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Abstract—Fog computing promises to extend cloud computing 
to match emerging demands for low latency, location-awareness 

and dynamic computation. It thus brings data processing close 
to the edge of the network by leveraging on devices with differ- 

ent computational characteristics. However, the heterogeneity, the 
geographical distribution, and the data-intensive profiles of IoT 

deployments render the placement of fog applications a funda- 

mental problem to guarantee target performance figures. This 
is a core challenge for fog computing providers to offer fog 

infrastructure as a service, while satisfying the requirements 
of this new class of microservices-based applications. In this 

article we root our analysis on the throughput requirements 
of the applications while exploiting offloading towards different 

regions. The resulting resource allocation problem is developed 
for a fog-native application architecture based on containerised 

microservice modules. An algorithmic solution is designed to opti- 
mise the placement of applications modules either in cloud or in 

fog. Finally, the overall solution consists of two cascaded algo- 
rithms. The first one performs a throughput-oriented partitioning 

of fog application modules. The second one rules the orchestra- 
tion of applications over a region-based infrastructure. Extensive 

numerical experiments validate the performance of the overall 
scheme and confirm that it outperforms state-of-the-art solutions 

adapted to our context. 

Index Terms—Fog computing, IoT, applications partitioning, 
resource allocation, microservices. 

 

 

I.  INTRODUCTI ON 

HE SPREAD of IoT devices has led to the design of new 

extensions of cloud computing, since at scale the huge 

amount of data produced by those devices is becoming unman- 

ageable with existing device-to-cloud paradigms. Sending all 
raw data generated by IoT devices to the remote cloud for pro- 

cessing, in fact, represents a key bottleneck due to the high 

latency and network congestion introduced. Fog computing 
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has been proposed in order to mitigate these core problems [1]. 

The idea is to perform part of the overall computation at 

the edge of the network without sending raw data directly 

to the cloud. In this manner, the amount of data sent to the 

cloud is reduced, resulting in lower bandwidth consumption 
and reduced response time. 

The current fog computing paradigm is based on a layered 

architecture, including a central cloud, a series of edge nodes 

and, finally, target objects which generate data and/or actuate. 

In contrast to cloud computing, where a set of homogeneous 

resources are concentrated in the same area, fog computing 

infrastructure typically consists of a set of heterogeneous and 

geographically distributed resources, possibly organized in fog 

regions with respect to the objects each region hosts. In this 
context, the usage of edge resources need to be optimised with 

respect to the specific architecture of fog applications to satisfy 

their required performance figures. 

With the fast growth of IoT, microservices-based devel- 

opment has become the current practice in cloud and fog 

application design in order to guarantee availability and scal- 

ability [2], [3]. Microservices applications are composed by 

interdependent modules, such as for example, a graphical user 

interface, a Web repository or an image recognition module. 
Satisfying the requirements of all the modules of an appli- 

cation translates in the selection and allocation of the right 

set of resources in the fog-infrastructure. But, while resource 

allocation in cloud computing is a well-known and complex 

problem – provably NP-hard in all cases of practical rele- 

vance [4] – in fog computing the problem has a specific 

structure due to geo-distribution of heterogeneous resources 

and location of IoT devices. Actually, in a typical fog scenario 
there exist different regions where the modules of a certain fog 

application can be deployed, as depicted in Figure 1. Thus, 

whilst several approaches have been proposed in the cloud 

literature, few of them account for the deployment among 

different regions. In fact, existing technologies fit the cloud 

scenario where the resources’ pool is concentrated in the same 

area irrespective of the objects’ location. For instance, cur- 

rent Kubernetes’ placement algorithms [5] perform well in 

cloud, but they require new functional extension to discrimi- 
nate the deployment of application components across multiple 

regions. Consequently, there is a lack of solution for appli- 

cation deployment that exploits the inter-operability between 

different regions. Actually, in our tests we verify that, while 

for the sake of implementation it is tempting to treat all the fog 

regions as a unique region ruled by off-the-shelf Kubernetes 
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Fig. 1. Reference  fog system  a rch itectu re:  app licat ion  u1 requests data 
from  a n  IoT object  (ma rked  red) located  in  a rea  S1;  the whole  system  is 
com posed  of geograph ica l area s (regions) Si,  i = 1,  2,  3 connected to  the 

central cloud S0. 

 

 

placement algorithms, this may severely limit the number of 

applications deployed on the infrastructure. 

Main contribution: In this work we address the problem 
of deployment of batch of applications in a fog infras- 

tructure covering different geo-distributed and heterogeneous 

regions, subject to the applications’ requirements with respect 

to both computation and communication. We represent IoT 

applications’ workflows by means of direct acyclic graphs 

(DAG), where microservices are vertices and the dependencies 

between the microservices represent graph edges. 

The corresponding resources optimisation becomes a non 
linear mixed integer NP-hard problem. The problem com- 

bines a multicommodity flow and a graph embedding problem, 

for which we provide a negative result for the possibility 

to design tight polynomial-time approximation algorithms. 

Thus, we propose a cascade solution consisting of two main 

steps. First, at the application level, a preliminary partitioning 

for applications minimises the throughput footprint of fog- 

native applications. Second, a placement step accounts for 

the computational and communication demands and proximity 
requirements of applications. 

The rest of this article is organised as follows. The next sec- 

tion describes the system model, i.e., the abstractions we adopt 

for the applications’ architecture, the network infrastructure 

and applications’ deployment configurations. In Section III we 

present the problem formulation, introducing the most gen- 

eral problem setting. The placement problem is addressed in 

Section IV. The problem is proved NP-hard by reduction from 
a multi-dimensional multiple-choice knapsack problem and a 

greedy algorithm is developed in Section V. Numerical results 

are reported in Section VI. Related works and existing con- 

tainer orchestration technology for fog computing are reported 

in Section VII. A concluding section ends this article. 

 
II.  SYSTEM MODEL 

The combination of a fog-native partitioning and a place- 

ment scheme follows the rationale that microservices of the 

same application, when deployed on the same fog region, 

generate negligible communication overhead; in fact, under 

standard containerisation technologies they can be deployed on 

the same pod [6], [7]. On the other hand, when two application 

modules are deployed in different region, the resources alloca- 

tion balance must account for the communication overhead. A 
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rational choice is to group applications microservices accord- 

ing to their requirements: fog modules with strict latency 
constraints require installation on the edge, e.g., to support 

real-time processing of data streams from a local IoT device. 

Other microservices may need computational power not avail- 

able on edge nodes, this is the case, e.g., of online machine 

learning algorithms. This fog-cloud dichotomy greatly simpli- 

fies the placement of such fog-native applications, since while 

the first group hosts microservices that could be or need to be 

deployed on the edge, the second one is the set of microser- 

vices without strict latency requirements and, in turn, possibly 
hard computational requirements; for the latter, cloud deploy- 

ment is assumed apriori. This minimal partitioning results in 

the functional bi-partition shown in Figure 2. 

 

A. Network Model 

We consider a standard fog system architecture [8], [9] 

where the network architecture consists of a central cloud, 

which is assumed of unlimited computational capabilities – 

relatively to edge nodes – and a set of fog regions connected to 

the central cloud. Each fog region comprises servers with spe- 

cific computational capabilities in terms of memory, CPU and 

storage. We consider a batch of applications to be deployed 
on such an infrastructure. Each application is described by a 

list of requirements in terms of memory, CPU, storage and 

bandwidth. The objective is to deploy the applications on the 

infrastructure in order to maximize a certain profit function 

while satisfying the resources constraints and applications’ 

demands. Throughout this article the target performance figure 

is the number of concurrent fog-applications hosted simultane- 

ously on the infrastructure; more general objective functions 
can be studied in the same framework and are left as part 

of future works. The problem is to find a set of mappings 

of applications onto fog-regions to maximize such objective 

function, where each such mapping engenders diverse resource 

occupation vectors and its own profit value. 
More formally, we consider a fog system deployed over 

a set of geographic regions K = {1,...,  K}. Region k 

hosts a set Sk of edge servers or units. We denote ski 
, with 

i ∈ {1 ,..., nk } a specific edge unit deployed within the 
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Fig. 2. Cascade of throughput-aware partitioning of a fog application into 

two chunks, and subsequent placement of the fog chunk onto an edge node. 

 

 

k-th region; for the sake of notation we denote the central 

cloud as S0. The resources of edge unit s are represented 

system design. Nevertheless, in the numerical section we per- 

form a thoroughly comparison of our reference system with 

other solutions violating such assumption. 

