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Abstract

In the last three decades, the field of computational intelligence has seen a profusion of population-
based metaheuristics applied to a variety of problems, where they achieved state-of-the-art results.
This remarkable growth has been fuelled and, to some extent, exacerbated by various sources of
inspiration and working philosophies, which have been thoroughly reviewed in several recent sur-
vey papers. However, the present survey addresses an important gap in the literature. Here, we
reflect on a systematic categorisation of what we call “lightweight” metaheuristics, i.e., optimisation
algorithms characterised by purposely limited memory and computational requirements. We focus
mainly on two classes of lightweight algorithms: single-solution metaheuristics and “compact” opti-
misation algorithms. Our analysis is mostly focused on single-objective continuous optimisation. We
provide an updated and unified view of the most important achievements in the field of lightweight
metaheuristics, background concepts, and most important applications. We then discuss the impli-
cations of these algorithms and the main open questions and suggest future research directions.

Keywords: Single-solution algorithms, compact optimisation, evolutionary algorithms, swarm
intelligence, metaheuristics.

1. Introduction

Hardware and software technologies are advancing at a fast pace and provide complex computing
systems. In recent decades, strong competition among manufacturers has caused intense pressure
to completely change the face of commercial electronics [1], leading to the ongoing development of
computing devices with ever smaller dimensions but higher performance. These devices can range
from extremely small form factor devices (e.g., microcontrollers, wearable devices, wireless sensors,
and actuators) to larger devices such as hand-helds or tablets. A major concern in the design of
these devices is that they usually perform computations under stringent physical, weight, and cost
limitations, as well as real-time constraints and limited power capacities (e.g., with batteries that
might be difficult or even impossible to replace/recharge). A categorisation of this kind of device,
with its specific limitations, can be found, for example, in [2]. The general goal of manufacturers is to
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design optimal products that meet the requirements of the market without violating any hardware-
dependent constraints. However, this is difficult in practise, given the impact these restrictions have
on memory capacity, computational performance, and battery life.

Most computational problems that arise in such devices can be formulated in the form of an
optimisation problem, i.e., one in which the optimal value of the given decision variables must be
found with respect to a given objective function1. Note that due to the lack of a mathematical formu-
lation or complexity of the problem, etc., these are challenging zeroth-order optimisation scenarios,
where no assumption can be made on the properties of f (⋅). Typical examples are self-tuning the
parameters of machine learning algorithms on board a device [3], dynamically adjusting the hard-
ware settings (e.g., camera, microphones, battery consumption, etc.), characterising a user profile or
providing customised recommendations [4].

To deal with such scenarios, a metaheuristic [5, 6], i.e., general purpose “generate and test” black-
box optimisation methods, is the most logical choice. Metaheuristics do not guarantee convergence
to the theoretical optimum but offer high applicability without needing any information on the prob-
lem at all, but rather learn the problem landscape to search for solutions. Their success in solving
various numerical and real-world problems [7, 8] made them popular and the subject of continuous
investigations. There are many algorithms of this kind in the literature, and choosing the most
suitable for a specific problem is not an easy task [9]. Analysing the problem and tailoring a meta-
heuristic solver to it is the right approach, when possible. Similarly, tuning the parameters of the
optimisation algorithm plays an important role. This can be a time-consuming task, especially when
using modern algorithms, which are often based on a hybrid structure [10], and thus have even more
parameters to adjust [11]. The latter are usually difficult to implement (which makes them more
susceptible to errors) and understand, with some operators not contributing to the final performance
on many problems [12] - simplifying them would at least reduce their algorithmic overhead.

In this light, many modern metaheuristics are not suitable or thought for optimisation on severely
constrained devices, as previously discussed. Memory limitations of the environment hosting them
and minimising their computational overhead are not factors that are usually taken into considera-
tion during the development phase. However, there are application domains where such devices are
required to be equipped with a quick and simple optimisation routine; e.g., in the Internet of Things
(IoT), where cost is usually an issue [13], or in the manufacturing sector, where fast, smaller and
energy-efficient systems are a priority. As the current availability does not seem to stop, with the
most effective processing Artificial Intelligence (AI) technology having thousands and thousands of
parameters to tune, we argue that minimising algorithmic overhead and memory consumption in
optimisation algorithms would be a priority in several constructs in the years to come.

Most metaheuristics in the literature are population-based algorithms operating on a set of can-
didate solutions, a framework that has been shown to have some benefits [14]. However, single-
solution algorithms also exist, and the importance of memory consumption in the study of population-

1In the remainder of the paper we consider bound-constrained (also misleadingly referred to as “unconstrained”) single-
objective continuous optimisation problems of the form:

min f (x),
s.t. x ∈S

where x = (x1, x2, . . . , xD) is a candidate solution to the D-dimensional optimisation problem defined through the objective
function f (⋅) (without loss of generality, we assume this to be minimised), and S is the search space delimited by the
upper bound vector a = (a1,a2, . . . ,aD) and the lower bound vector b = (b1, b2, . . . , bD), s.t. ai ≤ xi ≤ bi ∀i ∈ {1,2, . . . ,D}.
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based metaheuristics has been addressed in some recent studies. In [15], the authors adjust the im-
plementation of three different Genetic Algorithms (GA) to embed them in an ATmega328P micro-
controller. In their experiments, with 128 individuals represented in 32 bits, approximately 80% of
the available data memory (2KB) was consumed. This leaves no room for other background/parallel
processes. Execution time can also be problematic, as shown in [16]. Here, evolutionary and swarm
computing algorithms are integrated and run on multiple embedded systems, such as a smartphone
and three different Raspberry Pi models (and on a PC to use as a baseline for comparisons), on 10
well-known benchmark functions with D = 10 and population size NP = 10. The execution time in-
creases significantly in embedded systems and, worryingly, in the smartphone, where each algorithm
is at least 10 times slower than on the PC. This shows that an ad hoc algorithm/implementation
should be used in such a device to keep execution time realistic. Other authors experimented with
other hardware technologies, such as Field Programmable Gate Arrays (FPGAs) [17–19] or Graphi-
cal Processing Units (GPUs). For the sake of completeness, it is worth adding that these concepts can
be extended to other optimisation scenarios, such as, e.g., multi-objective problems. In this regard,
we point to [20] where a Multi-Objective Genetic Algorithm (MOGA) is implemented and executed
on a low-end microcontroller.

As a summary of what has been previously discussed, there are important domains where op-
timisation algorithms that: 1. can attain good solutions with much less memory use, and 2. can be
easily embedded into limited hardware platforms. In the remainder of this article, we will refer to
these algorithms as “lightweight metaheuristics” [21], or “memory-saving algorithms” [22].

Given that the nature of the problem imposes the number of “design variables” xi (i = 1,2, . . . ,D),
reducing the need to store a population of solutions is the main goal of a memory-saving algorithm.
We assume that the solutions are represented correctly, i.e., without unnecessary long encodings
or redundant design variables. Also, we are selecting simple algorithms with linear O(D) mem-
ory complexity like genetic algorithms, as opposed to those requiring memory and computationally
more expensive features such as eigenvalue decomposition, manipulation of covariance or Hessian
matrices, etc., to function, see e.g., [23–26]. The degenerate case NP = 1 results in a “single-solution
metaheuristic” (also referred to as “trajectory methods”, “solo search”, or “single-agent-based algo-
rithms”). Here, we must pay attention to the working logic of the algorithm. Despite being less
common, memory-consuming single-solution algorithms do exist. Examples such as the Rosenbrock
algorithm [23], the Powell method [24], and SPAM [27], make use of D×D matrices stored in memory
to perturb the only candidate solution on which they operate, making it difficult to use in memory-
constrained environments. In coherence with the algorithms mentioned above, the Nelder-Mead
method (also known as the simplex method) [28] was introduced as a derivative-free optimisation
algorithm. It starts with an initial solution and iteratively uses a set of solutions forming the ver-
tices of a simplex to move it. This method teeters on the brink of two opposing perspectives, as it
may be thought of as a single-solution approach, yet it cannot be considered lightweight in our case
because a simplex of D+1 points is required for it to function. A similar approach can be taken with
Estimation of Distribution Algorithms (EDAs) [29, 30], which evolve a probabilistic model and draw
solutions from it. In this case, sampling only one solution is not enough if a memory-saving proba-
bilistic model is not used. This model can be a simplification of existing models to perform a so-called
uncorrelated search that does not require storing cross-correlation values between the design vari-
ables. The compact algorithm class [31] is an established framework for obtaining memory-saving
EDAs.

If properly designed, single-solution and compact algorithms can perform well and return sat-
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isfactory results in several contexts that require a very low memory footprint. These scenarios are
abundant in some application fields including bioinformatics [32–34], deep learning [35, 36], evolv-
ing hardware [37] and robotics [38, 39].

The goal of this article is to present a unified survey of research in the field of lightweight algo-
rithms, as the existing literature appears inadequate to offer a comprehensive perspective on this
class of optimisers. Our work sheds light on what is currently available for dealing with optimisa-
tion problems in an environment plagued by various limitations and provides readers with a wide
range of application domains. This will benefit both practitioners and algorithm designers exploring
hybrid algorithmic solutions. Indeed, it is clear that most of these algorithms are currently not as
well known as population-based ones, and it is not rare to encounter statements such as “To the best
of our knowledge, SA [Simulated Annealing] , VNS [Variable Neighbourhood Search] and TS [Tabu
Search] . . . are the only existing single-solution metaheuristics in the literature” [40], suggesting that
advances in this field are somehow ignored. Hence, here we combine relevant research lines and
place greater emphasis on approaches such as the compact algorithm paradigm in [31] and holistic
analysis in [6, 41] to overcome these problems. We gather relevant literature and provide interesting
perspectives on modern and historical lightweight heuristics, reporting key notions that give a global
view of these algorithms, including the current state of the art that is not included in [6, 31, 41] and
is becoming fragmented. Furthermore, we review and report some significant applications of these
algorithms, giving examples to practitioners having to deal with these scenarios, and facilitating the
search for reactive algorithmic solutions that are already present in the literature in one document.
For benchmarking and other performance-related numerical results, we refer to [42–44], and most
of the articles included in this survey.

The remainder of this paper is organised as follows.

• Section 2 describes classes of algorithms based on the number of processed candidate solutions
and introduces the concept of “lightweight” algorithms for systems having limited resources.

