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ABSTRACT. In this thesis, we study the degree of the canonical map of surfaces
of general type. In particular, we give the first examples known in the literature
of surfaces having degree d = 10, 11, 13, 14, 15, and 18 of the canonical map. They
are presented in a self-contained and independent way from the rest of the thesis.
We show also how we have discovered them. These surfaces are product-quotient
surfaces. In this thesis, we study the theory of product-quotient surfaces giving
also some new results and improvements. As a consequence of this, we have written
and run a MAGMA script to produce a list of families of product-quotient surfaces
having geometric genus three and a self-intersection of the canonical divisor large.
After that, we study the canonical map of product-quotient surfaces and we apply
the obtained results to the list of product-quotient surfaces just mentioned. In this
way, we have discovered the examples of surfaces having degree d = 10, 11, 14, and
18 of the canonical map. The remaining ones with degrees 13 and 15 do not satisfy
the assumptions to compute the degree of the canonical map directly. Hence we
have had to compute the canonical degree of these two families of product-quotient
surfaces in a very explicit way through the equations of the pair of curves defining
them.

Another work of this thesis is the classification of all smooth surfaces of general
type with geometric genus three which admits an action of a group G isomorphic to
Zk2 and such that the quotient is a projective plane. This classification is attained
through the theory of abelian covers. We obtained in total eleven families of sur-
faces. We compute the canonical map of all of them, finding in particular a family
of surfaces with a canonical map of degree 16 not in the literature. We discuss the
quotients by all subgroups of G finding several K3 surfaces with symplectic involu-
tions. In particular, we show that six families are families of triple K3 burgers in
the sense of Laterveer.

Finally, in another work we study also the possible accumulation points for the

slopes K2/χ of unbounded sequences of minimal surfaces of general type having a

degree d of the canonical map. As a new result, we construct unbounded families of

minimal (product-quotient) surfaces of general type whose degree of the canonical

map is 4 and such that the limits of the slopes K2/χ assume countably many

different values in the closed interval [6 + 2
3 , 8].



ABSTRACT. Questa tesi si concentra sullo studio e il calcolo del grado della
mappa canonica di superfici di tipo generale In particolare, presentiamo i primi
esempi noti in letteratura di superfici con grado d = 10, 11, 13, 14, 15, e 18 della
mappa canonica. Per rendere questi esempi accessibili a un pubblico più ampio, li
trattiamo in modo indipendente dal resto della tesi. Queste superfici sono superfici
prodotto-quoziente.

Iniziamo approfondendo la teoria delle superfici prodotto-quoziente e fornendo
anche nuovi risultati significativi.Utilizzando tali risultati, sviluppiamo uno script
in MAGMA per produrre una lista di famiglie di superfici prodotto-quoziente aventi
genere geometrico tre e un’ alta auto-intersezione del divisore canonico. Successi-
vamente, studiamo la mappa canonica delle superfici prodotto-quoziente e applichi-
amo i risultati ottenuti alle superfici presenti nella lista generata dallo script. In
questo modo, scopriamo gli esempi di superfici con grado d = 10, 11, 14, e 18 della
mappa canonica. Le restanti superfici con grado 13 e 15 non soddisfano le ipotesi
necessarie per determinare direttamente il grado della mappa canonica, pertanto
calcoliamo esplicitamente tali gradi attraverso le equazioni della coppia di curve che
definiscono le due famiglie di superfici prodotto-quoziente.

Un altro contributo di questa tesi è la classificazione di tutte le superfici lisce
di tipo generale con genere geometrico tre che ammettono un’azione di un gruppo
G isomorfo a Zk2 e tali che il quoziente sia un piano proiettivo. Per ottenere questa
classificazione, utilizziamo la teoria dei rivestimenti abeliani. In totale, otteniamo
undici famiglie di superfici, calcolando anche il grado della mappa canonica per
ciascuna di esse. In particolare, troviamo una famiglia di superfici con una mappa
canonica di grado 16 che non era presente in letteratura Discutiamo anche i quozi-
enti di queste famiglie per tutti i sottogruppi di G, trovando diverse superfici K3 con
involuzioni simplettiche. In particolare, dimostriamo che sei famiglie sono famiglie
di triple K3 burger nel senso di Laterveer.

Infine, in un altro studio, esaminiamo i possibili punti di accumulazione per le

pendenze K2/χ di successioni illimitate di superfici minimali di tipo generale con

un grado d della mappa canonica. Come risultato innovativo, costruiamo famiglie

infinite di superfici minimali (prodotto-quoziente) di tipo generale, il cui grado della

mappa canonica è 4, e i limiti delle pendenze K2/χ assumono un insieme numerabile

di valori nell’intervallo chiuso [6 + 2
3 , 8].





Introduction

In this thesis, we study the canonical map of surfaces of general type.
It is a well-known fact that the canonical map of a curve C of genus at least
two is either an embedding or of degree 2. The latter happens if and only
if C is hyperelliptic. For a smooth surface S of general type the situation
is more difficult: suppose that the canonical map ΦKS : S 99K Ppg−1 is not
composed with a pencil. Then Beauville proved that the degree d of the
canonical map is bounded by

d := deg (ΦKS ) ≤ 9 +
27− 9q

pg − 2
≤ 36.

Note that the bound d ≤ 36 was shown first by Persson [Per78, Prop. 5.7].
In particular, 28 ≤ d is only possible if q = 0, and pg = 3. Motivated by this
observation, the construction of regular surfaces with pg = 3 and canonical
map of degree d for every value 2 ≤ d ≤ 36 is an interesting, but still, a
wide-open problem, posed also by M. M. Lopes and R. Pardini in a recent
survey, [MLP23, Question 5.2].

For a long time, the only examples with 10 ≤ d were the surfaces of
Persson [Per78], with canonical map of degree 16, and Tan [Tan03], with
degree 12.

At the moment, the main result in this direction of my thesis is the
following

Theorem 0.0.1. There exist surfaces S of general type with pg = 3, q = 0,
and canonical map of degree d = 10, 11, 13, 14, 15, and 18.

These surfaces are the first examples known in the literature with that
degree of the canonical map.
In recent years, the problem attracted the attention of many authors, putting
an increased effort into the construction of new examples. Two are the
main methods of construction found in the literature, generating pairs and
abelian covers. As a result, together with the surfaces obtained in my thesis,
we have now examples in the literature for all degrees 2 ≤ d ≤ 16 and
d = 18, 20, 24, 27, 32 and 36 (see [MLP23,Rit15,Rit17a,Rit17b,Rit22,LY21,
GPR22,Bin19,Bin21a,Fal23,FG23,Bin23] for more details).



viii Introduction

One of the purposes of this thesis is to provide an overview of the topic of
the canonical map and to explain how we obtained the examples of Theorem
0.0.1. These are the so-called product-quotient surfaces. We decided to focus
our attention on product-quotient surfaces since they are easy to describe
and we have seen that sometimes their canonical map is accessible to be
studied.

Product-quotient surfaces are studied for the first time by Catanese in
[Cat00]. Apart from other works, that mainly deal with irregular surfaces,
we want to mention the complete classification of surfaces isogenous to a
product with pg = q = 0 [BCG08] and the classification for pg = 1, and
q = 0, under the assumption that the action is diagonal [Gle15], the rigid
but not infinitesimally rigid manifolds [BP21] of Bauer and Pignatelli that
gave a negative answer to a question of Kodaira and Morrow [MK71, p.45],
and also the infinite series of n-dimensional infinitesimally rigid manifolds of
general type with non-contractible universal cover for each n ≥ 3, provided
by Frapporti and Gleissner[FG23].

The setting is the following: consider an action of a finite group G on
two curves C1 and C2. Let S be the minimal resolution of singularities of
the product C1 × C2 modulo the induced (diagonal) action of G on it. S is
called product-quotient surface of quotient model (C1 × C2)/G. Assume S
is a regular surface of general type. This implies that the genera of C1 and
C2 are at least two, and the quotients Ci/G ∼= P1. In other words, C1 and
C2 are G-coverings of the projective line.
We first consider the problem of determine all families of regular product-
quotient surfaces given by a pair of G-coverings of the projective line, up to
isomorphism. A complete answer to this problem is Theorem 4.5.8. This
answer has been implemented in MAGMA as an algorithm that takes as
input two G-coverings C1, and C2 of the projective line. It iterates through
the list of (diagonal) actions of G on C1×C2, and returns only those actions
that yield distinct families of product-quotient surfaces of quotient model
(C1 × C2) /G. In other words, we are able to move on from a database of G-
coverings of the line1, to a database of families of product-quotient surfaces.
As a consequence of this, we have produced a MAGMA script2 which gives
in input a pair of natural numbers (K2, χ) and returns all regular surfaces
S of general type with K2

S = K2 and χ(S) = χ, which are product-quotient
surfaces.

A commented version of the MAGMA code is available here:
https://fefe9696.github.io/FedericoFallucca/pubbl.html#PhDTh

However, we recall that surfaces with a high degree of the canonical map
are regular and have pg equal to three. For this reason, we are running the

1as for example the database: https://mate.unipv.it/ghigi/tipitopo/.
2Most of the script is a modification of the script of [BP12] to any χ, and we give some

other improvements.

https://fefe9696.github.io/FedericoFallucca/pubbl.html#PhDTh
https://mate.unipv.it/ghigi/tipitopo/
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script mentioned above for χ equal to four and K2 large.

The script is producing several hundreds of families of product-quotient
surfaces with pg equal to three. As a sample we give in this thesis a list for
the maximal possible value of K2.

Theorem 0.0.2. Let S be a product-quotient surface of general type with
pg = 3, q = 0, and K2

S = 32 of quotient model (C1 × C2) /G. Assume that
both the topological types of the G-action on C1 and C2 are in the database
[CGP23, 11th of June 2023]. Then S realizes one of the 213 families of
surfaces of general type described in tables 4.1 and 4.2.

The second part of this thesis studies the canonical map of product-
quotient surfaces. Let S be a surface of general type. Assume that the
canonical map of S is not composed with a pencil, hence its image Σ has
dimension two. The degree of the canonical map of S is computable via
elementary intersection theory once we know the degree of the canonical
image Σ in Ppg−1 and the (schematic) base locus of the canonical system
|KS |.

If pg is equal to three, which is the case most interesting for us, the
degree of Σ is one, hence we have only to compute the base locus of |KS |.

If S is a product-quotient surface, it is simpler to compute the degree of
the composition of the canonical map of S with the map C1×C2 99K S and
divide the result by |G|. So we have to compute the base locus of the pull-
back of the canonical system of |KS | to C1 × C2 that is a linear subsytem
|KC1×C2 |G of |KC1×C2 |.

We are able to determine the base locus of |KC1×C2 |G if certain3 irre-
ducible characters of G have degree 1. We remark that this assumption
always holds for G abelian, and it is sometimes satisfied also when G is not
abelian as for example for the first family in Table 6.2 with canonical map
of degree 18. Indeed, we prove in Theorem 5.2.8 and Corollary 5.2.9 that
under the above mentioned assumption |KC1×C2 |G is spanned by pg divisors
that decompose as union of fibres for the natural projections C1×C2 → Ci.

Since two fibres either do not intersect or they intersect transversally
at a point, this makes the base locus of |KC1×C2 |G explicit. To finish the
computation of the degree, when pg = 3, we proved the following Correction
Term formula that seems of independent interest.

Theorem 0.0.3 (Correction Term formula). Let M be a (not necessarily
complete) two-dimensional linear system on a surface spanned by three di-
visors D1, D2, and D3 of the form

D1 = aH, D2 = bK and D3 = cH + dK

3These are at most pg irreducible characters determined by the construction, see Sub-
section 5.2.1.
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locally around a smooth point p of the surface. Here H and K are reduced,
smooth, and intersect transversally at p and a, b, c, d are non-negative inte-
gers. Take a minimal sequence of blow ups such that the strict transform M̂
of M has no base point points on the preimage of p. Then

M̂2 = M2 −min{ab, ad+ bc}.

In some examples (see sections 6.2, and 6.3) even if our assumption on
the characters fails, we compute the degree of the canonical map using a
very explicit description of the surface.

We have also tried to construct examples of surfaces with high degree of
the canonical map in a different way.

Many of the known examples with a high degree of the canonical map are
obtained as Galois covers of rational surfaces with Galois group isomorphic
to Zk2 (see [MLP23]). Inspired by that we classified smooth Galois covers
of the plane with group Zk2 and pg equal to three. We call them smooth
k-double covers of the plane. We have the following

Theorem 0.0.4. All smooth k-double covers S of the plane with geometric
genus 3 are regular surfaces with ample canonical class.

The canonical map ΦKS is a morphism of degree K2
S on P2 unless S

of type E3, in which case the canonical map is a rational map of degree
K2
S − 4 = 4 undefined at 4 points.

Each family is unirational. The modular dimension of each family, that
is the dimension of its image in the Gieseker moduli space of the surfaces
of general type, equals 4 + 26−k with one exception, the family B2, whose
dimension is 19.

The values of K2
S, of degϕKS and of the modular dimension of each

family are listed in the following table:

Family A1 A2 A3 A4 B2 C3 C4 D3 D4 D5 E3

K2
S 2 4 8 16 9 8 16 2 4 8 8

degϕKS 2 4 8 16 9 8 16 2 4 8 4
mod. dim. 36 20 12 8 19 12 8 12 8 6 12

These surfaces are natural candidates to be triple K3 burgers in the sense
of [Lat19], which are important in relation to a conjecture of C. Voisin. We
determined which of these surfaces are triple K3 burgers, finding that they
are exactly the surfaces in the families B2, C3, D3, D4, D5 and E3.

Our last result concerns unbounded families of minimal surfaces of gen-
eral type with canonical map of fixed degree, say d. In fact by [Bea79] and
[Xia86] we know that if there is such a family then d ≤ 8. Examples are
known only for d even. Focusing on the case d = 4 we noticed that the only
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unbounded families in literature have slope µ(S) := K2
S/χ(OS) tending to

either 4 or 8. We proved

Theorem 0.0.5. There is an unbounded sequence Sn of surfaces that have
canonical map of degree 4 such that

lim
n→∞

µ (Sn) = 8

(
1− 1

m

)
for all positive integers m ≥ 6 that are not prime numbers.

The thesis is divided in 8 chapters and an appendix. The appendix
contains only classical results on surfaces, so most of the readers will not
need to look at it.

The first three chapters of this thesis are purely compilative. In the first
one we collect some classical results and relevant examples on the canonical
map of surfaces of general type. The second chapter is dedicated to the
standard theory of the Galois covers of the projective line. The third chapter
discusses cyclic quotient quotient singularities of surfaces.

Chapter 4 discusses product-quotient surfaces. The first four sections
are the now standard tools for product-quotient surfaces: we follow [Fra12]
here.

Section 4.5 contains statement and proof of the first original result of
this thesis, the above mentioned Theorem 4.5.8, classifying all families of
product-quotient surfaces given by a pair of topological types of group ac-
tions on curves.

In the last sections, following [BP12], we describe an algorithm to classify
all families of regular product-quotient surfaces with fixed K2 and χ. The
main improvement respect to other algorithms in literature as the one in
[BP12] is the use of Theorem 4.5.8 and of [CGP23]. More precisely, we
use a script developed in [CGP23] (or the database produced by them if
possible) to compute all possible topological types of group actions on curves
of our interest and then use Theorem 4.5.8 to deduce from it a complete list
of families of product-quotient surfaces. The last Section 4.9 contains the
Theorem 0.0.2.

Chapter 5 studies the canonical map of product-quotient surfaces. The
main results of this chapter are the above mentioned Theorem 5.2.8 and
Corollary 5.2.9, and the Correction Term formula 0.0.3. Here the Correction
Term formula is slightly differently formulated, see Theorem 5.4.3.

Chapter 6 gives explicit computations of the degree of the canonical map
of certain product-quotient surfaces with pg equal to three, surfaces found
with the program in Chapter 4. Theorem 0.0.1 is immediate consequence
of the results of Section 6.1 and 6.2, that are respectively in [FG23] and
[Fal23].

Chapter 7 is devoted to Theorem 0.0.5. This chapter’s content is essen-
tially [FP23a].
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Finally, Chapter 8 discusses the classification of Theorem 0.0.4 This
chapter’s content is [FP23b].
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Notation

Let S be a smooth projective surface over the field C of complex numbers.
An algebraic surface S is a canonical model if it has at most rational double
points as singularities and ample canonical divisor. Recall that each surface
of general type is birational to a unique canonical model. In particular the
minimal resolution of the singularities of S is its minimal model;
Hp,q(S) := Hq(S,Ωp

S);
q(S) or q = dimH0,1(S) = dimH1,0(S) is the irregularity.
pg(S) or pg = dimH0,2(S) = dimH2,0(S) is the geometric genus.
KS or K is a canonical divisor of S, so a divisor such that OS(K) ∼= Ω2

S .
Ω2
S is sometimes denoted also by ωS .

By abuse of notation, for any divisor D, we will denote by D its class in the
Picard group.
|T | is the (complete) linear system defined by a divisor T of S.
The (schematic) base locus of a linear system |T | is denoted by Bs(|T |).
ΦT denotes the (a priori rational) map of S induced by a linear system |T |
of S.
Hence ΦKS is the canonical map of S.
Given an irreducible surface Σ ⊆ Pn, then deg(Σ) denotes the degree of Σ
in Pn, namely, given a resolution η : X → Σ, and denoted by |H| the inverse
image of the system of hyperplanes of Pn, then deg(Σ) = H2.
The symbol ≡ is the linear equivalence of divisors, while ≡num denotes the
numerical equivalence;
Given a divisor D, then OS(D) is its invertible sheaf, or equivalently, its line
bundle.
Given an invertible sheaf θ, then H0(S, θ) is the space of global sections of
θ, and h0(S, θ) := dimH0(S, θ). Therefore, for example, if θ = ωS , then
h0(S, ωS) and pg denote the same number. We will use one of the two
notations by the context.
Spec(f) is the spectrum of an endomorphism f : V → V .
Crit(λ) is the set of branch points of the morphism λ : C → C ′, with C and
C ′ smooth curves.
Given a group G, then gh denotes hgh−1, for any h, g ∈ G.
Given h ∈ G, then innh : G→ G is the inner automorphism g 7→ hgh−1.
The subgroup Inn(G) � Aut(G) is the group of inner automorphisms of G.
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Irr(G) is the set of irreducible characters of a finite group G.
CF (G) denotes the class group function space of G, so the space of functions
of G constant on conjugacy classes.
Let 〈·〉 be the classical Hermitian product defined on CF (G);
Given a representation φη : G → GL(V ) afforded by a character η, and an
irreducible character χ, then V χ or Vχ denotes the isotypic component of V
of character χ. Hence dim(V χ) = 〈η, χ〉 · χ(1).
GLm(k) denotes the group of invertible matrices of size m over the field k.
For each real number z, let dze be the smallest integer greater or equal than
z.
Given a positive number n, then 0 ≤ [a]n < n denotes the rest of the division
of a by n.
When we write n

√
λ we mean the first root of the complex number λ, i.e. if

λ = |λ| · eiθ, then n
√
λ = n

√
|λ| · ei

θ
n .



Chapter 1

The history of the problem
and main results in the
literature

It is a well-known fact that a smooth projective variety X of dimension n
admits always an invertible sheaf, the sheaf ωX = Ωn

X of the sections of the
n-alternating power of the cotangent bundle of X, denoted as ΛnT ∗X. Since
any X is canonically equipped by this object, then ωX takes the name of
canonical sheaf, and ΛnT ∗X of canonical bundle.
Moreover, from the correspondence among invertible sheaves and classes of
Pic(X), then ωX corresponds to a class of divisors in Pic(X), usually denoted
by KX , which takes the name of canonical divisor, as one can expect.
Whenever the corresponding class divisor in Pic(X) of an invertible sheaf
θ is effective, namely h0(X, θ) > 0, then θ induces a (rational) map X 99K
Ph0(X,θ)−1, up to projective transformations. Let me spend some words more
about it. Firstly, this map is usually denoted by Φθ, or equivalently by ΦΘ,
where Θ ∈ Pic(X) is the class divisor whose θ corresponds to: θ = OX(Θ).
To be consistent with the notation fixed in this thesis, I will adopt the
second kind of notation. The map is defined by sending a point p ∈ X to
the functional class [evp] ∈ P(H0(X, θ)∗), where evp(s) is the evaluation at
p of a global section s, for a fixed trivialization of θ at p. Although evp
depends on the choice of the trivialization, its class [evp] is not. In fact,
evp defined in different charts would be different just by a multiplicative
constant, which is the co-cycle of θ in those charts, evaluated at the point
p.
From the geometrical point of view, one can see ΦΘ as the map sending each
point p to the hyperplane ker(evp) ⊆ H0(X, θ) of the effective divisors on X
in the class Θ, and passing through the point p.

However, some points p ∈ X might be problematic: any section of θ
could vanish at p, which translates in ΦΘ to be not defined at p. For this
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reason, ΦΘ is a priori only a rational map.
Sometimes it is useful to write ΦΘ also in projective coordinates, by fixing
a basis s0, . . . , sh0(X,θ)−1 of H0(X, θ) (and hence fixing also its dual basis).
In this case, each element [f ] ∈ P(H0(X, θ)∗) is uniquely identified by its
coordinates [f(s0) : · · · : f(sh0(X,θ)−1)], and so ΦΘ : X 99K Ph0(X,θ)−1 sends
p 7→ [s0(p) : · · · : sh0(X,θ)−1(p)].

Definition 1.0.1. The geometric genus of X is pg := h0(X,OX(KX)).
Assume pg > 0, namely KX is a an effective divisor.
The (rational) map ΦKX : X 99K Ppg−1 given by the canonical sheaf ωX , or
equivalently by the canonical divisor KX , is called canonical map.

Instead, the plurigenus of X is Pn := h0(X,OX(nKX)), n ≥ 2. Assume
Pn > 0, namely nKX is effective.
The pluricanonical map ΦnKX : X 99K PPn−1 is the (rational) map given by
the class divisor nKX .

Since these maps are always attached on a smooth projective variety X,
then the geometry of X can be studied through them. In particular, the
canonical map plays an important role in the theory of algebraic curves, and
the pluricanonical maps for the classification of algebraic surfaces.

Let me give a brief panoramic of what is known in the literature, which
is the state of the art at the moment, and which are in my opinion the most
interesting questions not yet solved. We remind also to the nice survey
[BCP06] for more details to the topic.

In the case of the curves, everything is known. In particular, the canon-
ical map of a curve C of genus ≥ 2 is either an embedding or of degree 2.
The latter happens if and only if C is hyperelliptic.
Instead, in the case of complex surfaces, the pluricanonical maps are ex-
tensively studied by Enriques [Enr49], Kodaira, and Bombieri [Bom73]. In
particular, they attacked the problem to establish when the pluricanonical
map ΦnKS of a surface of general type (see the Def. A.2.5) is birational
(onto its image), for n sufficiently large. The question is naturally raised
since one can observe that the plurigenus Pn grows very quickly, and so nKS

may have enough independent global sections to ensure ΦnKS is birational.
Let S be the canonical model of a surface of general type, and let K2 be the
self-intersection of a canonical divisor. Bombieri obtained the fascinating
result that ΦnKS is an isomorphism, for n ≥ 5. The maps Φ4KS and Φ3KS

are birational with few well-understood exceptions.
Nowadays, the result reached by Bombieri, together with several other re-
sults obtained later on (see the footnotes), can be summarized as follows:

Theorem 1.0.2. (Modern version of Bombieri theorem on the pluricanon-
ical maps) Let S be the canonical model of a surface of general type, and let
K2 be the self-intersection of its canonical bundle. We have:



5

(i) For n ≥ 5, ΦnKS is an embedding;

(ii) Φ4KS a morphism, and

a. if K2 ≥ 2, then it is an embedding;

b. if K2 = 1, then it is a birational morphism, with one exception
1:
K2 = 1, pg = 2, where Φ4KS (S) is a quadric cone Q ⊂ P3

embedded in P8 by means of the linear system of quadrics of P3,
and the degree of Φ4KS is 2;

(iii) Φ3KS is

a. an embedding, if K2 ≥ 3;

b. a morphism, if K2 = 2. Moreover, Φ3KS is birational, with the
exception2:
K2 = 2, pg = 3, where Φ3KS (S) = P2 embedded in P9 by means
of the linear system of plane cubics, and the degree of Φ3KS is 2;

c. a birational map, if K2 = 1, with the exception3:
K2 = 1, pg = 2, where Φ3KS (S) is a quadric cone embedded in
P5 as a rational ruled surface of degree 4, and the degree of Φ3KS

is 2;

(iv) Φ2KS
4 is

a. a birational morphism, if K2 ≥ 10, except when S has a struc-
ture of a genus 2 fibration, in which case the bicanonical map is
generically finite of degree 2 over a rational or ruled surface;

b. a generically finite morphism, if K2 ≥ 5, or pg ≥ 1;

1Bombieri’s original formulation had another possible exception for surfaces with K2 =
1, pg = 0, called numerical Godeaux surfaces, that was later excluded by Miyaoka in
[Miy76]

2Bombieri’s original formulation had another possible exception for surfaces with K2 =
2, pg = 0, called numerical Campedelli surfaces, later on excluded in [BC78].

3Here Bombieri had the same possible exception for numerical Godeaux surfaces as
above, excluded in [Miy76]

4We sketch here the improvements respect to the original results of Bombieri on the
bicanonical map. Xiao studied the bicanonical map and he proved in [Xia85a] that it is
generically finite if and only if S is not numerical Godeaux: K2 = 1, and pg = q = 0.
In this case, note that P2 = 2, so that Φ2KS is a rational fibration. At the moment,
only examples of genus 4 fibrations are known, although the genus may be 3, or 4 (see
[CP06]). Moreover, Persson proved in [Per78, Prop. 5.5] that if Φ2KS is generically finite,
then its degree is at most 8 (sharp, [Per78, Ex. 5.6]). Finally, as a consequence of Reider
results [Rei88, Prop. 3], then ΦnKS (n ≥ 3) is a morphism if (n − 1)2K2 ≥ 5, and it is
an embedding if (n − 1)2K2 ≥ 10. Furthermore, if K2 ≥ 5, or pg ≥ 1, then Φ2KS is a
morphism (see [CP06, Thm. 6]), and if K2 ≥ 10, then either it is a birational morphism,
or it admits a pencil of curves of genus 2.
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c. a generically finite rational map, of degree at most 8 (sharp),
except for S with K2 = 1, pg = q = 0. In this case, Φ2KS is a
fibration with fibres of genus 3, or 4, and base of genus 0.

See [CP06, Thm. 8] for details.

At the end of the paper, Bombieri leads the point on the most interest-
ing problems still open: which is the structure of the canonical map ΦKS ,
and the famous conjecture K2 ≤ 9χ(OS), nowadays known as Bogomolov-
Miyaoka-Yau inequality, proved independently five years later by Miyaoka
(see [Miy77]), and Yau (see [Yau77], [Yau78]).

The starting point of this thesis comes with the epochal paper [Bea79]
published by Beauville in 1979, where he takes up the open question of the
structure of the canonical map, and gives, together with Persson in [Per78,
Prop. 5.7], the first bound (see Thm. 1.1.5) of the degree of the canonical
map, by also using the just proved Bogomolov-Miyaoka-Yau inequality (see
the proof of the Thm. 1.1.5).
He brought to light the great variety of the behaviour of ΦKS , with respect
to the more rigid pluricanonical maps. Let me exhibit his principal results:

1. If the canonical map is composed with a pencil, and pg > 863, then
the fibres of the pencil have genus 2 ≤ g ≤ 4, and the pencil has not
fixed points (see [Che17]);

2. If the canonical map is not composed by a pencil, the image of the
canonical map is a surface having pg = 0, or a canonical surface (see
Thm. 1.0.3). In particular, the degree of ΦKS is ≤ 9, if χ(OS) ≥ 31,
for the first case, 5 and ≤ 3, if χ(OS) ≥ 14, for the second case.
Moreover, if K2 < 3pg − 7, then ΦKS is a rational map of degree 2
over a ruled surface.

Later on, one can find some refinements of these results in the literature,
(see for instance [Xia85b], [Xia86]).
Recently, M.M. Lopes and R. Pardini published a self-contained survey
[MLP23] about point 2 of the statement, of great inspiration to me. Let
us suppose that Σ := ΦKS (S) is a surface, and let d be the degree of ΦKS .
In this survey, they explain very well the topic and exhibit the known pos-
sibilities for Σ and d, reached by Beauville. Moreover, they investigate the
question of producing concrete examples for such possibilities, presenting
the two main methods (abelian covers and generating pairs) of construction
used by several authors in the literature. In the end, the authors lead on

5He gives also an example of an unbounded family of surfaces (in the sense that χ(OS)
increases arbitrarily) such that the degree of ΦKS is 8. This implies that the inequality
deg(ΦKS ) ≤ 9 is close to be sharp.
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several open questions. One focused my attention particularly, which be-
came one of the central topics of this thesis:

[MLP23, Question 5.2]: For every 2 ≤ d ≤ 36, does there exists any
surface S with pg = 3, and canonical map of degree d?

To make sense of this question, and then try to attack it, I would like to
take a step back. First, I am going to show the proof of the point 2 due to
Beauville, and then determine the bounds of the canonical map leading to
the natural formulation of the above question.

Let S be a surface of general type with pg := pg(S) ≥ 3. Let ΦKS : S 99K
Ppg−1 be the canonical map of S; we assume that the image Σ := ΦKS (S)
is a surface, and we set d be the degree of ΦKS . Sometimes Σ could be
singular; we choose a resolution η : X → Σ of the singularities of Σ. We
define pg(Σ) := pg(X), q(Σ) := q(X) (note that they do not depend on the
choice of η), and we say that Σ is of general type if X is of general type.

Theorem 1.0.3. ([Bea79, Thm. 3.1]) There are the following possibilities:

(A) pg(Σ) = 0,

(B) pg(Σ) = pg(S), and Σ is a canonical surface (in the sense that the
canonical map of a resolution of Σ is the resolution itself, or equiva-
lently, Σ is embedded in Ppg−1 by its canonical map).

Proof. Denote by pg := pg(S). Let η : X → Σ be a resolution of Σ. One
can apply the classical result [Bea96, Theorem II.7] to the rational map
η−1 ◦ΦKS : S 99K X to get a (surjective) morphism π = (η−1 ◦ΦKS )◦ ε from
Ŝ to X, where ε is a composition of a finite number of blow-ups. Moreover,
the canonical map of Ŝ is ΦKS ◦ε, by construction. The situation is therefore
the following:

Ŝ S

X Σ ⊆ Ppg−1.η

ΦKS

ε

π ΦK
Ŝ

Let us suppose there exists a no-zero holomorphic 2-form ω of X (hence, we
are supposing that pg(Σ) 6= 0, and we are going to show that we fall in the
case (B) of the statement). Since π∗ω is a 2-form of Ŝ and ΦK

Ŝ
factorizes

through π, then div(π∗ω) = π∗H + Z, where H is the pullback in X of an
hyperplane in Ppg−1, and Z is an effective divisor, the fixed part of |K

Ŝ
|.



8 The history of the problem and main results in the literature

Let us denote by K0 the divisor of ω. One can apply the classical The-
orem A.1.6 to get also another equality (among divisors)

π∗H + Z = div(π∗ω) = π∗K0 +

q∑
j=1

(ej − 1)Cj +

p∑
i=1

riEi, (1.1)

where Cj are irreducible curves whose image with respect to π is a curve Γj ,
while Ei are the curves contracted by π. Here ej is the ramification index
of Cj , namely the coefficient of Cj in the divisor π∗Γj , and ri ≥ 0.

Let us consider now an irreducible curve Γ of X, and a curve C on Ŝ
whose image is π(C) = Γ. Denote by e the coefficient of C in the divisor π∗Γ,
and by h and k the coefficients of Γ in the divisors H, and K0 respectively.
Then the coefficient of C in the divisor π∗H + Z is at least he, whilst that
of the right member of the identity (1.1) is exactly ke + (e − 1). We have
got

he ≤ ke+ (e− 1) =⇒ h ≤ k.

In other words any irreducible curve Γ occurring in H (with coefficient h)
has to occur also in K0 (with coefficient k ≥ h), so that K0−H is an effective
divisor, denoted as E: K0 = H + E.
Thus h0(X,OX(H)) ≤ pg(X), by the classical Theorem A.1.1. The thesis
follows once one observe the following facts:

- A subsystem of the linear system |H| on X induces the map η, whose
image is Σ, a surface not contained in an hyperplane, since ΦKS is
non-degenerate. This means that h0(X,OX(H)) ≥ pg = pg(S).

- By the classical result A.1.7 applied to the map π, then the pullback

H0(X,OX(KX))
π∗−→ H0(Ŝ, O

Ŝ
(K

Ŝ
)) is injective, so that pg(X) ≤

pg(Ŝ) = pg.

Putting together the obtained inequalities, we get

pg ≤ h0(X,OX(H)) ≤ pg(X) ≤ pg.

Hence all inequalities are equalities, and we get |KX | = |H| + E, by the
Theorem A.1.1. This means that E is the fixed part of |KX |, and η is the
canonical map of X, always by the Theorem A.1.1. We have fallen in case
(B) of the statement.

1.1 Bounds on the degree of the canonical map

Here we discuss the possibilities of Σ and d. Let us write KS ≡M+Z, where
Z is the fixed part of the canonical linear system |KS |. Let ΦM : S 99K Σ ⊆
Ppg−1 be the canonical map of S. If |M | is not base-point free, or equivalently
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ΦM is not a morphism, we can apply the classical result [Bea96, Theorem
II.7] to get a morphism (ΦM ◦ ε) : Ŝ → Σ ⊆ Ppg−1, where ε : Ŝ → S is a
composition of blow-ups.

Lemma 1.1.1. We have

M2 ≥ ddeg Σ,

and the equality holds if and only if the mobile system |M | of |KS | is base-
point free.

Proof. The mobile system |M | would be base-point free if and only if its
induced map ΦM is a morphism, and so if and only if M2 = (Φ∗MH)2 =
ddeg Σ, by the projection formula. However, in the case in which the mobile
system is not base-point free, then we consider ΦM ◦ ε. By construction of
ε, which is a composition of blow-ups, we get

M2 ≥ ((ΦM ◦ ε)∗H)
2

= ddeg Σ.

Lemma 1.1.2. The following inequalities holds

(A) deg Σ ≥ pg − 2, if S falls in the case (A) of the Beauville Theorem
1.0.3. Moreover, if Σ is not a ruled surface, then deg Σ ≥ 2pg − 4;

(B) deg Σ ≥ 3pg + q(Σ) − 7, if S falls in the case (B) of the Beauville
Theorem 1.0.3.

Proof. Let us discuss the case (A). We observe that Σ is irreducible because
S is irreducible and ΦM is a morphism. In the case in which ΦM is not a
morphism, then we use the map ΦM ◦ ε, and the fact that Ŝ is irreducible,
if S is irreducible. (remember that Ŝ is a blow-up of S). Furthermore, Σ is
not contained in a hyperplane, since ΦM is non-degenerate. Then Theorem
A.1.9 applies, and the thesis follows.

Let us consider now the case (B). In this case, Σ is a canonical surface,
so a resolution η : X → Σ ⊆ Ppg−1 of Σ is the canonical map of X. Note
that Σ is the the canonical image also for the minimal model Xmin of X.
Jongmans Theorem A.1.10 applies to the minimal surface Xmin, so that

deg(Σ) = K2
Xmin ≥ 3pg(Xmin) + q(Xmin)− 7 = 3pg + q(Σ)− 7,

and the thesis follows.

Lemma 1.1.3. Assume S is minimal. Then K2
S ≥M2.
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Proof. By assumption, KS is nef. Furthermore, M is nef, by its definition.
Therefore, we have

K2
S = KSM +KSF

≥ KSM = M2 +MF

≥M2.

Theorem 1.1.4 (Bogomolov-Miyaoka-Yau Inequality, [Miy77], [Yau77],
[Yau78]). Any surface S of general type satisfies K2

S ≤ 9χ(OS). Moreover,
the equality holds if and only if S is the quotient of a ball in C2 by an infinite
discrete group.

Finally, we can establish the possibilities of Σ and d.

Theorem 1.1.5. Let S be a surface with pg := pg(S) ≥ 3, and such that
the image Σ ⊆ Ppg−1 of the canonical map of S is a surface. Let d be the
degree of the canonical map of S. Then

(A) If S falls in the case (A) of the Beauville Theorem 1.0.3, then

(i) if Σ is ruled,

d ≤ 9 +
27− 9q(S)

pg − 2
; (1.2)

(ii) if Σ is not ruled,

d ≤ 1

2

(
9 +

27− 9q(S)

pg − 2

)
;

(B) Otherwise, if S falls in the case (B) of the Beauville Theorem 1.0.3,
then

d ≤ 3 +
30− 3q(Σ)− 9q(S)

3pg + q(Σ)− 7
.

Proof. Assume S is minimal. We apply in sequence the Lemmas 1.1.1, and
1.1.3 together with the Theorem 1.1.4 to get

ddeg Σ ≤M2

≤ K2
S

≤ 9χ(OS) = 9(pg − q(S) + 1).

Now we apply the Lemma 1.1.2, and we get

d (pg − 2) ≤ ddeg Σ ≤ 9(pg − q(S) + 1),
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if S falls in the case (A) of the Beauville Theorem 1.0.3, and Σ is ruled.
Otherwise, if Σ is not ruled, then

d (2pg − 4) ≤ ddeg Σ ≤ 9(pg − q(S) + 1).

Instead, if S falls in the case (B) of the Beauville Theorem, then

d (3pg + q(Σ)− 7) ≤ d deg Σ ≤ 9(pg − q(S) + 1).

In the case in which S is not minimal, one can consider its minimal model and
obtains the above inequalities. However, the canonical map of the minimal
model of S factors through that of S, so that these maps have the same
degree d, and image Σ ⊆ Ppg−1. Finally, it is sufficient to remember that
the geometric genus and the irregularity are birational invariants.

Many consequences of these inequalities can be drawn. Some of them
are the following:

Remark 1.1.6. 1. d ≤ 9, if pg ≥ 30, or q(S) ≥ 3; Moreover, if Σ is non
ruled, then d ≤ 4, if pg ≥ 30, or q(S) ≥ 3.

2. as noted first by Persson in [Per78, Prop. 5.7], the maximum possible
degree is 36, and can be reached only if pg = 3, and q(S) = 0. In this
case, Σ = P2, a surface of degree 1, and we would have

36 = ddeg Σ ≤ K2
S ≤ 9(3− 0 + 1) = 36 =⇒ K2 = 36 = 9χ(OS).

Thus S is a quotient ball (from B-M-Y Theorem 1.1.4), with K2
S = 36,

pg = 3, q(S) = 0, and |KS | is base-point free;

3. d ≥ 23 implies q ≤ 1 and pg = 3, whilst d ≥ 28 implies q = 0 and
pg = 3;

4. if q(S) > 0, then the maximum possible degree is 27, when pg = 3,
and q(S) = 1. In this case, we would have Σ = P2, and

27 = ddeg Σ ≤ K2
S ≤ 9(3− 1 + 1) = 27 =⇒ K2

S = 27 = 9χ(OS).

Thus S is a quotient ball (Thm. 1.1.4), with K2
S = 27, pg = 3,

q(S) = 1, and |KS | is base point free;

5. in case (B), the maximum possible value is 9, when pg = 4, and
q(S) = q(Σ) = 0. In this case, we would have

45 = 9(3 · 4 + 0− 7) ≤ 9 deg Σ ≤ K2
S ≤ 9(4− 0 + 1) = 45

=⇒

{
deg(Σ) = 5,

K2
S = 45 = 9χ(OS).

(1.3)

This means that S is a quotient ball (Thm. 1.1.4), with K2
S = 45,

pg = 4, q(S) = 0, and |KS | is base-point free. Moreover, Σ has to be
a quintic surface in P3, with q(Σ) = 0.
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6. in case (B), if d = 3, then q(S) ≤ 3.

The first natural question is: are the obtained inequalities in cases (A)
and (B) sharp?
C. Rito uses in [Rit22] the Borisov-Keum equations of a fake projective
plane and the Borisov-Keum equations of the Cartwright-Steger surface to
show the existence of a surface with pg = 3, q = 0, and canonical map of
maximum degree 36, and of a surface with pg = 3, q = 1, and canonical map
of degree 27 (see the points 2. and 4. above). The first surface is an étale
Z2

2-cover of the fake projective plane, and the second an étale Z3-cover of
the Cartwright-Steger surface.
In the case (B), is not still clear if an example of a surface with canonical
map of degree 9 exists (see the point 5. above). The best record in the
literature is obtained independently by R. Pardini in [Par91b, Example 2.2]
and by S. Tan in [Tan92]. They found the same surface, which is a Z2

5-
cover of P2 ramified on five lines in general position. Here the surface has
invariants K2

S = 25, pg = 4, q(S) = 0, and Σ is a quintic surface in P3 with
10 rational double points as singularities. The degree of the canonical map
is 5.

As we said at the beginning of the Chapter, we are majorly interested
to investigate

[MLP23, Question 5.2]: For every 2 ≤ d ≤ 36, does there exists any
surface S with pg = 3, and canonical map of degree d?

We point out that this question is well-posed thanks to points 2. and 3.
remarked above. In particular, if we are interested to get examples with
d ≥ 28, then we have also to require that S is regular, and pg = 3.
Therefore, the idea of the thesis is to study systematically a class of surfaces
with such invariants. As we will see, the regular product-quotient surfaces
of general type are good candidates, since they can be easily described and
their canonical map is accessible to be studied.

1.2 Examples

Before going on to the Chapter 4 on product-quotient surfaces, we would like
to mention which have been the first examples presented in the literature,
with pg = 3, and which degree of the canonical map is attained by these.
We present in details those that can be easily described. Instead, we remand
the remain to the respective papers.

The technique of their construction can be expressed by using the theory
of abelian covers (for more details, please see [Par91a]).
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Example 1.2.1. (d = 2) This example, in [Bea79], was known to M.
Noether, as mentioned in [Enr49]. Let us take a surface Y with pg(Y ) = 0.
Choose a line bundle on Y such that |2L| is base-point free and KY + L is
a very ample divisor. Let π : S → Y be the double cover given by choosing
a general element D ∈ |2L|, hence satisfying 2L ≡ D. Then S is smooth,
KS ≡ π∗ (KY + L). Thus KS is ample, so S is minimal of general type.
Moreover, since pg(Y ) = 0, we have |KS | = π∗|KY + L|. This means the
canonical map of S is the composition with π and the embedding defined
by the divisor KY + L.
We have constructed a family of surfaces S with the canonical map of degree
2, and unbounded pg.
In particular, to get an example with pg = 3, one can just take Y = P2

and look for the first line bundle L for which KY +L is very ample, namely
L = 4h, where h is the class of a line. In this case, the canonical map of S
is the double cover π branched over a smooth optic, and its invariants are
K2
S = 2, q = 0.

These are in fact the surfaces in Theorem 1.0.2 (iii), b.

Example 1.2.2. [d = 3 . . . 9] This example can be found in [MLP23, Ex-
ample 4.5]. We take G = Z2

2, and Y a del Pezzo surface of degree d ≥ 3. For
every 0 6= v ∈ G choose a curve Dv ∈ | −KY | such that

∑
vDv is smooth

normal crossing. The relations to ensure the existence of a G-cover are
2L10 ≡ 2L11 ≡ 2L01 ≡ −2KY , whose only solution (since Pic(Y ) is without
torsion) is L10 ≡ L11 ≡ L01 ≡ −KY . The corresponding bi-double cover
π : S → Y is smooth, we have 2KS ≡ π∗(−KY ), which is ample, because
d ≥ 3, and −KY is ample. This means S is minimal of general type. We
have K2

S = d, and pg = 3, q = 0.
Finally, |KS | is spanned by the three curves Rv := π−1(Dv) = 1

2π
∗(Dv), so

that |KS | is base-point free and so the canonical map of S is mapped d-to-1
to P2.

We would like to point out that for d = 9, then Y = P2, and this
construction realizes one of the 11 families of smooth k-double covers of P2

with pg = 3 founded in the classification cit.. And the end of that Chapter,
the reader can find also a description of S by equations in the weighted
projective space P(13, 33).

Example 1.2.3 (d = 12, Tan Example). See [Tan03, Theorem 2. (6)].

Example 1.2.4. [d = 16, Persson Example] This is due to Persson in
[Per78]. Let Y = P2, and let h be the class of a line. We take the group
G = Z4

2, and consider the character χ0 ∈ G∗ sending each vector of v ∈ G
to the sum of its coordinates. Let us consider divisors Dv, which are a line,
for v 6∈ kerχ0, and Dv = 0, otherwise (hence they are in total 8 lines on
P2). The relations to ensure the existence of a 4-double cover π : S → Y
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branched over those lines are 2Lχ ≡
∑

v 6∈kerχDv. We have

{
2Lχ0 ≡

∑
v 6∈kerχ0

Dv = 8h

2Lχ ≡
∑

v 6∈kerχDv =
∑

v 6∈kerχ0∪kerχDv = 4h, if χ 6= χ0,

whose only solution is Lχ0 ≡ 4h, and Lχ ≡ 2h, for χ 6= χ0. We also assume
that the lines Dv are in general position, so that S is smooth. Moreover, we
have KS ≡ π∗(h), and so S is minimal of general type with K2

S = 16, pg = 3
and q = 0. Finally, the linear system |KS | = π∗|KY + Lχ0 | = π∗|h|, so the
canonical map of S is the covering π.

Example 1.2.5 (d = 20, Bin Example). We refer the reader to [Bin21a]
for a complete description. The author takes the group G := Z4

2, and a del
Pezzo surface Y of degree 5. He constructs two 4-double covers πi : Si → Y ,
i = 1, 2, with pg = 3, q = 0, and K2 = 20, for the first case, and 24, for the
second one. Moreover, he shows that |KS1 | is base point free, so that the
canonical map has degree d = K2

S1
= 20, whilst |KS2 | has fixed part, so that

the degree of the canonical map decreases to 20.

Example 1.2.6 (d = 24, Rito Example). These are 4-double covers, Galois
covers with Galois group G isomorphic to (Z2)4, of a rational surface with
pg = 3, K2

S = 24, q = 0.

Example 1.2.7 (d = 32, Gleissner, Pignatelli, Rito Example). We describe
only one of the two examples in [CGP23] because they differ just by a
different choice of the building data of the covering. Let us take G := Z4

2

and Y := P1 × P1. Let F1, . . . , F6 be six distinct vertical lines of Y , and
G1, . . . , G6 other six distinct horizontal lines. We denote by e1, · · · , e4 a basis
of G. By ei1···ir we mean ei1 + · · · + eir . Let us consider the Z4

2-covering
π : S → Y given by

De1 := F1, De2 := F2, De3 := F3, De4 := F4, De13 := F5,

De24 := F6,

De234 := G1, De134 := G2, De124 := G3, De123 := G4, De14 := G5,

De23 := G6.

The branch locus of π is therefore something like
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F1 + F2 +G1 +G2

F3 + F4 +G3 +G4

F5 + F6 +G5 +G6

.

The covering π is well defined because there exists divisors Lχ, χ ∈ G∗,
satisfying Pardini’s linear equations 2Lχ ≡

∑
g 6∈ker(χ)Dg. Since there is

no 2-torsion in the Picard group of Y , then π is uniquely determined. In
particular, we have Lχ ≡ 2F + 2G, if χ ∈ ker(e12) ∩ ker(e34), χ 6= 0, and
Lχ ≡ F + 2G, or Lχ ≡ 2F + G, otherwise. S is smooth, with pg = 3, and
q = 0. The canonical system |KS | is generated by

F̂1 + F̂2 + ”G1 + ”G2, F̂3 + F̂4 + ”G3 + ”G4, F̂5 + F̂6 + ”G5 + ”G6,

where F̂i := 1
2π
∗(Fi), and ”Gj := 1

2π
∗(Gj). Observe that F̂iF̂j = Ĝi”Gj = 0,

while F̂i”Gj = 4. This implies K2
S = 32. Finally, by looking to their image

on Y , one verifies that the above three divisors have no common intersection
(see also the above figure). Therefore |KS | is base-point free, and the degree
of the canonical map amounts to d = K2

S = 32.

Example 1.2.8 (d = 27, 36, Rito’s Examples). See [Rit22].





Chapter 2

Galois coverings of Riemann
surfaces

This chapter aims to discuss Galois covers of a Riemann surface.

Definition 2.0.1. Let C be a Riemann surface, and G be a finite group
acting holomorphically on C. Then λ : C → C/G is called Galois covering.
It can also be called G-covering if one needs to specify which is the group
G acting on C.
Given a Riemann surface C ′, we say that (C, λ) is a G-covering of C ′ if
λ : C → C/G is a G-covering, and C/G ∼= C ′.

We are going to investigate C/G, where G is a finite group acting ho-
molorphically and faithfully on C.

Remark 2.0.2. The action of G on C can always be assumed to be faithful.
If K is the normal subgroup of G of elements acting trivially on C, then
G′ := G/K acts on C, and obviously C/G = C/G′.

Proposition 2.0.3. [Mir95, Prop. III.3.1] Let C be a Riemann surface,
G ≤ Aut(C), and let p ∈ C. Suppose that the stabilizer subgroup Stab(p) is
finite. Then Stab(p) is cyclic.

Proposition 2.0.4. [Mir95, Prop. III.3.2] Let C be a Riemann surface, let
G be a finite group acting faithfully and holomorphically. Then the set of
points of C with non trivial stabilizer is discrete.

Remark 2.0.5. In the same assumption of the previous proposition, if C is
compact, then only finitely many points have non trivial stabilizer.

The next goal is to define a complex structure on C/G, the only one for
which the quotient map λ : C → C/G is holomorphic.

Theorem 2.0.6. [Mir95, Prop. III.3.3] Let C be a Riemann surface and let
G ≤ Aut(G) finite. Fix a point p ∈ C. Then there is an open neighbourhood
U of p such that:
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• U is invariant under the action of Stab(p): g(u) ∈ U for each g ∈
Stab(p);

• U ∩ g(U) = ∅ for every g /∈ Stab(p);

• the natural map α : U/Stab(p)→ C/G, induced by sending a point in
U to its orbit, is a homeomorphism onto an open subset of C/G;

• no point of U except p is fixed by any element of Stab(p).

Using the previous statement, we get the following structure theorem.

Theorem 2.0.7. [Mir95, Thm. III.3.4] Let C be a Riemann surface and let
G ≤ Aut(C) finite. Then C/G has a unique structure of Riemann surface
such that λ : C → C/G is holomorphic of degree |G|, and the ramification
index rp(λ) of a point p equals rp(λ) = |Stab(p)|.

Note that the previous theorem has many others implications.

Remark 2.0.8. The ramification locus of λ is the set of points of C having
non trivial stabilizer.

Remark 2.0.9. Let q ∈ C/G be a branch point of λ, and p ∈ C be a point
over q. The stabilizer of a point g · p over q is conjugated to Stab(p):
Stab(g · p) = g · Stab(p) · g−1. In particular, they have the same order, so
that

rg·p(λ) = rp(λ) = |Stab(p)|.
This justify the following

Definition 2.0.10. We say that m ≥ 1 is the ramification index of a point
q ∈ C/G if it is the ramification index of a point p over q.

Note that q ∈ C/G is a branch point if and only if its ramification index
is at least two.

Remark 2.0.11. The number of points over q ∈ C/G equals |G|/m, where
m is the ramification index of q.