 
III.  PROBLEM FORMULATION 

In this section we describe the overall optimisation problem 

for the deployment of fog applications across multiple con- 

nected fog regions, corresponding to the reference architecture 

of Figure 1. First, we describe the original problem and 
describe its complexity and approximability. Afterwards, we 

introduce the problem split into the cascade of two sub- 

problems which we analyse in the rest of this article. 
by capacity vector ki M P S Main problem: Given a set of DAG-like applications U and 

Cki 
= (Cki 

, Cki 
, Cki 

). The first compo- 
nent of the capacity vector is the memory capacity, while 

the second component is the processing capacity; the third 

component denotes the storage capacity, i.e., the data vol- 

ume that can be accommodated on the storage of the edge 

unit. The fog infrastructure can be described by an undirected 
weighted graph G = (V, E) where V = {Si ∪ Ui }i∈K and 
E ⊆ {{i, j }|i , j ∈ V , i /= j }. The weight of each edge 

{i, j} ∈ E consists of the latency on the link dij , and the 

link bandwidth Bij . Let N (Si ) = {Sj |{j , i}∈ E}. Figure 1 
reports a pictorial example of such fog infrastructure. 

 
B. Application Model 

The application model adopted in this article is based on 

the distributed data flow model [10], where distributed com- 

ponents of an IoT application perform different computational 

tasks. We model each application like a weighted DAG where 

the nodes represent the application modules and the edges 

between nodes represent the execution order of the modules. 

The weight of each edge represents the throughput gener- 
ated by one microservice performing some computation and 

sending the results to another component downstream. More 

formally, each application u is defined by the weighted digraph 

(Gu , λu ), where Gu = (Vu , Eu ) and λu : Eu → R+, i.e., 

λu (m, n) represents the maximum throughput that can be gen- 
erated by the microservice m and sent to microservice n of the 
same application. In each fog region k we have a set of appli- 

cations to be deployed, Uk . From here on out, we identify 

the application and the device from which data are requested 

with same symbol. We say that application u “belongs” to 
a given region because the IoT object is located there. Such 

region is denoted Su for the sake of notation. Furthermore, 

we denote with U = ∪K Ui the set of all applications to be 
deployed on the infrastructure. A further assumption that we 

shall introduce is that each application is deployed on a set 

of servers defined by the neighbourhood of the region from 

which the data are generated, as in Figure 1. To this respect, 

we remark that the practice to ensure connectivity between 

containers is to interface them at the application layer, e.g., 

connecting them by http(s) protocol, so that multi-hop routing 

at the network layer is not viable for joint optimisation as it 
would introduce queuing and routing delay at each hop [11]. 

In the proposed system model, placement on neighbouring 

regions still attains load balancing while greatly simplifying 

a fog infrastructure G = (V, E), deploy the maximum number 

of applications in order to maximize the provider’s revenue 

while satisfying the applications’ delay requirements and the 

infrastructure capacity. 
The deployment of an application u ∈ U is represented 

by a mapping between each module v ∈ Vu and a server of 
the infrastructure such that all the applications requirements 
and infrastructure capacity constraints are satisfied. These con- 

straints involve the CPU, memory, storage and bandwidth 

constraints for the infrastructure, and delay constraints for the 

application. This latter constraint involves the computation 

of the optimal throughput for each edge of the application 

(v, w ) ∈ Eu given the placement of application’s nodes v 
and w. In order to compute such throughput values we should 

take into account the maximal path, in terms of latency, from 

the source to the destination node. This would result in hav- 

ing a non-linear constraint involving the binary variables for 
the placement of each application’s module and the continu- 

ous variables for the computation of the optimal throughput 

for each application’s edge. The mathematical formulation of 

the main problem can be found in the Appendix. Regarding 

its computational complexity, it can be observed that – by fix- 

ing throughput variables – it can be proved to be NP-hard 

by polynomial time reduction from a virtual network embed- 

ding problem, known to be strongly NP-hard. As discussed 
in the Appendix, such problem cannot be approximated by 

a polynomial-time algorithm. Hence, we have the following 

result: 

Proposition 1: Unless P = NP, the application placement 

problem can not be approximated in polynomial time within 
1 K 
2 i 

Here, the term n represents the total number of servers avail- 

able for microservices’ deployment: we have ni servers for 
each fog region i ∈ K , plus the cloud region which counts 
as a single server with infinite capacity. 

 
A. Resolution Approach 

The previous result rules out the possibility to devise effi- 
cient approximation algorithms to solve the main problem 

altogether, in all cases of practical interest. Thus, in order to 

render the original problem more tractable, we split it into the 

cascade of two sub-problems. In the first one, each applica- 

tion is partitioned in two chunks in order to minimise the 

maximum throughput between them, and imposing that all 



 

 

the application’s modules belonging to the same chunk will 

be deployed in the same region of the infrastructure. In this 

manner, the communication overhead between application’s 

components and the number of binary and continuous variables 

for the placement and throughput computation are reduced. In 

the second sub-problem, once fixed the partition for each appli- 

cation solving the previous problem, a feasible deployment per 
application’s chunk is found. The latter problem will be further 

transformed into an integer linear programming problem. 

As introduced before, after the partitioning step, each fog 

application will consist of two chunks: the first one is the 

subset of application microservices apriori executed in cloud, 

whereas the second is the subset encompassing microservices 

that can be deployed either in fog or in cloud. By assumption, 

all applications are supposed to adhere to such a fog-oriented 

partitioning.1 Of course, in general, any partition of microser- 
vices into two chunks will do. However, we shall consider 

both the case of throughput-agnostic and that of throughput- 

aware partitioning. With the former, the application partition 

is oblivious to the data flow across microservices of the same 

application. In the latter case, instead, we shall optimise par- 

titioning based on the communication requirements of the 

microservice architecture. In both cases, anyhow, it is rea- 

sonable that a fog-native partitioning would be completely 

infrastructure-agnostic, thus accounting for requirements of a 
tagged application only. 

Note that the partitioning phase can be realised by a static 

and offline algorithm processing each application individually. 

Depending on the business model, the infrastructure provider 

can offer the application owner with a cloud service to con- 

tainerise her/his applications into a fog and a cloud chunk 

using the proposed partitioning algorithm. For the sake of 

simplicity, we have omitted all the aspects related to the 
orchestration of the registries where the images of the chunks 

are finally stored. In fact, multiple schemes can be envis- 

aged, e.g., either a single cloud registry, or also several per 

region registries caching application chunk images. Once the 

registries have been populated with the chunk images of the 

applications concerned with target areas, the placement algo- 

rithm could leverage, e.g., the Kubernetes control plane to 

switch on the fog chunks of applications in the target regions. 

How to optimise the registry placement and the chunk image 
caching process is part of our current research effort and is 

left out of the scope of the present manuscript. 

The cloud computing literature provides well-known solu- 

tions in a single data-center, such as, for instance, Kubernetes’ 

scheduling algorithms [5]. Although these algorithms show 

good results in a single-region scenario, they are not designed 

to perform under throughput constraints among several fog 

regions. Our target is an algorithmic solution identifying a 
region for the deployment of each partitioned application. 

Focusing on the region selection only complies with cur- 

rent practice in containers’ orchestration, since Kubernetes 

orchestration procedures and/or optimised versions can be later 

 
1Depending on  the v irtualisation technology, a  fog-oriented application par- 

titioning will produce two  containers/pods or two VM images; however this 

is not relevant for the rest of our discussion. 

applied within each single region to find the best local resource 

allocation. Overall, the complete placement scheme proposed 

consists of the following logical phases which we describe 

next as described in Figure 2: 

i. fog application partitioning: application packaging into a 

cloud and a fog chunk; 

ii. region selection: selection of target regions in the neigh- 
bourhood of the objects that generate data consumed by fog 

applications; 

iii. deployment: using an off-the-shelf orchestrator (e.g., 

Kubernetes) to perform allocation within a fog region cluster 

according to standard or optimised local placement rules. 

 
B. Throughput-Aware Fog Partitioning 

An efficient bipartition of the application graph can reduce 

monitoring and networking costs. In fact, for the sake of 
example, we can consider the case of video surveillance 

applications. We can expect one or more of the application 

microservices to require significant amount of computational 

power in order to execute, e.g., sophisticated face-recognition 

techniques. Such microservices will be normally part of the 

cloud module. On the other hand, since the throughput gener- 

ated by video sensors represents a serious bottleneck, we can 

also expect some filtering microservice to pre-process the raw 
video stream on edge nodes, e.g., to extract just the frames 

relevant for the task from the raw videostream. Thus, in order 

to reduce upstream the fog-to-cloud throughput of such an 

application, it is indeed optimal to install, whenever possible, 

such a microservice in the fog chunk. 