• Section 3 focusses on population-based algorithms and discusses the use of micro-populations.

• Section 4 introduces the Estimation of Distribution Algorithms and discusses their memory
requirements.

• Section 5 surveys the existing literature to report and comment on memory-saving algorithms
(for both discrete and continuous optimisation) by grouping them into the two main categories
of single-solution and compact algorithms.

• Section 6 reports relevant application scenarios.

• Section 7 concludes this work and discusses open issues in the field of lightweight optimisation
research.

• Section 8, systematically points out areas of improvement to address in the future.

2. Metaheuristics in the balance

When the environment hosting, the optimiser requires a thrifty use of resources, even between
algorithms with linear memory complexity there might be some that are preferable over others
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that, on the contrary, require unwanted memory slots 2 to function. In this context, metaheuristics
with linear memory footprint can be further classified by considering number of solutions stored in
memory during the search for optima, as an indicator of the resources needed to run the optimisation
process.

For the sake of clarity, we remark that this shall be done only for algorithms that are already
“lightweight” in their nature, i.e. metaheuristics that do not require the storage of auxiliary vari-
ables for representing or manipulating the candidate solutions. (e.g., covariance matrices, etc.).
These classes of algorithms are usually developed in an attempt to obtain high performance in of-
fline problems, but in the context of real-time and onboard optimisation they are often infeasible
choices and are considered, within the scope of this article, “heavyweight” algorithms as opposed
to those with linear memory occupation with D. Note that, as previously discussed, these heavy-
working mechanisms can take place in both population-based and single-solution algorithms. In
this work, we go even further and carefully select truly lightweight algorithms from those having a
linear memory footprint considering the number of memory slots required for them to operate, as
graphically depicted in Figure 1.

Figure 1: Metaheuristics in the balance: heavyweight and linear memory footprint.

It is important to note that lightweight algorithms consist of algorithms with approximately two
memory slots (one best solution plus an additional auxiliary solution to produce a new solution).
Approaches with this feature are from the previously introduced classes of single-solution and com-
pact algorithms, which we refer to as “sMeta” and “cMeta” in the remainder of this paper for brevity.
In line with this notation, we also use the expressions “pMeta” and “µMeta” for population-based
algorithms and population-based algorithms working with so-called micro-populations of only a few
individuals, respectively.

Note that we not only report algorithms that have a modest memory footprint, but also select the
most successful design strategies that allow satisfactory performance despite using a small number
of memory slots. As most computation algorithms mimic the behaviour of popular pMeta algorithms,
for the sake of completeness, we next discuss key points on pMeta algorithms. This allows us to

2A vector of real values, for example, floating or doubles, of the same size D as the problem.
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better introduce the µMeta algorithm surveyed in this work. These represent the simplest way to
obtain a lightweight algorithm and can be found to exist in some memory-constrained environments.

3. Populations and µPopulations

Population-based algorithms have been the go-to solution for solving a large number of (con-
strained or unconstrained, single-objective or multi-objective) optimisation problems for many years
now. These methods have been proven to be key to solving many real-world problems and are now
being developed in continuous development. For more information on the many paradigms existing
in the literature, the most established being Evolutionary Computing (EC), Swarm Intelligence (SI),
and Hyperheurstics/Memetic Computing, we point to relevant books [6, 45–47] and surveys [48–
54]. Modern hybrid structures employing machine learning components also populate the literature
[55, 56]. Note that most surveys either focus on a specific algorithmic family or classify wide ranges
of metaheuristics based on their inspiring metaphors. Such metaphors have been very useful to the
research community, developing the first nature-inspired algorithms. However, there is a clear re-
cent trend in designing optimisation heuristics simply by using an inspiring metaphor as the main
driving force and motivation. This is generating a plethora of algorithms whose contributions to
the field are arguable and that are often poorly benchmarked and compared to similar strategies
that were already available in the literature. This is evident from recent metaheuristic surveys,
many of which focus on such metaphor-led algorithms and their variants [57–60]. In this survey, we
mention some of these algorithms, depending on the relevance of the message of the corresponding
article, as it is important to survey the totality of the current literature. However, we recommend
that one always check the literature to avoid reproposing similar ideas under different names, use a
more theoretical or empirically informed approach, and follow good practises [61–63] when design-
ing novel algorithms. Proper benchmarking should also be performed. In summary, we are in favour
of making progress in algorithm design and using metaphors as a means of conveying complex in-
formation, but we share the same doubts/opinions of [10, 64–66]. Interestingly, there are surveys on
the performance of a wide range of metaheuristics on specific artificial testbed problems and real-
world scenarios [67–72]. These suggest practical insights on applying algorithms and highlight the
importance of performing a thorough parameter tuning phase (and self-adaptive algorithms might
also have some parameters to tune).

Adapting algorithm parameters to ensure optimal performance can be a challenging task [73],
with the exception of the population size value. We now know that high values are not necessarily
recommended, but in most cases the common belief from the literature seems to be that increasing
this parameter is beneficial over noisy, highly multimodal, and large-scale problems. For example,
the study in [74] suggests NP = 10 ⋅D for Differential Evolution (DE), which can be impractical
for large-scale or real-world time-expensive problems. Moreover, this is not necessarily correct in
all scenarios. Some DE variants with micro-populations of a maximum of five individuals have
been shown to perform well on a very large-scale problem with thousands of design variables [75],
where exploration is partial under the fixed computational budget, and the decision to focus more on
exploitation seems to yield better results. Similar results are obtained with other micro-population
evolutionary and swarm intelligence algorithms [76, 77].

3.1. Micropopulations
As a general rule, the pMeta algorithms with 5 ≤NP ≤ 20 can be referred to as µMeta algorithms.

However, 20 solutions are often considered too many and are not used when the full benefit of having
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a small population size, that is, rapid convergence, is sought. Potentially, less than five solutions
can be tested, but only if the working logic of the algorithms allows for it or is not damaged. For
example, a classic DE with rand mutation uses 4 individuals (the target plus three randomly selected
individuals chosen from the population) to generate a new offspring solution (see [54] for details
on DE). Hence, less than four individuals is not a feasible setting, and exactly four individuals
would mean that they will be always involved in all the perturbations. At least 5 or 6 of them are
preferred to be able to implement the benefit of having a population while increasing exploitation and
minimising memory usage. Note that DE is specifically suitable for working with micro-populations
as diversity can still be high in the initial phases of the search process [78]. An analysis of the effect
of DE and PSO (Particle Swarm Optimisation) micropopulations on various problems with different
characteristics is available at [79].

The first investigations of micro-populations date back to the introduction of the micro-Genetic
Algorithm (µGA) [80] and its variants [81, 82]. Since then, several micro-population Evolution-
ary Algorithms (µ EAs) followed, such as, e.g., [83]. After understanding the potential of a classic
micro-Differential Evolution (µDE) over large-scale problems, several µDE schemes, self-adaptive
variants (such as µ JADE), and hybrid memetic alterations were proposed [75, 78, 84–91]. Analo-
gously, Swarm Intelligence algorithms have been shown to have similar advantages when run with
micro-populations. The results worth mentioning are those obtained with micro-Particle Swarm Op-
timisation (µPSO) algorithms [76, 92, 93]. Further successful examples are those of micro-Artificial
Immune System (µAIS) [94], micro-Bacterial Foraging Algorithm (µBFA) [95], and other metaphor-
led algorithms such as those in [77, 96, 97] (which are indeed very similar to the more established
framework such as DE and PSO, thus returning similar results). Finally, other important roles
played by µEAs are to perform a local search within memetic algorithms [98], and to act as micro-
algorithms for multi-objective optimisation [99, 100].

4. Estimation of Distribution Algorithms (EDAs)

The EDAs family forms a significant subset of EC algorithms where the concept of population
plays a different role compared to other pMeta algorithms. This family is in continuous evolution
and investigation, with frameworks such as Bayesian Optimisation (BO), also known as efficient
global optimisation [101], currently finding its place in several time-consuming optimisation con-
texts, while originally simply referred to as Probabilistic Model-Building Genetic Algorithms (PMB-
GAs) [102]. This is because the first algorithms of this kind were a modification of previous EAs to
drive the search through probabilistic models to achieve better performance on those non-separable
problems characterised by high epistasis [103, 104], which are challenging for many ES and SI
strategies.

An EDA builds and samples promising candidate solutions from an explicit probabilistic model
(which implicitly represents the population). The optimisation process is then the iterative evo-
lution/update of the model, usually starting with an exploratory distribution and ending with one
generating (near) optimal solutions. Some EDAs draw populations from the corresponding distri-
butions (µ individuals are sampled per iteration), while others need fewer or a candidate solution
to be drawn (as in most compact algorithms). Over the years, many algorithms appeared based on
different models of all ranges of complexity, such as Population-Based Incremental Learning (PBIL)
[105], Mutual Information Maximising Input Clustering (MIMIC) [106], Bivariate Marginal Dis-
tribution Algorithm (BMDA) [107], Factorised Distribution Algorithm [108], and many others such
as several Extended Compact Genetic Algorithms [109–114]. Multivariate factorisation is also a
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widely used method and since some evolution strategies incorporate multivariate normal models,
these can be seen as EDAs. Among them, the Covariance Matrix Adaptation Evolution Strategy
(CMA-ES) [25, 115] is considered by many as a great example of EDA algorithm, see [116], which
became soon a benchmark for optimisation due to its performances and properties, such as invari-
ance to rotations of the problems and many other peculiarities which, according to the authors, do
not necessarily match the key characteristic of a “pure” EDA. Indeed, CMA-ES estimates the dis-
tribution of expected steps, while EDAs model them, etc. (see [115] for more details). However, the
CMA mechanism is based on a complex probabilistic model with time complexity O(D3) and mem-
ory complexity O(D2), which can be seen as a heavyweight computational requirement, as it can
be relaxed by assuming that there is no cross-correlation (as done in compact optimisation). The
resulting covariance matrix will prevent the normal distribution from rotating, while still allowing
for adaptation along each coordinate axis if D variances are evolved (one per axis). Instead, if the
same constant variance value - which acts as a sort of step size - is kept the same along all axes,
one obtains a symmetric normal distribution, which can only move within the square space when its
mean value gets updated. The latter is the simplest case, which is also less memory-expensive.

