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Abstract. Inspired by the recent algebraic approach to classical field the-
ory, we propose a more general setting based on the manifold of smooth
sections of a non-trivial fiber bundle. Central is the notion of observables
over such sections, i.e., appropriate smooth functions on them. The kine-
matics will be further specified by means of the Peierls brackets, which in
turn are defined via the causal propagators of linearized field equations.
We shall compare the formalism we use with the more traditional ones.
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1. Introduction

The aim of the present paper is to generalize the recent treatment of relativistic
classical field theory [9], seen as a Lagrangian theory based on (nonlinear)
functionals over the infinite-dimensional configuration space, to the case where
the latter is made of sections of general bundles.

There are few mathematical treatments of classical field theories, all find-
ing inspirations and drawing ideas from two main sources, the Hamiltonian
and Lagrangian formalism of classical mechanics. If one intends also to in-
clude relativistic phenomena, then there remain essentially only two rigorous
frameworks, both emphasizing the geometric viewpoint: the multisymplectic
approach (see [21,27,28]) and another related to the formal theory of par-
tial differential equations (see [19,36]). They have several points in common,
and there is now a highly developed formalism leading to rigorous calculus of
variations.

Physicists look at Lagrangian classical field theories with more interest.
This clearly amounts to developing a formalism in which one treats the intrin-
sic infinite-dimensional degrees of freedom of the configuration spaces. Both
previously cited frameworks use ingenuous ideas to avoid the direct treatment
of infinite-dimensional situations. However, there exists another treatment of
classical mechanics which emphasizes more the algebraic and the analytic
structures and is intrinsically infinite dimensional, which is named after the
pioneering works of von Neumann [41] and Koopman [34] and works directly
in Hilbert spaces. If one is willing to generalize this last setting to field the-
ories, one finds immediately an insurmountable difficulty, namely a result by
Eells and Elworthy (see [17,18]) constrains a configuration space, viewed as a
second countable Hilbert manifold, to be smoothly embedded into its ambient
space, i.e., it is just an open subset of the Hilbert space. Hence, we need to
bypass this fact of life and find a clever replacement.

This task was done in the last decade, in which another treatment was
developed that drew inspirations from perturbative quantum field theories in
the algebraic fashion [7] and which is closer in spirit to the von Neumann–
Koopman formalism. Based on these ideas, and moreover using as inputs also
some crucial notions belonging to microlocal analysis, one of the authors (RB)
in collaboration with Klaus Fredenhagen and Pedro Lauridsen Ribeiro [9] has
formalized the new treatment for the case of scalar fields on globally hyper-
bolic spacetimes. It emphasizes more the observables’ point of view and deals
directly with the configuration space as an infinite-dimensional manifold but
modeled now over locally convex spaces. This new approach gives a strong
structural feedback to quantum field theories in the functional-algebraic for-
malism using deformation quantization, which is especially clear in a recent
treatment given by the authors [11,40]. In particular, we shall define a class
of functionals named “microcausal functionals” that are extremely important
objects in perturbation theory for interacting quantum field theories since they
are the image of local functionals under the chronological products. To work
efficiently with such functionals, one relies heavily on the clarifications given
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in the last thirty years about the most appropriate calculus on locally convex
spaces (see, e.g., [2,26,35]).

As advertised above, it is one of the main aims of the present paper to
generalize such treatment to the more complicated situation in which fields
are sections of fiber bundles. There are plenty of examples in the physics lit-
erature dealing with such structures, one for all being the case of nonlinear
σ-models (wave maps in the mathematicians’ language). At first sight, the idea
looks straightforward to implement; however, it contains some subtleties whose
treatment needs a certain degree of care. Indeed, in our general setting, im-
ages of the fields are never linear spaces and moreover the global configuration
space has only a manifold structure. This forces us to generalize many notions
like the support of functionals, or the central notion of locality/additivity, over
configuration space, which can be given in two different formulations: a global
formulation that uses the notion of relative support already used in [8] and
a local one that uses the notion of charts over configuration space seen as an
infinite-dimensional manifold. It is gratifying that both notions give equivalent
results, as shown, e.g., in Proposition 3.9.

We summarize the content of this article.
Section 2 is devoted to the geometrical tools used in the rest of the article:

We introduce the classical geometrical formalism based on jet manifolds and
then the infinite-dimensional formalism.

Section 3 focuses on the definition of observables, their support, and the
introduction to various classes of observables depending on their regularity. In
particular, two of this classes admit a ultralocal characterization, i.e., local in
the sense of the manifold structure of the space of sections. In the end, we
introduce the notion of generalized Lagrangian, essentially showing that each
Lagrangian in the standard geometric approach is a Lagrangian in the algebraic
approach as well. We then discuss how linearized field equations are derived
from generalized Lagrangians. A crucial point here is the way we characterize
microlocal functionals in Proposition 3.13, by applying the nonlinear version
of Peetre theorem.

Section 4 begins with some preliminaries about normal hyperbolicity and
normally hyperbolic operators. Here, generalized Lagrangians of second order
which are normally hyperbolic, as it is in the case of wave maps, play a major
role. We then show the existence of the causal propagator which in turn is
used in Definition 4.7 to define the Poisson bracket on the class of microlocal
functionals. Then, we enlarge the domain of the bracket to the previously re-
called microcausal functionals, defined by requiring a specific form of the wave
front set of their derivatives. Finally, Theorems 4.12, 4.13 and 4.14 establish
the Poisson ∗-algebra of microcausal functionals.

