to Q = 6 (see Tab. I), the uniform ACO is able to get the �best� ompromise solutiononly in the former ase, while sub-optimal solutions are found otherwise. Suh a resultis not due to the DAG representation of the solution spae, but on the �ontrol level� ofthe ACO [25℄ (i.e., ontrol parameters, initialization riteria, onstraints, and terminationonditions) whih exploits the pheromone update mehanism to sample the solution spaelooking for the global optimum. As a matter of fat, still keeping the same ACO struturepresented in [22℄, but initializing the pheromone levels through the weighted approah, thereliability of the DAG sampling has been improved. As an illustrative example, Figure10 gives a representation of the relative amount of pheromone on the edges of the DAGfor the ase (Γ = 8, Q = 3) [Fig. 10(a)℄ and the ase (Γ = 8, Q = 6) [Fig. 10(b)℄.More in detail, the thikness of the segments between two vertexes is proportional to theamount of pheromone on the orresponding edge. Moreover, the dotted lines indiateobliged hoies when only the orresponding path is admissible.The ine�ienies of the uniform-weight approah is more evident when U (ess) grows aspointed out by the plots of Ψopt in Fig. 11. The test ase is here onerned with a lattieof dimension 2M × 2N = 20× 20, a irular boundary R = 5.0λ in radius, and a numberof ative elements for eah quadrant equal to Γ = 75. The number of sub-arrays has beenvaried between Q = 2 and Q = 20. As for the exitations, the sum exitations was hosen11



to a�ord a Taylor pattern with SLL = −35 dB and n̄ = 6 [24℄, while referene exitationswas used to generate a Bayliss pattern with SLL = −30 dB and n̄ = 7 [24℄. Conerningthe parameters of the ACO, the same setting of the previous experiment has been usedalso introduing a maximum threshold Tmax = 1000 (when T = 0.1 × U (ess) > Tmax) onthe number of ants for eah iteration to limit the omputational time. As expeted (Fig.11), the weighted approah always outperforms the previous implementation and, for eahexample (i.e., Uess value or Q value), solutions with lower ost funtion values have beendetermined.As far as the omputational issues are onerned, let us onsider that the CPU-timerequired to omplete an ACO iteration is the same for both the weighted and uniformsheme. It is also worth notiing that the improvements from the weighted sheme arenot onerned with the onvergene speed, but rely in a more reliable searh of theoptimal solution. For ompleteness and as a representative example, the ase Q = 5needs Jstat = 85 iterations of the WG − ACO (i.e., a total CPU-time of 16.34 se) tosample the solution spae of dimension U (ess) = 1150626, while the uniform approah withthe same ACO parameter setting stops after Jstat = 122 iterations (i.e., a total CPU-timeof 23.28 se).3.1 The Hybrid ExtensionAlthough the WG − ACO proved its e�etiveness, the omputation of the sub-arrayweights through (6) does not guarantee the retrieval of the global optimum solution.Moreover, it does not allow to set onstraints on the desired radiation pattern in a diretfashion [26℄[27℄. The hybrid method in [11℄[29℄ overomes suh a limitation. One C
optwas de�ned by means of the WG−ACO, the optimal weights W

opt an be omputed bymeans of a onvex programming (CP ) strategy [30℄, aimed at minimizing
Φ (W) = −Im

{

∂D (θ, φ)

∂γ

}

γ={θ,φ}

∣

∣

∣

∣

∣ θ = θ0

φ = φ0

(13)
12



to the maximize the slope along the boresight diretion (θ0, φ0) of the di�erene pattern
D (θ, φ), subjet to Re

{

∂D(θ,φ)
∂γ

}

γ={θ,φ}

∣

∣

∣

∣

θ = θ0

φ = φ0

= 0, D (θ0, φ0) = 0, and |D (θ, φ)|2 ≤

M (θ, φ), M (θ, φ) being a positive upper bound funtion on the power radiated in thesidelobe region. Moreover, Re { } and Im { } indiate the real and imaginary part, respe-tively. Furthermore, θ ∈ [