More in general, an efficient throughtput-aware partition- 
ing shall split microservices such as to minimize the total 

throughput flowing from the first set of the microservices par- 

tition, the fog chunk, to the second set of the partition, the 

cloud chunk. Let the weighted DAG Gu = (Vu , Eu ) rep- 

resent the target application u. The application partitioning 
problem can be reduced to the Minimum k-cut problem on 

graph Gu . The standard definition for a k-cut is set of edges 

whose removal leaves k connected components [12]. A mini- 
mum k-cut problem asks for a minimum weight k-cut. In our 

context, we are looking for a minimum 2-cut on Gu . The 

reason behind such a minimal cut is twofold. First, since we 

are not assuming a hierarchical structure for the infrastruc- 
ture, only fog regions and the cloud can perform computational 

tasks. The IoT devices, indeed, are not usually able to perform 

significant operations. Furthermore, within the same region, 

delay and bandwidth constraints are negligible meanwhile they 
are significant between two different regions. Hence, splitting 

an application in more than two chunks would be equivalent 

to distribute the applications among more than two regions 
and this would bring additional communication overhead in 

terms of latency and routing implementation issues for the 

applications. Finally, two different fog regions may not be 

directly connected forcing the chunks of the applications to 
communicate through other regions. However, in this case we 

would lose what we have gained in terms of latency with fog 

computing. Secondly, if we wanted to partition an application 
in more than two chunks, we should solve a minimum k-cut 
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problem with k ≥ 3 and the partitioning problem would be 
NP-hard [12]. 

Given a source and a destination node, the minimum 2-cut 

problem is equivalent to the maximum flow problem for the 

min-cut max-flow theorem [13] which can be efficiently solved 
by a maximum flow algorithm such as the Ford-Fulkerson 

algorithm [14]. Hence, solving an s-t cut problem we can solve 

our application partitioning problem as expressed formally by 

Proposition 2 where APP-PARTITIONING is the application 

partitioning problem described above and MIN-CUT is the 

minimum s-t cut problem. 

Proposition 2: APP-PARTITIONING ≤p MIN-CUT. 
Proof: We can show the polynomial reduction by taking 

an application DAG and selecting a source and a destination 

node (since we have a DAG structure there exists at least 

one node with no incoming edges, the source, and one node 

with no outgoing edges, the destination). Additionally, we set 

the maximum throughput of each application’s edge as the 

maximum capacity of the graph. In this manner, by solving the 

min-cut problem on such graph we have a 2-cut partitioning 

of our application graph. 

 
 

Algorithm 1: Application Partitioning Algorithm 

Input: Application graph Gu = (Vu , Eu ), C ⊆ Vu 
Output : 2-cut partition of the application u 

1 Cloud ← ∅; 

2 Edge ← ∅; 
3 Vu ← Vu ∪ {t}; 
4 for v ∈ C do 
5 Eu ← Eu ∪ {(v, t)}; 
6 λu (v, t) ← +∞; 
7 s ← first node in a topological order of Gu ; 
8 G∗ ← Max_Flow(Gu , s, t, λu ); 

9 for w reachable from s in G
∗ 

do 

10   Edge ← Edge ∪ {w}; 

11 Cloud ← Vu \ Edge; 

12 return (Edge, Cloud) 
 

 

 
 

 

1) Throughput-Intensive Applications (Notation): From 

here on out, for the sake of brevity, for each application 

u ∈ U , we identify with uA and uB the Cloud and the 
Edge chunks, respectively. Finally, let denote cM , cS , cP u u u 

Incidentally, whenever a single source and sink node pair 
cannot be identified in the application DAG, it is always pos- 
sible to add a virtual source (sink) node with large capacity 

the total resource requirements, in terms of memory, storage 

and processing capacity, respectively, of uB ; with compact 
notation we denote cu = (cM , cS , cP ). 

u u u 

and apply the algorithm to the resulting DAG. 

The partitioning algorithm is described in Algorithm 1. 

The input is represented by the application graph and a sub- 

set C of application’s microservices to be deployed in cloud 

by default. The algorithm adds a dummy target sink node t 

to the application graph; t is connected to each node in C 
using a dummy high-throughput edge. First, the algorithm 

establishes a source node through a topological sort of the 

application’s DAG. Second, the Ford-Fulkerson’s algorithm, 

applied to the augmented graph, returns the partition sep- 

arating s and t with a cut of minimum capacity. All the 

nodes still reachable from the source node in the residual 

While the proposed framework does apply to other classes 

of applications, e.g., memory-intensive or CPU intensive 

applications, we shall focus on optimising the allocation of 

resources for throughput-intensive fog applications. They are 

a critical class of IoT applications which includes, e.g., stream- 

ing mining applications [17], where processing directly on fog 

nodes leads to huge bandwidth savings. In this context, for 
instance, a raw video stream can be filtered to extract only 

the relevant parts of specific frames, e.g., those containing a 

face which need to be sent to the cloud to perform recogni- 

tion. Hence, after the partitioning step showed in Figure 2, 

two different data units may be transmitted. We call, for each 
graph will be included in the Edge set, while the others application u, ΔH the data unit transmitted directly from the 

will go to the Cloud set. We observe that the high through- 

put of the edges between nodes in C and node t grants that 
all nodes in C will belong to the Cloud set, as stated by 

Lemma 1. 
Lemma 1: For each node v ∈ Vu \ {s}, if v ∈ C then 

v ∈ Cloud when Algorithm 1 terminates. 

Proof: Let assume, by contradiction, that for some v ∈ C 
it holds v /∈ Cloud. Since, by assumption, v /= s, there 
exists an in-going edge to v, (v∗, v ). If v ∗ /∈ C , then 

IoT sensor (e.g., video camera frames) to the Fog chunk. ΔL 

is the data unit transmitted from the Fog chunk to the Cloud 

chunk once a processing step has been performed (e.g., face 

images). 

Delay Constraints: These two different data units are sent at 

different rate; we denote λH as the raw throughput generated 

by the IoT device and λL for the throughput generated towards 
the Cloud chunk once the Fog chunk of the application has 
processed the stream. In this case, typically λH ≥ λL. In the 

u u 

λu (v∗, v ) < λu (v, t ), contradicting the cut minimality found 
by the Algorithm 1. If v ∗ ∈ C we can repeat the previous 

fog resource allocation problem described in the next section 

the throughput λH and λL are decision variables which can be u u 

argument until we find the first node v ∗∗ /∈ C , in the worst 
case until reaching node s. 

Complexity: The complexity of Algorithm 1 is dominated by 

the time complexity of the Ford-Fulkerson’s algorithm which 

is O (|Eu | λ∗) for each application u, where λ∗ is the max- 
imum flow in the application network. We can improve the 

runtime through the Edmonds-Karp implementation of the 

algorithm [15], [16] obtaining a complexity of O (|Vu |·|Eu |2) 
totally independent of the maximum flow of the application 

network. 

optimise in order to meet the applications’ delay requirements. 
In fact, we can assume that each application u has to output 

every 1/Fu seconds a result like a positive or negative face 
recognition match. The cloud chunk is installed in the central 
cloud S0. We can hence consider the whole processing chain 

involved by the two-chunks and the related data transmission 
delay. We should also include the processing delay du of appli- 

cation u (if deployed back to back to the IoT object), plus the 

communication delay duj , which is the additional delay to 

retrieve data from region where the sensor belongs, when the 
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Fig. 3.  Configurations types for the deployment of the Edge module uB ; Cloud module uA is always installed in cloud. 

 

 
Fog chunk is installed in region j. In the resource allocation 

L 
xu,k λ

L + xu,0 λ
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problem we need to consider the processing and transfer- 

ring time. Actually, the processing time for each information 

unit depends on the throughput between application chunks. 

u∈Uk 

+ 
L 

u u 

L 
xv,j λ

L ≤ Bk 0, 

Any application placement has to guarantee the application j∈N (Sk ) v∈Uj 

to process an information unit Δu in  1  seconds. Thus, ∀k ∈ K \{0} (3) 
Fu 

the allocation of such throughput depends on the applica- 

tion deployment configurations. Since the Cloud chunk is u

L

∈Uk 
xu,j 

H 
u 

u∈Uj 

 

u,k λ
H ≤ Bkj , 

always installed on the central cloud, the three basic fog ∀jk ∈ E, j , k /= 0 (4) 
configurations to deploy application u are as in Figure 3: 

Type 1: Fog chunk deployed on Su ; higher throughput λH 
flows between IoT object u and region Su , with IoT data unit 

du + 

H H L 
u + duj + u u 

u u 

 

xu,j 

ΔH . ΔL served between Su and S0 with low throughput λL; 
( 

ΔH
  

 
 

( 
ΔL

  
 

 

H is served between Su and S0 with high throughput λH ; 
u u

 1 
Type 3: Fog chunk deployed on a neighbouring fog region ≤ ∀u ∈ U , ∀j ∈ N (Su ) (5) 

S /= Su ; lower throughput required between S and central Fu 

j 
H 

j L 
x
 ≤ 1 ∀u ∈ (6) 

cloud S0. However, the IoT data Δu = Δu is served between 

Su and Sj with high throughput λH . k∈K 
u,k 

L 

U 

 

xu,k ≤ 0 ∀u ∈ U (7) 

C.  Fog Resource Allocation Problem 

The objective of the edge-infrastructure owner is to 

maximize the revenue obtained by provisioning her fog infras- 

k∈K \{N (u)∪{u}} 

xu ,k,i ∈ {0, 1} ∀(u, k ) ∈ U × K ∀i ∈ Sk 

(8) 
λH , λL ∈ R+ (9) 

tructure to application tenants. By using the traditional scheme u u 

of pay per use, it can settle a cost in order to deploy an appli- 

cation. A tenant owning application u pays fu,k > 0 euros per 
application installed in region k. 

