

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE

must be obtained for all other uses, in any current or future media, including

reprinting/republishing this material for advertising or promotional purposes,

creating new collective works, for resale or redistribution to servers or lists, or

reuse of any copyrighted component of this work in other works.

Francescomaria Faticanti; Francesco De Pellegrini; Domenico Siracusa;

Daniele Santoro; Silvio Cretti, Throughput-Aware Partitioning and Placement

of Applications in Fog Computing, IEEE Transactions on Network and Service

Management, Volume: 17,Issue: 4, December 2020, pp. 2463-2450, DOI:

10.1109/TNSM.2020.3023011

The final published version is available online at:

https://ieeexplore.ieee.org/document/9189841

When citing, please refer to the published version.

https://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=9289053&punumber=4275028
https://doi.org/10.1109/TNSM.2020.3023011

Throughput-Aware Partitioning and Placement of

Applications in Fog Computing
Francescomaria Faticanti , Graduate Student Member, IEEE, Francesco De Pellegrini , Member, IEEE,

Domenico Siracusa , Daniele Santoro, and Silvio Cretti

Abstract—Fog computing promises to extend cloud computing
to match emerging demands for low latency, location-awareness

and dynamic computation. It thus brings data processing close
to the edge of the network by leveraging on devices with differ-

ent computational characteristics. However, the heterogeneity, the
geographical distribution, and the data-intensive profiles of IoT

deployments render the placement of fog applications a funda-

mental problem to guarantee target performance figures. This
is a core challenge for fog computing providers to offer fog

infrastructure as a service, while satisfying the requirements
of this new class of microservices-based applications. In this

article we root our analysis on the throughput requirements
of the applications while exploiting offloading towards different

regions. The resulting resource allocation problem is developed
for a fog-native application architecture based on containerised

microservice modules. An algorithmic solution is designed to opti-
mise the placement of applications modules either in cloud or in

fog. Finally, the overall solution consists of two cascaded algo-
rithms. The first one performs a throughput-oriented partitioning

of fog application modules. The second one rules the orchestra-
tion of applications over a region-based infrastructure. Extensive

numerical experiments validate the performance of the overall
scheme and confirm that it outperforms state-of-the-art solutions

adapted to our context.

Index Terms—Fog computing, IoT, applications partitioning,
resource allocation, microservices.

I. INTRODUCTI ON

HE SPREAD of IoT devices has led to the design of new

extensions of cloud computing, since at scale the huge

amount of data produced by those devices is becoming unman-

ageable with existing device-to-cloud paradigms. Sending all
raw data generated by IoT devices to the remote cloud for pro-

cessing, in fact, represents a key bottleneck due to the high

latency and network congestion introduced. Fog computing

Manuscript received March 10, 2020; revised July 2, 2020; accepted

September 1, 2020. Date of publication September 9, 2020; date of current

version December 9, 2020. This work has received funding from the European

Union’s Horizon 2020 Research and Innovation Programme under grant agree-
ment no. 815141 (DECENTER: Decentralised technologies for orchestrated

Cloud-to-Edge intelligence). The associate editor coordinating the review of

this article and approving it for publication was D. Pezaros. (Corresponding

author: Francescomaria Faticanti.)

Francescomaria Faticanti is with the ICT, RiSING Group, Fondazione

Bruno Kessler, 38123 Trento, Italy, and also with the Department of

Information Engineering and Computer Science (DISI), University of Trento,

38122 Trento, Italy (e-mail: ffaticanti@fbk.eu).

Francesco De Pellegrini is with the Laboratoire Informatique d’Avignon,

University of Avignon, 84140 Avignon, France.

Domenico Siracusa, Daniele Santoro, and Silvio Cretti are with the ICT,

RiSING Group, Fondazione Bruno Kessler, 38123 Trento, Italy.

Digital Object Identifier 10.1109/TNSM.2020.3023011

has been proposed in order to mitigate these core problems [1].

The idea is to perform part of the overall computation at

the edge of the network without sending raw data directly

to the cloud. In this manner, the amount of data sent to the

cloud is reduced, resulting in lower bandwidth consumption
and reduced response time.

The current fog computing paradigm is based on a layered

architecture, including a central cloud, a series of edge nodes

and, finally, target objects which generate data and/or actuate.

In contrast to cloud computing, where a set of homogeneous

resources are concentrated in the same area, fog computing

infrastructure typically consists of a set of heterogeneous and

geographically distributed resources, possibly organized in fog

regions with respect to the objects each region hosts. In this
context, the usage of edge resources need to be optimised with

respect to the specific architecture of fog applications to satisfy

their required performance figures.

With the fast growth of IoT, microservices-based devel-

opment has become the current practice in cloud and fog

application design in order to guarantee availability and scal-

ability [2], [3]. Microservices applications are composed by

interdependent modules, such as for example, a graphical user

interface, a Web repository or an image recognition module.
Satisfying the requirements of all the modules of an appli-

cation translates in the selection and allocation of the right

set of resources in the fog-infrastructure. But, while resource

allocation in cloud computing is a well-known and complex

problem – provably NP-hard in all cases of practical rele-

vance [4] – in fog computing the problem has a specific

structure due to geo-distribution of heterogeneous resources

and location of IoT devices. Actually, in a typical fog scenario
there exist different regions where the modules of a certain fog

application can be deployed, as depicted in Figure 1. Thus,

whilst several approaches have been proposed in the cloud

literature, few of them account for the deployment among

different regions. In fact, existing technologies fit the cloud

scenario where the resources’ pool is concentrated in the same

area irrespective of the objects’ location. For instance, cur-

rent Kubernetes’ placement algorithms [5] perform well in

cloud, but they require new functional extension to discrimi-
nate the deployment of application components across multiple

regions. Consequently, there is a lack of solution for appli-

cation deployment that exploits the inter-operability between

different regions. Actually, in our tests we verify that, while

for the sake of implementation it is tempting to treat all the fog

regions as a unique region ruled by off-the-shelf Kubernetes

T

mailto:ffaticanti@fbk.eu
https://orcid.org/0000-0002-3075-313X
https://orcid.org/0000-0002-1370-9401
https://orcid.org/0000-0002-5640-6507

Fig. 1. Reference fog system a rch itectu re: app licat ion u1 requests data
from a n IoT object (ma rked red) located in a rea S1; the whole system is
com posed of geograph ica l area s (regions) Si, i = 1, 2, 3 connected to the

central cloud S0.

placement algorithms, this may severely limit the number of

applications deployed on the infrastructure.

Main contribution: In this work we address the problem
of deployment of batch of applications in a fog infras-

tructure covering different geo-distributed and heterogeneous

regions, subject to the applications’ requirements with respect

to both computation and communication. We represent IoT

applications’ workflows by means of direct acyclic graphs

(DAG), where microservices are vertices and the dependencies

between the microservices represent graph edges.

The corresponding resources optimisation becomes a non
linear mixed integer NP-hard problem. The problem com-

bines a multicommodity flow and a graph embedding problem,

for which we provide a negative result for the possibility

to design tight polynomial-time approximation algorithms.

Thus, we propose a cascade solution consisting of two main

steps. First, at the application level, a preliminary partitioning

for applications minimises the throughput footprint of fog-

native applications. Second, a placement step accounts for

the computational and communication demands and proximity
requirements of applications.

The rest of this article is organised as follows. The next sec-

tion describes the system model, i.e., the abstractions we adopt

for the applications’ architecture, the network infrastructure

and applications’ deployment configurations. In Section III we

present the problem formulation, introducing the most gen-

eral problem setting. The placement problem is addressed in

Section IV. The problem is proved NP-hard by reduction from
a multi-dimensional multiple-choice knapsack problem and a

greedy algorithm is developed in Section V. Numerical results

are reported in Section VI. Related works and existing con-

tainer orchestration technology for fog computing are reported

in Section VII. A concluding section ends this article.

II. SYSTEM MODEL

The combination of a fog-native partitioning and a place-

ment scheme follows the rationale that microservices of the

same application, when deployed on the same fog region,

generate negligible communication overhead; in fact, under

standard containerisation technologies they can be deployed on

the same pod [6], [7]. On the other hand, when two application

modules are deployed in different region, the resources alloca-

tion balance must account for the communication overhead. A

TABLE I

MAIN NOTATION USED THROUGHOUT THIS ARTICLE

rational choice is to group applications microservices accord-

ing to their requirements: fog modules with strict latency
constraints require installation on the edge, e.g., to support

real-time processing of data streams from a local IoT device.

Other microservices may need computational power not avail-

able on edge nodes, this is the case, e.g., of online machine

learning algorithms. This fog-cloud dichotomy greatly simpli-

fies the placement of such fog-native applications, since while

the first group hosts microservices that could be or need to be

deployed on the edge, the second one is the set of microser-

vices without strict latency requirements and, in turn, possibly
hard computational requirements; for the latter, cloud deploy-

ment is assumed apriori. This minimal partitioning results in

the functional bi-partition shown in Figure 2.

A. Network Model

We consider a standard fog system architecture [8], [9]

where the network architecture consists of a central cloud,

which is assumed of unlimited computational capabilities –

relatively to edge nodes – and a set of fog regions connected to

the central cloud. Each fog region comprises servers with spe-

cific computational capabilities in terms of memory, CPU and

storage. We consider a batch of applications to be deployed
on such an infrastructure. Each application is described by a

list of requirements in terms of memory, CPU, storage and

bandwidth. The objective is to deploy the applications on the

infrastructure in order to maximize a certain profit function

while satisfying the resources constraints and applications’

demands. Throughout this article the target performance figure

is the number of concurrent fog-applications hosted simultane-

ously on the infrastructure; more general objective functions
can be studied in the same framework and are left as part

of future works. The problem is to find a set of mappings

of applications onto fog-regions to maximize such objective

function, where each such mapping engenders diverse resource

occupation vectors and its own profit value.
More formally, we consider a fog system deployed over

a set of geographic regions K = {1,..., K}. Region k

hosts a set Sk of edge servers or units. We denote ski
, with

i ∈ {1 ,..., nk } a specific edge unit deployed within the

−E
i =1

i =1

a factor of n for any E> 0, where n := 1 +

n .

