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Supplementary Information for the manuscript: 

Distraction and cognitive control independently impact parietal and 
prefrontal response to pain 

 

Multivariate Pattern Analysis 

Stroop Demands 

To maximize the comparability with our experiment, we choose the model from Silvestrini et 

al. (2020), derived from a dataset obtained when participants underwent a similar Stroop task 

than the one from the present study. The model was estimated and validated through the 

following steps. 

Feature Selection 

As first step, an inclusive masks was identified, including only coordinates that were involved 

with the term “Stroop” (either forward or reverse test) in Neurosynth toolbox. At the time 

when the model was estimated, this resulted in a mask comprising 1877 coordinates at a 3.5 

× 3.5 × 3.5 mm resolution (Silvestrini et al., 2020). 

Data Selection 

For modelling estimation, data from our prior work was selected (Silvestrini et al., 2020), in 

which 24 participants underwent a similar design structure than the present study (only the 

“after” condition), with 2 minutes blocks involving either Stroop or control task, followed by 

nociceptive electrical stimulations. The modeling was based on 48 first-level parameters (24 

participants * 2 conditions [Interference vs. Neutral]). 

Multivariate Modeling 

The 48 parameters associated with Stroop data were extracted from the Neurosynth Stroop 

mask defined before. The resulting data matrix (48 parameters × 1877 coordinates) was 

analysed through a linear Support Vector Machine (SVM) (Boser et al., 1992) to discriminate 
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between Stroop vs. neutral blocks based on brain activity (using a fixed regularization 

parameter C = 1). We employed a leave-one-subject-out cross-validation approach, to assess 

the proficiency of the algorithm to detect the Interference condition in an independent 

portion of subjects: e.g., a model trained on Stroop parameters in all-but-one subjects is used 

to predict pain unpleasantness in the remaining participant. The overall accuracy of the out-

of-subject classification was 71%. The analysis was carried out suing the Spider toolbox for 

Matlab (http://people.kyb.tuebingen.mpg.de/spider). Finally, Support Vector Machine 

weights were used to create a whole brain map, where each coordinate within the 

Neurosynth Stroop mask was associated with a parameter reflecting the linear contribution 

to the overall prediction. This mask is currently available at the following repository 

(https://github.com/canlab/Neuroimaging_Pattern_Masks/tree/master/Multivariate_signat

ure_patterns/2020_Silvestrini_Rainville_Pain_CogControl_interaction_aMCC) under the file 

“stroop_pattern_wani_121416.nii”. 

Model Generalization 

To the best of our knowledge, no published data report evidence of generalization of the 

Stroop model from Silvestrini et al. (2020) on new cohorts. To account for this, we provide 

here validation by taking advantage of the fMRI study from Verstynen (2014), whose data is 

freely available under the OpenNeuro repository (Id code: ds000164). In this paradigm, 28 

participants underwent a Stroop task similar to the one employed in both the present study 

and the one from Silvestrini et al. (2020). The main differences were the following. (1) 

Differently from our research, Verstynen (2014) implemented a colour-based Stroop by 

presenting single words whose meaning was inconsistent with the font colour in which they 

were typed. (2) The Stroop was organized in three (rather than two) conditions: in addition 

to incongruent and neutral events (corresponding to the two main conditions from our 

http://people.kyb.tuebingen.mpg.de/spider
https://github.com/canlab/Neuroimaging_Pattern_Masks/tree/master/Multivariate_signature_patterns/2020_Silvestrini_Rainville_Pain_CogControl_interaction_aMCC
https://github.com/canlab/Neuroimaging_Pattern_Masks/tree/master/Multivariate_signature_patterns/2020_Silvestrini_Rainville_Pain_CogControl_interaction_aMCC
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design), participants underwent also a congruent trials where task-relevant and irrelevant 

information led to the same answer. (3) The study was carried out in a fully event-related 

fashion, with the three conditions alternating randomly and intermingled by jittered inter-

trial intervals (Verstynen, 2014). (4) The study was carried out in English (rather than French) 

and under different MRI systems and functional sequence. 