The objective is thus to host containerized fog applications 

such in a way to maximize the owner revenue, while satisfy- 

ing the applications’ requirements. We can obtain the optimal 
reward for a given batch of applications. 

Decision variables xu,k,i are boolean variables indicating 

the placement of the fog chunk of application u on the i-th 
server of region k. Further, decision variables λH , λL ∈ R+ 

where we let xu,k =  i∈Sk 
xu,k,i  ∀(u, k ) ∈ U × K 

for notation’s sake. The objective function is the revenue 
gained by the infrastructure owner. The constraint (2) is 

meant component-wise: it bounds the resources utilization 
on fog servers in terms of memory, processing and storage 

capacity, respectively. Also, (3) and (4) bound the through- 

put generated by applications with respect to links’ capacity. 

Equation (3) accounts for all traffic from region k to the central 

cloud, whereas (4) accounts for the throughput across adjacent u u 
regions as in Figure 3c. By constraint (5), the total transmis- 

represent the optimal throughput in the large and small data 

unit transfer mode for application u, respectively. Indeed, the 

throughput declared for each application’s link in the partition- 
ing step is an upper bound on the actual throughput generated 

on each link of the application. The optimal allocation policy 

using a mixed integer non linear program (MINLP) writes: 

sion and computing time needs to be smaller than the service 

rate of the application. We assume that, according to (6), each 

application has at most one deployment region, since, given 

the limited resources, it is not always possible to deploy all the 

applications. In particular, (7) indicates that each application 

can be deployed only on neighbour regions or on its original 

region. 
maximize: 

(u,k )∈U ×K 

fu,k xu,k (1) The decision variables are the binary variables for the 

placement and the continuous variables for the throughput. 

subject to: cu xu,k,i ≤ Cki , ∀k ∈ K , ∀i ∈ Sk (2) 

u∈U 

Prob. 1–9 is a combination of a placement and a multi- 

commodity flow problem. For the sake of tractability, in the 

Δ 

λ 

Δ 

+ du0 + xu,0 + du0 + xu,u 
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Δ Δ 

λ 

Δ 
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L 

L  
u u 
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λ + 
L 

x u 

L 

F L 
u 

u 

+ 
Bu H L 

u u 

F u 

L L 

next section we offer a transformation to a pure placement 

problem. 

 

IV.  PURE PLACEMENT PROBLEM 

The aforementioned transformation is attained by fixing the 

continuous decision variables of the MINLP, i.e., λL and λH . 

A. Complexity 

Problem (14)–(20) has formulation similar to a specific 

Knapsack problem, namely the Multidimensional Multiple- 

Choice Knapsack (MMCK) problem. This latter problem is 

one of the most complex versions of the Knapsack Problem’s 

family. In this version of the KP, there are different groups of 
u u 

To do so, it is sufficient, for each application u ∈ U , to fix the 
minimum throughput required in order to deliver the output at 

target rate Fu , given its configuration type and deployment 
region. 

Type 1: Processing each information unit and providing an 

output result should happen at rate  1  ; by accounting for all 
processing and communication delay we write 

items with the constraint that exactly one item for each group 

must be picked [18]. 
In the multidimensional multiple-choice Knapsack problem 

there are m resource types and the amount of available 

resources is given by vector C = (C 1 ,...,  Cm ). Also, there 

are n disjoint classes of items, Ji i = 1 ,...,  n, where each 
class Ji has ri items. Each item j ∈ Ji has profit value vij ≥ 0 

H L and weight vector Wij = (w 1 ,...,  wm ) ≥ 0, where each 
Δu  Δu 1 ij ij k 

du + du0 + 
Bu 

+ ≤ 
u

 

which can be solved for equality in λL; 

Type 2: For each application u, we have 

ΔH ΔH 1 

(10) weight component wij ≥ 0, k = 1 ,...,  m, is the occupation 
of resource k of item j ∈ Ji . 

The objective is to pick exactly one item from each class 

in order to maximize the total profit value of the pick, subject 

to resource constraints: 
du + du0 + 

  u  
+ 

  u  
≤ (11) n ri 

Bu H Fu 
maximize: Z = 

L L 
vij 

xij (21) 

In this case we are solving for λH ; we observe that it must 
hold indeed λH ≥ λL. 

i =1 j =1 n ri 

u u subject to: L L 
wk x

 ≤ Ck , 1 ≤ k ≤ m (22) 
Type 3: If uB is deployed in a region neighbor of the 

original region of u, it holds 
ij  ij 

i =1 j =1 
ri 

H H L 

du + duj + dj 0 + 
u 

+ 
u u

 
u u 

(12) 
j

L

=1 

xij = 1, 1 ≤ i ≤ n (23) 

In this case, in order to have a unique solution in the min- 

imum throughout, we impose additional constraints, namely 

we restrict to the set of solutions such that 

xij ∈ {0, 1}, ∀1 ≤ i ≤ n, 1 ≤ j ≤ ri . (24) 

The pure placement problem and the MMCK have simi- 

lar formulations. The next result proves NP-hardness of our 
λH ΔH 

 u  =   u  (13) problem by reduction from the MMCK problem. 
L L Proposition 3: Problem (14) is NP-hard. 

Once we performed the above identification, the original 

problem becomes: 

maximize: fu,k xu,k (14) 
(u,k )∈U ×K 

subject to: 
L 

cu xu,k,i ≤ Cki , ∀k ∈ K , ∀i ∈ Sk (15) 

Proof: We prove the NP-hardness by reduction from a spe- 

cific case of the MMCK problem. In particular, we consider the 

case where each class has the same number of elements r [19]. 

Furthermore, the NP-hardness can be easily proved by reduc- 

tion from the MMCK problem with m = 1, since starting from 

m = 1 the problem is already known to be NP-hard (for m = 1 

the problem is known as Multiple Choice Knapsack). Hence, 
u∈U 

x 
u∈Uk 

 

u,k λ
L + x 

 

u,0 λ
H

  
+ 

for every instance of a MMCK with n classes consisting of 

r elements and 1 dimension, we can reduce it to an instance 

of our problem. Indeed, it is sufficient to consider an instance 

+ xv,j λ
L ≤ Bk 0, 

j∈N (Sk ) v∈Uj 

∀k ∈ K \{0} (16) 

of (14)–(20) with n applications and a single region with r − 1 
servers with infinite capacity. Each application has three pos- 
sible configurations: deployed in cloud, deployed in fog or not 

u

L

∈Uk 

xu,j 
H 
u 

u∈Uj 

 

u,k λ
H ≤ Bkj , 

deployed. In this manner, each application defines a class of 

configurations consisting of r elements. Each element’s weight 

can be mapped to the throughput generated by each application 
∀jk ∈ E, j , k /= 0 (17) 

xu,k ≤ 1 ∀u ∈ U (18) 
k∈K 

towards the cloud. In this manner, the only one capac- 

ity constraint is the bandwidth constraint on the fog-cloud 

link. 

k∈K \ (N

L

(u )∪{u } ) 

xu,k ≤ 0 ∀u ∈ U (19) Several algorithmic solutions have been proposed in the lit- 

erature for the MMCK problem [19], [20]. However, such 

heuristic solutions cannot guarantee approximation bounds on 
xu ,k,i ∈ {0, 1}, ∀(u, k ) ∈ U × K , ∀i ∈ Sk . 