Fig. 2. Cascade of throughput-aware partitioning of a fog application into

two chunks, and subsequent placement of the fog chunk onto an edge node.

k-th region; for the sake of notation we denote the central

cloud as S0. The resources of edge unit s are represented

system design. Nevertheless, in the numerical section we per-

form a thoroughly comparison of our reference system with

other solutions violating such assumption.

III. PROBLEM FORMULATION

In this section we describe the overall optimisation problem

for the deployment of fog applications across multiple con-

nected fog regions, corresponding to the reference architecture

of Figure 1. First, we describe the original problem and
describe its complexity and approximability. Afterwards, we

introduce the problem split into the cascade of two sub-

problems which we analyse in the rest of this article.
by capacity vector ki M P S Main problem: Given a set of DAG-like applications U and

Cki
= (Cki

, Cki
, Cki

). The first compo-
nent of the capacity vector is the memory capacity, while

the second component is the processing capacity; the third

component denotes the storage capacity, i.e., the data vol-

ume that can be accommodated on the storage of the edge

unit. The fog infrastructure can be described by an undirected
weighted graph G = (V, E) where V = {Si ∪ Ui }i∈K and
E ⊆ {{i, j }|i , j ∈ V , i /= j }. The weight of each edge

{i, j} ∈ E consists of the latency on the link dij , and the

link bandwidth Bij . Let N (Si) = {Sj |{j , i}∈ E}. Figure 1
reports a pictorial example of such fog infrastructure.

B. Application Model

The application model adopted in this article is based on

the distributed data flow model [10], where distributed com-

ponents of an IoT application perform different computational

tasks. We model each application like a weighted DAG where

the nodes represent the application modules and the edges

between nodes represent the execution order of the modules.

The weight of each edge represents the throughput gener-
ated by one microservice performing some computation and

sending the results to another component downstream. More

formally, each application u is defined by the weighted digraph

(Gu , λu), where Gu = (Vu , Eu) and λu : Eu → R+, i.e.,

λu (m, n) represents the maximum throughput that can be gen-
erated by the microservice m and sent to microservice n of the
same application. In each fog region k we have a set of appli-

cations to be deployed, Uk . From here on out, we identify

the application and the device from which data are requested

with same symbol. We say that application u “belongs” to
a given region because the IoT object is located there. Such

region is denoted Su for the sake of notation. Furthermore,

we denote with U = ∪K Ui the set of all applications to be
deployed on the infrastructure. A further assumption that we

shall introduce is that each application is deployed on a set

of servers defined by the neighbourhood of the region from

which the data are generated, as in Figure 1. To this respect,

we remark that the practice to ensure connectivity between

containers is to interface them at the application layer, e.g.,

connecting them by http(s) protocol, so that multi-hop routing

at the network layer is not viable for joint optimisation as it
would introduce queuing and routing delay at each hop [11].

In the proposed system model, placement on neighbouring

regions still attains load balancing while greatly simplifying

a fog infrastructure G = (V, E), deploy the maximum number

of applications in order to maximize the provider’s revenue

while satisfying the applications’ delay requirements and the

infrastructure capacity.
The deployment of an application u ∈ U is represented

by a mapping between each module v ∈ Vu and a server of
the infrastructure such that all the applications requirements
and infrastructure capacity constraints are satisfied. These con-

straints involve the CPU, memory, storage and bandwidth

constraints for the infrastructure, and delay constraints for the

application. This latter constraint involves the computation

of the optimal throughput for each edge of the application

(v, w) ∈ Eu given the placement of application’s nodes v
and w. In order to compute such throughput values we should

take into account the maximal path, in terms of latency, from

the source to the destination node. This would result in hav-

ing a non-linear constraint involving the binary variables for
the placement of each application’s module and the continu-

ous variables for the computation of the optimal throughput

for each application’s edge. The mathematical formulation of

the main problem can be found in the Appendix. Regarding

its computational complexity, it can be observed that – by fix-

ing throughput variables – it can be proved to be NP-hard

by polynomial time reduction from a virtual network embed-

ding problem, known to be strongly NP-hard. As discussed
in the Appendix, such problem cannot be approximated by

a polynomial-time algorithm. Hence, we have the following

result:

Proposition 1: Unless P = NP, the application placement

problem can not be approximated in polynomial time within
1 K
2 i

Here, the term n represents the total number of servers avail-

able for microservices’ deployment: we have ni servers for
each fog region i ∈ K , plus the cloud region which counts
as a single server with infinite capacity.

A. Resolution Approach

The previous result rules out the possibility to devise effi-
cient approximation algorithms to solve the main problem

altogether, in all cases of practical interest. Thus, in order to

render the original problem more tractable, we split it into the

cascade of two sub-problems. In the first one, each applica-

tion is partitioned in two chunks in order to minimise the

maximum throughput between them, and imposing that all

the application’s modules belonging to the same chunk will

be deployed in the same region of the infrastructure. In this

manner, the communication overhead between application’s

components and the number of binary and continuous variables

for the placement and throughput computation are reduced. In

the second sub-problem, once fixed the partition for each appli-

cation solving the previous problem, a feasible deployment per
application’s chunk is found. The latter problem will be further

transformed into an integer linear programming problem.

As introduced before, after the partitioning step, each fog

application will consist of two chunks: the first one is the

subset of application microservices apriori executed in cloud,

whereas the second is the subset encompassing microservices

that can be deployed either in fog or in cloud. By assumption,

all applications are supposed to adhere to such a fog-oriented

partitioning.1 Of course, in general, any partition of microser-
vices into two chunks will do. However, we shall consider

both the case of throughput-agnostic and that of throughput-

aware partitioning. With the former, the application partition

is oblivious to the data flow across microservices of the same

application. In the latter case, instead, we shall optimise par-

titioning based on the communication requirements of the

microservice architecture. In both cases, anyhow, it is rea-

sonable that a fog-native partitioning would be completely

infrastructure-agnostic, thus accounting for requirements of a
tagged application only.

Note that the partitioning phase can be realised by a static

and offline algorithm processing each application individually.

Depending on the business model, the infrastructure provider

can offer the application owner with a cloud service to con-

tainerise her/his applications into a fog and a cloud chunk

using the proposed partitioning algorithm. For the sake of

simplicity, we have omitted all the aspects related to the
orchestration of the registries where the images of the chunks

are finally stored. In fact, multiple schemes can be envis-

aged, e.g., either a single cloud registry, or also several per

region registries caching application chunk images. Once the

registries have been populated with the chunk images of the

applications concerned with target areas, the placement algo-

rithm could leverage, e.g., the Kubernetes control plane to

switch on the fog chunks of applications in the target regions.

How to optimise the registry placement and the chunk image
caching process is part of our current research effort and is

left out of the scope of the present manuscript.

The cloud computing literature provides well-known solu-

tions in a single data-center, such as, for instance, Kubernetes’

scheduling algorithms [5]. Although these algorithms show

good results in a single-region scenario, they are not designed

to perform under throughput constraints among several fog

regions. Our target is an algorithmic solution identifying a
region for the deployment of each partitioned application.

Focusing on the region selection only complies with cur-

rent practice in containers’ orchestration, since Kubernetes

orchestration procedures and/or optimised versions can be later

1Depending on the v irtualisation technology, a fog-oriented application par-

titioning will produce two containers/pods or two VM images; however this

is not relevant for the rest of our discussion.

applied within each single region to find the best local resource

allocation. Overall, the complete placement scheme proposed

consists of the following logical phases which we describe

next as described in Figure 2:

i. fog application partitioning: application packaging into a

cloud and a fog chunk;

ii. region selection: selection of target regions in the neigh-
bourhood of the objects that generate data consumed by fog

applications;

iii. deployment: using an off-the-shelf orchestrator (e.g.,

Kubernetes) to perform allocation within a fog region cluster

according to standard or optimised local placement rules.

B. Throughput-Aware Fog Partitioning

An efficient bipartition of the application graph can reduce

monitoring and networking costs. In fact, for the sake of
example, we can consider the case of video surveillance

applications. We can expect one or more of the application

microservices to require significant amount of computational

power in order to execute, e.g., sophisticated face-recognition

techniques. Such microservices will be normally part of the

cloud module. On the other hand, since the throughput gener-

ated by video sensors represents a serious bottleneck, we can

also expect some filtering microservice to pre-process the raw
video stream on edge nodes, e.g., to extract just the frames

relevant for the task from the raw videostream. Thus, in order

to reduce upstream the fog-to-cloud throughput of such an

application, it is indeed optimal to install, whenever possible,

such a microservice in the fog chunk.

More in general, an efficient throughtput-aware partition-
ing shall split microservices such as to minimize the total

throughput flowing from the first set of the microservices par-

tition, the fog chunk, to the second set of the partition, the

cloud chunk. Let the weighted DAG Gu = (Vu , Eu) rep-

resent the target application u. The application partitioning
problem can be reduced to the Minimum k-cut problem on

graph Gu . The standard definition for a k-cut is set of edges

whose removal leaves k connected components [12]. A mini-
mum k-cut problem asks for a minimum weight k-cut. In our

context, we are looking for a minimum 2-cut on Gu . The

reason behind such a minimal cut is twofold. First, since we

are not assuming a hierarchical structure for the infrastruc-
ture, only fog regions and the cloud can perform computational

tasks. The IoT devices, indeed, are not usually able to perform

significant operations. Furthermore, within the same region,

delay and bandwidth constraints are negligible meanwhile they
are significant between two different regions. Hence, splitting

an application in more than two chunks would be equivalent

to distribute the applications among more than two regions
and this would bring additional communication overhead in

terms of latency and routing implementation issues for the

applications. Finally, two different fog regions may not be

directly connected forcing the chunks of the applications to
communicate through other regions. However, in this case we

would lose what we have gained in terms of latency with fog

computing. Secondly, if we wanted to partition an application
in more than two chunks, we should solve a minimum k-cut

u

u

u

u

u

u

problem with k ≥ 3 and the partitioning problem would be
NP-hard [12].