Remark 2.0.12. (Hurwitz formula for Galois coverings) The well-known Hur-
witz formula assumes a nice homogeneous form if applied to Galois coverings.
Let q1, . . . , qr be the set of branch points of λ of ramification indices mi ≥ 2
respectively. The ramification divisor of λ can be rearranged as

∑
p∈C

(rp(λ)− 1)p =

r∑
i=1

 ∑
p∈λ−1(qi)

(rp(λ)− 1)p


=

r∑
i=1

 ∑
p∈λ−1(qi)

(mi − 1)p


=

r∑
i=1

(mi − 1)λ−1(qi),
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where λ−1(qi) is the divisor of the fibre of qi taken with the reduced structure.
Let ω be a non-zero meromorphic 1-form of C/G. Then

div(λ∗ω) = λ∗div(ω) +
r∑
i=1

(mi − 1)λ−1(qi). (2.1)

By applying the degree operator to both divisors of the equation, we get the
Hurwitz formula

2g(C)− 2 = deg(λ)(2g(C/G)− 2) +

r∑
i=1

(mi − 1)|λ−1(qi)|

= |G|(2g(C/G)− 2) +

r∑
i=1

(mi − 1)
|G|
mi

= |G|

(
2g(C/G)− 2 +

r∑
i=1

(
1− 1

mi

))
.

(2.2)

We are interested to understand which is the action of Stab(p) locally
around p.

Lemma 2.0.13. (Linearization of the action, [Mir95, Cor. III.3.5]) Let C
be a Riemann surface and let G ≤ Aut(C) finite. Fix a point p ∈ C, and
let m be the order of its stabilizer. Let h ∈ Stab(p) be a generator of the
stabilizer subgroup. Then there is a local coordinate z on C centred at p such
that h maps the point of coordinate z to the point of coordinate λz, where

λ = e
2πi
m
k is one of the primitive m-roots of the unity.

Definition 2.0.14. The previous lemma gives a bijection among the prim-
itive m-roots of the unity and the generators of Stab(p). We denote by local

monodromy of p the unique generator of Stab(p) acting by z 7→ e
2πi
m z.

Remark 2.0.15. The local monodromy of g · p is the conjugate ghg−1 of
h. In other word, the local monodromy of points of the same G-orbit are
conjugated between them.

2.0.1 The Riemann Existence Theorem

Let C be a Riemann surface and let G ≤ Aut(G) finite. By Theorem 2.0.7
we can define a structure of Riemann surface on C ′ = C/G such that the
quotient map λ : C → C ′ is holomorphic. Let X := {q1, . . . , qr} be the set
of branch points of λ. Then

λ : C \ λ−1(X)→ C ′ \X

is an étale covering.
We pose the following question: given a set of r points X := {q1, . . . , qr} on
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a Riemann surface C ′ and an étale Galois covering of C ′ \X is it possible to
extend that covering to a Galois covering of the entire C ′? Is the Riemann
surface C unique up to isomorphism?

Theorem 2.0.16. (Riemann Existence Theorem) Let C and C ′ be Riemann
surfaces and let X ⊂ C ′ be a finite set. Let

λ0 : C → C ′ \X

be a proper étale covering.
Then λ can be extended to a branched covering of C ′, that is there exists a
Riemann surface C, a proper biholomorphic map λ : C → C ′ and a biholo-
morphic map ϕ : C \ λ−1 → C such that the following diagram commutes:

C C \ λ−1(X) C

C ′ \X C ′

ϕ

λ0 λ

Moreover C is unique up to isomorphisms.

The Riemann Existence Theorem is extremely useful in many situations.
We are going to use it in the next section together with the following classic
result in algebraic topology:

Theorem 2.0.17. (Existence Theorem of covering spaces) Let X be a topo-
logical space which is path-connected, locally path-connected, and semilocally
simply connected. Then, for every subgroup K ≤ π1(X,x0), there exists a
covering λ : XK → X such that λ∗(π1(Xk, x̃)) = K for a suitable choice of
the base point x̃ ∈ λ−1(x0). The covering λ is unique up to equivalence of
coverings.

2.1 Description of Galois covers of the line via the-
oretical group data

A Galois covering may be often difficult to describe, especially with equa-
tions. Given a finite group G, we are particularly interested to determine
any G-covering (C, λ) of P1 branched over r points q1, . . . , qr, up to topo-
logical equivalence. A surprisingly fact is that local monodromies gi ∈ G
of points over qi determine C, the action on C, and so the covering λ. We
collect these local monodromies in a sequence [g1, . . . , gr], which takes the
name of spherical system of generators.

The chapter discusses the main results on the deep correspondence
among G-coverings of the line (up to topological equivalence) and (classes)
of spherical systems of generators.
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Definition 2.1.1. Given a Riemann surface C ′ and a finite group G, we say
that a couple (C, λ) is a G-covering of C ′ if G acts on C, and λ : C → C ′ is
the quotient map, so it exhibits C ′ as the quotient of C via G.

Definition 2.1.2. We say that (C1, λ1) and (C2, λ2) are topological equiv-
alent if there exists a orientation preserving homeomorphism f : C1 → C2,
and an automorphism ϕ ∈ Aut(G) such that f(g · p) = ϕ(g) · f(p), for any
g ∈ G, and p ∈ C1. We say that (C1, λ1) and (C2, λ2) are isomorphic if
moreover f is a biholomorphism.

Consider the set of G-coverings modulo isomorphism. The topologi-
cal equivalence partitions it in equivalence classes, let C be one of them.
González-Dı́ez and Harvey showed in [GDH92] that C has a natural struc-
ture of connected complex manifold such that the natural map of C on the
moduli space of curves mapping (C, λ) to C is analytic. More precisely, the
manifold C is the normalization of its image C̃. In particular, C̃ is always an
irreducible subvariety of the moduli space of curves.

Remark 2.1.3. Let C ′ be a Riemann surface. We remark that

• the genus g,

• the number r of points of the branch locus,

• the ramification indices m1, . . . ,mr ≥ 2,

are invariants up to topological equivalence of G-coverings (C, λ) of C ′.
The Hurwitz formula (2.2) establishes the relationship among the genus g
of C, the genus g′ of C ′, and the ramification indices mi:

2g − 2 = |G|

(
2g′ − 2 +

r∑
i=1

(
1− 1

mi

))
. (2.3)

Definition 2.1.4. Up to re-label mi, we can assume 2 ≤ m1 ≤ · · · ≤ mr

The sequence [m1, . . . ,mr] is called signature of (C, λ).

Let us suppose now C ′ = P1, so we are working with G-coverings of the
line.

Definition 2.1.5. We set T r(G) the collection of all classes of G-coverings
of P1 ramified over r points modulo topological equivalence.

Definition 2.1.6. A spherical system of generators (of length r) of G is a
sequence [g1, . . . , gr] ∈ Gr of elements of G such that gi 6= 1 for all i, and

• G = 〈g1, . . . , gr〉;

• g1 · · · gr = 1.
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The sequence [o(g1), . . . , o(gr)] is called signature of [g1, . . . , gr].

Remark 2.1.7. For each signature [m1, . . . ,mr] consider the orbifold group

T(m1, . . . ,mr) := 〈γ1, . . . , γr|γmii = 1 = γ1 . . . γr〉.

There is a natural bijection among the set of surjective homomorphisms
T(m1, . . . ,mr) → G and the set of the spherical systems of generators
[g1, . . . , gr] of fixed signature [m1, . . . ,mr].

The bijection associates to any homomorphism ϕ the spherical system
of generators [ϕ(γ1), . . . , ϕ(γr)].

Definition 2.1.8. We set Dr(G) ⊂ Gr the collection of all spherical systems
of generators of G of length r.

Consider a finite group G, and a non-negative integer r > 0. Take the
group B̃r, whose presentation with generators σ1, . . . , σr−1 is

B̃r =

〈
σ1, . . . , σr−1 :

σiσj = σjσi, |i− j| > 1

σiσjσi = σjσiσj , |i− j| = 1

(σr−1 · · ·σ1)r = 1

〉
.

We call such generators Hurwitz moves. We consider the following action of
Aut(G)× B̃r on Dr(G):

Ψ · [g1, . . . , gr] := [Ψ(g1), . . . ,Ψ(gr)], Ψ ∈ Aut(G).

An Hurwitz move σi ∈ B̃r acts as

σi · [g1, . . . , gr] := [g1, . . . , gi−1, gi · gi+1 · g−1
i , gi, gi+2, . . . gr].

The action of the generators σi extends to an action of the entire B̃r.
We finally have the following classical result

Theorem 2.1.9. The collection of all classes of G-coverings of P1 ram-
ified over r points modulo topological equivalence is in bijection with
Dr(G)/Aut(G)× B̃r:

T r(G) ∼= Dr(G)/Aut(G)× B̃r. (2.4)

For a proof, we refer to the recent paper [GT22, Cor. 5.7].
We describe the bijection in Theorem 2.1.9. Take an element in the

quotient Dr(G)/Aut(G)× B̃r, and choose a representative [g1, . . . , gr] of it.
From Remark 2.1.7 we obtain a surjective morphism T(m1, . . . ,mr) → G,
with mi = o(gi).
We choose a finite set X := {q1, . . . , qr} on P1, a point q0 ∈ P1 \X, and a
geometric basis of the fundamental group of P1 \X with base point q0:
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Definition 2.1.10. Consider a smooth regular arc η̃i joining q0 to qµi (for
some permutation µ). Assume that η̃i intersects only at q0 and that the
tangent vectors at q0 are pairwise distinct and follow each other in the
counterclockwise order (we orient S2 by the outer normal). We define the
loop ηi as follows:
Fix a small disk D around qµi . The loop ηi starts at the point q0, travels
along η̃i till reaches the boundary ∂D, then makes a complete tour of ∂D
counterclockwise and finally goes back to q0 again along η̃i.
Call always by ηi the homotopy class of the loop ηi. We say that η1, . . . , ηr
is a geometric basis (referred to µ) of π1(P1 \X, q0), X = {q1, . . . qr}.

·q0

·

· · ·

·
qr

. .
.

. . .qi+1 qi
qi−1

q1

·q0

·

· · ·

·
qr

. .
.

. . .qi+1 qi
qi−1

q1

ηr
ηi+1

ηi

ηi−1

η1

ηr
ηi+1

ηi

ηi−1

η1

P1 \ X P1 \ X

Figure 2.1: Two examples of geometric bases, the first with µ = Id, and the
second with µ = (i i+ 1).

Remark 2.1.11. The class of the loop ηi does not depend on the choice of the
disk D. Moreover, if we replace ‹ηi with different paths δ̃i, and called δi the
resulted closed loops, then ηi and δi would be conjugated in π1(P1 \X, q0).
In fact, define the loop ν that starts at q0, travels along η̃i till ∂D, follows
a piece of ∂D and finally goes back along δ̃i. Then δi = νηiν

−1.

Let us fix a geometric basis η1, . . . , ηr referred to the permutation µ = Id.
Observe that the product η1 . . . ηr can be contracted to the point q0 (see the
figure (2.2) below). This is the only relation between the class of these
loops. In other words, the choice of a geometric basis gives a presentation
of π1(P1 \X, q0):

Γr := 〈γ1, . . . , γn| γ1 . . . γn〉, Γr
∼−→ π1(P1 \X, q0), γi 7→ ηi. (2.5)
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Figure 2.2: The contraction of the product loop η1 · · · ηr to the point q0,
where the basis η1, . . . , ηr is referred to µ = Id, in the first case, and to
µ = (i i+ 1), in the second case.

Notice that T(m1, . . . ,mr) is a quotient by Γr. Therefore, the choice of a
geometric basis gives a group homomorphism π1(P1\X, q0)→ T(m1, . . . ,mr)
mapping, for all i = 1, . . . , r, the geometric loop ηi around qµi to γi.
The kernel of the composition π1(P1 \X, q0)→ T(m1, . . . ,mr)→ G defines
a unique étale G-covering of P1 \ X from Existence Theorem of covering
spaces 2.0.17.
By Riemann Existence Theorem 2.0.16, this completes to aG-covering (C, λ)
of P1.
The bijection of Theorem 2.1.9 maps the class of [g1, . . . , gr] modulo
Aut(G)× B̃r to the class of (C, λ) modulo topological equivalence.

In particular Theorem 2.1.9 says that

1. if in the above construction we change

• the set of spherical generators [g1, . . . , gr] by a set in the same
orbit for the action of Aut(G)× B̃r, or

• the points q0, q1, . . . , qr with other r + 1 points of P1, or

• the choice of the geometric basis η1, . . . , ηr

then the new obtained G-covering is topologically equivalent to (C, λ);
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2. if (C1, λ1) and (C2, λ2) are obtained by spherical systems of generators
that are not in the same Aut(G)× B̃r-orbit then (C1, λ1) and (C2, λ2)
are not topologically equivalent.

3. every G-covering (C, λ) up to topological equivalence is obtained in
this way by a spherical system of generators of G.

We discuss in details only the third point above. Hence we show how to get
a spherical system of generators from a G-covering of the line.

Consider a G-covering λ : C → P1 whose branch locus consists of r
points. Take an orientation preserving homeomorphism, ψ : P1 → P1, map-
ping this branch locus to X = {q1, . . . , qr}. Denote by C2 the curve C with
the complex structure making ψ ◦ λ : C2 → P1 holomorphic. Then (C2, λ2)
is topologically equivalent to (C, λ). Therefore, without lost of generality,
we can assume that the branch locus of (C, λ) is exactly X.

Then λ : C \ λ−1(X)→ P1 \X is an unramified covering.
We choose a point p0 ∈ λ−1(q0). Consider the normal subgroup

λ∗π1(C \ λ−1(X), p0) � π1(P1 \X, q0), (2.6)

and the monodromy map based at p0

π1(P1 \X, q0)
Lp0−−→ λ−1(q0), η 7→ Lp0(η) := η̃p0(1). (2.7)

This sends any class loop η of P1 \ X based at q0 to the end point of its
(unique) class lifting η̃p0 on C \ λ−1(X), starting at the point p0. Observe
that (2.7) is surjective since C \ λ−1(X) is path-connected.

The point q0 is not a branch point of the covering, so that the orbit
λ−1(q0) consists of |G|-points, and we can identify λ−1(q0) ∼= G: g · p0 7→ g.
Once such identification is fixed, then the monodromy map (2.7) is a group
homomorphism: suppose Lp0(η) = g · p0, and Lp0(γ) = h · p0. Observe
η̃γp0

= η̃p0 γ̃g·p0 , and the paths γ̃g·p0 and g · γ̃p0 are both lifting of γ at the
initial point g ·p0. Thus they are homotopic paths and have the same ending
point. We can conclude

Lp0(ηγ) = η̃γp0
(1) = γ̃g·p0(1) = g · γ̃p0(1) = g · (h · p0) = (gh) · p0.

Moreover, the kernel of (2.7) is exactly the normal subgroup (2.6). Notice
that only the kernel of this map is uniquely determined by the covering.
Let us choose now a geometric basis η1, . . . , ηr we get the isomorphism (2.5).

The composition Γr → π1(P1 \X, q0)
Lp0−−→ G is an epimorphism which sends

γi to some gi ∈ G (remember that (2.7) is surjective). We have therefore
got a sequence [g1, . . . , gr] ∈ Gr of elements of G, which are generating G,
and whose product is 1. This is a spherical system of generators (of length
r) of G as in the Definition 2.1.6.
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In the subsection 2.1.1, we prove that gi is the local monodromy (see the
Def. 2.0.14) of a point over qi, and the ramification index of qi is exactly
mi := o(gi) ≥ 2. In particular, the signature of (C, λ) is the signature of the
spherical system [g1, . . . , gr], and the genus g of C can be computed by the
signature using the Hurwitz formula (2.3).

Let us give some examples of how to use the Theorem 2.1.9:

Example 2.1.12. Let p ≥ 2 be a prime number, and consider the group
G = Z2

p. We are going to compute T 3(Z2
p), the collection of the Z2

p-coverings
of the line (up to topological equivalence) ramified over 3 points. Consider a
spherical system [v1, v2, v3]. Note that v1 and v2 have to be linearly indepen-
dent, since otherwise v3 = (p−1)v1 +(p−1)v2, and so they would not gener-
ate the entire Z2

p. Now take the base change matrix M ∈ Aut(Z2
p) from the

standard basis to {v1, v2}. Then [v1, v2, v3] = M · [(1, 0), (0, 1), (p−1, p−1)].
We can conclude that

T 3(Z2
p) = {[(F, λ)]} ∼= D3(Z2

p)/Aut(Z2
p)×B̃3 = {[(1, 0), (0, 1), (p−1, p−1)]}.

By the Hurwitz formula (2.3), the genus of the Z2
p-covering C of the line

associated to such spherical system is:

2g(C)− 2 = p2

(
−2 + 3− 3

p

)
=⇒ g(C) =

(p− 1)(p− 2)

2
.

The covering (F, λ) may be described as follows: take the Fermat curve of
degree p in P2

F := {xp0 + xp1 + xp2 = 0} ⊂ P2,

and define the action

φ : Z2
p → Aut(F ), (a, b) 7→ [(x0 : x1 : x2) 7→ (x0 : ζapx1 : ζbpx2)], ζp := e

2πi
p .

This action has 3p-points with non-trivial stabilizer. They form three orbits
of length p. A representative of each orbit and a generator of the stabilizer
is given by

point (−1 : 0 : ζp) (−1 : ζp : 0) (0 : −1 : ζp)

generator (1, 0) (0, 1) (p− 1, p− 1)
.

The quotient map is

λ : F ⊂ P2 → P1, (x0, x1, x2) 7→ (xp1, x
p
2).

It is branched along (0, 1), (1, 0), and (1, 1).
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Example 2.1.13. Let G = S3 = 〈τ, σ | τ2 = σ3 = 1, στ = τσ−1〉 be the
symmetric group of 3 elements. Consider r = 3, so we are going to determine
T 3(S3), the collection of S3-coverings of the line (up to equivalence) ramified
over r = 3 points. Let [g1, g2, g3] be a spherical system of S3, and set mi :=
o(gi) ∈ {2, 3}. Without lost of generality, we can suppose m1 ≤ m2 ≤ m3

(otherwise we re-order the gi’s by moving the system on its Aut(G) × B̃r-
orbit through suitable Hurwitz moves). By the Hurwitz formula (2.3), the
genus of the G-covering C associated to [g1, g2, g3] is

2g(C)− 2 = 6

(
−2 + 3−

(
1

m1
+

1

m2
+

1

m3

))
=⇒ g(C) = 4− 3

(
1

m1
+

1

m2
+

1

m3

)
.

(2.8)

In particular, 3( 1
m1

+ 1
m2

+ 1
m3

) has to be an integer, which holds only for
m1 = m2 = m3 = 3, or m1 = m2 = 2 and m3 = 3. The first case is not
admissible, since there are not g1, g2, g3 of order 3 generating S3. It remains
the second case. Observe that (2.8) gives g(C) = 0, hence C = P1.
The elements of order 2 of S3 are τ , τσ, and τσ2.

Since [g1, g2, g3] is a spherical system, then g3 = g−1
2 g−1

1 , and g1 6= g2

otherwise we would get g3 = 1, because they have order 2. Thus the list of
spherical systems D3(S3) with ordered signature [2, 2, 3] is obtained just by
choosing distinct g1, g2 ∈ {τ, τσ, τσ2}. Such list is

[τ, τσ, σ2]

[τ, τσ2, σ] =

(
τ 7→ τ
σ 7→ σ2

)
· [τ, τσ, σ2] = σ1σ

2
2σ1 · [τ, τσ, σ2],

[τσ, τ, σ] =

(
τ 7→ τσ
σ 7→ σ2

)
· [τ, τσ, σ2] = σ2

1σ
2
2σ1 · [τ, τσ, σ2],

[τσ2, τσ, σ] =

(
τ 7→ τσ2

σ 7→ σ2

)
· [τ, τσ, σ2] = σ3

1σ
2
2σ1 · [τ, τσ, σ2],

[τσ2, τ, σ2] =

(
τ 7→ τσ2

σ 7→ σ

)
· [τ, τσ, σ2] = σ1 · [τ, τσ, σ2],

[τσ, τσ2, σ2] =

(
τ 7→ τσ
σ 7→ σ

)
· [τ, τσ, σ2] = σ2

1 · [τ, τσ, σ2].

(2.9)

Observe that any automorphism Ψ ∈ Aut(S3) acts on [τ, τσ, σ2] as some
element σ ∈ B̃r.
Since any spherical system shares the same Aut(G)× B̃r-orbit of [τ, τσ, σ2],
then we can conclude

T 3(S3) = {[(P1, λ)]} ∼= D3(S3)/Aut(G)× B̃r = {[τ, τσ, σ2]}.

An action of S3 on C = P1 is

τ · (x0, x1) := (x1, x0), σ · (x0, x1) := (ζ3x0, x1), ζ3 := e
2πi
3 .
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The quotient map is

λ : P1 → P1, (x0, x1) 7→ (x3
0x

3
1, (x

6
0 + x6

1)/2).

Example 2.1.14. Consider the group G = S3 × Z2
p, p ≥ 2 prime number.

We compute T 3(S3 × Z2
p). Up to apply suitable Hurwitz moves, we can

assume that a spherical system [(g1, v1), (g2, v2), (g3, v3)] has o(g1) ≤ o(g2) ≤
o(g3). Observe gi 6= 1, otherwise S3 would be generated by only one element,
and this is not possible since it is not cyclic. The same argument holds for
Z2
p, so that vi 6= 0. This implies [g1, g2, g3] ∈ D3(S3) is a spherical system

of S3, and [v1, v2, v3] ∈ D3(Z2
p) is a spherical system of Z2

p. However, we
have proved that any ordered system of S3 of the list (2.9) shares the same
orbit of [τ, τσ, σ2] by a suitable automorphism Ψ of S3, and any system of
Z2
p shares the same orbit of [(1, 0), (0, 1), (p − 1, p − 1)] by a base change

matrix M . Thus (Ψ,M) sends [(τ, (1, 0)), (τσ, (0, 1)), (σ2, (p− 1, p− 1))] to
[(g1, v1), (g2, v2), (g3, v3)]. We have proved

T 3(S3 × Z2
p)
∼=

D3(S3 × Z2
p)

Aut(S3)×GL2(Zp)× B̃3

={[(τ, (1, 0)), (τσ, (0, 1)), (σ2, (p− 1, p− 1))]}.

By the Hurwitz formula (2.3), the genus of the associated G-covering C is

2g(C)− 2 =


24
(
−2 + 3− 1− 1

6

)
if p = 2

54
(
−2 + 3− 2

3

)
if p = 3

6p2
(
−2 + 3−

(
1
2p + 1

2p + 1
3p

))
otherwise

=⇒

g(C) =


0 if p = 2

10 if p = 3

(3p− 1)(p− 1) otherwise.

As we could expect, it becomes soon computationally difficult getting
the Aut(G) × B̃r-orbits of Dr(G), when r or G increase. For this rea-
son, several authors put an increased effort into the development of an
efficient algorithm to compute such orbits, usually with the helping also
of a computational algebra system (e.g. MAGMA, [BCP97]). A big step
forward in this direction is given for instance in [CGP23], where the au-
thors collect in a database a representative for any orbit of spherical sys-
tems of fixed genus g. At the moment, we have a complete list for any
genus g ≤ 40, with a few exceptions. We also mention their useful website
https://mate.unipv.it/ghigi/tipitopo/. Here, chosen a finite group G
and a signature m, one can ask to the database to pick-up one representa-
tive for any orbit of spherical systems of the group G having that pre-fixed
signature m.

https://mate.unipv.it/ghigi/tipitopo/
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2.1.1 Monodromy and spherical systems of generators

Consider a G-covering of the line (C, λ) branched over X = {q1, . . . , qr}, a
point q0 6∈ X, and a geometric basis η1, . . . , ηr referred to a permutation µ.
Hence we have a presentation Γr → π1(P1 \ X, q0), which composed with
the monodromy map Lp0 based at a point p0 over q0 gives an epimorphism
Γr → G sending γi 7→ gi. We have got the spherical system [g1, . . . , gr].

We are going to prove that any gi is the local monodromy (see the
Definition 2.0.14) of a point over qµi , and its order is the ramification index
m := mi of qµi . To show this, let us consider a point p over qµi .
Consider an invariant open neighbourhood U of p as in the Theorem 2.0.6.
Hence for any h 6∈ StabG(p), then h(U) ∩ U = ∅. Up to choose U small
enough, we linearize the action of StabG(p) locally around p, by the Lemma
2.0.13. Hence it there exists a local coordinate z around p such that a
generator g of StabG(p) acts as a multiplication of a primitive m-root of the

unity, g : z 7→ e
2πi
m
kz, and the quotient map λ assumes the local normal form

z 7→ w = zm.
Given h 6∈ StabG(p), note that h(U) is an open neighbourhood of h · p with
the same properties as U : there exists a local coordinate zh around h · p
such that the generator hgh−1 of StabG(h · p) acts as zh 7→ e

2πi
m
kzh, and λ

assumes locally around h · p the normal form zh 7→ w = zmh .

Consider the path γ := η̃i, where η̃i is as the Definition 2.1.10; let us
call by q′0 the intersection of γ and ∂D. Up to choose the disk D small
enough, we can assume q′0 falls into the local chart λ(U) of qµi . Let us say
w0 = w(q′0) is the local coordinate of q′0 on λ(U). Call by p′0 the point over
q′0 of the lifting of γ starting at p0; it falls into only one of the open sets
h(U), h /∈ StabG(p). Without lost of generalities, up to rename h · p to p,
we can suppose that p′0 falls into U . Let z0 = z(p′0) be the local coordinate
of p′0 on U . By construction, z0 is one of the m-roots of w0. The situation
is the following
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...

λ

·
p0

·
q0

γ = η̃i
ηi

·
λ(U)

U

·w0 = q′0
qµi

·z0 = p′0 · p

h(U), h /∈ StabG(p)

γ̃p0 ·
··

e
2πi
m z0

e
2πi
m

k
z0

e
2πi
m

(m−1)
z0

·h · p′0 ·h · p·
··h · p0

·
h · γ̃ = fiγh·p0

Let us change now the base point q0 to q′0 via γ. The spherical system
referred to the new geometric basis γ−1η1γ, . . . , γ

−1ηrγ is [g1, . . . , gr] again.
In particular, by construction of γ, the loop γ−1ηiγ is the circle t 7→ e2πitw0

of radius |w0|. Its unique lifting via λ : z 7→ zm starting at z0 is then

t 7→ e
2πit
m z0, whose ending point is e

2πi
m z0. From the other side Lp′0(γ−1ηiγ) =

gi · p′0. We have therefore proved gi · z0 = e
2πi
m z0.
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...

λ

· p0

· q0

γ−1ηiγ : t 7→ e2πitw0

·

λ(U)

U ∼= D

·w0 = q′0
qµi

·z0 = p′0 · p

h(U), h /∈ StabG(p)

·
··
gi · z0 = e

2πi
m z0

gki · z0 = e
2πi
m

k
z0

g
m−1
i · z0 = e

2πi
m

(m−1)
z0

·h · p′0 · h · p·
··h · p0·

flγ−1ηiγp′0
: t 7→ e

2πit
m z0

Figure 2.3: The lifting of the loop γ−1ηiγ : t 7→ e2πitw0 starting at the point

z0 = p′0. We get gi · z0 = e
2πi
m z0.

Moreover, this shows gi ·z0 ∈ gi(U)∩U 6= ∅, so that gi ∈ StabG(p). Since
any element of StabG(p) is acting on U by the multiplication of a m-root of

the unity and gi · z0 = e
2πi
m z0, then gi has to act as z 7→ e

2πi
m z, which proves

gi is the local monodromy of the point p.

Remark 2.1.15. We have immediately got also that hgih
−1 is the local mon-

odromy of the point h · p, with h /∈ StabG(p). Hence the local monodromies
of points over qµi are conjugated to each other.

Remark 2.1.16. The order of gi ∈ G has to be o(gi) = m = mi. This follows

because the action of gki is gki · z = e
2πik
m z, 0 ≤ k ≤ m− 1.

To see this, you can either simply compose k-times the local action of gi, or
to re-iterate the previous geometrical approach as follows:
Consider ηki instead of ηi. So γ−1ηki γ is the loop t 7→ e2πiktw0 starting at
w0 = q′0 and going over the circle of radius |w0| k-times. It is sent to gki via
the monodromy map based at p′0, so that Lp′0(γ−1ηki γ) = gki · p′0. The lifting

of γ−1ηki γ starting at z0 = p′0 via λ : z 7→ w = zm is t 7→ e
2πik
m

tz0, whose

ending point is then e
2πik
m z0. We have proved gki · z0 = e

2πik
m z0, which forces

gki to act as required.
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...

λ

· p0

· q0

γ−1ηki γ : t 7→ e2πiktw0

·

λ(U)

U

·w0 = q′0
qµi

·z0 = p′0 · p

h(U), h /∈ StabG(p)

·
··
gi · z0 = e

2πi
m z0

gki · z0 = e
2πi
m

k
z0

g
m−1
i · z0 = e

2πi
m

(m−1)
z0

·h · p′0 · h · p·
··h · p0·

‡γ−1ηki γp′0
: t 7→ e

2πik
m

t
z0

Figure 2.4: The lifting of the loop γ−1ηki γ : t 7→ e2πiktw0 starting at the

point z0 = p′0. We get gi · z0 = e
2πik
m z0.



Chapter 3

Cyclic quotient singularities

Here we discuss cyclic quotient singularities of normal complex surfaces and
their minimal resolution. Such singularities are crucial to be studied for
sections 4.3 and 4.4 of the Chapter 4 since the quotient model of an unmixed
type of a product-quotient surface has only finitely many cyclic singularities.

Definition 3.0.1. Let X be a normal complex variety. We say that a point
p ∈ X is a quotient singularity if there exists a neighbourhood U of p such
that U ∼= Cm/H, where H is a finite subgroup of Aut(Cm, 0), the group of
automorphism of Cm fixing the origin 0.

Remark 3.0.2. Consider a subgroup H ≤ Aut(Cm, 0) and a change of coordi-
nates φ : Cm → Cm around 0, namely an automorphism of Cm fixing 0. Then
this change determines a new group H ′ := {φ◦h◦φ−1 : h ∈ H} ≤ Aut(Cm, 0)
conjugated to H, H ′ = φHφ−1 ∼= H, and an isomorphism Cm/H → Cm/H ′
sending Hx 7→ H ′(φ(x)).
Another equivalent interpretation is that we have changed the action of H
on Cm via the map φ; the new action may be different from the previous
one, but the quotient Cm/H doesn’t change, up to isomorphism.

Therefore, one can try to change coordinates on Cm in order to represent
the singularity through a suitable subgroup H, which may be considered in
some sense ”canonical”. Let us see how.

Lemma 3.0.3. (Cartan, cf. [Bri67, Lemma 2.2 ]) If H is a finite subgroup
of Aut(Cm, 0), then there exists a system of coordinates such that the action
of H is linear, namely H ≤ GL(m,C).

Proof. Let us define the map φ : Cm → Cm sending x 7→
∑

h∈H (J0h)−1 h ·x,
where J0h denotes the Jacobian matrix of h at the point x = 0. We observe
that φ is a change of coordinates around 0:

J0φ =
∑
h∈H

(J0h)−1J0h = |H|Im =⇒ det(J0φ) = |H| 6= 0.
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Called by z = (z1, . . . , zm) the coordinates of the target of the map φ, then
the new action of H via φ is

g · z =
(
φ ◦ g ◦ φ−1

)
z =

∑
h∈H

(J0h)−1 h · g · (φ−1z)

= J0g
∑
h∈H

(J0hg)−1 (hg) · (φ−1z)

= (J0g)z.

Remark 3.0.4. By the just proved Cartan’s lemma 3.0.3, every quotient
singularity Cm/H can be realized through a finite linear subgroup H ≤
GL(m,C).

Lemma 3.0.5. If H is a finite abelian subgroup of GL(m,C), and h1, . . . hk
are generators of order r1, . . . , rk respectively, then there exists a system of
coordinates of Cm such that H has the form

H = 〈


e

2πip11
r1 · · · 0 0
...

. . .
...

0 0 . . . e
2πipm1
r1

 , . . . ,


e

2πip1k
rk · · · 0 0
...

. . .
...

0 0 . . . e
2πipmk
rk

〉,
for some p1i, . . . , pmi, ri ∈ N, i = 1, . . . k.

Proof. Since H is finite, then each element of it has finite order and so it
is a diagonalizable matrix. Moreover, H abelian implies that its elements
are matrices commuting to each other, so that there exists a basis b of
eigenvectors diagonalizing simultaneously all of them. In other words, called
by M = Mb,e(IdCm) the base change matrix from the standard basis e to
b, then MAM−1 is diagonal, for each A ∈ H. Thus, choose the change
of coordinates x 7→ Mx to get an isomorphism Cm/H → Cm/H ′, where
H ′ = MHM−1 consists only of diagonal matrices. Now, the generators hi
of H corresponds to diagonal matrices Di of H ′, and Dri

i = I since hi has
order ri. Therefore the eigenvalues of Di are ri-roots of the unity, and the
thesis follows.

The previous lemma justifies the following

Definition 3.0.6. A normal complex variety X has a cyclic quotient singu-
larity in p ∈ X if there exists a neighbourhood U of p such that U ∼= Cm/H,
where H is a cyclic subgroup of GL(m,C) of the form

H =

〈
e

2πip1
r · · · 0 0
...

. . .
...

0 0 . . . e
2πipm
r


〉
,
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for some p1, . . . pm, r ∈ N. We say that 1
r (p1, . . . , pm) is the type of singularity

of p.

Since we are interested on singularities on a surface, we consider from
now a subgroup

H =

〈(
e

2πip
r 0

0 e
2πiq
r

)〉
≤ GL(2,C),

in which case we will say that C2/H is a singularity of type 1
r (p, q).

Remark 3.0.7. In dimension two the singular points which are quotient sin-
gularities through the action of a finite abelian group are cyclic quotient
singularities. This follows directly from the classification of finite subgroups
of GL2(C) (see [Mat02, Theorem 4.6.20]).

Remark 3.0.8. As we can expect, there are different way to describe a sin-
gularity. For example, a singularity of type 1

5(2, 3) is biholomorphic to one
of type 1

5(1, 4), simply because H = 〈g〉 = 〈g3〉, and so C2/〈g〉 ∼= C2/〈g3〉,

where g :=

(
e

2πi2
5 0

0 e
2πi3

5

)
.

Definition 3.0.9. Take the set of formal symbols 1
r (p, q). We define on this

set the following equivalence relation: we say that 1
r1

(p1, q1) is equivalent to

1
r2

(p2, q2) if Cm/H1
∼= Cm/H2, where Hi :=

〈e 2πipi
ri 0

0 e
2πiqi
ri

〉, i = 1, 2.

A cyclic quotient singularity corresponds to an equivalence class.

The next lemma says that we can always pick up a ”canonical” repre-
sentative for any equivalence class. Before proving this, we give some easy
remarks.

Remark 3.0.10. Each 1
r (p, q) is equivalent to 1

r ([p]r, [q]r), where [p]r denotes
the representative ≤ r of the class of p modulo r. Therefore, one can suppose
without lost of generality that 0 ≤ p, q < r.

Remark 3.0.11. 1
r (p, q) is equivalent to 1

r (q, p). Remembering the Remark
3.0.2, it is sufficient to take the change of coordinates (x, y) 7→ (y, z), which
gives a new cyclic group generated by(

0 1
1 0

)(
e

2πip
r 0

0 e
2πiq
r

)(
0 1
1 0

)
=

(
e

2πiq
r 0

0 e
2πip
r

)
.

Remark 3.0.12. Let (x, y) be the coordinates of C2. A singularity of type
1
r (0, q) is a smooth point (and it is always equivalent to some 1

r′ (0, 1)). In
fact, the ring of the invariants of C2/H is C[C2/H] = C[x, yr] ∼= C[X,Y ],
and so C2/H ∼= C2 (see the Proposition 3.0.14).
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One can ask himself if there could be others H ≤ GL(2,C) giving a
smooth quotient C2/H ∼= C2.
A famous theorem by Chevalley and Sheppard-Todd says that given a fi-
nite group H ≤ GL(k,C), then the quotient Ck/H is non-singular if and
only if H is generated by quasi-reflections (matrices that diagonalise to

diag(1, . . . , 1, e
2πi
p ), p ∈ N).

Thus, in the case k = 2, the only cyclic quotient singularities giving a smooth
quotient are equivalent to 1

r (0, 1).

Lemma 3.0.13. Each cyclic quotient singularity of type 1
r (p, q), with p, q 6=

0, is equivalent to a cyclic quotient singularity of type 1
n(1, a), with 1 ≤ a <

n, and gcd(a, n) = 1.

Proof. Claim: take d := gcd(p, r). Therefore p = p′d, r = r′d, and
gcd(p′, r′) = 1. Then 1

r (p, q) is equivalent to 1
r′ (p

′, q). To prove this, call for

brevity g :=

(
e

2πip
r 0

0 e
2πiq
r

)
. We observe that

C2/〈g〉 ∼=
(
C2/〈gr′〉

)
/
(
〈g〉/〈gr′〉

)
. (3.1)

However, the action of 〈gr′〉 on C2 gives a cyclic singularity of type 1
r (pr′, qr′)

= 1
d(0, q), which is smooth, by the Remark 3.0.12. Thus C2/〈gr′〉 ∼= C2, via

the isomorphism φ : 〈gr′〉(x, y) 7→ (x, yd). Let us call the coordinates of the
new C2 by (X,Y ).
We observe also that 〈g〉/〈gr′〉 ∼= 〈gd〉, hence the isomorphism (3.1) becomes

C2/〈g〉 ∼= C2/〈gd〉,

and the action of 〈gd〉 on the new C2 is then

gd · (X,Y ) = φ(gd · (φ−1(X,Y ))) = φ(gd · (〈gr′〉(x, y)))

= φ(〈gr′〉(g · (x, y)))

= φ(〈gr′〉(e
2πip
r x, e

2πiq
r y))

= (e
2πip
r x, e

2πiqd
r yd)

=

(
e

2πip′
r′ 0

0 e
2πiq
r′

)(
X
Y

)
.

Thus we can start the proof of the lemma by supposing 1
r (p, q) has

gcd(p, r) = 1. However, this implies gt generates 〈g〉, where t = p−1 is
the inverse of p modulo r, and so 1

r (p, q) is equivalent to 1
r (1, qt). By the

Remark 3.0.11, 1
r (1, qt) is equivalent to 1

r (qt, 1), for which the claim above
applies. Therefore, 1

r (qt, 1) is equivalent to some 1
n(a, 1), which is equivalent

to 1
n(1, a), with 1 ≤ a < n, and gcd(a, n) = 1.
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It is useful the following standard result

Proposition 3.0.14. [Mum08, Sec. 7] [Rei03, Exs 4.3-4.4 for details] Let
G be a finite group acting on Ck by algebraic automorphisms. Write by
x1, . . . , xk the coordinates of Ck. Then the quotient X := Ck/G is an affine
algebraic variety whose points correspond one-to-one with the orbits of the
group action, and such that the ring C[X] of the functions defined on X are
precisely the invariant polynomials on Ck, namely C[X] = C[x1, . . . xk]

G.
The ring C[X] is finitely generated. Moreover, if f1, . . . fN are invariant
polynomials generating C[X], then X is defined as follows: take the ring
homomorphism φ : C[u1, . . . , uN ]→ C[X]G, ui 7→ fi. Therefore the kernel
of φ is the ideal of the relations between the generators fi. We have

X = V (kerφ) =
{
u ∈ CN : F (u) = 0, F ∈ kerφ

}
,

and the quotient map is

Ck → X ⊆ CN , x̄ := (x1, . . . , xk) 7→ (f1(x̄), . . . , fN (x̄)).

Example 3.0.15. The Remark 3.0.12 is the baby trivial example. The sec-
ond non-trivial one is the singularity 1

2(1, 1). Here the ring of the invariants
of X := C2/H is C[x2, y2, xy], therefore X := V (u2

3−u1u2) ⊆ C3 is the cone
over a quadric, and the vertex of the cone is the singularity.

We are going to compute the ring of the invariants of a cyclic quotient
singularity X := C2/H of type 1

n(1, a), with gcd(a, n) = 1. Let (x, y) be
coordinates on C2. Since the action on C2 is linear and diagonal on the
components x and y, then the ring of the invariants has to be generated by
some monomials xαyβ, so that C[X] is identified just by the monoid of the
positive quadrant of a lattice of R2, the lattice M of points (α, β) satisfying
α + aβ ≡ 0 mod n. Equivalently, β ≡ (n − a′)α mod n, where a′ = a−1

is the inverse of a modulo n. Note that any (α, β) has to be an integer
combination of (0, 0) = 1, (n, 0) = xn, (0, n) = yn, and (1, n− a′) = xyn−a

′
,

which are trivially invariant polynomials. in other words, we have

C[X] = C[xαyβ : (α, β) ∈M ∩ R2
≥0],

where M is the lattice

M := {(α, β) : α+aβ ≡ 0 mod n} = Z(n, 0)⊕Z(0, n)+Z(1, n−a′). (3.2)

We would like to find a (minimal) set of generators of C[X]. Let us see how.

Definition 3.0.16. Let 1 ≤ a < n be coprime integers. Then the Hirze-
bruch-Jung continued fraction of n/a is the expression

n

a
= b1 −

1

b2 − 1
b3−...

= [b1, . . . , bl]. (3.3)
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For example,
7

3
= [3, 2, 2] = 3− 1

2− 1
2

.

Proposition 3.0.17. [Rei03, Prop. 2.2] Let 1 ≤ a < n be coprime integers
and consider the lattice L = Z2 +Z · 1

n(1, a). Then L contains the lattice Z2

as a sublattice of index n, and its other cosets are represented by the n− 1
lattice points 1

n(j, [aj]n) contained in the unit square of R2 (see the Figure
3.1). Define the Newton polygon as the convex hull Newton(L) in R2 of all
non-zero lattice points in the positive quadrant

Figure 3.1: The lattice L and its Newton polygon

Write

e0 = (0, 1), e1 =
1

n
(1, a), e2, · · · , el, el+1 = (1, 0)

for the lattice points on the boundary of Newton(L). Then

(I) Any two consecutive lattice points ei, ei+1 for i = 0, . . . , l form an
oriented basis of L.

(II) Any three consecutive lattice points ei−1, ei, ei+1 for i = 1, . . . , l satisfy
the relation

ei+1 + ei−1 = biei, bi ≥ 2. (3.4)

(III) The integers b1, . . . , bl in (II) are the entries of the continued fraction:

n

a
= [b1, . . . bl].

The relation in (II) can be viewed as a change of coordinates from
the basis ei−1, ei to the next basis ei, ei+1 expressed by the matrix(

0 −1
1 bi

)
, that is,

ei = 0 · ei−1 + 1 · ei, ei+1 = −1 · ei−1 + bi · ei.
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(IV) The boundary points e0, . . . , el+1 are a minimal set of generators of
the monoid L ∩ R2

≥0.

Proof. (I) Let us consider the parallelogram Π := 〈0, ei, ei+1, ei + ei+1〉.
By construction, the lower triangle ∆− := 〈0, ei, ei+1〉 of Π does not
contain lattice points other than its vertices. The same holds for the
upper triangle ∆+ := 〈ei, ei+1, e1 + ei+1〉 since any vector v belonging
on ∆+ is such that ei + ei+1 − v ∈ ∆−, and so the only lattice points
of ∆+ are its vertices. This means Π is a fundamental domain for L,
in the sense that any point of R2 is obtained from a vector of Π by a
translation of a vector of L. In fact, ei, ei+1 is a basis of (the vector
space) R2, and so any vector v can be written as v = αei + βei+1.
Then v = v′ + v′′, where

v′ = (α− bαc) ei+(β − bβc) ei+1 ∈ Π, and v′′ = bαcei+bβcei+1 ∈ L

Thus, if v ∈ L, then v′ = v− v′′ ∈ Π∩L, and so it has to being one of
the vertices of Π, which proves ei, ei+1 is a Z-basis of L.

Remark 3.0.18. For plane lattices, the convexity condition is very
strong, and implies that we get a Z-basis of a lattice. This part fails
in dimension ≥ 3.

(II) Since ei−1, ei is a Z-basis, then ei+1 = αei−1 + βei, with α, β ∈ Z.
However, ei, ei+1 is a Z−basis too, forcing α to be 1 or −1. However,
from the figure, ei is a positive combination of ei−1 and ei+1, so that
α = −1 and ei+1 + ei−1 = βei, with β > 0. If β = 1, then ei would
be inside the Newton polygon of L, which contradicts the fact ei is on
the boundary of Newton(L). Therefore β ≥ 2.

(III) We have proved that e2+e0 = b1e1, with b1 ≥ 2. Thus e2 = 1
n(b1, b1a−

n) is in the unit square, which means b1a − n ≥ 0. Actually we can
not have b1a − n ≥ a otherwise e2 would be above e1 and this is not
possible since e2 belongs to the boundary of the Newton polygon of
L. Then b1 ≥ dna e. By contradiction, if b1 > dna e, then the point
v := e0 +

(
b1 − dna e

)
e1 ∈ L would lie on the positive quadrant, and so

e2 would be write as e2 = v + dna e, which contradicts once more e2 is
on the boundary. This proves b1 = dna e.
The statement for b2, . . . , bl works recursively: write

L = (Z · e1 ⊕ Z · el+1) + Z · e2.

Change the standard basis to {el+1, e1} to get L ∼= Z2 + Z · 1
n1

(1, a1),
where n1, a1 are obtained writing e2 in such basis:

e2 = (b1 −
n

a
) · e1 +

1

a
· el+1 = (

1

a
, b1 −

n

a
) =

1

a
(1, b1a− n).
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so that n1 := a, and a1 := b1a− n. Observe that gcd(a1, n1) = 1. We
can use what we have said above to get e′0 + e′2 = dn1

a1
ee′1, in the new

basis. Here, observe that b2 is exactly dn1
a1
e, while e′0 corresponds to e1,

e′1 corresponds to e2, and e′2 is e3, since the smaller cone of Newton(L)
spanned by e1, el+1 is the same like before. We have got e1+e3 = b2e2.
The result follows by recursion.

(IV) The points e0, . . . , el+1 generate L ∩ R2
≥0 since any non-zero point of

L ∩ R2
≥0 has to fall in one of the sectors identified by a couple ei, ei+1

(see the figure below). In particular, it has to live in the upper-sector
{αei + βei+1 : α ≥ t, β ≥ 1− t, t ∈ [0, 1]} of ei, ei+1, otherwise it would
be a new lattice point of the boundary of Newton(L), which is not
possible. This proves that it can be written as a non-negative integer
combination of ei, ei+1 (and so of e0, . . . , el+1).

Finally, they are a minimal set of generators because if ej =
∑

i 6=j αiei,
for some αi non-negative integers, then ej would not be on the bound-
ary of Newton(L).

Corollary 3.0.19. Let X := C2/H be a cyclic quotient singularity of type
1
n(1, a). Let M be the lattice (3.2) of the invariant monomials of X. Then
the Proposition 3.0.17 applies to 1

nM . Let

e0 = (0, 1), e1 =
1

n
(1, n− a′), . . . , ek+1 = (1, 0)

be the lattice points of the boundary of the Newton polygon of 1
nM .

Then a minimal set of generators of the ring C[X] is done by the corre-
sponding invariant monomials of ne0, ne1, . . . , nek+1 ∈M , that are

u0 = yn, u1 = xyn−a
′
, u2, . . . uk, uk+1 = xn.



41

These monomials satisfy

ui−1ui+1 = uaii , for i = 1, . . . , k, (3.5)

where ai are the entries of the continued fraction n
n−a′ = [a1, . . . , ak]. Note

that the relations (3.5) are enough to specify all the uj as rational expression
of u0, u1, or any two consecutive monomials ui, ui+1. Thus the morphism
C2 → X ⊂ Ck+2, (x, y) 7→ (u0, . . . , uk+1), is the quotient map. However,
the above relations (3.5) are not enough to determine the image X; for a
full set of generators of the ideal I(X) we also need relations for uiuj with
|i− j| ≥ 2.

Proof. The point (IV ) of the Proposition 3.0.17 permits to say ne0, . . . ,
nek+1 form a minimal set of generators of the monoid M ∩R2

≥0, so that their
corresponding monomials form a minimal set of generators of C[X]. Finally,
the relations (3.5) comes out simply by transposing the relations of (II)
between nei−1, nei, and nei+1 to their corresponding invariant monomials.

Example 3.0.20. Let (x, y) be the coordinates on C2. The computation
of the ring of invariants comes out in a nice uniform way if we analyse the
extreme cases 1

n(1, 1) and 1
n(1, n − 1). We are going to use the Corollary

3.0.19.

1. 1
n(1, 1). Here 1

nM = Z2 + Z · 1
n(1, n− 1), and n

n−1 = [2, . . . , 2], whose
length is n− 1. The points ei of the boundary of the Newton polygon
of 1

nM can be recursively computed trough the relations (3.4):

e0 = (0, 1), e1 =
1

n
(1, n− 1),

e2 = −e0 + 2e1 =
1

n
(2, n− 2),

e3 = −e1 + 2e2 =
1

n
(3, n− 3),

...

en−1 = −en−3 + 2en−2 =
1

n
(n− 1, 1),

en = (1, 0).

Thus the Newton polygon of 1
nM and its boundary looks like the

following figure
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Then a minimal set of generators of the ring of invariant polynomials
of X = C2/H is given by

u0 = yn, u1 = xyn−1, . . . , un−1 = xn−1y, un = xn.

The quotient map is

C2 → X ⊂ Cn+1, (x, y) 7→ (yn, xyn−1, . . . , xn−1y, xn),

and X =

{
rk

(
u0 u1 . . . un−1

u1 u2 . . . un

)
≤ 1

}
⊂ Cn+1 is the cone over the

rational normal curve of degree n in Pn. Here, the singularity of type
1
n(1, 1) is the vertex of the cone.

2. 1
n(1, n− 1). We have 1

nM = Z2 + Z · 1
n(1, 1), and n

1 = [n]. The points
of the boundary of the Newton polygon of 1

nM are then

e0 = (0, 1), e1 =
1

n
(1, 1), e2 = (1, 0)

The Newton polygon and its boundary looks like
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A minimal set of generators of the ring of the invariants of X = C2/H
is then

u0 = yn, u1 = xy, and u2 = xn.

The quotient map is

C2 → X ⊂ C3, (x, y) 7→ (yn, xy, xn),

and X = {Y n − XZ = 0} ⊂ C3. Thus the singular point of X is a
Rational Double Point of type An−1 (see the Theorem 3.1.6 and the
Remark 3.1.8).

The next step is to discuss the minimal resolution of a cyclic quotient
singularity, see [BHPVdV04, Section III.5] or [Rei03] for major details.

Notation: Given x, y be two complex variables, and v :=

(
α
β

)
∈ Z2,

then (xy)v denotes the monomial xαyβ. We observe Z2 → C[x, y], v 7→ (xy)v

is a morphism of Z-moduli.

Theorem 3.0.21. [Rei03, Thm. 3.2](Resolution of a cyclic quotient sin-
gularity) As usual, consider a singularity X = C2/H of type 1

n(1, a). Let
a′ := a−1 be the inverse of a modulo n. Write L for the overlattice L =
Z2 + Z · 1

n(1, a) of Z2, and by

M = {(α, β) : α+ aβ ≡ 0 mod n} ⊆ Z2

the dual lattice of L of invariant monomials defined at (3.2).
Let f0, . . . , fk+1 be a set of minimal generators of the monoid M ∩

R2
≥0 (obtained for instance via the Corollary 3.0.19; this means k is the

length of the continued fraction of n
n−a′ ), and C2 → X ⊂ Ck+2, (x, y) 7→

((xy)f0 , . . . , (xy)fk+1) be the quotient map.
Write n

a = [b1, . . . , bl], and let e0, . . . el+1 be the lattice points of the bound-
ary of the Newton polygon of L defined in the Proposition 3.0.17. For each
i = 0, . . . , l let ξi, ηi be monomials forming the dual basis of M to ei, ei+1;
that is, such that

ei(ξi) = 1, ei(ηi) = 0, ei+1(ξi) = 0, ei+1(ηi) = 1.