For the purpose of the model validation we re-analysed the behavioural and 

neuroimaging data under similar routines than in the present study. Supplementary Figure 1A 

shows that incongruent events elicit both more errors and longer correct responses than each 

of the other two conditions (|t(27)| ≥ 5.71, p < 0.001, Cohen’s |d| ≥ 1.09). As for brain activity, 

we run a GLM were the three conditions were modelled separately as a delta function. 

Supplementary Figure 1B and Supplementary Table 1 describe the brain networks implicated 

in the contrast Incongruent > Neutral, revealing a distributed network involving the insular 

cortex, middle cingulate cortex, dorsolateral prefrontal cortex, supplementary motor area, 

posterior parietal cortex, etc. This network, highly reminiscent of the one from Silvestrini et 

al. (2020), was also observed for the contrast Incongruent > Congruent (Supplementary Table 

1). Finally, we tested whether the SVM model developed by Silvestrini et al. (2020) was also 

sensitive to the incongruence manipulation in this study. Specifically, each of the 84 first-level 

images (28 subjects * 3 conditions) was resampled to the resolution of the SVM weights. 

Subsequently, estimates of Stroop demands was obtained as the dot-product of the 

resampled βs and the SVM weights. Hence, the higher the resulting values, the higher the 

adherence of the first-level images to the pattern expressed by the weight-map. The scripts 

for testing the proficiency of the stroop model on new data are available at the following 

repository 
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https://github.com/canlab/Neuroimaging_Pattern_Masks/tree/master/Multivariate_signat

ure_patterns/ under the file “apply_all_signatures.m” (option “pattern expression”). We 

found that the estimated Stroop demands was reliably stronger for the Interference 

condition, relative to each of the other two (t(27) ≥ 4.55, p < 0.001, Cohen’s d ≥ 0.86; see 

Supplementary Figure 1D, left subplot). Overall, we provide evidence that the model from 

Silvestrini et al. (2020) could generalize to a new cohort.  

In the main text, we modelled Stroop trials not as function of the preordained 

conditions, but rather in terms of the Response Times associated with each trial. This was 

made necessary by long block structure of the main experiment, which would expose a 

condition-based analysis to low-frequency confounds, and would be vulnerable to SPM 

default filtering settings (see methods for more details). For consistency purposes, we 

exploited the dataset from Verstynen (2014) to test tested whether the model from Silvestrini 

et al. (2020) could generalize also Stroop data analysed in this way. Supplementary Figure 1C 

and Supplementary Table 1 describe the regions whose activity increases parametrically with 

the Response Times (regardless of the condition). The implicated network is very similar to 

the one observed when analysing the same data as function of manipulated incongruence 

(Supplementary Figure 1B), but also to the one from Figure 3A where parametrical effect of 

Response Times were applied to the main study. Most critically, Supplementary Figure 1D 

(right subplot) describe the output of the model from Silvestrini et al. (2020) in those trials 

with the longest responses vs. those with the most rapid reactions (as identified through 

median split, see methods section). Also in this case, the model output was significantly higher 

in longer response trials (t(27) = 2.71, p < 0.011, Cohen’s d = 0.51). Overall, the neural response 

associated with Stroop tasks led to similar effects regardless of whether they were analysed 

https://github.com/canlab/Neuroimaging_Pattern_Masks/tree/master/Multivariate_signature_patterns/
https://github.com/canlab/Neuroimaging_Pattern_Masks/tree/master/Multivariate_signature_patterns/
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either as function of manipulated incongruence, or as function of Response Times, suggesting 

that both predictors underlie similar processes. In this view, Response Times represents a 

viable alternative for our main experiment, whose long block structure is unsuited for an 

analysis based on preordained experimental conditions. 