Given a source and a destination node, the minimum 2-cut

problem is equivalent to the maximum flow problem for the

min-cut max-flow theorem [13] which can be efficiently solved
by a maximum flow algorithm such as the Ford-Fulkerson

algorithm [14]. Hence, solving an s-t cut problem we can solve

our application partitioning problem as expressed formally by

Proposition 2 where APP-PARTITIONING is the application

partitioning problem described above and MIN-CUT is the

minimum s-t cut problem.

Proposition 2: APP-PARTITIONING ≤p MIN-CUT.
Proof: We can show the polynomial reduction by taking

an application DAG and selecting a source and a destination

node (since we have a DAG structure there exists at least

one node with no incoming edges, the source, and one node

with no outgoing edges, the destination). Additionally, we set

the maximum throughput of each application’s edge as the

maximum capacity of the graph. In this manner, by solving the

min-cut problem on such graph we have a 2-cut partitioning

of our application graph.

Algorithm 1: Application Partitioning Algorithm

Input: Application graph Gu = (Vu , Eu), C ⊆ Vu
Output : 2-cut partition of the application u

1 Cloud ← ∅;

2 Edge ← ∅;
3 Vu ← Vu ∪ {t};
4 for v ∈ C do
5 Eu ← Eu ∪ {(v, t)};
6 λu (v, t) ← +∞;
7 s ← first node in a topological order of Gu ;
8 G∗ ← Max_Flow(Gu , s, t, λu);

9 for w reachable from s in G
∗

do

10 Edge ← Edge ∪ {w};

11 Cloud ← Vu \ Edge;

12 return (Edge, Cloud)

1) Throughput-Intensive Applications (Notation): From

here on out, for the sake of brevity, for each application

u ∈ U , we identify with uA and uB the Cloud and the
Edge chunks, respectively. Finally, let denote cM , cS , cP u u u

Incidentally, whenever a single source and sink node pair
cannot be identified in the application DAG, it is always pos-
sible to add a virtual source (sink) node with large capacity

the total resource requirements, in terms of memory, storage

and processing capacity, respectively, of uB ; with compact
notation we denote cu = (cM , cS , cP).

u u u

and apply the algorithm to the resulting DAG.

The partitioning algorithm is described in Algorithm 1.

The input is represented by the application graph and a sub-

set C of application’s microservices to be deployed in cloud

by default. The algorithm adds a dummy target sink node t

to the application graph; t is connected to each node in C
using a dummy high-throughput edge. First, the algorithm

establishes a source node through a topological sort of the

application’s DAG. Second, the Ford-Fulkerson’s algorithm,

applied to the augmented graph, returns the partition sep-

arating s and t with a cut of minimum capacity. All the

nodes still reachable from the source node in the residual

While the proposed framework does apply to other classes

of applications, e.g., memory-intensive or CPU intensive

applications, we shall focus on optimising the allocation of

resources for throughput-intensive fog applications. They are

a critical class of IoT applications which includes, e.g., stream-

ing mining applications [17], where processing directly on fog

nodes leads to huge bandwidth savings. In this context, for
instance, a raw video stream can be filtered to extract only

the relevant parts of specific frames, e.g., those containing a

face which need to be sent to the cloud to perform recogni-

tion. Hence, after the partitioning step showed in Figure 2,

two different data units may be transmitted. We call, for each
graph will be included in the Edge set, while the others application u, ΔH the data unit transmitted directly from the

will go to the Cloud set. We observe that the high through-

put of the edges between nodes in C and node t grants that
all nodes in C will belong to the Cloud set, as stated by

Lemma 1.
Lemma 1: For each node v ∈ Vu \ {s}, if v ∈ C then

v ∈ Cloud when Algorithm 1 terminates.

Proof: Let assume, by contradiction, that for some v ∈ C
it holds v /∈ Cloud. Since, by assumption, v /= s, there
exists an in-going edge to v, (v∗, v). If v ∗ /∈ C , then

IoT sensor (e.g., video camera frames) to the Fog chunk. ΔL

is the data unit transmitted from the Fog chunk to the Cloud

chunk once a processing step has been performed (e.g., face

images).

Delay Constraints: These two different data units are sent at

different rate; we denote λH as the raw throughput generated

by the IoT device and λL for the throughput generated towards
the Cloud chunk once the Fog chunk of the application has
processed the stream. In this case, typically λH ≥ λL. In the

u u

λu (v∗, v) < λu (v, t), contradicting the cut minimality found
by the Algorithm 1. If v ∗ ∈ C we can repeat the previous

fog resource allocation problem described in the next section

the throughput λH and λL are decision variables which can be u u

argument until we find the first node v ∗∗ /∈ C , in the worst
case until reaching node s.

Complexity: The complexity of Algorithm 1 is dominated by

the time complexity of the Ford-Fulkerson’s algorithm which

is O (|Eu | λ∗) for each application u, where λ∗ is the max-
imum flow in the application network. We can improve the

runtime through the Edmonds-Karp implementation of the

algorithm [15], [16] obtaining a complexity of O (|Vu |·|Eu |2)
totally independent of the maximum flow of the application

network.

optimise in order to meet the applications’ delay requirements.
In fact, we can assume that each application u has to output

every 1/Fu seconds a result like a positive or negative face
recognition match. The cloud chunk is installed in the central
cloud S0. We can hence consider the whole processing chain

involved by the two-chunks and the related data transmission
delay. We should also include the processing delay du of appli-

cation u (if deployed back to back to the IoT object), plus the

communication delay duj , which is the additional delay to

retrieve data from region where the sensor belongs, when the

v

λ +
L

x
u

u

Δ Δ

λ

u

u

L

L

u u u u u
Type 2: Fog chunk deployed on central cloud S0; IoT data λH λL

(

+
Bu H L

u

Fig. 3. Configurations types for the deployment of the Edge module uB ; Cloud module uA is always installed in cloud.

Fog chunk is installed in region j. In the resource allocation

L
xu,k λ

L + xu,0 λ
H

+

problem we need to consider the processing and transfer-

ring time. Actually, the processing time for each information

unit depends on the throughput between application chunks.

u∈Uk

+
L

u u

L
xv,j λ

L ≤ Bk 0,

Any application placement has to guarantee the application j∈N (Sk) v∈Uj

to process an information unit Δu in 1 seconds. Thus, ∀k ∈ K \{0} (3)
Fu

the allocation of such throughput depends on the applica-

tion deployment configurations. Since the Cloud chunk is u

L

∈Uk
xu,j

H
u

u∈Uj

u,k λ
H ≤ Bkj ,

always installed on the central cloud, the three basic fog ∀jk ∈ E, j , k /= 0 (4)
configurations to deploy application u are as in Figure 3:

Type 1: Fog chunk deployed on Su ; higher throughput λH
flows between IoT object u and region Su , with IoT data unit

du +

H H L
u + duj + u u

u u

xu,j

ΔH . ΔL served between Su and S0 with low throughput λL;
(

ΔH

(
ΔL

H is served between Su and S0 with high throughput λH ;
u u

 1
Type 3: Fog chunk deployed on a neighbouring fog region ≤ ∀u ∈ U , ∀j ∈ N (Su) (5)

S /= Su ; lower throughput required between S and central Fu

j
H

j L
x
 ≤ 1 ∀u ∈ (6)

cloud S0. However, the IoT data Δu = Δu is served between

Su and Sj with high throughput λH . k∈K
u,k

L

U

xu,k ≤ 0 ∀u ∈ U (7)

C. Fog Resource Allocation Problem

The objective of the edge-infrastructure owner is to

maximize the revenue obtained by provisioning her fog infras-

k∈K \{N (u)∪{u}}

xu ,k,i ∈ {0, 1} ∀(u, k) ∈ U × K ∀i ∈ Sk

(8)
λH , λL ∈ R+ (9)

tructure to application tenants. By using the traditional scheme u u

of pay per use, it can settle a cost in order to deploy an appli-

cation. A tenant owning application u pays fu,k > 0 euros per
application installed in region k.

The objective is thus to host containerized fog applications

such in a way to maximize the owner revenue, while satisfy-

ing the applications’ requirements. We can obtain the optimal
reward for a given batch of applications.

Decision variables xu,k,i are boolean variables indicating

the placement of the fog chunk of application u on the i-th
server of region k. Further, decision variables λH , λL ∈ R+

where we let xu,k = i∈Sk
xu,k,i ∀(u, k) ∈ U × K

for notation’s sake. The objective function is the revenue
gained by the infrastructure owner. The constraint (2) is

meant component-wise: it bounds the resources utilization
on fog servers in terms of memory, processing and storage

capacity, respectively. Also, (3) and (4) bound the through-

put generated by applications with respect to links’ capacity.