Denote by Ai the 2× 2 matrix whose columns are the vectors ei, ei+1. Then
X has a resolution of singularities b : Y → X ⊂ Ck+2 constructed as follows:

Y = Y0 ∪φ0 Y1 ∪ · · · ∪φl−1
Yl, (3.6)

where each Yi ∼= C2 with coordinates ξi, ηi. For any i = 0, . . . , l − 1, the
glueing Yi ∪ Yi+1 consists of

φi : Yi \ {ξi = 0} → Yi+1 \ {ηi+1 = 0}, (ξi, ηi) 7→
(
ξ
bi+1

i ηi,
1

ξi

)
.
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The resolution map is

b : Y → X, (ξi, ηi) 7→
(

(ξiηi)
Ati·f0 , . . . , (ξiηi)

Ati·fk+1

)
, i = 0, . . . , l.

The exceptional curves of the resolution (namely, those which are contracted
to the singular point of X) are exactly l, and have local equation Ei+1 =
{ηi = 0} ∪φi {ξi+1 = 0} ∼= P1, i = 0, . . . , l− 1. Here E2

i = −bi, Ei ·Ei+1 = 1
for i = 1, . . . , l − 1, and the intersection point is the origin (ξi, ηi) = (0, 0)
of the piece Yi. Instead, Ei · Ej = 0 if |i− j| ≥ 2.

The exceptional divisor E =
⋃l
i=1Ei is called Hirzebruch-Jung string,

and its dual configuration is

Proof. When you fix the dual basis e∗i , e
∗
i+1 of M to ei, ei+1 then you are

constructing a new Yi = C2 with coordinates ξi, ηi, and a map Yi = C2 →
X ⊆ Ck+2 which is an isomorphism outside the singular locus of X. This is
defined as follows: any point of X can be written as ((xy)f0 , . . . , (xy)fk+1)
for suitable x and y. The vectors f0, . . . fk+1 are written in the dual stan-
dard basis of M , so let us write them in the new basis e∗i , e

∗
i+1: Atifj =

M{e∗i ,e∗i+1},std(IdR2)fj is the vector of the coordinates of fj in that new basis.

Then (xy)fj =
(

(xy)e
∗
i (xy)e

∗
i+1

)Atifj
, and this suggests to define

ξi := (xy)e
∗
i = (xy)

(A−1
i )t·

1
0


and ηi := (xy)e

∗
i+1 = (xy)

(A−1
i )t·

0
1


.

The map we are looking for is then bi : Yi = C2 → X ⊂ Ck+2, (ξi, ηi) 7→
((ξiηi)

Atif0 , . . . , (ξiηi)
Atifk+1). Actually, a point of the image of bi falls on

X because the relations of X translates as linear relations between the
vectors f0, . . . , fk+1, and the same relations are satisfied by the vectors
Atif0, . . . , A

t
ifk+1. Hence the map is well defined. The map is algebraic since

any Atifj has integer non-negative entries, which are exactly fj(ei), fj(ei+1)
∈ Z ∩ R≥0.
Let us write the vectors e∗i , e

∗
i+1 in function of the basis {f0, f1}. The coordi-

nates of these vectors in that basis are the columns Bi of the change base ma-
trix B := M{f0,f1},{e∗i ,e∗i+1}(IdR2). Then the inverse map X\{0} → Y \b−1

i (0)

is defined by sending (u0, . . . , uk+1) 7→ ((u0u1)B1 , (u0u1)B2). Note that the
inverse map of bi is just rational (B is unimodular), and its definition does
not to depend from the chosen basis {f0, f1}; if you would define it through
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another basis {fj , fj+1}, then the map would be just the same, in virtue of
the linear relations of X between the vectors f0, . . . , fk+1.

We glue together the pieces Y0, . . . , Yl by taking care that if p ∼ q, with
p ∈ Yi and q ∈ Yi+1, then bi(p) = bi+1(q). Let i = 0, . . . , l−1. The glueing φi
is defined through the change base matrix M{e∗i ,e∗i+1},{e∗i+1,e

∗
i+2}(IdR2), which

is the transpose of the inverse matrix

(
0 −1
1 bi+1

)
defined at the point (III)

of the Proposition 3.0.17:

(ξi, ηi)→ ((ξiηi)

bi+1

1


, (ξiηi)

−1
0


) = (ξ

bi+1

i ηi,
1

ξi
).

The curves that are contracted to the singular point of X are exactly l,
say E1, . . . , El. Fix i = 1, . . . , l − 1. By a direct computation, Ei, Ei+1

intersect transversally each other at the point (ξi, ηi) = (0, 0) of the piece
Yi. Instead, their self-intersection E2

i = −bi, i = 1, . . . , l, can be computed
via elementary intersection theory.

Let us give an example to understand better which is the approach.

Example 3.0.22. 1. 1
n(1, 1). A minimal set of generators of M ∩R2

≥0 is
computed at the point 1. of the Example 3.0.20:

f0 = (0, n), f1 = (1, n− 1), . . . , fn = (n, 0),

and the quotient map C2 → X =

{
rk

(
u0 u1 . . . un−1

u1 u2 . . . un

)
≤ 1

}
⊂

Cn+1 is given by (x, y) 7→ (yn, xyn−1, . . . , xn). Instead, the points of
the boundary of the Newton polygon of the lattice L are

e0 = (0, 1), e1 =
1

n
(1, 1), e2 = (1, 0).

Thus we have got only two copies Y0, Y1 of C2, with coordinates ξ0, η0

and ξ1, η1 respectively. Consider the first copy Y0. The monomials
ξ0, η0 form the dual basis of M to e0, e1, and in function of x and y
are

ξ0 = (xy)
(A−1

0 )t·

1
0


= x−1y, and η0 = (xy)

(A−1
0 )t·

0
1


= xn,

since A0 = Mstd,{e0,e1}(IdR2), and so the (A−1
0 )t = Mstd,{e∗0,e∗1}(IdR2).

To compute the resolution b : Y → X on Y0 we need to write any
invariant monomial (xy)fi in function of ξ0, η0. This can be done



46 Cyclic quotient singularities

easily writing any fi from the standard basis to the new basis e∗0, e
∗
1.

In other words, (xy)fi = (ξ0η0)A
t
0·fi , and the resolution b is

(ξ0, η0) 7→
(

(ξ0η0)A
t
0·f0 , . . . , (ξ0η0)A

t
0·fn
)

=
(
ξn0 η0, ξ

n−1
0 η0, ξ

n−2
0 η0, . . . , η0

)
.

Consider now the other copy Y1, whose variables ξ1, η1 form the dual
basis of M to e1, e2. They can be written in function of x and y as

ξ1 = (xy)
(A−1

1 )t·

1
0


= yn, and η1 = (xy)

(A−1
1 )t·

0
1


= xy−1,

where A1 = Mstd,{e1,e2}(IdR2). The resolution b on Y1 is then

(ξ1, η1) 7→
(

(ξ1η1)A
t
1·f0 , . . . , (ξ1η1)A

t
1·fn
)

=
(
ξ1, ξ1η1, ξ1η

2
1, . . . , ξ1η

n
1

)
.

To compute how the copies Y0 and Y1 glue to each other observe that a
couple of identified points has to be sent to the same point via b. This
suggests to use the change base matrix M := M{e∗0,e∗1},{e∗1,e∗2}(IdR2),
which is the transpose of the inverse of the change base matrix from the
base e0, e1 to the next basis e1, e2 defined at (III) of the Proposition
3.0.17. Therefore, the map φ0 : Y0\{ξ0 = 0} → Y1\{η1 = 0} is defined
as

(ξ0, η0) 7→

(ξ0η0)
M ·

1
0


, (ξ0η0)

M ·

0
1

 =

(
ξn0 η0,

1

ξ0

)
.

To summarize, Y = Y0 ∪φ0 Y1 where φ0 is defined as above, and the
resolution map of X is

b : Y → X =

{
rk

(
u0 u1 . . . un−1

u1 u2 . . . un

)
≤ 1

}
⊂ Cn+1

(ξ0, η0) 7→
(
ξn0 η0, ξ

n−1
0 η0, ξ

n−2
0 η0, . . . , η0

)
(ξ1, η1) 7→

(
ξ1, ξ1η1, ξ1η

2
1, . . . , ξ1η

n
1

)
.

The exceptional locus of Y consists of only one rational curve E1 =
{η0 = 0} ∪φ0 {ξ1 = 0} of self-intersection −n.

2. 1
n(1, n− 1). A set of minimal generators of M ∩ R2

≥0 is

f0 = (0, n), f1 = (1, 1) and f2 = (n, 0),

and the quotient map C2 → X = {Y n − XZ = 0} ⊆ C3 is given by
(x, y) 7→ (xn, xy, yn).
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Instead, the points of the boundary of the Newton polygon of the
lattice L are

e0 = (0, 1), e1 =
1

n
(1, n−1), e2 =

1

n
(2, n−2), , . . . , en = (1, 0).

Let ξi, ηi be monomials forming the dual basis of M to ei, ei+1, for
i = 0, . . . , n− 1. They can be written in function of x and y as

ξi = (xy)
(A−1
i )t·

1
0


=

1

xn−(i+1)
yi+1, ηi = (xy)

(A−1
i )t·

0
1


= xn−i

1

yi
,

where Ai = Mstd,{ei,ei+1}(IdR2) = 1
n

(
i i+ 1

n− i n− (i+ 1)

)
. The resolu-

tion b : Y → X ⊂ C3 of X is constructed as follows

Y = Y0 ∪φ0 · · · ∪φn−2 Yn−1,

where each Yi ∼= C2 with coordinates ξi, ηi. For any i = 0, . . . , n − 2,
the glueing Yi ∪ Yi+1 is given by φi : Yi \ {ξi = 0} → Yi+1 \ {ηi+1 =
0}, (ξi, ηi) 7→ (ξ2

i ηi,
1
ξi

), and the resolution map is

b : Y → X = {Y n −XZ = 0} ⊂ C3,

(ξi, ηi) 7→
(
ξn−ii η

n−(i+1)
i , ξiηi, ξ

i
iη
i+1
i

)
.

The exceptional locus of Y consists of n − 1 rational curves Ei+1 =
{ηi = 0} ∪φi {ξi+1 = 0}, any of them with self intersection −2, for
i = 0, . . . n− 1. Here Ei · Ei+1 = 1, whilst Ei · Ej = 0 for |i− j| ≥ 2.

3. 1
5(1, 2). We determine a minimal set of generators of M ∩R2

≥0 through

the Corollary 3.0.19: here 5
5−3 = [3, 2], and the Newton polygon of

1
5M and its boundary are
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Therefore the quotient map is

C2 → X ⊂ C4, (x, y) 7→ (y5, xy2, x3y, x5).

Instead, the Newton boundary of L is

e0 = (0, 1), e1 =
1

5
(1, 2), e2 =

1

5
(3, 1), and e3 = (1, 0).

Taking dual basis gives

ξ0 = x−2y, η0 = x5, ξ1 = x−1y3, η1 = x2y−1, ξ2 = y5, η2 = xy−3.

Thus Y = Y0 ∪φ0 Y1 ∪φ1 Y2, with 3 copies of C2 glued by

φ0 : ξ1 = ξ3
0η0, η1 =

1

ξ0
, and φ1 : ξ2 = ξ2

1η1, η2 =
1

ξ1
.

The resolution map is

b : Y → X ⊆ C4,

(ξ0, η0) 7→ (ξ5
0η

2
0, ξ

2
0η0, ξ0η0, η0),

(ξ1, η1) 7→ (ξ2
1η1, ξ1η1, ξ1η

2
1, ξ1η

3
1),

(ξ2, η2) 7→ (ξ2, ξ2η2, ξ
2
2η

3
2, ξ

3
2η

5
2).

3.1 Normal surfaces with at most cyclic quotient
singularities

Let us consider a normal surface X having at most a finite number of cyclic
quotient singularities, and call by ρ : S → X its minimal resolution (obtained
by applying the Theorem 3.0.21 to any singular point of X).

We denote by KX the canonical (Weil) divisor on X corresponding to
i∗(Ω

2
X0), where i : X0 → X is the inclusion of the smooth locus of X. Ac-

cording to Mumford, we have an intersection product with values in Q for
Weil divisors on a normal surface. We are going to consider in particular
the self-intersection of the canonical divisor, K2

X ∈ Q.
Let x be a singular point of X of type 1

n(1, a), with 1 ≤ a < n coprime
integers, and let

n

a
= b1 −

1

b2 − 1
b3−...

= [b1, . . . , bl].

From the Theorem 3.0.21, the exceptional divisor of a minimal resolution
of x is then an Hirzebruch-Jung string (for short HJ-string), namely E =⋃l
i=1Ei where all Ei are smooth rational curves, E2

i = −bi, Ei · Ei+1 = 1
for i = 0, . . . , l − 1, and Ei · Ej = 0 otherwise. In a neighbourhood of x

KS = ρ∗KX +

l∑
i=1

riEi, (3.7)
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where the rational numbers ri are determined by the conditions

(KS +Ej) ·Ej = 2g(Ej)−2 = −2, (KS−
l∑

i=1

riEi) ·Ej = 0, j = 1, . . . , l.

(3.8)

Lemma 3.1.1. Let n and a be coprime integers with 1 ≤ a < n, and
let n

a = [b1, . . . , bl]. Let A be the intersection matrix determined by the
Hirzebruch-Jung string of a singularity of type 1

n(1, a), i.e.

A :=



−b1 1 0 · · · · · · 0

1 −b2 1 0
...

0 1
. . .

. . .
. . .

...
... 0

. . .
. . . 1 0

...
. . . 1 −bl−1 1

0 · · · · · · 0 1 −bl


∈Ml(Z).

Then det(A) = (−1)ln.

Proof. By induction on l. If l = 1, then a = 1 and b1 = n. We have
det((−b1)) = −b1 = (−1)1n. Suppose the formula is true for fractions
whose HJ-string has length equal at most l − 1. We are going to prove the
formula holds for l. Develops det(A) with respect the first column

det(A) = −b1 det(A11)− det(A12). (3.9)

A11 is the intersection matrix of the HJ string [b2, . . . , bl], which can be
computed as follows

n

a
= b1 −

1

[b2, . . . , bl]
=⇒ [b2, . . . , bl] =

a

ab1 − n

Therefore, by induction hypothesis, det(A11) = (−1)l−1a. Instead, devel-
oping det(A12) with respect to the the first row, one sees that it is the
determinant of the intersection matrix of the HJ string [b3, . . . , bl]. Once
more, we can compute it as

a

ab1 − n
= b2 −

1

[b3, . . . , bl]
=⇒ [b3, . . . , bl] =

ab1 − n
a(b2b1 − 1)− n

.

By induction hypothesis, we have det(A12) = (−1)l−2(ab1−n). The equation
(3.9) becomes

det(A) = (−1)lab1 − (−1)l(ab1 − n) = (−1)ln.
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Lemma 3.1.2. ([Bar99],[Hir53]) Let x be a singularity of type 1
n(1, a), with

gcd(n, a) = 1. Consider n
a = [b1, . . . , bl]. In a neighbourhood of x we have

KS = ρ∗KX +
l∑

i=1

riEi.

Given λ0 = 0, λ1 = 1, and µ0 = n, µ1 = a, define

λi+1 = −λi−1 + biλi and µi+1 = −µi−1 + biµi, (3.10)

for i = 1, . . . , l − 1. Then nri = λi + µi − n, for i = 1, . . . , l.

Proof. The conditions (3.8) implies that

0 =

(
KS −

l∑
i=1

riEi

)
· Ej = bj − 2−

(
l∑

i=1

riEi

)
· Ej

=⇒

(
l∑

i=1

riEi

)
· Ej = bj − 2.

(3.11)

For short of notation, consider the (n × 1)-vectors r, b, and 1 whose i-th
entry of them is the number ri, bi, and 1 respectively, for i = 1, . . . , l. The
latter equation of (3.11) is equivalent to tejAr = bj − 2, j = 1, . . . , l, where
e1, . . . , el is the canonical basis, and A is the intersection matrix of the HJ-
string of x, which is invertible by the Lemma 3.1.1. In other words, r is the
only solution of the linear system Ax = b− 2 · 1.
Observe then r + 1 solves the sublinear system A′x = 0, where A′ :=
A(2, . . . , l − 1|1, . . . , l) ∈ Ml−2,l(Z) is the matrix obtained by removing the
first and last rows from A. A solution of the system A′ can be constructed as
follows: let us fix two numbers t0, t1 ∈ R, and define the vector v(t0, t1) :=(
t1, . . . , tl

)t
, where ti satisfies the recursive formula ti+1 = −ti−1 + biti,

i = 1, . . . l− 1. By construction, v(t0, t1) ∈ ker(A′). Observe that the recur-
sive formula between ti, i = 1, . . . , l− 1, can be re-written in two equivalent
ways: (

ti
ti+1

)
=

(
0 1
−1 bi

)
· · ·
(

0 1
−1 b1

)(
t0
t1

)
, (3.12)(

ti+1

ti

)
=

(
bi −1
1 0

)
· · ·
(
b1 −1
1 0

)(
t1
t0

)
. (3.13)

By a simple check, the vectors v(0, 1) and v(n, a) are linearly independent,
and so they form a basis of ker(A′), which has dimension 2, since the rank
of A′ is l − 2 (otherwise there could be a linear relation between the rows
of A′, which are those of A, and so A would not have maximal rank). Note
that by construction

v(0, 1) = (λ1, . . . , λl)
t and v(n, a) = (µ1, . . . , µl)

t, (3.14)
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where λi and µi are those numbers defined at (3.10).
Remembering that r + 1 ∈ ker(A′), then there exist suitable α, β such that

r = αv(0, 1) + βv(n, a)− 1. (3.15)

The variables α, β can be found through the first and last equation of the
linear system Ax = b− 2 · 1, whose we remember r is the only solution:{

−b1r1 + r2 = b1 − 2

rl−1 − blrl = bl − 2.
(3.16)

By (3.11) and (3.14), we need to know λ1, λ2, µ1, µ2 and λl−1, λl, µl−1, µl to
compute r1, r2, and rl−1, rl.
Let 1 ≤ a′ < n such that a′ = a−1 is the inverse of a modulo n. Then
n
a′ = [bl, . . . , b1], and we get(

b1
1

)
=

(
0 1
−1 b2

)
· · ·
(

0 1
−1 bl

)(
n
a′

)
=⇒

(
0 1
−1 bl

)(
n
a′

)
=

(
bl−1 −1

1 0

)
· · ·
(
b1 −1
1 0

)(
1
0

)
=

(
λl
λl−1

)
. (3.17)

The last identity follows from (3.13). From the other side, we have(
bl
1

)
=

(
0 1
−1 bl−1

)
· · ·
(

0 1
−1 b1

)(
n
a

)
=

(
µl−1

µl

)
. (3.18)

The last identity follows from (3.12). Putting together the equations (3.17)
and (3.18), we get

λ1 = 1, λ2 = b1, λl−1 = −n+ bla
′, λl = a′,

µ1 = a, µ2 = −n+ b1a, µl−1 = bl, µl = 1.
(3.19)

Thus r1 = α+βa− 1, r2 = αb1 +β(−n+ b1a)− 1, rl−1 = α(−n+ bla
′) +

βbl − 1, and rl = αa′ + β − 1. The system (3.16) becomes{
−b1(α+ βa− 1) + αb1 + β(−n+ b1a)− 1 = b1 − 2

α(−n+ bla
′) + βbl − 1− bl(αa′ + β − 1) = bl − 2.

=⇒

{
−βn+ b1 − 1 = b1 − 2

−αn+ bl − 1 = bl − 2.

Thus α = β = 1
n , and replacing them to the Equation (3.15), we get nr =

v(0, 1) + v(n, a)− n1.
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Lemma 3.1.3. For a singular point x of X of type 1
n(1, a), with 1 ≤ a < n

coprime integers, we have in a neighbourhood of x

K2
S = K2

X −

(
−2 +

2 + a+ a′

n
+

l∑
i=1

(bi − 2)

)
.

Here a′ = a−1 is the inverse of a modulo n, 1 ≤ a′ < n, and bi are given by
n
a = [b1, . . . , bl].

Proof. In a neighbourhood of x we have KS = ρ∗KX +
∑l

i=1 riEi, where ri
are the rational numbers computed in the Lemma 3.1.2. Since ρ : S → X is
birational and contracts the rational curves Ei, then

K2
S = K2

X +

(
l∑

i=1

riEi

)2

. (3.20)

However(
l∑

i=1

riEi

)2

=

(
l∑

i=1

riEi

)
· (KS − ρ∗KX) =

l∑
i=1

riEi ·KS

=

l∑
i=1

ri(−2− E2
i ) =

1

n

l∑
i=1

nri(bi − 2)

=
1

n

l∑
i=1

(λi + µi − n)(bi − 2).

The last equality follows from the Lemma 3.1.2. We have got(
l∑

i=1

riEi

)2

=
1

n

l∑
i=1

(λi + µi − n)(bi − 2)

=
1

n

l∑
i=1

(λi + µi)(bi − 2)−
l∑

i=1

(bi − 2)

=
1

n

l−1∑
i=1

(λi + µi)(bi − 2) +
1

n
(λl + µl)(bl − 2)−

l∑
i=1

(bi − 2).

(3.21)

Extending the first sum

l−1∑
i=1

(λi + µi)(bi − 2) =
l−1∑
i=1

(λibi − 2λi) +
l−1∑
i=1

(µibi − 2µi)

=

l−1∑
i=1

(λi−1 + λi+1 − 2λi) +

l−1∑
i=1

(µi−1 + µi+1 − 2µi).
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These two sums are telescopic sums, and so

l−1∑
i=1

(λi+µi)(bi−2) = −(λl−1−λ0) +λl−λ1− (µl−1−µ0) +µl−µ1. (3.22)

Thanks to the computation (3.19) done during the proof of the Lemma 3.1.2
and to the Equation (3.22), then the Equation (3.21) becomes(

l∑
i=1

riEi

)2

=
1

n
(−λl−1 + λ0 − λ1 − µl−1 + µ0 − µ1 + (λl + µl)(bl − 1))

−
l∑

i=1

(bi − 2)

=
1

n

(
n− bla′ − 1− bl + n− a+ (1 + a′)(bl − 1)

)
−

l∑
i=1

(bi − 2)

=
1

n

(
2n− (2 + a+ a′)

)
−

l∑
i=1

(bi − 2)

= −

(
−2 +

2 + a+ a′

n
+

l∑
i=1

(bi − 2)

)
.

(3.23)

The thesis follows by replacing the value obtained in the Equation (3.23) to
the Equation (3.20).

Definition 3.1.4. A singular point x of a normal surface X is a Rational
Double Point (for short RDP) or Du Val singularity if the exceptional di-
visor E = ∪Ei of the minimal resolution ρ : S → X of the singularities of
X consists of a three of smooth rational curves Ei, and KS · Ei = 0, or
equivalently E2

i = −2.

Definition 3.1.5. ([Rei87, Definition 1.1]) A normal variety X of dimension
n has canonical singularities if

1. for some n ≥ 1, then the (Weil) divisor nKX is Cartier;

2. if ρ : Y → X is a resolution of the singularities of X and E = ∪Ei is
the exceptional divisor of ρ, then

nKY = ρ∗nKX +
∑

aiEi, ai ≥ 0.

In dimension 2, canonical singularities are the same as Rational Double
Points, as the following theorem states:
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Theorem 3.1.6. (cf. [Mat02, Theorem 4.6.7]) Let x be a singular point
on a normal surface X. Then x is a canonical singularity if and only if it
is a Rational Double Point. Moreover, x is locally analytically determined
by the dual graph of the exceptional divisor of the minimal resolution of its
singularity, which is one of the following 5 types:

An

Dn

E6

E7

E8

More precisely, an analytic neighbourhood of x is biholomorphic to a neigh-
bourhood of the origin of one of the following hypersurfaces of C3:

x2 + y2 + zn+1 = 0 if the graph is An;

x2 + y2z + zn−1 = 0 if the graph is Dn;

x2 + y3 + z4 = 0 if the graph is E6;

x2 + y3 + yz3 = 0 if the graph is E7;

x2 + y3 + z5 = 0 if the graph is E8;

Remark 3.1.7. Let X be a surface with at most canonical singularities and
ρ : S → X be a minimal resolution of the singularities of X. Then (see
[Mat02, Theorem 4.6.2])

KS = ρ∗KX .

Remark 3.1.8. A cyclic quotient singularity is a canonical singularity, or
equivalently a Rational Double Point, if and only if is of type 1

n(1, n − 1).
Here, H ⊂ SL(2,C), and the exceptional divisor of its minimal resolution
consists of n− 1 rational smooth curves of self-intersection −2, whose dual
graph is An−1.

To prove this, take a cyclic quotient singularity of type 1
n(1, a), whose

continued fraction n
a = [b1, . . . , bl] has length l. Assume it is a canoni-

cal singularity, or equivalently a RDP. From the Theorem 3.0.21, then the
exceptional divisor of the minimal resolution of 1

n(1, a) consists of l ra-
tional smooth curves Ei, whose dual graph is of type Al, and with self-
intersection E2

i = −bi. However, we are assuming that 1
n(1, a) is a RDP so

that E2
i = −bi = −2. This means

n

a
= [2, . . . , 2] =

l + 1

l
=⇒ n = l + 1, a = l = n− 1.

Let us compute now the Euler characteristic e(S) of a minimal resolution
of the singularities of X.
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Lemma 3.1.9. Let X be a normal variety having at most a finite number of
cyclic quotient singularities, and X◦ its smooth locus. Consider ρ : S → X
the minimal resolution of the singularities of X. For any singular point x
of type 1

n(1, a), write by lx the length of continued fraction n
a = [b1, . . . , blx ].

Then

e(S) = e(X◦) +
∑
x

(lx + 1).

Proof. Fix a singular point x and set l := lx. Consider the three ρ−1(x) =⋃l
i=1Ei of the exceptional curves of x. From the Theorem 3.0.21 we know

that Ei · Ei+1 = 1, and Ei · Ej = 0 otherwise. Thus we can write

e(ρ−1(x)) = e(P1 \ {point}) + e(

l⋃
i=2

Ei)

= 1 + e(
l⋃

i=2

Ei) = . . .

= l − 1 + e(El) = l + 1.

The thesis follows by applying this result recursively for any singular point
of X

e(S) = e(S \
⋃
x

ρ−1(x)) +
∑
x

e(ρ−1(x)) = e(X◦) +
∑
x

(lx + 1).

Definition 3.1.10. Let X be a normal complex surface having at most a
finite number of cyclic quotient singularities. A representation of the basket
of singularities of X is a multiset

B(X) :=

{
λ×

(
1

n
(1, a)

)
: X has exactly λ singularities of type

1

n
(1, a)

}
.

For instance, B(X) =
{

2× 1
5(1, 1), 1× 1

5(1, 4)
}

means that X has 2 singu-
larities of type 1

5(1, 1) and one singularity of type 1
5(1, 4).

Remark 3.1.11. We observe that a normal surface X with only cyclic quo-
tient singularities has different representation of its basket. For instance,{

2× 1

7
(1, 3)

}
,

{
1× 1

7
(1, 3), 1× 1

7
(1, 5)

}
,

{
2× 1

7
(1, 5)

}
represent the same basket of singularities of X.

This justifies the next definition
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Definition 3.1.12. Consider the set of multisets of the form

B(X) :=

{
λ×

(
1

n
(1, a)

)
: a, n, λ ∈ N, a < n, gcd(a, n) = 1

}
,

together with the equivalence relation given by ” 1
n(1, a) is equivalent to

1
n(1, a′)”, where a′ = a−1 in (Z/Zn)∗. A basket of singularities is then
an equivalence class.



Chapter 4

Product-Quotient Surfaces

In the 30’s L. Campedelli and L. Godeaux have constructed the first exam-
ples of surfaces of general type with pg = 0. Such surfaces have been known
later on as numerical Campedelli surfaces, and numerical Godeaux surfaces.
They have been ones of the possible exceptions encountered by E. Bombieri
in the 70’s in its famous Theorem 1.0.2 on the structure of the multicanon-
ical map ΦnKS of surfaces of general type. This is one of the reasons why
several authors started to study them, and tried to give more examples.

The idea of Godeaux was to consider the quotient of simpler surfaces
by the free action of a finite group. In this spirit, Beauville (see [Bea96,
pg. 118]) proposed a simpler construction of surfaces of general type, by
considering the quotient of a product of two curves C1 and C2 by the free
action of a finite group. Moreover, he gave an explicit example by taking
the quotient of two Fermat curves of degree 5 in P2.

After [Cat00] many authors started studying the surfaces that appear as
quotient of a product of curves.

They are revealed to be a very useful tool for building new examples of
algebraic surfaces and studying their geometry in an accessible way. Apart
from other works, that mainly deal with irregular surfaces, we want to
mention the complete classification of surfaces isogenous to a product with
pg = q = 0 [BCG08] and the classification for pg = 1 and q = 0 under the
assumption that the action is diagonal [Gle15], the rigid but not infinitesi-
mally rigid manifolds [BP21] of Bauer and Pignatelli that gave a negative
answer to a question of Kodaira and Morrow [MK71, p.45] and also the in-
finite series of n-dimensional infinitesimally rigid manifolds of general type
with non-contractible universal cover for each n ≥ 3, provided by Frapporti
and Gleissner[FG23].

The chapter is organized as follows: in the first two sections we study
the action of a finite group on a product of curves, and we give the formal
definition of product-quotient surfaces of unmixed and mixed type. In Sec-
tion 4.3 and 3.1 we study the type of singularities of their quotient model,
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which are necessary to determine their invariants. This is the main content
of Section 4.4.
The next Section 4.5 aims to describe regular product-quotient surfaces of
general type through a set of group data. This is one of the most crucial steps
for trying to get a classification of them via an efficient algorithm, which
has to be implemented in a computational algebra system (e.g. MAGMA
[BCP97]). One of the most difficult implementation problems is to get an
efficient database. Indeed usually a few millions of group data determine
the same product-quotient surface up to isomorphism. We present a new
approach to the problem and we give new results which permits to avoid
those repetitions.
The next section proves that the classification problem with fixed self-
intersection K2 and characteristic χ is theoretically manageable. These
results are raised in the Section 4.8, where we present a classification algo-
rithm.

4.1 Automorphism group of a product of curves

Let C1 and C2 be two Riemann surfaces of respective genus gi ≥ 2. In
general, the automorphism group of C1 × C2 contains Aut(C1) × Aut(C2).
It could happens that they are equal, although this is not always true.
An easy counterexample is obtained by taking two copies of the same curve
C. In fact, the involution ι : C × C → C × C, (x, y) 7→ (y, x), is an
automorphism of C × C not belonging to the product Aut(C)2.
Moreover, this suggests also that Aut(C)2 oϕZ2 is contained in Aut(C×C)
via the injective homomorphism Φ defined through ι

Φ: Aut(C)2 oϕ Z2 ↪→ Aut(C × C), (f, g, a) 7→ (f, g) ◦ ιa.

Here, the semidirect product Aut(C)2oϕZ2 is defined by the homomorphism

ϕ : Z2 → Aut(Aut(C)2) sending 1 7→
(

Aut(C)2 → Aut(C)2

(f, g) 7→ (g, f)

)
.

A surprisingly fact is that

• Aut(C1 × C2) = Aut(C1)×Aut(C2), if C1 and C2 are not isomorphic
to each other;

• Aut(C × C) = Aut(C)2 oϕ Z2.

This result follows directly once we prove

Lemma 4.1.1. (Rigidity Lemma [Cat00, Lemma 3.8]) Let f : C1 × C2 →
B1 ×B2 be a surjective morphism between products of curves. Assume that
both B1 and B2 have genus ≥ 2. Then, after possible exchanging B1 with B2,
there are holomorphic maps fi : Ci → Bi such that f(x, y) = (f1(x), f2(y)).
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4.2 Group action on a product of curves

Consider two Riemann surfaces C1 and C2 of genus gi ≥ 2. Let G be a finite
group acting faithfully on the product C1×C2. By what we have said in the
previous Section 4.1, the action of G on C1 × C2 can be only of two types:

• Unmixed: G acts independently (non necessarily faithfully) on each
factor G ↪→ Aut(Ci), and the action of G on C1 × C2 is diagonal:

g(x, y) = (g(x), g(y)).

This happens when C1 and C2 are not isomorphic to each other;

• Mixed: here the two curves Ci are the same curve C. In this case,
we have G ↪→ Aut(C)2 oϕ Z2 and so there could be elements of G
that exchange the two factors via the involution ι. Define G0 :=
G ∩Aut(C)2, so that G = G0 oϕ (G ∩ Z2).
Observe that the action of G0 is unmixed, so it acts on each factor
and the action on the product is diagonal.

Definition 4.2.1. Let C1 and C2 be two curves of genus gi ≥ 2. Let G
be a finite group acting on each of them and consider its diagonal action
on C1 × C2. Then X := (C1 × C2)/G is called quotient model of unmixed
type, and the minimal resolution S of the singularities of X is called product-
quotient surface (of unmixed type).

Let us define also

Definition 4.2.2. Let C be a curve of genus g ≥ 2. A (faithful) action of
G on C × C is said to be mixed if G is not contained in Aut(C)2. In this
case, we say that X := (C × C)/G is a quotient model (of mixed type) and
the minimal resolution S of the singularities of X is called product-quotient
surface (of mixed type).

From now on, we are going to analyse product-quotient surfaces of un-
mixed type.
The situation can be described through the following commutative hexago-
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nal diagram:

C1 × C2

C1 C2

(C1 × C2)/G

C1/G C2/G

C1/G× C2/G.

λ12

λ

p1

λ1

f2f1

p2

λ2 (4.1)

We will refer to the notation of the maps fixed in above picture (4.1) for the
rest of the chapter.

Observe that the reason why we have considered gi ≥ 2 is given by the
following

Lemma 4.2.3. Let G be a finite group acting on a product C1×C2, where Ci
are two Riemann surfaces of respective genus gi. Let S → X = (C1×C2)/G
be the minimal resolution of the singularities of X = (C1 × C2)/G. If S is
of general type, then gi ≥ 2.
Conversely, if the quotients Ci/G have genera ≥ 2 (and therefore also gi ≥
2), then S is of general type.

Proof. Suppose S is of general type. Then the Corollary A.2.10 applies to
the quotient map λ12 : C1 × C2 → (C1 × C2)/G, and we have κ(C1 × C2) ≥
κ(S) = 2. Thus C1 × C2 is of general type too. However, by the Theorem
A.2.8, we have κ(C1) + κ(C2) = κ(C1 × C2) = 2. Therefore κ(Ci) = 1 for
each i, and this is equivalent to say that gi ≥ 2, from the Remark A.2.6 .
Conversely, suppose that both Ci/G have genus ≥ 2. Then apply the
Corollary A.2.10 to the map λ : (C1 × C2)/G → C1/G × C2/G to get
κ(S) ≥ κ(C1/G× C2/G) = κ(C1/G) + κ(C2/G) ≥ 1 + 1 = 2.

Remark 4.2.4. In general is not true that if gi ≥ 2, then S is of general type.
A list of examples can be found in [BP16, Table 1, pg. 341].

Since we want to construct surfaces S of general type as the minimal
resolution of the singularities of (C1 ×C2)/G, we shall consider Ci of genus
gi ≥ 2.

Remark 4.2.5. Consider a product-quotient surface S of general type of
quotient model (C1 × C2)/G (of unmixed type). Then we can suppose
without lost of generalities that G acts faithfully on both factors C1 and
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C2.
To prove this, let us consider the actions φi : G→ Aut(Ci) with kernels Ki.
If both of Ki are trivial, then we are nothing to do, so let us suppose for
instance that K1 6= {1}. Since Ki are normal subgroups of G, then G acts
also on C1/K2 and C2/K1. Moreover, K1 is contained in the kernels of the
actions G → Aut(Ci/Kj), i 6= j, and so it makes sense to take the actions
G/K1 → Aut(Ci/Kj) on Ci/Kj .
By construction, we have a natural isomorphism

(C1 × C2)/G→ (C1/K2 × C2/K1) / (G/K1) ,

G(p1, p2) 7→ (G/K1)(K2p1,K1p2).

Furthermore, we get the quotient (C1/K2 × C2/K1) / (G/K1) is of general
type, and so Ci/Kj have always genus ≥ 2, by the Lemma 4.2.3.

To summarize, we have constructed two new curves Ci/Kj of genus ≥ 2
such that the group G/K1 acts on them, and the obtained quotient model
is still isomorphic to (C1 × C2)/G. Since we have assumed that K1 is non-
trivial, then |G/K1| < |G|. Thus we can repeat the same procedure in a
finite number of steps until the actions on the two curves is faithful.

4.3 Singularities of a quotient model of unmixed
type

In this section we investigate the types of singularities of the quotient model
X := (C1 × C2)/G of unmixed type. Many of these results are taken from
[BP12].

Proposition 4.3.1. Let X := (C1×C2)/G be a quotient model of unmixed
type. Then

1. (analytic neighbourhood of a point G(p1, p2) ∈ X)
Consider a point (p1, p2) of C, and for any i = 1, 2 take a Stab(pi)-
invariant neighbourhood Ui of pi as in the Theorem 2.0.6.
Linearize the action of Stab(pi) locally around pi as the Lemma 2.0.13.
Let x be the local coordinate of U1

∼= V1 ⊆ C around p1, and y that of
U2
∼= V2 ⊆ C around p2.

Then a generator of Stab(p1, p2) = Stab(p1) ∩ Stab(p2) acts naturally
on U1 × U2

∼= V1 × V2 ⊆ C2 simultaneously on both factors by multi-
plication of some n-roots of the unity, n := |Stab(p1, p2)|:

(x, y) 7→ (e
2πi
n
ax, e

2πi
n
by), 1 ≤ a, b ≤ n.

Moreover

α : (V1 × V2) /

(
e

2πi
n
a 0

0 e
2πi
n
b

)
∼= (U1 × U2) /Stab(p1, p2)

∼−→ X
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is an homeomorphism onto an open neighbourhood of G(p1, p2) of

X. In other words, X ∼= (V1 × V2) /

(
e

2πi
n
a 0

0 e
2πi
n
b

)
locally around

G(p1, p2);

2. the singular points of X are only cyclic quotient singularities;

3. Let Sing(X) be the set of singular points of X. Then Sing(X) is the
branch locus of the map λ12, and

Sing(X) ⊂
⋃

q1∈Crit(λ1),q2∈Crit(λ2)

λ−1(q1, q2),

where Crit(λi) is the set of branch points of λi. In particular, Sing(X)
is finite.

Proof. 1. Since the action on C1 × C2 is diagonal, then Stab(p1, p2) =
Stab(p1) ∩ Stab(p2). By Proposition 2.0.3, then Stab(pi) is a cyclic sub-
group of G, so that Stab(p1, p2) is cyclic too; let us say g is a generator.
If x is the local coordinate of U1

∼= V1 around p1, and y that of U2
∼= V2

around p2, then g acts locally as x 7→ e
2πi
n
ax around p1, and as y 7→ e

2πi
n
by

locally around p2, for suitable 1 ≤ a, b ≤ n. Therefore, g acts locally around

(p1, p2) as (x, y) 7→
(
e

2πi
n
ax, e

2πi
n
by
)

.

Observe that the map α is injective, by construction of Ui:
if Stab(p1, p2)(q1, q2) and Stab(p1, p2)(q′1, q

′
2) are sent to the same class

G(q1, q2) = G(q′1, q
′
2), then there exists h ∈ G such that q′1 = h · q1 ∈ U1, and

q′2 = h · q2 ∈ U2. However, Ui ∩ (h · Ui) = ∅ if h 6∈ Stab(pi). This forces h to
belong to Stab(pi), and so to Stab(p1, p2).
The map α is also continuous and open since, composed with the projec-
tion U1 × U2 → (U1 × U2) /Stab(p1, p2), it gives the quotient application
(λ12)|U1×U2

:

U1 × U2 (U1 × U2) /Stab(p1, p2) X = (C1 × C2) /G

C1 × C2

α

iU1×U2 λ12

2. is straightforward. Point 1. proves X is locally isomorphic to X ∼= V1×

V2 ⊆ C2, if Stab(p1, p2) = {1}, and (V1 × V2) /〈

(
e

2πi
n
a 0

0 e
2πi
n
b

)
〉 otherwise.

In particular, the point G(p1, p2) is either smooth, or it is a cyclic quotient
singularity of type 1

n(a, b).
3. Since G(p1, p2) is not singular when Stab(p1, p2) = {1}, then any

singular point of X is contained in the branch locus of λ12. Conversely,
take a branch point G(p1, p2) of λ12, so that Stab(p1, p2) is not trivial of
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order n ≥ 1. Let g be a generator. The local action of g around (p1, p2) is

(x, y) → (e
2πi
n
ax, e

2πi
n
by), for suitable 1 ≤ a, b ≤ n. Therefore G(p1, p2) is

a cyclic quotient singularity of type 1
n(a, b) which is not smooth, otherwise

1
n(a, b) would be equivalent to 1

n(1, 0), from the Remark 3.0.12. This would
mean either a or b is equal to n, and g would act locally around pi as the
identity. Since the action of G on Ci is supposed to be faithful, then g = 1,
which contradicts n > 1. We have proved G(p1, p2) is singular.

Now take a branch point G(p1, p2) of λ12. Then the stabilizer of (p1, p2)
is not trivial, which forces p1 and p2 to being ramification points of λ1, and
λ2 respectively. Hence their images qi = λi(pi) are branch points. We have
proved G(p1, p2) ∈ λ−1(q1, q2), with qi branch points of λi.
From Proposition 2.0.4, the branch locus of λi is finite, so that there are a
finite number of couples (q1, q2) for which qi is a branch point of λi. Since
λ is by construction a finite map (not necessarily Galois, but of order |G|)
then λ−1(q1, q2) is a finite set too. We have proved λ−1(Crit(λ1)×Crit(λ2))
is finite, and so the same holds for Sing(X).

By the point 3. of the Proposition 4.3.1, we have seen that a point
G(p1, p2) of X may be singular only if it belongs to a fibre λ−1(q1, q2),
with qi := λi(pi) branch point of λi. Let us count the points of the fibre
λ−1(q1, q2).

Proposition 4.3.2. ([BP12, Prop. 1.16]) Consider a point (q1, q2) ∈ C1/G
×C2/G and, fixed a point pi ∈ Ci over qi, denote by Hi the stabilizer of that
point. Consider the right action of Hi on G, and take the quotients G/Hi.
Then

(1) there is a G-equivariant bijective map (λ ◦ λ12)−1(q1, q2) → G/H1 ×
G/H2, where the G-action on the target is given by left multiplication
(simultaneously on both factors);

(2) Each point of λ−1(q1, q2) is in one-to-one correspondence with an orbit
of the H1-(left) action on G/H2. In other words, there is a bijection
map λ−1(q1, q2)→ (G/H2) /H1.

Proof. (1) Observe that (λ ◦ λ12)−1(q1, q2) := {(g1 · p1, g2 · p2) : g1, g2 ∈
G}. Therefore define simply the map sending each point (g1 · p1, g2 · p2) 7→
(g1H1, g2H2).

(2) Quotient the previous map of the point (1) with respect to the action
of G. This map is a correspondence since the map of (1) is G-equivariant.
Moreover, observe that the quotient (G/H1 ×G/H2) /G is in natural bi-
jection with (G/H2) /H1 via the map G(g1H1, g2H2) 7→ H1(g−1

1 g2H2). To
summarize, we have the following correspondences

(λ ◦ λ12)
−1

(q1, q2)/G︸ ︷︷ ︸
=λ12((λ◦λ12)−1(q1,q2))=λ−1(q1,q2)

(G/H1 ×G/H2) /G (G/H2) /H1
∼ ∼
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It remains to study the types of cyclic quotient singularities of the points
lying on the fibre λ−1(q1, q2). In order to do this, we state and prove the
following

Proposition 4.3.3. ([BP12, Prop. 1.18]) The notation is the same like the
Proposition 4.3.2. Let g ∈ H1 be a generator of H1, which is also the local
monodromy (see Definition 2.0.14) of the point p1 over q1. Similarly, take
h ∈ H2 the local monodromy of the point p2 over q2.
An element [t] ∈ (G/H2) /H1 corresponds to a cyclic quotient singularity
of type 1

n(1, a), where n := |H1 ∩ tH2t
−1|, and a is given as follows: let δ

be the minimal positive number such that there exists 1 ≤ γ ≤ o(h) with
gδ = thγt−1. Then a := nγ

o(h) .

Proof. An element [t] corresponds to the point G(p1, t · p2) ∈ λ−1(q1, q2),
so n is the cardinality of a stabilizer of a point (on C1 × C2) over it. In
particular, the stabilizer of the point (p1, t · p2) is exactly H1 ∩ tH2t

−1.
By definition, the local monodromy g of p1 acts in local analytic coordi-

nates on C1 as x 7→ e
2πi
o(g)x. Instead, since h is the local monodromy of p2,

then t · h · t−1 is the local monodromy of t · p2. Therefore t · h · t−1 acts in

local analytic coordinates around t · p2 on C2 as y 7→ e
2πi
o(h) y.

By construction of δ, we claim that 〈gδ〉 = Stab(p1, t · p2), and o(g) = nδ:
let gα = thβt−1 ∈ Stab(p1, t·p2) = H1∩tH2t

−1, and divide α by δ; α = aδ+b,
with 0 ≤ b < δ. Then gb = (thβt−1)(thγt−1)−a = thβ−aγt−1. From the min-
imality of δ, then b is forced to be 0, which shows gα = (gδ)a ∈ 〈gδ〉. In
particular, o(gδ) = n.
It remains to show o(g) = nδ. Divide o(g) by δ; o(g) = aδ + b, with
0 ≤ b < δ. Then gb = (thγt−1)−a = th−γat−1. From the minimality of δ,
then b is forced to be 0. Thus gcd(o(g), δ) = δ, and we obtain

n = o(gδ) =
o(g)

gcd(o(g), δ)
=
o(g)

δ
=⇒ o(g) = nδ.

Then gδ acts (diagonally) on (x, y) as

(x, y) 7→ (e
2πi
o(g)

δ
x, e

2πi
o(h)

γ
y) =

(
e

2πi
n 0

0 e
2πi
n

nγ
o(h)

)(
x
y

)
.

This shows that a = nγ
o(h) .

Remark 4.3.4. Observe that the number of singularities and their type over
the fibre λ−1(q1, q2) does not depend from the choice of the local mon-
odromies g and h on their conjugacy classes. If you replace p1 by ν1 ·p1, and
p2 by ν2 · p2, then the local monodromies g and h are respectively replaced
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by their conjugated gν1 , and hν2 . Applying the Proposition 4.3.3, we get
a different singularity for each [t], but the whole set of singularities above
(q1, q2) does not change.

To better understand the Proposition 4.3.3 let us give an example.

Example 4.3.5. Consider the special linear group G := SL(2, 5) and the
local monodromies g and h of two points p1 and p2 over a fibre λ−1(q1, q2).
We compute the types of the singularities of the points of this fibre through
g and h under the assumption that g = h =: s is of order 5.

Thus H1 = H2 = 〈s〉 is a subgroup of order 5, and G/H2 consists of 24
elements. The (left)-action of H1 on G/H2 gives 4 orbits of length 5 and 4
orbits of length 1. The latter ones arising from the points kH2 fixed with
respect the action of H1. These points have to satisfy

s · (kH2) = kH2 ⇐⇒ k−1 · s · k = sj , for some j.

We note that s is conjugate only to itself and s4, and not to s2 and s3. In
other words, if s = k−1 · s · k and s4 = r−1 · s · r, then the fixed points of the
action are kH2 and rH2.
In particular, it turns out that two of the four fixed points k1H2, k2H2 satisfy
the condition s = k−1

i · s · ki, while the other two fixed points r1H2, r2H2

satisfy s4 = r−1
i · s · ri.

By the Proposition 4.3.3, the 4 orbits of cardinality 5 give smooth points
of X; instead {k1H2}, {k2H2} give two points with n = 5, a = 1, and
{r1H2}, {r2H2} give other two points with n = 5, a = 4.
To summarize, the fibre λ−1(q1, q2) consists of 8 points; 4 of them are smooth
points of X, 2 of them are singular of type 1

5(1, 1), and the remain two are
singular of type 1

5(1, 4).

In the Section 4.7, we are going to show how much is useful the Propo-
sition 4.3.3, and how we can use it once one describes product-quotient
surfaces via theoretical group data.

4.4 On the invariants of a product-quotient sur-
face of unmixed type

In this Section, we follow the flow of [BP12], and compute the invariants of an
unmixed product-quotient surface S of quotient model X := (C1 × C2) /G.

Definition 4.4.1. ([BP12, Definition 1.5]) Let x be a singularity of type
1
n(1, a) with gcd(n, a) = 1, and let 1 ≤ a′ < n be the inverse of a modulo n,
a′ = a−1. Write n

a as a continued fraction

n

a
= b1 −

1

b2 − 1
b3−...

= [b1, . . . , bl]

as in the Definition 3.0.16. We define the following correction terms
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• kx := k( 1
n(1, a)) = −2 + 2+a+a′

n +
∑l

i=1(bi − 2) ≥ 0;

• ex := e( 1
n(1, a)) = l + 1− 1

n ≥ 0;

• Bx := 2ex + kx.

Let B be the basket of singularities of X (recall X is normal and has at
most a finite number of cyclic quotient singularities, by the Proposition
4.3.1). Then we denote by

k(B) :=
∑
x

kx, e(B) :=
∑
x

ex, B(B) :=
∑
x

Bx.

Theorem 4.4.2. Let ρ : S → X be the minimal resolution of singularities
of X = (C1 × C2)/G. Then the self-intersection of the canonical divisor of
S and its Euler characteristic are equal to

K2
S =

8(g1 − 1)(g2 − 1)

|G|
− k(B),

e(S) =
4(g1 − 1)(g2 − 1)

|G|
+ e(B).

Proof. Apply the Lemma 3.1.3 recursively for any singular point to X:

K2
S = K2

X −
∑
x

kx = K2
X − k(B).

However, λ12 : C1 × C2 → X has finite branch locus, and so KC1×C2 =
λ∗12KX , which implies by projection formula

|G|K2
X = (p∗1KC1 + p∗2KC2)2 = 2 deg(KC1) deg(KC2) = 8(g1 − 1)(g2 − 1).

Let us discuss how to compute e(S). By the Lemma 3.1.9 we get

e(S) = e(X◦) +
∑
x

(lx + 1),

where X◦ is the smooth locus of X. Here x is a singularity of type 1
nx

(1, ax),
and lx is the length of continued fraction of nx/ax.

From the point 3. of Proposition 4.3.1, the singular locus of X is exactly
the branch locus of λ12 : C1×C2 → X, so that λ12 : Z◦ → X◦ is étale, where
Z◦ := (C1 × C2) \ λ−1

12 (Sing(X)). Therefore, we have

e(X◦) =
e(Z◦)

|G|
=
e(C1)e(C2)

|G|
− e(λ−1

12 (Sing(X)))

|G|

=
4(g1 − 1)(g2 − 1)

|G|
− 1

|G|
∑
x

|λ−1
12 {x}|

=
4(g1 − 1)(g2 − 1)

|G|
−
∑
x

1

nx
.
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The latter equality holds since |λ−1
12 {x}| = |G|/|Stab(p1, p2)|, where (p1, p2)

is a point over x, and we have |Stab(p1, p2)| = nx, because X is locally
isomorphic in a neighbourhood of x to the quotient V1 × V2/Stab(p1, p2)
(see the point 1. of Proposition 4.3.1).

It follows that

e(S) = e(X◦) +
∑
x

(lx + 1)

=
4(g1 − 1)(g2 − 1)

|G|
−
∑
x

1

nx
+
∑
x

(lx + 1)

=
4(g1 − 1)(g2 − 1)

|G|
+ e(B).