For an overview of the many models available for EDAs, we refer to [116–118]. Note that models
and update rules for control parameters, such as, for example, variances, mean values, or other mea-
sures of central tendency and spread, can be very complex, with the simplest being those proposed
for compact optimisation (details in Section 3.1).

5. Lightweight metaheuristics: a taxonomy

We propose a lightweight metaheuristic taxonomy structured as in Figure 2. This gives a graphi-
cal overview of the two main classes of algorithms we survey in this work, i.e., sMeta and cMeta, and
offers a granularity level, further classifying relevant subfamilies and variants of the same frame-
work. Milestone algorithms and their more recent variations are considered in the taxonomy, as well
as a few examples of modern metaphor-led algorithms to comment on current practises. While doing
this, we summarise their working logic and report relevant successful applications and application
domains for such algorithms.

5.1. Single-solution optimisation algorithms for combinatorial problems
Hill Climbing (HC) [162], a.k.a. Iterative Descent, is a basic local search algorithm. Starting

from an initial point, incremental perturbations are applied iteratively to enhance the value of the
cost function. There are four main HC variants, namely the iterative best improvement method, the
iterative first improvement method, the randomised iterative improvement method, and the proba-
bilistic iterative improvement method; see [163] for details. Note that the first two strategies are
greedy, while the others accept worsening moves, that is, candidate solutions with a worse objective
function value than the current one. Applications of HC are abundant in the literature. An example
of a timetabling problem is in [164].

Iterated Local Search (ILS), presented in [165], is a simple multi-start method that iteratively
performs a perturbation step to explore a new starting point to then perform the local search step.
When starting, the initial point must be provided or generated randomly, thus not requiring pertur-
bation, and local search is immediately applied. These two iterated phases can be seen as alternating
exploratory and exploitative searches. ILS is used successfully in other scheduling problems, such
as the University Course Timetabling Problem [166]. Some notable ILS alterations are the hybrid
adaptive ILS with Path-Relinking designed to solve the capacitated vehicle routing problem in [167],
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State-estimation-based
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SAFIRO [128]

Methods based on Evolution
Strategies
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(1+1)-CMA-ES [129]
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SPSA [131]

Other algorithms
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algorithms
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rcGA [134, 135]

UCGA [136]
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cODE [140]
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rcSPSO [144]

cAPSO [145]
cBFO [146]
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cABC [147]

EcABC [148]
cBA [149]

cFAs [38, 150, 151]

cCSO [152]

cPIO [153]

cFPA [154, 155]

cCS [156]

cSCA [157]

cEO [158]

cTLBO [159]

cHHO [160]

Compact metaphor-inspired
algorithms

cHSA [161]

Re-sampled Inheritance
compact algorithms [43]

Figure 2: Overall taxonomy of lightweight metaheuristics for continuous optimisation.

the ILS with ejection chains for open vehicle routing problems with time windows [168], and the two-
phase ILS for the Set-Union Knapsack Problem [169]. For a detailed review of this algorithm, we
refer the reader to [170].

Breakout Local Search (BLS) [171] is a variant of ILS that merges the steepest descent local
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search with adaptive perturbation strategies. BLS dynamically adjusts diversification by varying
perturbation moves and types based on search history information. BLS is used successfully to
address the Vertex Separator Problem (VSP) [171], the quadratic assignment problem [172], the
maximum clique problem [173], and to solve the Assembly Sequence Planning Problem [174]. The
hybrid BLS algorithm based on reinforcement learning from [175] shows improved performance over
VSP.

Large Neighbourhood Search (LNS) [176] is a metaheuristic in which the two operators repair
and destroy alternate to obtain a new solution in a neighbourhood of the candidate solution. The
destroy operator is responsible for perturbing random components of the candidate solution, which
then undergoes a feasibility check where the repair operator fixes the components to ensure that the
new solution is in the socket space. Adaptive LNS algorithms for Vehicle Routing Problems (VRPs)
can be found in [177, 178], and a hybrid adaptive LNS for the large-scale heterogeneous container
loading problem is proposed in [179]. These are amongst the latest techniques proposed for these
kinds of scheduling problems.

Great Deluge (GD) [180] operates by setting a threshold that acts as an upper limit for the admis-
sible values of the objective function of the newly generated solution. Whenever the new candidate
solution is accepted (i.e., in an imitation context, it must have a function value inferior to the up-
per limit), the upper limit value is decreased according to the adopted decay rate. In this way, most
points are accepted at the beginning, but the algorithm becomes more selective after interaction. GD
for a real-world examination timetabling problem [181]. In [182] an adaptive version is proposed,
called the Flex-Deluge algorithm, to solve the timetabling problems of university exams. Other hy-
brid variants also populate the literature, such as those in [183] and [184], which are proposed to
address VRP and task scheduling in grid computing, respectively.

Variable Neighbourhood Search (VNS) [185] is based on the idea of systematically changing the
neighbourhood. This occurs in two phases, in a local search phase which chooses the best neighbour
improving the current solution to find the local optima, and in a shaking phase to escape from the
corresponding valley. Details on its extensions and applications in which VNS has proven to be very
successful can be found in [186].

Greedy Randomised Adaptive Search (GRASP) [187] is an iterative process that combines a
construction heuristic step with a sequential local search step. In the first step, a feasible solution is
created using a randomised greedy heuristic. This solution serves as the starting point for the local
search, which can be either a descent local search or a more advanced method. The best solution
found is returned after the search process. Variations of GRASP and its applications are discussed
in [188].

Similarly to the other algorithm, Guided Local Search (GLS) is built on top of the LS technique.
To use GLS, one must first define a suitable set of features for the problem. Each feature has a
cost and a penalty assigned by GLS. When the LS gets stuck at a local optimum, some features are
selected and penalised. More details can be found in [189]. The authors in [190, 191] provide a list
of GLS variants/extensions, guidelines on how to use this algorithm in practical applications, along
with a variety of problems in which it was applied.

Descent-Based Local Search (DB-LS) [192] moves from the current solution to a neighbouring
one according to a given neighbourhood structure in such a way that each movement leads to a
better solution. This iterative process continues until no improvement is found, in which case the
current solution corresponds to a local optimum. This technique was combined with the reinforce-
ment learning technique and applied to graph colouring [192].
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The Tabu Search (TS) method was used in a nontrivial number of combinatorial optimisation
problems; see [193]. It was first presented in [194]. The TS algorithm explicitly leverages the
history of the search not only to escape local optima but also to implement an exploration strategy.
TS, like simulated annealing, allows for lower-quality solutions when a local optimum is discovered.
A detailed presentation of this method and its fundamental concepts can be found in [193].

Simulated Annealing (SA) was proposed in [195]. SA accepts non-improvement solutions in or-
der to increase the chance of exploring the search space and escape from local optima. The algorithm
starts with an initial solution and generates a random neighbour using a predefined neighbourhood
structure at each iteration. If the newly generated solution is better than the best, it is accepted;
otherwise, a solution of poor quality is accepted with a probability specified by the Boltzmann distri-
bution. In particular, although SA was introduced for combinatorial optimisation, it has also been
used to tackle real-valued problems. An exhaustive review of the literature is provided in [196].

Threshold Accepting (TA) [197] follows the same principle as SA, but differs in the criterion used
to accept candidate solutions. SA allows a non-improving solution only with a given probability,
whereas TA accepts it if the degradation does not reach a progressively decreasing threshold.

All of these search methods have a similar structure. In addition, each has its own mechanism
to diversify the exploration of the search space by escaping local optima. Other local searches are
detailed in [6] and [41].

Finally, hyperheuristics are prominent in dealing with discrete optimisation and are widely
adopted for combinatorial problems. As first described in [198], these can be seen as “heuristics for
choosing heuristics”. The selection method is arbitrary but often consists of using a learning mech-
anism to optimally activate the right operator. Therefore, once a set of heuristics/metaheuristics is
provided, hyperheuristics work on the low-level operator space other than the solution space and
can be defined in [199] as “a search method or learning mechanism to select or generate heuristics
to solve computational search problems”. For details on milestone methods and recent advances,
the relevant sources are [200–202], from which it can be seen that this optimisation paradigm
is highly recommended to solve scheduling, timetabling, and other discrete problems. Compre-
hensive lists of successful hyperheuristic applications are available in [200, 203]. Furthermore,
one can see that most of the low-level operators involved in this framework are sMeta algorithms.
This makes this framework very suitable for designing efficient single-solution memory-saving algo-
rithms. Most importantly, single-solution optimisation plays a key role in designing hyperheuristics
(even population-based ones), as the use of local searchers based, e.g., on hill climbing methods is
very frequent [201, 202].

5.2. Single-solution optimisation algorithms for continuous optimisation
When it comes to metaheuristics, most people immediately think of pMeta algorithms because

using a set of multiple candidate solutions, i.e., the so-called population, is currently a stable prac-
tice. This is particularly true in the continuous domain, where manipulating a population of points
is always seen as beneficial, see, e.g., [14], while sMeta algorithms are considered to result in poorer
performances [204]. However, in line with [9], this cannot always be the case, and some sMeta, such
as Simultaneous Perturbation Stochastic Approximation (SPSA) methods [131], offered ideas and
played an important role in applied sciences such as physics and engineering in the past. Other
algorithms, obtained as degenerate variants of existing pMeta algorithms with some adjustments to
have NP = 1, also provided interesting results. Other ideas, such as memetic single solution algo-
rithms and hyperheuristics for the continuous domain, displayed highly competitive performances.
We report on all of these classes of algorithms, including relevant historical and modern methods.
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We remark that sMeta is not a synonym for simplicity or minimal material consumption. Let us con-
sider the elegant single solution evolution algorithm Cholesky (1+1)-CMA-ES [129], which reduces
the computational effort of CMA-ES from O(D3) to O(D2) and requires only one candidate solution
(plus an additional one for a temporary new solution). Its working mechanism is theoretically sound
and consists of manipulating a matrix D×D, thus not belonging to the list of lightweight algorithms
provided.