(20) 
the produced allocation. Actually, to the best of the authors’ 

knowledge, no approximation algorithm is available to date 

λ 

≤ 
 1 

Fu 
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Fig. 4.  Optimal solution vs. Rounding. 
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Algorithm 2: Fog Placement Algorithm (FPA) 
 

 

Input: G = (V, E), U 
Output : Container placement for each u ∈ U 

1 while U /= ∅ do 

2 

for this specific Knapsack problem with a variable number  3 

of dimensions. In [21], authors designed a polynomial time 4 

approximation scheme (PTAS) for the MMCK problem when 
5 

the number of knapsack dimensions is O (1). In our case, 7 

instead, the number of dimensions varies with the number of 
8 

applications and regions. 9 

One of the standard techniques to obtain approximation  10 

schemes for binary integer NP-hard problems is to relax first 

the integrality of choice variables thus obtaining a linear pro- 
11 

gram and then round the so-obtained continuous solution of the 

linear program to an integer solution of the original one [22]. 
13 

One technique is to consider the continuous relaxed variable 

as the probability to pick the tagged choice variable (setting 

that variable equal to 1). Typically, a difficult challenge for15 

such a relaxation algorithm is to guarantee that the obtained16 

place ← {}; 
for i = 1 , . . . ,  K do 

for u ∈ Ui do 

A ← ∅; 
if verify(Si , u) then 

A ← A ∪ {Si }; 

for S ∈ N (Si ) do 
if verify(S, u) then 

 A ← A ∪ {S}; 

if A /= ∅ then 

place[u] ← select(A , u); 

else 

place[u] ← ∅; 

 
// select the application to be deployed 

u
∗ ← min_resource_region(place); 

deploy(u
∗, place[u

∗]); 

integer solution is a feasible one for the initial integer problem. 

In our case, the rounding technique does not represent a good 17 

strategy to obtain a valid approximation scheme. As shown in  18 

Figure 4, the approximated feasible solution suffers a signifi- 
cant optimality gap with respect to the optimal one. The figure 

reports the best feasible solution obtained by the applying the  

// Update G 
update(G, Splace[u∗], Su∗ , u 

U ← U \ {u
∗} 

∗
); 

rounding technique to the relaxed version of problem (14). One 

of the main issues is represented by the constraint (18), which 

misleads the relaxation procedure to pick solutions quite far 

from optimal. Indeed, by relaxing this constraint, more than 

one variable can assume a non-zero value. In this case, we 
need to choose which one to pick entirely. In our case we con- 

sidered a probability distribution defined for each application 

on the set of its possible deployments. However, as confirmed 

by Figure 4, this leads to a very conservative approximation 

factor since the most probable variables to be picked are may 

be arbitrarily far from the ones chosen by the optimal integer 

solution. 

Finally, in Table II, we have resumed the complexity results 
for the problems tackled in this article. The main problem is 

strongly NP-hard since it induces a VNE problem; further- 

more, it does not admit any tight polynomial-time approxi- 

mation scheme. The application partitioning problem has a 

polynomial time algorithm as per the reduction showed in 

Proposition 2; it becomes NP-hard as the number of chunks 

is greater or equal to 3. Finally, the Fog Resource Allocation 

problem is formulated as a MINLP problem: by fixing the con- 

tinuous throughput variables it becomes the Pure Placement 
problem which is NP-hard by reduction from the MMCK 

problem. 

V.  FOG PLACEMENT ALGORI THM  

Hereafter, we describe FPA, a greedy solution for (14) 

which is meant to provide practically viable solution for the 

placement problem described above. The key intuition of 

the algorithm is to pick an aggregated view of fog regions’ 
resources utilisation, thus permitting to measure the effect 

of placement as a pseudo-gradient descent in the space of 

occupied resources, while treating the alternatives for the 

deployment of same application as different yet exclusive 

instances. 

FPA operates an iterative application deployment. At each 

step, for each region and for each application u which belongs 

to that region, it selects the set A of admissible regions 
for the deployment of chunk uB . Such set includes all the 

regions satisfying the computational and throughput require- 
ments of a tagged application. Preliminarily, a feasibility check 
is performed through a verify procedure: given a region and 

application’s requirement, it verifies whether exists at least one 

server in the region to host uB , i.e., if the server has enough 

space in terms of CPU, memory and storage. Further, through- 

put requirements are verified against each configuration type 

for each application, by ensuring that the residual bandwidth of 

involved links satisfies the minimum throughput requirement 

corresponding to the tagged configuration type. 



 

 

_mem(S ) 

_stor (S ) 

1 residual _ 

h=1 

c 

c 

λ 

_p 

1 residual _ 
u 

d ({u,S}) 
;
 

u 

Algorithm 3: Select Procedure 

Input: A , set of admissible regions for the deployment of 

chunk uB 
Output : A region for the deployment 
// Build a pseudo-gradient vector for each 

region in A 

1 for S ∈ A do 
M 

2 
vm ← 

residual 
u ;

 
P 

3 
vp ← 

residual
u 

roc(S ) 
;
 

cS 

Complexity: The computational complexity of the FPA algo- 

rithm is derived by noting that procedures verify, updateServer 

and update have constant time complexity. Procedure select 

computes a vector for each eligible region in the set A . In 

the worst case, the cardinality of A is at most K − 1. Hence, 
the complexity of the select procedure is O(K). The cardinality 

of U is U, and the maximum cardinality of a neighbourhood 

of a certain region is O(K) in the worst case. The cardinality 

of the set of applications to be ranked is O (U ) at each step. 
Finally, the complexity of FPA is O (U 2 · K 2 + U 2) in the 

4 
vs ← 

residual
u ;

 
5 if S /= Su then 

6 if S ∈ N (Su ) then 
// Case 3 

λH 
7 b ← 

ban 
λL 

worst case. 

 
VI.  NUMERICAL RESULTS 

In this section we evaluate the performance of the com- 

bined scheme using throughput-aware application partitioning 8 
b2 ← 

residual _ 
u ;

 
 

9 

10 
 

 
11 

12 

13 else 

 

else 

 
 

band ({S,0}) 

v¯S ← (vm , vp, vs , b1, b2); 

// S = S0, case 2 
H 

b ← u ; 
band ({0,u}) 

v¯S ← (vm , vp, vs , b1, 0); 

and placement. We compare the performance with the case of 

throughput-agnostic application partitioning, and with the case 

of placement driven by virtual network embedding [23]. 

In order to understand the average behaviour of the pro- 

duced solutions, we examined the performance of the algo- 

rithms on a number of randomly-generated graphs. The 

// Case 1 
λL 

14 
b1 ← 

residual _band ({0,u}) 

network infrastructure is modelled with an undirected graph 

connecting a central cloud to a fixed number K of fog regions, 

where K = 10 in our experiments. Thus, the central cloud 
15 v¯S ← (vm , vp, vs , b1, 0); 

16 return arg min{l/v¯S l/
2} 

S∈A 
 

 

 

 

The select procedure is reported in Algo. 3: select first 

calculates, for all the admissible regions for the deployment 

of an application u, a pseudo-gradient v¯S (∀S ∈ A ). Its 
components are calculated at lines 2, 3, 4, 7–9, 11, and 14, 

respectively, by estimating the normalized decrease of each 
resource type in case of deployment with tagged configuration. 

The output is the region with the minimum pseudo-gradient 

(line 16). Once a feasible region is selected for each applica- 

tion, the algorithm 2 chooses the application to be deployed 

first. This step is executed by the min_resource_region 

procedure. It takes the place map as input and returns 

the application to which the region with the minimum 

pseudo-gradient is associated, as computed per the select 
procedure. 

Subsequently, once the algorithm has selected the applica- 

tion to be deployed, it updates the computational capacities of 

the server hosting the chunk of that application. 

Afterwards, the algorithm updates the graph structure 

decreasing the available bandwidth of links connecting regions 

selected for the deployment (line 17). It iterates until all 

applications have been considered. 

Finally, we observe that, while the presentation of FPA is 
performed in the case of a batch of applications all available 
at the same time, the formulation can be easily adapted to 

and fog regions form a star topology of cloud-to-fog connec- 

tions, namely cloud-links. For every topology realization, links 

between two fog regions are added according to an Erdo˝s- 
Rényi random graph model, where a link exists between two 

regions with probability q. Finally, each link in the result- 

ing network is assigned a bandwidth of 15 Mbps, both for 

cloud-links and fog-links. 

A batch of fog applications is generated for each exper- 

iment; we considered U = {80, 90, 100, 150, 200} for 

the applications cut evaluation, U = {60, 70, 80, 90, 100} 
for the comparison with network embedding approaches and 

U = {10, 50, 100, 150, 200} for the comparison with the stan- 

dard Kubernetes placement described in Section VI-A3. The 

demands of each application of the batch for CPU, storage, 
memory and throughput are modelled as uniform independent 

random variables. The mean value of such variables is dictated 

by the nominal value we measured on a benchmark appli- 
cation, that is a plate-recognition application packaged as a 

two-modules microservice. The fog microservice module can 

process the video stream either in cloud or on a fog node. The 

resulting distribution of the key parameters for the applications 
microservices are enlisted in Table III; symbol u0 refers to the 

nominal values we measured on a proprietary fog platform for 

the plate recognition app [24], [25]. Each application is gen- 
erated as a DAG with a number of nodes sampled from the 

set { 5 , . . . ,  20}. 
Finally, the probability that an application belongs to region 

1 ≤ k ≤ K follows a truncated Pareto distribution of param- 
eter α, i.e., P{Ru > k} = k−α/γ, where Ru is the random 
variable representing the index of the region assigned to the 

the online case, where applications to be deployed arrive and application u and normalization constant γ =
  K

 h−α. 

depart, by simply including the release of resources to the 

update procedures. 