0, π
2

] and φ ∈ [0, 2π].To show the behavior of the hybrid method (H−WG−ACO), an array withM = N = 5elements loated on a square grid with uniform spaing d = λ
2
is used as benhmarkgeometry. The aperture radius has been set to R = 2.5λ suh that Γ = 19. The same sumpattern of the previous examples has been kept, while the referene di�erene exitations

βmn [Figs. 12(a)-(b)℄ have been generated by applying the proedure in [30℄ to synthesizethe optimal di�erene pattern D(θ, φ) with SLLref = −25 dB shown in Fig. 12(). Inorder to design the ompromise di�erene pattern, Q = 5 sub-arrays have been used foreah quadrant.The array lustering found by the WG − ACO when exploring the solution graph with
T = 30 ants is shown in Fig. 13(a). Suessively, the onvex programming proedurehas been applied by onstraining the pattern to the same mask used to determine theoptimal di�erene pattern [Fig. 12()℄. The values W

opt are then given in Tab. II, whilethe orresponding pattern is shown in Fig. 13(b). For omparison, the same synthesisproblem has been addressed with the hybrid-BEM (H − BEM) approah [19℄ and theresults are reported in Fig. 13 and Tab. II, as well. For ompleteness, Figure 14 plots thelevel of the seondary lobe normalized to the maximum of the power pattern for eah φ-ut, φ ∈ [0 : 80o] [Fig. 14(a)℄ and the sidelobe ratio de�ned as SLR (φ) = SLL(φ)
max

0≤θ< π
2

[D(θ,φ)]
,

φ ∈ [0 : 80o] [Fig. 14(b)℄. As it an be observed, the H −WG− ACO solution improvesthat obtained with the H − BEM in terms of maximum SLL (SLLH−BEM = −21.3 dBvs. SLLH−WG−ACO = −25.4 dB) and SLR value, whih turns out to be smaller in a largepart (i.e., almost 90%) of the angular range. The reliability of the new hybridization inbetter mathing the referene pattern D (θ, φ) [Fig. 12()℄ is further pointed out in Fig.15 where the mismath index Ξ (θ, φ) ,
∣

∣DdB (θ, φ)−DH
dB (θ, φ)

∣

∣ is shown for both hybrid13



methods.Finally, in order to give some indiations on the omputational osts of the hybrid ACO-based approah, let us onsider that sampling the solution spae of dimension U (ess) =

3060 requires 133 ACO iterations and 11CP iterations when using the H −WG−ACO[i.e., 5.8 × 10−2se (WG − AGO) and 850 se (CP )℄, while the H − BEM performs 22

BEM iterations and 17 CP iterations [i.e., < 10−6 se (BEM) and 1370 se (CP )℄.4 ConlusionsIn this work, an edge weighting tehnique has been proposed for the e�etive ACO-based sampling of the graph arhiteture oding the admissible lustering on�gurationsof a sub-arrayed monopulse planar array. The advantages of the ACO in dealing with thenon-onvexity of the problem at hand and to explore graph representations of the solutionspae have been further and better exploited for enabling the synthesis of large-sale planararrangements. Representative results have demonstrated the enhanement of the synthesisperformane with respet to previous methods (e.g., BEM) and implementations (i.e.,uniform ACO).
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FIGURE CAPTIONS
• Figure 1. Sketh of a sub-arrayed monopulse array antenna.
• Figure 2. DAG representation of the solution spae.
• Figure 3. DAG Analysis (Γ = 8, Q = {3, 6}) - Number of trial solutions to whihthe DAG edges belong to when (a) Γ = 8, Q = 3 and (b) Γ = 8, Q = 6.
• Figure 4. Edge Weighting Approah - DAG regions admissible from (a) the vertex
v1,1 and (b) the vertex v2,2.
• Figure 5. WG − ACO Numerial Results (M = N = 3, Γ = 8, Q ∈ [2, 6]) -Exitations of the optimal sum pattern (Taylor , SLL = −35 dB, n̄ = 6 [24℄).
• Figure 6. WG − ACO Numerial Results (M = N = 3, Γ = 8, Q ∈ [2, 6]) -Exitations of the referene di�erene pattern (Bayliss, SLLref = −30 dB, n̄ = 7[24℄): (a) amplitudes and (b) phase weights.
• Figure 7. WG − ACO Numerial Results (M = N = 3, Γ = 8, Taylor - SLL =