In the continuous domain, it is possible to take advantage of the notion of a gradient to guide
the search. Gradient Descent (GD) [130] is a first-order single solution-based method that relies
on the objective function differentiability for its proper functioning. Depending on the function to
be optimised, it iteratively adjusts the current solution, moving it in the direction of the steepest
ascent or descent. In the SPSA algorithm previously mentioned, this is done by approximating the
classic finite-difference gradient methods stochastically. As in this case, if Hessian matrices are not
required, the method can be quite efficient, in particular, if the problem is not highly multimodal,
despite being memory-saving. Other methods, such as those deriving from the classic Hooke-Jeeves
direct search method [205], do this indirectly by looking at objective function values in opposite
orientated directions on the same line, per component/axis (we present moderate variations in the
remainder of this section). This also resembles a continuous counterpart logic to the methods seen
for the discrete domain based on neighbouring operators. In this case, the neighbourhood is obtained
with either a fixed or an adaptive exploratory radius from the candidate solution. Solis and Wets
[206] present a very simple randomised search of this kind.

Non-Uniform Simulated Annealing (nuSA) [119] is an improved version of SA for continuous
optimisation. It uses a non-uniform mutation which gradually shrinks neighbourhood size during
the search. Quaternion SA (Q-SA) [120], instead uses a quaternion representation of candidate
solutions to improve neighbourhood exploration and prevent premature convergence by widening
the initial search space. Q-SA explores the quaternion space rather than the Euclidean space and
does not employ specific parameters to alter the neighbourhood range. Finally, the Single Non-
Uniform Mutation-based (SNUM) algorithm [21] is a simplification of the non-uniform mutation
strategy of nuSA. SNUM has only one parameter, which makes it quite easy to use. Its performance
does not depend significantly on the value of this parameter.

There are also historical evolutionary sMeta algorithms specifically designed for the continuous
domain. A worth mentioning one is the (1+1)-Evolution Strategy with 1/5 Success Rule [207], which
decreases the standard deviation of the extended normal perturbation if the number of successful
mutations is less than 1/5. Other methods from the EC and SI families are described in the following.

Intelligence Single Particle Optimiser (ISPO) [121], and its first formulation, referred to as IPO
in [208], are simple sMeta variants of the Particle Swarm Optimisation (PSO) metaheuristic [209].
Its working logic operates per component, i.e., each design variable is perturbed a pre-fixed number
of times sequentially to complete one iteration. Therefore, it is suitable for separable problems. ISPO
adjusts the velocity vector depending on a learning factor based on the number of successful updates
of the particle during the search. Four parameters are required in total, but performances depend
mainly on two (namely the diversity factor and the descend factor), which are the only problem-
dependent parameters according to [121, 208]. As tuning them can be challenging, the AdpISPO
algorithm [122] is designed as a self-adaptive version of ISPO whose adaption logic has been shown
to work well in many testbed problems. This outperforms ISPO on such problems and is free of
problem-dependent parameters. This feature makes it suitable for hybridisation with other algo-
rithms whose implementations depend on the parameter setting. Examples of Memetic Computing
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(MC) algorithms that use PSO variants and AdpISPO to perform local computations are available
in [210–212]. To improve performance, in particular, over multimodal and large-scale domains, two
multi-start variants called ISPO-Restart and Very Intelligent Simple Particle Optimiser (VISPO)
are presented in [123]. Both ISPO-Restart and VISPO perform a “jump” in the search space before
restarting the search, but the newly generated starting point is first uniformly sampled within the
domain and then mixed with the “elite” solution stored in memory by inheriting some of its promis-
ing design variables. This inheritance is obtained by binomial crossover (from DE [54]) with a low
crossover rate to preserve randomness at the new starting point. ISPO-Restart and VISPO perform
similarly, with VISPO being preferable to only a few benchmark problems tested in [123]. The only
difference between the two is that the first variant restarts after a number of prefixed functional
calls, while the second has a simple learning mechanism based on the number of successful contin-
uous intervals per dimension to automatically decide when to restart.

Multiple Trajectory Search (MTS) [126] is another interesting lightweight sMeta that performs
well on separable and large-scale problems (for which it was designed specifically). It can be seen
as the coordination of three iterated local searchers algorithms where the first one perturbs all
directions one at a time along one axis (as the Hook-Jeeves local searcher operator), the second one
differs from the first one in that only searches one-fourth of the available dimensions, and the third
one takes three small steps along each dimension according to find a candidate solution heuristically.
The three operators are activated according to a grading system based on their successes, and if no
improvement is registered, the search range is cut to one-half. The Multiple-Search Multi-Start
(MSMS) framework in [132] is based on the simple idea of implementing a few search algorithms,
but features a multi-start operator to keep changing the initial point in an attempt to approach
premature convergence.

Three-Stage Optimal Meta-memetic Exploration (3SOME) [125] is a simple MC technique char-
acterised by the activation of three operators (memes) that perturb a single solution. These three
components, namely long (L), middle (M), and short (S) distance exploration, are arranged in a
bottom-up structure and coordinated in such a way that the exploitation pressure increases as the
algorithm converges to a promising area of the search space. Most of the calls to objective functions
are used for the local search operator S [213], which implements the same strategy as the first local
search of MTS. The coordination logic of the three memes is very simple but allows for competitive
results when compared to established algorithms, including pMeta algorithms, and in particular on
separable problems. Following these results, several variants have been proposed. An improved M
operator dynamically narrowing the space around the solution in the attempt to provide a better
quality starting point to S, is available at [214], and many modifications (not all necessarily pre-
serving the memory-saving nature of 3SOME) proposed in [215] allow for handling non-separable
problems/rotated problems. The analysis in [213] highlighted the importance of the coordination
logic in the operator implementation itself and identified the least activated operations (and the
most expensive in terms of the calls of the objective function) during several optimisation processes.
This led to simplified variants, resulting in significantly different algorithms with operators making
fewer functional calls before local refinement. A very simple one, having only two stages, is the
Re-sampling Search algorithm [216] - which can be seen as a sort of multi-start ILS algorithm for
continuous optimisation - which was subsequently improved in the Resampled Inheritance Search
(RIS) [124] framework. Further variants have been designed to deal with specific real-world appli-
cations; see, e.g., [217].

RIS [124] is a simple MC approach that performs a restarted iterated local search with a low
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level of inheritance of the previous best solution design variables after each restart. The S operator
is run multiple times until a condition on the length of its exploratory radius is met (the option of
fixing the number of S steps is also left available to the user). When a restart occurs, a point is
drawn uniformly within the search space, and some of its design variables are crossed over to re-
tain promising elite components. Both binomial and exponential DE crossover strategies are tested,
see [54] for details, with exponential being the default choice. RIS is simple yet effective and com-
petes (often outperforms) pMeta algorithms on several benchmark functions. It can be seen as an
optimisation framework in which an algorithm, such as cross-over strategy and local search, can be
replaced with more appropriate combinations depending on the problem if necessary. To obtain a
more robust framework, the Parallel Memetic Structure (PMS) [218] followed as a general idea of
having multiple searches performing complementing perturbations, thus increasing the diversity of
possible moves within the search space. PMS maintains the restart mechanism with inheritance
and runs two local searchers moving along the axis (S is used for this purpose) and diagonally in
the search space (Rosenbrock is used). This framework was proposed with the idea of including an
adaptation system that allocates more budget to the local community performing the most successful
move dynamically during the search, see, e.g., [27, 219]. Note that the original implementation of
PMS executes Rosenbrock to perform the diagonal move. Obviously, this adds a quadratic memory
footprint to the algorithm as a whole. To have a memory-saving variant of PMS, this meme has to
be replaced with a lightweight sMeta.

To reduce the number of parameters of the Simulated Kalman Filter (SKF) algorithm, the work
in [127] proposes a single-solution SKF (ssSKF) version using only one agent. The working mecha-
nism of ssSKF does not differ significantly from that of SKF, which goes through the three steps of
prediction, measurement, and estimation. As these are performed by a single agent, working with
a single solution, ssSKF is lightweight and easier to tune, which is an important aspect given the
impact of setting parameters on SKF [220]. A similar idea led to the Single-Agent Finite Impulse
Response Optimiser (SAFIRO) [128]. In this case, an agent is also responsible for measuring and
estimating the optimal solution.

Several other nature-inspired sMeta algorithms have been proposed over the years for continu-
ous optimisation. However, most methods proposed in the last years are not trying to approximate
gradient or exploit any specific feature of the problem. Some examples such as the Social Engi-
neering Optimiser (SEO) [40], the Vortex Search algorithm (VS) [133], and the Simulated Raindrop
Algorithm (SRA) [221], are based on inspiring metaphors that are implemented heuristically.

5.3. Compact optimisation

The majority of the algorithms in this survey fall into this class. First, we comment on the
methodology used to review the reported articles. Subsequently, we provide a comprehensive de-
scription of the compact optimisation literature.

5.3.1. Methodology & research questions
In scholarly writing within a specific domain, authors conventionally incorporate prevalent ter-

minologies of that field into their research paper titles and keywords. This practice improves vis-
ibility and discoverability among a broad readership. When conducting a survey, employing the
same keywords is intuitive for paper retrieval. Nevertheless, this approach may lack precision in
the selection of pertinent papers. Hence, it is imperative to adopt a systematic methodology for the
acquisition and meticulous selection of relevant literature.
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After reviewing the Centre for Reviews and Dissemination (CRD) guidelines proposed in [222],
we feel like we adhered sincerely and inadvertently to almost the same step-by-step procedure when
compiling the research to ensure rigour and foster comprehensiveness. This approach facilitated the
identification and evaluation of candidate publications, thus improving the quality and reliability
of the survey results and their implications within the scientific community. There are also other
guidelines for performing a bibliometric analysis, such as the one proposed in [223]. It elucidates the
distinctions between systematic and bibliometric surveys, outlining the specific scenarios in which
each method is applicable. This falls outside of the scope of this work; please refer to the previous
reference for more details.

The survey we propose is motivated by the following Research Questions (RQs).

RQ1: What characteristics of an algorithm can be used as useful classification criteria?. In recent
times there has been a strong emphasis on classifying heuristics based on their inspiring metaphor,
but we argue that other characteristics, as we picked the number of processed solutions, are more
useful in practice. This RQ is addressed in Sections 2, 3, 4 and 5.

RQ2: How many kinds of “lightweight” algorithms are available in the literature?. Answering this
question is useful to show practitioners what a memory-saving algorithm is for which application
domain a specific class of these algorithms can be used. This RQ is addressed in Sections 1 and 2.

RQ3: What are the main characteristics of lightweight algorithms?. We report a mathematical and
algorithmic description of the general framework to use for obtaining most of the existing memory-
saving variants. This RQ is addressed in Section 5.