Equation (3) accounts for all traffic from region k to the central

cloud, whereas (4) accounts for the throughput across adjacent u u
regions as in Figure 3c. By constraint (5), the total transmis-

represent the optimal throughput in the large and small data

unit transfer mode for application u, respectively. Indeed, the

throughput declared for each application’s link in the partition-
ing step is an upper bound on the actual throughput generated

on each link of the application. The optimal allocation policy

using a mixed integer non linear program (MINLP) writes:

sion and computing time needs to be smaller than the service

rate of the application. We assume that, according to (6), each

application has at most one deployment region, since, given

the limited resources, it is not always possible to deploy all the

applications. In particular, (7) indicates that each application

can be deployed only on neighbour regions or on its original

region.
maximize:

(u,k)∈U ×K

fu,k xu,k (1) The decision variables are the binary variables for the

placement and the continuous variables for the throughput.

subject to: cu xu,k,i ≤ Cki , ∀k ∈ K , ∀i ∈ Sk (2)

u∈U

Prob. 1–9 is a combination of a placement and a multi-

commodity flow problem. For the sake of tractability, in the

Δ

λ

Δ

+ du0 + xu,0 + du0 + xu,u

λ

u

λ

u

Δ Δ

λ

Δ

λ

Δ

L

L
u u

v

λ +
L

x u

L

F L
u

u

+
Bu H L

u u

F u

L L

next section we offer a transformation to a pure placement

problem.

IV. PURE PLACEMENT PROBLEM

The aforementioned transformation is attained by fixing the

continuous decision variables of the MINLP, i.e., λL and λH .

A. Complexity

Problem (14)–(20) has formulation similar to a specific

Knapsack problem, namely the Multidimensional Multiple-

Choice Knapsack (MMCK) problem. This latter problem is

one of the most complex versions of the Knapsack Problem’s

family. In this version of the KP, there are different groups of
u u

To do so, it is sufficient, for each application u ∈ U , to fix the
minimum throughput required in order to deliver the output at

target rate Fu , given its configuration type and deployment
region.

Type 1: Processing each information unit and providing an

output result should happen at rate 1 ; by accounting for all
processing and communication delay we write

items with the constraint that exactly one item for each group

must be picked [18].
In the multidimensional multiple-choice Knapsack problem

there are m resource types and the amount of available

resources is given by vector C = (C 1 ,..., Cm). Also, there

are n disjoint classes of items, Ji i = 1 ,..., n, where each
class Ji has ri items. Each item j ∈ Ji has profit value vij ≥ 0

H L and weight vector Wij = (w 1 ,..., wm) ≥ 0, where each
Δu Δu 1 ij ij k

du + du0 +
Bu

+ ≤
u

which can be solved for equality in λL;

Type 2: For each application u, we have

ΔH ΔH 1

(10) weight component wij ≥ 0, k = 1 ,..., m, is the occupation
of resource k of item j ∈ Ji .

The objective is to pick exactly one item from each class

in order to maximize the total profit value of the pick, subject

to resource constraints:
du + du0 +

 u
+

 u
≤ (11) n ri

Bu H Fu
maximize: Z =

L L
vij

xij (21)

In this case we are solving for λH ; we observe that it must
hold indeed λH ≥ λL.

i =1 j =1 n ri

u u subject to: L L
wk x

 ≤ Ck , 1 ≤ k ≤ m (22)
Type 3: If uB is deployed in a region neighbor of the

original region of u, it holds
ij ij

i =1 j =1
ri

H H L

du + duj + dj 0 +
u

+
u u

u u

(12)
j

L

=1

xij = 1, 1 ≤ i ≤ n (23)

In this case, in order to have a unique solution in the min-

imum throughout, we impose additional constraints, namely

we restrict to the set of solutions such that

xij ∈ {0, 1}, ∀1 ≤ i ≤ n, 1 ≤ j ≤ ri . (24)

The pure placement problem and the MMCK have simi-

lar formulations. The next result proves NP-hardness of our
λH ΔH

 u = u (13) problem by reduction from the MMCK problem.
L L Proposition 3: Problem (14) is NP-hard.

Once we performed the above identification, the original

problem becomes:

maximize: fu,k xu,k (14)
(u,k)∈U ×K

subject to:
L

cu xu,k,i ≤ Cki , ∀k ∈ K , ∀i ∈ Sk (15)

Proof: We prove the NP-hardness by reduction from a spe-

cific case of the MMCK problem. In particular, we consider the

case where each class has the same number of elements r [19].

Furthermore, the NP-hardness can be easily proved by reduc-

tion from the MMCK problem with m = 1, since starting from

m = 1 the problem is already known to be NP-hard (for m = 1

the problem is known as Multiple Choice Knapsack). Hence,
u∈U

x
u∈Uk

u,k λ
L + x

u,0 λ
H

+

for every instance of a MMCK with n classes consisting of

r elements and 1 dimension, we can reduce it to an instance

of our problem. Indeed, it is sufficient to consider an instance

+ xv,j λ
L ≤ Bk 0,

j∈N (Sk) v∈Uj

∀k ∈ K \{0} (16)

of (14)–(20) with n applications and a single region with r − 1
servers with infinite capacity. Each application has three pos-
sible configurations: deployed in cloud, deployed in fog or not

u

L

∈Uk

xu,j
H
u

u∈Uj

u,k λ
H ≤ Bkj ,

deployed. In this manner, each application defines a class of

configurations consisting of r elements. Each element’s weight

can be mapped to the throughput generated by each application
∀jk ∈ E, j , k /= 0 (17)

xu,k ≤ 1 ∀u ∈ U (18)
k∈K

towards the cloud. In this manner, the only one capac-

ity constraint is the bandwidth constraint on the fog-cloud

link.

k∈K \ (N

L

(u)∪{u })

xu,k ≤ 0 ∀u ∈ U (19) Several algorithmic solutions have been proposed in the lit-

erature for the MMCK problem [19], [20]. However, such

heuristic solutions cannot guarantee approximation bounds on
xu ,k,i ∈ {0, 1}, ∀(u, k) ∈ U × K , ∀i ∈ Sk .

(20)
the produced allocation. Actually, to the best of the authors’

knowledge, no approximation algorithm is available to date

λ

≤
 1

Fu

6

12

14

Fig. 4. Optimal solution vs. Rounding.

TABLE II

COMPLEXITY OF ALL THE SUB-PROBLEMS

Algorithm 2: Fog Placement Algorithm (FPA)

Input: G = (V, E), U
Output : Container placement for each u ∈ U

1 while U /= ∅ do

2

for this specific Knapsack problem with a variable number 3

of dimensions. In [21], authors designed a polynomial time 4

approximation scheme (PTAS) for the MMCK problem when
5

the number of knapsack dimensions is O (1). In our case, 7

instead, the number of dimensions varies with the number of
8

applications and regions. 9

One of the standard techniques to obtain approximation 10

schemes for binary integer NP-hard problems is to relax first

the integrality of choice variables thus obtaining a linear pro-
11

gram and then round the so-obtained continuous solution of the

linear program to an integer solution of the original one [22].
13

One technique is to consider the continuous relaxed variable

as the probability to pick the tagged choice variable (setting

that variable equal to 1). Typically, a difficult challenge for15

such a relaxation algorithm is to guarantee that the obtained16

place ← {};
for i = 1 , . . . , K do

for u ∈ Ui do

A ← ∅;
if verify(Si , u) then

A ← A ∪ {Si };

for S ∈ N (Si) do
if verify(S, u) then

 A ← A ∪ {S};

if A /= ∅ then

place[u] ← select(A , u);

else

place[u] ← ∅;

// select the application to be deployed

u
∗ ← min_resource_region(place);

deploy(u
∗, place[u

∗]);

integer solution is a feasible one for the initial integer problem.

In our case, the rounding technique does not represent a good 17

strategy to obtain a valid approximation scheme. As shown in 18

Figure 4, the approximated feasible solution suffers a signifi-
cant optimality gap with respect to the optimal one. The figure

reports the best feasible solution obtained by the applying the

// Update G
update(G, Splace[u∗], Su∗ , u

U ← U \ {u
∗}

∗
);

rounding technique to the relaxed version of problem (14). One

of the main issues is represented by the constraint (18), which

misleads the relaxation procedure to pick solutions quite far

from optimal. Indeed, by relaxing this constraint, more than

one variable can assume a non-zero value. In this case, we
need to choose which one to pick entirely. In our case we con-

sidered a probability distribution defined for each application

on the set of its possible deployments. However, as confirmed

by Figure 4, this leads to a very conservative approximation

factor since the most probable variables to be picked are may

be arbitrarily far from the ones chosen by the optimal integer

solution.

Finally, in Table II, we have resumed the complexity results
for the problems tackled in this article. The main problem is

strongly NP-hard since it induces a VNE problem; further-

more, it does not admit any tight polynomial-time approxi-

mation scheme. The application partitioning problem has a

polynomial time algorithm as per the reduction showed in

Proposition 2; it becomes NP-hard as the number of chunks

is greater or equal to 3. Finally, the Fog Resource Allocation

problem is formulated as a MINLP problem: by fixing the con-

tinuous throughput variables it becomes the Pure Placement
problem which is NP-hard by reduction from the MMCK

problem.

V. FOG PLACEMENT ALGORI THM

Hereafter, we describe FPA, a greedy solution for (14)

which is meant to provide practically viable solution for the

placement problem described above. The key intuition of

the algorithm is to pick an aggregated view of fog regions’
resources utilisation, thus permitting to measure the effect

of placement as a pseudo-gradient descent in the space of

occupied resources, while treating the alternatives for the

deployment of same application as different yet exclusive

instances.

FPA operates an iterative application deployment. At each

step, for each region and for each application u which belongs

to that region, it selects the set A of admissible regions
for the deployment of chunk uB . Such set includes all the

regions satisfying the computational and throughput require-
ments of a tagged application. Preliminarily, a feasibility check
is performed through a verify procedure: given a region and

application’s requirement, it verifies whether exists at least one

server in the region to host uB , i.e., if the server has enough

space in terms of CPU, memory and storage. Further, through-

put requirements are verified against each configuration type

for each application, by ensuring that the residual bandwidth of

involved links satisfies the minimum throughput requirement

corresponding to the tagged configuration type.