−35 dB - n̄ = 6, Bayliss - SLLref = −30 dB - n̄ = 7) - List L of the sorted optimalgains.
• Figure 8. Comparative Assessment (M = N = 3, Γ = 8, Q ∈ [2, 6], Taylor -
SLL = −35 dB - n̄ = 6, Bayliss - SLLref = −30 dB - n̄ = 7) - Cost funtionvalues in orrespondene with the optimal solutions found by the ACO and the
WG− ACO.
• Figure 9. Comparative Assessment (M = N = 3, Γ = 8, Q ∈ [2, 6], Taylor -
SLL = −35 dB - n̄ = 6, Bayliss - SLLref = −30 dB - n̄ = 7) - Cost funtion valuesof the solutions oded within the DAG when (a) Q ∈ [2, 5] and (b) Q = {5, 6}. The
ACO and the WG−ACO solution are denoted by with a irle.
• Figure 10. WG− ACO Numerial Results (Γ = 8, Q = {3, 6}) - Edge weightingapproah as applied to the DAG sampling when (a) Γ = 8, Q = 3 and (b) Γ = 8,
Q = 6. The dotted lines indiates mandatory hoies.19



• Figure 11. Comparative Assessment (M = N = 20, Γ = 75, Q ∈ [2, 20], Taylor- SLL = −35 dB - n̄ = 6, Bayliss - SLLref = −30 dB n̄ = 7) - Cost funtionvalues in orrespondene with the optimal solutions found by the ACO and the
WG − ACO versus (a) the dimension of the solution spae, U (ess), and (b) thenumber of sub-arrays, Q.
• Figure 12. Hybrid Extension (M = N = 5, Γ = 19, Referene di�erene [30℄ -
SLLref = −25 dB) - Referene di�erene exitations: (a) amplitudes and (b) phaseweights. Power pattern of the referene mode ().
• Figure 13. Hybrid Extension (M = N = 5, Γ = 19, Referene di�erene [30℄ -
SLLref = −25 dB, Q = 5) - Plots of (a)() the sub-array on�gurations and of(b)(d) the relative power pattern determined with (a)(b) the H −WG−ACO and()(d) the H − BEM .
• Figure 14. Hybrid Extension (M = N = 5, Γ = 19, Referene di�erene [30℄ -
SLLref = −25 dB, Q = 5) - Plots of (a) the SLL and (b) the SLR of the solutionsfound by the H −WG− ACO and the H − BEM .
• Figure 15. Hybrid Extension (M = N = 5, Γ = 19, Referene di�erene [30℄ -
SLLref = −25 dB, Q = 5) - Plot of the mismath funtion Ξ(θ, φ) when applyingthe (a) H −WG− ACO and the (b) H − BEM .TABLE CAPTIONS
• Table I. WG − ACO Numerial Results (M = N = 3, Γ = 8, Q ∈ [2, 6]) -Dimension of the solution spae U (ess).
• Table II. Hybrid Approah (M = N = 5, Γ = 19 × 4, Q = 5) - Values of thesub-array weights.
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Γ 8

Q 2 3 4 5 6

U (ess)
7 21 35 35 21
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w1 w2 w3 w4 w5

H −WG− ACO 1.0942 2.0305 2.9870 4.5573 5.6723

H −BEM 1.0488 2.7605 4.2845 4.8999 5.5077
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