RQ4: What are the application domains of memory saving optimisation?. There are numerous and
obvious domains where these algorithms can be used, but we dig deeper and indicate specific cases
to show which strategies and variants have been more successful. This RQ is addressed in Section
6.

RQ5: What potential future impact can lightweight algorithms have?. There are open challenges to
face, for example, in combining machine/reinforcement learning, where the use of fats and memory-
saving algorithms can be preferred. This RQ is addressed in Sections 7 and 8.

The primary keywords used to review the literature and address the RQs are “memory-saving meta-
heuristics”, “lightweight metaheuristics”, “single solution metaheuristics”, “compact metaheuris-
tics”, and all combinations where “metaheuristics” are replaced by “optimisation” or “algorithms”.
The results are refined by incorporating the names of the seminal algorithms, e.g., “cGA” and “rcGA”,
in the search, as well as relevant authors such as, e.g., “Harik” or “Minnino”. It is highly improbable
for a new paper on compact optimisation (discrete or continuous) to be published without referenc-
ing any of these influential works. This is known as the forward snowball technique to expand the
search. We then looked at the references in these papers to find other relevant pieces of research.
the latter approach is known as backward snowballing.

We produced a comprehensive list of articles published in the proceedings of established confer-
ences and prestigious publishers. This list includes some old milestone methods and several recently
proposed algorithms. Each article was evaluated for alignment with the research questions of this
survey, leading to its inclusion or exclusion in the article. In particular, the participation of a sin-
gle researcher in this process can introduce bias, oversight, and inconsistencies. To address these
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concerns, the validity of the study was protected through a secondary review conducted by a second
author. Although predefining the survey scope and managing paper selection could appear subjec-
tive, all conclusions and recommendations stem from the latest insights to ensure clarity of the scope
of the paper scope and effective communication of its core message.

Toward the inclusion and exclusion criteria that guided the selection process in accurately cat-
egorising lightweight algorithms, we set the following ones. Papers published in languages other
than English were excluded. The full text of the paper was scanned in many cases, not just the title
and/or abstract. That is because the latter was not enough since it is not rare to find a paper that
talks about compact algorithm/method/approach, but after reading the paper, we realise that it is
about something different from the definition of “compactness” adopted in this survey. Similarly,
algorithms that operate on single solutions may not necessarily be memory savings. In addition,
duplicate instances of the retrieved papers were omitted, as well as other papers that have been
published at a conference (with limited experimental setup), and then an extended version appears
in a journal paper (for example, with cTLBO and cBAT). Lastly, lightweight algorithms hybridised
with other components that lead to improvement but do not preserve the concept of lightweight were
also removed or ultimately retained due to some considerations. Another case appeared concerning a
particular algorithm, the Mean-Variance Mapping Optimisation (MVMO), in which we had different
points of view: it was considered by one author as sMeta but not by another. Since we encountered
difficulty in making a conclusive decision, we decided to exclude it from the taxonomy. This thorough
review filtered out and pruned down the number of articles to a more manageable one. The result-
ing compilation was deemed representative of presenting a diverse range of lightweight algorithms
serving as the basis for the proposed taxonomy.

5.3.2. Compact optimisation algorithms
Compact algorithms are among the simplest expressions of EDA algorithms, see Section 4, thus

featuring fewer memory and computationally onerous algorithmic structure. For this reason, they
have become popular since the publication of the compact Genetic Algorithm (cGA) [224], which was
shown to perform similarly to the popular Simple GA with uniform crossover over discrete domains.

After cGA, counterparts for the continuous domain appeared in [134] and [135], where the real
compact Genetic Algorithm (rcGA) is presented. This concept was then expanded to obtain other
EC approaches, such as compact DE (cDE) [138], compact PSO (cPSO) [42] and, in a more general
sense, a compact optimisation framework [31]. A general template that illustrates the structure of
a compact algorithm is depicted in Algorithm 1.

5.4. Probabilistic models

The binary and Gaussian probabilistic models in [224] and [135] are the most widely used in com-
pact optimisation depending on the discrete or continuous/real-valued nature of the search space.
Taking into account the original notation in [224], compact algorithms require a “Probability Vector”
PV to probability values. However, this is true for the original binary case. In the continuous do-
main, PV has been kept as a legacy variable, but contains (Gaussian) distribution parameters (mean
values and standard deviation), thus being a two-dimensional array. Note that a “virtual” population
size NP has to be indicated. This is used within the module to mimic the coverage behaviour that
larger or smaller populations have in the search space.

Note that other models have been proposed in the literature. We describe them in the following
subsections.
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Algorithm 1 High-level template of compact optimisation algorithms.
input: probabilistic model PV , problem size D
output: best solution elite
sample elite by means of PV
while termination criterion is not met do

sample a candidate solution x by means of PV
compare fitness of elite and x
update PV
if elite condition replacement is satisfied then

elite ← x
end if

end while

5.4.1. Binary model
In this model, PV is a vector of length equal to the dimension of problem D, where each ith

element is the probability of sampling 1 for that design variable. All elements of PV are initialised
with a value of 0.5 to have an initial uniformly distributed solution. Relevant examples of algorithms
using this model are, e.g., [37, 225–229].

5.4.2. Gaussian model
In the Gaussian model PV is the 2×D matrix PV = [µ, σ] where µ and σ are the mean and stan-

dard deviation vectors of an uncorrelated and truncated Gaussian Probability Distribution Function
(PDF) [135] with domain [−1,+1]. Mathematically, this is formulated as in Equation 1,

PDF(xi,µi,σi) =
e
(
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√
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√
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(1)

where µi and σi are the mean and standard deviation along the ith asxis, and er f (⋅) is the error
function.

When the algorithm is initialised, these parameters are initialised so that µi = 0 and σi = λ
(i = 1,2,3, . . . ,D) where λ is a positive constant (usually λ = 10) large enough to approximate a
uniform distribution in [−1,1].

For the Cumulative Distribution Function (CDF), this is formulated in Equation 2.

CDF(xi,µi,σi) =∫
1

−1
PDF(xi,µi,σi)dxi. (2)

To compute this CDF, which does not have a closed analytical expression, it is approximated using
Chebyshev polynomials [230] to be used within the algorithm.

Sampling
The polynomial approximation of the CDF is used to generate solutions within the search space.

To do this, a uniform random number r = rand(0,1) is first generated.
Subsequently, the inverse function of the CDF of each ith axis must be computed to be evaluated

at r. This returns the value of the ith design variable that forms the new candidate solution xi =
CDF−1(r,µi,σi) ∈ [−1,1].
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Note that this model operates in the [−1,1] domain. Therefore, when dealing with a generic
[ai,bi] domain, the obtained value of xi has to be scaled back to the original decision space simply
by performing x′i =

(xi+1)
2 (bi − ai)+ ai. Conversely, this also means that before feeding a solution

to the algorithm, one should normalise it within [−1,1] - unless that is the domain of the original
problem.

Selection and update
When the newly generated individual competes with the current individual, the fittest (i.e., the

one with a lower objective function value in a minimisation context) is referred to as the winner,
while the other is declared as loser. The winner influences PV as its design variables are used in
the update rule of both µ and σ as shown in Equations 3 and 4, respectively, where j indicates the it-
eration counter and winner i and loser i are the ith components of winner and looser, respectively.

µ
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For more details, see [135].
Algorithms using this model are, e.g., the real-valued compact algorithms rcGA [135], cDE [138],

cPSO [42], cABC [147], etc. - see Section 5.6 for more details.

5.4.3. Enhanced Gaussian model
An improved model using two PDFs that share the same parameters µ and σ is proposed in

[148].

When this model is used, the normalised search space is seen as
D
⨉
i=1
[−1,µi]∪ [µi,+1], and two

PDFs, namely Q−PDF(xi) and R−PDF(xi), are defined as
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for µi ≤ xi ≤ 1. (6)

Algorithm 2 shows the sampling mechanism, where the parameter ξ controls the probability of
employing Equation 5 other than Equation 6.

If ξ is set to 0.5, then this model is expected to perform as the original Gaussian model [148].
Recent studies using this model reported, such as [148, 149, 154].

5.4.4. Uniform model
The work in [231] proposes a model based on the Uniform PDFs defined below in Equation 7:

U −PDF(xi) ={
1

bi−ai
if xi ∈ [ai,bi]

0 otherwise
(7)
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Algorithm 2 Sampling mechanism used with the enhanced Gaussian model.
input: the vectors µ, σ and parameter ξ
output: a new trial solution x
for i ∈ {1,2, . . . ,D} do

generate a random number r ∈ [0,1] according to the uniform distribution
if r ≤ ξ then

generate xi ∈ [-1,µi] according to Q-PDF described in Eq. (5)
else

generate xi ∈ [µi,1] according to R-PDF described in Eq. (6)
end if

end for

where ai and bi are the lower and upper bounds of the uniform distribution (note that these are
different from the search space bounds and change during the optimisation process). By integrating
U-PDF, one can easily obtain the following.

U −CDF(xi) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
bi−ai

xi − ai
bi−ai

if xi ∈ [ai,bi]
1 if xi > bi
0 otherwise.

(8)

The inverse U −CDF−1 is given by:

U −CDF−1(r) = (bi −ai)r+ai. (9)

Unlike the Gaussian model, the bounds ai and bi of U-PDF vary if the mean and standard
deviation vary, according to Equation 10 and Equation 11.

ai =
√

3σi +µi (10)

bi =µi −
√

3σi. (11)

After calculating ai and bi, a uniform random number r ∈ [0,1] must be generated to obtain a
generic design variable xi through Equation 9.

Examples of algorithms that employ these models are those in [38, 136].

5.5. Binary/discrete compact optimisation algorithms

The first compact algorithm, i.e., cGA, was designed for discrete optimisation. Since then, sev-
eral other cMeta algorithms appeared in the literature for solving discrete problems. Alternative
mutation operators for cGA are proposed in [37, 225, 228, 232], and an evolutionary strategy for the
survival of the offspring is proposed in [233]. A study on elitism for GAs in [226] led to two variants
with strong and weak elitism that outperformed the original non-elitist cGA and the popular (1+1)-
ES. Elitism has also been used in [37, 228, 234, 235]. It should be noted that selection pressure can
also be ensured by using a larger tournament selection [224].