_mem(S)

_stor (S)

1 residual _

h=1

c

c

λ

_p

1 residual _
u

d ({u,S})
;

u

Algorithm 3: Select Procedure

Input: A , set of admissible regions for the deployment of

chunk uB
Output : A region for the deployment
// Build a pseudo-gradient vector for each

region in A

1 for S ∈ A do
M

2
vm ←

residual
u ;

P

3
vp ←

residual
u

roc(S)
;

cS

Complexity: The computational complexity of the FPA algo-

rithm is derived by noting that procedures verify, updateServer

and update have constant time complexity. Procedure select

computes a vector for each eligible region in the set A . In

the worst case, the cardinality of A is at most K − 1. Hence,
the complexity of the select procedure is O(K). The cardinality

of U is U, and the maximum cardinality of a neighbourhood

of a certain region is O(K) in the worst case. The cardinality

of the set of applications to be ranked is O (U) at each step.
Finally, the complexity of FPA is O (U 2 · K 2 + U 2) in the

4
vs ←

residual
u ;

5 if S /= Su then

6 if S ∈ N (Su) then
// Case 3

λH
7 b ←

ban
λL

worst case.

VI. NUMERICAL RESULTS

In this section we evaluate the performance of the com-

bined scheme using throughput-aware application partitioning 8
b2 ←

residual _
u ;

9

10

11

12

13 else

else

band ({S,0})

v¯S ← (vm , vp, vs , b1, b2);

// S = S0, case 2
H

b ← u ;
band ({0,u})

v¯S ← (vm , vp, vs , b1, 0);

and placement. We compare the performance with the case of

throughput-agnostic application partitioning, and with the case

of placement driven by virtual network embedding [23].

In order to understand the average behaviour of the pro-

duced solutions, we examined the performance of the algo-

rithms on a number of randomly-generated graphs. The

// Case 1
λL

14
b1 ←

residual _band ({0,u})

network infrastructure is modelled with an undirected graph

connecting a central cloud to a fixed number K of fog regions,

where K = 10 in our experiments. Thus, the central cloud
15 v¯S ← (vm , vp, vs , b1, 0);

16 return arg min{l/v¯S l/
2}

S∈A

The select procedure is reported in Algo. 3: select first

calculates, for all the admissible regions for the deployment

of an application u, a pseudo-gradient v¯S (∀S ∈ A). Its
components are calculated at lines 2, 3, 4, 7–9, 11, and 14,

respectively, by estimating the normalized decrease of each
resource type in case of deployment with tagged configuration.

The output is the region with the minimum pseudo-gradient

(line 16). Once a feasible region is selected for each applica-

tion, the algorithm 2 chooses the application to be deployed

first. This step is executed by the min_resource_region

procedure. It takes the place map as input and returns

the application to which the region with the minimum

pseudo-gradient is associated, as computed per the select
procedure.

Subsequently, once the algorithm has selected the applica-

tion to be deployed, it updates the computational capacities of

the server hosting the chunk of that application.

Afterwards, the algorithm updates the graph structure

decreasing the available bandwidth of links connecting regions

selected for the deployment (line 17). It iterates until all

applications have been considered.

Finally, we observe that, while the presentation of FPA is
performed in the case of a batch of applications all available
at the same time, the formulation can be easily adapted to

and fog regions form a star topology of cloud-to-fog connec-

tions, namely cloud-links. For every topology realization, links

between two fog regions are added according to an Erdo˝s-
Rényi random graph model, where a link exists between two

regions with probability q. Finally, each link in the result-

ing network is assigned a bandwidth of 15 Mbps, both for

cloud-links and fog-links.

A batch of fog applications is generated for each exper-

iment; we considered U = {80, 90, 100, 150, 200} for

the applications cut evaluation, U = {60, 70, 80, 90, 100}
for the comparison with network embedding approaches and

U = {10, 50, 100, 150, 200} for the comparison with the stan-

dard Kubernetes placement described in Section VI-A3. The

demands of each application of the batch for CPU, storage,
memory and throughput are modelled as uniform independent

random variables. The mean value of such variables is dictated

by the nominal value we measured on a benchmark appli-
cation, that is a plate-recognition application packaged as a

two-modules microservice. The fog microservice module can

process the video stream either in cloud or on a fog node. The

resulting distribution of the key parameters for the applications
microservices are enlisted in Table III; symbol u0 refers to the

nominal values we measured on a proprietary fog platform for

the plate recognition app [24], [25]. Each application is gen-
erated as a DAG with a number of nodes sampled from the

set { 5 , . . . , 20}.
Finally, the probability that an application belongs to region

1 ≤ k ≤ K follows a truncated Pareto distribution of param-
eter α, i.e., P{Ru > k} = k−α/γ, where Ru is the random
variable representing the index of the region assigned to the

the online case, where applications to be deployed arrive and application u and normalization constant γ =
 K

 h−α.

depart, by simply including the release of resources to the

update procedures.

In the proposed scenario, the servers available within each

region belong to three classes, depending on the resources they

;

L

TABLE III

DISTRIBUTION OF THE APPLICATIONS’ MICROSERVICES REQUIREMENTS

OF CPU, MEMORY, STORAGE AND THROUGHPUT

TABLE IV

CHARACTERISTICS OF THE THREE CLASSES OF FOG SERVERS: LOW,
MEDIUM AND HIGH

are equipped with, namely low, medium and high class. The

computational characteristics are listed in Table IV where CPU

performances are described in terms of Million Instructions

Per Second (MIPS) representing the processor’s speed of a

server. This standard measure [26] is relevant in a heteroge-

neous environment as fog computing, since all the servers in

a specific fog region can mount different cores and different

processors. Hence, given this heterogeneity, this measure rep-

resents a basic universal metric for processors’ performances,

used in other fog simulators [27], that is independent from the

algorithm. For the latter we implemented a state of the art vir-

tual network embedding algorithm presented in [23] and two

variants of the Kubernetes scheduler [5].

1) Throughput-Agnostic Partitioning: For the evaluation of

the partitioning algorithm we compare it with a throughput-

agnostic method that, given an application DAG as input,

performs a random cut of the application graph. In detail, the
algorithm takes in input the application graph and perform a

visit of the DAG. Once an order of the application nodes is

induced by the visit, a random cut is chosen on the so-defined

order without considering the total throughput on the chosen

cut.

2) Network Embedding Algorithm: The general problem of

deployment of a DAG-like fog-application can be seen as a

network embedding problem, we compare our solution with a

standard algorithm. The general procedure [23] for the embed-
ding algorithm consists of three main steps to be executed

sequentially for each application.

1) Topological sorting. A topological sort is obtained by

simply performing a modified visit of the application DAG.

The DAG-like structure of the application ensures that there

exists at least one possible order of the application nodes.

2) Application’s nodes mapping. This procedure selects,

for each node, a set of possible regions where the node can

be deployed. Once this set is defined, one region is selected
according to a fixed priority function. In our implementation,

we select the region Si that maximizes

specific model of the processor. The number of servers per

region is determined at each experiment sample as follows.

resCPU (Si)

j∈N (Si)
resBW

(
Si , Sj

)
, (25)

Each region is meant to satisfy same fraction of the expected

aggregated demand. More precisely, each region is equipped
with aggregated resource vector (1 + β) U cu . The parame-

where resBW (Si , Sj) and resCPU (Si) indicate the residual
bandwidth of physical link {Si , Sj } and the residual CPU

ter K 0 capacity in region Si , respectively. If any of the application’s
β is a slack parameter tuning the probability that resources

available in a fog region are underprovisioned/overprovisioned

compared to the aggregated demand. Finally, the servers’

population of the tagged region is generated by allocating iter-

atively servers of different types at random until the region

resource budget is exhausted.

Well-known Fog simulators and emulators presented in the

literature [27], [28] do not support natively scenarios with

multiple fog regions. Hence, we developed a Python-based

simulator for the evaluation of the above algorithms. The
Gurobi solver has been used to solve the optimal place-

ment problem (OPT). Experiments have been conducted on an

Ubuntu Linux server with 32 core AMD Opteron 1.4GHz CPU

and 64GB of memory. Each data point depicted is the result

of an average over 30 instances where the network infras-

tructure is fixed and the application and servers distributions

change. All the results are averaged with the corresponding

95% confidence interval.

A. Reference Algorithms

We compared our proposed scheme with two benchmark

solutions. More precisely, we evaluate the application split-

ting and the deployment (FPA) algorithms. For the former one

we make a comparison with a throughput-agnostic splitting

node has not eligible region, the application is not deployed.

3) Application’s links mapping. If a mapping for all the

modules of the application is found, the next step is to find

a path between each couple of regions where two application

nodes are mapped in the previous step. Given two regions

assigned to two application’s nodes, we compute all the paths

between these two regions and we take the first path with

enough bandwidth capacity for the application’s link. If all

the application’s links are mapped to a set of paths of the

network infrastructure, the application is finally deployed on
the infrastructure.

Before applying the embedding procedure for each applica-

tion, a deployment priority should be established among them.

Hence, we sort the batch of applications on the basis of their

total throughput demand. In this manner, the next application

chosen for the deployment is the one with the minimum total

throughput demand.