Pain Unpleasantness 

To maximize the comparability with our experiment, we choose the model from Sharvit et al. 

(2020) derived from datasets obtained with the same device for thermal stimulation and the 

same MRI scanner than the present study. The model was estimated and validated through 

the following steps. 

Feature Selection 

As first step, an inclusive masks was identified, including only coordinates that were 

preferentially associated with the term “pain” (association test) in the automated meta-

analysis toolbox Neurosynth (Yarkoni et al., 2011). At the time when the model was 

estimated, this resulted in a mask comprising 18759 coordinates at a 2 × 2 × 2 mm resolution 

(Sharvit et al., 2020). 

Data Selection 

For modelling estimation, we selected the data from our prior work (Sharvit et al., 2018), in 

which participants underwent three kinds of thermal stimulations held to elicit pain at low, 

medium and high unpleasantness, plus three kinds of olfactory stimulations of comparable 

unpleasantness aimed at eliciting three level of disgust (Sharvit et al., 2018). Thermal events 

lasted 2 seconds (with 3 additional seconds for the temperature to reach plateau). In this 

study an expectancy manipulation was implemented, with cues sometimes predictive of a 

different unpleasantness (high vs. low) or modality (thermal vs. olfactory) with respect the 

subsequent stimulus. For the purpose of the modelling, the data from the 20 participants 
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from Sharvit et al. (2018) was reanalyzed through an ad hoc first level GLM characterized by 

2 functional runs for each subject, where conditions were described solely based on the 

bottom-up properties of the stimulations, regardless of the congruency/incongruency with 

the preceding cue. As our concern at the time was to compare pain and disgust neural 

response, 6 runs out of 40 (20 subjects * 2 runs) were excluded to prevent discrepancies in 

unpleasantness between thermal and olfactory events (Sharvit et al., 2020). Overall pain data 

was based on 102 parameters (34 runs * 3 levels of pain). 

Data Reduction and Multivariate Modeling. 

We extracted the 102 parameters associated with pain data from the Neurosynth mask 

defined before. This led to a data matrix (102 parameters × 18759 coordinates) which 

underwent dimensionality reduction using principal component analysis (PCA), to condense 

the large number of coordinates in a limited number of components that retained ~ 99.9% of 

variance of the original dataset. This allowed us to reduce the 18759 coordinates of the pain 

matrix into 95 components. The scores estimated in the PCA were then modeled through 

Support Vector Regression (SVR) under radial basis kernel function. For validation purposes, 

we employed a leave-one-subject-out cross-validation, to assess the proficiency of the 

algorithm to predict pain unpleasantness in an independent portion of subjects. Forthermo, 

an additional nested cross-validation loop was included to identify at each fold the most 

suitable combination of hyper-parameters for the modelling (C, ε & γ). As an overall measure 

of predictive proficiency, we calculated the mean squared error (MSE), reflecting the 

deviation between unpleasantness actually rated, and the one estimated from brain activity. 

The resulting MSE was considered to be significant if lower than the 5th percentile of the 

distribution of 1000 MSEs obtained by rerunning the same analysis procedure on permuted 

datasets. Overall, we found that the SVR could reliably predict pain unpleasantness in out-of-
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subjects data with lower error than chance (MSE = 173.97). The analysis was carried out using 

the LIBSVM 3.18 software (Chang and Lin, 2001). 

Model Generalization. 

We subsequently tested whether the model could predict pain unpleasantness in a different 

cohort. This was assessed by running the SVR analysis on the overall population, with only 

one cross-validation loop for hyper-parameter optimization, and then applying it to the data 

from Sharvit et al., (2020), where participants underwent thermal stimulation under the same 

hardware and timing than in Sharvit et al. (2018). The only differences with respect from the 

previous study were: (1) the presence of only two levels of pain unpleasantness (rather than 

three); (2) a different MRI functional sequence, as in Sharvit et al., (2020) we used a TR of 2.1 

sec (as in the present study) whereas in Sharvit et al. (2018) we used a multiband sequence 

with a TR of 0.65 sec; (3) no expectancy manipulation was involved, but in part of the trials 

participants were exposed to a text-based storyboard prior to the thermal stimulation. 