Other studies try to improve the update process of PV . A moving average strategy is presented
in [227] and weights are used in [236]. Learning mechanisms for choosing among multiple evolved
probability vectors are also available [237, 238]. Note that by doing this, the algorithm might achieve
better performance, but would require more memory usage to store multiples PV . Hence, these
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might no longer be considered lightweight according to the classification of this survey. However, if
such memory is available on the device, these strategies can be used, as well as some µ-population
algorithms that might have the same memory footprint. Unlike [239], some degree of inheritance is
included in the probabilistic model, while the study [235] replaces PV with the belief vector BV to
store probability values belonging to a Gaussian distribution with a given mean and variance. As in
the continuous case, BV is not a real vector and is more memory-intensive than the original model.
We would like to highlight that these advances available in the literature often perform better than
the original methods. However, we argue that they are all based on adding complexity. This often
leads to higher memory footprints and/or higher time overheads. This is a well-known problem in
stochastic optimisation, where a trade-off between performances and other criteria (asymptotic com-
plexity, overheads, smallest use of memory slots, etc.) must be taken according to the optimisation
scenario. For the sake of completeness, we report a wide range of studies in this survey and provide
these considerations to the reader.

Adaptation is an interesting feature of an optimisation algorithm. In [229, 240] adaptation to the
problem is obtained by adding information on the frequencies and continuity of the update probabil-
ities in the update rules. Most importantly, parameter adaptation schemes are proposed in [241] to
have parameter-less cGAs capable of tuning the population size to remove unfavourable implications
of genetic drift.

Multi-start schemes also help in compact optimisation. After each restart, the initial point
changes, and usually PV is re-initialised. In [242], the restart occurs if no improvement in the
objective function values is registered within a fixed number of consecutive generations. This can
be seen as an enhanced exploration phase, where the cMeta is used to refine the new initial point.
This can also be done with an opposite approach where the cMeta provides solutions that are re-
fined with a local searcher as, e.g., steepest descent [243], or problem-specific local search operators
[242, 244, 245].

For the sake of completeness, we report on the use of combinatorial cMeta used in systems that
allow for parallelisation. Here, the problem of keeping the number of memory slots at a minimum
level is less evident, while the simplicity of the models is important to a feasible and error-free
implementation in devices such as FPGAs. The possibility of constructing parallel versions of cGA
is discussed in [246–250], as well as in [251] (which considers multi-FPGA partitioning), while a
memetic variant of cGA was presented in [252], along with a mechanism for fine-grained parallelism.

Other works employed cGA on various hardware devices [37, 253–257]. More recently, a GPU-
enabled implementation of cGA was presented in [258], to solve a “seriously” large-scale (up to 10
million variables) Integer Linear Programming problem taken from [259], as well as continuous and
discrete versions of the OneMax benchmark problem of up to one billion variables.

The use of cGA was also analysed in the context of noisy optimisation in [260]. This study showed
that cGA can handle noise efficiently by adjusting its step size according to the level of noise. This
method was called graceful noise scaling.

From a theoretical perspective, the runtime of a discrete cGA is studied in multiple works. In
particular, it was analysed on the jump functions in [261–263]. In [264], lower and upper cGA
runtime bounds have been derived for pseudo-Boolean functions, such as OneMax. Other studies
have investigated how the size of the virtual population influences the performance of cGA [265, 266].

On a historical note, it is worth mentioning the Selfish Gene Algorithm (SGA) [267], which is
very similar to cGA and was presented almost contemporaneously. SGA (not to be confused with the
Simple GA) is based on the “selfish gene” theory in biological evolution [268]. Similarly to cGA, SGA
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evolves a pool of genes that is updated by means of a virtual population. Recently, a new variant of
SGA dubbed the “replacement and never penalising” SGA, was proposed in [269]. Instead of penal-
ising the genes of the loser, this variant replaces them with those of the winner. This algorithm was
applied to optimise the gymnastic movements of a humanoid robot. Two elitist variants (with persis-
tent and non-persistent elitism) of this algorithm are presented in [270]. These seem to significantly
outperform the original SGA. For details on SGAs, we refer to [271].

Finally, we should stress that there are several compact binary variants of other metaheuristics
besides cGA and SGA. An algorithm known as cBinDE, which stands for compact Binary Differential
Evolution, was introduced in [272]. This algorithm follows the same principle as cGA, but it uses
the binary versions of mutation and crossover of the Differential Evolution algorithm combined with
a simple local search. This algorithm was successfully used to maximise the functional coverage
percentage in the verification of digital systems. Binary cDE was also studied in [273, 274]. Other
works instead investigated binary versions of compact PSO [275], compact Firefly Algorithm [33]
and compact Co-Firefly Algorithm [276, 277], compact Memetic Algorithms [278], and other kinds
of compact EAs [279, 280]. We argue that potentially all metaheuristics can be made “compact”.
However, finding the most usable or suitable solution for a problem is a real challenge. This either
requires a time-consuming empirical phase, or a more informed approach, which can be possible only
in some cases. This is a fundamental research question in the field to be prioritised in the future.

The most interesting areas of application of compact optimisation in the discrete domain include:
the Travelling Salesman Problem (TSP) [244, 281]; determining minimum set primers in Polymerase
Chain Reaction (PCR) [282]; task scheduling in grid computing environments [283]; protein folding
[284]; object recognition [285, 286]; soft decision decoding [287, 288]; minimising the number of
coding operations required in multi-cast based on network coding [242]; estimating the parameters
of the maximum log-likelihood function of a first-order moving average model MA(1) [289] and
a mixed model ARMA(1,1) [243]; optimising the aggregation of multiple similarity measures to
obtain a single similarity metric for ontology matching [290]; optimising ontology alignment [291];
designing multiple input multiple output wireless communication systems [292].

5.6. Real-valued Compact optimisation algorithms
In Sections 5.6.1 and 5.6.2, we report on EC and SI cMeta for the continuous domain, respectively.

5.6.1. Compact evolutionary algorithms (cEAs)
The real-valued compact Genetic Algorithm [135] is the first compact algorithm for continuous

optimisation. It uses the Gaussian model described in Section 5.4.2 and only requires storing the
elite individual, a temporary solution, and PV to perform the search. A similar variant is proposed in
[137], which, despite being named a compact PSO algorithm, displays the same working mechanism
of rcGA (we will refer to it as cross-rcGA). The peculiarity of this variant is that it performs a
decomposition of the problem into three sub-problems. For each sub-problem, a local best solution is
needed, as well as a local PV (in this context, it is similar to a PSO). We point out that this algorithm
is based on an interesting idea but ends up requiring three local best solutions, three temp solutions,
a global best slot, and three PV matrices, thus having a similar memory footprint of pMeta with a
small population size. Another variant is presented in [21], where rcGA is hybridised with SNUM
and is called cSNUM. Here, after generating an offspring solution with the rcGA mechanism, the
SNUM operator is applied to a randomly selected design variable. cSNUM deals well with separable
problems of different dimensionalities. Similarly, the Single/Multi Non-Uniform Mutation (cSM)
algorithm [44] is a hybrid algorithm that combines an rcGA-like structure with the non-uniform

21



mutation (NUM) operator. This is very similar to cSNUM but perturbs all variables instead of just
one. An interesting solution is the Uniform compact Genetic Algorithm (UcGA) [136], which is based
on the uniform model and features a virtual population size that decreases linearly. Furthermore, it
employs a local search operator.

The cDE algorithm [138] generates new trial solutions using the fundamental logic of DE, but
rather than selecting them from a population, it samples them from a probabilistic model. Po-
tentially, it can be used with all possible DE mutation strategies, crossover operators, and elitism
schemes. However, depending on the use of a specific mutation operator, one may need to sample
more individuals, thus requiring more memory. The simplest mutation, i.e., “rand/1”, requires sam-
pling three points to generate the so-called mutant vector. Compared to rcGA, a performance gain is
recorded in most benchmark problems [138]. This might be due to the fact that DE is designed for
continuous optimisation, and, therefore, cDE maintains the very same encoding and working logic as
DE. This is not the case for GA, which is usually used over discrete domains and requires a real popu-
lation to perform selection mechanisms such as fitness-proportionate or tournament selection (which
can only be used with a size of two individuals in the memory-saving context). For these reasons,
rcGA ends up performing worse than its population-based counterpart in many cases, particularly
for mid- and high-dimensional problems (> 10), while cDE is comparable to its population-based
counterpart. Moreover, in the continuous domain, cDE usually outperforms rcGA (but requires at
least 3 individuals for the mutation, on top of the elite solution and a temporary vector). Similar con-
siderations also apply to other cMeta algorithms, see [31] for details, as population-based algorithms
that perform selection based on pairwise comparisons can be successfully and straightforwardly en-
coded into a compact scheme, while the other might display substantial performance degradation.
In this light, there are many cDE-based algorithms in the literature. We remark that some of them
might require the same amount of memory slots of population-based algorithms with small popu-
lations, but most are still characterised by simple and memory-cheap algorithmic structures. For
example, the Disturbed Exploitation compact Differential Evolution (DEcDE) algorithm in [139] is a
simple memetic approach based on a cDE algorithm that employs two DE exploitative search strate-
gies. The first is the classic DE/rad/1/exp configuration. The second configuration instead has the
trigonometric mutation (see [54] for details on DE). These exploitative DE operators are counter-
balanced by a periodic stochastic alteration of the virtual population, which is meant to introduce
exploration elements in the search. Despite its simplicity, the algorithm outperforms other compact
algorithms in the benchmark functions tested. Similar results are obtained by using generalised
Opposition-Based Learning (OBL) within cDE. The resulting cODE (compact Opposition-Based DE)
[140] is competitive with its population-based counterpart. Differently, [141] proposes a memory-
saving solution called Concise DE-based Chaotic Local Search (CDE-CLS) where a local searcher is
added purposely to achieve fast convergence on a real-world problem. An adaptive version is instead
the Compound Sinusoidal cDE (CScDE) proposed in [143]. Here, the compound sinusoidal heuris-
tic is used to self-adapt the crossover rate and the mutation scale factor. CScDE outperforms most
state-of-the-art compact algorithms on various benchmark problems. Other methods to improve
upon exploration include the use of multiple cDE running together, as, e.g., [293]. However, these
methods are not memory-saving, as they end up requiring a similar amount of memory slots to a
small population-based algorithm, which may be preferred.