Remark: In the experimental section, we shall consider two

variants of the VNE approach. The first is the one where
embedding is performed only to regions neighbouring the orig-

inal one for the target fog application u. The second one,

VNE-MultiHop, assumes routing can be performed across all

regions. The VNE-MultiHop variant may be at advantage by

performing load balancing more efficiently across the whole

deployment, it relies on a strong technological assumption in

Fig. 5. Comparison of throughput-aware vs. throughput-agnostic partitioning.

a) cloud links usage, q = 1/2, β = 0.5; b) cross links usage, q = 1/2 ,
β = 0.5; c) number of dep loyed applications fo r q = 1/2, β = 0.5; d) number
of deployed applications for q = 1/2, β = −0.5.

that it requires joint orchestration of network and application

layers; conversely all other solutions envisioned in this article

can be fully implemented at the application layer.

3) Kubernetes: Kubernetes scheduling algorithms consist

of three main components: the filtering step where a set of

servers is selected for each pod; the ranking which selects,
on the basis of a specific priority function, the best server

for the deployment among the ones previously selected;

finally, the deployment step is dedicated to the final deploy-

ment of the pods on the servers selected on the previous step.

In our case we selected LeastRequestedPriority as the prior-

ity function for the second step. In this manner each server

node is ranked based on the fraction of the node resources that

would be free after the deployment of the selected pod.

For the sake of a comparison with our approach, we adapted
the Kubernetes scheduler to a multi-region scenario imple-

menting two variants of the aforementioned procedure: the

first one runs the basic Kubernetes algorithm in every single

fog region; each region is hence thought as a separate cloud

where a fog server is chosen to host the application chunks to

be deployed. We observe that in this approach, only deploy-

ments of type 1 and type 2 are possible. The second approach

is to consider the whole fog deployment as a unique region.
Hence, in the filtering step, Kubernetes shall select all the

servers able to host a tagged chunk across all fog regions.

B. Experimental Results

1) Application Partitioning: In Figure 5 we evaluate the

effect of the fog partitioning algorithm. Figure 5a reports on

the fraction of cloud-link usage for each application deployed

on the network infrastructure both for the throughput-aware

application splitting (FPA_M) and for the throughput-agnostic
(FPA_R) [29]. It is clear from the figure that with the min-

cut splitting the cloud-link usage is almost constant as the

size of applications batch increases. Furthermore, the cloud-

link usage of the throughput-aware partitioning is always less

than the random cut, as expected. The cloud-link usage of

Fig. 6. a) OPT vs. FPA vs. VNE in terms of number of applications deployed,

q = 1/2 , β = 0.5; b) OPT vs. FPA vs. VNE in terms of number of appli-
cations deployed, q = 1/2 , β = −0.9; c) FPA vs. VNE in terms of average
total delay overhead, q = 1/2 , β = −0.9; d) Average execut ion time fo r
FPA and VNE, q = 1/2, β = −0.9.

the throughput-agnostic decreases as the size of application
batches decreases for the applications deployment. Indeed, to

increase the number of applications deployed FPA tries to

save bandwidth towards the cloud as shown in [29]. Figure 5b

represents the amount of fog-to-fog links usage for both the

two approaches. The throughput-aware partitioning exploits

a larger number of cross-links: as a consequence it can

deploy a larger number of applications compared with the

throughput-agnostic solution, as confirmed by Figure 5c.
Figure 5c shows the effectiveness of the proposed applica-

tion cut in terms of applications placement in an overprovi-

sioning situation in terms of available computational resources.

Indeed, with a minimum cut for the application splitting,

FPA_M is able to deploy almost the totality of the appli-

cations’ requests until |U | = 100. This is also the reason
why the cross-link usage for the throughput-aware approach

keeps increasing steadily until |U | = 100, as shown in
Figure 5b. In fact, FPA_R suffers from the non-optimised

splitting of the applications, especially i scenarios, where
bandwidth saturation represents a bottleneck for the appli-

cations deployment [29]. Thus, we conclude that optimised

application splitting causes a significant increase of the infras-

tructure capacity to host fog applications. Figure 5d shows

that the relative gain of the min-cut approach under tighter

constraints on available resources remains significant versus

throughput-agnostic approaches.

2) Network Embedding: For the VNE algorithm we imple-

mented two variants: the standard one (VNE), adapted to

our scenario, allows the deployment of microservices only on

regions neighbouring the target one; the extended one (VNE-
MultiHop), conversely, allows paths across region nodes when

mapping links of the application graph during the embedding

procedure.

Figure 6a) reports on the number of applications deployed

across the infrastructure in an underprovisioning scenario. We

can observe that, as expected, VNE-MultiHop can deploy all

the applications since we remove the constraint of using only

one-hop links for the applications mappings. The difference

between OPT and FPA is reduced and, on the other hand, the

VNE presents a significant loss. The VNE algorithm, indeed,

tries to deploy all the applications towards the cloud until

the bandwidth between the original regions and the cloud is

exhausted, confirming the bandwidth towards the cloud to be
a real bottleneck for the applications deployment problem.

The VNE-MultiHop, instead, escape from this problem by

allowing the applications’ links mapping among the paths

that go from the original region of the applications and the

cloud. Indeed, given the metric (25), the best resulting region

for each application deployment will be the cloud (for the

unlimited computational power). However, as highlighted in

Figure 6c), this approach can lead to a significant time over-

head. In Figure 6b) reports we have the same results when the
fog has enough computational resources (overprovisioning).

In this case we can see a little loss from the VNE-MultiHop

still due to the metric (25) for the region selection. The VNE-

MultiHop continues to select the cloud without considering the

quantity of resources available in Fog. This can easily leads

to a bandwidth saturation towards the cloud.

Figure 6c) validates our choice of deployment using two

hop schemes when offloading to neighbouring regions in Type

3 configurations. Indeed a multi-hop approach such as VNE-
MultiHop may incur in a significant latency overhead due to

the multi-hop path traversing several links to connect two dif-

ferent regions. On the other hand FPA and VNE have a small

difference in delay, confirming that it is the multi-hop approach

to introduce a significant latency overhead.

Finally, in 6d) we show the execution time of the three

algorithms. It is clear from the figure that VNE and FPA have

comparable and scalable execution times. The VNE-multiHop
presents highest execution times given by the computation

of the paths between all pairs of region nodes where two

application nodes are mapped.

3) Kubernetes: Finally, in Figure 7a) and b) we have

compared our solution with the two Kubernetes algorithm’s

variants: Kub and Kub1, respectively. In the second scenario

all algorithms tend to deploy a larger number of applications

than in the first one. This is expected since the latter both has

more computational resources and more connected regions. In
both figures we can observe that FPA performs close to the

optimal solution. The poor performance of the Kub algorithm

indicates that offloading towards neighbourhood fog regions

is key to efficient fog resource allocation. Also, as the num-

ber of applications increases, the gap between FPA and Kub1

broadens. The reason can be ascribed to two key difference

between FPA and Kub1. First, the deployment order of appli-

cations in FPA matches remaining resources at each step, by
choosing the application with minimum resources consump-

tion pseudo-gradient. In Kub1, conversely, applications are

deployed in a predefined order. Second, for Kub1 neglects

crosslinks bandwidth utilization, it leads quickly to band-

width resources consumption. On the other hand, FPA’s better

performance is due to the fact that it accounts for bandwidth

occupation of both cloud-links and crosslinks. This confirms

the key role of accounting for bandwidth consumption on

Fig. 7 . Number of dep loyed applications with respect to Kubernetes algo-
rithms: a) q = 1 /3, β = −0.2; b) q = 1/2 , β = 0.5; c) Conf iguration
types distribution for a typical solution instance with U = 100, q = 0.5 and

β = 0.5; d) Configuration types d ist ribut ion for a typ ical so lut ion instance

with U = 150, q = 0.5 and β = 0.5.

both fog-links kinds of network links for the final applica-

tions deployment, in order to avoid early bottleneck formation.

Figure 7c and Figure 7d provide further insights into the struc-

ture of the produced solutions. There, we have reported the

number of deployments of each type produced by different

algorithms in a throughput-dominated scenario. The OPT and
Kub1 solutions prioritize type 3 configurations over type 1

configurations, while the opposite is seen to occur for FPA.

Overall, as expected, deployments on fog, i.e., type 1 and type

3, are more frequent than type 2 configurations, since they save

bandwidth on cloud-links. Actually, for a batch of 150 appli-

cations the number of type 2 deployments becomes negligible

(Figure 5f). These results highlight the importance of the fog

side in the applications deployment even when we have an
overprovisioning situation at the edge.

VII. RELATED WORK

In cloud and mobile cloud computing, the problem of
microservices applications deployment has been thoroughly

studied. As described in [30], cloud software design privileges

modular software structures, where applications are composed

by multiple coupled components known as microservices.

In [31], applications are assumed to have a microservice

architecture: the authors proposed a distributed mechanism

for microservices scheduling at the edge. The objective is

minimise the service latency for all the applications to be
deployed. However, applications are simply represented as

sets of independent microservices. In [32], instead, microser-

vice fog applications are represented as DAGs, where graph

nodes represent an application’s modules, and edges between

nodes represent dependencies between them. With such an

application structure, the general application deployment

problem bears several similarities with the graph embedding

problem [33], [34], a well-known NP-hard problem. In our

context, even for two-module containerised fog-applications,
such problem is proved to still be NP-hard. In [35], a DAG

2448 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 17, NO. 4, DECEMBER 2020

x =

⎧
⎨

p

u

structure for IoT applications similar to the one used in this

article is considered. But the aim of the work is different from

ours, because the objective there is to perform communication

load balancing among the microservices of a single application

via their replication across the infrastructure. Furthermore, the

infrastructure model is characterised only by the nodes that

host some replicas of the application’s microservices.
In [36], application provisioning is studied from the per-

spective of the network infrastructure. A fully polynomial-time

approximation scheme is derived for single and multiple

applications deployment, showing large QoS performance

improvement with respect to applications’ bandwidth and

delay figures. However, the applications are represented as

a single module communicating with a set of IoT devices

generating data. For this reason, authors focused mostly on

applications’ networking requirements.
Taneja and Davy [10] defined a placement algorithm by

mapping the directed acyclic graph of the modules of an

IoT-based application into fog and cloud nodes. Numerical

results show performance gains in terms of latency, energy

and bandwidth constraints, compared to edge-agnostic place-

ment schemes. Our work, conversely, develops an optimization

framework able to account for both traffic and computing

demands of a whole batch of applications to be deployed over

multiple regions.
The DAG-like applications deployment on an infrastruc-

ture network reminds the Virtual Network Embedding problem,

a well-known NP-hard problem deeply studied especially in

the topic of Virtual Network Function (VNF) placement [33].