In the proposed scenario, the servers available within each 

region belong to three classes, depending on the resources they 
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TABLE III 

DISTRIBUTION OF THE APPLICATIONS’ MICROSERVICES REQUIREMENTS 

OF CPU, MEMORY, STORAGE AND THROUGHPUT 

 
   

 
 

   

 
 

   

 
 

    

 
   

 

 

TABLE IV 

CHARACTERISTICS OF THE THREE CLASSES OF FOG SERVERS: LOW, 
MEDIUM AND HIGH 

 
    
    

    

    

 
 

 

are equipped with, namely low, medium and high class. The 

computational characteristics are listed in Table IV where CPU 

performances are described in terms of Million Instructions 

Per Second (MIPS) representing the processor’s speed of a 

server. This standard measure [26] is relevant in a heteroge- 

neous environment as fog computing, since all the servers in 

a specific fog region can mount different cores and different 

processors. Hence, given this heterogeneity, this measure rep- 

resents a basic universal metric for processors’ performances, 

used in other fog simulators [27], that is independent from the 

algorithm. For the latter we implemented a state of the art vir- 

tual network embedding algorithm presented in [23] and two 

variants of the Kubernetes scheduler [5]. 

1) Throughput-Agnostic Partitioning: For the evaluation of 

the partitioning algorithm we compare it with a throughput- 

agnostic method that, given an application DAG as input, 

performs a random cut of the application graph. In detail, the 
algorithm takes in input the application graph and perform a 

visit of the DAG. Once an order of the application nodes is 

induced by the visit, a random cut is chosen on the so-defined 

order without considering the total throughput on the chosen 

cut. 

2) Network Embedding Algorithm: The general problem of 

deployment of a DAG-like fog-application can be seen as a 

network embedding problem, we compare our solution with a 

standard algorithm. The general procedure [23] for the embed- 
ding algorithm consists of three main steps to be executed 

sequentially for each application. 

1) Topological sorting. A topological sort is obtained by 

simply performing a modified visit of the application DAG. 

The DAG-like structure of the application ensures that there 

exists at least one possible order of the application nodes. 

2) Application’s nodes mapping. This procedure selects, 

for each node, a set of possible regions where the node can 

be deployed. Once this set is defined, one region is selected 
according to a fixed priority function. In our implementation, 

we select the region Si that maximizes 

specific model of the processor. The number of servers per 

region is determined at each experiment sample as follows. 

resCPU (Si ) 

j∈N (Si ) 
resBW 

(
Si , Sj 

)
, (25) 

Each region is meant to satisfy same fraction of the expected 

aggregated demand. More precisely, each region is equipped 
with aggregated resource vector (1 + β) U cu . The parame- 

where resBW (Si , Sj ) and resCPU (Si ) indicate the residual 
bandwidth of physical link {Si , Sj } and the residual CPU 

ter K 0 capacity in region Si , respectively. If any of the application’s 
β is a slack parameter tuning the probability that resources 

available in a fog region are underprovisioned/overprovisioned 

compared to the aggregated demand. Finally, the servers’ 

population of the tagged region is generated by allocating iter- 

atively servers of different types at random until the region 

resource budget is exhausted. 

Well-known Fog simulators and emulators presented in the 

literature [27], [28] do not support natively scenarios with 

multiple fog regions. Hence, we developed a Python-based 

simulator for the evaluation of the above algorithms. The 
Gurobi solver has been used to solve the optimal place- 

ment problem (OPT). Experiments have been conducted on an 

Ubuntu Linux server with 32 core AMD Opteron 1.4GHz CPU 

and 64GB of memory. Each data point depicted is the result 

of an average over 30 instances where the network infras- 

tructure is fixed and the application and servers distributions 

change. All the results are averaged with the corresponding 

95% confidence interval. 
 

 

A. Reference Algorithms 

We compared our proposed scheme with two benchmark 

solutions. More precisely, we evaluate the application split- 

ting and the deployment (FPA) algorithms. For the former one 

we make a comparison with a throughput-agnostic splitting 

node has not eligible region, the application is not deployed. 

3) Application’s links mapping. If a mapping for all the 

modules of the application is found, the next step is to find 

a path between each couple of regions where two application 

nodes are mapped in the previous step. Given two regions 

assigned to two application’s nodes, we compute all the paths 

between these two regions and we take the first path with 

enough bandwidth capacity for the application’s link. If all 

the application’s links are mapped to a set of paths of the 

network infrastructure, the application is finally deployed on 
the infrastructure. 

Before applying the embedding procedure for each applica- 

tion, a deployment priority should be established among them. 

Hence, we sort the batch of applications on the basis of their 

total throughput demand. In this manner, the next application 

chosen for the deployment is the one with the minimum total 

throughput demand. 

Remark: In the experimental section, we shall consider two 

variants of the VNE approach. The first is the one where 
embedding is performed only to regions neighbouring the orig- 

inal one for the target fog application u. The second one, 

VNE-MultiHop, assumes routing can be performed across all 

regions. The VNE-MultiHop variant may be at advantage by 

performing load balancing more efficiently across the whole 

deployment, it relies on a strong technological assumption in 



 

 

 

  
 

Fig. 5. Comparison of throughput-aware vs. throughput-agnostic partitioning. 

a) cloud  links usage, q = 1/2, β = 0.5; b ) cross links usage, q  = 1/2 , 
β = 0.5; c) number of dep loyed applications fo r q  = 1/2, β = 0.5; d ) number 
of deployed applications for q = 1/2, β = −0.5. 

 

 

that it requires joint orchestration of network and application 

layers; conversely all other solutions envisioned in this article 

can be fully implemented at the application layer. 

3) Kubernetes: Kubernetes scheduling algorithms consist 

of three main components: the filtering step where a set of 

servers is selected for each pod; the ranking which selects, 
on the basis of a specific priority function, the best server 

for the deployment among the ones previously selected; 

finally, the deployment step is dedicated to the final deploy- 

ment of the pods on the servers selected on the previous step. 

In our case we selected LeastRequestedPriority as the prior- 

ity function for the second step. In this manner each server 

node is ranked based on the fraction of the node resources that 

would be free after the deployment of the selected pod. 

For the sake of a comparison with our approach, we adapted 
the Kubernetes scheduler to a multi-region scenario imple- 

menting two variants of the aforementioned procedure: the 

first one runs the basic Kubernetes algorithm in every single 

fog region; each region is hence thought as a separate cloud 

where a fog server is chosen to host the application chunks to 

be deployed. We observe that in this approach, only deploy- 

ments of type 1 and type 2 are possible. The second approach 

is to consider the whole fog deployment as a unique region. 
Hence, in the filtering step, Kubernetes shall select all the 

servers able to host a tagged chunk across all fog regions. 

 
B. Experimental Results 

1) Application Partitioning: In Figure 5 we evaluate the 

effect of the fog partitioning algorithm. Figure 5a reports on 

the fraction of cloud-link usage for each application deployed 

on the network infrastructure both for the throughput-aware 

application splitting (FPA_M) and for the throughput-agnostic 
(FPA_R) [29]. It is clear from the figure that with the min- 

cut splitting the cloud-link usage is almost constant as the 

size of applications batch increases. Furthermore, the cloud- 

link usage of the throughput-aware partitioning is always less 

than the random cut, as expected. The cloud-link usage of 

Fig. 6. a) OPT vs. FPA vs. VNE in terms of number of applications deployed, 

q = 1/2 , β = 0.5; b ) OPT vs. FPA vs. VNE in terms of number of appli- 
cations deployed, q = 1/2 , β = −0.9;  c) FPA vs. VNE in  terms of average 
total delay overhead, q = 1/2 , β = −0.9;  d) Average execut ion  time fo r 
FPA and VNE, q = 1/2, β = −0.9. 

 

 

 

the throughput-agnostic decreases as the size of application 
batches decreases for the applications deployment. Indeed, to 

increase the number of applications deployed FPA tries to 

save bandwidth towards the cloud as shown in [29]. Figure 5b 

represents the amount of fog-to-fog links usage for both the 

two approaches. The throughput-aware partitioning exploits 

a larger number of cross-links: as a consequence it can 

deploy a larger number of applications compared with the 

throughput-agnostic solution, as confirmed by Figure 5c. 
Figure 5c shows the effectiveness of the proposed applica- 

tion cut in terms of applications placement in an overprovi- 

sioning situation in terms of available computational resources. 