From the memory point of view, the cheapest compact DE framework is the compact Differential
Evolution light (cDE-light) algorithm proposed in [142]. This is a fast approach, as it requires sam-
pling only one candidate solution per iteration instead of the three required to perform the classic
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DE/rand/exp. Furthermore, it does not require loops to implement the exponential crossover opera-
tor, which is replaced with a counterpart of this operator capable of predicting the number of design
variables to be exchanged. The main idea to reduce the number of individuals in the rand/1 mutation
(which is a linear combination of three randomly selected individuals) is to exploit the property of the
Gaussian distribution from which these individuals need to be drawn 3. Indeed, under the reason-
able assumption of having statistically independent individuals, the corresponding three Gaussian
distributions can be linearly combined to model the Gaussian model of the resulting mutant vector.
Without having to sample an individual to generate the mutant, this can simply be obtained from his
Gaussian model. As for the crossover “light”, the derivation of the formula predicting the number of
variables to be exchanged without requiring a loop through two individuals is provided in [142]. This
algorithm is based on interesting design ideas, and, despite the assumptions and approximations, it
performs well and behaves similarly to cDE. As seen for a single-solution algorithm, in this case, a
performance gain is recorded when it is equipped with the restart with the inheritance mechanism
described in Section 5.2. The study in [43] shows that most compact algorithms can benefit from this
scheme by benchmarking restart variants of compact DE, PSO, and other algorithms whose compact
version is introduced in the next section.

In the literature, there are examples of compact Evolution Strategy (cES) algorithms, such as
c(1+1)-ES and the c(µ, λ)-ES [294]. From the experimental analysis in [294] the c(1+1)-ES algorithm
appeared to be as effective as the original (1+1)-ES. Conversely, c(µ, λ)-ES appeared to perform worse
than its population-based (µ, λ)-ES counterpart, especially for high values of λ.

5.6.2. Compact swarm intelligence algorithms
Compact Particle Swarm Optimisation (cPSO) [42] is the compact counterpart of the PSO algo-

rithm for the continuous domain. This is simply obtained by using the Gaussian model to generate a
new particle x, which is perturbed by the velocity vector v as in the original PSO. However, to avoid
sampling the swarm, some adjustments are needed; the concept of the local best particle cannot be
replicated if a single solution is employed at a time to maintain a memory-saving framework. For
this reason, the PSO update formula for v only takes into account the actual global best solution
xgb, while the local best solution xlb is drawn from the Gaussian model with the current PV val-
ues. Note that there are variants of this algorithm using different distributions for the model, as
in the real-parameter compact supervision for PSO (rcSPSO) [144], where a combination of Cauchy
and Gaussian distributions are used. Self-adaptive variants, like the one in [145], have also been
proposed.

The compact Bacterial Foraging Optimisation (cBFO) algorithm [146] also employs the same
chemotaxis scheme of population-based BFO, but models the population with the Gaussian model
of section 5.4.2. Similarly to BFO, a new solution is generated from the model at each chemotactic
step, and a mix of tumble/swim moves is attempted. When generating new offspring (either using the
sampling mechanism or via a tumble/swim), its fitness value is compared to that of the current best
solution. The compact implementation of the reproduction and elimination/dispersal steps is a bit
different. Instead of preserving and replicating the best S/2 bacteria as BFO does, cBFO moves the
PDF in favour of the elite and shrinks over it. As a result, forcing a PDF update is an approximation
of the sexual reproduction step. Finally, the injection of new randomly produced bacteria into the
swarm is modelled using a perturbation of PV in the elimination/dispersal step.

3Note that this is an approximation as the distribution is truncated and not a theoretical Gaussian function. However,
the results are satisfactory
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The list of compact algorithms is large. As many population-based algorithms can be made
compact, the literature keeps offering examples of a new compact version to be used mainly in ap-
plied contexts. A compact Artificial Bee Colony (cABC) is proposed in [147] and an Enhanced cABC
(EcABC) variant is proposed in [148]. A parallel structure, abbreviated as pcABC, is presented in
[295]. However, the latter is meant for hardware systems with multiple cores/processors which do
not suffer from memory or computational limitations. Some compact Firefly Algorithms (cFAs) [38]
are also widely used. Note that these are obtained with some simplifications of the original strategy,
which makes the compact version (in particular, the persistent variant using the Gaussian distri-
bution) follow the same steps of rcGA except for an extra step before updating PV. This is required
to direct the loser toward the winner to adhere to the original framework. Based on the method
for updating the elite solution, which can require using L’evy flight movement, Opposition-Based
Learning, and the use of Gaussian or uniform distribution, 12 cFA variants can be obtained. More
are presented in [150, 151]. In this light, one can see that making an algorithm compact can be
simple. However, the current trend of simplifying existing algorithms just to present a new optimi-
sation framework does not necessarily help to progress in understanding what good practices are in
the algorithmic design phase. This is particularly true when the design is driven only by inspiring
metaphors, which often results in new algorithms whose working mechanism is either unclear or
similar to other existing heuristics. These metaphor-led compact algorithms are now abundant in
the literature for solving real-world applications. We do report some one of these applied scenarios
solved with, e.g., compact Cat Swarm Optimisation (cCSO) [152], compact Teaching-Learning-Based
Optimisation (cTLBO) [159], compact Harris Hawks Optimisation (cHHO) algorithm [160], compact
Bat Algorithms [149], compact Flower Pollination Algorithms [154, 155], compact Pigeon-Inspired
Optimisation (cPIO) [153], the compact Sine Cosine Algorithm (cSCA/pcSCA) [157, 296] and McSCA
with Multi-group and Multi-strategy (based on different DE mutations) [297], the compact Equi-
librium Optimiser algorithm (cEO/pcEO) [158], the compact Cuckoo Search (cCS) [156], compact
Harmony Search Algorithms (cHSA) [161] and many others. We direct the reader to these studies
and argue that while the application domain is interesting, it is difficult to understand what the
contribution of proposing such algorithms to solve such problems is. In most cases, these are similar
to existing methods or just present insufficiently motivated combinations of operators. Although we
believe that progress in the algorithmic design must be kept alive within the community, by sur-
veying the recent literature, we call for more emphasis on analysing the algorithms to have a more
informed design phase in the future.

6. Lightweight metaheuristics applications

The main scenarios and motivations for using lightweight algorithms are summarised below.

Embedded systems. Lightweight algorithms can be used in several low-cost, resource-limited com-
puting devices that are used nowadays in a wide range of miniaturised commercially available de-
vices, such as those used, for example, in wet laboratories [32, 33], humanoid robots [38], flying
robots (micro-aerial vehicles) [298], and mobile robots [22].

Real-time optimisation. When applications require a real-time optimisation problem to be solved,
sMeta can be a logical choice (as well as most compact algorithms as long as the complex model is
not used). In engineering, such situations are abundant and in most cases do not require an optimal
solution but rather a solution of satisfactory quality within some precision thresholds. Examples
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of these scenarios are nonlinear optimal control, receding horizon control, and moving horizon es-
timation [299]. Other applications might involve solving large-scale optimisation problems, such
as optimising the parameters of black-box models (e.g., a deep neural network or a hidden Markov
model), or solving inverse problems [217] on board an embedded system.

Hybrid optimisation algorithms. Lightweight algorithms, and in particular single-solution meta-
heuristics, are useful “building blocks” for hybrid algorithms [136, 141]. Even in non-memory-saving
contexts, this is evident when dealing with hyper-heuristics and memetic computing approaches.

Other situations. A universal metaheuristic does not exist, and in many real-world scenarios, simple
algorithms perform better than more complex ones. Based on examples in, for example, optimal
control in industrial plants [42], neural network training [159], and ontology mapping [300], we
recommend taking them into account as they might be able to provide satisfactory results while
keeping implementation difficulties relatively low.

Relevant application contexts where lightweight algorithms are used are listed below.

1. Wireless Sensor Networks (WSNs), e.g., Optimised deployment [301], Minimised energy depletion
[302], Base station locations [303], Topology control scheme [304], Clustering formation [301]
[149, 302] and Node Localisation [145, 296];

2. Embedded control systems [39, 124, 135, 138, 139, 305];

3. Robotics, e.g., industrial robots [39, 139, 141, 142, 305, 306], mobile robots [22], humanoid robots
[38, 150, 151, 161], unmanned aerial vehicles [124, 156];

4. Electronic design, e.g., of magnetic field sensors [217], printed circuit boards [307], digital signal
processing elements [125, 308–311], and antennas [312, 313];

5. Computer vision, e.g., image segmentation [152], clustering [132], face recognition [122, 210];

6. Power/energy systems [42, 314, 315] and renewable energy systems [153, 158, 316];

7. Transportation [157, 297] and civil engineering [317, 318];

8. Design of engineering/mechanical structures [160, 319];

9. Natural language processing [320];

10. Machine learning [141, 159, 321–323];

11. Ontology engineering [136, 137];

12. Cloud computing security [324];

13. Bioinformatics [211, 212].

Table 1 contains the aforementioned applications, related articles, and specific algorithms that
are being used.
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7. Discussion and open issues

Based on the survey of the literature on lightweight metaheuristics reported before, we can now
draw the following conclusions:

• Compact and single-solution algorithms are commonly expected to be outperformed by population-
based algorithms in terms of solution quality. However, this is not always the case. Furthermore,
there might be applied contexts where these are the only choices because of memory constraints
or just preferred for speed gain and simplicity in their implementation.

• Some well-known drawbacks of population-based optimisation are premature convergence or stag-
nation. When the first occurs, the population loses diversity, and the algorithm is stuck in a local
optimum. In the second case, even though the population is still diverse, the search may stagnate,
meaning that the operators cannot create offspring that outperform their parent solutions. Pre-
mature convergence also plagues lightweight algorithms. Interestingly, the latter can be used to
help population-based algorithms overcome stagnation by providing additional movement in the
search space [78] and premature convergence by adding the population superfit individuals.

• In relation to the previous point, most compact optimisation methods have an intrinsic limitation
when dealing with multimodal functions [21, 143]. Indeed, since they lack an actual population
of candidate solutions, they cannot provide a sufficient degree of diversity, particularly in the long
term after the Gaussian model has converged. As a result, unless certain restart methods are
introduced, these types of algorithms excel at exploitation but fall short of exploration, which is
required to handle multimodal functions effectively. Indeed, after the Gaussian model converges,
new solutions are sampled from a relatively tiny subset of the search space, resulting in a local
search.