Corollary 4.4.3. Let ρ : S → X = (C1 × C2)/G be the minimal resolution
of singularities of X. Then

K2
S = 8χ(S)− 1

3
B(B).

Proof. By the Theorem 4.4.2, we have

2e(S) = K2
S + k(B) + 2e(B) =⇒ e(S) =

K2
S +B(B)

2
.

By Noether’s formula we obtain

12χ(S) = K2
S + e(S) =

3K2
S +B(B)

2
=⇒ K2

S = 8χ(S)− B(B)

3
.

Corollary 4.4.4.
K2
S ≤ 8χ(S),

and the equality holds if and only if X = (C1 ×C2)/G is smooth, or, equiv-
alently, isogenous to a product of curves.

Proof. Observe B(B) ≥ 0. Moreover, if the equality holds, then B(B) = 0,
and so no singular points occur to X.

It remains to compute the irregularity q, and the geometric genus pg of
S. The canonical linear system of S is amply studied in the Chapter 5, so
we refer that chapter for more details. Briefly speaking, given ρ : X → S
be the minimal resolution of the singularities of X = (C1 × C2) /G, then(
ρ−1
)∗

: H i,0(S)→ H i,0(X◦) is a natural monomorphism, X◦ smooth locus
of X. Since X has only cyclic quotient singularities (see Prop. 4.3.1), it is
also an epimorphism, by Freitag’s theorem [Fre71, Satz 1]. The composition
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of such map together with the pullback λ∗12 : H i,0(X◦)→ H i,0(C1×C2) shows
that H i,0(S) is sent isomorphically to the invariant subspace H i,0(C1×C2)G.
We have obtained

H i,0(S) ∼= H i,0(C1 × C2)G. (4.2)

Theorem 4.4.5. Let ρ : S → X be the minimal resolution of singularities
of X = (C1×C2)/G. Then the irregularity of S and its geometric genus are
equal to

q = g(C1/G) + g(C2/G),

pg = χ(S) + q − 1

=
(g1 − 1)(g2 − 1)

|G|
+

1

12
(e(B)− k(B)) + g(C1/G) + g(C2/G)− 1.

Proof. Apply the above formula (4.2) for i = 1, and use the Künneth for-
mula:

H1,0(S) ∼= H1,0(C1 × C2)G ∼=(
H1,0(C1)G ⊗H0,0(C2)

)
⊕
(
H0,0(C1)⊗H1,0(C2)G

)
.

This gives q = h0(Ω1
S) = g(C1/G) + g(C2/G). Now write pg = χ(S) + q− 1;

the thesis follows by using Noether’s formula 12χ(S) = K2
S + e(S), and

replacing the values of K2
S and e(S) as stated by the Theorem 4.4.2.

Corollary 4.4.6. A product-quotient surface S is regular, namely q = 0, if
and only if Ci/G ∼= P1. In other words, the curves Ci are G-coverings of
P1.

In the Example 4.7.3 of the Section 4.7, we compute the basket of sin-
gularities of the quotient model X of certain product-quotient surfaces S,
and then we apply the formulas above to perform their invariants.

We shall now list some properties of the basket of singularities of the
quotient model X = (C1 × C2) /G of a product-quotient surface.

Lemma 4.4.7. Let X = (C1 × C2) /G be as above. There exists a repre-
sentation of the basket

B(X) =

{
λ1 ×

1

n1
(1, a1), . . . , λR ×

1

nR
(1, nR)

}
such that ∑

λi
ai
ni
∈ Z.
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Proof. Consider the fibration f1 : X → C1/G, and let F1, . . . , Fr be the sin-
gular fibres taken with the reduced structure. Let F̃i be the strict transform
of Fi on S. Then, by [Pol10, Proposition 2.8], for a suitable representation
of the basket ∑

λi
ai
ni

= −
∑

F̃i
2
∈ Z.

Corollary 4.4.8. Suppose X admits at most nodes, i.e. every singularity
is of type 1

2(1, 1): Then 2 ≤ K2
S ≤ 8χ(S) is an even number.

Proof. Let λ be the number of singularities of X. Since any of them is of
type 1

2(1, 1), then Lemma 4.4.7 implies

λ · 1

2
∈ Z =⇒ λ even.

Then e(B) ∈ Z. This together with k(B) = 0 implies B(B) = 2e(B) is even,
and so K2

S = 8χ(S)− 1
3B(B) is even too.

Definition 4.4.9. A multiset

B :=

{
λ1 ×

1

n1
(1, a1), . . . , λR ×

1

nR
(1, nR)

}
is called a possible basket of singularities for (K2, χ) is and only if satisfies
the following conditions:

• there is a representation of B, say

B :=

{
λ′1 ×

1

n′1
(1, a′1), . . . , λ′R ×

1

n′R
(1, n′R)

}

such that
∑
λ′i

a′i
n′i
∈ Z,

• B(B) = 3(8χ(S)−K2).

It is clear now that the basket of the quotient model X of a product-quotient
S is a possible basket of singularities for the pair (K2

S , χ(S)).

4.5 Counting product-quotient surfaces arising
from a pair of topological types of G-coverings

Consider a regular product-quotient surface S of quotient model X :=
(C1 × C2) /G. By the Corollary 4.4.6, then Ci/G ∼= P1. The situation is
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the following:

C1 × C2

C1 C2

(C1 × C2)/G

P1 ∼= C1/G C2/G ∼= P1

C1/G× C2/G ∼= P1 × P1,

λ12

λ

p1

λ1

f2f1

p2

λ2

(4.3)
In the Chapter 2.1 we have seen that λi : Ci → P1 are both described, up to
deformation, by the Aut(G) × B̃r (resp. Aut(G) × B̃s)-orbit of a spherical
system of generators of G.
Conversely, a pair of spherical systems of generators [g1, . . . , gr], and
[h1, . . . , hs] gives G-coverings (C1, λ1), and (C2, λ2) of P1, and so a family of
regular product-quotient surfaces S of quotient model X := (C1 × C2) /G.
However, if we replace one [h1, . . . , hs] with another spherical system of
generators in the same Aut(G)× B̃s-orbit, then we get a family of product-
quotient surfaces that may be different.

In this section we are going to determine exactly how many families
of product-quotient surfaces one obtains by a pair of topological types of
G-coverings of P1.

Definition 4.5.1. Let us call by T r,s(G), the collection of all families of reg-
ular product-quotient surfaces, whose natural fibrations λi are G-coverings
Ci of P1 branched over r and s points respectively.

Remark 4.5.2. In the above definition the order of (C1, λ1) and (C2, λ2) is
relevant. Thus exchanging them gives a natural bijection from T r,s(G) →
T s,r(G) which sends families to isomorphic families of surfaces.

We give a generalization of Theorem 2.1.9 for product-quotient surfaces
(see [BP12] and [BCGP12]).

Proposition 4.5.3. There is a natural bijection among T r,s(G) and

Dr(G)×Ds(G)

Aut(G)× B̃r × B̃s
,

where (Ψ, σ1, σ2) ∈ Aut(G)× B̃r × B̃s acts on ([g1, . . . , gr], [h1, . . . , hs]) via

(Ψ, σ1, σ2) · ([g1, . . . , gr], [h1, . . . , hs]) =

= (σ1 · [Ψ(g1), . . . ,Ψ(gr)], σ2 · [Ψ(h1), . . . ,Ψ(hs)]) ,
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in the notation of Section 2.1.

The bijection in Proposition 4.5.3 is given by a map Dr(G)×Ds(G)→
T r,s(G) as follows.

Consider a pair of spherical systems of generators [g1, . . . , gr] and
[h1, . . . , hs]. We fix points q0, q1, . . . , qr ∈ P1 and a geometric basis η1, . . . , ηr
as in the Definition 2.1.10, where ηi is a class loop based at q0 around the
point qi. In this way, following the description of Section 2.1 we get from
the first spherical system [g1, . . . , gr] a G-covering of the line (C1, λ1) whose
branch locus is {q1, . . . , qr}. In fact, we obtain an isomorphism among G
and the automorphism group of the covering (C1, λ1), and gi is the local
monodromy of a point over qi.

Similarly, we fix others q′0, q
′
1, . . . , q

′
s ∈ P1 and a geometric basis η′1, . . . , η

′
s

where η′i is a class loop based at q′0 around q′i. Then [h1, . . . , hs] gives an-
other G-covering of the line (C2, λ2), and an isomorphism among G and the
automorphism group of (C2, λ2).

Then the diagonal action ofG on C1×C2 gives a product-quotient surface
S whose quotient model is (C1 × C2) /G.

The map Dr(G)×Ds(G)→ T r,s(G) sends the pair of spherical systems
([g1, . . . , gr], [h1, . . . , hs]) to the family of S.

Let us discuss how Aut(G)× B̃r × B̃s acts on this construction.

We show that acting with Ψ ∈ Aut(G) on [g1, . . . , gr] and [h1, . . . , hs]
the isomorphic class of S does not change. Acting with Ψ, we obtain the
same G-coverings (C1, λ1) and (C2, λ2), but the isomorphisms among G
and the automorphism groups of (C1, λ1) and (C2, λ2) are both modified by
composition with Ψ. Then we obtain the same product C1 × C2 and the
action of G×G on it has been modified by composition with Ψ×Ψ. Since
Ψ × Ψ sends the diagonal to itself, then we obtain a surface isomorphic to
S.

The group B̃r acts only on the first spherical system of generators [g1, . . .
, gr] replacing (C1, λ1) with a topological equivalent G-covering (C ′1, λ

′
1) as

described in Section 2.1. By the result of González-Dı́ez and Harvey in
[GDH92] mentioned there, then (C1, λ1) and (C ′1, λ

′
1) are in the same irre-

ducible connected family of G-coverings. In particular, the action of B̃r on
the given construction connects surfaces of the same family.

An analogous statement holds for the action of B̃s on a spherical system
of generators [h1, . . . , hs].

As discussed at the beginning of this section, to each family of product-
quotient surfaces we have a naturally associated pair of topological types of
G-coverings, thus giving a surjective map T r,s(G) � T r(G) × T s(G). By
Proposition 4.5.3 and Theorem 2.1.9 we obtain the following commutative
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diagram

T r,s(G) Dr(G)×Ds(G)

Aut(G)×‹Br×‹Bs
T r(G)× T s(G) Dr(G)

Aut(G)×‹Br × Ds(G)

Aut(G)×‹Bs
π (4.4)

Here the map π is defined as the only map making the diagram commutative.
Such π sends the class of a pair of spherical systems of generators [V1, V2]
to the pair of classes ([V1], [V2]).

We are going to find the inverse image of each point ([V1], [V2]) by π,
which translates in determining each family of product-quotient surfaces
afforded by the pair of topological types of G-coverings, the first given by
[V1], and the second by [V2].

Definition 4.5.4. Let V := [g1, . . . , gr] be a spherical system of generators.
The group of automorphisms of braid type on V is the following subgroup
of Aut(G)

BAut(G,V ) := {ϕ ∈ Aut(G) : ∃ σ ∈ B̃r such that ϕ · V = σ · V }.

Observe that BAut(G,V ) is a subgroup of Aut(G): let ϕ1, ϕ2 ∈
BAut(G,V ), then(

ϕ1 ◦ ϕ−1
2

)
· V = ϕ1(σ−1

2 · V ) = σ−1
2 · (ϕ1 · V ) = (σ−1

2 σ1) · V

for some σ1, σ2 ∈ B̃r. Thus ϕ1 ◦ ϕ−1
2 ∈ BAut(G,V ).

Remark 4.5.5. If you replace V by V ′ on its Aut(G) × B̃r-orbit, let us say
V ′ := (Ψ, σ)·V , then the subgroup BAut(G,V ′) is conjugate to BAut(G,V ):

BAut(G,V ′) = Ψ ◦ BAut(G,V ) ◦Ψ−1.

Note that Ψ ∈ BAut(G,V ) implies BAut(G,V ′) = BAut(G,V ).

Definition 4.5.6. Let V1 and V2 be a pair of spherical systems of gen-
erators of G. We will say that two automorphisms Φ,Ψ ∈ Aut(G) are
(V1, V2)−related, and we will write

Φ ∼V1,V2 Ψ

if the following holds: there exist ϕ1 ∈ BAut(G,V1), ϕ2 ∈ BAut(G,V2) such
that

Ψ = ϕ1 ◦ Φ ◦ ϕ2.
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The relation ∼V1,V2 is clearly an equivalence relation on Aut(G). We denote
by QAut(G)V1,V2 the quotient of Aut(G) by ∼V1,V2 .

In other words QAut(G)V1,V2 is the set of double cosets

QAut(G)V1,V2 = BAut(G,V1)\Aut(G)/BAut(G,V2).

Remark 4.5.7. Replacing V1 and V2 by two spherical systems of generators
in the same orbits, V ′1 = (Ψ1, σ1) · V1 and V ′2 = (Ψ2, σ2) · V2, then by the
Remark 4.5.5 we have

Φ ∼V1,V2 Ψ ⇐⇒ Ψ1 ◦ Φ ◦Ψ−1
2 ∼V ′1 ,V ′2 Ψ1 ◦Ψ ◦Ψ−1

2 .

Moreover, the bijection Φ 7→ Ψ1 ◦ Φ ◦ Ψ−1
2 induces a bijection among the

quotients

QAut(G)V1,V2 ↔ QAut(G)V ′1 ,V ′2 , [Φ] 7→ [Ψ1 ◦ Φ ◦Ψ−1
2 ]. (4.5)

that only depends on V1, V2, V
′

1 .V
′

2 and not on the choice of Ψ1,Ψ2.

Theorem 4.5.8. We consider the map π defined at (4.4). Let us fix a point

x ∈ Dr(G)

Aut(G)×‹Br × Ds(G)

Aut(G)×‹Bs , and let us choose a pair of spherical systems of

generators V1 and V2 such that x = ([V1], [V2]). The following hold:

1. given Φ ∈ Aut(G), then

[V1,Φ · V2] ∈ Dr(G)×Ds(G)

Aut(G)× B̃r × B̃s

depends only by class of Φ in QAut(G)V1,V2.

2. The map

QAut(G)V1,V2 −→ π−1(x)

[Φ] 7→ [V1,Φ · V2].
(4.6)

is bijective. In particular, |π−1(x)| = |QAut(G)V1,V2 |.

3. If we replace V1 by V ′1 in the same Aut(G) × B̃r-orbit, and V2 by V ′2
in the same Aut(G) × B̃s-orbit, then the bijective maps in (4.5) and
(4.6) form a commutative triangle

QAut(G)V ′1 ,V ′2

π−1(x)

QAut(G)V1,V2
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Proof. 1. Let us consider an automorphism Φ′ = ϕ1 ◦ Φ ◦ ϕ2 in the
same class of Φ in QAut(G)V1,V2 , where ϕ1 ∈ BAut(G,V1) and ϕ2 ∈
BAut(G,V2). Then

[V1,Φ
′ · V2] = [V1, (ϕ1 ◦ Φ ◦ ϕ2)V2]

= [ϕ−1
1 · V1, (Φ ◦ ϕ2) · V2]

= [σ−1
1 · V1,Φ · (σ2 · V2)]

= [σ−1
1 · V1, σ2 · (Φ · V2)] = [V1,Φ · V2].

2. Point 1. proves that the map 4.6 is well-defined. Let us consider an
element [V ′1 , V

′
2 ] ∈ π−1(x), hence V ′1 is in the same orbit of V1 and V ′2

is in the same orbit of V2. We write

V ′1 = (Ψ1, σ1) · V1 and V ′2 = (Ψ2, σ2) · V2,

where (Ψ1, σ1) ∈ Aut(G)× B̃r, and (Ψ2, σ2) ∈ Aut(G)× B̃s. Then

[V ′1 , V
′

2 ] = [Ψ1 · V1,Ψ2 · V2] = [V1,
(
Ψ−1

1 ·Ψ2

)
· V2].

This proves (4.6) is surjective.

Let us consider [Φ1] and [Φ2] in QAut(G)V1,V2 such that

[V1,Φ2 · V2] = [V1,Φ1 · V2].

We are going to show that [Φ2] = [Φ1]. Since (V1,Φ2 ·V2) and (V1,Φ1 ·
V2) share the same orbit, then there exists (Ψ, σ1, σ2) ∈ Aut(G)×B̃r×
B̃s such that

(V1,Φ2 · V2) = (Ψ, σ1, σ2) · (V1,Φ1 · V2)

=⇒

{
Ψ · V1 = σ−1

1 · V1(
Φ−1

1 ◦Ψ−1 ◦ Φ2

)
· V2 = σ2 · V2.

Therefore, ϕ1 := Ψ ∈ BAut(G,V1) and ϕ2 := Φ−1
1 ◦ Ψ−1 ◦ Φ2 ∈

BAut(G,V2). Finally, we have

Φ2 = ϕ1 ◦ Φ1 ◦ ϕ2,

which proves [Φ2] = [Φ1], and so that (4.6) is injective.

3. It is an immediate consequence from the definition of the map (4.5).

Theorem 4.5.8 gives a perfect enumeration of the families of regular
product-quotient surfaces corresponding to an ordered pair of topological
types of G-coverings of the projective line. In fact, in the Remark 4.5.2 we
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have observed that exchanging (C1, λ1) and (C2, λ2) defines an involution
on
⋃
T r,s(G) connecting isomorphic families.

If we are interested in counting the families given by two different topo-
logical types of G-coverings, then it is sufficient to choose an order of them
and then apply Theorem 4.5.8.
However, to enumerate the families of product-quotient surfaces associated
to twice the same topological type we need to study how the exchange of
the factors acts on QAut(G)V,V .

Proposition 4.5.9. The exchange of the factors acts on QAut(G)V,V as
the involution

QAut(G)V,V → QAut(G)V,V , [Φ] 7→ [Φ−1].

Proof. The exchange of the factors is a map from π−1([V ], [V ]) to itself
sending each [V,Φ · V ] to [Φ · V, V ] = [V,Φ−1 · V ].

Corollary 4.5.10. Let (C1, λ1) and (C2, λ2) be two G-coverings of P1 and
let V1 and V2 be their spherical systems of generators respectively. Then
the cardinality of the set of families of product-quotient surfaces given by
(C1, λ1) and (C2, λ2) is equal to

1. the cardinality of QAut(G)V1,V2, if (C1, λ1) and (C2, λ2) are not topo-
logical equivalent;

2. the cardinality of QAut(G)V1,V1/
(
Φ 7→ Φ−1

)
, if (C1, λ1) and (C2, λ2)

are topological equivalent.

Let us give an example:

Example 4.5.11. Let G = S3 × Z2
p, p ≥ 3 prime number.

We are going to compute all regular product-quotient surfaces with quo-
tient model (C1 × C2) /G where the natural fibrations λ1 : C1 → P1 and
λ2 : C2 → P1 are both ramifying over three points.

From Example 2.1.14 we can say that

D3(S3 × Z2
p)

Aut(S3 × Z2
p)× B̃3

= {V },

with
V := [(τ, (1, 0)), (τσ, (0, 1)), (σ2, (p− 1, p− 1))].

We need to compute the subgroup BAut(G,V ) ≤ Aut(S3 × Z2
p).

Firstly we note that, since we have assumed p ≥ 3, then

Aut(S3 × Z2
p)
∼= Aut(S3)×GL2(Zp).

In fact, any automorphism of Aut(S3 × Z2
p) preserves the factors. This is

obvious for the second factor since it is the centre of the group. For the first
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factor, we note that it is generated by the only elements of order two of the
group, and then it is a characteristic subgroup.

Hence every element of BAut(G,V ) can be written as a pair (Ψ,M),
where Ψ ∈ Aut(S3), and M ∈ GL2(Zp).

The action of B̃3 on [(1, 0), (0, 1), (p−1, p−1)] permutes its entries, since
Z2
p is abelian. Therefore, the automorphisms M ∈ GL2(Zp) of braid type

on it are those permuting its entries. Such automorphisms belong to the
subgroup 〈M1,M2〉 ∼= S3 generated by

M1 :=

(
0 1
1 0

)
M2 :=

(
p− 1 0
p− 1 1

)
.

Let (Ψ,M) be of braid type on V , and let η be a braid in B̃3 such that
(Ψ,M) · V = η · V . We observe that the signature of V is [2p, 2p, 3p]: since
the third number is different from the other two, and the automorphisms
send elements in elements of the same order, then the permutation image
of η in S3 fix the number three. This implies that M fixes (p− 1, p− 1), so
M ∈ 〈M1〉 ∼= Z2. Therefore,

BAut(G,V ) ≤ Aut(S3)× 〈M1〉 ∼= S3 × Z2.

Let us choose two generators of Aut(S3): let Ψ1 be the inner automorphism
given by τ and let Ψ2 be the inner automorphism of σ2. They act as

Ψ1 =

(
τ 7→ τ
σ 7→ σ2

)
, Ψ2 =

(
τ 7→ τσ2

σ 7→ σ2

)
We observe that (Ψ1, Id) and (Ψ2 ◦ Ψ1,M1) are of braid type on V , since
they act on V respectively as the braids σ1σ

2
2σ1 and σ1. Since they generate

the whole Aut(S3)× 〈M1〉 then

BAut(G,V ) = Aut(S3)× 〈M1〉 ∼= S3 × Z2.

Now we can compute

QAut(S3 × Z2
p)V,V .

Firstly, we observe that by definition of ∼V,V we have the following natural
identification

QAut(S3 × Z2
p)V,V =BAut(G,V ) \(Aut(S3)×GL2(Zp))/BAut(G,V ).

Since BAut(G,V ) = Aut(S3)× 〈M1〉 contains the subgroup Aut(S3)× {1},
which is normal in Aut(S3) ×GL2(Zp), then we have the following natural
identification

QAut(S3 × Z2
p)V,V

∼= 〈M1〉\
GL2(Zp)/〈M1〉. (4.7)
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More precisely, the correspondence sends [(IdS3 , A)]↔ [A].

From (4.4) and Theorem 4.5.8 we can conclude that

T 3,3(S3 × Z2
p)
∼= QAut(G)V,V ∼= 〈M1〉\

GL2(Zp)/〈M1〉.

However, we are majorly interested to find the set of families of product-
quotient surfaces given by V , V . As proved in the Corollary 4.5.10, it is
sufficient to determine

QAut(G)V1,V1/
(
Φ 7→ Φ−1

)
.

This is the quotient of GL2(Zp) by the simultaneous action of the three
involutions A 7→M1A, A 7→ AM1 and A 7→ A−1. These involutions generate
a group of order 8 isomorphic to a dihedral group. Hence

QAut(G)V1,V1/
(
Φ 7→ Φ−1

) ∼= GL2(Zp)/D4. (4.8)

We have proved that regular product-quotient surfaces with quotient
model (C1 × C2) /G where the natural fibrations λ1 : C1 → P1 and λ2 : C2 →
P1 are both ramifying over three points are in bijection with GL2(Zp)/D4.

This bijection can be described as follows. Consider the Riemann surface
C1 with an action φ : G → Aut(C1) such that the quotient C1/G ∼= P1 and
the associated spherical system is V . Considering a matrix A ∈ GL2(Zp)
and let C2 be a copy of C1 with G = S3 × Z2

p acting by φA := φ ◦ (Id, A)−1.
Then the product-quotient surface of quotient model C1×C2/G corresponds
to [A].

We count these product-quotient surfaces, computing the cardinality of
the right term of (4.8).

Notice that there two involutions A 7→ M1A and A 7→ AM1 of D4

that obviously don’t fix any matrix. These are suitable reflections of the
group D4. Hence the non-trivial inertia subgroups of D4 are subgroups not
containing these reflections. These are five subgroups:

1. 〈A 7→ A−1〉 ∼= Z2;

2. 〈A 7→M1A
−1M1〉 ∼= Z2;

3. the centre 〈A 7→M1AM1〉 ∼= Z2;

4. 〈A 7→ A−1, A 7→M1AM1〉 ∼= Z2 × Z2;

5. 〈A 7→ A−1M1〉 ∼= Z4.

First we note that the last three groups are those containing the centre.
Then the matrices with inertia group equal to one of the last three cases are
those stabilized by the centre.
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Hence we first compute the elements stabilized by the centre. They are
the doubly symmetric matrices of the form(

a b
b a

)
, a 6= ±b.

They are in total (p− 1)2.

Recall that if A =

(
a b
c d

)
, then A−1 = 1

ad−bc

(
d −b
−c a

)
. The elements

stabilized by A 7→ A−1 are of two types, those of determinant 1, and those
of determinant −1. Those of determinant 1 are two, ±I. They are double
symmetric, hence their inertia group is the one isomorphic to Z2×Z2. Con-
versely, if a matrix A with determinant −1 has inertia group isomorphic to
Z2 × Z2, then M1A has determinant 1, and the same inertia group. This
implies {±I,±M1} are the only matrices with inertia group isomorphic to
Z2 × Z2.

Instead, the matrices having inertia group 〈A 7→ A−1〉 are{(
a b
c −a

)
: a2 + bc = 1

}
\ {±M1}.

They are in total p(p+ 1)− 2 = (p− 1)(p+ 2).
Furthermore, the set of matrices stabilized by 〈A 7→ M1A

−1M1〉 are in
bijection with the set of matrices stabilized by 〈A 7→ A−1〉 via multiplication
of M1. Therefore they are in total (p− 1)(p+ 2) again.

Recall that GL2(Zp) has (p2 − 1)(p2 − p) elements. The number of
matrices with trivial stabilizer is

(p2 − 1)(p2 − p)− (p− 1)2 − 2(p− 1)(p+ 2) = (p+ 1)(p− 1)(p2 − p− 3).

It remains to determine the matrices that have inertia group isomorphic to
Z4. We will see that they exist if and only if

p ≡ 1 mod 4 and (−4)
p−1

4 ≡ 1 mod p. (4.9)

As remarked above, they are also stabilized by the centre, hence are

double symmetric. A double symmetric matrix A =

(
a b
b a

)
is equal to

A−1M1 = 1
a2−b2

(
−b a
a −b

)
if and only if

{
a = −b

a2−b2

b = a
a2−b2

However, the pair (a, b) can never be the zero vector, and so we get (a2 −
b2)2 = −1. Setting δ = a2 − b2, then we obtain δ2 = −1, which implies
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p ≡ 1 mod 4, and a = δb. Note that δ = detA = a2 − b2 = −2b2, hence
δ2 = −1 = 4b4. This means b is a root of the equation 4x4 = −1 that

has solutions if and only if (−4)
p−1

4 ≡ 1 mod p (from primitive element
theorem).

Finally, replacing a by δb = −2b3 in the matrix A, we get

A = b

(
−2b2 1

1 −2b2

)
.

Assume (4.9) does not hold. In this case, the cardinality of GL2(Zp)/D4 is
equal to

(p+ 1)(p− 1)(p2 − p− 3)

8
+ 2

(p− 1)(p+ 2)

4
+

(p− 1)2 − 4

4
+ 2 =

=
(p− 1)(p+ 1)(p2 − p+ 3)

8
+ 1.

Instead, if p verifies (4.9), then thew cardinality of GL2(Zp)/D4 is equal to

(p+ 1)(p− 1)(p2 − p− 3)

8
+ 2

(p− 1)(p+ 2)

4
+

(p− 1)2 − 4− 4

4
+ 2 +

4

2
=

=
(p− 1)(p+ 1)(p2 − p+ 3)

8
+ 2.

4.6 Finiteness of the classification problem

This section is a continuation to the Section 4.4, and generalize the results of
[BP12, Sec 1.1] by removing the assumption χ = 1 there and following step-
by-step the same arguments. Fixed a pair (K2, χ) ∈ Z×Z, we shall classify
regular product-quotient surfaces S of general type having such prescribed
self-intersection K2

S = K2, and Euler characteristic χ(S) = χ.
With the spirit to obtain good candidates to investigate the main Question
5.2 of Chapter 1, we are going to consider the case χ = 4 later on. In other
words, in virtue of the Corollary 4.4.4, we are looking for families of smooth
regular product-quotient surfaces of general type with geometric genus pg
equal to three.

The first Lemma shows that, for every pair (K2, χ) ∈ Z × Z, there are
only finitely many possible baskets of singularities.

Lemma 4.6.1. Let C ∈ Q be fixed. Then there are finitely many baskets B
such that B(B) = C.
More precisely, we have

i. |B| ≤ C
3 ;

ii. if λ× 1
n(1, a) ∈ B, and n

a = [b1, . . . , bl], then λ
∑
bi ≤ C.
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Proof. Observe first that B( 1
n(1, a)) = a+a′

n +
∑
bi ≥ 3. In particular,

C = B(B) ≥ 3|B|,

which shows i. The point ii. is obvious.

Now we consider regular product-quotient surfaces S of general type with
fixed χ(S) = χ ∈ Z. Let λi : Ci → P1, i = 1, 2, be two G-covers associated
to S, with genus g(Ci) ≥ 2 respectively. These covers induce appropriate
spherical systems of G

[g1, . . . , gr], [h1, . . . , hs],

with signature [m1, . . . ,mr], and [n1, . . . , ns] respectively, such that the
Riemann-Hurwitz relation (2.3) holds.

We need the following

Definition 4.6.2. Fix an r-tuple of natural numbers t := [m1, . . . ,mr],
and a basket of singularities B. Then we associate to these the following
numbers:

Θ(t) := −2 +

r∑
i=1

(
1− 1

mi

)
;

α(t,B) :=
12χ+ k(B)− e(B)

6Θ(t)
.

We recall

Definition 4.6.3. The minimal positive integer Ix such that IxKX is
Cartier in x is called the index of the singularity x.

The index of X is the minimal positive integer I such that I is Cartier.
In particular, I = lcmx∈SingXIx.

It is well known (see for instance [Mat02, Thm. 4.6.20]) that the index
of a cyclic quotient singularity 1

n(1, a) is

Ix =
n

gcd(n, a+ 1)
.

We shall bound now, for fixed K2, χ, and B, the possibilities for

• |G|;

• t1 := [m1, . . . ,mr],

• t2 := [n1, . . . , ns],

of a product-quotient surface S with K2
S = K2, χ(S) = χ, and basket of

singularities of the quotient model X = (C1 × C2) /G equal to B.
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Proposition 4.6.4. [BP12, compare Prop. 1.14] Fix (K2, χ) ∈ Z× Z, and
fix a possible basket of singularities B for (K2, χ). Let S be a product-quotient
surface S of general type such that

i. K2
S = K2;

ii. χ(S) = χ;

iii. the basket of singularities of the quotient model X = (C1 × C2) /G
equals B.

Then

a) g(C1) = α(t2,B) + 1, g(C2) = α(t1,B) + 1;

b) |G| = 8α(t1,B)α(t2,B)
K2+k(B)

;

c) r, s ≤ K2+k(B)
2 + 4;

d) mi divides 2α(t1,B)I, nj divides 2α(t2,B)I;

e) there are at most |B|/2 indices i such that mi does not divide α(t1,B),
and similarly for the nj;

f) mi ≤
1+I

K2+k(B)
2

f(t1) , ni ≤
1+I

K2+k(B)
2

f(t2) , where I is the index of X, and

f(t1) := max(1
6 ,

r−3
2 ), f(t2) := max(1

6 ,
s−3

2 );

g) except for at most |B|/2 indices i, the sharper inequality

mi ≤
1+

K2+k(B)
4

f(t1) holds, and similarly for the nj.

Remark 4.6.5. Note that b) shows t1 and t2 determines the order of G. c)
and f) implies there are only finitely many possibilities for the types t1, t2.
Instead, d), e), and g) are strictly necessary to obtain an efficient algorithm.

Proof. a) Observe that from the Corollary 4.4.3, then

Θ(t1)α(t1,B) =
1

2

24χ+ 2k(B)− 2e(B)

6
=

24χ−B(B) + 3k(B)

6

= 3
8χ− B(B)

3 + k(B)

12
=
K2 + k(B)

4
,

and then by the Theorem 4.4.2 and Hurwitz’ formula, we have

α(t1,B) =
K2 + k(B)

4Θ(t1)
=

8(g(C1)− 1)(g(C2)− 1)

4|G|
(
−2 +

∑r
i=1

(
1− 1

mi

))
=

8(g(C1)− 1)(g(C2)− 1)

4(2g(C1)− 2)
.
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b)

|G| = 8(g(C1)− 1)(g(C2)− 1)

K2 + k(B)
=

8α(t1,B)α(t2,B)

K2 + k(B)
.

c) Note that r ≤ 2Θ(t1) + 4. On the other hand, since g(Cj) ≥ 2, then

1 ≤ α(tj ,B) = K2+k(B)
4Θ(t1) . This implies (0 ≤) Θ(ti) ≤ K2+k(B)

4 .

d) Each mi is the branching index of a branch point pi of λ1 : C1 →
C1/G ∼= P1. Let Fi be the fibre of the map f1 : X → C1/G. Then Fi = miWi

for some irreducible Weil divisor Wi. We have

2α(t1,B) = 2g(C2)− 2 = KXFi = miKXWi.

Therefore
2α(t1,B)I

mi
= (IKX)Wi ∈ Z.

e) By [Ser96], if Fi contains a singular point of X, then it contains at least
2 singular points. Therefore, there are at most |B|/2 indices i, 1 ≤ i ≤ r,
such that Fi ∩ SingX 6= ∅.
For all other indices j we have Fj ∩SingX = ∅. Then Wj is Cartier and KX

is Cartier in a neighbourhood of Wj . In particular, α(t1,B)
mi

=
KXWj

2 ∈ Z.

f) Note that Θ(t1) + 1
mi
≥ r−3

2 . Moreover, Θ(ti) > 0 implies that r ≥ 3.

Obviously, if r = 3, since Θ(2, 2,m) = − 1
m < 0, then Θ(t1) + 1

mi
≥ 1

6 .

Therefore, Θ(t1) + 1
mi
≥ f(t1), whence mi ≤ 1+Θ(t1)mi

f(t1) .

By d) mi ≤ 2α(t1,B)I = K2+k(B)
2Θ(t1) I. This implies

mi ≤
1 + Θ(t1)mi

f(t1)
≤

1 + Θ(t1)K
2+k(B)
2Θ(t1) I

f(t1)
≤

1 + K2+k(B)
2 I

f(t1)
.

g) This is proved by the same argument as in f), using e) instead of d).

4.7 How to read the basket B from the local mon-
odromies

This section is directly related to the Section 4.3. Our next goal is to describe
explicitly how the couple of spherical systems

[g1, . . . , gr] and [h1, . . . , hs]

associated respectively to G−coverings (C1, λ1) and (C2, λ2) determines the
singularities of the quotient model X = (C1 × C2) /G.
Let us say λ1 has branch locus consisting of r-points q1, . . . , qr. In the
Subsection 2.1.1 we have proved that gi is the local monodromy of a point
pi over qi; let us call the stabilizer of pi by Hi := 〈gi〉. Similarly, we say that
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q′1, . . . , q
′
s is the branch locus of λ2, and then hj is the local monodromy of

a point p′j over q′j ; denote by H ′j := 〈hj〉 be the stabilizer of p′j .
From the Proposition 4.3.1, then the only points of X that may be singular
are those belonging to a fibre λ−1(qi, q

′
j), with 1 ≤ i ≤ r, 1 ≤ j ≤ s. The

Proposition 4.3.2 shows that(
G/H ′j

)
/Hi → λ−1(qi, q

′
j), [t] 7→ G(pi, tp

′
j)

is a bijection, and the Proposition 4.3.3 establishes the type of singularity of
the point G(pi, tp

′
j) for any fixed [t]: let δ be the minimal positive number

such that there exists 1 ≤ γ ≤ o(hj) with gδi = thγj t
−1. Then G(pi, tp

′
j) is a

cyclic quotient singularity of type 1
n(1, a), with n = n(i, j, t) := |Hi∩tH ′jt−1|,

and a = a(i, j, t) := nγ
o(hj)

.

To summarize, for any

• 1 ≤ i ≤ r,

• 1 ≤ j ≤ s,

• [t] ∈
(
G/H ′j

)
/Hi,

we apply recursively the Proposition 4.3.3 to establish the type of singularity
of the point G(pi, tp

′
j).

The set of singular points of X is therefore equal to

Sing(X) = {G(pi, tp
′
j) : n(i, j, t) 6= 1, 1 ≤ i ≤ r, 1 ≤ j ≤ s, [t] ∈ (G/H ′j)/Hi},

and a representation of the basket of singularities of X is then

B(X) = { 1

n(i, j, t)
(1, a(i, j, t)) : n(i, j, t) 6= 1,

1 ≤ i ≤ r, 1 ≤ j ≤ s, [t] ∈ (G/H ′j)/Hi}.

Remark 4.7.1. Note that a = a(i, j, t) and n = n(i, j, t) may be not coprime.
Define by d = d(i, j, t) := gcd(n, a). Then n

d and a
d are coprime, and by the

claim of the Lemma 3.0.13, then 1
n(1, a) is equivalent to 1

n
d

(1, ad).

Remark 4.7.2. By the Remark 4.3.4, then we conclude that the basket B(X)
of a quotient model X described by a couple of spherical systems [g1, . . . , gr],
and [h1, . . . , hs] depends only by the conjugacy classes of gi and hj .

To better understand how to compute the basket of singularities of X
via the Proposition 4.3.3 let us give an example.

Example 4.7.3. We are going to study the basket of singularities of some
of the product-quotient surfaces obtained in the Example 4.5.11. Here we
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assume for simplicity p ≥ 5. Let us consider the same spherical system V of
4.5.11:

V = [(τ, e1), (τσ, e2), (σ2, (p− 1)(e1 + e2))] =: [g1, g2, g3],

where e1, e2 is the standard basis of Z2
p for simplicity of notation. Let A ∈

GL2(Zp) be an automorphism such that

Ae1, Ae2, A(e1 + e2) 6∈ 〈e1〉 ∪ 〈e2〉 ∪ 〈e1 + e2〉.

We twist V by A, and so consider the new spherical system A · V =:
[h1, h2, h3].

The couple of spherical systems V and A·V describes a product-quotient
surface S of quotient model X := (C1 × C2) /G.

Let us start to consider the singular points raised from the couple g1 =
(τ, e1), and h1 = (τ,Ae1). The quotient G/〈h1〉 consists of 3p points. Now
consider the left action of 〈g1〉 on G/〈h1〉. The orbits [g〈h1〉] may have
only length 2p, p, or 2. A point with trivial stabilizer is (σ, 0)〈h1〉. In fact,
gk1 · (σ, 0)〈h1〉 = (σ, 0)〈h1〉 implies

σ2τkσ ∈ 〈τ〉, and ke1 ∈ 〈Ae1〉.

From our assumption on A, then this is possible only for k = 0, or p. If
k = p, then σ2τkσ = σ2τσ = τσ2 ∈ 〈τ〉, a contradiction. Hence k = 0, so
(σ, 0)〈h1〉 has trivial stabilizer.

The points g〈h1〉 whose stabilizer is of order 2 are fixed necessarily by
gp1 , and they have to satisfy

gp1 · g〈h1〉 = g〈h1〉 =⇒ gp1 = ghp1g
−1 =⇒

g〈h1〉 = (τ, ke1)〈h1〉, k = 0, . . . , p− 1.

A straightforward computation shows that these points share the same 〈g1〉-
orbit [〈h1〉]:

(τ, e1)k1−k2 · (τ, k2e1)〈h1〉 =

(τ, e1)k1−k2 ·
(

(τ, k2e1)(τ,Ae1)p[k1−k2]2
)
〈h1〉 = (τ, k1e1)〈h1〉.

This shows (G/〈h1〉) /〈g1〉 = {[(σ, 0)〈h1〉], [〈h1〉]}. The first orbit gives a
smooth point of X, and the second gives a singular point of type 1

2(1, 1).
Let us going on by considering the couple g1, and h2. The quotient by

〈h2〉 consists of 3p points. The left action of 〈g1〉 on the quotient has one
orbit [(σ, 0)〈h2〉] of cardinality 2p, and [(τσ2, 0)〈h2〉] of cardinality p. The
first gives a smooth point, while the second a singular point of type 1

2(1, 1).
Using a similar argument, we obtain a singular point of type 1

2(1, 1) for
each of the two pairs g2, h1, and g2, h2.
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Now consider g1, and h3. Since p ≥ 5, then the quotient by 〈h3〉 has
cardinality 2p, and the quotient by 〈g1〉 consists only of one orbit [(σ, 0)〈h2〉].
This gives a smooth point.

The same argument works for the pairs g2, h3 and g3, h1, and g3, h2 which
gives then each a smooth point respectively.

It remains the couple g3 and h3. The quotient by 〈h3〉 has cardinality 2p.
The left action by 〈g3〉 on the quotient has one orbit [(σ, 0)〈h3〉] of length
p and [(τ, 0)〈h3〉] of length p. Let us analyse the first point coming from
[(σ, 0)〈h3〉]. the smallest positive δ such that gδ3 = (σ, 0)hγ3(σ2, 0) is δ = p,
and γ = p, so that the singular point is of type 1

3(1, 1). Instead, the smallest
positive δ such that gδ3 = (τ, 0)hγ3(τ, 0) is δ = p, and γ = 2p. Therefore the
last singular point is of type 1

3(1, 2).
The basket of singularities of X given by V and A · V is therefore

B(X) =

{
4× 1

2
(1, 1),

1

3
(1, 1),

1

3
(1, 2)

}
.

Once that we have computed the basket of singularities of X, we can deter-
mine its invariants K2

S , and χ(S), by applying the formulas of the Theorem
4.4.2, and the Corollary 4.4.3:

k(B) = −2 +
2 + 1 + 1

3
+ (3− 2) =

1

3
,

e(B) = 4

(
1 + 1− 1

2

)
+

(
1 + 1− 1

3

)
+

(
2 + 1− 1

3

)
= 11− 2

3
,

B(B) = 22− 4

3
+

1

3
= 21.

Thus, replacing the genera g(Ci) by the values computed in the Example
2.1.14, we obtain

K2
S =

8(3p2 − 4p)2

6p2
− 1

3
=

(6p− 8− 1)(6p− 8 + 1)

3
= (2p− 3)(6p− 7),

χ(S) =
1

8

(
K2
S +

1

3
B(B)

)
=

(2p− 3)(6p− 7)

8
+

7

8
=

(p− 1)(3p− 5)

2
+ 1.
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4.8 Description and implementation of the classi-
fication algorithm

Fixed a pair (K2, χ) ∈ N×N, the next goal is to use the results of the previous
sections to write a MAGMA script to find all minimal regular surfaces S
of general type with K2

S = K2, and χ(S) = χ, which are product-quotient
surfaces. After that, we specialize our classification to those surfaces with
(K2, χ) = (32, 4).

A commented version of the MAGMA code is available here:
https://fefe9696.github.io/FedericoFallucca/pubbl.html#PhDTh

We describe here the strategy, and explain how the most important
scripts work. The strategy is the same of [BP12]. Most of the scripts are
modification of those in [BP12]. Since those scripts were written under the
assumption χ = 1, we generalize all of them to allow any value of χ. At the
end of the section we will indicate which are the other main improvements
we did.

First of all, we fix the couple (K2, χ). Note that by minimality of S,
and by the Corollary 4.4.4, then K2 ∈ {1, . . . , 8χ}, and the case K2 = 8χ
corresponds to those surfaces whose quotient model X is smooth.
Step 1: The script Baskets lists all the possible basket of singularities for
(K2, χ) as in the Definition 4.4.9. Indeed, there are only finitely many of
them by the Lemma 4.6.1. As in the Lemma 4.6.1, the input is 3(8χ−K2),
so to get for instance all baskets for (K2, χ) = (28, 4), we need Basket(12).
Step 2: From the Proposition 4.6.4 once we know the basket of singularities
of X, then there are finitely many possible signatures. ListOfTypes com-
putes them using the inequalities we have proved in the Proposition 4.6.4.
Here the input is K2, and χ, so ListOfTypes first computes Baskets(3(8χ−
K2)), and then computes for each basket all numerically compatible signa-
tures. The output is a list of pairs, the first element of each pair being a
basket, and the second element being the list of all signatures compatible
with that basket.
Step 3: Every surface produces two signatures, one for each curve Ci,
both compatible with the basket of singularities of X; if we know the sig-
natures and the basket, then Proposition 4.6.4 b) tells us the order of G.
ListGroups, whose input is K2, and χ, first computes ListOfTypes(K2, χ).
Then for each pair of signatures in the output, it calculates the order of
the group. Next it searches for the groups of given order which admit ap-
propriate spherical systems of generators corresponding to both signatures.
Here we use the database in [CGP23] if we are in one of the cases classified
there, otherwise we use the function FindGenerators developed in the work
[CGP23]. For each affirmative answer, it stores the triple (basket, pair of
signatures, group) in a list, which is the main output.

The script has some shortcuts:

https://fefe9696.github.io/FedericoFallucca/pubbl.html#PhDTh
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• Let [m1, . . . ,mr] and [n1, . . . , ns] be the pair of signatures and let
T(m1, . . . ,mr) and T(n1, . . . , ns) be their respective orbifold groups
(see the Remark 2.1.7). Then the order of the abelianization Gab of
G has to divide the order the abelianization of T(m1, . . . ,mr) and
T(n1, . . . , ns):

|Gab| divides |T(m1, . . . ,mr)
ab|, |T(n1, . . . , ns)

ab|. (4.10)

In fact, the orbifold (surjective) homomorphisms T(m1, . . . ,mr)→ G
and T(n1, . . . , ns)→ G extend to surjective homomorphisms

T(m1, . . . ,mr)
ab → Gab, T(n1, . . . , ns)

ab → Gab.

Hence ListGroups checks first if G satisfies the condition (4.10): if not,
this case not occur.

• If the pair of signatures [m1, . . . ,mr] and [n1, . . . , ns] admits orbifold
groups T(m1, . . . ,mr) and T(n1, . . . , ns) such that the orders of their
abelianization are coprime numbers, then G is forced to be a perfect
group:

gcd
(
|T(m1, . . . ,mr)

ab|, |T(n1, . . . , ns)
ab|
)

= 1 =⇒ Gab = {1}.

This follows directly from the condition (4.10).

MAGMA knows all perfect groups of order ≤ 50000, and then List-
Groups checks first if there are perfect groups of the right order: if
not, this case can not occur.

• If:

- either the expected order of the group is 1024 or bigger than
2000, since MAGMA does not have a list of the finite groups of
this order;

- or the order is a number as e.g., 1728, where there are too many
isomorphism classes of groups;

then ListGroups just stores these cases in a list, secondary output of
the script. These ”exceptional” cases have to be considered separately.

Step 4: The basket of singularities of a surface described by a couple of
spherical systems [g1, . . . , gr] and [h1, . . . , hs] depends only by the conjugacy
classes of gi and hj , from the Remark 4.7.2. ExistingSurfaces runs on the
output of ListGroups(K2, χ), and throws away all triples giving rise only to
surfaces whose singularities do not correspond to the basket.

Step 5: Each triple (basket, pair of signatures, group) in the output
ExistingSurfaces(K2, χ) gives many different pairs of appropriate spherical



88 Product-Quotient Surfaces

systems of generators. On them there is the action of Aut(G) × B̃r × B̃s
described in the Section 4.5. Therefore, the script FindSurfaces uses The-
orem 4.5.8 and Corollary 4.5.10 to pick up only one pair of spherical systems
of generators for any family of product-quotient surfaces compatible with the
triple (basket, pair of signatures, group). Thus, the output is a list of (bas-
ket, sph1, sph2, group), where sph1 and sph2 are spherical systems of group
compatible with pair of signatures and basket.

Remark 4.8.1. The main novelties respect to the program in [BP12] are the
following:

• The program works for every χ ∈ N whereas the original scripts in
[BP12] were assuming χ = 1;

• The shortcut using perfect groups is a generalization of the similar
shortcut in [BP12], where it was applied only to the case when one of
the signatures is [2, 3, 7];

• The main improvement is Step 5 which is essentially new and much
more performing than the analogous procedure in [BP12]. Here we
use our main Theorem 4.5.8 of this chapter in combination with the
database and the script FindGenerators developed in [CGP23]. More-
over, we use these last tools from [CGP23] to speed up Step 3 as
well.

4.9 Classification of regular product-quotient sur-
faces isogenous to a product of curves with
geometric genus of three

Regular product-quotient surfaces isogenous to a product of curves with
pg = 3 are those with K2

S = 32 and χ = 4.

We have run the function FindSurfaces described in the previous section
on each triple of the output of ListGroups(K2, χ), where K2 = 32, and
χ = 4. This has given the following

Theorem 4.9.1. Let S be a product-quotient surface of general type with
pg = 3, q = 0, and K2

S = 32 of quotient model (C1 × C2) /G. Assume that
both the topological types of the G-action on C1 and C2 are in the database
[CGP23, 11th of June 2023]. Then S realizes one of the 213 families of
surfaces of general type described in tables 4.1 and 4.2.

Note that they are minimal surfaces, since the quotient model X is
smooth, and the canonical divisor of C1×C2 (which is nef, because g(Ci) ≥ 2,
see Lemma 4.2.3) is the pullback of that of X.
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Remark 4.9.2. The database [CGP23, 11th of June 2023] currently covers,
g being the genus of the curve, d being the order of the group, and r being
the length of the signature:

• all topological types with g ≤ 40 except

g = 28, group G(18, 4), signature 210

g = 34, group G(18, 4), signature 210, 3

g = 37, group G(18, 4), signature 212

g = 40, group G(18, 4), signature 210, 32

g = 40, group G(12, 3), signature 213, 33

• all cases with r = 3, g ≤ 64, d ≤ 2000

• all cases with r = 4, g ≤ 100 except

g = 76, group G(125, 5), signature 54

g = 88, group G(696, 35), signature 23, 4

• all cases with r = 5 and g ≤ 100 except:

g = 75, group G(148, 3), signature 23, 42

g = 100, group G(81, 2), signature 95

The tables 4.1 and 4.2 contain the following informations

• t1 and t2 are the signatures of the pair of spherical systems of genera-
tors defining a family of product-quotient surfaces;

• N is the number of irreducible families; our tables have only 74 lines,
but we collect in the same line N families, which share all the other
data. The number of lines counted with multiplicity N is 213 (which
is the number of families of Theorem 4.9.1.)

For the groups occurring in tables 4.1 and 4.2, we use the following notation:
we denote by Zd the cyclic group of order d, Sn is the symmetric group in
n letters, An is the alternating group.
PSL(2, 7) is the group of 2×2 matrices over F7 with determinant 1 modulo
the subgroup generated by −Id.
SO(3, 7) is the group of 3×3 orthogonal matrices over F7 having determinant
1.
Dp,q,r := 〈x, y|xp, yq, xyx−1y−r〉, and Dn = D2,n,−1 is the usual dihedral
group of order 2n.
Finally, G(n, k) is the k−th group of order n in the MAGMA database of
small groups.