First-level images of 27 participants from Sharvit et al., (2020) were processed as 

follows. First, images were resliced to the same resolution of the data from Sharvit et al. 

(2018). Subsequently, for each subject and condition, we extracted the values from the 18759 

coordinates from the same Neurosynth mask than the one used for model estimation. The 

18759 β scores were then condensed into 95 principal components, using the same PCA 

scores obtained during model estimation. Finally, the function svmpredict from LIBSVM 

software was used to transform the data from PCA space into kernel space, and estimate the 

associated unpleasantness. We found that the estimated pain unpleasantness was reliably 

stronger for high vs. low stimulations, regardless of whether participants were exposed to a 

text-based storyboard or not (t(26) ≥ 4.69, p ≤ 0.001; see also Figure 5 from Sharvit et al., 2020, 
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for graphical representation). The pain model, and the scripts for testing its proficiency on 

new data are available under the Open Science Framework at https://osf.io/jkrvp/. 

Importantly, the model from Sharvit et al. (2020) mapped unpleasantness in a scale 

ranging from 0 (neutral) to 50 (extremely unpleasant). However, in the present study, 

unpleasantness was measured on a 0-100 scale. For this reason, when applying the model to 

our current data, we multiplied the output by two, to fit the 0-100 scale. 

Applying brain signatures to our data. 

We applied two above-described model to the neural responses from our study. The main 

text describes modulations at the level of Stroop-effects on pain activity, whereas here we 

describe follow-up results associated with the first-level parameter images from the baseline 

temperature. In particular, the output of the Pain Unpleasantness model correlated 

significantly with the stimulation temperature (Pearson’s r = 0.46, p = 0.013; Supplementary 

Figure 2, left plot). Please note that the temperature was optimized at the individual level to 

account for individual differences in pain sensitivity, and that these differences in nociceptive 

intensity were reliably captured by this pain model. Interestingly, when analysing the same 

data under the lens of the Stroop demands model, a similar positive relationship between 

predicted outcome and stimulation temperature was observed (r = 0.44, p = 0.017; 

Supplementary Figure 2, left plot). Hence, although pain and cognitive control activity 

patterns dissociate at the neural level (Kragel et al., 2018; Silvestrini et al., 2020), it is possible 

to observe the occurrence of both in the neural response evoked by painful stimulations 

(Silvestrini et al., 2020). 

We also wished to insure that our main results associated with the Pain 

Unpleasantness model, were not idiosyncratic to the algorithm adopted. As such we repeated 

https://osf.io/jkrvp/


9 
 

the analyses (including the ones from the main text) by using instead the seminal Neurological 

Pain Signature from Wager et al. (2013). This is a linear model of pain intensity developed 

through a PCA-LASSO algorithm and validated across multiple datasets, and across different 

kinds of nociceptive stimulations and acquisition parameters (Wager et al., 2013; Krishnan et 

al., 2016). The model is structured as a whole brain map, where each coordinate was 

associated with a parameter reflecting the linear contribution to the overall prediction. We 

applied this model to the pain-evoked activity in our dataset by estimating the dot-product of 

the βs images and the model parameters, using the same routines described above for the 

Stroop model. Results are displayed in Supplementary Figure 3, and lead to a very similar 

result pattern to the one described in the main text, with very similar effect sizes. 

 In particular, the output of the Neurological Pain Signature was modulated by the 

factor TIMING, revealing lower pain estimates when the thermal stimulation was delivered 

during (vs. after) the task (F(1,28) = 4.87, p = 0.036, η𝑝
2  = 0.15; Supplementary Figure 3A). 