Indeed, with a minimum cut for the application splitting, 

FPA_M is able to deploy almost the totality of the appli- 

cations’ requests until |U | = 100. This is also the reason 
why the cross-link usage for the throughput-aware approach 

keeps increasing steadily until |U | = 100, as shown in 
Figure 5b. In fact, FPA_R suffers from the non-optimised 

splitting of the applications, especially i scenarios, where 
bandwidth saturation represents a bottleneck for the appli- 

cations deployment [29]. Thus, we conclude that optimised 

application splitting causes a significant increase of the infras- 

tructure capacity to host fog applications. Figure 5d shows 

that the relative gain of the min-cut approach under tighter 

constraints on available resources remains significant versus 

throughput-agnostic approaches. 

2) Network Embedding: For the VNE algorithm we imple- 

mented two variants: the standard one (VNE), adapted to 

our scenario, allows the deployment of microservices only on 

regions neighbouring the target one; the extended one (VNE- 
MultiHop), conversely, allows paths across region nodes when 

mapping links of the application graph during the embedding 

procedure. 

Figure 6a) reports on the number of applications deployed 

across the infrastructure in an underprovisioning scenario. We 

can observe that, as expected, VNE-MultiHop can deploy all 



 

 

the applications since we remove the constraint of using only 

one-hop links for the applications mappings. The difference 

between OPT and FPA is reduced and, on the other hand, the 

VNE presents a significant loss. The VNE algorithm, indeed, 

tries to deploy all the applications towards the cloud until 

the bandwidth between the original regions and the cloud is 

exhausted, confirming the bandwidth towards the cloud to be 
a real bottleneck for the applications deployment problem. 

The VNE-MultiHop, instead, escape from this problem by 

allowing the applications’ links mapping among the paths 

that go from the original region of the applications and the 

cloud. Indeed, given the metric (25), the best resulting region 

for each application deployment will be the cloud (for the 

unlimited computational power). However, as highlighted in 

Figure 6c), this approach can lead to a significant time over- 

head. In Figure 6b) reports we have the same results when the 
fog has enough computational resources (overprovisioning). 

In this case we can see a little loss from the VNE-MultiHop 

still due to the metric (25) for the region selection. The VNE- 

MultiHop continues to select the cloud without considering the 

quantity of resources available in Fog. This can easily leads 

to a bandwidth saturation towards the cloud. 

Figure 6c) validates our choice of deployment using two 

hop schemes when offloading to neighbouring regions in Type 

3 configurations. Indeed a multi-hop approach such as VNE- 
MultiHop may incur in a significant latency overhead due to 

the multi-hop path traversing several links to connect two dif- 

ferent regions. On the other hand FPA and VNE have a small 

difference in delay, confirming that it is the multi-hop approach 

to introduce a significant latency overhead. 

Finally, in 6d) we show the execution time of the three 

algorithms. It is clear from the figure that VNE and FPA have 

comparable and scalable execution times. The VNE-multiHop 
presents highest execution times given by the computation 

of the paths between all pairs of region nodes where two 

application nodes are mapped. 

3) Kubernetes: Finally, in Figure 7a) and b) we have 

compared our solution with the two Kubernetes algorithm’s 

variants: Kub and Kub1, respectively. In the second scenario 

all algorithms tend to deploy a larger number of applications 

than in the first one. This is expected since the latter both has 

more computational resources and more connected regions. In 
both figures we can observe that FPA performs close to the 

optimal solution. The poor performance of the Kub algorithm 

indicates that offloading towards neighbourhood fog regions 

is key to efficient fog resource allocation. Also, as the num- 

ber of applications increases, the gap between FPA and Kub1 

broadens. The reason can be ascribed to two key difference 

between FPA and Kub1. First, the deployment order of appli- 

cations in FPA matches remaining resources at each step, by 
choosing the application with minimum resources consump- 

tion pseudo-gradient. In Kub1, conversely, applications are 

deployed in a predefined order. Second, for Kub1 neglects 

crosslinks bandwidth utilization, it leads quickly to band- 

width resources consumption. On the other hand, FPA’s better 

performance is due to the fact that it accounts for bandwidth 

occupation of both cloud-links and crosslinks. This confirms 

the key role of accounting for bandwidth consumption on 

 

 
 

Fig. 7 . Number of dep loyed applications with respect to Kubernetes algo- 
rithms: a) q  = 1 /3, β  = −0.2; b ) q  = 1/2 , β = 0.5; c) Conf iguration 
types distribution for a typical solution instance with U = 100, q = 0.5 and 

β = 0.5;  d) Configuration types d ist ribut ion  for a typ ical so lut ion  instance 

with U = 150, q = 0.5 and β = 0.5. 

 

 

both fog-links kinds of network links for the final applica- 

tions deployment, in order to avoid early bottleneck formation. 

Figure 7c and Figure 7d provide further insights into the struc- 

ture of the produced solutions. There, we have reported the 

number of deployments of each type produced by different 

algorithms in a throughput-dominated scenario. The OPT and 
Kub1 solutions prioritize type 3 configurations over type 1 

configurations, while the opposite is seen to occur for FPA. 

Overall, as expected, deployments on fog, i.e., type 1 and type 

3, are more frequent than type 2 configurations, since they save 

bandwidth on cloud-links. Actually, for a batch of 150 appli- 

cations the number of type 2 deployments becomes negligible 

(Figure 5f). These results highlight the importance of the fog 

side in the applications deployment even when we have an 
overprovisioning situation at the edge. 

 

VII.  RELATED WORK 

In cloud and mobile cloud computing, the problem of 
microservices applications deployment has been thoroughly 

studied. As described in [30], cloud software design privileges 

modular software structures, where applications are composed 

by multiple coupled components known as microservices. 

In [31], applications are assumed to have a microservice 

architecture: the authors proposed a distributed mechanism 

for microservices scheduling at the edge. The objective is 

minimise the service latency for all the applications to be 
deployed. However, applications are simply represented as 

sets of independent microservices. In [32], instead, microser- 

vice fog applications are represented as DAGs, where graph 

nodes represent an application’s modules, and edges between 

nodes represent dependencies between them. With such an 

application structure, the general application deployment 

problem bears several similarities with the graph embedding 

problem [33], [34], a well-known NP-hard problem. In our 

context, even for two-module containerised fog-applications, 
such problem is proved to still be NP-hard. In [35], a DAG 
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structure for IoT applications similar to the one used in this 

article is considered. But the aim of the work is different from 

ours, because the objective there is to perform communication 

load balancing among the microservices of a single application 

via their replication across the infrastructure. Furthermore, the 

infrastructure model is characterised only by the nodes that 

host some replicas of the application’s microservices. 
In [36], application provisioning is studied from the per- 

spective of the network infrastructure. A fully polynomial-time 

approximation scheme is derived for single and multiple 

applications deployment, showing large QoS performance 

improvement with respect to applications’ bandwidth and 

delay figures. However, the applications are represented as 

a single module communicating with a set of IoT devices 

generating data. For this reason, authors focused mostly on 

applications’ networking requirements. 
Taneja and Davy [10] defined a placement algorithm by 

mapping the directed acyclic graph of the modules of an 

IoT-based application into fog and cloud nodes. Numerical 

results show performance gains in terms of latency, energy 

and bandwidth constraints, compared to edge-agnostic place- 

ment schemes. Our work, conversely, develops an optimization 

framework able to account for both traffic and computing 

demands of a whole batch of applications to be deployed over 

multiple regions. 
The DAG-like applications deployment on an infrastruc- 

ture network reminds the Virtual Network Embedding problem, 

a well-known NP-hard problem deeply studied especially in 

the topic of Virtual Network Function (VNF) placement [33]. 

Many heuristic solutions have been proposed in the litera- 

ture [37] since the general problem presents strong inapprox- 

imability results [38]. The main difference with respect to 

our context is that, usually only CPU constraints are taken 
into account in VNF problems. Conversely, in a fog scenario, 

where resources are limited and heterogeneous, all the require- 

ments (CPU, RAM and Storage) of each microservice should 

be considered. Furthermore, the network infrastructure where 

VNF applications are deployed is usually not partitioned into 

regions. 

With respect to the container technologies discussed in this 

work, the de-facto standard for container orchestration is 

Kubernetes [6] even if new technology solutions for the edge 

are being proposed [41]. As described in Section VI-A3, 

resource allocation in Kubernetes proceeds by first enlisting 

servers able to host a target application module in a con- 

tainer pod. In the native cloud version, the actual container 
deployment is performed agnostic of the notion of fog-region 

and agnostic of network conditions. Our orchestration logic is 

able to addresses also the locality of object demands and their 

cumulative effect onto the communication infrastructure. 