To prove the main Theorem 4.9.1, it remains to show that the cases
skipped by ListGroups can not occur. It turns out that no other surfaces
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occur from the skipped cases. The techniques that we have used to exclude
these cases are those developed in [BCP06], [BP12, Chp. 3] and [Fra12, Sec
6.3]. For this reason, we decided not to provide further details on how we
excluded them.
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Table 4.1

t1 t2 G N

25 212 Z3
2 3

26 28 Z3
2 3

34 37 Z2
3 2

35 35 Z2
3 1

23, 4 212 Z2 ×D4 6
25 25, 42 Z2 ×D4 4
25 22, 44 Z2 ×D4 1

23, 42 26 Z2 ×D4 2
26 26 Z2 ×D4 1

22, 42 22, 44 G(16, 3) 2
22, 42 25, 42 G(16, 3) 6
23, 42 23, 42 G(16, 3) 2

25 28 Z4
2 13

26 26 Z4
2 6

22, 32 22, 44 S4 1
24, 3 44 S4 1

2, 3, 42 26 S4 1
25 25, 6 Z2

2 × S3 1
23, 4 22, 44 G(32, 27) 2
23, 4 25, 42 G(32, 27) 30
22, 42 23, 42 G(32, 27) 1

25 23, 42 G(32, 27) 4
22, 42 26 G(32, 27) 4
23, 4 22, 44 G(32, 28) 1
25 26 Z2

2 ×D4 4
25 23, 42 Z2

2 ×D4 2
22, 42 23, 42 G(32, 22) 7
22, 42 44 G(32, 6) 1

25 23, 42 G(32, 49) 1
23, 3 22, 44 Z2 × S4 4
42, 6 26 Z2 × S4 3
23, 6 44 Z2 × S4 1
23, 6 23, 42 Z2 × S4 1
22, 42 24, 3 Z2 × S4 2
22, 42 22, 62 Z2 × S4 1

25 2, 3, 42 Z2 × S4 1
3, 42 22, 44 G(48, 30) 3
23, 4 25, 6 S3 ×D4 1
22, 42 22, 4, 12 G(48, 14) 1

73 73 Z2
7 7

3, 52 26 A5 2
53 24, 3 A5 1
53 34 A5 1
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Table 4.2

t1 t2 G N

23, 4 26 G(64, 73) 1
23, 4 23, 42 G(64, 73) 4
23, 4 44 G(64, 138) 1
23, 4 23, 42 G(64, 138) 6
25 25 G(64, 211) 1
25 25 Z2

2 ×D8 1
22, 42 22, 42 G(64, 60) 3
22, 42 22, 42 G(64, 71) 1
22, 42 22, 42 G(64, 75) 1
2, 4, 6 22, 44 GL2(Z4) 10
42, 6 22, 42 GL2(Z4) 1
3, 42 23, 42 G(96, 227) 1
23, 3 44 G(96, 227) 3
3, 42 26 G(96, 227) 3
23, 4 23, 4, 12 G(96, 89) 1
23, 6 22, 42 Z2

2 × S4 1
2, 5, 6 44 S5 2
2, 5, 6 23, 42 S5 1
3, 42 24, 5 S5 1
32, 7 22, 42 PSL(2, 7) 1
43 3, 72 PSL(2, 7) 4

2, 4, 6 23, 42 G(192, 955) 7
2, 4, 6 44 G(192, 955) 2
23, 4 42, 6 G(192, 955) 1
2, 4, 6 22, 102 Z2 × S5 1

43 43 G(256, 295) 3
43 43 G(256, 298) 2
43 43 G(256, 306) 2

2, 3, 14 22, 42 Z2 × PSL(2, 7) 1
2, 6, 7 43 Z2 × PSL(2, 7) 2
2, 6, 7 2, 82 SO(3, 7) 2

Recalling the Remark 1.1.6, part 3., the surfaces of general type with a
high degree of the canonical map have pg equal to 3. It is natural to search
among the 213 families of Theorem 4.9.1 for surfaces with canonical map of
high degree.

Note that the canonical map of these surfaces, if not composed with a
pencil, has degree at most 32.

The only surfaces in the literature with canonical map equal to 32 are
the two families in [GPR22] (see the Example 1.2.7). They are two of the
six families of Table 4.1 with group G = Z4

2 and signatures 26 and 26.
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Furthermore, the authors proved in [GPR22, Prop. 5.3] that these two
examples are the only product-quotient surfaces with G abelian and pg = 3
having degree of the canonical map equal to 32.
However, there are other families from Theorem 4.9.1 with canonical map of
degree equal to 32. For instance, using the tools developed in the following
Chapters, we proved that the surfaces in the family with group G = Z2×D4

and both signatures 26 of Theorem 4.9.1 have also canonical map of degree
32. We decide not to include the discussion of this specific family in this
thesis.

We will discuss the canonical map of the seven product-quotient surfaces
with group Z2

7 of Theorem 4.9.1 in Section 6.1 and the canonical map of one
of the four families with group G := Z2

2 × D4 and signatures 25 and 26 in
Section 6.3.





Chapter 5

On the canonical map of a
product-quotient surface

In this chapter, we investigate the canonical map of a product-quotient
surface. Their canonical map was studied, in the special case of the surfaces
isogenous to a product, in [Cat18].

In the first section we prove the main Theorem 5.1.8, called from us Base
locus formula. This is a formula for the base locus of the subsystem of the
canonical system of a Riemann surface C given by an isotypic component
of the action of a finite group G on C. Furthermore, in Corollary 5.1.11 as-
suming C/G ∼= P1 we give an expression of this formula in terms of spherical
systems of generators under the assumption that the associated irreducible
character is of degree one.

In the second section we study the structure of the canonical map of a
product-quotient surface S. We give a decomposition of H2,0(S) in terms
of irreducible characters of G. In the Theorem 5.2.8, we determine the base
locus of the subsystems of |KS | corresponding to characters of degree one.

Finally, Section 5.3 is devoted to the study of the degree of the canonical
map of a product-quotient surface, whenever this is not composed with a
pencil.

To compute such degree, we need to know the degree of the image of the
canonical map, that is one if pg is equal to three, and the self-intersection of
the mobile part of a subsystem of the canonical system of a suitable blow-up
of C1 × C2.

Finally, Theorem 5.4.3 gives a Correction term formula computing this
self-intersection when pg is equal to three and all characters involved in the
decomposition of H2,0(S) are of degree one.
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5.1 Isotypic components of canonical representa-
tions of actions on curves and base loci

Let C be a curve, G < Aut(C) be a finite group, C ′ := C/G its quotient,
and let λ : C → C ′ be the quotient map. Let g and g′ be the genera of C
and C ′ respectively.
G acts on H1,0(C) via the cotangent representation:

(g · ω)p := (dg−1)pωg−1·p,

which is called canonical representation. Let us denote by χcan the character
afforded by the canonical representation, which takes the name of canonical
character. By classical representation theory the character of a represen-
tation determines the representation up to isomorphism. Furthermore, any
representation can be splitted as a direct sum of irreducible representations.
In our case, we write

H1,0(C) =
⊕

χ∈Irr(G)

H1,0(C)χ.

Here H1,0(C)χ is the isotypic component of H1,0(C) of character χ, namely
that G-invariant subspace such that the restriction of the canonical rep-
resentation is isomorphic to 〈χcan, χ〉-times the irreducible representation
afforded by the character χ.
In terms of characters, the above splitting translates as

χcan =
∑

χ∈Irr(G)

〈χcan, χ〉 · χ.

Thus, the canonical representation of G can be determined just by knowing
the scalar products 〈χcan, χ〉. They can be computed through the well-
known Chevalley-Weil formula, which uses the local monodromies (see the
Definition 2.0.14) of points of the branch locus of λ.
We recall the beautiful thesis [Gle16] for a complete description how to use
the Chevalley-Weil formula. What is important to remark here is simply
that we use the algorithm developed in [Gle16] and implemented in the
computational algebra system MAGMA to compute the canonical character
χcan of any Galois branched covering.

The aim of this section is to investigate the base locus of the associated
subsystem |KC |χ given by the isotypic component H1,0(C)χ. Let us give
first some preliminary results.

Notation: Given a point q ∈ C ′, the divisor λ−1(q) is considered with
the reduced structure.

Lemma 5.1.1. Consider a G-invariant subspace W ⊆ H1,0(C). For any
p ∈ λ−1(q), let tp be the minimal order of vanishing of a 1-form in |W | at
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p. Then all tp are equal to the same number, denoted by tq. Therefore the
base locus of |W | is a union of orbits

Bs(|W |) =
∑
q

tqλ
−1(q).

Furthermore, there exists a general form ω ∈W vanishes of order exactly tq
at each p ∈ λ−1(q).

Proof. For every point p ∈ λ−1(q), it there exists a 1-form ωp in W vanishing
at p with order tp, by the definition of tp. Given g ∈ G, then g · ωp belongs
to the invariant subspace W too, and it vanishes at g · p with multiplicity
tp, so that tg·p ≤ tp. Hence all tp are equal to the same number, denoted as
tq.

We observe that a generic linear combination ω of the obtained |λ−1(q)|
1-forms ωp vanishes with order tq at each point of λ−1(q).

Remark 5.1.2. Let ω ∈W be the 1-form of the Lemma 5.1.1, with vanishing
order tq at each point p ∈ λ−1(q). Given g ∈ G, then g · ω ∈ W is a 1-form
with vanishing order tq at each point p ∈ λ−1(q).

Let H1,0(C)χ be the isotypic component of H1,0(C) of irreducible char-
acter χ.

Lemma 5.1.3. Let f ∈M(C/G) =M(C)G be a non-zero invariant mero-
morphic function. Denote by H1,0(C)χf the subspace of H1,0(C)χ consisting
of forms ω such that fω is a holomorphic form. Then

f : H1,0(C)χf → f ·H1,0(C)χf ⊆ H
1,0(C), ω 7→ fω (5.1)

is a G-equivariant isomorphism. In particular, f ·H1,0(C)χf is a G-invariant

subspace of H1,0(C)χ.

Proof. H1,0(C)χf is G-invariant: given g ∈ G and ω ∈ H1,0(C)χf , then f(g ·
ω) = g · (fω) is holomorphic since f is G-invariant, and fω is holomorphic.
This shows immediately also that the map of (5.1) is G-equivariant. From
Schur Lemma, then the image of (5.1) is contained in H1,0(C)χ. However,
f is not the zero function, so (5.1) is injective.

Definition 5.1.4. Let X be a Riemann surface and q ∈ X. Let us define

kq := min
{
m ∈ N : h0(X,mq) ≥ 2

}
the minimal non-gap of q. kq is therefore the smallest number such that X
admits a non-constant meromorphic function f with only one pole at q, of
order −kq.
Moreover, any non-constant f has order at q exactly −kq. Indeed, by defi-
nition of kq, then H0(X, (kq − 1)q) ∼= C consists only of constant functions,
so that

−(kq − 1) > ordq(f) ≥ −kq =⇒ ordq(f) = −kq.



98 On the canonical map of a product-quotient surface

Remark 5.1.5. From Riemann-Roch theorem we have

h0(X, (g(X) + 1)q) = h0(X,K − (g(X) + 1)q) + 2 ≥ 2.

Therefore
kq ≤ g(X) + 1.

In other words, kq is the minimum of the complement of the set of the
Weierstrass gaps for q. In particular, kq = g(X)+1, if q is not a Weierstrass
point, or kq < g(X) + 1, otherwise.

Let q ∈ C ′ be a branch point of λ. The stabilizers of the points lying
on q are cyclic subgroups of G and they are conjugated to each other. Thus
the order of the stabilizers depends only on q, denoted as mq.
We remind the Definition 2.0.14 of local monodromy:

Definition. Let us fix a point p ∈ λ−1(q). Given a generator h of
Stab(p), there exists a coordinate z in C such that the action of h in a
neighborhood of p corresponds to z → λz, where λ is one of the mq-roots
of the unity. This gives a bijection among the primitive mq-roots of the
unity and the generators of Stab(p). We denote by local monodromy of p

the unique generator of Stab(p) acting by z → e
2πi
mq z.

Remark 5.1.6. The local monodromy of another point g · p over q is the
conjugate ghg−1 of h. In other words, the local monodromy of points lying
over q are conjugated to each other.

Let χ ∈ Irr(G) be a character afforded by an irreducible representation
ρχ, and denote by |KC |χ the associated subsystem of the canonical linear
system of C given by the isotypic component H1,0(C)χ.
Lemma 5.1.1 applies to H1,0(C)χ, so the base locus of |KC |χ is

Bs(|KC |χ) =
∑
q

tχq λ
−1(q).

We have the following

Lemma 5.1.7. Let us fix a point q ∈ C/G. Let h be the local monodromy
of a point p ∈ λ−1(q). There exist

aχq ∈ {j ∈ [0, . . . ,mq − 1] : e
2πi
mq

j ∈ Spec(ρχ(h))}

and a non-negative integer 0 ≤ kχq < kq ≤ g(C/G) + 1 such that

tχq = mq − aχq − 1 + kχqmq.

where kq is the minimal non-gap of q in the Definition 5.1.4.
The values aχq and kχq depends only from q and χ and not by the choice of
p ∈ λ−1(q).
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Proof. The order of h in G is mq, by definition of h.
We observe that the action on H1,0(C)χ of h is diagonalizable, and its spec-
trum is contained in the set of the mq-roots of the unity. Hence the action
of h decomposes H1,0(C)χ as

H1,0(C)χ =

mq−1⊕
j=0

Vj ,

where Vj is the eigenspace of eigenvalue ξj , and ξ is the first mq-root of the
unity (Vj may be zero, whenever ξj is not an eigenvalue of h).

Let ωj ∈ Vj be an eigenvector. We determine the vanishing order of
ωj at the point p. By definition of local monodromy, it there exists a local
coordinate z such that the action of h in a neighborhood of p is z 7→ ξz. We
write ωj = f(z)dz locally around this neighborhood of p. We get

ξjf(z)dz = h · (f(z)dz)

= (h−1)∗(f(z)dz)

= f(ξmq−1z)ξmq−1dz.

Hence f satisfies f(ξmq−1z) = ξj+1f(z), forcing it to be f = zmq−j−1g(zmq),
for some holomorphic function g. Hence ordp(ωj) is congruent to mq− j− 1
modulo mq.

Applying Lemma 5.1.1 to W = H1,0(C)χ we find a form ω ∈ H1,0(C)χ

with vanishing order tχq at each point of λ−1(q). Writing ω as a ω =∑mq−1
j=0 ωj , with ωj ∈ Vj . Since ωj has different order at p, then

tχq = ordp(ω) = min
ωj 6=0
{ordp(ωj)}.

In other words, there exists j0 ∈ [0, . . . ,mq − 1] such that tχq = ordp(ωj0).
Since ωj0 is an eigenvector of eigenvalue ξj0 , then tχq = ordp(ωj0) is

congruent to mq − j0 − 1 modulo mq; let us say tχq = mq − j0 − 1 + kj0mq,
for some non-negative integer kj0 .

We claim that kj0 < kq. By contradiction, if kj0 ≥ kq, then we use the
definition of kq to pick up a meromorphic function f ∈M(C/G) =M(C)G

with only one pole at q of order ordq(f) = −kq. In this case, then fω is a
holomorphic form. Indeed, by definition of f , the only poles of fω that may
occur lie on λ−1(q), but the order of fω at each g · p ∈ λ−1(q) is

ordg·p(fω) = ordg·p(ω) + ordg·p(f)

= tχq − kqmq

= mq − j0 − 1 + (kj0 − kq)mq ≥ 0.

Furthermore, by the Lemma 5.1.3, then fω ∈ H1,0(C)χ. However, this
would contradict the definition of tχq , since ordp(fω) = tχq − kqmq < tχq .
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To summarize, we have proved

tχq = mq − j0 − 1 + kj0mq,

where j0 is one of the integers such that ξj0 ∈ Spec(ρχ(h)), and kj0 < kq.
It remains to prove that these integers does not depend from the choice

of p ∈ λ−1(q). Set aχq (p) := j0, and kχq (p) := kj0 . If we repeat the proof using
another point g · p ∈ λ−1(q), then we get integers aχq (g · p) ∈ [0, . . . ,mq − 1]
and kχq (g · p) < kq satisfying

tχq = mq − aχq (g · p)− 1 + kχq (g · p)mq.

Hence it holds at the same time

mq − aχq (g · p)− 1 + kχq (g · p)mq = tχq = mq − aχq (p)− 1 + kχq (p)mq

so

aχq (p)− aχq (g · p) =
(
kχq (p)− kχq (g · p)

)
mq =⇒

{
kχq (g · p) = kχq (p)

aχq (g · p) = aχq (p).

Theorem 5.1.8. (Base locus formula) The base locus of |KC |χ is

Bs(|KC |χ) =
∑
q

(
mq − aχq − 1 + kχqmq

)
λ−1(q),

where the non-negative integers aχq and kχq are those defined in the Lemma
5.1.7.

Proof. It is sufficient to apply Lemma 5.1.7 to every point q ∈ C/G.

Remark 5.1.9. Under suitable assumptions it is possible to determine exactly
aχq and kχq .

For instance, if C/G ∼= P1, then kq = g(C/G) + 1 = 1, for any q ∈ P1.
Hence kχq = 0, and we get

tχq = mq − aχq − 1.

Moreover, if one of the following holds

• χ is an irreducible character of degree 1, or

• the local monodromy h is in the centre of G,

then ρχ(h) = χ(h)
χ(1) · Id is a multiple of the identity. In particular, aχq ∈

[0, . . . ,mq − 1] is the only integer such that χ(h) = e
2πi
mq

aχq χ(1).
This is obvious when the character has degree one. When the local

monodromy is central, it is the following lemma that we take from [Cat18].
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Lemma 5.1.10. Let χ be a character afforded by a irreducible representation
ρχ : G → Aut(V ). If h ∈ G is in the centre of G, then ρχ(h) is a multiple

of the identity. Precisely, ρχ(h) = χ(h)
χ(1) · IdV .

Proof. The action of h on V diagonalizes V as a direct sum of eigenspaces

V =

o(h)−1⊕
j=0

Vj

where Vj is an eigenspace (possibly zero) of eigenvalue ξj , and ξ = e
2πi
o(h) is

the first o(h)-root of the unity.

Let us fix j, and consider an eigenvector v ∈ Vj . For any g ∈ G, then
ρχ(g)v is an eigenvector of eigenvalue ξj for the operator ρχ(ghg−1), which
is equal to ρχ(h), since h is in the centre of G. In other words, ρχ(g)v ∈ Vj .
This proves Vj is G-invariant. However, ρχ is irreducible, and so V = Vj .
This translates as ρχ(h) = ξj · IdV . Finally, we compute

χ(h) = Tr(ρχ(h)) = ξj dim(V ) = ξjχ(1) =⇒ ξj =
χ(h)

χ(1)
.

We deduce then the following immediate consequence from Theorem
5.1.8 and Remark 5.1.9:

Corollary 5.1.11. Assume C/G ∼= P1, and χ is an irreducible character of
degree 1. Then

Bs(|KC |χ) =
∑
q

(
mq − aχq − 1

)
λ−1(q),

where aχq ∈ [0, . . .mq − 1] is the only non-negative integer such that χ(h) =

e
2πi
mq

aχq , with h local monodromy of a point p over q.

5.2 The canonical system of a product-quotient
surface

Let G be a finite group acting on a Riemann surface Ci, i = 1, 2. According
to the previous section, then G induces the canonical representation on
H1,0(Ci), afforded by the canonical character χican.
Let S be the product-quotient surface of quotient model X := (C1 × C2) /G.
This section studies the canonical system of S.
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Theorem 5.2.1. Every G-invariant global holomorphic 2-form of C1 × C2

extends uniquely to a global holomorphic 2-form on the minimal resolution
of the singularities ρ : S → X of X. It holds

H2,0(S) = H2,0(C1 × C2)G =
⊕

χ∈Irr(G)

(
H1,0(C1)χ ⊗H1,0(C2)χ

)G
. (5.2)

Furthermore,

pg(S) =
∑

χ∈Irr(G)

〈χ1
can, χ〉 · 〈χ2

can, χ〉.

Proof. Denote by X◦ the smooth locus of X, i.e. the locus of the image
of that points of C1 × C2 with trivial stabilizer. Each global holomorphic
2-form of X◦ extends uniquely to a global holomorphic 2-form of C1 × C2,
via the pullback map λ∗12 : H2,0(X◦)→ H2,0(C1×C2), resulting a monomor-
phism onto the invariant subspace H2,0(C1 × C2)G. On the other side, the
minimal resolution of the singularities ρ : S → X is an isomorphism on X◦,
hence

(
ρ−1
)∗

: H2,0(S)→ H2,0(X◦) is a monomorphism. Furthermore, each
global holomorphic 2-form on the smooth locus X◦ of X extends uniquely
to a global holomorphic 2-form on S, by Freitag’s theorem [Fre71, Satz 1],
so
(
ρ−1
)∗

is an epimorphism too.
Thus H2,0(S) is sent isomorphically via λ∗12 ◦ (ρ−1)∗ onto the invariant sub-
space H2,0(C1 × C2)G ⊆ H2,0(C1 × C2). Finally, by applying Künneth
formula and writing H1,0(Ci) as the direct sum of isotypic components, we
get

H2,0(C1 × C2)G =
⊕

χ,η∈Irr(G)

(
H1,0(C1)χ ⊗H1,0(C2)η

)G
.

Formula (5.2) follows just by applying Schur lemma: the dimension of any
piece of the sum is 〈χ1

can, χ〉 · 〈χ2
can, η〉 · 〈χη, 1〉. However 〈χη, 1〉 = 〈χ, η〉,

which is equal to 1 only for η = χ, and 0 otherwise.

Remark 5.2.2. As already discussed at (4.2), then one can say in general
that

H i,0(S) = H i,0(C1 × C2)G

by Freitag’s theorem [Fre71, Satz 1]. Hence, another immediate consequence
firstly observed by Serrano in [Ser96, Prop. 2.2] is a formula for the irregu-
larity of S:

q(S) = g(C1/G) + g(C2/G).

In particular, S is regular if and only if Ci/G ∼= P1.

Let us remind the following classical lemma of representation theory:

Lemma 5.2.3. Let us consider an irreducible representation φχ afforded by
a character χ, of degree n := χ(1). Consider a basis v1, . . . , vn of V and its
dual basis e1, . . . , en of V ∗. Then

(V ⊗ V ∗)G = 〈v1 ⊗ e1 + · · ·+ vn ⊗ en〉.
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Proof. The dimension of (V ⊗ V ∗)G is

dim((V ⊗ V ∗)G) = 〈χχ, 1〉 = 〈χ, χ〉 = 1.

Thus it is sufficient to prove v1 ⊗ e1 + · · ·+ vn ⊗ en is an invariant vector.
Write g ∈ G as a matrix in the fixed basis on V , g = (gij), and in the dual
basis on V ∗, g = (hij). However, by definition of the action of G induced

on V ∗, g = (hij) =
(

(gij)
−1
)t

. Then the statement follows by a direct

computation

g ·

(∑
k

vk ⊗ ek

)
=
∑
k

(∑
i

gikvi

)
⊗

∑
j

hjkej


=
∑
i,j

(∑
k

gikhjk

)
· vi ⊗ ej .

The sum
∑

k gikhjk is the (i, j)-entry of the product matrix between (gij)
and (hij)

t = (gij)
−1, which is equal to 1, if i = j, and 0 otherwise.

We use the previous lemma to say that:

Remark 5.2.4. It is possible to describe a basis of the invariant subspace
(H1,0(C1)χ ⊗H1,0(C2)χ)G.
Let us consider the irreducible representation φχ : G→ GL(V ) of character
χ. Let n := χ(1) be the degree of φχ. Then H1,0(C1)χ ⊗ H1,0(C2)χ is
the direct sum of certain number of copies of V ⊗ V ∗ (the exact number
is 〈χ1

can, χ〉 · 〈χ2
can, χ〉). Consequently its invariant subspace (H1,0(C1)χ ⊗

H1,0(C2)χ)G is a direct sum of the same number of copies of the invariant
subspace (V ⊗ V ∗)G, which is always one dimensional:

dim
(
(V ⊗ V ∗)G

)
= 〈χχ, 1〉 = 〈χ, χ〉 = 1.

Let us fix a basis {ω1, . . . , ωn} of V and the (dual) basis {η1, . . . , ηn} on V ∗.
Hence, denote by {ωk1 , . . . , ωkn} the corresponding basis of the k-th copy of V
on H1,0(C1)χ, k = 1, . . . , 〈χ1

can, χ〉 [resp. by {ηl1, . . . , ηln} the corresponding
basis of the l-th copy of V ∗ on H1,0(C2)χ, l = 1, . . . , 〈χ2

can, χ〉]. Lemma 5.2.3
applies for any copy of (V ⊗ V ∗)G, so that

(H1,0(C1)χ ⊗H1,0(C2)χ)G =
⊕
k,l

〈ωk1 ⊗ ηl1 + · · ·+ ωkn ⊗ ηln〉. (5.3)

Definition 5.2.5. We denote by |KC1×C2 |G the linear subsystem of the
canonical system of C1 × C2 spanned by pg invariant 2-forms of C1 × C2

defining ΦKS .
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We give a theoretical description of the canonical map ΦKS of S. From
Theorem 5.2.1, the (rational) map ΦKS ◦ λ12 is induced by the linear sub-
system |KC1×C2 |G. Therefore such map is not defined on the base locus of
|KC1×C2 |G. The situation is the following:

X

C1 × C2 S Ppg−1

Pg1−1 × Pg2−1 Pg1g2−1.Segre

λ12

λ12 ρ

ΦKC1×C2

ΦKS

proj
Φ|KC1×C2

|G

Let us fix a basis of H1,0(C1) and H1,0(C2). Then ΦKS ◦ λ12 is the com-
position of the product of the canonical maps of C1 and C2 with the Segre
embedding in Pg1g2−1, together with the projection map proj. This latter
map sends a basis of 2-forms of C1×C2 to a basis of invariant 2-forms defin-
ing ΦKS .
We can use Remark 5.2.4 to give an explicit description of proj, which is
defined in coordinates as follows:
Let us fix coordinates χxklij on Pg1g2−1, with 1 ≤ i, j ≤ χ(1), and 1 ≤ k ≤
〈χ1
can, χ〉, 1 ≤ l ≤ 〈χ2

can, χ〉. Then

proj
((

χxklij : χ, i, j, k, l
))

=(
χxkl11 + · · ·+ χxklnn : χ ∈ Irr(G), n = χ(1), k, l

)
.

5.2.1 Base locus of the canonical system of a
product-quotient surface

Given an irreducible character χ ∈ Irr(G), we have the following series of
inclusions(

H1,0(C1)χ ⊗H1,0(C2)χ
)G ⊆ H1,0(C1)χ ⊗H1,0(C2)χ ⊆ H2,0(C1 × C2).

Let us define the associated subsystems of |KC1×C2 | given by these sub-
spaces.

Definition 5.2.6. We denote by |KC1 |χ⊗|KC2 |χ and by
(
|KC1 |χ ⊗ |KC2 |χ

)G
the associated subsystems of |KC1×C2 | given by H1,0(C1)χ ⊗H1,0(C2)χ and(
H1,0(C1)χ ⊗H1,0(C2)χ

)G
, respectively.

Theorem 5.2.1 permits us to describe the base locus of |KC1×C2 |G in

terms of the base locus of its pieces
(
|KC1 |χ ⊗ |KC2 |χ

)G
, χ ∈ Irr(G). Pre-
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cisely, we have

Bs(|KC1×C2 |G) =
⋂

〈χ1
can,χ〉6=0, 〈χ2

can,χ〉6=0

Bs(
(
|KC1 |χ ⊗ |KC2 |χ

)G
). (5.4)

Notation: Let us denote by

Bvert
q := {q} × C2/G, and Bhor

l := C1/G× {l},

where q ∈ C1/G and l ∈ C2/G. Instead, Rvertq and Rhorl denote the reduced

inverse images on C1 × C2 of Bvert
q and Bhor

l :

Rvertq :=
1

mq
(λ◦λ12)∗ ({q} × C2/G) , Rhorl :=

1

ml
(λ◦λ12)∗ (C1/G× {l}) .

Remark 5.2.7. With this notation, then the branch locus of λ ◦ λ12 : C1 ×
C2 → C1/G× C2/G is the grid

Bvert
q := {q} × C2/G, and Bhor

l := C1/G× {l}

with q ∈ Crit(λ1) and l ∈ Crit(λ2).

Base Locus formula theorem 5.1.8 gives a formula for the base locus of
|KC1 |χ ⊗ |KC2 |χ.

Theorem 5.2.8. The (schematic) base locus of the linear subsystem |KC1 |χ
⊗|KC2 |χ of |KC1×C2 | is pure in codimension 1 and is amount to

Bs(|KC1 |χ ⊗ |KC2 |χ) =
∑

q∈Crit(λ1)

tχqR
vert
q +

∑
l∈Crit(λ2)

tχl R
hor
l (5.5)

where tχq and tχl are the non-negative integers computed in Lemma 5.1.7.

Corollary 5.2.9. Let χ be a character of degree 1. Then

(H1,0(C1)χ ⊗H1,0(C2)χ)G = H1,0(C1)χ ⊗H1,0(C2)χ

and the base locus of its associated linear subsystem
(
|KC1 |χ ⊗ |KC2 |χ

)G
=

|KC1 |χ ⊗ |KC2 |χ is given by the formula (5.5) of Theorem 5.2.8.
Assume furthermore that Ci/G ∼= P1, for i = 1, 2. Then tχq and tχl

of (5.5) are the unique non-negative integers with 0 ≤ tχq ≤ mq − 1 and

0 ≤ tχl ≤ ml − 1 satisfying

χ(h) = e
2πi
mq

(mq−tχq−1)
and χ(g) = e

2πi
ml

(tχl +1)
,

where h is the local monodromy of a point over q, and g is the local mon-
odromy of a point over l.

Proof. The first sentence is straightforward, since every v⊗w ∈ H1,0(C1)χ⊗
H1,0(C2)χ is G-invariant

g · (v ⊗ w) = (χ(g)v)⊗ (χ(g)w) = |χ(g)|v ⊗ w = v ⊗ w.

The rest of the thesis follows from Remark 5.1.9.
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5.3 The degree of the canonical map

We are going to establish when ΦKS is composed with a pencil and, if the
answer is negative, to compute its degree.

Instead to work on S it is convenient to work on C1×C2. Therefore, let
us consider

C1 × C2 S Σ ⊆ Ppg−1

Pg1g2−1.

λ12
ΦKS

ΦKC1×C2
proj

The (a priori rational) map ΦKS ◦ λ12 is induced by the linear subsystem
|KC1×C2 |G of |KC1×C2 | generated by pg invariant 2-forms defining ΦKS .

We resolve the indeterminacy of ΦKG
C1×C2

= ΦKS ◦ λ12 by a sequence of

blowups, as explained in the textbook [Bea96, Theorem II.7]:ÿ�C1 × C2
//

Φ
M̂ %%

C1 × C2

Φ
KG
C1×C2��

Ppg−1.

Here the morphism Φ“M is induced by the base-point free linear system |M̂ |
obtained as follow: let |M | be the mobile part of |KC1×C2 |G.
We blow up the base-points of |M |, take the pullback of |M | and remove
the fixed part of this new linear system. We repeat the procedure, until we
obtain a base-point free linear system |M̂ |.

Lemma 5.3.1. The map ΦKS is not composed with a pencil if and only if

M̂2 is positive.

Proof. The map ΦKS is composed with a pencil if and only if Φ“M is com-
posed with a pencil. Such map is composed with a pencil, so its image Σ
is a curve, if and only if we are able to pick-up two general hyperplanes H1

and H2 of Ppg−1 such that H2
|C = H1 ·H2 · Σ = 0. However, M̂ = Φ∗“M (H),

hence H2
|C is zero if and only if M̂2 is equal to zero.

Let us suppose M̂2 > 0, so that ΦKS is not composed with a pencil, and
its image has dimension 2. In this case, then Φ“M is a finite morphism, and

M̂2 = deg(Φ“M ) deg(Σ) = deg(ΦKS ) deg(Σ)|G|.

Thus

deg(ΦKS ) =
1

|G| · deg(Σ)
M̂2. (5.6)
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The above formula may be hard to handle, since both deg(Σ) and M̂2 are
not easy to determine. However, we are interested to study the case pg
equal to three. In this case, then Φ“M is onto, so the image is P2, a surface
of degree 1. Hence deg(Σ) = 1 and we obtain

deg(ΦKS ) =
1

|G|
M̂2. (5.7)

Let us write M̂2 as M̂2 = M2 − (M2 − M̂2). M2 is the self-intersection of
the mobile part of |KC1×C2 |G. Instead, M2−M̂2 is the sum of the correction
terms arising from each isolated base-point of |M |.

M2 is computable once we know the fixed part of the linear subsystem
|KC1×C2 |G (even without the assumption pg equal to three).

Lemma 5.3.2. Suppose that any irreducible character χ such that 〈χ1
can, χ〉

6= 0 and 〈χ2
can, χ〉 6= 0 has degree 1. Then the fixed part of the linear system

|KC1×C2 |G is

Fix
(
|KC1×C2 |G

)
=

∑
q∈Crit(λ1)

(
min

χ : 〈χ1
can,χ〉6=0,〈χ2

can,χ〉6=0
tχq

)
Rvertq +

∑
l∈Crit(λ2)

(
min

χ : 〈χ1
can,χ〉6=0,〈χ2

can,χ〉6=0
tχl

)
Rhorl .

(5.8)

Proof. The fixed part of |KC1×C2 |G is the common divisor of the fixed parts

of that pieces
(
|KC1 |χ ⊗ |KC2 |χ

)G
that are non-empty, for χ irreducible char-

acter. They are non-empty whenever 〈χ1
can, χ〉 6= 0 and 〈χ2

can, χ〉 6= 0. By
assumption, then χ is of degree 1. Thus Corollary 5.2.9 applies, so that the

the fixed part of
(
|KC1 |χ ⊗ |KC2 |χ

)G
is amount to∑

q∈Crit(λ1)

tχqR
vert
q +

∑
l∈Crit(λ2)

tχl R
hor
l .

The common divisor of these fixed parts is the right member of 5.8.

By definition of M , then

M ≡ KC1×C2 − Fix(|KC1×C2 |G).

Suppose to stay under the hypothesis of Lemma 5.3.2. Thus Fix(|KC1×C2 |G)
is a union of fibres. To compute M2 is then sufficient to know the intersec-
tions

KC1×C2 ·Rvertq , KC1×C2 ·Rhorl ,
(
Rvertq

)2
,

(
Rhorl

)2
, Rvertq ·Rhorl .
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We compute them.
Rvertq can be written as sum of |G|/mq components {g ·p}×C2, with p point
over q, and g ∈ G. {g · p} × C2 has self-intersection zero (since two points
are always homologous on a connected variety, and then the fibres of f1 ◦λ12

are always numerically equivalent). Thus we can use the genus formula to
get

KC1×C2 · ({g · p} × C2) = 2g(C2)− 2− ({g · p} × C2)2 = 2g(C2)− 2.

The same reasoning works for an horizontal divisor Rhorl . Thus, we have got

KC1×C2 ·Rvertq =
|G|
mq

(2g(C2)− 2) , KC1×C2 ·Rhorl =
|G|
ml

(2g(C1)− 2) .

Analogously,

(
Rvertq

)2
=
(
Rhorl

)2
= 0, and Rvertq ·Rhorl =

|G|2

mqml
.

It remains to determine M2 − M̂2.

5.4 The correction term to the self-intersection of
a 2-dimensional linear system with only iso-
lated base points

As remarked in the previous Section 5.3, M2− M̂2 is the sum of the correc-
tion terms arising from each isolated base-point of |M |, the mobile part of
the linear subsystem |KC1×C2 |G.

The contribution to the correction term of any isolated base-point may
be easily computed under the assumption that any irreducible character χ
such that 〈χ1

can, χ〉 6= 0 and 〈χ2
can, χ〉 6= 0 has degree 1.

Let us fix a base-point (p1, p2) ∈ C1 × C2 of the mobile part |M |. The
point p1 is over q ∈ C1/G and p2 is over l ∈ C2/G. Let us fix an irreducible
character χ. We can always choose a general basis of H1,0(C1)χ such that
each one-form of the basis has the minimum vanishing order tχq at p1, which
is the natural number computed in Lemma 5.1.7.
Similarly, we can choose a general basis ofH1,0(C2)χ such that each one-form
of the basis has minimum vanishing order tχl at p2. The choice of this pair
of bases gives via tensor product a natural basis of H1,0(C1)χ ⊗H1,0(C2)χ,
which is a G-invariant subspace from the assumption χ is of degree one.
This permits us to conclude that the divisors spanning the linear subsystem
|KC1×C2 |G can be written in a neighbourhood of (p1, p2) as

tχqR
vert
q + tχl R

hor
l , χ such that 〈χ1

can, χ〉 6= 0, 〈χ2
can, χ〉 6= 0.
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Finally, it is sufficient to remove the fixed part of |KC1×C2 |G computed in
Lemma 5.3.2 to get how the divisors spanning |M | are written in a neigh-
bourhood of (p1, p2). So, the linear system |M | is generated by pg divisors
locally near (p1, p2) of the form

a1R
vert
q + b1R

hor
l , . . . apgR

vert
q + bpgR

hor
l .

Since we assumed that (p1, p2) is a base-point and |M | has not fixed com-
ponents, then without loss of generality a1 = b2 = 0.
Note that Rvertq and Rhorl are smooth and intersect transversally at (p1, p2).
In Theorem 5.4.3 we give a general formula to compute directly the contri-
bution of (p1, p2) to the correction term M2 − M̂2 whenever pg is equal to
three.

The slightly more general setting is the following:
Let |M | be a (not necessarily complete) two-dimensional linear system on a
surface S spanned by D1, D2, and D3. Assume that |M | has only isolated
base-points, smooth for S, and that in a neighborhood of a basepoint p we
can write the divisors Di as

D1 = aH, D2 = bK and D3 = cH + dK.

Here H and K are reduced, smooth, and intersect transversally at p and
a, b, c, d are non-negative integers, b ≤ a.

Let |M̂ | be the linear system obtained as follows: we blow-up the base-
point p, take the pullback of the mobile part of |M | and remove the fixed
part of this new linear system. If an infinitely near point of p is a base-point
for this linear system, then repeat the procedure, until we obtain a (not
necessarily complete) linear system |M̂ | such that no infinitely near point of
p is a base point of |M̂ |. The linear system |M̂ | is called strict transform of
|M | at p.

Lemma 5.4.1. Assume that bc+ ad ≥ ab. Then M̂2 = M2 − ab.

Proof. We prove the lemma by induction on (a, b), with b ≤ a. Here we
are considering the lexicographic order ≤ defined on the lower half plane
∆≥ := {(a, b) : a ≥ b} ⊆ N× N as follows:

(a′, b′) ≤ (a, b) if and only if a′ < a or a′ = a and b′ ≤ b.

In this case, ∆≥ admits the well-ordering principle and so it holds the math-
ematical induction.
Suppose that (a, b) = 0. Then |M | is base-point free and so M̂ = M2 =
M2 − ab. Now suppose that the statement is true for (a′, b′) < (a, b). We
aim to prove it for (a, b). We blow up the base-point p, take the pullback of
the divisors Di, and remove the fixed part, which is the exceptional divisor
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bE of the blowup. In fact the pullback of D3 contains c + d times E and
c+ d ≥ b, thanks to b ≤ a and to the assumption bc+ ad ≥ ab:

a(c+ d) ≥ bc+ ad ≥ ab, so c+ d ≥ b.

Restricted to the preimage of our neighborhood of p, these divisors are:

a“H + (a− b)E, bK̂ and c“H + dK̂ + (c+ d− b)E.

Here, “H and K̂ are the strict transforms of H and K. Let |M̂ | be the
linear system generated by these three divisors, then M̂2 = M2 − b2. If
a = b or b = 0, then |M̂ | is base-point free and we are done. Otherwise, on
the preimage, the linear system |M̂ | has precisely one new base-point: the
intersection point of K̂ and E. Locally near this point the three divisors
spanning |M̂ | are:

(a− b)E, bK̂ and dK̂ + (c+ d− b)E.

We need to distinguish two cases, when (a−b) < b or when (a−b) ≥ b. In
the first case (a− b) < b we get (b, a− b) < (a, b). We define new coefficients
a′ := b, b′ := a − b, c′ := d and d′ := c + d − b. Otherwise if (a − b) ≥ b,
then (a− b, b) < (a, b), and we define a′ := a− b, b′ := b, c′ := c+ d− b, and
d′ := d. For both cases, the new coefficients fulfill the inductive hypothesis,
because:
Thanks to bc+ ad ≥ ab, we have

b′c′ + a′d′ = (a− b)d+ b(c+ d− b)
= ad+ bc− b2

≥ ab− b2 = (a− b)b
= a′b′.

By induction, the self-intersection of the new linear system M̂ is equal to

M̂2 = (M2 − b2)− b(a− b) = M2 − ab.

Lemma 5.4.2. Assume that bc+ ad ≤ ab. Then M̂2 = M2 − (ad+ bc).

Proof. We prove the lemma by induction, once more on (a, b), with b ≤ a.
Thus we consider the lexicographic order ≤ on ∆≥, as we have done in the
proof of the Lemma 5.4.1.

Suppose that (a, b) = 0. Then |M | is base-point free and so M̂ = M2 =
M2 − (0d + 0c). Now suppose that the statement is true for (a′, b′) <
(a, b). Our aim is to prove it for (a, b). We blow up the base-point p, take
the pullback of the divisors Di, and remove the fixed part, which is the
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exceptional divisor (c + d)E of the blowup, if c + d ≤ b, or the divisor bE,
otherwise. Hence we need to distinguish two cases.

Let us suppose first that c+ d ≤ b (≤ a). Restricted to the preimage of
our neighborhood of p, the divisors are

a“H + (a− (c+ d))E, bK̂ + (b− (c+ d))E and c“H + dK̂.

Here, “H and K̂ are the strict transforms of H and K. Let |M̂ | be the linear
system generated by these three divisors, then M̂2 = M2 − (c + d)2. On
the preimage, the linear system |M̂ | has precisely two new base-points: the
intersection points of “H and K̂ with E. Locally near these points the three
divisors spanning |M̂ | are respectively

a“H + (a− (c+ d))E, (b− (c+ d))E and c“H,
and

(a− (c+ d))E, bK̂ + (b− (c+ d))E and dK̂.

We claim that for both points the coefficients of the three divisors satisfy
the assumption of the Lemma 5.4.1.
Let us verify it for the first point “H ∩ E: if c ≥ (b − (c + d)), then define
a′ := c, b′ := b − (c + d), c′ := a, and d′ := a − (c + d), otherwise define
a′ := b − (c + d), b′ := c, c′ := a − (c + d), and d′ := a. For both the cases
d′ ≥ b′ so that b′c′ + a′d′ ≥ a′d′ ≥ a′b′.
Regarding the second point K̂ ∩E, we have: if d ≥ (a− (c+d)), then define
a′ := d, b′ := a − (c + d), c′ := b, and d′ := b − (c + d), otherwise define
a′ := a− (c+ d), b′ := d, c′ := b− (c+ d), d′ := b. In the first case c′ ≥ a′,
while in the second case d′ ≥ b′. Therefore we get b′c′ + a′d′ ≥ a′b′ for both
cases.
Thus the Lemma 5.4.1 applies for both points and the self-intersection of
the new linear system M̂ at the final step is amount to

M̂2 = (M2 − (c+ d)2)− (b− (c+ d))c− (a− (c+ d))d = M2 − (ad+ bc).

It remains to discuss the case c+ d ≥ b.
As we have already done before, we blow up the base-point p, take the
pullback of the divisors Di, and remove the fixed part, which this time is
the exceptional divisor bE of the blowup. Restricted to the preimage of our
neighborhood of p, these divisors are:

a“H + (a− b)E, bK̂ and c“H + dK̂ + (c+ d− b)E.

Here M̂2 = M2 − b2. If b = 0 or a = b, then |M̂ | is base-point free. In the
first case b = 0, we get ad = bc + ad ≤ ab = 0, so M̂2 = M2 − b2 = M2 =
M2 − (ad+ bc), and we are done. In the second case a = b, we get, thanks
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to the assumptions ad+ bc ≤ ab and b ≤ c+ d, that

a(c+ d) = ad+ bc

≤ ab
≤ a(c+ d)

, so c+ d = b = a.

Also in this case we are done, because M̂2 = M2 − b2 = M2 − (ad+ bc).
It remains to consider when a − b = 0 or b = 0 does not hold. In this
case, on the preimage, the linear system |M̂ | would have precisely one new
base-point: the intersection point of K̂ and E. Locally near this point the
three divisors spanning |M̂ | are:

(a− b)E, bK̂ and dK̂ + (c+ d− b)E.

We need to distinguish two cases, when (a− b) < b or when (a− b) ≥ b. In
the first case (a− b) < b we get (b, a− b) < (a, b). We define new coefficients
a′ := b, b′ := a − b, c′ := d and d′ := c + d − b. Otherwise if (a − b) ≥ b,
then (a− b, b) < (a, b), and we define a′ := a− b, b′ := b, c′ := c+ d− b, and
d′ := d. For both cases, the new coefficients fulfill the inductive hypothesis,
because:
Thanks to bc+ ad ≤ ab, we have

b′c′ + a′d′ = (a− b)d+ b(c+ d− b)
= ad+ bc− b2

≤ ab− b2 = (a− b)b
= a′b′.

By induction, the self-intersection of the new linear system M̂ is equal to

M̂2 = (M2 − b2)− (a′d′ + b′c′)

= M2 − b2 − (ad+ bc− b2)

= M2 − (ad+ bc).

By applying Lemma 5.4.1 and Lemma 5.4.2 it follows directly

Theorem 5.4.3 (Correction Term Formula). Let |M | be a two-dimensional
linear system on a surface S spanned by D1, D2, and D3. Assume that |M |
has only isolated base-points, smooth for S, and that in a neighborhood of a
basepoint p we can write the divisors Di as

D1 = aH, D2 = bK and D3 = cH + dK.

Here H and K are reduced, smooth, and intersect transversally at p and
a, b, c, d are non-negative integers, b ≤ a. Let |M̂ | be the strict transform of
|M | along p. Then

M̂2 = M2 −min {ab, ad+ bc} .



Chapter 6

Examples with a high degree
of the canonical map

In this Chapter, we are going to show some examples of families of product-
quotient surfaces with a high degree of the canonical map. Some of them are
picked up from the classification of product-quotient surfaces with pg = 3,
q = 0 and K2 = 32 attained in Chapter 4 (see Theorem 4.9.1).
Some of the presented examples realize a degree of the canonical map not
yet discovered in the literature. These degrees are d = 10, 11, 13, 14, 15, and
18.
Any example is described without using the language of product-quotient
surfaces. In this way, the Chapter can be read separately from the rest of
the thesis and the reader does not necessarily need to know the theory of
product-quotient surfaces. Therefore, we simply decided to present every
family from the equations defining the G-coverings (C1, λ1) and (C2, λ2),
and fixing a suitable action of the group G on both of them.
However, we also describe them as product-quotient surfaces presenting a
corresponding pair of spherical generators. This allows to compute the de-
gree of the canonical map by using the results in Chapter 5.

6.1 Examples with degree d = 5, 7, 10, 11, and 14

This is a joint work [FG23] together with Dr. C. Gleissner, whom I had the
pleasure to know during my visit to the Universität Bayreuth, Germany, as
a guest Ph.D. student.

Let F be the Fermat septic curve

F = {x7
0 + x7

1 + x7
2 = 0} ⊂ P2.

In this section we construct a series of surfaces S, as quotients of a product
of two copies of F , modulo a suitable diagonal action of the group Z2

7. For
any surface S, we determine the canonical map ΦKS and compute its degree.
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They are the seven product-quotient surfaces with group G = Z2
7 of

Theorem 4.9.1.
On the first copy of F we define the action of Z2

7 as

φ : Z2
7 → Aut(F ), (a, b) 7→ [(x0 : x1 : x2) 7→ (x0 : ζa7x1 : ζb7x2)], ζ7 := e

2πi
7 .

This action has 21 points with non trivial stabilizer. They form three orbits
of length 7. A representative of each orbit and a generator of the stabilizer
is given by:

point (−1 : 0 : ζ7) (−1 : ζ7 : 0) (0 : −1 : ζ7)

generator (1, 0) (0, 1) (6, 6)

Note that the automorphisms φ(a, b) are precisely the deck transformations
of the cover

λ : F → P1, (x0 : x1 : x2) 7→ (x7
1 : x7

2).

The cover has degree 49 and is branched along (0 : 1), (1 : 0) and (−1 : 1).
In particular F/Z2

7 ' P1 and π is the quotient map.
Note that in the Example 2.1.12 we have shown (F, λ) is the unique

Z2
7-covering of P1 up to topological equivalence.

On the second copy of F , for which we use the homogenous variables y =
(y0 : y1 : y2), the group acts by φ◦A, where A ∈ Aut(Z2

7) is an automorphism
depending on the specific example. The explicit choices for A are stated
in the tables below. To write the canonical systems of the corresponding
unmixed quotients

S := (F × F )/Z2
7 modulo the diagonal actions φ× (φ ◦A),

we need to fix a suitable basis of the space H0(F,Ω1
F ) of global holomorphic

1-forms on F . In affine coordinates such a basis is given by

{ωjk := ujvk−6du | j + k ≤ 4}, where u :=
x1

x0
and v :=

x2

x0
.

Note that:

I) The action of Z2
7 on H0(F,Ω1

F ) under pullback with φ is

φ(a, b)∗(ωjk) = ζ
a(j+1)+b(k−6)
7 ωjk.

Note that this is not the canonical representation defined in Section 5.2
but its composition with the map g 7→ g−1, which is an automorphism
of G since G is abelian.

II) By Theorem 5.2.1, the space of canonical sections H0(KS) is isomor-
phic to the invariant subspace

H0(KS) ∼=
(
H0(Ω1

F )⊗H0(Ω1
F )
)Z2

7 ,
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where the action on the tensor product is diagonal, i.e. (a, b) ∈ Z2
7

acts via

φ(a, b)∗ ⊗ φ
(
A(a, b)

)∗
.

The observations I) and II) imply:

Lemma 6.1.1. A basis of H0(KS) is given by the Z2
7-invariant tensors

ωjklm := ωjk⊗ωlm. A tensor ωjklm is invariant if and only if for all (a, b) ∈
Z2

7 it holds:

a(j+1)+b(k−6)+a′(l+1)+b′(m−6) ≡ 0 mod 7, where

(
a′

b′

)
:= A

(
a
b

)
.

We can now state and prove our main result:

Theorem 6.1.2. For all A ∈ Aut(Z2
7) in the Table 6.1, the diagonal action

φ× (φ ◦A) of Z2
7 on the product of two Fermat septics is free. The quotient

is a regular smooth projective surface S of general type with pg = 3. A basis
of H0(KS), the canonical map ΦKS in projective coordinates and its degree
are stated in the Table 6.1.
The image of the canonical map of the last surface is the conic {z2

1 = z0z2} ⊂
P2. The surfaces no. 3, 4, 5, and 6 of the table are the first known examples
of surfaces with deg(ΦKS ) = 10, 11, and 14.

The degrees 5 and 7 of the first and second surfaces have also been
realized by a different construction [MLP23, Example 4.5].

Remark 6.1.3. The surfaces S in the Table 6.1 are examples of unmixed
surfaces isogenous to a product of curves. More precisely, they are Beauville
surfaces, which are by definition the rigid surfaces isogenous to a product.
Rigidity means that they do not admit nontrivial deformations. This is
equivalent to the fact that the quotient curves Ci/G are isomorphic to P1

and the quotient maps Ci → Ci/G ' P1 are branched in three points.

Using Theorem 4.5.8 and Corollary 4.5.10 we find that there are exactly
seven families of product-quotient surfaces isogenous to a product of the
form (F × F ) /Z2

7 given by the seven classes of the matrices in table 6.1.

Using the MAGMA [BCP97] algorithm from the paper [GPR22] one can
classify all regular unmixed surfaces isogenous to a product of curves with
pg = 3 and abelian group G. Among them are the unmixed Beauville sur-
faces with pg = 3 and abelian group. The latter form seven biholomorphism
classes, which are exactly the surfaces in the table of our theorem.
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Table 6.1

N
o

A
B

as
is

o
f
H

0
(K

S
)

Φ
K
S
(x
,y

)
d

eg
(Φ

K
S
)

1.

( 3
3

6
2

)
{ω

0
2
0
3
,ω

1
0
0
4
,ω

3
1
1
2
}

(x
2 0
x

2 2
y 0
y

3 2
:
x

3 0
x

1
y

4 2
:
x

3 1
x

2
y 0
y 1
y

2 2
)

5

2.