Section 5 presents results that culminate in Theorem 5.3, which estab-
lishes that microcausal functionals can be given the topology of a nuclear
locally convex space. Furthermore, Propositions 5.4 and 5.7 give additional
properties concerning this space and its topology. We conclude the section
by defining the on-shell ideal with respect to the Lagrangian generating the
Peierls bracket and the associated Poisson ∗-algebraic ideal.
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In Sect. 6, we elucidate the previous results by showing how to adapt
them to the case of wave maps. In particular, we shall write the expression for
the causal propagator in 4-dimensional spacetime.

Finally, in Appendix we give details on the topology of the space of
sections Γ∞(M ← B) and its manifold structure, gathering a number of results
that cannot be found in a single reference. We hope that this may make the
paper more enticing for newcomers in the field.

2. Geometrical Setting

2.1. Preliminaries

Let M be a smooth m-dimensional manifold, suppose that there is a smooth
section g of T ∗M ∨ T ∗M →M), where ∨ denotes the symmetric tensor prod-
uct, such that its signature is (−,+, . . . ,+); then, (M, g) is called a Lorentz
manifold and g its Lorentzian metric. If we take local coordinates (U, {xμ})
and denote dσ(x) .= dx1 ∧ · · · ∧ dxm, then dμg(x) =

√|g(x)|dσ(x) is the
canonical volume element of M , where as usual we denote by g(x) the de-
terminant of g calculated at x ∈ M . Any Lorentzian metric g induces the
so-called musical isomorphisms g� : TM → T ∗M : (x, v) �→ (x, gμνvμdxν),
g� : T ∗M → TM : (x, α) �→ (x, gμναμ∂ν), where {dxμ}μ=1,...,m is the stan-
dard basis of T ∗

x M in local coordinates (U, {xμ}), and {∂μ}μ=1,...,m the dual
basis of TxM .

Given any Lorentzian manifold (M, g), a nonzero tangent vector vx ∈
TxM is timelike if gx(vx, vx) < 0, spacelike if gx(vx, vx) > 0, lightlike if
gx(vx, vx) = 0; similarly a curve γ : R → M : t �→ γ(t) is called timelike
(resp. lightlike, resp. spacelike) if at each t ∈ R its tangent vector is timelike
(resp. lightlike, resp. spacelike), a curve that is either timelike or lightlike is
called causal. We denote the cone of timelike vectors tangent to x ∈ M by
Vg(x). A Lorentzian manifold admits a time orientation if there is a global
timelike vector field T , then timelike vectors v ∈ TxM that are in the same
connected component of T (x) inside the light cone, are called future directed.
When an orientation is present we can consistently split, for each x ∈ M ,
the set Vg(x) into two disconnected components V +

x (x)∪ V −
g (x) calling them,

respectively, the sets of future directed and past directed tangent vectors at
x. Given x, y ∈ M , we say that x 
 y if there is a future directed time-
like curve joining x to y, and x ≤ y if there is a causal curve joining x to
y. We denote I+

M (x) = {y ∈ M : x 
 y}, I−
M (x) = {y ∈ M : x � y},

J+
M (x) = {y ∈ M : x ≤ y}, J−

M (x) = {y ∈ M : x ≥ y} and call them,
respectively, the chronological future, chronological past, causal future, causal
past of x. (M, g) is said to be globally hyperbolic if M is causal, i.e., there are
not closed causal curves on M and the sets JM (x, y) .= J+

M (x) ∩ J−
M (y) are

compact for all x, y ∈ M . Equivalently, M is globally hyperbolic if there is a
smooth map τ : M → R called temporal function such that its level sets, Σt,
are Cauchy hypersurfaces; that is, every inextensible causal curve intersects Σt

exactly once. A notable consequence is that any globally hyperbolic manifold
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M has the form Σ×R for some, hence any, Cauchy hypersurface Σ. We point
to [42] for details on the geometric structure and to [3,4,24] for details on
globally hyperbolic manifolds.

A fiber bundle is a quadruple (B, π,M,F ), where B, M , F are smooth
manifold called, respectively, the bundle, the base and the typical fiber, such
that:

(i) π : B →M is a smooth surjective submersion;
(ii) there exists an open covering of the base manifold M , {Uα}α∈A admit-

ting, for each α ∈ A, diffeomorphisms tα : π−1(Uα) → Uα × F , called
trivializations, which are fiber respecting, i.e., pr1 ◦ tα = π|π−1(Uα).

Given Uα, Uβ subsets of M , we can define the transition mappings gαβ :
Uαβ × F → F : (x, y) �→ gαβ(x, y) .= pr2 ◦ tα ◦ t−1

β (x, y). We remark that
pr1 ◦ tα = π|π−1(Uα) implies pr1 = π ◦ t−1

α .
Using trivialization, it is possible to construct charts of B via those of

M and F . We call those fibered coordinates, and we denote them by (xμ, yi)
with the understanding that Greek indices denote the base coordinates and
Latin indices the fiber coordinates. Given two fiber bundles (Bi, πi,Mi, Fi),
i = 1, 2, we define a fibered morphism as a pair (Φ, φ), where Φ : B1 → B2,
φ : M1 →M2 are smooth mappings, such that π2 ◦Φ = φ ◦ π1. We denote by

Γ∞(M ← B) = {ϕ : M → B, smooth : π ◦ ϕ = idM} (1)

the space of sections of the bundle.
Vector bundles are a particular kind of fiber bundle whose standard fibers

are vector spaces and their transition mappings act on fibers as transformations
of the general Lie group associated with the standard fibers. We denote coordi-
nates of these bundles by {xμ, vi}. Suppose that (E, π,M, V ), (F, ρ,M,W ) be
vector bundles over the same base manifold, then it is possible to construct a
third vector bundle (E⊗F, π⊗ρ,M, V ⊗W ) called the tensor product bundle
whose standard fiber is the tensor product of the standard fibers of the start-
ing bundles. For example, k-forms over M are sections of the vector bundle
(Λk(M), τΛ,M,Λk

R
m).