Many heuristic solutions have been proposed in the litera-

ture [37] since the general problem presents strong inapprox-

imability results [38]. The main difference with respect to

our context is that, usually only CPU constraints are taken
into account in VNF problems. Conversely, in a fog scenario,

where resources are limited and heterogeneous, all the require-

ments (CPU, RAM and Storage) of each microservice should

be considered. Furthermore, the network infrastructure where

VNF applications are deployed is usually not partitioned into

regions.

With respect to the container technologies discussed in this

work, the de-facto standard for container orchestration is

Kubernetes [6] even if new technology solutions for the edge

are being proposed [41]. As described in Section VI-A3,

resource allocation in Kubernetes proceeds by first enlisting

servers able to host a target application module in a con-

tainer pod. In the native cloud version, the actual container
deployment is performed agnostic of the notion of fog-region

and agnostic of network conditions. Our orchestration logic is

able to addresses also the locality of object demands and their

cumulative effect onto the communication infrastructure.

VIII. CONCLUSI ON

In this article, we have introduced a joint partitioning and
optimization framework for throughput-intensive applications.

We showed that a smart cut of the applications’ computa-

tion flow in between cloud and fog is beneficial to cope with

the applications’ performance requirements while improving

the revenue figures of the infrastructure owner. The scheme

for the resource allocation combines a multi-commodity flow

and a placement problem, but can be reduced to a Knapsack

problem by introducing throughput proportionality and con-
sidering only the placement formulation. A greedy algorithm,

FPA, is able to perform efficiently with respect to the optimal

solution by placing partitioned applications using a pseudo-

gradient approach. The numerical experiments confirm the

scalability properties of the proposed fog orchestration scheme

and the efficiency in terms of infrastructure owner’s revenue

and additional communication overhead compared to the most

existing solutions in the literature.

APPENDI X

A. Main Problem Formulation

In this section we provide a formal description of the main

problem presented in this article.

Variables: We introduce a binary variable for the placement

of each applications’ microservice on a single server of the

infrastructure:

Partitioning the applications’ computation process repre-

sents a promising technique to guarantee high performance in

mobile cloud or edge computing. The authors of [39] studied

u,m
k,s

1,
if microservice m of application u
is placed on server s of region k

⎩
0, otherwise

the problem of computation partitioning with the aim of maxi-

mizing the application throughput in processing the streaming

data. A genetic algorithm is able to find the best partition in

between the cloud and the mobile at runtime. In [40], a gen-

∀u ∈ U , ∀m ∈ Vu , ∀k ∈ K ∪ {0}, ∀s ∈ Sk .
For the applications’ links mapping to the physical paths

of the infrastructure we introduce a second kind of binary

variables:
eral technique to minimize execution time of IoT applications
is proposed. The model introduced takes into account compu-

tation and communication delays. By reduction to the Matrix

yu,(m,n)
=

 1, if (m, n) ∈ Eu is mapped to p ∈ P

0, otherwise

Chain Ordering Problem, an algorithm is provided in order

to solve the optimization problem via dynamic programming,

with time-complexity log-linear with respect to the number of

operators of the application. With respect to such solutions,

we have a different objective, that is to maximize the infras-

tructure owner’s revenue by combining efficient applications’

partitioning while avoiding network bottleneck.

One of the novelties of this work is the multi-regions

scenario for the applications partitioning and orchestration.

∀u ∈ U , ∀(m, n) ∈ Eu , ∀p ∈ P, where P is the set of all
paths between nodes in the infrastructure graph G.

Furthermore, since the objective of the problem is to

maximize the number of applications entirely deployed on
the infrastructure (i.e., maximizing the revenue), we introduce

a third binary variable to indicate whether an application is

entirely deployed on the infrastructure:

z =
1, if application u ∈ U is entirely deployed
0, otherwise

FATICANTI et al.: THROUGHPUT-AWARE PARTITIONING AND PLACEMENT OF APPLICATIONS IN FOG COMPUTING 2449

 ⎬

k,s k,s

k,s

L
y ≤ 1, ∀u ∈ U , ∀(m, n) ∈ Eu . (30)

p

p

k,s p

p

 m∈Vu k∈K s∈Sk k,s

|Vu |

∧
⎢
⎣

 (m,n)∈Eu p∈P

|Eu |

p ⎥
⎦ . (34)

k,s s

⎭

L L

L L

∀u ∈ U . Hence, zu will be set to 1 if and only if all the
microservices and links of application u are deployed on the
infrastructure.

Finally, we have continuous variables to control the optimal

Furthermore, we have constraints that bind x and y variables
to z for each application u ∈ U :

xu,m L

the delay constraints:

⎢
yu ,(m,n) ⎥

Constraints: First, we have resource capacity constraints for

each fog server of the infrastructure:

L L
cmxu,m

≤ Ck , ∀k ∈ K , ∀s ∈ Sk . (26)

Then we have all the constraints related to the applications’

Indeed, for each application u ∈ U , the decision variable

zu is set to one if and only if all the application’s modules

Finally, we have delay constraints for each application:

links mapping:
L

u,(m,n)

 L
u,m

 L
u,n

max

u
m,n

+ y
u,(m,n)

⎞⎫

d ∗⎠

p∈P

k,k∗

yp =

s∈Sk

xk,s ∧
s∈Sk∗

xk∗,s , (27) pu ∈Pu
(m,n)∈pu p∈P

1

λu (m, n) p

(k ,k∗)∈p
k ,k

∀(k, k ∗) ∈ V × V , ∀u ∈ U , and ∀(m, n) ∈ Eu .

Constraint (27) ensures that a unique physical path of the
network infrastructure is used by an application link whenever

≤ , (35)
Fu

where Pu represents the set of all directed paths between the

source and the destination node of the application u, and Δu
the application nodes connected by such link are deployed

on the extreme nodes of the physical path (the symbol ∧
represents the Boolean “and” operator).

is the data transmitted from the module m to module n

application u.

m,n
of the

We have to add constraints to guarantee a unique placement

for each component of each application (microservices and

links):
L L L

xu,m
= |Vu |∨

L L L
xu,m

= 0,

Objective: The objective function is the revenue of the

infrastructure’s owner based on the number of applications

entirely deployed:

maximize
L

fu zu . (36)

m∈Vu k∈V s∈Sk m∈Vu k∈K s∈Sk
∀u ∈ U , (28)

u∈U

xu,m
≤ 1, ∀u ∈ U , ∀m ∈ Vu . (29)

k∈V s∈Sk

u,(m,n)
p

p∈P

Constraint (28) guarantees that either all the applications’

microservices are deployed or no one of them is deployed

(the symbol ∨ is the Boolean “or” operator). The same thing
must be guaranteed for the applications’ links:

L L
yu,(m,n)

B. Complexity and Approximability of the Main Problem

As it can be noticed from the formulation, the main problem

may resemble a Virtual Network Embedding (VNE) problem

with in addition the decision variables and constraints for

the throughput on the applications DAGs edges. Overall,

the main problem appears non-linear. Furthermore, the result

in [38] shows that the VNE problem is strongly NP-hard

with inapproximability results obtained by reduction from the
Maximum Stable Set Problem (MSSP). Thus, unless P =

NP, no polynomial time approximation scheme can be found 1 −E
(m,n)∈Eu p∈P within a factor of n 2 for any E > 0. The formal proof of

= |Eu |∨ y
u,(m,n)

= 0. (31)

(m,n)∈Eu p∈P

An additional constraint should be added to guarantee a

complete deployment for each application. If all the microser-

vices of an application are deployed then all the application’s

links must be mapped to a physical path and vice versa.

the result in Proposition 1 follows.

Proof: The proof holds by reduction from the VNE problem,

as defined in [38], to the main problem. Let assume that
the throughput variables on the applications’ edges are fixed.
Given the substrate graph G0 = (V 0, E 0) of VNE problem
and the set of requests R, where each r ∈ R is a graph
Gr = (V r , Er), we map each node in V 0 t o a server of

L L L
xu,m

= |Vu |⇔
L

L

yu,(m,n)
the fog infrastructure G = (V, E) and we map all each request

r ∈ R to an application with V r microservices and Er edges.
m∈Vu k∈V s∈Sk (m,n)∈Eu p∈P

= |Eu |. (32)
The nodes and edges capacities of G0 are mapped to servers

capacities and to the bandwidth capacities of the links in G,

The following are constraints on the bandwidth capacity for
each physical link (k, k ∗) ∈ E :

respectively. The demand for each node and the traffic demand

of each edge in Gr are mapped to microservices requests and

edges’ throughputs of each application. Exploiting the transi-

u

L

∈U (m ,

L

n)∈E u p ∈P :

L

(k ,k∗)∈p

λu (m, n) y
u,(m,n

≤ B kk ∗ . (33) tivity of polynomial reduction, [38, Corollary 3.3] applies to

our problem.

throughput generated on applications’ links in order to satisfy zu =

λ u (m, n) ∈ R+, ∀u ∈ U , ∀(m.n) ∈ E u

and links are deployed.