( 5
4

6
5

)
{ω

1
0
2
2
,ω

2
1
3
1
,ω

4
0
1
0
}

(x
3 0
x

1
y

2 1
y

2 2
:
x

0
x

2 1
x

2
y

3 1
y 2

:
x

4 1
y

3 0
y 1

)
7

3.

( 4
5

3
1

)
{ω

1
3
0
4
,ω

2
2
1
0
,ω

3
0
1
2
}

(x
1
x

3 2
y

4 2
:
x

2 1
x

2 2
y

3 0
y 1

:
x

0
x

3 1
y 0
y 1
y

2 2
)

10

4.

( 2
6

1
4

)
{ω

0
0
1
1
,ω

1
2
0
2
,ω

2
0
4
0
}

(x
4 0
y

2 0
y 1
y 2

:
x

0
x

1
x

2 2
y

2 0
y

2 2
:
x

2 0
x

2 1
y

4 1
)

11

5.

( 3
3

6
4

)
{ω

0
1
0
3
,ω

1
3
1
0
,ω

3
0
3
1
}

(x
3 0
x

2
y 0
y

3 2
:
x

1
x

3 2
y

3 0
y 1

:
x

0
x

3 1
y

3 1
y 2

)
14

6.

( 1
1

6
2

)
{ω

0
1
0
1
,ω

1
3
1
3
,ω

3
0
3
0
}

(x
3 0
x

2
y

3 0
y 2

:
x

1
x

3 2
y 1
y

3 2
:
x

0
x

3 1
y 0
y

3 1
)

14

7.

( 2
2

6
3

)
{ω

0
2
0
2
,ω

2
1
2
1
,ω

4
0
4
0
}

(x
2 0
x

2 2
y

2 0
y

2 2
:
x

0
x

2 1
x

2
y 0
y

2 1
y 2

:
x

4 1
y

4 1
)

im
(Φ

K
S

7
)

=
{z

2 1
=
z 0
z 2
}
⊂

P2

proof of Theorem 6.1.2. First we show that the seven diagonal actions φ×
(φ ◦ A) on F × F are free. Indeed, as remarked above, the non-trivial
stabilizers of the points on the first copy of F are generated by (1, 0), (0, 1)
and (6, 6). However, none of these elements have a fixed point on the second
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copy of F under the twisted actions φ◦A. Thus, the actions are free and the
quotient surfaces S are smooth, projective and of general type. The latter
holds because the genus of the Fermat septic is g(F ) = 15 ≥ 2. Moreover,
they are regular surfaces by the Corollary 4.4.6, since F/Z2

7 is biholomorphic
to P1. The geometric genus of each S is therefore equal to

pg = χ(OS)− 1 =
(g(F )− 1)2

|Z2
7|

− 1 =
142

49
− 1 = 3.

Using Lemma 6.1.1, we compute a basis of H0(KS) for each surface S. Re-
placing the affine variables by xi

x0
and

yj
y0

and multiplying by x4
0y

4
0 we obtain

the bi-quartics that define the canonical map.
It remains to determine the degree of ΦKS for each surface S. Follow-
ing the strategy explained in Section 5.3, we resolve the indeterminacy of
Φ
|KF×F |Z

2
7

= ΦKS ◦ λ12 by a sequence of blowups, where λ12 : F × F → S is

the quotient map, and |KF×F |Z
2
7 is the subsystem of |KF×F | generated by

three invariant 2-forms defining ΦKS . Hence we have◊�F × F //

Φ
M̂ $$

F × F
Φ
K

Z2
7
F×F��

P2.

Here the morphism Φ“M is induced by the base-point free linear system |M̂ |
obtained as follow: let |M | be the mobile part of |KF×F |Z

2
7 .

We blow up the base-points of |M |, take the pullback of |M | and remove
the fixed part of this new linear system. We repeat the procedure, until we
obtain a base-point free linear system |M̂ |.
The self-intersection M̂2 is positive if and only if Φ“M is not composed with
a pencil, by Lemma 5.3.1. In this case Φ“M is onto and it holds:

deg(ΦKS )|Z2
7| = deg(Φ“M ) = M̂2 =⇒ deg(ΦKS ) =

1

49
M̂2.

For the computation of the resolution, it is convenient to write the divisors of
the bi-quartics defining Φ

K
Z2
7
F×F

as linear combinations of the reduced curves

Fj := {xj = 0} and Gk := {yk = 0} on F × F . Note that Fj and Gk
intersect transversally in |Z2

7| = 49 points and (Fj , Fk) = (Gj , Gk) = 0, for
all j, k. Thus, these curves can be illustrated as a grid of 21 vertical and 21
horizontal lines.
Consider the third surface in the table. Here, the divisors of the three bi-
quartics spanning the canonical system |KF×F |Z

2
7 are:

F1+3F2+4G2, 2F1+2F2+3G0+G1 and F0+3F1+G0+G1+2G2.
(6.1)
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The fixed part of |KF×F |Z
2
7 is F1 and the mobile part |M | has precisely

4× 49 = 196 base-points given by the intersection among:

F1 ∩G2, F2 ∩G0, F2 ∩G1, and F2 ∩G2.

In this case observe that M2 = (3F2 +4G2)2 = 24×49. We can perform the
computation of the difference M2 − M̂2 by applying the Correction Term
Formula 5.4.3 recursively to each base-point of |M |.
For simplicity, let us call by pij a point belonging to the intersection Fi∩Gj .
Then
-Around p12, the divisors are given by 4G2, F1, and 2F1 + 2G2. In the
notation of the Theorem 5.4.3, a = 4, b = 1 and c = d = 2. This implies
ad+ bc = 10 ≥ 4 = ab. The correction term is ab = 4;
-Around p20, the divisors are 3F2, 2F2 + 3G0 and G0. In this case a = 3, b =
1, c = 2, d = 3 and the correction term is ab = 3;
-Around p21, we have 3F2, 2F2 + G1 and G1, which yields 3 as correction
term;
-Around p22, we have 3F2 + 4G2, 2F2 and 2G2, thus the correction term is
4.
The degree of the canonical map is therefore given by

deg(ΦKS ) =
1

49

(
M2 − (M2 − M̂2)

)
=

1

49

(
(3F2 + 4G2)2 − 4× 49− 3× 49− 3× 49− 4× 49

)
= 10.

The degree of the canonical map of all other surfaces can be computed in
the same way.
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Remark 6.1.4. The degrees of the canonical maps of the surfaces of Theorem
6.1.2 may be computed from the associated pair of spherical systems of
generators. The strategy is that developed in Chapter 5.

Consider the third surface S in Table 6.1. It is described by the following
pair of spherical systems of generators:

[(1, 0), (0, 1), (6, 6)] and [(5, 6), (3, 6), (6, 2)].

Let ε1 : Z2
7 → C∗ be the character Z2

7 defined by sending (1, 0) to the first
7-root of the unity ζ7, and (0, 1) to 1. Similarly, ε2 sends (1, 0) to 1 and
(0, 1) to ζ7. The group of characters of Z2

7 is generated by ε1 and ε2.
By applying Chevalley-Weil formula [Gle16, Thm. 1.3.3], then

〈χ1
can, ε

α
1 ε
β
2 〉 = −1 +

α+ β + [6(α+ β)]7
7

〈χ2
can, ε

α
1 ε
β
2 〉 = −1 +

[5α+ 6β]7 + [3α+ 6β]7 + [6α+ 2β]7
7

.

where χ1
can is the canonical character of the first copy of F , and χ2

can that
of the second copy.

The pairs (α, β) for which εα1 ε
β
2 occurs on χ1

can and εα1 ε
β
2 = ε7−α1 ε7−β2

occurs on χ2
can are

(α, β) ∈ {(3, 6), (4, 4), (5, 3)}.

From Theorem 5.2.1 we have H2,0(S) =
(
H1,0(F )⊗H1,0(F )

)Z2
7 decomposes

into three pieces of dimension one:

H1,0(F )ε
3
1ε

6
2 ⊗H1,0(F )ε

4
1ε

1
2 , H1,0(F )ε

4
1ε

4
2 ⊗H1,0(F )ε

3
1ε

3
2 ,

H1,0(F )ε
5
1ε

3
2 ⊗H1,0(F )ε

2
1ε

4
2 .

Theorem 5.2.8 determines which is respectively a generator of the associated
sublinear system given by each of these pieces:

3Rvert(0,1) +Rvert(−1,1) +Rhor(0,1) + 2Rhor(1,0) +Rhor(−1,1),

2Rvert(0,1) + 2Rvert(1,0) +Rhor(0,1) + 3Rhor(−1,1),

Rvert(0,1) + 3Rvert(1,0) + 4Rhor(1,0).

Thus, the above three divisors are spanning the linear system |KF×F |Z
2
7 .

Notice that what we have obtained agrees with (6.1) in the proof of the
Theorem 6.1.2. Indeed, we observe that

F0 = Rvert(−1,1), F1 = Rvert(0,1), F2 = Rvert(1,0),

G0 = Rhor(−1,1), G1 = Rhor(0,1), G2 = Rhor(1,0).

Finally, it is sufficient to follow the rest of the proof of Theorem 6.1.2 starting
from (6.1) to perform the degree of the canonical map.
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6.2 Examples with degree 12, 13, 15, 16, and 18

This work can be found in [Fal23]. In this section we construct a series of
surfaces S, as quotients of a product of the two curves C1 and C2, modulo
a suitable diagonal action of the group S3 × Z2

3. For any surface S, we
determine the canonical map ΦKS and compute its degree.

These surfaces have pg = 3 and K2
S = 24, so they are not in the list of

Theorem 4.9.1. We have found them however by using the script of Section
4.8 for (K2, χ) = (24, 4).

Notation: Let us denote by σ and τ a rotation (3-cycle) and a reflec-
tion (transposition) of the group S3 respectively. Consider also the three
irreducible characters of S3, so the trivial character 1, the character sgn
computing the sign of a permutation, and the only 2-dimensional irreducible
character µ := 1

2 (χreg − sgn− 1), where χreg is the character of the regular
representation of S3.
Let us fix a basis e1, e2 of Z2

3 and consider the dual characters ε1, ε2 of e1

and e2, i.e. the characters defined by

εi(ae1 + be2) := ζaδ1i+bδ2i3 , ζ3 := e
2πi
3 ,

where δij is the Kronecker delta.

We consider the projective space P3 with homogeneous coordinates x0,
. . . , x3 and the weighted projective space P3(1, 1, 1, 2) with homogeneous
coordinates y0, . . . , y3. Here y3 is the variable of weight 2. We take the
curves C1 ⊆ P3 and C2 ⊆ P3(1, 1, 1, 2) as follows

C1 :

{
x3

2 = x3
0 − x3

1

x3
3 = x3

0 + x3
1

, C2 :

{
y3

2 = y3
0 + y3

1

y3
3 = y6

0 + y6
1 − 2λy3

0y
3
1

, λ 6= −1, 1

Both curves are smooth, in fact this is the reason why we assume λ 6= −1, 1
in the definition of C2.

On the first curve C1 we consider the action of S3 × Z2
3 given by

φ1 : S3 × Z2
3 → Aut(C1),

(
σiτ j , (a, b)

)
7→[

(x0 : x1 : x2 : x3) 7→ (ζi3x[j] : x[j+1] : (−1)jζ2a+2i
3 x2 : ζ2b+2i

3 x3)
]
.

We leave to the reader to checking that this defines an action.
Note that the automorphisms φ1(σiτ j , (a, b)) are precisely the deck trans-

formations of the cover

λ1 : C1
9:1−→ P1 6:1−→ P1,

(x0 : x1 : x2 : x3) 7→ (x0 : x1) 7→
(
x3

0x
3
1 : (x6

0 + x6
1)/2

)
. (6.2)
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In particular C1/
(
S3 × Z2

3

)
' P1 and λ1 is the quotient map.

We point out that the intermediate quotient P1 6: 1−−→ P1 is the unique
S3-covering of P1 ramified over three points described in the Example 2.1.13.
Instead, the curve C1 is the unique S3 × Z2

3-covering of P1 described in the
Example 2.1.14, for p = 3.

The cover λ1 is branched along p1 := (1 : 1), p2 := (0 : 1) and p3 :=
(−1 : 1), corresponding to the three orbits of the points with non trivial
stabilizer, of respective length 9, 18 and 9. A representative of each orbit
and a generator of the stabilizer is given by:

p1 p2 p3

representative (1 : 1 : 0 : 3
√

2) (1 : 0 : 1 : 1) (1 : −ζ3 : 3
√

2 : 0)

generator g1 := (τ, (1, 0)) g2 := (σ2, (2, 2)) g3 := (στ, (0, 1))

On the second curve C2 the action φ2 is defined as

φ2 : S3 × Z2
3 → Aut(C2),

(
σiτ j , (a, b)

)
7→[

(y0 : y1 : y2 : y3) 7→ (ζi3y[j] : y[j+1] : ζa+2b+2i
3 y2 : ζ2a+2b+i

3 y3)
]
.

As in the previous case, we leave to the reader to checking that this defines a
group action and note that the automorphisms φ2(σiτ j , (a, b)) are precisely
the deck transformations of the cover

λ2 : C2
9:1−→ P1 6:1−→ P1,

(y0 : y1 : y2 : y3) 7→ (y0 : y1) 7→
(
y3

0y
3
1 : (y6

0 + y6
1)/2

)
.

Hence C2/
(
S3 × Z2

3

)
' P1 and λ2 is the quotient map. The cover is branched

along q1 := (1 : 1), q2 := (0 : 1), q3 := (1 : λ) and q4 := (−1 : 1),
corresponding to the four orbits of the points with non trivial stabilizer,
of respective length 27, 18, 18 and 9. Note that the points qj are pairwise
distinct under the assumption λ 6= −1, 1.

A representative of each orbit and a generator of the stabilizer is given
by:

q1 q2
rep (1 : ζ3 : 3

√
2 : 3
√

2− 2λ) (0 : 1 : 1 : 1)
gen h1 := (στ, 0) h2 := (σ, (1, 0))

q3 q4

rep (1 :
3
√
λ−
√
λ2 − 1 :

3
√

1 + λ−
√
λ2 − 1 : 0) (1 : −1 : 0 : 3

√
2 + 2λ)

gen h3 := (Id, (1, 1)) h4 := (τ, (1, 2))

.

We compute the action of S3 × Z2
3 on H0(Ci,Ω

1
Ci

).
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By standard adjunction theory H0(C1,Ω
1
C1

) is isomorphic to H0(C1,

OC1(2)), isomorphism mapping a monomial x2−α−β−γ
0 xα1x

β
2x

γ
3 to the 1-form

ωαβγ that in affine coordinates is

ωαβγ := uαvβ−2tγ−2du, where u :=
x1

x0
v :=

x2

x0
and t :=

x3

x0
.

The character of the canonical representation of C1, the action of S3 × Z2
3

on H0(C1,Ω
1
C1

), can be computed by the standard Chevalley-Weil formula
and is amount to

χ1
can = ε21 ·ε22+sgn·ε1 ·ε2+sgn·ε2+sgn·ε1+µ·ε1 ·ε2+µ·ε21 ·ε2+µ·ε1 ·ε22. (6.3)

We give an explicit decomposition in irreducible subspaces. Using the ex-
pression in affine coordinates we obtain

(σiτ j , (a, b)) · ωαβγ = φ1(
(
σiτ j , (a, b)

)−1
)∗(ωαβγ) =

(−1)j(β−1)ζ
a(β−2)+b(γ−2)+(α−(2α+β+γ−2)[j]+2β+2γ−7)i
3 ω(α−(2α+β+γ−2)[j])βγ .

A tedious but straightforward computation gives the following decomposi-
tion:

H0(C1,Ω
1
C1

) =〈ω011〉ε21·ε22 ⊕ 〈ω100〉sgn·ε1·ε2 ⊕ 〈ω020〉sgn·ε2 ⊕ 〈ω002〉sgn·ε1⊕

〈ω000, ω200〉µ·ε1·ε2 ⊕ 〈ω010, ω110〉µ·ε21·ε2 ⊕ 〈ω001, ω101〉µ·ε1·ε22 .

Similarly, adjunction theory gives an isomorphism among H0(C2,Ω
1
C2

) and

H0(C2,OC2(4)) mapping a monomial y4−α−β−2γ
0 yα1 y

β
2 y

γ
3 to the 1-form ω′αβγ

that in affine coordinates is

ω′αβγ := (u′)α(v′)β−2(t′)γ−2du′,

where u′ :=
y1

y0
v′ :=

y2

y0
and t′ :=

y3

y2
0

.

We obtain a basis of 19 dimension space H0(C2,OC2(4)) by taking the 22
monomials of degree 4 in the variables yj and removing y0y

3
2, y1y

3
2 and

y4
2, that can be expressed in terms of the other monomials using the cubic

equation defining C2. Accordingly we get a basis ofH0(C2,Ω
1
C2

) by removing
from that set ω′αβγ the 1-forms ω′040, ω

′
030 and ω′130. The canonical character

of C2 is given by Chevalley-Weil as

χ2
can =sgn · ε21 · ε2 + sgn · ε21 · ε22 + sgn · ε1 · ε2 + sgn · ε1 + sgn · ε22 + µ · ε1

+ µ · ε2 + 2µ · ε22 + sgn · ε21 + ε21 + µ · ε21 + µ · ε1 · ε2,
(6.4)
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and the action on H0(C2,Ω
1
C2

) computed in affine coordinates as above is

(σiτ j , (a, b)) · ω′αβγ = φ2(
(
σiτ j , (a, b)

)−1
)∗(ω′αβγ) =

(−1)jζ
a(2β+γ)+b(β+γ−4)+(α−(2α+β+2γ−4)[j]+2β+γ+1)i
3 ω′(α−(2α+β+2γ−4)[j])βγ .

Another tedious computation gives the decomposition

H0(C2,Ω
1
C2

) =〈ω′002〉sgn·ε21·ε2 ⊕ 〈ω
′
021〉sgn·ε21·ε22 ⊕ 〈ω

′
120〉sgn·ε1·ε2

⊕ 〈ω′101〉sgn·ε1 ⊕ 〈ω′200〉sgn·ε22 ⊕ 〈ω
′
001, ω

′
201〉µ·ε1

⊕ 〈ω′011, ω
′
111〉µ·ε2 ⊕

(
〈ω′000, ω

′
400〉 ⊕ 〈ω′100, ω

′
300〉

)
µ·ε22

⊕ 〈ω′010 + ω′310〉sgn·ε21 ⊕ 〈ω
′
010 − ω′310〉ε21 ⊕ 〈ω

′
110, ω

′
210〉µ·ε21

⊕ 〈ω′220, ω
′
020〉µ·ε1·ε2 .

We consider unmixed quotients S := (C1 × C2)/
(
S3 × Z2

3

)
modulo a

diagonal action φ1×(φ2 ◦Ψ), where Ψ is one of the automorphisms of S3×Z2
3.

Firstly we study the singularities of S. We observe that C1 and C2 have
stabilizers of order 6, 3 and 6 and 2, 3, 3 and 6 respectively. Hence 18 points
of C1 and 36 points of C2 have stabilizer of even order. However S3 × Z2

3

has only three elements of order 2 and they are in the same conjugacy class.
This means that each of these three elements fix exactly 6 · 12 = 72 points
of C1 × C2. Thus S can never be smooth and if it admits only nodes, then
they are in total 3 · 72/27 = 8.
Now let us consider the following automorphisms of S3 × Z2

3

Ψ1 = Id, Ψ2 =

({
σ 7→ σ

τ 7→ τσ
,

(
0 1
2 0

))
,

Ψ3 =

({
σ 7→ σ2

τ 7→ τ
,

(
0 2
1 0

))
, Ψ4 =

({
σ 7→ σ2

τ 7→ τ
,

(
0 2
2 0

))
.

(6.5)

A direct computation shows us that for these four choices of Ψ the surface
S has exactly 8 nodes and no other singularities.

Remark 6.2.1. We use the Theorem 4.5.8 proving that the families of product
-quotient surfaces given by these two topological types of group actions on
curves having only eight nodes as singularities are those presented in this
section.

The vector space H0(KS) is isomorphic to the invariant subspace(
H0(Ω1

C1
)⊗H0(Ω1

C2
)
)S3×Z2

3 , where the action on the tensor product is di-

agonal, i.e.
(
σiτ j , (a, b)

)
∈ S3 × Z2

3 acts via

φ1(
(
σiτ j , (a, b)

)−1
)∗ ⊗ φ2(Ψ(

(
σiτ j , (a, b)

)−1
))∗. (6.6)
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For each character η of S3 × Z2
3 define its twist by Ψ as

ηΨ := η ◦Ψ−1.

Pulling back H0(KS) to C1 × C2 we obtain from Theorem 5.2.1 that

Lemma 6.2.2. A basis of H0(KS) is given by the
(
S3 × Z2

3

)
-invariant 2-

forms of H0(Ω1
C1

)⊗H0(Ω1
C2

) with respect to the action (6.6). Hence(
H0(Ω1

C1
)⊗H0(Ω1

C2
)
)S3×Z2

3 =
⊕
η 6=0

(
H0(Ω1

C1
)η ⊗H0(Ω1

C2
)ηΨ

)S3×Z2
3 ,

where H0(Ω1
Ci

)η is the isotypic component of H0(Ω1
Ci

) of character η. More-
over

pg = 〈χ1
can · χ2

can, 1〉 =
∑
η 6=0

〈χ1
can, η〉 · 〈χ2

can, ηΨ〉.

Denote by ωjklmrs := ωjkl⊗ω′mrs. We can now state and prove our main
result:

Theorem 6.2.3. For all Ψ ∈ Aut(S3 × Z2
3) in (6.5), the diagonal action

φ1 × (φ2 ◦Ψ) of S3 × Z2
3 on the product of the two curves C1 and C2 is not

free. The quotient is a canonical model of a regular surface S of general
type with K2

S = 24, pg = 3 and with 8 rational double points as singularities
of type 1

2(1, 1). A basis of H0(KS), the canonical map ΦKS in projective
coordinates and its degree are stated in the Table 6.2.

Proof. We have already mentioned that for all Ψ in (6.5) the action is not
free and the quotient S has 8 singularities of type 1

2(1, 1) and no other
singularities. The genus of the two curves is g(Ci) ≥ 2, hence C1 × C2 has
ample canonical divisor and so S has ample canonical divisor too. It follows
S is a canonical model.

The self-intersection of the canonical divisor of each S is amount to

K2
S =

8(g(C1)− 1)(g(C2)− 1)

|S3 × Z2
3|

= 24.

They are regular surfaces, because they do not possess any non-zero
holomorphic one-forms, since Ci/

(
S3 × Z2

3

)
is biholomorphic to P1. The

geometric genus of each S is therefore equal to (see Theorem 4.4.5)

pg = χ(OS)− 1 =
(g(C1)− 1)(g(C2)− 1)

|S3 × Z2
3|

+
1

12

(
8 · 3

2

)
− 1 = 3.

Using Lemma 6.2.2 we have computed a basis of H0(KS). In fact since we
have proved that pg = 3 it is enough to verify that the given elements of
the table are invariant for the corresponding action. Applying the explicit
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isomorphisms from H0(C1,Ω
1
C1

) to H0(C1,OC1(2)) and from H0(C2,Ω
1
C2

)
to H0(C2,OC2(4)) we obtain the product of quadrics and quartics defining
the canonical map in the table.

It remains to determine the degree of ΦKS for each surface S. Instead
to work on S it is convenient to work on C1 × C2, following the strategy of
Section 5.3:

C1 × C2
λ12 //

ΦKC1×C2
&&

S
ΦKS // P2

::

P10·19−1.

That the map ΦKS ◦ λ12 is induced by the sublinear system |KC1×C2 |S3×Z2
3

of |KC1×C2 | generated by the three invariant 2-forms defining ΦKS .
We resolve the indeterminacy of Φ

K
S3×Z2

3
C1×C2

= ΦKS ◦ λ12 by a sequence of

blowups ÿ�C1 × C2
//

Φ
M̂ %%

C1 × C2

Φ
K
S3×Z2

3
C1×C2��

P2.

Here the morphism Φ“M is induced by the base-point free linear system |M̂ |
obtained as follow: let |M | be the mobile part of |KC1×C2 |S3×Z2

3 .
We blow up the base-points of |M |, take the pullback of the mobile part
|M | and remove the fixed part of this new linear system. We repeat the
procedure until we obtain a base-point free linear system |M̂ |.

From Lemma 5.3.1, then the self-intersection M̂2 is positive if and only
if Φ“M is not composed with a pencil. In this case Φ“M is onto and it holds:

deg(ΦKS ) =
1

|S3 × Z2
3|

deg(Φ“M ) =
1

54
M̂2.

For the computation of the resolution, it is convenient to write the divisors
of the product of quadrics and quartics defining ΦKS (and hence Φ

K
S3×Z2

3
C1×C2

)

as linear combinations of the curves Fj := {xj = 0} and Gk := {yk = 0}
on C1 × C2. We point out that these curves are reduced and intersect
pairwise transversally thanks to the assumption λ 6= −1, 1. In particular
(Fj , Fk) = (Gj , Gk) = 0 and (Fj , Gk) = 81, for k 6= 3, while (Fj , G3) = 162.
Consider the first surface in the table. Here, the divisors of the three prod-
ucts of quadrics and quartics spanning the subsystem |Φ

K
S3×Z2

3
C1×C2

| are:

F0 + F1 + 2G2 +G3, 2F2 + 2G0 + 2G1 and 2F3 + 4G2. (6.7)

Then |Φ
K
S3×Z2

3
C1×C2

| has not fixed part so that

M2 = (λ∗12KS)2 = |S3 × Z2
3| ·K2

S = 54 · 24.
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Furthermore, |Φ
K
S3×Z2

3
C1×C2

| has precisely 81 (non reduced) isolated base-points

F2 ∩ G2. We can perform the computation of the difference M2 − M̂2 by
applying the Correction term formula 5.4.3, recursively for each base-point
of |Φ

K
S3×Z2

3
C1×C2

|:

In a neighbourhood of each of these base-points the three divisors are re-
spectively

2G2, 2F2 and 4G2.

Since F2 and G2 are transversal we are in the situation of the Theorem
5.4.3, with H = G2 and K = F2, a = 4, b = c = 2, and d = 0. This implies
ad+ bc = 4 ≤ ab = 8. The correction term is ab+ cd = 4 for each of the 81
base-points. Thus

M2 − M̂2 = 4 · 81.

The degree of the canonical map is therefore given by

deg(ΦKS ) =
1

54
M̂2 =

1

54

(
M2 − (M2 − M̂2)

)
=

1

54
(54 · 24− 4 · 81) = 18.

Now we take in exam the second surface in our table. Here the subsystem
|Φ
K
S3×Z2

3
C1×C2

| has not fixed part and it is spanned by:

D1 := 2F2+G0+G1+G3, D2 := 2F3+2G0+2G1 D3 := F2+2G2+∆,

where ∆ = (ζ3x0y
2
0 − x1y

2
1). The (set-theoretical) base locus is

F2 ∩G0, F2 ∩G1, ∆ ∩G0,∆ ∩G1, and ∆ ∩ F3 ∩G3.

We remark that the other pieces of the base locus are empty. In fact that
points would belong in some Fi∩Fj orGi∩Gj and we have already mentioned
that they are pairwise disjoint.

We determine the correction term to the self intersection number for
each of these base-points of |Φ

K
S3×Z2

3
C1×C2

|.

We consider first the 81 points F2 ∩ Gi, for i = 0, 1. Here F2 and Gi
intersect transversally on each of them. Around one of these points, the
divisors Dk are given by Gi + 2F2, 2Gi and F2. We are in the situation of
the Theorem 5.4.3, with H = Gi and K = F2, a = d = 2 and b = c = 1.
Hence ad+ bc = 5 ≥ 2 = ab, which yields ab = 2 as correction term.

We let go on to the 81 base-points ∆∩Gi. The local coordinates around
one of these points are X := xj/xi and Y := yi/yj , where j = 0, 1, j 6= i. So
the divisors Dk are respectively given by

{Y = 0}, 2{Y = 0} and {ζ1+i
3 Y 2 −X = 0}.

Thus D1 and D3 intersect transversally in (0, 0) and we fall down once more
in the situation of the Theorem 5.4.3. Here H = D3 and K = D1, a = b = 1,
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c = 0 and d = 2. Since ad + bc = 2 ≥ 1 = ab, then the correction term is
amount to ab = 1.

We consider finally the points ∆ ∩ F3 ∩ G3. These points satisfy the
equations 

y3
3 = y6

0 + y6
1 − 2λy3

0y
3
1 = 0

x2
3 = x3

0 + x3
1 = 0

ζ3x0y
2
0 − x1y

2
1 = 0

. (6.8)

The last two equations imply that x3
1 = −x3

0 and

x3
0y

6
0 = (ζ3x0y

2
0)3 = (x1y

2
1)3 = x3

1y
6
1 = −x3

0y
6
1.

Thus y6
0 + y6

1 = 0 and comparing it with the first equation of 6.8 we get
λy3

0y
3
1 = 0. Therefore ∆ ∩ F3 ∩G3 is non empty only if λ = 0.

Let us suppose λ 6= 0. Then

M2 − M̂2 = 2 · 2 · 81 + 2 · 81 = 6 · 81,

and the degree of the canonical map is amount to

deg(ΦKS ) =
1

54

(
M2 − (M2 − M̂2)

)
=

1

54
(54 · 24− 6 · 81) = 15.

It remains to consider the case when λ = 0. The base-points ∆ ∩ F3 ∩ G3

are the following 54 ones:

tk :=
((

1 : −ζk1
3 :

3
√

2ζk2
3 : 0

)
,
(

1 : e
πi
6 ζk3

6 :
6
√

2e
πi
12

(1−2[k3]2)ζk4
3 : 0

))
,

with k1 + k3 ≡ 2 mod 3,

where ki = 0, 1, 2, for i 6= 3, and k3 = 0, . . . , 5. Fix coordinates X :=

x1/x0 + ζ2
3 and Y := y1/y0 − e

πi
6 around one of these points, for example

that one for k = (2, 0, 0, 0). The divisors Dk are locally given by

{Y = 0}, 2{X = 0}, {Y (2e
πi5
6 +Y −2e

πi5
6 X−XY ) = 0} = {Y = 0}.

In this case H = {X = 0} and K = {Y = 0} and a = 2 and b = d = 1,
c = 0. The correction term is ab = 2.
Hence

M2 − M̂2 = 2 · 2 · 81 + 2 · 81 + 2 · 54 = 6 · 81 + 2 · 54.

The degree of the canonical map is therefore given by

deg(ΦKS ) =
1

54

(
M2 − (M2 − M̂2)

)
=

1

54
(54 · 24− 6 · 81− 2 · 54) = 13.

The degree of the canonical map of all other surfaces of Table 6.2 can be
computed in a similar way.
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Table 6.2

N
o

Ψ
B

as
is

of
H

0
(K

S
)

Φ
K
S
(x
,y

)
d

eg
(Φ

K
S
)

1.
I
d

{ω
1
0
0
0
2
1
,ω

0
2
0
2
0
0
,ω

0
0
2
0
4
0
}

(x
0
x
1
y
2 2
y 3

:
x
2 2
y
2 0
y
2 1

:
x
2 3
y
4 2
)

1
8

2.
Ψ

2
{ω

0
2
0
1
0
1
,ω

0
0
2
2
0
0
,ζ

3
ω
0
1
0
0
2
0
−
ω
1
1
0
2
2
0
}

(x
2 2
y 0
y 1
y 3

:
x
2 3
y
2 0
y
2 1

:
x
2
y
2 2
(ζ

3
x
0
y
2 0
−
x
1
y
2 1
))

{ 1
5

if
λ
6=

0

1
3

if
λ

=
0

3.
Ψ

3
{ω

1
0
0
0
0
2
,ω

0
2
0
0
4
0
,ω

0
0
1
2
2
0

+
ω
1
0
1
0
2
0
}

(x
0
x
1
y
2 3

:
x
2 2
y
4 2

:
x
3
y
2 2
(x

0
y
2 1

+
x
1
y
2 0
))

{ 1
8

if
λ
6=

0

1
6

if
λ

=
0

4.
Ψ

4
{ω

1
0
0
1
2
0
,ω

0
2
0
1
0
1
,ω

0
0
0
0
2
0

+
ω
2
0
0
2
2
0
}

(x
0
x
1
y 0
y 1
y
2 2

:
x
2 2
y 0
y 1
y 3

:
y
2 2
(x

2 0
y
2 0

+
x
2 1
y
2 1
))

1
2
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Remark 6.2.4. In this case we can also compute the degree of the canonical
map with the strategy developed in Chapter 5 only for the family no. 1 in
Table 6.2 since in the other cases there is one character χ of degree two such
that χ occurs on χ1

can and χ occurs on χ2
can.

We compute the degree of the canonical map of the surface no. 1. in
Table 6.2 with the strategy developed in Chapter 5.

Consider the first surface S in Table 6.1. It is described by the following
pair of spherical systems of generators:

[(τ, (1, 0)), (σ2, (2, 2)), (στ, (0, 1))], [(στ, 0), (σ, (1, 0)), (Id, (1, 1)), (τ, (1, 2))]

We apply Chevalley-Weil formula [Gle16, Thm. 1.3.3] to both the curves C1

and C2 to perform the canonical characters χ1
can and χ2

can. They are (6.3)
and (6.4) respectively.

We notice that the irreducible characters χ such that χ occurs on χ1
can

and χ occurs on χ2
can have degree one and are precisely:

sgn · ε1 · ε2, sgn · ε2, and sgn · ε1.

From Theorem 5.2.1 we have H2,0(S) =
(
H1,0(C1)⊗H1,0(C2)

)S3×Z2
3 de-

composes into three pieces of dimension one:

H1,0(C1)sgn·ε1·ε2 ⊗H1,0(C2)sgn·ε
2
1·ε22 , H1,0(C1)sgn·ε2 ⊗H1,0(C2)sgn·ε

2
2 ,

H1,0(C1)sgn·ε1 ⊗H1,0(C2)sgn·ε
2
1 .

Theorem 5.2.8 determines which is respectively a generator of the associated
linear subsystem given by each of these pieces:

Rvert(0,1) +Rhor(1,λ) + 2Rhor(−1,1),

2Rvert(1,1) + 2Rhor(0,1),

2Rvert(−1,1) + 4Rhor(−1,1).

Thus, the above three divisors are spanning the linear system |KC1×C2 |S3×Z2
3 .

Notice that what we have obtained agrees with (6.7) in the proof of the
Theorem 6.2.3. Indeed, we observe that

F2 = Rvert(1,1), F0 + F1 = Rvert(0,1), F3 = Rvert(−1,1),

G0 +G1 = Rhor(0,1), G3 = Rhor(1,λ), G2 = Rhor(−1,1).

Finally, it is sufficient to follow the rest of the proof of Theorem 6.2.3 starting
from (6.1) to compute the degree of the canonical map.
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6.3 Example with degree 24

This is a joint work with Dr. Davide Frapporti. The surfaces S constructed
here are a quotient of a product of the two curves C1 and C2 modulo a
suitable diagonal action of the group D4 × Z2

2.

Notation: Let D4 = 〈r, t|r4, t2, trt−1 = r3〉 be the dihedral group of
order 8, where r and t denote a rotation (of order 4) and a reflection (of order
2) of the square respectively. Consider also the five irreducible characters of
D4, so the trivial character 1 and the characters

µ1 : D4 → Z2
2 → C∗, tjri 7→ (−1)i,

µ2 : D4 → Z2
2 → C∗, tjri 7→ (−1)j ,

µ1 · µ2 : D4 → Z2
2 → C∗, tjri 7→ (−1)i+j ,

χ :=
1

2
(χreg − (1 + µ1 + µ2 + µ1 · µ2)) .

where χreg is the character of the regular representation of D4.
Let us fix a basis e1, e2 of Z2

2 and consider the dual characters ε1, ε2 of e1

and e2, i.e. the characters defined by

εi(ae1 + be2) := (−1)aδ1i+bδ2i ,

where δij is the Kronecker delta.

We consider the projective space P4(1, 1, 1, 1, 2), with homogeneous co-
ordinates x0, · · · , x4. Here x4 is the variable of weight 2. Let us consider
also the projective space P5 with homogeneous coordinates y0, . . . , y5.

We take the curves C1 ⊆ P4(1, 1, 1, 1, 2), and C2 ⊆ P5 as follows

C1 :


x2

1 = λ1−1
2 x2

3 + λ1+1
2 x2

0

x2
2 = λ1+1

2 x2
3 + λ1−1

2 x2
0

4x2
4 = λ2

2(x2
3 + x2

0)2 − (x2
3 − x2

0)2

, λi /∈ {−1, 0, 1}, λ2 6= ±λ1,

C2 :


y2

2 = y2
0 − y2

1

y2
3 = µ2

3y
2
0 − y2

1

y2
4 = (µ1y0 − y1)(µ2y0 − y1)

y2
5 = (µ1y0 + y1)(µ2y0 + y1)

, µi /∈ {−1, 0, 1}, µi 6= ±µj , i 6= j.

Both curves are smooth, in fact this is the reason why we assume those
restrictions on the coefficients λi and µj in the definition of C1 and C2.

On the first curve C1, we consider the action φ1 : D4 × Z2
2 → Aut(C1)

given by

(1, (a, b)) 7→
[
x 7→ (x0 : (−1)a+bx1 : (−1)ax2 : (−1)bx3 : (−1)a+bx4)

]
,
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(
tjri, (0, 0)

)
7→[

x 7→ (x3[i] : (−1)j+
i(i+1)

2 x1+[i] : (−1)
i(i−1)

2 x2−[i] : x3−3[i] : (−1)i+jx4)
]
.

We leave to the reader to checking that this action is well-defined.
Note that the automorphisms φ1(tjri, (a, b)) are precisely the deck trans-

formations of the cover

π1 : C1
16:1−→ P1 2:1−→ P1, x 7→ (x2

3+x2
0 : x2

3−x2
0) 7→

(
(x2

3 + x2
0)2 : (x2

3 − x2
0)2
)
.

In particular C1/
(
D2 × Z2

2

)
' P1 and π1 is the quotient map. The cover is

branched over p1 := (1 : 0), p2 := (1 : 1) and p3 := (1 : λ2
1), p4 := (1 : λ2

2)
and p5 := (0 : 1), corresponding to the five orbits of the points with non
trivial stabilizer, each one of length 16. Note that pj are pairwise distinct
thanks to the assumptions λi /∈ {−1, 0, 1}, and λ2 6= ±λ1. A representative
of each orbit and a generator of the stabilizer is given by:

p1 p2

rep. (1 :
√
λ1 :
√
λ1 : 1 : λ2) (0 :

√
λ1 − 1 :

√
λ1 + 1 :

√
2 :
√
λ2

2 − 1)

gen. g1 := (tr, (0, 0)) g2 := (tr2, (0, 1))

p3

rep. (
√

1− λ1 : 0 :
√

2λ1 :
√

1 + λ1 :
√
λ2

2 − λ2
1)

gen. g3 := (tr2, (1, 0))

p4 p5

rep. (
√

1− λ2 :
√
λ1 − λ2 :

√
λ1 + λ2 :

√
1 + λ2 : 0) (i : i : 1 : 1 : i)

gen. g4 :=
(
r2, (1, 0)

)
g5 := (tr3, (0, 1))

.

On the second curve C2 the action φ2 : D2 × Z2
2 → Aut(C2) is defined as

(1, (a, b)) 7→ [y 7→ (y0 : y1 : (−1)a+by2 : (−1)by3 : y4 : y5)],

(
tjri, (0, 0)

)
7→ [y 7→

(y0 : (−1)jy1 : y2 : (−1)i+jy3 : (−1)
i(3i+1)

2
+ijy4+[j] : (−1)

i(3i−1)
2

+ijy5−[j])].

As in the previous case, we leave it to the reader to check that this action
is well-defined and note that the automorphisms φ2(tjri, (a, b)) are precisely
the deck transformations of the cover

π2 : C2
16:1−→ P1 2:1−→ P1, y 7→ (y0 : y1) 7→

(
y2

0 : y2
1

)
.

Hence C2/
(
D2 × Z2

2

)
' P1 and π2 is the quotient map. The cover is

branched over q1 := (0 : 1), q2 := (1 : 0), q3 := (1 : 1), q4 := (1 : µ2
1),
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q5 := (1 : µ2
2) and q6 := (1 : µ2

3), corresponding to the six orbits of the
points with non-trivial stabilizer, each one of length 16. Note that the
points qj are pairwise distinct under the assumptions µi /∈ {−1, 0, 1}, and
µi 6= ±µj , i 6= j. A representative of each orbit and a generator of the
stabilizer is given by:

q1 q2
repres. (0 : 1 : i : i : 1 : 1) (1 : 0 : 1 : µ3 :

√
µ1µ2,

√
µ1µ2)

gen. h1 :=
(
tr3, (1, 1)

)
h2 := (tr, (1, 0))

q3
repres. (1 : 1 : 0 :

√
µ2
3 − 1,

√
(µ1 − 1)(µ2 − 1) :

√
(µ1 + 1)(µ2 + 1))

gen. h3 := (1, (1, 0))

q4
repres. (1 : µ1 :

√
1− µ2

1 :
√
µ2
3 − µ2

1 : 0 :
√

2µ1(µ2 + µ1))
gen. h4 := (t, (0, 0))

q5
repres. (1 : µ2 :

√
1− µ2

2 :
√
µ2
3 − µ2

2 : 0 :
√

2µ2(µ2 + µ1))
gen. h5 := (t, (0, 0))

q6
repres. (1 : µ3 :

√
1− µ2

3 : 0 :
√

(µ1 − µ3)(µ2 − µ3) :
√

(µ1 + µ3)(µ2 + µ3))

gen. h6 :=
(
r2, (1, 1)

) .

We compute the action of D4 × Z2
2 on H0(Ci,Ω

1
Ci

). By the adjunction for-
mula H0(C1,Ω

1
C1

) is isomorphic to H0(C1,OC1(2)), isomorphism mapping

a monomial x2−α−β−γ−2δ
0 xα1x

β
2x

γ
3x

δ
4 to the 1-form ωαβγδ that in local affine

coordinates is

ωαβγδ := uα−1vβ−1tγsδ−1dt,

where u :=
x1

x0
v :=

x2

x0
, t :=

x3

x0
and s :=

x4

x2
0

.

We obtain a basis of 9 dimension space H0(C1,OC1(2)) by taking the 11
monomials of degree 2 in the variables x0, . . . x3, x4, and removing x2

1, x2
2,

that can be expressed in terms of the other monomials using the quadratic
equations defining C1. Accordingly we get a basis of H0(C1,Ω

1
C1

) by remov-
ing from that set ωαβγδ the 1-forms ω2000, ω0200.

The canonical character of C1 is given by the Chevalley-Weil formula as

χ1
can = µ2 · ε1 + µ2 + µ1 · ε1 + χ+ χ · ε2 + µ1 · ε1 · ε2 + ε1 · ε2.

We give an explicit decomposition in irreducible subspaces. Using the ex-
pression in affine coordinates we obtain

(tjri, (a, b)) · ωαβγδ = φ1(
(
tjri, (a, b)

)−1
)∗(ωαβγδ) =

= (−1)K ω(α−(α−β)[i])(β+(α−β)[i])(γ−γ[i]+(2−(α+β+γ+2δ))[i])δ
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where

K := a(α+ β + δ − 1) + b(α+ γ + δ − 1) + j(α+ δ) +
3i(3i+ 1)

2
(α+ β)

+ i(β + δ − 1 + j(α+ β)).

A tedious but straightforward computation gives the following decomposi-
tion:

H0(C1,Ω
1
C1

) =〈ω1100〉µ2·ε1 ⊕ 〈ω0001〉µ2 ⊕ 〈ω0010〉µ1·ε1 ⊕ 〈ω1000, ω0110〉χ
⊕ 〈ω1010, ω0100〉χ·ε2 ⊕ 〈ω0000 + ω0020〉µ1·ε1·ε2

⊕ 〈ω0000 − ω0020〉ε1·ε2 .

Similarly, adjunction theory gives an isomorphism among H0(C2,Ω
1
C2

) and

H0(C2,OC2(2)) mapping a monomial y2−α−β−γ−δ−θ
0 yα1 y

β
2 y

γ
3y

δ
4y
θ
5 to the 1-

form ω′αβγδθ that in affine coordinates is

ω′αβγδθ := (u′)α(v′)β−1(t′)γ−1(s′)δ−1(r′)θ−1du′,

where u′ :=
y1

y0
v′ :=

y2

y0
t′ :=

y3

y0
s′ :=

y4

y0
and r′ :=

y5

y0
.

We obtain a basis of 17 dimension space H0(C2,OC2(2)) by taking the 21
monomials of degree 2 in the variables yj and removing y2

2, y2
3, y2

4, and y4
5,

that can be expressed in terms of the other monomials using the quadratic
equations defining C2. Accordingly we get a basis of H0(C2,Ω

1
C2

) by remov-
ing from that set ω′αβγδθ the 1-forms ω′02000, ω

′
00200, ω′00020, and ω′00002. The

canonical character of C2 is given by Chevalley-Weil as

χ2
can = 2µ1·µ2·ε1+µ2·ε1+2χ·ε1·ε2+µ2·ε1·ε2+µ1·µ2·ε2+µ2·ε2+µ1·µ2·ε1·ε2+

+ χ+ χ · ε1 + ε1 + µ2,

and the action on H0(C2,Ω
1
C2

) computed in affine coordinates as above is

(tjri, (a, b)) · ω′αβγδθ = φ2(
(
tjri, (a, b)

)−1
)∗(ω′αβγδθ) =

= (−1)K ω′αβγ((1−[i])δ+[i]θ)([i]δ+(1−[i])θ)

where

K := a(β − 1) + b(β + γ + δ + θ) + j + i(α+ β − 1) + ij(δ + θ)+

+

(
3i(3i+ 1)

2
+

[j]2([j]2 + 1)

2

)
δ +

3i(3i− 1)

2
θ.
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Another tedious computation gives the decomposition

H0(C2,Ω
1
C2

) =
(
〈ω′00000〉 ⊕ 〈ω′20000〉

)
µ1·µ2·ε1 ⊕ 〈ω

′
10000〉µ2·ε1

⊕
(
〈ω′10001, ω

′
10010〉 ⊕ 〈ω′00010, ω

′
00001〉

)
χ·ε1·ε2

⊕ 〈ω′10100〉µ2·ε1·ε2 ⊕ 〈ω′11000〉µ1·µ2·ε2 ⊕ 〈ω′01000〉µ2·ε2

⊕ 〈ω′00100〉µ1·µ2·ε1·ε2 ⊕ 〈ω′01001, ω
′
01010〉χ

⊕ 〈ω′00101, ω
′
00110〉χ·ε1 ⊕ 〈ω′00011〉ε1 ⊕ 〈ω′01100〉µ2 .

We consider the unmixed quotient S := (C1 × C2)/
(
D4 × Z2

2

)
modulo the

diagonal action φ1 × φ2. We observe that the non-trivial stabilizers of
the points on the first curve C1 are generated by (tr, (0, 0)), (tr2, (0, 1)),
(tr2, (1, 0)), (r2, (1, 0)), and (tr3, (0, 1)). However, none of these elements
have a fixed point on the second curve C2 under the action φ2. Thus, the
action φ1 × φ2 is free and the quotient surface S is smooth, projective, and
of general type. The latter holds because the genus of the two curves is
g(Ci) ≥ 2, hence C1 × C2 has ample canonical divisor, and so KS is ample
too.

By Theorem 5.2.1, the vector space H0(KS) is isomorphic to the invari-

ant subspace
(
H0(Ω1

C1
) ⊗ H0(Ω1

C2
)
)D4×Z2

2 , where the action on the tensor

product is diagonal, i.e.
(
σiτ j , (a, b)

)
∈ D4 × Z2

2 acts via

φ1(
(
σiτ j , (a, b)

)−1
)∗ ⊗ φ2(

(
σiτ j , (a, b)

)−1
)∗. (6.9)

Let denote by ωjklmrstvu := ωjklm⊗ω′rstvu. We can now state and prove our
main result:

Theorem 6.3.1. The diagonal action φ1×φ2 of D4×Z2
2 on the product of the

two curves C1 and C2 is free. The quotient is a smooth projective surface
S of general type with K2

S = 32, and pg = 3. In particular, S is quasi-
abelian, a basis of H0(KS) is {ω110010000, ω000101100, ω100001001 +ω011001010},
the canonical map ΦKS in projective coordinates is

ΦKS (x,y) = (x1x2y0y1 : x4y2y3 : y2(x0x1y5 + x2x3y4)) ,

and its degree d is equal to 24.

Proof. We have already mentioned that the action is free, and the quotient
S is smooth, projective, and of general type.

Hence the self-intersection of the canonical divisor of each S amounts to

K2
S =

8(g(C1)− 1)(g(C2)− 1)

|D4 × Z2
2|

=
8 · 8 · 16

32
= 32.

They are regular surfaces, because they do not possess any non-zero holo-
morphic one-forms, since Ci/

(
D4 × Z2

2

)
is biholomorphic to P1. The geo-

metric genus of each S is therefore equal to (see Theorem 4.4.5)

pg = χ(OS)− 1 =
(g(C1)− 1)(g(C2)− 1)

|D4 × Z2
2|

− 1 =
8 · 16

32
− 1 = 3.
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Since we have proved that pg = 3, we leave it to the reader to verify that
the given 2-forms are invariant for the action (6.9). Applying the explicit
isomorphisms from H0(C1,Ω

1
C1

) to H0(C1,OC1(2)) and from H0(C2,Ω
1
C2

)
to H0(C2,OC2(2)) we obtain the bi-quadrics defining the canonical map.

It remains to determine the degree of ΦKS . Instead of working on S it
is convenient to work on C1 × C2 by following the strategy of Section 5.3:

C1 × C2
λ12 //

ΦKC1×C2
&&

S
ΦKS // P2

;;

P9·17−1.

The map ΦKS ◦ λ12 is induced by the sublinear system |KC1×C2 |D4×Z2
2 of

|KC1×C2 | generated by the three invariant 2-forms defining ΦKS .
We resolve the indeterminacy of Φ

K
D4×Z2

2
C1×C2

= ΦKS ◦ λ12 by a sequence of

blowups, ÿ�C1 × C2
//

Φ
M̂ %%

C1 × C2

Φ
K
D4×Z2

2
C1×C2��

P2.

Here the morphism Φ“M is induced by the base-point free linear system |M̂ |
obtained as follow: let us consider the mobile part |M | of |KC1×C2 |D4×Z2

2 .
We blow up the base-points of |M |, take the pullback of |M | and remove
the fixed part of this new linear system. We repeat the procedure until we
obtain a base-point free linear system |M̂ |.

From Lemma 5.3.1 the self-intersection M̂2 is positive if and only if Φ“M
is not composed with a pencil. In this case Φ“M is onto and it holds:

deg(ΦKS ) =
1

|D4 × Z2
2|

deg(Φ“M ) =
1

32
M̂2.

For the computation of the resolution, it is convenient to write the divisors
of the bi-quadrics defining ΦKS (and hence Φ

K
D4×Z2

2
C1×C2

) as linear combinations

of the curves Fj := {xj = 0} and Gk := {yk = 0} on C1 × C2. We point
out that these curves are reduced. The Fj ’s are pairwise disjoint, and the
Gk’s as well, by the assumption on the coefficients λi and µj . Moreover Fj
and Gk meet transversally in each one of their 128 (if j 6= 4), resp. 256
(if j = 4), intersection points. Summarizing, (Fj , Fk) = (Gj , Gk) = 0 and
(Fj , Gk) = 128, for j 6= 4, while (F4, Gk) = 256.