In the sequel, we will use particular vector fields of B: They are called
vertical vector fields and belong to Xvert(B) = {X ∈ Γ∞(B ← TB) : Tπ(X) =
0} ⊂ X(B), where π : B → M is the bundle projection and T denotes the
tangent functor. We will denote by ΦX

t : B → B the flow of any vector
field on B and assume in the rest of this work that the parameter t varies
in an appropriate interval which has been maximally extended. Note that if
X ∈ Xvert(B), then ΦX

t is a fibered morphism whose base projection is the
identity over M . Vertical vector fields can be seen as a sections of the vertical
vector bundle, (V B

.= ker(Tπ), τV , B) which is easily seen to carry a vector
bundle structure over B. Another construction that we shall often use is that of
pullback bundle: Given a fiber bundle B and a smooth map ψ : M → N , we can
describe another bundle over N with the same typical fibers as the original fiber
bundle and with total space defined by ψ∗B .= {(n, b) ∈ N×B : ψ(n) = π(b)}
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and projection ψ∗π .= pr1|ψ∗B . In particular, we call ψ∗B the pullback bundle
of B along ψ.

Another important notion necessary to the geometric framework of clas-
sical field theories is jet bundles. Heuristically they geometrically formalize
PDEs. For general references, see [33, Chapter IV, § 12] or [45]. Rather then
giving the most general definition, we simply recall the bundle case. Given
any fiber bundle (B, π,M,F ), two sections, ϕ1, ϕ2, are kth-order equivalent in
x ∈M , which we write, ϕ1 ∼k

x ϕ2, if for all f ∈ C∞(B), γ ∈ C∞(R,M) having
γ(0) = x, the Taylor expansions at 0 of order k of f◦ϕ1◦γ and f◦ϕ2◦γ coincide.
The relation ∼k

x becomes an equivalence relation, and we denote by jk
xϕ the

equivalence class with respect to ϕ. Letting Jk
xB

.= Γ∞
x (M ← B)/ ∼k

x, where
Γ∞

x (M ← B) are the germs of local sections of B defined on a neighborhood
of x, the kth-order jet bundle is then

JkB
.=

⊔

x∈M

Jk
xB.

The latter inherits the structure of a fiber bundle with base either M , B or
any J lB with l < k. If {xμ, yj} are fibered coordinates on B, then we induce
fibered coordinates {xμ, yj , yj

μ, . . . , yj
μ1...μk

} on JkB where Greek indices are
understood to be symmetric. The latter coordinates embody the geometric
notion of PDEs. The family {(JrB, πr)}r∈N with πr : JrB → M allows an
inverse limit (J∞B, π∞, R∞) called the infinite jet bundle over M , and it can
be seen as fiber bundle whose standard fiber R

∞ is a Fréchet topological vector
space. Its sections denoted by j∞ϕ are called infinite jet prolongations.

Given a vector bundle E → M , we define its space of distributional
sections Γ−∞(M ← E) as the strong topological dual of Γ∞

c (M ← E) equipped
with the standard limit Fréchet topology. Notice that if we denote by E′ →M
the dual bundle of E →M , given μ ∈ Γ∞(

M ← E′⊗Λm(M)
)
, we can define

X ∈ Γ∞(M ← E) �→
∫

M

〈X,μ〉(x) ∈ R.

Thus, Γ∞(
M ← E′ ⊗ Λm(M)

)
embeds into Γ−∞(M ← E). Let U ⊆ M be

open and s ∈ Γ−∞(M ← E), the restriction of s to U is the distributional
section

s|U (X) = s(X), X ∈ Γ∞
c (U ← E|U ).

The support of s is the set

supp(s) =
⋂

A⊂Mclosed
s|M\A=0

A.

We remark that playing with partitions of unity it is possible to endow
Γ−∞(M ← E) with the structure of a fine sheaf. This in particular implies
the principle of localization: A distributional section is the zero section if and
only if for every point x ∈ M there is an open neighborhood U � x such
that s|U = 0. If we denote by Γ−∞

c (M ← E) the space of compactly supported
distributional sections, then one can show that it is isomorphic to the space of
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continuous linear mappings s : Γ∞(M ← E)→ R, i.e., the dual of the Fréchet
space Γ∞(M ← E).

In the sequel, we will usually employ distributional sections in Γ−∞(M ←
ϕ∗V B), where V B → B is the vertical bundle of B and ϕ : M → B a section
of the bundle B →M .