Furthermore, neither the main effect of TASK nor the TASK*TIMING interaction were found 

to (F(1,28) ≤ 0.37, p ≥ 0.135). Furthermore, the output of the baseline stimulation was positively 

correlated with the temperature used (Pearson’s r = 0.38, p = 0.043; Supplementary Figure 

3B). Overall, this follow-up analysis shows that our main results were not idiosyncratic to the 

model adopted, but could be observed by using also other pain signatures. 
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Impact of Pain on Performance 

Our design was not optimized for specifically analysing the impact of pain on performance 

because the painful stimulation only occurred during 4 trials of the task. This made it hard 

and probably not appropriate to detect any effect. However, for full disclosure, we provide 

this analysis in this supplemental material as suggested in the comments of one of the 

external reviewers. 

In particular, for both Accuracy and correct Response Times, we run a repeated measures 

ANOVA focused exclusively on the portion of data associated with the During condition. In 

each of this model we tested the effect of Stroop (Interference vs. Neutral) and that of Pain 

(before vs. after the onset of the thermal stimulation). To compare Pain effect in a balanced 

setting, we considered the 4 trials following the onset of the thermal stimulation, and those 

4 immediately preceding it. The analysis of the median Response Times, provided an effect of 

Pain (F(1,28) = 6.07, p = 0.020, η𝑝
2  = 0.18) revealing higher Response times following the onset 

of pain relative to before (638.21 vs. 619.22 ms). No other effect was found to be significant 

(F(1,28) ≤ 1.49, p = 0.233). Instead, the analysis of average Accuracy led to no effect whatsoever 

(F(1,28) ≤ 2.38, p ≤ 0.134). 

Overall, this analysis provides evidence that the onset of pain interfered on participants’ 

performance on the Stroop (at least when Response Times are concerned). Importantly, this 

analysis was obtained comparing the last 8 trials of each block (4 before vs. 4 after pain onset), 

thus making unlikely any confound related on overall fatigue (which would be present when 

comparing the beginning vs. the end of each block). However, we should remind that the 

limited number of trials suggest caution in the interpretation of these results.  
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Supplementary Figures 

Supplementary Figure 1 

 

Re-analysis of the data from Verstynen (2014). (A) Behavioural responses. Boxplots and 
individual data describing average Accuracy and correct Reaction Times associated with the 
Stroop Task. For each boxplot, the horizontal line represents the median value of the 
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distribution, the star represents the average, the box edges refer to the inter-quartile range, 
and the whiskers to the data range within 1.5 of the inter-quartile range. Individual data-
points are also displayed as dots. Azure boxes and dots refer to the Stroop incongruent 
condition, green boxes/dots refer to the congruent condition, whereas orange boxes/dots 
refer to the Neutral condition. “***” and “*”refer to significant condition differences assessed 
through paired-sample t-test at p < 0.001 and p < 0.05 respectively. (B-C) Surface rendering 
showing regions whose activity during the Stroop task was stronger in incongruent vs. neutral 
events (B), or increased linearly with the Reaction Times regardless of the condition (C). All 
regions displayed survive cluster-level FWE correction for multiple comparisons for the whole 
brain. AI Anterior Insula; SMA: Supplementary Motor Area; MCC: Middle Cingulate Cortex; 
PPC: Posterior Parietal Cortex; pOP: Parietal Operculum. (D) Multivariate Pattern analysis. 
Boxplots and individual data describing the output from whole brain models of Stroop 
demands (Silvestrini et al., 2020) applied to the Stroop-related pain activity from our data. The 
left subplot describes the model output obtained when analysing the data in terms 
preordained conditions, under the same color-coding adopted for the display of behavioural 
results. The right subplots describes the model output obtained when analysing the data in 
terms of Response Times. In the right subplot only azure boxes/dots refer to trials associated 
with the longest Response Times, whereas orange boxes/dots refer to trials associated with 
the shortest Response Times. 
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Supplementary Figure 2 

 