• Due to the fact that compact optimisation algorithms by nature handle each variable indepen-
dently, they perform exceptionally well on separable problems. This is especially true for some of
the most recent algorithms, e.g., CScDE, SNUM, and cSNUM [21, 143]. However, it is possible to
endow both cMeta and sMeta with algorithmic moves that handle multiple variables at the same
time. A concrete example is that recently proposed in [44], where the cSM approach was shown to
be successful, particularly in multimodal problems.

• Among compact algorithms, some (e.g., rcGA) work well in lower dimensionalities, while others
(e.g., cPSO) perform especially well in larger dimensionalities (a similar observation can be made
for single-solution algorithms). This seems not only to be a consequence of the inherent search
logic underlying each algorithm. Another possible explanation has been provided in a recent
study provided in [325], which showed that the correlation between pairs of variables appears to
continuously decrease as the size of the problem increases, from the point of view of a stochastic
search algorithm. As a consequence, large-scale non-separable high-dimensional problems can
be approached as if they are separable. According to the same authors, this effect arises from
the fact that in high dimensionalities only a very limited portion of the decision space can be
explored with a reasonable computational budget. Therefore, exploration should be performed
with any improvement along each variable, which is consistent with simple methods that use a
limited computational budget to focus mainly on exploitation. This is also compatible with most
multi-start lightweight algorithms.
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8. Future research directions

Promising research lines to improve upon the current state-of-the-art in light-weight optimisa-
tion algorithms are summarised below.

• Probabilistic models: Nearly the totality of compact algorithms employ the Gaussian distribu-
tion, which is simple to work with, but alternative models might be more suitable and should be
investigated.

• Multimodality: Poor performance in this class of problems suggests the need to focus more on
exploratory operators or mechanisms in the algorithmic design phase.

• Scalability: The problem of dealing with increasing dimensionality values without deterioration
of performance needs further attention, as truly large-scale problems are becoming increasingly
frequent, even in low-resource devices.

• Hybridisation: It will be interesting to explore different combinations of multiple compact logics.

• Adaptation and learning: Lightweight algorithms with increased intelligence will be needed,
that is, algorithms that can self-adapt their parameters to the problem at hand. Another pos-
sibility would be to put multiple lightweight algorithms together, using, for instance, a scheme
similar to that introduced in [326]: in this scheme, 6 algorithms are arranged into three bags,
each with two algorithms, depending on the number of solutions used in the optimisers. Once a
bag is selected, its optimisers are run according to a reinforcement learning process based on its
performance. As a result, if the considered optimiser performs well (based on the fitness improve-
ment), it will be rewarded, while the others will be penalised. The best-performing optimiser will
earn more probability to run in the next iterations, while the other optimisers will be activated
less frequently, eventually until their corresponding probability is null.

• Noisy/dynamic optimisation: It will be useful to investigate new compact optimisation schemes
(for instance, with new distributions or new sampling mechanisms) to deal with noisy functions or
Dynamic Optimisation Problems (DOPs) [327, 328] (i.e., problems where the search space changes
over time). Concerning noisy optimisation, apart from some works on cGA [260, 329–331], the only
few works dealing with noise are based on rcGA [332], cDE [333] and a compact EDA framework
[334]. In terms of dynamic optimisation, a Hooke-Jeeves-based Memetic Algorithm (HJMA) was
presented in [335], where experiments have been conducted on the Moving Peaks (MP) problem4.
To address the need to continuously adapt to landscape changes, some improvements in cGA have
been proposed in [340], based on techniques of hyper-mutation and random immigrants. The re-
sults of a modified version of the Moving Peaks Benchmark indicate that both strategies improve
the algorithm performance for dynamic environments. Instead, the compact adaptive mutation

4This benchmark is defined in [336] as an artificial multidimensional landscape comprised of multiple peaks, each of
which has its height, width, and position slightly altered whenever a change occurs in the environment. Its complexity
can be raised by increasing the number of dimensions/peaks and by adding noise over the whole landscape. A review of
the approaches that have been tested in the dynamic MP problem can be found in [337]. More recently, some authors pro-
posed the Deterministic Distortion and Rotation Benchmark (DDRB) [338], a method to generate Deterministic Dynamic
Multimodal Optimisation Problems (DMMOP) considering both dynamic and multimodal characteristics, which can sim-
ulate more diverse sets of challenges. In the same context, another set of benchmark problems, as well as an optimisation
framework, called PopDMMO, containing several population-based algorithms, was designed in [339].
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genetic algorithm (amcGA) presented in [341] is based on an adaptive mechanism where the mu-
tation scheme is directly linked to a change detection scheme so that the change detection scheme
regulates the mutation rate (i.e., the degree of change determines the probability of mutation).
This method was tested in [342] using a real-world dynamic optimisation problem that includes
designing and optimising a PID controller for a torsional mass-spring-damper system in a dy-
namic environment. Other variants of amcGA can also be found in [343]. However, more research
in this direction is needed.

• Constrained and multi-objective problems: Bound-constrained single-objective optimisation
has been the focus of most research on lightweight metaheuristics. In many application scenar-
ios, however, one needs to handle multiple objectives at the same time and/or handle a set of
equality/inequality constraints. Therefore, future research on lightweight algorithms for multi-
objective and/or constrained optimisation applications may be interesting. Regarding sMeta, some
multi-objective variants of SEO have been adapted, for example, to solve the problem of home
healthcare routing and scheduling [344], to optimise an integrated system of water supply and
waste collection [345], and to optimise a municipal solid waste problem [346]. Instead, in [347]
a multi-objective variant of the VS algorithm is introduced. Regarding cMeta, there are already
some studies that go in this direction already exist; see, e.g., [348, 349]. These research papers
show that Multi-Objective compact Differential Evolution (MOcDE) and Multi-Objective compact
Particle Swarm Optimiser (MOcPSO), respectively, can be used successfully for solving uncon-
strained, continuous multi-objective optimisation problems. In [277, 350], the authors solve the
ontology alignment problem using the compact multi-objective Co-Firefly algorithm and cPSO,
respectively. One main drawback of cMeta and sMeta is that, without an actual population or
an archive, they cannot keep a Pareto front in memory. Lack of diversity is also an issue for
multi-objective optimisation. Therefore, more research is needed in this direction. Regarding con-
strained optimisation, an Improved SA (ISA) is introduced in [351], which is capable of dealing
with only linear constraints. ISA is characterised by changing only one component of the current
solution at each iteration, without penalty function. Another similar work [352] proposed two
variants based on a hybrid Simulated Annealing-Hill Climbing algorithm, to solve constrained
optimisation problems. The first version incorporates penalty methods for constraint handling,
whereas the second one eliminates the need for imposing penalties in the objective function by
tracing feasible and infeasible solution sequences independently. Also, more research seems to be
needed in this area.

• The trend in designing novel algorithms solely by following an inspiring metaphor and making
their compact versions available would not help to understand how these simple methods work
and can be improved in the future. Even if good results can be obtained with such algorithms over
some application domains, this does not seem to lead to any progress in explaining the algorithmic
behaviour and the well-known drawbacks of metaheuristics. Also from the novelty point of view,
this approach is arguable [65, 66, 353]. Therefore, we call for more fundamental research in the
direction of overcoming drawbacks to obtain an improved self-adaptive algorithmic structure.
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TABLES 43

Table 1: Application fields of lightweight algorithms
Application Study Algorithm(s)

Training neural network for digit recognition [322] SISPO (Simplified ISPO which is equivalent to AdpISPO)
Optimal antennas for Radio Frequency IDentification (RFID) applications [312, 313] ISPO

DNA sequence compression [211, 212]
AdpISPO & hybrid CLPSO + AdpISPO

Optimal Gabor features for face recognition [122, 210]
Optimal control system for a helicopter robot [124] RIS

Digital Infinite Impulse Response filter design [125] 3SOME
Online PID tuning on path-following robot [22] 3SOME
Real-time detection of a magnetic dipole [217] Single particle optimization with Restarted Exploration (SPORE)
Routing in printed circuit hole drilling [307] ssSKF

Three-bar truss design problem [318] ssSKF
Helical spring design problem [354] ssSKF

Optimisation of the analog filter group delay [308]
VSAnalogue active filter component selection [309]

Energy efficient refrigerant gas liquefaction [315]
Optimal power flow in resistive networks

[314]
A hybrid master-slave VS algorithm

with constant power loads with a power flow method
Optimal exchange membrane fuel cell [316] VSDE

Text author identification [320]
Ten chaos theory enhanced VS algorithms

Inverse kinematics problem solution [306]
Optimised fast learning network [323] Three VS variants

Truss frequency constrained optimisation [319] A modified SEO algorithm
Distributed denial of services

[324] SRD / SRD
mitigation in cloud computing

Clustering and codebook problems [132] MSMS
Online optimal anti-windup PI speed controller [135]

(nonpersistent elitist) rcGA
WSNs minimised energy depletion [302]

Model predictive control for sewer system [317] (non elitist) rcGA
Optimising hydrography ontology alignment [137] cross-rcGA variant

On-line training of neural controller [138]
cDEOptimised deployment of WSNs [301]

Optimal regression models in radio networks [321]
Industrial Cartesian robot optimal control [305] A memetic cDE algorithm

Space robot disturbance minimisation [39, 139] DEcDE, cDE-light
Path following problem [142] cDE-light

Fuzzy Neural optimal control for mobile robot [141] CDE-CLS
On-line control design of a boiler [42]

cPSO
Base station locations in WSNs [303]

Optimal SNR in audio watermarking [310]
Optimisation-based audio watermarking [311]

Mobile sensor localisation [145] cAPSO
Topology control scheme in WSNs [304] cABC

Self-Standing Humanoid Robot [161] cHSA
Train neural and radial models [159] cTLBO

Optimal movement in humanoid robots [38, 151]
cFA

Optimal bipedal robots walking [150]
Clustering of WSNs [149] cBA

Node Localisation in WSNs [155] cFPA
Gray image segmentation [152] cCSO

Optimise hydroelectric power generation [153] cPIO
Location of drone logistics hub [156] An improved cCS

Optimal allocation of distributed generation [158] pcEO and cEO variants
Vehicle routing problem with time window [157] cSCA

Public transit vehicles dispatch [297] McSCA
Node localisation in 3D actual terrain [296] pcCSA

Optimal bibliographic ontology matching [136] UcGA
Optimal thrust allocation (in Cybership III) [160] cHHO
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