To estimate singularities of distributional sections, we shall use the notion
of wave front set: Let π : E →M be a vector bundle and let {(π−1(Uα), tα)}α
be a family of trivializations of E. If s ∈ Γ−∞

c (M ← E), then (tα)∗s =
(s1, . . . , sk) where k is the dimension of the fiber of E and each si ∈ D′(M).
Then, we set

WF(s) .=
k⋃

i=1

WF(si). (2)

The above definition does not depend on the chosen trivialization for diffeo-
morphisms. This entails that we can straightforwardly generalize the results
of [32, Chapter 8] to distributional sections in Γ−∞

c (M ← E).

2.2. Topology and Geometry of Field Configurations

We here give a synthetic exposition concerning the topology and manifold
structure of Γ∞(M ← B). For further details, we defer to Appendix and the
references given therein. We stress that for a generic bundle the space of global
smooth sections might be empty (e.g., for non-trivial principal bundles), and
therefore, we assume that our bundles do possess them. Indeed that is the
case whenever we are considering trivial bundles, vector bundles, or bundles
of geometric objects such as natural bundles (see, e.g., [33, § 14]).

Let M , N be Hausdorff topological spaces, and let C(M,N) the space
of continuous mappings between the two spaces. The compact-open topology
τCO or CO-topology is the topology generated by a basis whose elements have
the form

N(K,V ) = {ϕ ∈ C(M,N) : ϕ(K) ⊂ V },
where K ⊂ M is a compact subset and V ⊂ N is open. The wholly open
topology or WO-topology is the one generated by the subbasis

{ϕ ∈ C(M,N) : f(M) ⊆ U}
where U ⊂ N is open. The graph topology or WO0-topology on C(M,N) is
generated by requiring that

G : C(M,N) � ϕ �→ Gϕ ∈
(
C(M,M ×N), τWO

)
,

with Gϕ : M → M × N, x �→ (x, ϕ(x)) being the graph mapping, is an
embedding. This topology is Hausdorff. Finally, the Whitney Ck topology, or
WOk-topology is defined by requiring

jk : C∞(M,N)→ (
C(M,Jk(M ×N)),WO − topology

)

to be an embedding. When k = ∞ we call the latter Whitney topology or
WO∞-topology. If M is second countable and finite dimensional, and N is
metrizable, given an exhaustion of compact subsets {Kn}n∈N in M and a
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sequence of natural numbers {kn}n∈N ↗ ∞, then a basis of open subset is
given by subsets of the form

W (Kn, Un) =
{
ϕ ∈ C∞(M,N) : jknϕ(M\Kn) ⊂ Un

}

where each Un ⊂ Jkn(M,N) is an open subset. This topology enjoys several
properties collected in Propositions B.10, B.7 and Corollary B.8. We here stress
two facts:

(i) the convergence of a sequence ϕn to ϕ ∈ C∞(M,N) can be characterized
as follows: There is a compact subset, K for which ϕn|M\K = ϕ|M\K ,
and jkϕn → jkϕ uniformly on K for all k ∈ N.

(ii) continuous curves γ : R → C∞(M,N) have the property that for each
compact interval I ⊂ R, there is a compact subset K of M , for which
γ(t1)|M\K ≡ γ(t2)|M\K for all t1, t2 ∈ I.
Let ϕ,ψ ∈ C∞(M,N), we define the relative support of ψ with respect

to ϕ as the subset

suppϕ(ψ) .= {x ∈M : ϕ(x) �= ψ(x)}. (3)

We say that ϕ ∼ ψ whenever suppϕ(ψ) is compact. The refined Whitney
topology is the coarsest topology on C∞(M,N) finer than the WO∞-topology
and for which the subsets

Vϕ
.= {ψ ∈ C∞(M,N) : ψ ∼ ϕ}

are open. This is easily achieved by adding to the basis of open subsets defined
above, the family generated by finite intersections between the elements Vϕ and
W (Kn, Un). We equip Γ∞(M ← B) with the subspace topology of C∞(M,B)
with the refined Whitney topology; notice that ϕ ∈ Γ∞(M ← B) ⊂ C∞(M,B)
if and only if π∗(ϕ) = π ◦ϕ = idM , by Proposition 7.1 in [38], π∗ is continuous,
so the equation π∗(·) = idM defines a closed subset in C∞(M,B) with the
refined Whitney topology.

The smooth structure of the manifold C∞(M,N) is the modeled on the
locally convex spaces Γ∞

c (M ← ϕ∗TN), with Bastiani calculus (see Definition
A.4 for the precise notion).

The manifold structure of C∞(M,N) is generated by ultralocal charts
{Uϕ, uϕ} as follows:

Definition 2.1. Let exp be any Riemannian exponential1 on N and denote by
Ũ ⊂ N ×N the neighborhood of the diagonal where exp : Ṽ ⊂ TN → N ×N
is a diffeomorphism; then, an ultralocal chart {Uϕ, uϕ}, is determined by the
following choices

Uϕ = {ψ ∈ Vϕ : (ϕ,ψ)(M) ⊂ Ũ}
and

uϕ : Uϕ � ψ �→ uϕ(ψ) ∈ Γ∞
c (M ← ϕ∗TN)

1In the proof of Theorem C.2, we show that the induced smooth structure does not depend
on the chosen Riemannian exponential.
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uϕ(ψ) : M � x �→ uϕ(ψ)(x) = exp−1(ϕ(x), ψ(x)) � (
ϕ(x), exp−1

ϕ(x)(ψ(x))
)
. (4)

Notice that by Theorem B.14, compositions uϕ ◦ u−1
ψ of charts mappings

are Bastiani smooth.