 
VIII.  CONCLUSI ON 

In this article, we have introduced a joint partitioning and 
optimization framework for throughput-intensive applications. 

We showed that a smart cut of the applications’ computa- 

tion flow in between cloud and fog is beneficial to cope with 

the applications’ performance requirements while improving 

the revenue figures of the infrastructure owner. The scheme 

for the resource allocation combines a multi-commodity flow 

and a placement problem, but can be reduced to a Knapsack 

problem by introducing throughput proportionality and con- 
sidering only the placement formulation. A greedy algorithm, 

FPA, is able to perform efficiently with respect to the optimal 

solution by placing partitioned applications using a pseudo- 

gradient approach. The numerical experiments confirm the 

scalability properties of the proposed fog orchestration scheme 

and the efficiency in terms of infrastructure owner’s revenue 

and additional communication overhead compared to the most 

existing solutions in the literature. 

 
APPENDI X 

A. Main Problem Formulation 

In this section we provide a formal description of the main 

problem presented in this article. 

Variables: We introduce a binary variable for the placement 

of each applications’ microservice on a single server of the 

infrastructure: 

Partitioning the applications’ computation process repre- 

sents a promising technique to guarantee high performance in 

mobile cloud or edge computing. The authors of [39] studied 

u,m 
k,s 

1, 
if microservice m of application u 
is placed on server s of region k 

⎩ 
0, otherwise 

the problem of computation partitioning with the aim of maxi- 

mizing the application throughput in processing the streaming 

data. A genetic algorithm is able to find the best partition in 

between the cloud and the mobile at runtime. In [40], a gen- 

∀u ∈ U , ∀m ∈ Vu , ∀k ∈ K ∪ {0}, ∀s ∈ Sk . 
For the applications’ links mapping to the physical paths 

of the infrastructure we introduce a second kind of binary 

variables: 
eral technique to minimize execution time of IoT applications 
is proposed. The model introduced takes into account compu- 

tation and communication delays. By reduction to the Matrix 

yu,(m,n) 
=

 1, if (m, n) ∈ Eu is mapped to p ∈ P 

0, otherwise 

Chain Ordering Problem, an algorithm is provided in order 

to solve the optimization problem via dynamic programming, 

with time-complexity log-linear with respect to the number of 

operators of the application. With respect to such solutions, 

we have a different objective, that is to maximize the infras- 

tructure owner’s revenue by combining efficient applications’ 

partitioning while avoiding network bottleneck. 

One of the novelties of this work is the multi-regions 

scenario for the applications partitioning and orchestration. 

∀u ∈ U , ∀(m, n) ∈ Eu , ∀p ∈ P, where P is the set of all 
paths between nodes in the infrastructure graph G. 

Furthermore, since the objective of the problem is to 

maximize the number of applications entirely deployed on 
the infrastructure (i.e., maximizing the revenue), we introduce 

a third binary variable to indicate whether an application is 

entirely deployed on the infrastructure: 

z =  
1, if application u ∈ U is entirely deployed 
0, otherwise 
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y ≤ 1, ∀u ∈ U , ∀(m, n) ∈ Eu . (30) 
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  m∈Vu k∈K s∈Sk k,s  

|Vu | 

∧
⎢
⎣

 (m,n)∈Eu p∈P 

|Eu | 

p ⎥
⎦ .  (34) 

k,s s 

⎭ 

L L 

L L 

∀u ∈ U . Hence, zu will be set to 1 if and only if all the 
microservices and links of application u are deployed on the 
infrastructure. 

Finally, we have continuous variables to control the optimal 
 

 

Furthermore, we have constraints that bind x and y variables 
to z for each application u ∈ U : 

xu,m L 

 
 

the delay constraints: 
 

  
 

⎢  
yu ,(m,n) ⎥ 

 

 

Constraints: First, we have resource capacity constraints for 

each fog server of the infrastructure: 

L L 
cmxu,m 

≤ Ck , ∀k ∈ K , ∀s ∈ Sk . (26) 

Then we have all the constraints related to the applications’ 

 

Indeed, for each application u ∈ U , the decision variable 

zu is set to one if and only if all the application’s modules 
 

Finally, we have delay constraints for each application: 

links mapping: 
L  

u,(m,n) 

 L  
u,m 

 L 
u,n  

max 

 
u 
m,n 

 

+ y
u,(m,n) 

⎞⎫ 

d ∗⎠  
 

p∈P 

 

 

k,k∗ 

yp =  

s∈Sk 

xk,s  ∧ 
s∈Sk∗ 

xk∗,s , (27) pu ∈Pu 
(m,n)∈pu p∈P 

1 

λu (m, n) p
 

(k ,k∗)∈p 
k ,k 

∀(k, k ∗) ∈ V × V , ∀u ∈ U , and ∀(m, n) ∈ Eu . 

Constraint (27) ensures that a unique physical path of the 
network infrastructure is used by an application link whenever 

≤ , (35) 
Fu 

where Pu represents the set of all directed paths between the 

source and the destination node of the application u, and Δu 
the application nodes connected by such link are deployed 

on the extreme nodes of the physical path (the symbol ∧ 
represents the Boolean “and” operator). 

is the data transmitted from the module m to module n 

application u. 

m,n 
of the 

We have to add constraints to guarantee a unique placement 

for each component of each application (microservices and 

links): 
L L L 

xu,m 
= |Vu |∨ 

L  L L 
xu,m 

= 0, 

Objective: The objective function is the revenue of the 

infrastructure’s owner based on the number of applications 

entirely deployed: 

maximize 
L 

fu zu . (36) 

m∈Vu k∈V s∈Sk m∈Vu k∈K s∈Sk 
∀u ∈ U , (28) 

u∈U 

xu,m 
≤ 1, ∀u ∈ U , ∀m ∈ Vu . (29) 

k∈V s∈Sk 

u,(m,n) 
p 

p∈P 

Constraint (28) guarantees that either all the applications’ 

microservices are deployed or no one of them is deployed 

(the symbol ∨ is the Boolean “or” operator). The same thing 
must be guaranteed for the applications’ links: 

L L 
yu,(m,n) 

B. Complexity and Approximability of the Main Problem 

As it can be noticed from the formulation, the main problem 

may resemble a Virtual Network Embedding (VNE) problem 

with in addition the decision variables and constraints for 

the throughput on the applications DAGs edges. Overall, 

the main problem appears non-linear. Furthermore, the result 

in [38] shows that the VNE problem is strongly NP-hard 

with inapproximability results obtained by reduction from the 
Maximum Stable Set Problem (MSSP). Thus, unless P = 

NP, no polynomial time approximation scheme can be found 1 −E 
(m,n)∈Eu p∈P within a factor of n 2 for any E > 0. The formal proof of 

= |Eu |∨ y
u,(m,n) 

= 0. (31) 

(m,n)∈Eu p∈P 

An additional constraint should be added to guarantee a 

complete deployment for each application. If all the microser- 

vices of an application are deployed then all the application’s 

links must be mapped to a physical path and vice versa. 

the result in Proposition 1 follows. 

Proof: The proof holds by reduction from the VNE problem, 

as defined in [38], to the main problem. Let assume that 
the throughput variables on the applications’ edges are fixed. 
Given the substrate graph G0 = (V 0, E 0) of VNE problem 
and the set of requests R, where each r ∈ R is a graph 
Gr = (V r , Er ), we map each node in V 0 t o  a server of 

L  L L 
xu,m 

= |Vu |⇔  
L

 
L 

yu,(m,n) 
the fog infrastructure G = (V, E) and we map all each request 

r ∈ R to an application with V r microservices and Er edges. 
m∈Vu k∈V s∈Sk (m,n)∈Eu p∈P 

= |Eu |. (32) 
The nodes and edges capacities of G0 are mapped to servers 

capacities and to the bandwidth capacities of the links in G, 

The following are constraints on the bandwidth capacity for 
each physical link (k, k ∗) ∈ E : 

respectively. The demand for each node and the traffic demand 

of each edge in Gr are mapped to microservices requests and 

edges’ throughputs of each application. Exploiting the transi- 

u

L

∈U (m ,

L

n )∈E u  p ∈P :

L

(k ,k∗)∈p 

λu (m, n) y
u,(m,n 

≤ B kk ∗  . (33) tivity of polynomial reduction, [38, Corollary 3.3] applies to 

our problem. 

throughput generated on applications’ links in order to satisfy zu = 

λ u (m, n) ∈ R+, ∀u ∈ U , ∀(m.n) ∈ E u 

and links are deployed. 

Δ 

⎩ 

. 

u∈U m∈Vu 

⎧
⎨

 ⎛ 

⎝ 
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