Linear regressions (with confidence interval areas) and individual data describing the 

predictions from whole brain models of Stroop demands (Silvestrini et al., 2020) and pain 

unpleasantness (Sharvit et al., 2020) plotted against the stimulation temperature. “*” refers 

to significant Pearson’s r coefficient at p < 0.05. 
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Supplementary Figure 3 

 

(A) Multivariate Pattern analysis of Stroop-related pain activity. Boxplots and individual data 
describing the predictions from Neurological Pain Signature (Wager et al., 2013), applied to 
the Stroop-related pain activity from our data. “*”refer to a significant main effect of TIMING 
from a Repeated Measures ANOVA at p < 0.01 and p < 0.05 respectively. (B) Baseline 
Temperature: linear regressions (with confidence interval areas) and individual data 
describing the predictions from the Neurological Pain Signature plotted against the 
stimulation temperature. 
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Supplementary Tables 

Supplementary Table 1 

Re-analysis of the data from Verstynen (2014). Regions implicated in the contrast Incongruent 
> Neutral, Incongruent > Congruent and in the contrast testing the parametric modulation of 
Response Times. The implicated regions survive FWE correction for multiple comparisons at 
the cluster level, with an underlying voxel-level threshold corresponding to p < 0.001. L and R 
refer to the left and right hemisphere, respectively. M refers to medial activations. 
 

 SIDE 
Coordinates 

T(27) Cluster size 
x y z 

Incongruent > Neutral 

Anterior Insula R 32 22 6 7.63 
2278*** 

Dorsolateral Prefrontal Cortex R 46 18 28 5.25 

Anterior Insula L -30 22 -10 7.58 
2782*** 

Dorsolateral Prefrontal Cortex L -34 0 50 6.46 

Posterior Parietal Cortex R 38 -44 36 4.72 262* 

Posterior Parietal Cortex L -30 -52 44 5.30 952*** 

Middle Cingulate Cortex M 6 32 26 4.56 
1426*** 

Supplementary Motor Area M -6 16 50 6.95 

Thalamus R 10 -6 -8 5.41 
638** 

Caudate R 12 14 0 5.18 

Precuneus M -4 -66 44 4.35 247* 

Incongruent > Congruent 

Anterior Insula R 32 24 40 8.29 1457*** 

Dorsolateral Prefrontal Cortex R 44 20 26 5.74 567** 

Anterior Insula L -30 22 -10 5.77 473** 

Dorsolateral Prefrontal Cortex L -48 14 24 6.82 1238*** 

Posterior Parietal Cortex R 48 -38 44 4.01 
249* 

Superior Temporal Gyrus R 64 -44 18 4.97 

Posterior Parietal Cortex L -28 -58 44 4.72 859*** 

Middle Cingulate Cortex M 10 28 36 5.23 
999*** 

Supplementary Motor Area M -8 8 58 4.93 

Thalamus R 10 -6 -2 7.39 

899*** 
Caudate R 12 12 -2 4.56 

Hippocampus R 24 -30 -6 3.89 

Brain Stem M 2 -22 -24 3.72 

Calcarine Cortex R 14 -68 12 6.24 404** 

Calcarine Cortex L -10 -74 6 5.17 318* 

Parametrical modulation of Response Times 

Anterior Insula  R 32 18 2 7.22 1362*** 

Anterior Insula  L -28 26 -2 5.27 

9759*** 

Dorsolateral Prefrontal Cortex L -42 20 24 5.33 

Precentral Gyrus L -26 0 56 7.96 

Posterior Parietal Cortex L -34 -40 42 5.69 

Supplementary Motor Area M -4 14 50 7.42 

Middle Cingulate Cortex M 10 30 24 5.60 



16 
 

Thalamus L -10 -18 12 5.84 
596** 

Caudate L -12 8 4 4.96 

*** p < 0.001; ** p < 0.01; *p < 0.05 corrected for multiple comparisons at the cluster level for the 
whole brain. 
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