Remark 2.2. We stress that a similar manifold structure can be obtained by
using a different notion of calculus: convenient calculus. In extreme synthesis,
a mapping f between locally convex spaces X, Y is conveniently smooth if
and only if f∗(C∞(R,X) ⊂ C∞(R, Y ). The charts of the manifold structure
remain the same; however, the topology will be finer. For details see, e.g.,
[35, Chapter I and § 42]. However, it has been shown (see §2 and Proposition
2.2 of [25]) that not all conveniently smooth mappings can be continuous,
thereby not allowing the use of Schwartz kernel theorem for the derivatives of
(conveniently) smooth functions C∞(M,N)→ R. Motivated by this need, we
shall adopt the notion of Bastiani calculus. However, remind that for Fréchet
spaces the two calculi coincide.

This differential structure of Γ∞(M ← B) is modeled on the locally
convex spaces Γ∞

c (M ← ϕ∗V B) induced as a submanifold of C∞(M,B) with
ultralocal charts {Uϕ, uϕ}, Uϕ = {ψ ∈ Vϕ : (ϕ,ψ)(M) ⊂ Ũ},

uϕ : Uϕ � ψ �→ uϕ(ψ) ∈ Γ∞
c (M ← ϕ∗V B)

uϕ(ψ) : M � x �→ uϕ(ψ)(x) = ẽxp−1(ϕ(x), ψ(x)) � (
ϕ(x), ẽxp−1

ϕ(x)(ψ(x))
)
;

(5)

where ẽxp is a suitably modified version of some Riemannian exponential on
B and Ũ ⊂ B×B the neighborhood of the diagonal where the latter mapping
becomes a diffeomorphism.

The kinematic tangent space TϕΓ∞(M ← B) at point ϕ is canonically
isomorphic to Γ∞

c (M ← ϕ∗V B). The kinematic tangent bundle (TΓ∞(M ←
B), τΓ,Γ∞(M ← B)) is therefore defined in analogy with the finite-dimensional
case and carries a canonical infinite-dimensional bundle structure with trivial-
izations

tϕ : τ−1
Γ (Uϕ)→ Uϕ × Γ∞

c (M ← ϕ∗V B).

Through tϕ we can identify points of TΓ∞(M ← B) with pairs (ϕ, �Xϕ). Notice
that an element of TϕΓ∞(M ← B) can equivalently be seen as a section of
the (finite dimensional) vector bundle Γ∞

c (M ← ϕ∗V B). When using the
latter interpretation, we will write the section in local coordinates as �Xϕ(x) =
�Xi(x)∂i

∣∣
ϕ(x)

. Vector fields for Γ∞(M ← B) are therefore Bastiani smooth

sections �X : ϕ → Xϕ of the tangent bundle TΓ∞(M ← B) → Γ∞(M ← B).
We will use Roman letters, e.g., (s, u, . . . ) to denote distributional sections in
Γ−∞(M ← ϕ∗V B).

Finally, we recall that we can always choose a connection on TΓ∞(M ←
B), that is, a fiber respecting splitting of TTΓ∞(M ← B) into horizontal and
vertical part. This induces a notion of covariant derivative which is intrinsic
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and helps provide a chart independent classification for certain classes of func-
tionals (c.f. Definition 3.5). Such a connection, as detailed in (91) and (92),
can be always induced via a connection Γ on the fiber F of B by setting

Γϕ( �X, �Y )(x) .= Γ̃i
jk(ϕ(x)) �Xj

ϕ(x) �Y k
ϕ (x)∂i|ϕ(x).

3. Observables

By functional, we mean a smooth mapping

F : U ⊂ Γ∞(M ← B)→ R ,

where U is an open set in the CO-topology generated by (80). Since smoothness
is tested on ultralocal charts, a functional F is smooth if and only if, given
any ultralocal atlas {Uϕ, uϕ}ϕ∈U its localization

Fϕ
.= F ◦ u−1

ϕ : Γ∞
c (M ← ϕ∗V B)→ R, (6)

is smooth for all ϕ ∈ U in the sense of Definition A.4.
The first notion we introduce is the spacetime support of a functional.

The idea is to follow the definition of support given in [9] and account for the
lack of linear structure on the fibers of the configuration bundle B.

Definition 3.1. Let F be a functional over U , CO-open, then its support is the
closure in M of the subset x ∈M such that for all V ⊂M open neighborhood
of x, there is ϕ ∈ U , �Xϕ ∈ Γ∞

c (M ← ϕ∗V B) having supp( �Xϕ) ⊂ V , for
which Fϕ( �Xϕ) �= Fϕ(0). The set of functionals over U with compact spacetime
support will be denoted by Fc(B,U) and its elements called observables.