Δ

⎩

.

u∈U m∈Vu

⎧
⎨

 ⎛

⎝

2450 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 17, NO. 4, DECEMBER 2020

REFERENCES

[1] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its

role in the Internet of Things,” in Proc. 1st Ed. MCC Workshop Mobile

Cloud Comput., 2012, pp. 13–16.

[2] Y. Gan and C. Delimitrou, “The architectural implications of cloud

microservices,” IEEE Comput. Archit. Lett., vol. 17, no. 2, pp. 155–158,
Jul.–Dec. 2018.

[3] E. Wolff, Microservices: Flexible Software Architecture. Boston, MA,

USA: Addison-Wesley Prof., 2016.

[4] L.-N. Ni, J.-Q. Zhang, C.-G. Yan, and C.-J. Jiang, “A heurist ic algo-

rithm for task scheduling based on mean load on grid,” J. Comput. Sci.
Technol., vol. 21, no. 4, pp. 559–564, 2006.

[5] Kubernetes Scheduler. Accessed: 2020. [Online]. Available: https://

github.com/kubernetes/

[6] B. Burns, B. Grant, D. Oppenheimer, E. Brewer, and J. Wilkes, “Borg,

Omega, and Kubernetes,” Commun. ACM, vol. 59, no. 5, pp. 1837–1852,

May 2016.

[7] Kubernetes. Accessed: 2020. [Online]. Available: http://kubernetes.io/

[8] C. Pahl and B. Lee, “Containers and clusters for edge cloud

architectures—A technology review,” in Proc. IEEE 3rd Int. Conf.

Future Internet Things Cloud, 2015, pp. 379–386.

[9] L. F. Bittencourt, J. Diaz-Montes, R. Buyya, O. F. Rana, and

M. Parashar, “Mobility-aware application scheduling in fog computing,”

IEEE Cloud Comput., vol. 4, no. 2, pp. 26–35, Mar./Apr. 2017.

[1 0] M. Taneja and A. Davy, “Resource aware placement of IoT application

modules in fog-cloud computing paradigm,” in Proc. IFIP/IEEE Symp.

Integr. Netw. Serv. Manag. (IM), Lisbon, Portugal, 2017, pp. 1222–1228.

[1 1] M. Satyanarayanan, “The emergence of edge computing,” Computer,

vol. 50, no. 1, pp. 30–39, Jan. 2017.

[1 2] V. V. Vazirani, Approximation Algorithms. Heidelberg, Germany:

Springer, 2013.

[1 3] G. Dantzig and D. R. Fulkerson, “On the max flow min cut the-

orem of networks,” Linear Inequalities and Related Systems (Annals

of Mathematics Studies No. 38). Princeton, NJ, USA: Princeton Univ.

Press, 1956, pp. 215–221.

[1 4] L. R. Ford and D. R. Fulkerson, “Maximal flow through a network,” in

Classic Papers in Combinatorics. Boston, MA, USA: Springer, 2009,

pp. 243–248.

[1 5] E. A. Dinic, “Algorithm for solution of a problem of maximum flow in

networks with power estimation,” Soviet Math. Doklady, vol. 11, no. 5,

pp. 1277–1280, 1970.

[1 6] J. Edmonds and R. M. Karp, “Theoretical improvements in algorith-

mic efficiency for network flow problems,” J. ACM, vol. 19, no. 2,

pp. 248–264, 1972.

[1 7] L. Canzian and M. V. D. Schaar, “Real-time stream mining: Online

knowledge extraction using classifier networks,” IEEE Netw., vol. 29,

no. 5, pp. 10–16, Sep./Oct. 2015.

[1 8] M. M. Akbar, M. S. Rahman, M. Kaykobad, E. G. Manning, and

G. C. Shoja, “Solving the multidimensional multiple-choice knapsack

problem by constructing convex hulls,” Comput. Oper. Res. , vol. 33,

no. 5, pp. 1259–1273, 2006.

[1 9] B. Han, J. Leblet, and G. Simon, “Hard multidimensional multiple

choice knapsack problems, an empirical study,” Comput. Oper. Res.,

vol. 37, no. 1, pp. 172–181, 2010.

[2 0] M. Hifi, M. Michrafy, and A. Sbihi, “Heurist ic algorithms for the

multiple-choice mult idimensional knapsack problem,” J. Oper. Res. Soc.,

vol. 55, no. 12, pp. 1323–1332, 2004.

[2 1] B. Patt-Shamir and D. Rawitz, “Vector bin packing with multiple-

choice,” Discrete Appl. Math., vol. 160, nos. 10–11, pp. 1591–1600,
2012.

[2 2] B. Korte and J. Vygen, Approximation Algorithms. Heidelberg,

Germany: Springer, 2012.

[2 3] M. Yu, Y. Yi, J. Rexford, and M. Chiang, “Rethinking v irtual network

embedding: Substrate support for path splitting and migration,” ACM
SIGCOMM Comput. Commun. Rev., vol. 38, no. 2, pp. 17–29, 2008.

[2 4] D. Santoro, D. Zozin, D. Pizzolli, F. De Pellegrini, and S. Cretti, “Foggy:

A platform for workload orchestration in a fog computing environment,”

in Proc. IEEE Int. Conf. Cloud Comput. Technol. Sci. (CloudCom),

Hong Kong, China, Dec. 2017, pp. 231–234.

[2 5] FogAtlas. Accessed: 2020. [Online]. Available: https://fogatlas.fbk.eu/

[2 6] R. Buyya, R. Ranjan, and R. N. Calheiros, “Modeling and simu-

lation of scalable cloud computing environments and the cloudsim

toolkit: Challenges and opportunities,” in Proc. Int. Conf. High Perform.
Comput. Simulat., Leipzig, Germany, 2009, pp. 1–11.

[2 7] H. Gupta, A. Vahid Dastjerdi, S. K. Ghosh, and R. Buyya, “iFogSim: A

toolkit for modeling and simulation of resource management techniques

in the Internet of Things, edge and fog computing environments,” Softw.

Pract. Exp., vol. 47, no. 9, pp. 1275–1296, 2017.

[2 8] R. Mayer, L. Graser, H. Gupta, E. Saurez, and U. Ramachandran,

“EmuFog: Extensible and scalable emulation of large-scale fog com-

puting infrastructures,” in Proc. IEEE Fog World Congr. (FWC), Santa

Clara, CA, USA, 2017, pp. 1–6.

[2 9] F. Faticanti, F. De Pellegrini, D. Siracusa, D. Santoro, and S. Cretti,
“Cutting throughput with the edge: App-aware placement in fog

computing,” in Proc. 6th IEEE Int. Conf. Cyber Security Cloud

Comput. (CSCloud) 5th IEEE Int. Conf. Edge Comput. Scalable Cloud

(EdgeCom), Paris, France, 2019, pp. 196–203.

[3 0] J.-P. Arcangeli, R. Boujbel, and S. Leriche, “Automatic deployment of

distributed software systems: Definitions and state of the art,” J. Syst.

Softw., vol. 103, pp. 198–218, May 2015.

[3 1] A. Samanta, Y. Li, and F. Esposito, “Battle of microservices: Towards

latency-optimal heurist ic scheduling for edge computing,” in Proc. IEEE
Conf. Netw. Softwa. (NetSoft), Paris, France, 2019, pp. 223–227.

[3 2] N. K. Giang, M. Blackstock, R. Lea, and V. C. Leung, “Developing IoT

applications in the fog: A dist ributed dataflow approach,” in Proc. 5th

Int. Conf. Internet Things (IOT), Seoul, South Korea, 2015, pp. 155–162.

[3 3] X. Cheng et al., “Virtual network embedding through topology-aware

node ranking,” ACM SIGCOMM Comput. Commun. Rev., vol. 41, no. 2,

pp. 38–47, 2011.

[3 4] A. Brogi, S. Fort i, and A. Ibrahim, “How to best deploy your fog

applications, probably,” in Proc. IEEE 1st Int. Conf. Fog Edge Comput.

(ICFEC), Madrid, Spain, 2017, pp. 105–114.

[3 5] R. Yu, V. T. Kilari, G. Xue, and D. Yang, “Load balancing for
interdependent IoT microservices,” in Proc. IEEE INFOCOM Conf.

Comput. Commun., Paris, France, 2019, pp. 298–306.

[3 6] R. Yu, G. Xue, and X. Zhang, “Application provisioning in fog

computing-enabled Internet-of-Things: A network perspective,” in Proc.

INFOCOM Conf. Comput. Commun., Honolulu, HI, USA, 2018,

pp. 783–791.

[3 7] H. Cao, H. Hu, Z. Qu, and L. Yang, “Heuristic solutions of vir-

tual network embedding: A survey,” China Commun., vol. 15, no. 3,

pp. 186–219, Mar. 2018.

[3 8] E. Amaldi, S. Coniglio, A. M. Koster, and M. Tieves, “On the computa -
tional complexity of the virtual network embedding problem,” Electron.

Notes Discrete Math., vol. 52, pp. 213–220, Jun. 2016.

[3 9] L. Yang, J. Cao, Y. Yuan, T. Li, A. Han, and A. Chan, “A framework for

partitioning and execution of data stream applications in mobile cloud

computing,” ACM SIGMETRICS Perform. Eval. Rev., vol. 40, no. 4,

pp. 23–32, 2013.

[4 0] T. Elgamal, A. Sandur, P. Nguyen, K. Nahrstedt, and G. Agha,

“DROPLET: Distributed operator placement for IoT applications span-

ning edge and cloud resources,” in Proc. IEEE 11th Int. Conf. Cloud
Comput. (CLOUD), San Francisco, CA, USA, 2018, pp. 1–8.

[4 1] KubeEdge: An Open Platform to Enable Edge Computing . Accessed:

2020. [Online]. Available: https://kubeedge.io/

http://kubernetes.io/