The divisors spanning the subsystem |KC1×C2 |D4×Z2
2 are:

D1 := F1 +F2 +G0 +G1, D2 := F4 +G2 +G3 and D3 := G2 +∆,
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where ∆ = (x0x1y5 +x2x3y4). Hence |KC1×C2 |D4×Z2
2 has not fixed part and

M2 = (λ∗12KS)2 = |D4 × Z2
2| ·K2

S = 322.

The (set-theoretical) base locus of |M | = |KC1×C2 |D4×Z2
2 is contained in

F1 ∩G2, F2 ∩G2, G0 ∩ F4 ∩∆, and G1 ∩ F4 ∩∆

We remark that the other pieces of the base locus are empty. In fact, those
points would belong to some Fi ∩ Fj , or Gi ∩Gj .

We determine the correction term to the self intersection number for
each of these base-points of |M |.

We consider first the 128 points Fi ∩ G2, for i = 1, 2. Here Fi and G2

intersect transversally. Around one of these points, the divisors Dk are given
by Fi, G2, and G2. We are in the situation of the Correction Term formula
5.4.3 with H = Fi and K = G2, a = b = d = 1 and c = 0. Hence the
correction term is ab = ad+ bc = 1.

We go on showing that no other base-points arise from the loci G0∩F4∩
∆, and G1 ∩ F4 ∩∆. The points G0 ∩ F4 ∩∆ satisfy the equations

4x2
4 = λ2

2(x2
3 + x2

0)2 − (x2
3 − x2

0)2 = 0

y2
4 = (µ1y0 − y1)(µ2y0 − y1) = y2

1

y2
5 = (µ1y0 + y1)(µ2y0 + y1) = y2

1

x0x1y5 + x2x3y4 = 0

. (6.10)

The last equation implies that x2
0x

2
1y

2
5 = x2

2x
2
3y

2
4, so, through the second and

the third equations, we get

x2
0x

2
1 = x2

2x
2
3. (6.11)

Now we use the equations defining C1 to substitute in the equation (6.11)
the values x2

1 and x2
2 in function of x2

0 and x2
3:

x2
0

(
λ1 − 1

2
x2

3 +
λ1 + 1

2
x2

0

)
=

(
λ1 + 1

2
x2

3 +
λ1 − 1

2
x2

0

)
x2

3

=⇒ λ1 + 1

2
(x4

3 − x4
0) = 0.

We remember that we have assumed λ1 6= −1, so x4
3 = x4

0. Finally, substi-
tuting x2

3 with ±x2
0 in the first equation of the system (6.10), we get

0 = λ2
2(x2

3 + x2
0)2 − (x2

3 − x2
0)2 = 4λ2

2x
4
0, if x2

3 = x2
0

0 = λ2
2(x2

3 + x2
0)2 − (x2

3 − x2
0)2 = −4x4

0, if x2
3 = −x2

0.

The condition λ2 6= 0 that we have assumed for C1 and x0 6= 0 permits us
to conclude that both cases are not allowed. Hence G0 ∩ F4 ∩∆ is empty.
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It remains to study the points G1 ∩ F4 ∩∆, which satisfy the equations
4x2

4 = λ2
2(x2

3 + x2
0)2 − (x2

3 − x2
0)2 = 0

y2
4 = (µ1y0 − y1)(µ2y0 − y1) = µ1µ2y

2
0

y2
5 = (µ1y0 + y1)(µ2y0 + y1) = µ1µ2y

2
0

x0x1y5 + x2x3y4 = 0

. (6.12)

The last equation implies that x2
0x

2
1y

2
5 = x2

2x
2
3y

2
4, so, through the second and

the third equations, we get(
x2

0x
2
1 − x2

2x
2
3

)
µ1µ2 = 0.

However, by the assumptions on C2, we have µ1, µ2 6= 0, so x2
0x

2
1 = x2

2x
2
3,

that is the equation (6.11). Thus, following exactly the flow of the computa-
tions done after (6.11), we obtain a contradiction also in this case. Therefore
G1 ∩ F4 ∩∆ is empty.

Then
M2 − M̂2 = 1 · 128 + 1 · 128 = 256.

The degree of the canonical map amounts to

deg(ΦKS ) =
1

32

(
M2 − (M2 − M̂2)

)
=

1

32

(
322 − 256

)
= 24.





Chapter 7

Unbounded families with
canonical map of degree 4

This is a joint work [FP23a] together with Prof. Roberto Pignatelli.
An unbounded family of surfaces is a sequence of surfaces Sn with an ar-

bitrarily large Euler characteristic χ(OSn), namely limn→∞ χ(OSn) = +∞.
In Chapter 1 we have seen from a pioneering work of Beauville [Bea79]

and a Theorem of X. Gang [Xia86] that the degree δ of the canonical map
of a surface S, if we assume a large enough Euler characteristic, is bounded
from above by 8. Precisely, this follows by point (i) of Theorem 1.1.5:

δ ≤ 9 +
27− 9q(S)

pg − 2
≤ 9 for χ(OS) ≥ 31

and by [Xia86, Theorem 3], which excludes the case δ = 9 for χ(OS) ≥ 134.
Recall that the degree of the canonical map is a birational invariant, hence
we can assume S is minimal.

In the beautiful survey by M. Mendes Lopes and R. Pardini [MLP23]
can be found, among other things, examples of unbounded surfaces with
canonical map of degree δ ∈ {2, 4, 6, 8}.

The slope µ of a minimal surface S is defined as µ(S) :=
K2
S

χ(OS) . By

Bogomolov-Miyaoka-Yau inequality 1.1.4 µ(S) ≤ 9. Furthermore, for any
unbounded family Sn of minimal surfaces whose canonical map has a degree
of δ we have

δ(χ(OS)− 3) ≤ K2
S ≤ 9χ(OS) =⇒ lim inf µ(Sn) ∈ [δ, 9]. (7.1)

The above sentence 7.1 follows easily by applying in sequence lemmas 1.1.3,
1.1.1, and 1.1.2 proved in Chapter 1. This raises the following question
(compare [MLP23, Question 5.6]):

Question: For all δ, which are the accumulation points of the slopes in
the range [δ, 9] of unbounded families of minimal surfaces whose canonical
map has a degree of δ?
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We know only three constructions of unbounded families of minimal
surfaces whose canonical map has a degree of 4.

The first, mentioned in [MLP23], is obtained by taking the product of
two hyperelliptic curves. All these surfaces have slope 8.

The second, see [Bin21b, Remark 3], is a construction as Galois cover of
P1 × P1 with Galois group (Z/2Z)3; they also have limµ (Sn) equal to 8.

The last, constructed by F. J. Gallego and G. P. Purnaprajna, give
unbounded families with limµ (Sn) equal either to 8 or to 4, see the last
column of [GP08, Table at page 5491]

In this chapter, we show that limµ (Sn), when Sn is an unbounded family
of minimal surfaces whose canonical map has a degree of 4, may assume
infinitely many different values. More precisely, we prove the main Theorem
7.3.1.

All these surfaces are product-quotient surfaces, those studied in Chapter
4. Their canonical map is studied in Chapter 5.

7.1 Generalized Wiman Curves

By a classical result of Harvey and Wiman ([Har66, Wim95]) an automor-
phism of a curve of genus g at least 2 has order at most 4g + 2. Moreover,
there is exactly one curve of genus g with an automorphism of order 4g + 2
for each integer g ≥ 2, usually referred in literature as the Wiman curve of
genus g.

Definition 7.1.1 (Generalized Wiman curves). Consider two positive
integers n, d ≥ 1.

A generalized Wiman curve of type n, d is a curve in the weighted pro-
jective space P

(
1, 1,

⌈
nd
2

⌉)
defined by an equation of the form

y2 = x
[nd]2
0 f(xn0 , x

n
1 )

where f is a homogenous polynomial of degree d in the two variables x0, x1

without multiple roots such that neither x0 nor x1 divide f .

Remark 7.1.2. The assumptions on the polynomial f ensure that any gen-
eralized Wiman curve is smooth.

By adjunction a generalized Wiman curve C of type n, d has genus g =⌈
nd
2

⌉
− 1. In fact a basis of H0(C,KC) is given by the monomials

x
dnd2 e−2

0 , x
dnd2 e−3

0 x1, . . . , x0x
dnd2 e−3

1 , x
dnd2 e−2

1 (7.2)

A generalized Wiman curve of type n, d has the following two natural
commuting automorphisms

ι : (x0, x1, y) 7→ (x0, x1,−y) ρ : (x0, x1, y) 7→ (x0, e
2πi
n x1, y)

of respective order 2 and n. This shows
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1. all generalized Wiman curves are hyperelliptic, ι being their hyperel-
liptic involution;

2. a generalized Wiman curve of type 2g + 1, 1 is the Wiman curve of
genus g.

Since ι is the hyperelliptic involution, ι acts on H0(C,KC) as the mul-
tiplication by −1. The points fixed by ι are the 2g + 2 points of the divisor
y = 0.

Definition 7.1.3. We will say that ρ is the rotation of C.

We conclude this section by studying the action of the rotation.

Proposition 7.1.4. The action of ρ on the locus x0x1 6= 0 has all orbits of
order n.

The divisor x1 = 0 is given by two points, both fixed by ρ.

If both n and d are odd, then the divisor x0 = 0 is given by one single
point, fixed by ρ. Else the divisor x0 = 0 is given by two distinct points,
fixed by ρ if d is even and exchanged by ρ if d is odd.

The monomials in (7.2) are eigenvalues for the induced action of ρ on
H0(C,KC). More precisely ρ acts on them as

x
dnd2 e−2−a
0 xa1 7→ e(a+1) 2πi

n x
dnd2 e−2−a
0 xa1 (7.3)

Proof. The rotation lifts the automorphism of P1 = C/ι acting as (x0, x1) 7→
(x0, e

2πi
n x1), which fixes only the two points x0x1 = 0, so the analogous

statement holds for ρ.

By the definition of f the point (x0, x1) = (0, 1) is a branching point of
the hyperelliptic 2 : 1 map C → P1 if and only if both n and d are odd, in
which case the divisor x0 = 0 in C is a single (double) point, that is therefore
fixed by ρ. Else, if nd is even, x0 = 0 is formed by two distinct points with
homogeneous coordinates (x0, x1, y) = (0, 1,±ū0) for some ū0 6= 0. These
two points are either fixed or exchanged by ρ. By the properties of the

weighted projective space they are fixed by ρ if and only if
(
e−

2πi
n

)nd
2

= 1.

We conclude the analysis of the divisor x0 = 0 by observing that the last
equation is verified if and only if d is even.

Since the point (x0, x1) = (1, 0) is not a branching point of the hyperel-
liptic map, the divisor x1 = 0 is made by two distinct points with coordinates
(x0, x1, y) = (1, 0,±ū1) for some ū1 6= 0, both obviously fixed by ρ.

The function z := x1/x0 is a local coordinate in both of then, on which ρ

acts as z 7→ e
2πi
n z. The adjunction formula maps a monomial x

dnd2 e−2−a
0 xa1

to the form that locally restricts to zadz and therefore ρ acts on it as the

multiplication by e(a+1) 2πi
n .
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7.2 Wiman product-quotient surfaces

Definition 7.2.1. For all integers n, d1, d2 and for all 1 ≤ k ≤ n − 1 with
gcd(k, n) = 1 we define a Wiman product-quotient surface of type n, d1, d2

with shift k to be the minimal resolution S of the singularities of its quotient
model X := (C1 × C2)/H where

• Cj , j = 1, 2 is a generalized Wiman curve of type n, dj ;

• H ⊂ Aut(C1 × C2) is the cyclic subgroup of order n generated by the
automorphism

(x, y) 7→
(
ρ1x, ρ

k
2y
)
.

where ρj is the rotation of Cj .

Denote the hyperelliptic involution of Cj by ιj . Then Aut(C1×C2) con-
tains a subgroup of order 4 generated by (ι1, 1) and (1, ι2). The correspond-
ing quotient of C1×C2 is isomorphic to P1×P1. Since this group commutes
with H and it intersects H trivially, it defines a subgroup K ∼= (Z/2Z)2 of
Aut(X). Note that X/K is dominated by P1×P1 and therefore it is rational.

Lemma 7.2.2. The canonical map of S factors through the rational surface
X/K.

Proof. By the Kuenneth formula

H0(C1 × C2,KC1×C2) ∼= H0(C1,KC1)⊗H0(C2,KC2)

and then both involutions (ι1, 1) and (1, ι2) act on H0(C1 ×C2,KC1×C2) as
the multiplication by −1. From Theorem 5.2.1, the pull-back map sends
H0(S,KS) = H0(X,KX) isomorphically onto the invariant subspace H0(C1

×C2,KC1×C2)H . It follows that all elements ofK act onH0(S,KS) = H0(X,
KX) as a multiple of the identity.

This implies that H0(S,KS) cannot separate two points in the same
orbit by the action of K.

In the “degenerate” case n = 1, S = X is the product of the two hyper-
elliptic curves C1 and C2. Assuming d1, d2 ≥ 5 (to have genera at least 2)
we find an unbounded family of surfaces with canonical map of degree 4 as
those mentioned in [MLP23].

The degree of the canonical map remains in fact 4 also for bigger n.

Theorem 7.2.3. Let S be a Wiman product-quotient surface of type n, d1, d2

and assume n ≥ 2.

1. If d1, d2 ≥ 3, then KS is nef.

2. If d1 ≥ 4, d2 ≥ 5 then the canonical map of S has degree 4.
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Proof. We denote by x0, x1, y the coordinates of the weighted projective
space containing C1 as in Definition 7.1.1, and by x̄0, x̄1, ȳ the analogous
coordinates for C2. By the Kuenneth formula the monomials

ma,b := x

⌈
nd1

2

⌉
−2−a

0 x̄

⌈
nd2

2

⌉
−2−b

0 xa1x̄
b
1

form a basis of eigenvectors for the action of the
(
ρ1, ρ

k
2

)
of H on H0(C1 ×

C2,KC1×C2) with respective eigenvalues e(a+1+k(b+1)) 2πi
n . So a basis of H0(S,

KS) is given by the monomials

{ma,b|n divides a+ 1 + k(b+ 1)} (7.4)

1. Pulling back H0(S,KS) to C1 ×C2 we get a linear system |KC1×C2 |H
defined by the vector subspace V ⊂ H0(C1 × C2,KC1×C2) generated
by the monomials ma,b in (7.4).

We claim that if both dj are at least 3, then the base locus of |KC1×C2 |H
is finite.

We first note that the divisor defined by each ma,b on C1 × C2 is a
linear combination of the 4 divisors x0 = 0, x̄0 = 0, x1 = 0, x̄1 = 0.
Then the base locus of |KC1×C2 |H is contained in the union of these 4
divisors.

We show that the intersection of the base locus of |KC1×C2 |H with
x1 = 0 is finite. It suffices to prove that there is a monomial in V
of the form m0,b. In other words, that there is an integer 0 ≤ b ≤⌈
nd2

2

⌉
− 2 so that n divides 1 + k(b + 1), which is equivalent to ask

that the remainder class of b module n is the unique class solving

the corresponding congruence. Since d2 ≥ 3,
⌈
nd2

2

⌉
− 2 ≥ n − 1 and

therefore we can find a b in our range for any such a class, giving a
monomial m0,b in V .

A similar argument show that the intersection of the base locus of
|KC1×C2 |H with each of the other three divisors x0 = 0, x̄0 = 0, x̄1 = 0
is finite, by showing the existence of a monomial in V of respective
type m⌈nd1

2

⌉
−2,b

, m
a,
⌈
nd2

2

⌉
−2

and ma,0. This concludes the proof of the

claim.

Since the base locus of |KC1×C2 |H is finite, the base locus of |KX | is
finite too whereas the base locus of |KS | may contain some irreducible
curves, all exceptional for the map S → X, the minimal resolution of
the singularities of X. In particular there is no (−1)-curve in the base
locus of |KS |. But a (−1)-curve on a surface S is always in the base
locus of |KS |! So S is a minimal surface, in the sense that it does not
contain (−1)-curve. Since the canonical system is not empty, then S
minimal implies that KS is nef.
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2. If d1 ≥ 4, d2 ≥ 5, arguing as above, we can find a monomial of the
form m0,b in V such that also m0,b+n, mn,b, mn,b+n belong to V . These
4 monomials map C1 × C2 as xn0 x̄

n
0 , x

n
0 x̄

n
1 , x

n
1 x̄

n
0 , x

n
1 x̄

n
1 onto a smooth

quadric Q ⊂ P3. Then the canonical image of S, dominating Q, is a
surface as well.

Choose a general point q ∈ Q. Its preimage in C1×C2 has cardinality
(2n)2, giving 4n points of S. The group K acts freely on them, giving
n smooth points q1, . . . , qn of X/K. We know by Lemma 7.2.2 that
the canonical map of X factors through X/K; we finish the proof by
showing that it separates the qj .

The automorphism (ρ1, 1) of C1 × C2 commutes with H, so it defines
an automorphism ρX of X. This automorphism commutes with K, so
inducing a further automorphism ρK of order n of X/K. A straight-
forward direct computation shows that ρK permutes the qj cyclically.

Now choose a monomial in V of the form m1,c. Then the action of
(ρ1, 1) on the vector subspace of V generated by m1,c, m0,b, m0,b+n,
mn,b, mn,b+n has exactly two distinct eigenvalues, which differ by a
primitive n−th root of the unity. This implies that the canonical map
of X separates the qj .

Remark 7.2.4. The statement of Theorem 7.2.3 is not meant to be sharp.
For example, essentially the same proof shows that part (2) extends to the
case d1 = 3 with the possible exception n = 2.

Remark 7.2.5. The proof of Theorem 7.2.3, part (1) shows that the canonical
system of these surfaces has no fixed components.

In fact, it contains all the elements necessary to explicitly compute the
base locus of the canonical system, by describing its pull-back on C1 × C2,
the base locus of the linear system |KC1×C2 |H .

Consider for example the first case n = 2, d1 = d2 = 3. In this case
k = 1. Then the given basis of H0(S,KS) is {x0x0, x1x1}. This implies that
the base locus of |KC1×C2 |H is formed by 8 simple points, four defined by
x0 = x1 = 0 and four defined by x0 = x1 = 0. The involution defining S
as quotient of C1 × C2 acts on these eight points freely, so H0(S,KS) has
exactly four simple base points, their images.

By Proposition 7.1.4 this involution fixes exactly 4 points, those at x1 =
x1 = 0, inducing 4 singular points of type A1 on S. The standard formulas
from Theorem 4.4.2 and Theorem 4.4.5 give K2

S = 4 and pg(S) = q(S) = 2,
confirming that the canonical system is a pencil with 4 base points.
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7.3 Unbounded sequences of Wiman
Product-Quotient surfaces

In this section we only consider Wiman product-quotient surfaces of type
n, d1, d2 with both d1, d2 even.

Identifying a point of X with an orbit of the action of H on C1×C2, the
singular points of X correspond to the orbits of cardinality smaller than n.

By Proposition 7.1.4 the orbits of the rotation of a generalized Wiman
curve of type n, d with d even are all of order n with 4 exceptions, 4 fixed
points. So X has 16 singular points. A straightforward application of Propo-
sition 4.3.3 shows that 8 are of type 1

n(1, k) and 8 of type 1
n(1, n− k).

We consider the invariant γ of the basket introduced in [BP16, Section
4]: it vanishes by [BP16, Proposition 4.4] since the basket contains as many
points of type 1

n(1, k) as of type 1
n(1, n − k). By [BP16, Proposition 4.1]

K2
S = 8χ (OS)− 2γ − l = 8χ (OS)− l where l is the number of exceptional

curves of S → X.

Therefore

8− µ(S) =
8χ(OS)−K2

S

χ(OS)
=

l

χ(OS)
=

l(
n
d1
2
−2
)(
n
d2
2
−2
)

n + 4
(
1− 1

n

)
Writing the continued function of n

k

n

k
= b1 −

1

b2 −
1

b3 − . . .

then ([Rie74, Section 3]) the number of irreducible components of the
resolution above two singular points of respective type 1

n(1, k) and 1
n(1, n−k)

equals 1 +
∑

(bj − 1), so

8− µ(S) =
8 (1 +

∑
(bj − 1))(

n
d1
2
−2
)(
n
d2
2
−2
)

n + 4
(
1− 1

n

) ≈n→∞ 32

d1d2

1 +
∑

(bj − 1)

n
(7.5)

In the simplest case k = 1 we obtain
1+
∑

(bj−1)
n = 1+n−1

n = 1 and then

Theorem 7.3.1. There is an unbounded sequence Sn of surfaces that have
canonical map of degree 4 such that

lim
n→∞

µ (Sn) = 8

(
1− 1

m

)
for all positive integers m ≥ 6 that are not prime numbers.



146 Unbounded families with canonical map of degree 4

Proof. Write m = ab with a ≥ 2, b ≥ 3 and pick a sequence of Wiman
product-quotient surfaces Sn of type n, 2a, 2b and shift 1.

We are in the assumptions of Theorem 7.2.3, part (2) (d1 = 2a ≥ 4,
d2 = 2b ≥ 6 > 5) so the canonical map of Sn has degree 4.

Finally, by (7.5)

lim
n→∞

µ (Sn) = 8− 32

d1d2

1 +
∑

(bj − 1)

n
= 8− 8

ab

1 + n− 1

n
= 8

(
1− 1

ab

)
.

7.4 Further questions and possible generalizations

We have studied some natural generalizations of this construction giving
surfaces with canonical map of degree 4. Unfortunately they do not lead
to a substantial improvement of our main result, so we have decided not to
include them in this work. However, we mention them here for completeness.

We obtain in fact similar results for Wiman product quotient surfaces
where the dj are not both even. One can also consider hyperelliptic curves
of equation y2 = x0x1f(xn0 , x

n
1 ). All these generalizations lead to surfaces

with canonical map of degree 4 and slope in the same range
[
6 + 2

3 , 8
]
.

The other possible generalization is by considering shifts other that 1.
More precisely, consider a sequence of positive integers kn, with 1 ≤ kn ≤
n − 1, gcd(kn, n) = 1. Then a sequence Sn of Wiman product-quotient
surfaces of type n, 2a, 2b and shift kn has

lim
n→∞

µ(Sn) = 8− 8
1

m
lim
n→∞

σ

(
kn
n

)
.

where

σ

(
k

n

)
:=

1 +
∑

(bj − 1)

n
.

Obviously σ
(
k
n

)
> 0, σ

(
1
n

)
= 1. It is known [TU22, Lemma 3.3] that

σ ≤ 1. An independent proof has been sent us by J. Stevens.
Question: What are the possible limits of

{
σ
(
k
n

)}
⊂ [0, 1] for sequences

of rational numbers k
n with unbounded denominators?

Note limn→∞ σ
(

m
mn+1

)
= 1

m . We could not obtain any sequence with

limit neither zero nor of the form 1
m . If there were more possible limits, this

construction would improve our main result.



Chapter 8

Smooth k-double covers of
the plane of geometric genus
3

This is a joint work [FP23b] together with Prof. Roberto Pignatelli.

In this chapter we classify all smooth surfaces with geometric genus
equal to three and an action of a group G isomorphic to (Z/2)k such that
the quotient is a plane. We find 11 families, listed in the main Theorem
8.4.1. We compute the canonical map of all of them, finding in particular a
family of surfaces with canonical map of degree 16 that we could not find
in the literature. We discuss the quotients by all subgroups of G finding
several K3 surfaces with symplectic involutions. In particular we show that
six families are families of triple K3 burgers in the sense of Laterveer. These
families are those listed in Corollary 8.5.3.

The surfaces of general type with geometric genus 3 are interesting to be
studied from several points of view. A first interest, which is the central one
of this thesis, comes from the study of the degree of the canonical map. We
recall the Remark 1.1.6, point 3: a surface of general type with a high degree
of the canonical map have pg equal to 3. We remind to the beautiful survey
[MLP23] (see also Section 1.2) to the known examples with a high degree of
the canonical map. We just mention here that most of these examples are
obtained as Galois covers of rational surfaces with Galois group isomorphic
to (Z/2)k: see for instance the examples with canonical map of degree 32 in
[GPR22] and those of degree 20 in [Bin21a].

On the other hand, a classical conjecture of Claire Voisin, describing how
0−cycles on a surface S should behave when pulled-back to a self-product of
enough copies of S, led Laterveer to the definition of triple K3 burgers. These
are surfaces with pg = 3 provided with three pairwise commuting involutions
such that the quotients are K3 surfaces. Studying them, Laterveer proved in
[Lat21a] Voisin’s conjecture for some family of surfaces, including a family
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of surfaces with pg = 3 (that he calls ”Garbagnati surfaces of type G3”)
with an action of (Z/2)2 whose quotient is P2. This leads us to the problem,
interesting by itself, of studying and classifying all surfaces with pg = 3 with

an action of a group isomorphic to G = (Z/2)k such that the quotient S/G
is isomorphic to P2 and then studying their geometry, by investigating their
canonical map and if they are triple K3 burgers. We call surfaces like these
k−double planes for short.

The main argument to attain our classification is that by using the stan-
dard formulas for abelian covers, if the Galois group is of the form (Z/2Z)k,
the numerical class of all divisors Dg is determined by the characteristic line
bundles Lχ. We give the explicit formula in Theorem 8.1.11. So we first
compute the possible Lχ, that is easy, and then deduce from it the class of
each divisor.

This is (unfortunately) not true for general abelian group, since different
numerical class of divisors may give the same characteristic sheaves Lχ, see
Remark 8.1.7. So a similar analysis for different groups may be harder.
However, there are several interesting examples of Galois covers of rational
surfaces with Galois group of the form (Z/pZ)k, see for example Section 6.1
and [BGvBP22], so also such a classification would be desirable.

The chapter is organized as follows.

In section 1 we recall the general theory of abelian covers and prove the
just mentioned Theorem 8.1.11 when the group is of the form (Z/2Z)k. In
section 2 we recall the known results on the canonical systems of abelian
covers. Note that in these two sections we use the multiplicative notation
for G∗ since it is more efficient for writing the general theory, whereas in the
other sections we switch to the additive notation which is more convenient
for the computations.

In section 3 we study and classify all the smooth k−double planes, ob-
taining the 11 mentioned families in terms of the branch divisors Dg and of
the characteristic sheaves Lχ.

In section 4 we prove Theorem 8.4.1, and then we study each family sep-
arately. For each family we write explicit equations in a weighted projective
space, and describe the quotients by all subgroups of G, determining all the
K3 surfaces obtained in this way and the symplectic involutions on them.

Finally, in the last section, we determine which families are families of
triple K3 burgers.

Notation: A Galois cover is a finite morphism π : X → Y among alge-
braic varieties with the property that there is a subgroup G of Aut(X) such
that π factors as the composition of the quotient map X → X/G with an
isomorphism X/G ∼= Y . We will always assume Y to be irreducible, whereas
we find it convenient for the general theory of Galois covers not to do any
analogous assumption for X. The finite group G is the Galois group of π.
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An abelian cover is a Galois cover whose Galois group is an abelian group.
A k−double cover is an abelian cover whose Galois group is isomorphic to
(Z/2Z)k. A k−double plane is a k−double cover of P2.

8.1 Abelian covers

In this section we collect some preliminary results on abelian covers, mostly
well known.

Let π be an abelian cover with Y smooth and X normal. Following
[Par91a], we decompose the direct image of the structure sheaf of X as a
sum of line bundles corresponding to the characters of G

π∗OX =
⊕
χ∈G∗

L−1
χ .

By the Zariski-Nagata purity theorem, the branch locus of π is a divisor.
We call this divisor D when it is taken with the reduced structure. The
ramification divisor R of π is the preimage π−1(D), also taken with the
reduced structure.

Let T be an irreducible component of R. By [Par91a, Lemma 1.1] the
elements of G fixing all points of T form a cyclic subgroup H of G, the
inertia group of T . By [Par91a, Lemma 1.2], there is a unique character
ψ : H → C∗, a generator for the group of characters H∗, and a uniformizing
parameter t for OX,T such that, for all h ∈ H, h acts as

t 7→ ψ(h)t.

This gives a natural decomposition

R =
∑

H<G cyclic
ψ generating H∗

RH,ψ

of the ramification divisor as follows: if T is an irreducible component of R,
then T is a summand of RH,ψ if and only if its inertia group is H and the
corresponding character is χ.

As in [FP97] we observe that there is a natural bijection among the
pairs (H,ψ) as above and the group G, associating to each element g ∈ G
the subgroup H = 〈g〉 generated by it and the unique character ψ ∈ H∗

with the property that ψ(g) = e
2πi
|H| . So we can set Rg := RH,ψ and write

R =
∑

g∈GRg.

Since G is abelian, if T1 and T2 are two irreducible components of R
in the same G−orbit, they share the same inertia group H and the same
character ψ, so T1 and T2 belong to the same summand Rg. Therefore there
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are reduced divisors Dg (denoted DH,ψ in [Par91a]) such that Rg = π−1(Dg).
These give a decomposition of the branch divisor

D =
∑
g∈G

Dg.

Definition 8.1.1. [Par91a, Definition 2.1] The building data of an abelian
cover π : X → Y are the line bundles Lχ and the reduced effective divisors
Dg introduced above.

Note that, if 0 is the identity of G, D0 = 0. Analogously, if 1 is the
trivial character of G, L1

∼= OY .

Remark 8.1.2. X is connected (equivalently: irreducible) if and only if, for
all χ 6= 1, H0(L−1

χ ) = 0.

The building data determine the cover in the following sense.

Definition 8.1.3. Let π : X → Y be an abelian cover with Galois group G,
Y smooth and X normal. Fix an element g ∈ G and a character χ ∈ G∗. Let
o(g) be the order of g. Then there exists a unique integer 0 ≤ rχg ≤ o(g)− 1
such that

χ(g) = e
rχg · 2πio(g) .

Given a further character χ′ ∈ G∗ we set moreover

εgχ,χ′ =

{
1 if rχg + rχ

′
g ≥ o(g)

0 else
.

Theorem 8.1.4. [Par91a, Theorem 2.1 and Corollary 3.1] Let π : X → Y
be an abelian cover with Galois group G, Y smooth and X normal.

Then for all χ, χ′ ∈ G∗

Lχ ⊗ Lχ′ ∼= Lχ·χ′ ⊗OX

∑
g∈G

εgχ,χ′ ·Dg

 . (8.1)

Conversely, given an abelian group G and a smooth irreducible variety Y
assume that we have

a line bundle Lχ on Y for each character χ ∈ G∗ and

an effective divisor Dg for all g ∈ G

satisfying (8.1), and with the property that the divisor D =
∑
Dg is reduced.

Then there is a unique Galois cover π : X → Y whose Galois group is
G, and whose building data are the Lχ and the Dg, such that X is normal.

Equation (8.1) shows that the divisors Dg determine the line bundles Lχ
up to torsion as follows.
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Definition 8.1.5. For all χ set Lχ ∈ Pic(Y ) = Div(Y )/ ∼ for the divisor
class of the invertible sheaf Lχ. We use the additive notation for the torsion
product in Pic(Y ).

Corollary 8.1.6. [Par91a, see Proposition 2.1]

o(χ)Lχ ≡
∑
g∈G

o(χ)rχg
o(g)

Dg.

In particular

Lχ ≡num
∑
g∈G

rχg
o(g)

Dg.

Proof. Note first that by definition of rχg , for all k ∈ N, rχ
k

g is the remainder
of the Euclidean division of krχg by o(g). Then

Lkχ ∼= Lχk

∑
g∈G

⌊
krχg
o(g)

⌋
Dg


follows by induction on k applying (8.1) to the products Lχ ⊗ Lχk−1 .

For k = o(χ) we obtain the stated formula since L1
∼= OX and

o(χ)rχg
o(g) is

integral.

In particular, if Pic(Y ) is torsion free (for example if Y is rational) then
the divisors do determine the line bundles.

In the next sections we are going to walk in the opposite direction: first
we look for the ”good” possible Lχ and then we find suitable divisors Dg

realizing them.
Of course the divisors will be free to move in their linear equivalence

class. We find it important to notice that for general G the line bundles Lχ
do not determine even the linear equivalence class of the divisors Dg. In
fact this fails already for cyclic groups of order 5 of more. We just write one
example of this phenomenon.

Example 8.1.7. Set G = Z/5Z =
{

0, 1, 2, 3, 4
}

Then the following choices

degD0 = 0 degD1 = 2 degD2 = 0 degD3 = 0 degD4 = 2

degD0 = 0 degD1 = 1 degD2 = 1 degD3 = 1 degD4 = 1

give both Galois covers with Galois group G and Lχ ∼= OP1(2) for all χ 6= 1.

In contrast, we show in the forthcoming Theorem 8.1.11 that when G ∼=
(Z/2Z)k then Lχ determine the linear equivalence class of the divisors Dg

up to torsion.
We first need a Lemma on the sums of the rχg for general abelian covers.
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Definition 8.1.8. The natural isomorphism G → G∗∗ allows each g in G
to be considered as a character of G∗, which we will also denote by g, by
setting

g(χ) = χ(g).

Then ker g is the subgroup of G∗ of the characters χ such that χ(g) = 1. In
other words

χ ∈ ker g ⇔ g ∈ kerχ.

Let H be a subgroup of G∗, possibly of the form ker g. For all g ∈ G we
will denote by g|H the element of H∗ obtained restricting g to H.

Lemma 8.1.9. For all g ∈ G, for each subgroup H of G∗,∑
χ∈H

rχg =
|H|
2
o(g)

(
1− 1

o(g|H)

)
(8.2)

In particular ∑
χ∈G∗

rχg =
|G|
2

(o(g)− 1) . (8.3)

Proof. Since rχg = 0 if and only if χ ∈ ker g, then the number of addenda of∑
χ∈H r

χ
g that are equal to zero is exactly

∣∣ker g|H
∣∣ = |H|

o(g|H) .

The remaining |H|
(

1− 1
o(g|H)

)
addenda are integers between 1 and

o(g)− 1. Since rχg 6= 0 implies rχg + rχ
−1

g = o(g) it follows that their average

equals o(g)
2 , thus giving the result.

It follows that

Proposition 8.1.10.∑
χ∈G∗

Lχ ≡num
|G|
2

∑
g∈G

(
1− 1

o(g)

)
Dg. (8.4)

Moreover, for every g ∈ G,∑
χ∈ker g

Lχ ≡num
|G|

2o(g)

∑
h∈G

(
1− 1

o(h| ker g)

)
Dh. (8.5)

Proof. By Corollary 8.1.6 Lχ ≡num
∑

g∈G
rχg
o(g)Dg.

Summing over all χ and using (8.3) we obtain (8.4).
Setting H = ker g and summing only on the characters in H, using (8.2)

and |H| = |G|
o(g) we obtain (8.5).

Now we can give the announced formula for the linear systems of the
divisors Dg in terms of the Lχ when the group is (Z/2Z)k.
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Theorem 8.1.11. Let π : X → Y be a k−double cover, Y smooth and X
normal, with set of data Lχ, Dg. Then for all g ∈ G

Dg ≡num
1

2k−2

 ∑
χ 6∈ker g

Lχ −
∑

χ∈ker g

Lχ

 .

Proof. Let us fix an element g ∈ G = (Z/2Z)k, g 6= 0.
We note that for all h in (Z/2Z)k, o(h| ker g) equals 1 if h ∈ 〈g〉 = {0, g}

and 2 otherwise. Then by (8.5)∑
χ∈ker g

Lχ ≡num 2k−2
∑
h∈G

(
1− 1

o(h| ker g)

)
Dh = 2k−3

∑
g 6∈〈h〉

Dh.

By (8.4), recalling that D0 = 0, we obtain
∑

χ∈G∗ Lχ ≡num 2k−2
∑

h∈GDh

and then

Dg = Dg +D0 =
∑
h∈G

Dh −
∑
h6∈〈g〉

Dh =
1

2k−2

∑
χ∈G∗

Lχ − 2
∑

χ∈ker g

Lχ

 =

=
1

2k−2

 ∑
χ 6∈ker g

Lχ −
∑

χ∈ker g

Lχ

 .

8.2 The canonical system of an abelian cover

A canonical divisor KX on a normal variety X is a Weil divisor, the closure
of a canonical divisor of the smooth part of X (see [Rei87, (1.5)]).

If π : X → Y is a G−cover, then G acts on π∗ (OX(KX)) inducing a
decomposition on it in eigenspaces

π∗(OX(KX)) =
⊕
χ∈G∗

π∗(OX(KX))(χ)

Theorem 8.2.1. [BP21, Proposition 2.4], [Par91a, Proposition 4.1, c) for
the case when X is smooth] Let π : X → Y be an abelian cover, with X
normal and Y smooth, whose building data are Lχ and Dg. Then

(π∗OX(KX))(χ) ∼= OY (KY )⊗ Lχ−1 . (8.6)

Consider a global section σ ∈ H0(OY (KY ) ⊗ Lχ−1), and let (σ) ∈
Div(Y ) be the induced effective divisor. By (8.6) σ determines an ele-
ment of H0(π∗OX(KX)) ∼= H0(OX(KX)), whose divisor is, by the proof
of [BP12, Proposition 2.4] (compare also [Lie03, Section 3.4]),

π∗(σ) +
∑
g

(o(g)− rχ−1

g − 1)Rg. (8.7)
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It follows

Proposition 8.2.2. Assume that all not empty linear systems |KY + Lχ|
are base-point-free.

Then the base locus of |KX | equals⋂
χ∈G∗:

|KY +Lχ|6=∅

⋃
g∈G:

rχg 6=o(g)−1

Rg

Proof. Since |KY + Lχ| is base-point-free, if the linear subsystem of |KX |
corresponding to H0(OX(KX))(χ−1) is not empty, by (8.7) its base locus
equals ⋃

g∈G:
rχg 6=o(g)−1

Rg.

Since these linear subsystems generate |KX |, its base locus equals their
intersection.

We recall that all complete linear systems on Pn are base-point-free,
so Proposition 8.2.2 gives a complete description of the base locus of the
canonical system of any abelian cover of a projective space. For k−double
covers of Pn we obtain as in [GPR22, Section 2] (see also [Cat99, Section
2]),

Corollary 8.2.3. Let π : X → Pn be a k−double cover with building data
Lχ, Dg. Then |KX | is base-point-free if and only if⋂

χ:degLχ≥n+1

⋃
g∈kerχ

Dg = ∅.

8.3 Smooth k-double planes with pg=3

Definition 8.3.1. A smooth k−double plane is a k−double cover π : X →
P2 such that all Dg are smooth, each two of them intersect transversally,
and no point in P2 belongs to three of them.

In particular the branch divisor D =
∑
Dg is a smooth normal crossing

divisor.

The assumption ensures the smoothness of X.

Proposition 8.3.2. Let π : X → P2 be a smooth k−double plane. Then X
is smooth.

Proof. This is a special case of [Par91a, Proposition 3.1] (see also [Man01,
Proposition 3.14]).
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Notation
It is convenient to consider G and G∗ as vector spaces over the field with
2 elements as in [Man01, Setup 3.2]. We are thus going to switch to the
additive notation, so for example the sheaf L1 will be L0 from now on, and
for each character χ we will write −χ for the character that was called χ−1

in the previous section.
Denote by e1, · · · , ek the standard basis of G = (Z/2)k and by ε1, . . . , εk

the dual basis of G∗.
To every smooth k−double plane π : X → P2 we consider its building

data Lχ, Dg and the numbers

dg := degDg, lχ := degLχ.

Note that d0 = l0 = 0.
Note moreover that since G = (Z/2Z)k, for each χ ∈ G∗, χ = −χ. We

will use this often in the following computations.

Definition 8.3.3. We will say that a smooth k−double plane with pg = 3
is

of type A if lε1 = 4, lχ ∈ {1, 2} for all χ 6∈ 〈ε1〉

of type B if lε1 = lε2 = lε1+ε2 = 3, lχ ∈ {1, 2} for all χ 6∈ 〈ε1, ε2〉

of type C if lε1 = lε2 = lε3 = 3, lχ ∈ {1, 2} for all χ 6∈ {0, ε1, ε2, ε3}

By (8.6) for a smooth k−double plane π : X → P2

pg(X) = h0(OX(KX)) = h0(π∗(OX(KX))) =
∑
χ∈G∗

h0(OP2(lχ − 3)), (8.8)

so in all cases of Definition 8.3.3 we obtain pg(X) = 3. Conversely

Proposition 8.3.4. Up to automorphisms of G every smooth k−double
plane with pg(X) = 3 falls in one of the three cases in Definition 8.3.3.

Proof. Since X is connected, for all χ 6= 0, H0(L−1
χ ) = 0 and thus lχ > 0.

By (8.8) lχ ≤ 4 and either there is only one χ with lχ ≥ 3, in which case
lχ = 4, or there are three χ with lχ ≥ 3, all with lχ = 3.

Using an automorphism of G, we can reduce the former case to ”type
A”, and the latter case either to ”type B” or ”type C”, depending if the
three special characters are linearly dependent or not.

We now look at when a k−double plane with pg = 3 has canonical system
base-point-free.

Lemma 8.3.5. Let π : X → P2 be a smooth k−double plane with pg = 3 of
type t. Then |KX | is base-point-free if and only if
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dg = 0 for all g ∈ ker ε1 when t = A;

dg = 0 for all g ∈ ker ε1 ∩ ker ε2 when t = B;

dg = 0 for all g ∈
⋃

1≤i<j≤3 (ker εi ∩ ker εj) when t = C.

Proof. By Corollary 8.2.3 |KX | is base-point-free if and only if⋂
χ:lχ≥3

⋃
g∈kerχ

Dg = ∅.

For type A we deduce dg = 0 for all g ∈ ker ε1.
In the remaining cases we have three characters χ with lχ = 3. We first

show that for each χ with lχ = 3 there is at least one g ∈ kerχ such that
dg 6= 0. In fact, in this case KP2 + Lχ = 0 and thus by (8.7)

∑
g∈kerχRg

is a canonical divisor. If
∑

g∈kerχ dg vanished, then this canonical divisor
would vanish, and thus OX(KX) would be isomorphic to OX , contradicting
pg = 3.

For type C we obtain that |KX | is base-point-free if and only the following
intersection of three divisors ⋃

g∈ker ε1

Dg

 ∩
 ⋃
g∈ker ε2

Dg

 ∩
 ⋃
g∈ker ε3

Dg

 (8.9)

vanishes, and by our last remark all three divisors are not empty. Then if
there is a g such that dg 6= 0, belonging to two different ker εi, then any
intersection point among Dg and one of the Dh 6= 0 in the kernel of the
third εj is in (8.9), and thus |KX | is not base-point-free.

Conversely, if dg = 0 for all g ∈
⋃

1≤i<j≤3 ker εi ∩ ker εj then the three
divisors we are intersecting in (8.9) have no common components, and thus
the intersection is empty since D is a smooth normal crossing divisor.

For type B the result follows similarly using that ker ε1∩ker ε2 = ker ε1∩
ker (ε1 + ε2) = ker ε2 ∩ ker (ε1 + ε2) .

We can now classify the k−double planes with pg = 3, by considering
separately the three cases in Definition 8.3.3.

For type A we obtain a special case of the situation classified in [DG14,
Theorem 1.1].

Proposition 8.3.6. The smooth k−double planes with pg = 3 of type A
form four families, one for each value of k = 1, . . . , 4.

In all cases π is the canonical map of X, |KX | = |π∗OP2(1)| is base-
point-free and

l0 = 0 lε1 = 4 lχ =2 for all remaining χ

dg = 0 for all g ∈ ker ε1 dg =24−k for all g 6∈ ker ε1
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Proof. By (8.1), for all χ ∈ G∗, lχ + lχ+ε1 = lε1 +
∑

g∈G ε
g
χ,χ+ε1dg ≥ lε1 = 4.

Since for χ not in 〈ε1〉 we have lχ ≤ 2, it follows lχ = 2.
It follows moreover

∑
g∈G ε

g
χ,χ+ε1dg = 0 so dg = 0 for all g that are

neither in kerχ nor in kerχ+ ε1. Varying χ ∈ G∗ this shows that dg = 0 for
all g ∈ ker ε1.

Then by Lemma 8.3.5 |KX | is base-point-free. In fact H0(OX(KX)) =
H0(OX(KX))(ε1): this implies that the canonical map is composed with π.
In fact since π∗(OX(KX))(ε1) ∼= OP2(1), π is exactly the canonical map of
X and |KX | = |π∗OP2(1)|.

Finally by Theorem 8.1.11, for all g 6∈ ker ε1,

dg =

∑
χ 6∈ker g lχ −

∑
χ∈ker g lχ

2k−2
=

=

(
4 + (2k−1 − 1) · 2

)
−
(
0 + (2k−1 − 1) · 2

)
2k−2

= 24−k.

It follows k ≤ 4.
We leave to the reader the easy check that all 4 cases do exist by checking

that (8.1) holds for them.

To study the next two cases, we preliminarily note that Corollary 8.1.6
may be rewritten as lχ = 1

2

∑
g 6∈kerχ dg or equivalently

∀χ ∈ G∗
∑

g∈kerχ

dg = d− 2lχ (8.10)

where d := degD =
∑

g dg.
For type B we obtain only one family.

Proposition 8.3.7. The smooth k−double planes of type B with pg = 3
form one family, with k = 2. These surfaces have a canonical system that
is base-point-free and

l0 = 0 lχ = 3 for χ 6= 0

d0 = 0 dg = 3 for g 6= 0

Proof. We note that G is the union of the three subgroups ker ε1, ker ε2 and
ker (ε1 + ε2), which pairwise intersect in ker (ε1 ∩ ε2). It follows that

∑
g∈ker(ε1∩ε2)

dg =
1

2

−d+
∑

g∈ker ε1

dg +
∑

g∈ker ε2

dg +
∑

g∈ker(ε1+ε2)

dg

 (8.10)
=

= d− (lε1 + lε2 + lε1+ε2) = d− 9,

so d ≥ 9.
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On the other hand, since lχ ≤ 2 for all χ 6∈ 〈ε1, ε2〉

2k−2d
(8.4)
=

∑
χ∈G∗

lχ = 9 +
∑

χ 6∈〈ε1,ε2〉

lχ ≤ 9 +
(

2k − 4
)
· 2 = 2k+1 + 1.

so d ≤ 8 + 1
2k−2 .

Since by assumption k ≥ 2, we conclude that d = 9 and k = 2.
The dg follow by Theorem 8.1.11. Since ε1 ∩ ε2 is trivial, Lemma 8.3.5

ensures that the canonical system is base-point-free.
We leave to the reader to check that equations (8.1) are verified.

For type C we obtain six families. In order to write them clearly we
introduce the following rather standard notation.

Notation
The weight w(g) of an element g = (g1, . . . , gk) ∈ (Z/2Z)k is the number of
gi different from zero.

For every h ≤ k we denote by wh(g) the number of gi different from zero
with i ≤ h.

In the following we apply this notation to both the elements of G and of
G∗.

We note that by Lemma 8.3.5 the canonical system of a k-double plane
with pg = 3 of type C is base-point-free if and only if

∑
g|w3(g)≤1 dg = 0.

Let us set ε :=
∑3

i=1 εi. We note that g ∈ ker ε if and only if w3(g) is
even. It follows that

2
∑

g|w3(g)≤1

dg = 3d−
∑
g

w3(g)dg −
∑

g|w3(g) even

dg

= 3d−
3∑
i=1

 ∑
g 6∈ker εi

dg

− ∑
g∈ker ε

dg,

from which, by (8.10)∑
g|w3(g)≤1

dg =
1

2

(
3d− 2

∑
lεi − d+ 2lε

)
= d+lε−

3∑
i=1

lεi = d+lε−9. (8.11)

We consider first those surfaces whose canonical system is base-point-
free.

Proposition 8.3.8. The smooth k−double planes with pg = 3 of type C
with canonical system base-point-free form the following five families.

(C3) k = 3, l0 = 0 and

lχ = 3 if w(χ) = 1, lε = 1, lχ = 2 otherwise;

dg = 0 if w(g) ≤ 1, dg = 2 otherwise.
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(C4) k = 4, l0 = 0 and

lχ = 3 if w(χ) = 1, lε = 1, lχ = 2 otherwise;

dg = 0 if w3(g) ≤ 1, dg = 1 otherwise.

(D3) k = 3, l0 = 0 and

lχ = 3 if w(χ) = 1, lε = 2, lχ = 1 otherwise;

dg = 0 if w(g) ≤ 1, de1+e2+e3 = 4, dg = 1 otherwise.

(D4) k = 4, l0 = 0 and

lχ = 3 if w3(χ) = 1, lχ = 1 if w3(χ) = w(χ) = 2 lχ = 2 otherwise;

or w3(χ) ∈ {0, 3},
χ 6∈ {0, ε}

dg = 2 if w3(g) = 3, dg = 1 if w3(g) = w(g) = 2 dg = 0 otherwise.

(D5) k = 5, l0 = 0 and

lχ = 3 if w3(χ) = 1, lχ = 1 if w3(χ) = w(χ) = 2 lχ = 2 otherwise;

or w3(χ) ∈ {0, 3},
χ 6∈ {0, ε}

dg = 1 if w3(g) = w(g) = 2

or w3(g) = 3, dg = 0 otherwise.

Proof. Since we are assuming that the canonical system is base-point-free,
by Lemma 8.3.5 and (8.11)

d = 9− lε

and we have to distinguish two cases, depending if lε = 1 or 2.

We start with the case lε = 1. Then d = 8.

By (8.4)
∑

χ∈G∗ lχ = 8 · 2k−2 = 2k+1 so the average of the lχ equals 2.
We know the values of five lχ: l0 = 0, lε = 9− 8 = 1 and the three lεi = 3;
their average equals 2 as well. Since for all remaining χ, lχ ≤ 2 we conclude
that they all equal 2. By Theorem 8.1.11 de1+e2 = 24−k so k = 3 or 4. In
both cases we deduce all other dg by 8.1.11 obtaining the cases (C3) and
(C4) in the statement.
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Otherwise lε = 2 and d = 7. Then by (8.10)
∑

g∈ker εi
dg = 1, so for each

i = 1, 2, 3 there exists a unique g ∈ ker εi such that dg 6= 0, that we denote
by gi, and dgi = 1.

We show that the gi are linearly dependent by proving that the vector
subspace

V =
3⋂
i=1

ker gi ⊂ G∗

has at most codimension 2.

First we note that if χ is a character with lχ = 1 different from ε1 + ε2,
ε1 + ε3 and ε2 + ε3, then it belongs to V . In fact then for all i ∈ {1, 2, 3} it
holds lχ+εi ≤ 2 and then by (8.1)∑

g 6∈kerχ
g∈ker εi

dg =
∑

g 6∈kerχ
g 6∈ker(χ+εi)

dg = lχ + lχ+εi − lεi ≤ 1 + 2− 3 = 0.

Then we note that there are at least two χ in V with lχ 6= 1: 0 and ε.
So, setting A := # {χ ∈ G∗|lχ = 1}, then #V ≥ A− 3 + 2 = A− 1. On the

other hand A = 2 · 2k + 1 −
∑

χ∈G∗ lχ
(8.4)
= 2k+1 + 1 − 7 · 2k−2 = 2k−2 + 1.

Therefore

#V ≥ A− 1 = 2k−2. (8.12)

proving the claim that the gi are linearly dependent.

By Lemma 8.3.5 gi 6= gj when i 6= j, so g3 = g1 + g2, and V has
exactly codimension 2, and (8.12) is an equality. We complete ε to a basis
ε, ε4, . . . , εk of V . Then ε1, . . . , εk is a basis of G∗ respect to which V =
{χ|w3(χ) ∈ {0, 3}}. Since (8.12) is an equality we know exactly which lχ
are equal to 1: those in V different from 0 and ε, plus the three characters
ε1 + ε2, ε1 + ε3 and ε2 + ε3.

Note that respect to the basis e1, . . . , ek of G dual to ε1, . . . , εk we have

g1 = e2 + e3, g2 = e1 + e3, g3 = e1 + e2.