Let us display some examples of functionals. Given α ∈ C∞(B, R), con-
sider

Fα : Γ∞(M ← B)→ R : ϕ �→ Fα(ϕ) .=
{ 1

1+supM (α(ϕ)) α(ϕ) bounded ,

0 otherwise .
(7)

If f ∈ C∞
c (M) and λ ∈ Ωm(JrB) define

Lf,λ : Γ∞(M ← B)→ R : ϕ �→ Lf,λ(ϕ) .=
∫

M

f(x)jrϕ∗λ(x)dμg(x). (8)

On the other hand if f, λ are as above and χ : R → R with 0 ≤ χ ≤ 1,
χ(t) = 1 ∀|t| ≤ 1/2 and χ(t) = 0 ∀|t| ≥ 1/2 define

Gf,λ,χ : Γ∞(M ← B)→ R : ϕ �→ Gf,λ,χ(ϕ) .= e1−χ
(
(Lf,λ(ϕ))2

)
. (9)

We can endow Fc(B,U) with the following operations

(F,G) �→ (F + G)(ϕ) .= F (ϕ) + G(ϕ); (10)
(α ∈ R, F ) �→ (αF )(ϕ) .= αF (ϕ); (11)

(F,G) �→ (F ·G)(ϕ) .= F (ϕ)G(ϕ); (12)
F �→ F ∗, F ∗(ϕ) .= F (ϕ)2. (13)
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It can be shown that those operation preserve the compactness of the
support, turning Fc(B,U) into a commutative algebra with unit where the
unit element is given by ϕ �→ 1 ∈ R. That involution and scalar multiplication
are support preserving is trivial, to see that for multiplication and sum we use

Lemma 3.2. Let F , G be functionals over U ⊂ Γ∞(M ← B) CO-open subset,
then

(i) supp(F + G) ⊂ supp(F ) ∪ supp(G),
(ii) supp(F ·G) ⊂ supp(F ) ∪ supp(G).

Notice that the more restrictive version of (ii) with the intersection of
domains does not hold in general, this can be checked by taking the constant
functional G(ϕ) ≡ 1 ∈ R ∀ϕ ∈ U , then supp(G) = ∅ while supp(F + G),
supp(F ·G) = supp(F ).

Proof. Suppose that x /∈ supp(F ) ∪ supp(G), then there is an open neighbor-
hood V of x such that for any X ∈ Γ∞

c (M ← V B) with supp(X) ⊂ V , and
any ϕ ∈ U we have (F + G)ϕ( �Xϕ) = Fϕ( �Xϕ) + Gϕ( �Xϕ) = Fϕ(0) + Gϕ(0), so
x /∈ supp(F + G). The other follows analogously. �
Definition 3.3. Let U be CO-open, a functional F ∈ Fc(B,U) is differen-
tiable of order k at ϕ ∈ U if for all 0 ≤ j ≤ k the functionals djFϕ[0] :
⊗j (Γ∞

c (M ← ϕ∗V B)) → R : ( �X1, . . . , �Xj) �→ djFϕ[0]( �X1, . . . , �Xj) are linear
and continuous with

djFϕ[uϕ(ϕ)]( �X1, . . . , �Xj)
.=

dj

dt1 . . . dtj

∣∣
∣∣∣
t1=···=tj=0

Fϕ(t1 �X1 + · · ·+ tj �Xj)

=
〈
F (j)

ϕ [0], �X1 ⊗ · · · ⊗ �Xj

〉
.

If F is differentiable of order k at each ϕ ∈ U , we say that F is differentiable
of order k in U . Whenever F is differentiable of order k in U for all k ∈ N, we
say that F is smooth and denote the set of smooth functionals as F0(B,U).

Since F is Bastiani smooth, djFϕ[0] is continuous, therefore djFϕ[0] ∈
Γ−∞(M j ← �jϕ∗V B) and by Schwartz kernel theorem, we can represent it
as an integral kernel F

(j)
ϕ [0] which we write as

〈
F (j)

ϕ [0], �X1 ⊗ · · · ⊗ �Xj

〉
=

∫

Mj

f (j)
ϕ [0]i1···ij

(x1, . . . , xj) �Xi1
1 (x1) · · ·

�Xij

j (xj)dμg(x1, . . . , xj), (14)

where �Xp = �Xip
p

∂
∂yip

∣∣∣
y=ϕ(x)

∈ TϕΓ∞(M ← B). We stress that repeated indices

denote summation of vector components as usual with Einstein notation.

2In adherence to standard classical field theory, we use real functionals, which makes in-

volution a trivial operation; we remark though that one could repeat mutatis mutandis

everything with R replaced by C; then, involution becomes F ∗(ϕ)
.
= F (ϕ) ∈ C and the

algebraic content is that of a ∗-algebra with unity.
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When F is smooth, the condition of Definition 3.3 is independent from
the chart we use to evaluate the B differential: Suppose we take charts (Uϕ, uϕ),
(Uψ, uψ) with ϕ ∈ Uψ, then by Faà di Bruno’s formula

djFψ[uψ(ϕ)]( �X1, . . . , �Xj)

=
∑

π∈P ({1,...,j})

F |π|
ϕ [0]

(

d|I1|uϕψ[uψ(ϕ)]

(
⊗

i∈I1

�Xi

)

, . . . ,

d|I|π||uϕψ[uψ(ϕ)]

⎛

⎝
⊗

i′∈I|π|

�Xi′

⎞

⎠

⎞

⎠ ,
(15)

where π is a partition of {1, . . . , j} into |π| smaller subsets I1, . . . , I|π| and
we denote by uϕψ the transition function uϕ ◦ u−1

ψ . We immediately see that
the right-hand side is Bastiani smooth by the smoothness of the transition
function, and therefore, the left-hand side ought to be Bastiani smooth as well.
Incidentally, the same kind of reasoning shows Definition 3.3 is independent
from the ultralocal atlas used for practical calculations.

Although this is enough to ensure Bastiani differentiability, in the sequel
we shall introduce a connection on the bundle TΓ∞(M ← B) → Γ∞(M ←
B) so that (15) can be written as an equivalence between two single terms
involving the covariant derivatives. In particular, as explained in (91) and
(92), we will choose a smooth connection Γ on the typical fiber F of the
bundle B, the latter will induce a linear connection ϕ∗Γ on the vector bundle
M ← ϕ∗V B, and, in turn, a connection on TΓ∞(M ← B)

Γϕ : Γ∞
c (M ← ϕ∗V B)× Γ∞

c (M ← ϕ∗V B)→ Γ∞
c (M ← ϕ∗V B)

( �Xϕ, �Yϕ) �→ Γϕ( �Xϕ, �Yϕ),

Γϕ( �X, �Y )(x) = Γ(ϕ(x))i
jk

�Xj
ϕ(x) �Y k

ϕ (x)∂i

∣∣
ϕ(x)

; (16)

where �Xj∂j

∣∣
ϕ
, �Y k

ϕ ∂k

∣∣
ϕ

are the expressions in local coordinates of �Xϕ, �Yϕ ∈
Γ∞

c (M ← ϕ∗V B). Armed with (16) we can define the notion of covariant
differential recursively setting

∇1Fϕ[0]( �X) .= dFϕ( �X),

∇nFϕ[0]( �X1, . . . , �Xn) .= F (n)
ϕ ( �X1, . . . , �Xn)

+
n∑

j=1

1
n!

∑

σ∈P(n)

∇n−1Fϕ(Γϕ

(
�Xσ(j), �Xσ(n)), �Xσ(1), . . . , �̂Xσ(j), . . . �Xσ(n−1)

)
,

(17)

where P(n) denotes the set of permutations of n elements. In this way, we
can intrinsically extend properties of iterated derivatives, which are ultralocal
chart dependent, to the whole manifold. The price we pay is that, a priori, the
property might depend on the connection chosen.

Lemma 3.4. Let U be a CO-open subset such that for all ϕ ∈ Γ∞(M ← B),
uϕ(U ∩ Uϕ) is convex. If F : U → R a differentiable functional of order one,
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then

supp(F ) =
⋃

ϕ∈U
supp

(
F

(1)
ϕ [0]

)
.

Proof. Suppose that x ∈ supp(F ), then for all open neighborhoods V of x there
is ϕ ∈ U and �Xϕ ∈ Γ∞

c (M ← ϕ∗V B) with supp( �X) ⊂ V having Fϕ( �Xϕ) �=
Fϕ(0), using the convexity of uϕ(U ∩ Uϕ) and the fundamental theorem of
calculus we obtain

Fϕ( �Xϕ)− Fϕ(0) =
∫ 1

0

F (1)
ϕ [λ �Xϕ]( �Xϕ)dλ �= 0.

Thus, there is some λ0 ∈ (0, 1) for which the integrand is not zero; setting
ψ = u−1

ϕ (λ0
�Xϕ), we obtain

dFψ[0]
(
d1uϕψ[λ0

�Xϕ]( �Xϕ)
)
�= 0.

On the other hand, if x ∈ supp
(
F

(1)
ϕ [0]

)
for some ϕ ∈ U , then there is

�Xϕ ∈ Γ∞
c (M ← ϕ∗V B) having �Xϕ(x) �= �0 for which dFϕ[0]( �Xϕ) �= 0, as a

result, choosing ε small enough,

Fϕ(ε �Xϕ) = Fϕ(0) +
∫ ε

0

F (1)
ϕ [λ �Xϕ]( �Xϕ)dλ �= Fϕ(0).

�

Definition 3.5. Let U be CO-open. We select the following classes of Fc(B,U).
(i) Regular Functionals: the subset of functionals F ∈ Fc(B,U) such that

for each ϕ ∈ U , the integral kernel

∇kFϕ[0]( �X1, . . . , �Xk) =
∫

Mk

∇kfϕ[0](x1, . . . , xk) �X1(x1) · · ·
�Xk(xk)dμg(x1, . . . , xk)

associated with ∇kFϕ[0], has ∇kfϕ[0] ∈ Γ∞
c

(
Mk ← �k

(
ϕ∗V B′)); we

denote this set by Freg(B,U).
(ii) Local Functionals: the subset of functionals F ∈ Fc(B,U) such that for

each ϕ ∈ U , supp
(∇2Fϕ[0]

) ⊂ �2(M) = {(x, x) ∈ M ×M}; we denote
this set by Floc(B,U).

(iii) Microlocal Functionals: the subset of functionals F ∈ Floc(B,U) such
that the integral kernel associated with ∇1Fϕ[0] ≡ dFϕ[0] has f

(1)
ϕ [0] ∈

Γ∞(
M ← (ϕ∗V B)′) for each ϕ ∈ U ; we denote this set by Fμloc(B,U).

Using the Schwartz kernel theorem, we can equivalently define microlo-
cal functionals by requiring {F ∈ Floc(B,U) : WF

(
F

(1)
ϕ [0]

)
= ∅ ∀ϕ ∈ U}.

Other authors also add further requirements: For example, in [6] microlo-
cal functionals have the additional property that given any ϕ ∈ U there
exists an open neighborhood V � ϕ in which f

(1)
ϕ′ [0] ∈ Γ∞ (M ← (ϕ∗V B)′)

depends on the kth-order jet of ϕ′ for all ϕ′ ∈ V and some k ∈ N. We
choose to give a somewhat more general description which, however, will
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turn out to be almost equivalent by Proposition 3.13. Finally, we stress that
the definition of local functionals together with Lemma 3.4 shows that that
supp

(∇kFϕ[0]
) ⊂ Δk(M) ≡ {(x, . . . , x) ∈Mk : x ∈M} for each k ∈ N.