Finally we compute all dg from the lχ using Theorem 8.1.11. For g =
e1 + e2 + e3 we obtain

de1+e2+e3 =
1

2k−2

 ∑
w3(χ) odd

lχ −
∑

w3(χ) even

lχ


We note that lχ appears in this expression with the opposite sign of lχ+ε.

Since w3(χ) = 3 − w3(χ + ε), then χ ∈ V = {χ|w3(χ) ∈ {0, 3}} if and
only if χ + ε ∈ V . We have proved that, if χ does not belong to 〈ε1, ε2, ε3〉
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then lχ = 1 if χ ∈ V and lχ = 2 otherwise. So the contributions of the lχ
not in 〈ε1, ε2, ε3〉 cancel each other out and

de1+e2+e3 =
1

2k−2
(lε1 + lε2 + lε3 + lε − lε1+ε2 − lε1+ε3 − lε2+ε3) =

=
8

2k−2
= 25−k

so k ≤ 5 and we obtain a family for each k = 3, 4, 5. We leave to the reader
the computation of the remaining dg, giving the families (D3), (D4) and
(D5).

Finally we consider those k−double planes with pg = 3 whose canonical
system is not base-point-free, and see that they provide exactly one more
family.

Proposition 8.3.9. The smooth k−double planes with pg = 3 whose canon-
ical system is not base-point-free are of type C and form one family, with
k = 3, l0 = 0 and

lεi = 3 lε1+ε2 = 1 lχ = 2 otherwise

de1+e2+e3 = 3 de1+e2 = 2 de3 = de1+e3 = de2+e3 = 1 d0 = de1 = de2 = 0

Their canonical system has four simple base points, the preimages of the two
points in the intersection of the line De3 and the conic De1+e2.

Proof. By propositions 8.3.6 and 8.3.7 these double planes are of type C.
Thus, using (8.4)

d · 2k−2 =
∑
χ∈G∗

lχ = 9 +
∑
χ 6∈{εj}

lχ ≤ 2k+1 + 1 (8.13)

from which we deduce, since k ≥ 3, d ≤ 8 + 1
2k−2 ≤ 8 + 1

2 . So d ≤ 8.
We recall that the existence of base points for the canonical system is

equivalent to
∑

g|w3(g)≤1 dg 6= 0. On the other hand by (8.11)∑
g|w3(g)≤1

dg = d+ lε − 9 ≤ lε − 1.

We conclude that

lε = 2 d = 8
∑

g|w3(g)≤1

dg = 1

and thus there is an unique h ∈ G with dh = 1 and w3(h) = 1. Note that
exactly one of the three characters εj is not in kerh.
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The inequality in (8.13) fails to be an equality exactly by 1. This means
that there is exactly one character η with lη = 1. By the expression of dh in
term of the lχ in Theorem 8.1.11 we deduce that η 6∈ kerh (or dh would be
negative) and dh = 1

2k−3 . So k = 3.

Using an automorphism of G we can now assume without loss of gener-
ality η = ε1 + ε2. We have now computed all lε: we leave to the reader to
compute all dg by applying Theorem 8.1.11.

By (8.7) the canonical system |KX | is generated by the following three
divisors

Re3 +Re2+e3 Re3 +Re1+e3 Re1+e2

and then by the smoothness assumption the base locus is the schematic
intersection Re1+e2 ∩Re3 .

The line De3 and the conic De1+e2 intersect transversally in two points.
Above each of them there are two points of X, stabilized by the index two
subgroup 〈e1 + e2, e3〉, the intersection points of Re1+e2 ∩ Re3 . A straight-
forward local computation shows that Re1+e2 and Re3 are transversal.

8.4 The eleven families

In the previous section we have proved that the smooth k-double planes with
pg = 3 form 11 families. In this section we will study these families.

Notation

We will denote each family by a letter and a number. The number is
the exponent k of the Galois group, while the letter reminds the type. In
particular the 4 families in Proposition 8.3.6 give surfaces of type A1, A2,
A3 and A4, while the surfaces in Proposition 8.3.7 form the family B2.
There are more families of surfaces of type C with the same Galois group,
so for these we need to use more letters: we will use the letters C, D and E.
Precisely the surfaces in Proposition 8.3.8 are named, as already specified in
that statement, as C3, C4, D3, D4 and D5, while the surfaces in Proposition
8.3.9 form the family E3.

All these surfaces have ample canonical class, since it is numerically the
pull-back of an ample class of P2 (see e.g. [Par91a, Proof of Proposition
4.2]). Their irregularity vanishes, for example since their geometric genus is
3 by construction and the Euler characteristic is 4 by [Par91a, (4.8)].

For each family we compute the degree of the canonical map.

Theorem 8.4.1. All smooth k-double covers S of the plane with geometric
genus 3 are regular surfaces with ample canonical class.

The canonical map ϕKS is a morphism of degree K2
S on P2 unless S

of type E3, in which case the canonical map is a rational map of degree
K2
S − 4 = 4 undefined at 4 points.
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Each family is unirational. The modular dimension of each family, that
is the dimension of its image in the Gieseker moduli space of the surfaces
of general type, equals 4 + 26−k with one exception, the family B2, whose
dimension is 19.

The values of K2
S, of degϕKS and of the modular dimension of each

family are listed in the following table:

Family A1 A2 A3 A4 B2 C3 C4 D3 D4 D5 E3

K2
S 2 4 8 16 9 8 16 2 4 8 8

degϕKS 2 4 8 16 9 8 16 2 4 8 4
mod. dim. 36 20 12 8 19 12 8 12 8 6 12

Proof. Each surface S is a Galois cover π : S → P2. By the Leray spectral
sequence, H1(S,OS) ∼= H1(P2, π∗OS) ∼=

⊕
χH

1
(
P2,L−1

χ

)
. Since every line

bundle on P2 has trivial first cohomology group, it follows h1(S,OS) = 0.
The value of the self-intersection of the canonical class follows by the

formula (see [Par91a, (4.8)])

K2 = 2k

−3 +
1

2

∑
g∈G

dg

2

By Propositions 8.3.6, 8.3.7, 8.3.8, 8.3.9 the canonical system of S is base
point free unless S is of type E3, in which case it has four simple base
points. So (blowing up the base points in this last case) we get a surface
with canonical system having movable part of self intersection as in the
second line of the table above, so strictly positive. Then the canonical map
is not composed with a pencil. Since pg = 3 then the canonical map of this
surface is a morphism on P2 of the given degree.

The families are parametrized by a Zariski open subset of a product of
projective spaces, the complete linear systems to which the divisors |Dg|,
quoted by the faithful action of PGL(3), a group of dimension 8. Since the
surfaces are of general type, their automorphism group is finite and therefore
it contains only finitely many subgroups of the form (Z/2Z)k, which implies
that the map from this quotient to the Gieseker moduli space of the surfaces
of general type is finite. So the modular dimension of each family equals

−8 +
∑

dim |Dg|

which gives the modular dimensions in the table above. As an example, the
family E3 depends on the choice of three lines, a conic and a cubic so its
modular dimension is

−8 + 3 · 2 + 5 + 9 = 12.



164 Smooth k-double covers of the plane of geometric genus 3

For each family we will first give explicit equations of the surfaces embed-
ded in a suitable weighted projective space, computed by using the equations
in [Cat08, Section 6] (see also [Man01, Section 3.3]) as follows.

We consider a weighted projective space whose first three variables x0,
x1, x2 of weight 1. The group acts trivially on them: in fact the k-double
cover is the map on P2 given by them. Each branch divisor divisor Dg, g =∑k

1 ijej , is defined by a homogeneous polynomial in the xj , the polynomial
fi1···ik(xj) ∈ C[x0, x1, x2]. If Dg = 0 then fi1···ik(xj) = 1.

Then we add variables yi1···ik , ij ∈ {0, 1}, meaning that ej acts on yi1···ik
via multiplication by (−1)ij . The equations

yr1···rkys1···sk = yt1···tk
∏

∑
ijrj ,

∑
ijsj

both odd

fi1···ik when all rj + sj + tj are even

(8.14)

define an embedding of these surfaces in the weighted projective with vari-
ables xj , yi1···ik . The weight of the variable yi1···ik is the positive integer
l∑

j ijεj
.

Sometimes these equations allow to eliminate some variables, embedding
the surfaces in a weighted projective space of smaller dimension. For exam-
ple for the family A2 we find the equation y11y01 = y10, using it to eliminate
y10 gives an embedding in a smaller dimensional weighted projective space.
In the following we will eliminate all the variables that we can eliminate, to
give simpler equations.

Then we will discuss all ”intermediate” quotients, the quotients of these
surfaces by subgroups of the Galois group of the cover, with a focus on K3
surfaces and symplectic involutions.
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8.4.1 Family A1

These surfaces have K2 = 2.
They are the hypersurfaces of degree 8 in P(13, 4), with variables x0, x1,

x2, y1,
y2

1 = f1(xj),

with deg f1 = 8.
These are the Horikawa surfaces in [Hor76][Theorem 1.6.(i)]. This is the

Example 1.2.1 due to Beauville.

8.4.2 Family A2

These surfaces have K2 = 4.
These are the complete intersections of two quartics in P(13, 22), with

variables x0, x1, x2, y11, y01,

y2
11 = f10(xj) y2

01 = f11(xj)

with deg f• = 4.
There are three intermediate quotients: the quotient by e1 and e1+e2 are

double planes branched on quartics, so del Pezzo surfaces of degree 2. The
quotient by e2 is a double plane branched on both quartics, so a degeneration
of the family A1, a Horikawa surface with 16 nodes.

This family is in [DG14, Theorem 1.1.(5)]. These surfaces were also
studied by Horikawa, see [Hor78, Theorem 2.1].

8.4.3 Family B2

These surfaces have K2 = 9.
They are embedded in P(13, 33), with variables x0, x1, x2, y10, y01, y11,

defined by the equations

Rank

f10(xj) y10 y11

y10 f11(xj) y01

y11 y01 f01(xj)

 = 1

with deg f• = 3. This the Example 1.2.2, for d = 9.
The three intermediate quotients are double planes branched on the

union of two cubics: three K3 surfaces with 9 nodes.
We met this family in [Cat99, Example 6] and [Gar19, Proposition 6.3].

They are also studied in [Lat21a] and [GP22].
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8.4.4 Family A3

These surfaces have K2 = 8.
They are embedded in P(13, 26), with variables x0, x1, x2, y010, y001,

y110, y101, y011, y111, defined by the equations

Rank


f111(xj) y010 y001 y111

y010 f110(xj) y011 y101

y001 y011 f101(xj) y110

y111 y101 y110 f100(xj)

 = 1

with deg f• = 2.
The quotients by ker ε1 are double planes branched on the union of 4

conics, degenerations of the family A1 with 24 nodes. The quotients by
each of the other 6 subgroups of index 2 are double planes branched on the
union of 2 conics, del Pezzo surfaces of degree 2 with 4 nodes.

The quotients by a subgroup 〈g〉 of index 4 behave differently according
to if g belongs to ker ε1 or not. If g ∈ ker ε1 the quotient is a degeneration
of the family A2 with 16 nodes. Otherwise, for the remaining four g, the
quotients are 2-double planes such that each of the three branching divisors
is a conic. By, e.g [BP21, Propositions 2.4-2.5 and their proof] they have
pg = 0 and bicanonical sheaf trivial, so they are Enriques surfaces.

These surfaces are in [DG14, Theorem 1.1.(3)], where the authors give
them through equations of a different (not normal) birational model.
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8.4.5 Family C3

These surfaces have K2 = 8.
They are embedded in P(14, 23), with variables x0, x1, x2, y111, y110,

y101, y011, defined by the equations

Rank

f110(xj) y011 y101

y011 f101(xj) y110

y101 y110 f011(xj)

 = 1 y2
111 = f111(xj)

with deg f• = 2.
The Galois group has seven subgroups of index 2, the three of the form

ker εi, the three of the form ker εi + εj , and ker ε.
The quotients by a subgroup of the form ker εi are double planes branched

on the union of 3 conics, so K3 surfaces with 12 nodes. The quotients by a
subgroup of the form ker εi + εj are double planes branched on the union of
2 conics, so del Pezzo surfaces of degree 2 with 4 nodes. The quotients by
ker ε are double planes branched on one conic, so P1 × P1.

The quotients by a subgroup 〈g〉 of index 4 are 2−double planes as
follows. If g = e1 + e2 + e3 then the three branching divisors are three
smooth conics, so the quotients are smooth Enriques surfaces. If g is of the
form ei + ej then one of the branching divisors is empty, one is a smooth
conic, and the last is union of two conics: the quotients are K3 surfaces with
8 nodes. If g is one of the ei then two divisors are conics whereas the third
is the union of two conics: they are surfaces with K2 = 4, pg = 2 and 8
nodes.

Then each surface in this family dominates six different K3 surfaces. Let
us give names to them. Let Ui,j be the K3 with 8 nodes obtained quoting by
〈ei+ej〉 and let Vk be the K3 with 12 nodes obtained quoting by ker εk. Then
these K3 are naturally subdivided in three pairs by double covers Vi,j → Uk
(here k 6∈ {i, j}) branched on 8 nodes and nowhere else, quotient of Vi,j by
the symplectic involution induced by ei. The Vi,j are special cases of the
K3 surfaces considered in [vGS07, 3.5], where the plane quartic considered
there splits as union of two conics.
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8.4.6 Family D3

These surfaces have K2 = 2.
They are embedded in P(16, 2) with variables x0, x1, x2, y110, y101, y011,

y111, defined by the equations

Rank

f110(xj) y011 y101

y011 f101(xj) y110

y101 y110 f011(xj)

 = 1 y2
111 = f111(xj)

with deg f110 = deg f101 = deg f011 = 1 and deg f111 = 4. Note that these
equations are identical to those of the family C3, the only difference being
in the degrees.

The quotients by a subgroup of the form ker εi are double planes branched
on the union of 2 lines and one quartic, so K3 surfaces with 9 nodes. The
quotients by a subgroup of the form ker εi + εj are double planes branched
on the union of 2 lines, so del Pezzo surfaces of degree 8 with 1 node. The
quotients by ker ε are double planes branched on one quartic, so smooth del
Pezzo surfaces of degree 2.

The quotients by a subgroup 〈g〉 of index 4 are 2−double planes as
follows. If g = e1 + e2 + e3 then the three branching divisors are lines, so
the quotients are projective planes P2. If g is of the form ei + ej then one
of the branching divisors is empty, one is a smooth quartic, and the last is
union of two lines: the quotients are K3 surfaces with 2 nodes. If g is one
of the ei then two divisors are lines whereas the third is the union of a line
and a quartic: they are surfaces with K2 = 1, pg = 2 and 8 nodes.

Then each surface in this family dominates six different K3 surfaces
naturally subdivided in three pairs as in the previous case. More precisely,
let Ui,j be the K3 with 2 nodes obtained quoting by 〈ei + ej〉 and let Vk
be the K3 with 9 nodes obtained quoting by ker εk. Then we have double
covers Vi,j → Uk, k 6∈ {i, j}, branched on 8 nodes and nowhere else, quotient
of Vi,j by the symplectic involution induced by ei. These are again special
cases of the K3 surfaces considered in [vGS07, 3.5], where the plane conic
considered there splits as union of two lines.

We finally note that, since the quotient by e1 + e2 + e3 represents these
surfaces as double cover of the plane, these surfaces are a degeneration of
the surfaces in the family A1, special Horikawa surfaces in the family of
[Hor76, Theorem 1.6.(i)] with extra automorphisms.
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8.4.7 Family E3

These surfaces have K2 = 8.
They are embedded in P(14, 23, 32), with variables x0, x1, x2, y110, y101,

y011, y111, y100, y010, defined by the equations

Rank

f110f111 y100 y010

y100 f101 y110

y010 y110 f011

 = 1, Rank

f110f001 y011 y101

y011 f101 y110

y101 y110 f011

 = 1,

Rank

f111 y100 y111

y100 f110f101 y011

y111 y011 f001

 = 1, Rank

f111 y010 y111

y010 f110f011 y101

y111 y101 f001

 = 1.

with deg f101 = deg f011 = deg f001 = 1, deg f110 = 2 and deg f111 = 3.
The quotients by the subgroup ker ε1 or ker ε2 are double planes branched

on the union of one line, one conic and one cubic, so K3 surfaces with 11
nodes. The quotients by the subgroup ker ε3 are branched on the union of
three lines and one cubic, so K3 surfaces with 12 nodes. The quotients by
ker ε1 + ε2 are branched on the union of two lines, so del Pezzo surfaces of
degree 8 with 1 node. The quotients by ker ε1 +ε3 or ker ε2 +ε3 are branched
on the union of two lines and a conic, so del Pezzo surfaces of degree 2 with
5 nodes. The quotients by ker ε are branched on the union of one line and
one cubic, so del Pezzo surfaces of degree 2 with 3 nodes.

The quotients by a subgroup 〈g〉 of index 4 are 2−double planes as
follows. If g = e1 + e2 + e3 then two of the branching divisors are lines and
the third is the union of a line and a conic, so the quotients are del Pezzo
surfaces of degree 1 with 4 nodes. If g = e1 + e2 then one divisor is empty,
the second is the union of two lines, the third is the union of a line and a
cubic, and the quotients are K3 surfaces with 8 nodes. If g is e1 + e3 or
e2 + e3 then one of the branching divisors is a line, one is a cubic, and the
last is union of a line and a conic: the quotients have K2 = pg = 1 and 4
nodes. If g = e3 then two divisors are lines and the third is union of a conic
and a cubic: the quotients have K2 = 1, pg = 2 and 12 nodes. If g is e1 or
e2 then one divisor is the union of two lines, one is a conic and the last is
the union of a line and a cubic, giving surfaces with K2 = 4, pg = 2 and 8
nodes.

Then each surface in this family dominates four different K3 surfaces.
We get only one symplectic involution by the construction, on the K3 surface
with 8 nodes quotient by e1 + e2. The symplectic involution is induced by
e1, and the quotient is the K3 with 12 nodes obtained by ker ε3. The two
K3 surfaces with 11 nodes are both dominated by a surface of general type
with K2 = pg = 1.



170 Smooth k-double covers of the plane of geometric genus 3

8.4.8 Family A4

These surfaces have K2 = 16.
They are embedded in P(13, 214) with variables x0, x1, x2, y1111, y0100,

y0010, y0001, y1011, y1101, y1110, y0110, y0101, y0011, y1010, y1100, y0111, y1001,
defined by the equations

Rank


f1000f1011 y1111 y1011 y1100

y1111 f1110f1101 y0100 y0011

y1011 y0100 f1100f1111 y0111

y1100 y0011 y0111 f1010f1001

 = 1

Rank


f1000f1101 y1111 y1101 y1010

y1111 f1110f1011 y0010 y0101

y1101 y0010 f1010f1111 y0111

y1010 y0101 y0111 f1100f1001

 = 1

Rank


f1000f1110 y1111 y1110 y1001

y1111 f1101f1011 y0001 y0110

y1110 y0001 f1001f1111 y0111

y1001 y0110 y0111 f1100f1010

 = 1

Rank


f1100f1101 y0100 y0110 y1010

y0100 f1110f1111 y0010 y1110

y0110 y0010 f1010f1011 y1100

y1010 y1110 y1100 f1000f1001

 = 1

Rank


f1100f1110 y0100 y0101 y1001

y0100 f1101f1111 y0001 y1101

y0101 y0001 f1001f1011 y1100

y1001 y1101 y1100 f1000f1010

 = 1

Rank


f1010f1110 y0010 y0011 y1001

y0010 f1011f1111 y0001 y1011

y0011 y0001 f1001f1101 y1010

y1001 y1011 y1010 f1000f1100

 = 1

Rank


f1000f1111 y1011 y1101 y1110

y1011 f1100f1011 y0110 y0101

y1101 y0110 f1010f1101 y0011

y1110 y0101 y0011 f1001f1110

 = 1

with deg f• = 1. This is Persson example 1.2.4.
The quotients by ker ε1 are double planes branched on the union of 8

lines, degenerations of the family A1 with 28 nodes. The quotients by each
of the other 6 subgroups of index 2 are double planes branched on the union
of 4 lines. They are del Pezzo surfaces of degree 2 with 6 nodes.
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The quotients by a subgroup H of index 4 behave differently according
to if H is contained in ker ε1 or not. If H ⊂ ker ε1 the quotients are de-
generations of the family A2 with 24 nodes. Otherwise, the quotients are
Enriques surfaces with 6 nodes.

The quotients by a subgroup 〈g〉 of index 8 also behave differently ac-
cording to if g belongs to ker ε1 or not. If g ∈ ker ε1 the quotients are
degenerations of the family A3 with 32 nodes. Otherwise the quotients are
numerical Campedelli surfaces, surfaces with pg = 0, K2 = 2 and ample
canonical class.

Note that these surfaces are then double covers of numerical Campedelli
surfaces: in fact they were first found by Persson in this way in [Per78, Ex.
5.8]. They are also in [DG14, Theorem 1.1.(1)], where the authors give them
through equations of a different (not normal) birational model.
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8.4.9 Family C4

These surfaces have K2 = 16.
They are embedded in P(14, 211) with variables x0, x1, x2, y1110, y1001,

y0011, y0101, y1111 y0111, y1101, y1011, y0001, y1100, y1010, y0110 defined by the
equations

Rank


f1110 y1001 y0101 y0011 y1111 y1110

y1001 f1010f1100f0111 y1100f1100 y1010f1010 y0110f0111 y0111

y0101 y1100f1100 f1100f0110f1011 y0110f0110 y1010f1011 y1011

y0011 y1010f1010 y0110f0110 f1010f0110f1101 y1100f1101 y1101

y1111 y0110f0111 y1010f1011 y1100f1101 f1101f1011f0111 y0001

y1110 y0111 y1011 y1101 y0001 f1111

 = 1

Rank

f1100f1101 y0110 y1010

y0110 f1010f1011 y1100

y1010 y1100 f0110f0111

 = 1

with deg f• = 1.
We describe only the intermediate quotients that are K3 surfaces.
We find three intermediate K3 surfaces with 15 nodes, the quotients

by ker εi, i = 1, 2, 3, double planes branched on six lines. Each of them is
double covered by a K3 with 14 nodes, the quotient by (ker εi)∩(ker εj + εk),
{i, j, k} = {1, 2, 3} with a symplectic involution by ej . Note that each of
these last surfaces is double covered by two further intermediate quotients
with pg = 1, the quotients by ej + ek and ej + ek + e4, both giving surfaces
with K ample, K2 = 2 and 8 nodes. There are special case f the ”special
Horikawa surfaces” considered in [Lat21b]. These pairs of K3 are again a
specialization of [vGS07, 3.5], where all plane curves splits as union of lines.
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8.4.10 Family D4

These surfaces have K2 = 4.
They are embedded in P(18) = P7 with variables x0, x1, x2, y1100, y1010,

y0110, y0001, y1111 we take the surfaces defined by the equations

Rank

f1100(xj) y0110 y1010

y0110 f1010(xj) y1100

y1010 y1100 f0110(xj)

 = 1
y2

1111 = f1110(xj)

y2
0001 = f1111(xj)

with f• general of respective degrees deg f1100 = deg f1010 = deg f0110 = 1
and deg f1110 = deg f1111 = 2.

The intermediate quotients that are K3 surfaces form three towers of
three K3s corresponding to the chain of subgroups, for i, j ≤ 3, i 6= j

〈ei + ej〉 ⊂ 〈ei + ej , e4〉 ⊂ 〈ei, ej , e4〉

giving three towers of double covers between K3 surfaces Ui,j → Vi,j →Wi,j

with respectively 4, 10 and 13 nodes.

8.4.11 Family D5

These surfaces have K2 = 8.
They are embedded in P(112) = P11 with variables x0, x1, x2, y11000,

y10100, y01100, y00010, y00001, y11110, y11101, y00011, y11111 defined by the equa-
tions

Rank


f11111(xj) y00010 y00001 y11111

y00010 f11110(xj) y00011 y11101

y00001 y00011 f11101(xj) y11110

y11111 y11101 y11110 f11100(xj)

 = 1

Rank

f11000(xj) y01100 y10100

y01100 f10100(xj) y11000

y10100 y11000 f01100(xj)

 = 1

with f• general of degree 1.
There are 48 intermediate quotients that are K3 surfaces, divided in

three families, each of them giving several towers of three consecutive double
covers between (four) K3 surfaces. One for each pair i 6= j, i, j = 1, 2, 3.
Namely for each pair of subgroups H4 ⊂ H8 with |Hd| = d and

〈ei + ej〉 ⊂ H4 ⊂ H8 ⊂ 〈ei, ej , e4, e5〉

we obtain a tower of 4 K3 surfaces with respectively 8, 12, 14 and 15 nodes,
with the surfaces with 8 and 15 nodes depending only on i and j.
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8.5 Burgers

We recall Laterveer’s definition [Lat19, Definition 3.1]

Definition 8.5.1. A surface S is called a triple K3 burger if the following
conditions are satisfied:

(0) S is minimal, of general type, with q = 0 and pg = 3;

(i) there exist involutions σj : S → S (j = 0, 1, 2) that commute with one
another, and such that the quotients Xj := S/ 〈σj〉 (j = 0, 1, 2) are
birational to a K3 surface Xj ;

(ii) there is an isomorphism

((p0)∗, (p1)∗, (p2)∗) : H2(X0,O)⊕H2(X1,O)⊕H2(X2,O)

→ H2(S,O),

where pj : S → Xj denotes the quotient morphism.

Laterveer’s original definition included also the third condition (iii) that
the involutions respect the canonical divisor: σ∗j |KS | = |KS |. We removed
that because it is automatic since the pull-back of a canonical divisor by an
automorphism is the divisor of the pull-back of the corresponding differential
form.

Our surfaces not of type A are natural candidates to be triple K3 burger.
In fact

Proposition 8.5.2. Let S be a smooth k−double plane not of type A.
If S is of type B2 set, in the notation of the previous section, σ0 = e1+e2,

σ1 = e1 and σ2 = e2. Otherwise set σ0 = e1 + e2, σ1 = e2 + e3 and
σ2 = e1 + e3. Then there is an isomorphism

((p0)∗, (p1)∗, (p2)∗) : H2(X0,O)⊕H2(X1,O)⊕H2(X2,O)→ H2(S,O),

where pj : S → Xj denotes the quotient morphism.

Proof. Let S be a smooth k−double plane of type C. So we are considering
now the families C3, C4, D3, D4, D5 and E3, and not considering the family
B2 yet.

We know that H0(S,KS)χ = 0 unless χ = ε1, ε2, or ε3. More precisely

H0(S,KS) = p∗0H
0(X0,KX0

)⊕ p∗1H0(X1,KX1
)⊕ p∗2H0(X2,KX2

)

= C⊕ C⊕ C.

which implies the stated isomorphism by the standard Serre duality.
If S is of type B2 the proof follows by the same argument replacing ε3

with ε1 + ε2.
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The following consequence has already been proved by Laterveer for the
surfaces of type B2 in [Lat19, Remark 3.4]

Corollary 8.5.3. The families B2, C3, D3, D4, D5 and E3 are families of
triple K3 burgers.

Proof. All our surfaces have ample canonical class, so condition (0) is auto-
matic.

In Proposition 8.5.2 we have chosen involutions σj in each case and
proved condition 2 for them. About condition (i), we have shown that the
surfaces Xj are nodal K3 surfaces in the previous section.

We note that the surfaces in the family C4 are not triple K3 burgers since
the quotients Xj are three surfaces of general type, more precisely surfaces
with K ample, K2 = 2, pg = 1, q = 0 and 8 nodes. However each of them
is a double cover of a K3 surface with 14 nodes.





Appendix A

Appendix

A.1 Classical results on Surfaces

This section lists and sometimes proves the main results on surfaces that are
freely given in the thesis. They may be presented with strong hypothesis,
which are the same ones encountered in the course of the thesis and for
which they therefore apply.

If you are interested in some more general result, we suggest to see
[GH78], [Bea96]

Here S and X are smooth projective surfaces.

Theorem A.1.1. Let A, B two effective divisors of S such that A − B is
also an effective divisor C, namely A = B + C. Then

1. C + |B| ⊆ |A|;

2. h0(S,OS(B)) ≤ h0(S,OS(A));

3. Let us denote by c a local defining function of C. The induced (ratio-
nal) map ΦB factorizes through ΦA:

S P(H0(S,OS(A))∗)

P(H0(S,OS(B))∗),

ΦA

ΦB
πB

where the projection map πB is the (rational) projective dual map in-
duced by the injective linear map

H0(S,OS(B)) H0(S,OS(A))
⊗C

, s 7→ c · s. (A.1)

The (schematic) base-locus of ΦB amounts to Bs(ΦB) = Bs(ΦA) +C.

Furthermore, the following are equivalent
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(a). C + |B| = |A|;

(b). h0(S,OS(B)) = h0(S,OS(A));

(c). πB is an isomorphism (namely, in suitable projective coordinates cor-
responds to the identity). In other words ΦA and ΦB are the same
map;

Proof. The point 1 is straightforward. Let us prove the point 2. Consider
the natural multiplication map (A.1) given by C. This map is well defined
thanks to C + B = A: if s is a global section of OS(B), then div(s) ≡ B,
and so div(c ·s) = div(c)+div(s) ≡ C+B = A, hence c ·s is a global section
of OS(A).

This map is naturally injective: if c · s = c · s′, then

div(c) + div(s) = div(c · s)
= div(c · s′)
= div(c) + div(s′),

=⇒ div(s) = div(s′), and so s′ = λs.

(A.2)

If s is zero, then also s′ is zero and we are done. However, if s is no-zero,
one can use c · s = c · s′ and (A.2) to say c · s = λ (c · s), that implies λ = 1,
and s′ = λs = s. Hence ⊗C is injective, and so the point 2 follows.
About the point 3, one can consider the projective dual map of ⊗C, that in
general is not a morphism. This map is not defined on the functional maps
of H0(S,OS(A)) that composed with ⊗C are zero. This means also that
πB ◦ ΦA is not defined exactly on the points of C and on the base locus of
ΦA. It remains to prove ΦB = πB ◦ ΦA, that is a direct check

(πB ◦ ΦA) (p) = [evAp ◦ (⊗C)] = [c(p)evBp ] = [evBp ] = ΦB(p).

Now we prove (a) implies (b). It is sufficient to prove that ⊗C is
surjective. Given t ∈ H0(S,OS(A)), from (a), there exists an effective
divisor D ≡ B such that div(t) = C + D. By using the identification
|B| ∼= P(H0(S,OS(B))), one can say that D is the divisor of a global holo-
morphic section s ∈ H0(S,OS(B)). Therefore

div(t) = C +D = C + div(s) = div(c · s), and so t = λ(c · s).

About (b) implies (c), it is sufficient to observe that ⊗C becomes an isomor-
phism, and so its projective dual map is an isomorphism too. In this case,
we observe that ΦB and ΦA would be the same map, up to the projective
transformation πB.
It remains to prove (a) when holds (c). Let D ∈ |A|; by the identifica-
tion of |A| ∼= P(H0(S,OS(A))) it there exists a global section s such that
D = div(t). However, πB is an isomorphism so ⊗C results to being an
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isomorphism too. In particular, it there exists s ∈ H0(S,OS(B)) such that
t = c · s, and so D = div(t) = div(c) + div(s) ≡ C + B ∈ C + |B|. The
theorem is proved.

Definition A.1.2. Let π : S → X be a morphism.

1. Consider a vector bundle E
b−→ X of rank n. The pullback bundle π∗E

on S is the fibred product S ⊗X E := {(p, e) : π(p) = b(e)} together

with the projection map S ⊗X E
π1−→ S on the first factor. Given

an open cover {Vα}α of X and the trivializations {φα : b−1(Vα) →
Vα × Cn}α of the vector bundle E, then

φ′α : π−1
1

(
π−1(Vα)

)
→ π−1(Vα)× Cn, (p, e) 7→ (p, φα(π(p)))

are the trivializations of the vector bundle π∗E. Therefore, π∗E is
given by the co-cycles {gβα ◦ π}βα, where {gβα}βα are the co-cycles of
E;1

2. Let us suppose that π is surjective, and consider a divisor D on X.
We define the pullback π∗D as the divisor on S whose local defining
function is fα ◦ π, where fα is a local defining function of D. 2

Remark A.1.3. If π : S 99K X is a rational map, then it is possible to extend
the definition of the pullback π∗E. Let us consider an open cover {Vα}α
of X and the co-cycles {gβα}βα of E. Let U be the maximal definition
domain of π; hence S \U is a finite set of points, let us say p1, . . . , pk. Take
the collection of local holomorphic functions (gβα ◦ π) : π−1(Vα)→ GL(Cn),
that are defined on U . Then, by Hartogs theorem, gβα ◦ π can be uniquely
extended to a map that is holomorphic also on the points p1, . . . , pk. We
denote such a map always by gβα ◦ π. Furthermore, the properties

(gαα ◦ π) = 1, (gβα ◦ π) = (gαβ ◦ π)−1, (gγβ ◦ π) (gβα ◦ π) = (gγα ◦ π)

hold not only outside of p1, . . . , pk, thanks to the uniqueness of the extension.
Therefore {gβα ◦ π}βα are co-cycles of a line bundle on S, that we will call
pullback bundle, and will be denoted as π∗E.

Theorem A.1.4. Let π : S 99K X be a dominant map. Given a divisor D
of X, then

1. π∗OX(D) = OS(π∗D);

1One can observe that a problem occur, if π would not be surjective. In fact, it could
happen that some Vα is not contained in the image of π, and so φ′α would not makes sense.
In this case, we can simply avoid considering that open set Vα, and the definition can be
extended for π morphism.

2One can define the pullback of a divisor in general when π(S) 6⊆ D. This requirement
is always satisfied if π is surjective or a dominant map.
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2. The pullback map

π∗ : H0(X,OX(D))→ H0(S,OS(π∗D)), s 7→ s ◦ π

is injective.

Proof. The point 1 is a direct consequence of the definitions. Consider a
trivializating open cover {Vα}α of the line bundle OX(D), and denote by sα
the local function of a section s ∈ H0(X,OX(D)) in the open set Vα. The
pullback map is well defined since for any s ∈ H0(X,OX(D)), then sα ◦ π
is holomorphic on π−1(Vα), except for at most a finite number of points
where π is not defined. However, from Hartogs theorem, then sα ◦ π can be
extended to a unique map holomorphic also on that points. We denote this
map always by sα ◦ π. Therefore s ◦ π := {sα ◦ π}α is a global section of
OS(π∗D), and π∗ is well-defined.

Furthermore, the map is injective because if π∗s = s◦π and π∗s′ = s′ ◦π
are equal, then their local holomorphic functions sα ◦ π, s′α ◦ π are equal at
any open set π−1(Vα) of S. However, sα and s′α are equal on π(π−1(Vα)),
which is dense in Vα, since π is dominant. This means that s and s′ are
equal everywhere.

Let us consider now the canonical bundles ωS and ωX . Any global holo-
morphic 2-forms of X can be (uniquely) lifted to a global holomorphic 2-
form of S, in the following way: Let ω = g(z1, z2)dz1 ∧ dz2 be a 2-form on
X written in local coordinates z := (z1, z2) around a point q ∈ X. Given a
point p ∈ π−1(q) and fixed local coordinates x := (x1, x2) around p, we can
compose locally ω with π to get

g(π(x1, x2)) det(Jzxπ)dx1 ∧ dx2,

where Jzxπ is the Jacobian matrix of π in those local coordinates. We
observe that if one changes coordinates x′ around p and z′ around q, then

g(π(x′1, x
′
2)) det(Jz′x′π) =

= g(π(x1, x2)) det (Jzz′) (det(Jz′z) det(Jzxπ)) det(Jx′x))

= g(π(x1, x2)) det(Jzxπ) det(Jx′x).

This means that

g(π(x′1, x
′
2)) det(Jz′x′π)

g(π(x1, x2)) det(Jzxπ)
= det(Jx′x),

that is the co-cycle in the coordinates x′,x of the canonical bundle ωS . This
justify the next definition

Definition A.1.5. Given a global 2-holomorphic form ω = {g(z)}z of
X, its pullback π∗ω is the collection of holomorphic functions π∗ω :=
{(g ◦ π) det(Jzxπ)}x. By construction, π∗ω is a global 2-holomorphic form
of S.
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To one side, we have obtained the pullback π∗ω of a 2-form ω, and,
from the other side, the pullback π∗div(ω) of the divisor of ω. The natural
question is: Is there a relation between div(π∗ω) and π∗div(ω)?

Theorem A.1.6. (Hurwitz formula) Let π : S → X be a surjective mor-
phism. Then the following identity of divisors holds

div(π∗ω) = π∗div(ω) +R,

where R is an effective divisor, the ramification locus of π.3 In particular,
one can give a more precise description of the ramification divisor

R =

q∑
j=1

(ej − 1)Cj +

p∑
i=1

riEi,

where Cj are irreducible curves whose image with respect to π is a curve Γj,
while Ei are curves contracted by π. Here ej is the ramification index of Cj,
namely the coefficient of Cj in the divisor π∗Γj, and ri ≥ 0.

Proof. By the definition of π∗ω, we have π∗ω = (g ◦ π) det(Jzxπ)dx1 ∧ dx2

in local coordinates x = (x1, x2), where ω = g(z1, z2)dz1 ∧ dz2 in local
coordinates z = (z1, z2). Therefore

div(π∗ω) = π∗div(ω) + div(det(Jzxπ)) = π∗div(ω) +R.

Now we prove the remain part of the statement. Let us consider an irre-
ducible curve C := Cj , with image the curve Γ := Γj , and denote e := ej its
ramification index. Fixed a point p on C, it there exists local coordinates
x around p and z around π(p) ∈ Γ such that π in this local coordinates is
(x1, x2) 7→ (xe1, x2). We observe that C = {x1 = 0}, and Γ = {z1 = 0}, in
those local coordinates. But now

det(Jzxπ) = det

(
exe−1

1 0
0 1

)
= exe−1

1 ,

which proves e− 1 is the coefficient of C in the divisor R.

Corollary A.1.7. Let π : S → X is a surjective morphism. Any holomor-
phic 2-form ω of X lefts uniquely to a global holomorphic 2-form π∗ω of S,
and the following commutative diagram holds

H0(X,OX(KX)) H0(S,OS(KS))

H0(S,OS(π∗KX)).

π∗

⊗R

3The ramification locus of a morphism is always a pure codimension 1 subvariety, by
the Zariski-Nagata purity theorem.
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Here R is the ramification locus of π. Moreover, one has

S X

P(H0(S,OS(KS))∗) P(H0(X,OS(KX))∗),

ΦKS

π

ΦKX

π∗

and the canonical map of S factors through π if and only if pg(S) = pg(X).

Proof. By the Hurwitz formula Theorem A.1.6, we have that div(π∗ω) =
π∗div(ω) + R, with π∗div(ω) and R effective divisors. We have fallen in
the hypothesis of the Theorem A.1.1, with A := KS , B := π∗KX , and
C := R. Hence the Theorem A.1.1 applies, and ⊗R is injective. The other
map H0(X,OX(KX))→ H0(S,OS(π∗KS)) is injective too, by the Theorem
A.1.4. The commutativity of the first diagram is straightforward, and from
this follows also that π∗ is injective.
Let us prove now the commutativity of the second diagram. Let p ∈ S, then

(π∗ ◦ ΦKS ) (p) = π∗[evp] = [det(Jπp)evπ(p)] = [evπ(p)] = (ΦKX ◦ π) (p).

Finally, ΦKS factors through π if and only if π∗ is an isomorphism, that
happens if and only if pg(S) = pg(X).

Theorem A.1.8 (Clifford Theorem). Let C be an irreducible smooth curve,
and D be a divisor of C such that 0 ≤ deg(D) ≤ 2g(C)− 2. Then

h0(C,OC(D)) ≤ 1

2
deg(D) + 1.

Proof. For the proof, we remind to [GH78, pg. 251]

Theorem A.1.9. Let Σ ⊆ Pn be an irreducible surface, not contained in
an hyperplane. Then deg(Σ) ≥ n − 1; furthermore, if Σ is not ruled, then
deg(Σ) ≥ 2n− 2.

Proof. Let η : S → Σ ⊆ Pn be a resolution of Σ. Denote by |H| the inverse
image of the linear system of hyperplanes of Pn. Let us pick up a generic
smooth curve C ∈ |H| and consider D := H|C . We have the following exact
sequences

0 OS(−C) OS OC 0

0 OS OS(H) OC(D) 0.

⊗OS(H)
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The long exact sequence in cohomology

0 H0(S,OS)︸ ︷︷ ︸
∼= C

H0(S,OS(H)) H0(C,OC(D)) · · ·β

implies that h0(S,OS(H)) ≤ h0(C,OC(D)) + 1. We observe that |H| is the
system that induces the resolution η, so h0(S,OS(H)) = n + 1, since Σ is
not contained in an hyperplane. Therefore n ≤ h0(C,OC(D)).

We also observe that C2 = deg(D) = deg(Σ), by construction.
Now we need to distinguish two cases:

(HK ≥ 0) In this case, by the genus formula of smooth curves on surfaces, we
would have deg(D) = C2 ≤ C2 +HK = 2(g(C)−1). We can therefore
apply Clifford Theorem A.1.8, and get h0(C,OC(D)) ≤ 1

2 deg(D) + 1.
Finally

n ≤ h0(C,OC(D)) ≤ 1

2
deg(D) + 1 =⇒ deg(Σ) = deg(D) ≥ 2n− 2.

(HK < 0) We observe that this happens only if Σ is ruled. In fact, by the
Enriques-Kodaira classification, if k(S) = −∞, namely h0(S,OS(dS))
= 0 for every d ≥ 0, then S is ruled. Hence, if S is non-ruled, then it
must there exists T ∈ |dK| 6= ∅ for some d sufficiently large. However,
our divisor H is nef, and T is effective. This means dHK = HT ≥ 0,
and so HK ≥ 0.

Now we finish to prove the statement of the theorem. We observe that
in this case deg(D) = C2 ≥ C2 + HK = 2(g(C) − 2). In particular,
this implies h1(C,OC(D)) = h0(C,OC(KC −D)) = 0. We apply now
the Riemann-Roch theorem for curves

n ≤ h0(C,OC(D)) = deg(D)−g(C)+1 =⇒ deg(Σ) = deg(D) ≥ n−1.

Theorem A.1.10 (Jongmans Theorem, 1947). Any minimal surface S of
general type with a birational canonical map satisfies the inequality

K2
S ≥ 3pg(S) + q(S)− 7.

Proof. See [Deb82, Thm. 3.2].

A.2 The Kodaira dimension

Now let us define the Kodaira dimension of a compact complex manifold X.
Roughly speaking, the Kodaira dimension is a useful tool to measure the
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size of its canonical model.
In the case of surfaces, it divides them into four classes, according to the
”ampleness” of their canonical divisor. Any of such classes have been inten-
sively studied in the literature. The most important result in this direction
is the the so-called Enriques-Kodaira classification [BHPVdV04, Theorem
VI.1.1].

Definition A.2.1. The canonical ring of X is the ring

R(KX) :=
⊕
d≥0

H0 (X, dKX) .

The canonical model of X is the projective scheme Proj (R(KX)).
Here Pd := dimH0(X, dKX) is called d-plurigenus of X.
In particular, pg := P1 is called geometric genus of X.
The Kodaira dimension of X is denoted by κ(X) and it is −∞ if the pluri-
genera Pd := dimH0(X, dKX) are zero for any d > 0; otherwise is the
minimum k such that Pd/d

k is bounded, namely

lim sup
d→+∞

Pd
dk

<∞.

Theorem A.2.2. ([BHPVdV04, Theorem I.7.2] or [Uen75, Theorem 8.1])
Let X be a compact complex manifold. Let us denote by deg tr(R(X)) the
degree of trascendency of the canonical ring R(X) over C. Then

κ(X) =

{
−∞ if R(X) ∼= C
deg tr(R(X))− 1 otherwise

.

Remark A.2.3. ([Har77, page 421]) Let ΦmKX be the rational map to the
projective space associated with the linear system |mKX |. Then the Kodaira
dimension of X is the maximal dimension of the images of ΦmKX , m ≥ 1.4

Moreover, κ(X) is a birational invariant and it assumes values −∞, 0, . . . , n,
with n := dim(X).

The above Remark A.2.3 justifies the following definitions

Definition A.2.4. The Kodaira dimension of an algebraic variety X is the
Kodaira dimension of a resolution ρ : “X → X of the singularities of X.

Definition A.2.5. We say that a variety X of dimension n := dim(X) is
of general type if κ(X) = n, or equivalently if

lim sup
d→+∞

Pd
dn

> 0.

4If |nKX | = ∅, then ΦnKS = ∅ and we say that dim(∅) = −∞.
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Remark A.2.6. ([Bea96, Example VII.2]) In the case of curves, it is easy to
determine the Kodaira dimension in terms of its genus. Let C be a smooth
curve of genus g. Then

• κ(C) = −∞ ⇐⇒ g = 0 ⇐⇒ C ∼= P1;

• κ(C) = 0 ⇐⇒ g = 1;

• κ(C) = 1 ⇐⇒ g ≥ 2.

In general, we can say something more about the Plurigenera of X with
Kodaira dimension 0, without so much effort.

Remark A.2.7. X has Kodaira dimension 0 if and only if the Plurigenera
Pd = 0 or 1, but not always 0.
In fact, if X has Kodaira dimension 0, then it would exists at least one d0

such that Pd0 6= 0. Now, by contradiction suppose Pd0 ≥ 2. Then we would
have at least two independent sections s0, s1 ∈ H0(X, d0KX). In this way,
we would get a subsystem 〈si0s

m−i
1 : i = 0, . . . ,m〉 ⊆ H0(X, (md0)KX) gener-

ated by m+1 sections. We claim that they are also linearly independent. To
see this, consider a linear combination of them such that

∑m
i=0 ais

j
0s
m−i
1 = 0.

The (complex) polynomial p(x0, x1) :=
∑

i=0 aix
j
0x
m−j
1 can be decomposed

in irreducible polynomials of degree 1; let us say p(x0, x1) =
∏m
i=0(αix0 +

βix1). Since p(s0, s1) = 0, then we would get X = ∪mi=0{αis0 + βis1 = 0}.
However, X is irreducible and so it must there exists j such that X =
{αjs0 + βjs1 = 0}. In other words, we would get αjs0 + βjs1 = 0, which
implies αj = βj = 0, since s0, s1 are linearly independent. To conclude, we
get p(x0, x1) = 0 and this implies ai = 0 for each i = 0, . . .m.
Since we have proved that H0(X, (md0)KX) contains a subspace of dimen-
sion m+1, then Pmd0 ≥ m+1, which contradicts the fact that Pd is bounded.

Theorem A.2.8. [Uen75, page 69]) If X1 and X2 are connected compact
complex manifolds, then κ(X1 ×X2) = κ(X1) + κ(X2).

For sake of simplicity, we state and prove the following only for the case
of algebraic surfaces.

Theorem A.2.9. Let π : S → X be a surjective morphism of smooth alge-
braic surfaces. Then κ(S) ≥ κ(X).

Proof. By the Hurwitz formula A.1.6, we have dKS = π∗(dKX) + D for
any d ≥ 1, where D is an effective divisor (in particular, D is d-times the
ramification divisor of π).
Therefore, by Theorems A.1.1 and A.1.4 then the pullback π∗ : H0(X, dKX)
↪→ H0(S, π∗1(dKX)) ⊆ H0(S, dKS) is injective. In other words, h0(dKS) ≥
h0(dKX).



186 Appendix

Define k := κ(S); if k ≤ 0, then the thesis follows immediately. Otherwise,
we would get

lim sup
d→∞

h0(dKS)

dk
≥ lim sup

d→∞

h0(dKX)

dk
,

hence k(X) ≤ k = k(S).

Corollary A.2.10. Let f : Y → X be a surjective morphism of algebraic
surfaces, with Y and X not necessarily smooth. Then κ(Y ) ≥ κ(X).

Proof. Let ρY : “Y → Y and ρX : “X → X be two resolutions of the singulari-
ties of Y and X. We are going to show κ(“Y ) ≥ κ(“X). Consider the natural
rational map “Y 99K “X and resolve its indeterminacy by a finite number of
blow-ups b : “Y ′ → “Y . We have therefore a morphism π : “Y ′ → “X fitting in
the following commutative diagram“Y ′ “Y Y

“X X

f

ρYb

π
.

Since f is surjective, then π is a surjective morphism too. Apply now the
Theorem A.2.9 to the map π to get κ(“Y ′) ≥ κ(“X). However, the Kodaira
dimension is a birational invariant by the Remark A.2.3, and so κ(“Y ) =
κ(“Y ′) ≥ κ(“X).
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Soc. Math. France 110 (1982), no. 3, 319–346 (French, with English sum-
mary). With an appendix by A. Beauville. MR688038 ↑183



BIBLIOGRAPHY 189

[DG14] Rong Du and Yun Gao, Canonical maps of surfaces defined by
abelian covers, Asian J. Math. 18 (2014), no. 2, 219–228, DOI
10.4310/AJM.2014.v18.n2.a2. MR3217634 ↑156, 165, 166, 171

[Enr49] Federigo Enriques, Le Superficie Algebriche, Nicola Zanichelli, Bologna,
1949 (Italian). MR0031770 ↑4, 13

[Fal23] Federico Fallucca, Examples of surfaces with canonical maps of degree 12,
13, 15, 16 and 18, Ann. Mat. Pura Appl., (online first), posted on 2023,
DOI 10.1007/s10231-023-01363-6. ↑vii, xi, 120

[FG23] Federico Fallucca and Christian Gleissner, Some surfaces with canonical
maps of degree 10, 11 and 14, Math. Nachr. (online first), posted on 2023,
DOI 10.1002/mana.202200450. ↑vii, xi, 113

[FP23a] Federico Fallucca and Roberto Pignatelli, Some surfaces with canonical
map of degree 4, Portugaliae Math. (online first), posted on 2023, DOI
10.4171/PM/2106. ↑xi, 139

[FP23b] , Smooth k-double covers of the plane of geometric genus 3, to appear
on Rend. Mat. Appl. (2023), available at https://arxiv.org/abs/2305.

04545. ↑xii, 147

[FP97] Barbara Fantechi and Rita Pardini, Automorphisms and moduli
spaces of varieties with ample canonical class via deformations of
abelian covers, Comm. Algebra 25 (1997), no. 5, 1413–1441, DOI
10.1080/00927879708825927. MR1444010 ↑149

[Fra12] Davide Frapporti, Mixed quasi-étale surface and new surfaces of general
type, Doct. thesis, University of Trento (2012), available at https://hdl.

handle.net/11572/368086. ↑xi, 90

[FG23] Davide Frapporti and Christian Gleissner, Rigid manifolds of general type
with non-contractible universal cover, Geom. Dedicata 217 (2023), no. 3,
Paper No. 49, 10, DOI 10.1007/s10711-023-00784-0. MR4557933 ↑viii, 57
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[GDH92] G. González Dı́ez and W. J. Harvey, Moduli of Riemann surfaces with sym-
metry, Discrete groups and geometry (Birmingham, 1991), London Math.
Soc. Lecture Note Ser., vol. 173, Cambridge Univ. Press, Cambridge, 1992,
pp. 75–93, DOI 10.1017/CBO9780511565793.010. MR1196918 ↑21, 71

[GH78] Phillip Griffiths and Joseph Harris, Principles of algebraic geometry, Pure
and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New
York, 1978. MR507725 ↑177, 182

[Har77] Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No.
52, Springer-Verlag, New York-Heidelberg, 1977. MR0463157 ↑184

[Har66] W. J. Harvey, Cyclic groups of automorphisms of a compact Rie-
mann surface, Quart. J. Math. Oxford Ser. (2) 17 (1966), 86–97, DOI
10.1093/qmath/17.1.86. MR201629 ↑140
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