As remarked earlier, writing differentials with a connection does yield a
definition which is independent from the ultralocal chart chosen to perform
the calculations; however, we have to check that Definition 3.5 is independent
from the chosen connection.

Lemma 3.6. Suppose that Φ, Φ̂ are two connections on TΓ∞(M ← B) accord-
ing to (91). Then, the definition of regular (resp. local, microlocal) functionals
does not depend on the chosen connection.

Proof. Denote by ∇, ∇̂ the covariant derivatives induced by Φ, Φ̂, respectively.
If F ∈ Fc(B,U) is local with respect to the second connection,

(
∇2Fϕ − ∇̂2Fϕ

)
[0]( �X1, �X2) = dFϕ[0]

(
Γϕ( �X1, �X2)− Γ̂ϕ( �X1, �X2)

)
.

Due to linearity of the connection in both arguments, when the two sections
�X1, �X2 have disjoint support, the resulting vector field is identically zero, so
that by linearity of dFϕ[0](·) the expression is zero and locality is preserved.
Moreover, since ∇1Fϕ[0] ≡ dFϕ[0], we immediately obtain that microlocality
is independent as well. Regular functionals do not depend on the connection
used to perform calculations either: This is easily seen by induction. The case
k = 1 is trivial; for arbitrary k one simply notes that

(
∇kFϕ − ∇̂kFϕ

)
[0](. . .)

depends on terms of order l ≤ k−1 and applies the induction hypothesis. �
We stress that in particular cases, such as when B = M×R, TC∞(M) �

C∞(M)×C∞
c (M), we are allowed to choose a trivial connection, in which case

the differential and the covariant derivative coincide. It is also possible to for-
mulate Definition 3.5 in terms of differentials instead of covariant derivatives,
and then, the above arguments can be used backward to show that regular
and local functionals are intrinsic.

If we go back to the examples of functionals given earlier, we find that (7)
does not belong to any class, while (9) is a regular functional that, however,
fails to be local. If D ⊂ M is a compact subset and χD its characteristic
function, then

ϕ �→ LχD,λ(ϕ) .=
∫

M

χD(x)λ(jrϕ)(x)dμg(x).

is a local functional which, however, is not microlocal due to the possible
singularities localized in the boundary of D. Finally, we claim that (8) is a
microlocal functional. To see it, let us consider a particular example where
r = 1,

Lf,λ(ϕ) =
∫

M

f · j1ϕ∗λ =
∫

M

f(x)λ(j1ϕ)(x)dμg(x)

taking the first derivative and integrating by parts yield

dLf,λ,ϕ[0]( �Xϕ) =
∫

M

f(x)
{

∂λ

∂yi
− dμ

(
∂λ

∂yi
μ

)}
(x)Xi

ϕ(x)dμg(x), (18)
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and setting

λ
(1)
f,ϕ[0](x) .= f(x)

{
∂λ

∂yi
− dμ

(
∂λ

∂yi
μ

)}
(x)dyi ∧ dμg(x), (19)

we see that the integral kernel of the first derivative in ϕ of (8), λ
(1)
f,ϕ[0], belongs

to Γ∞ (M ← ϕ∗V B′ ⊗ Λm(M)). For generic orders r �= 1, multiple integration
by parts will yield the desired result; for details on those calculations, see [19,
Chapter 6]. This last example is important because it shows that functionals
obtained by integration of pullbacks of m-forms λ are microlocal. One could
ask whether the converse can hold, i.e., if all microlocal functionals have this
form; this matter will be further analyzed in Proposition 3.13.

Definition 3.7. Let U be CO-open, a functional F ∈ Fc(B,U) is called:
(i) ϕ0-additive if for all ϕ1, ϕ−1 ∈ Uϕ0∩U having suppϕ0

(ϕ1)∩suppϕ0
(ϕ−1) =

∅, setting �Xj = uϕ0(ϕj), j = 1,−1, we have2

Fϕ0( �X1+ �X−1) = Fϕ0( �X1)− Fϕ0(0) + Fϕ0( �X−1). (20)

(ii) additive if for all ϕj ∈ U , j = 1, 0,−1, with suppϕ0
(ϕ1)∩ suppϕ0

(ϕ−1) =
∅, setting

ϕ =

{
ϕ1 in suppϕ0

(ϕ−1)c

ϕ−1 in suppϕ0
(ϕ1)c

we have

F (ϕ) = F (ϕ1) + F (ϕ0)− F (ϕ−1). (21)

We remark that (ii) is equivalent to the definition of additivity present
in [8]. Before the proof of the equivalence of those two relations, we prove a
technical lemma.

Lemma 3.8. Let ϕ1, ϕ0, ϕ−1 ∈ Γ∞(M ← B) have suppϕ0
(ϕ1)∩suppϕ0

(ϕ−1) =
∅, then there exist n ∈ N, a finite family of sections

{
ϕ(k,l)

}
k,l∈{1,...,n} (22)

for which the following conditions holds:
(a) For each k, l ∈ N

{
ϕ(k−1,l−1), ϕ(k,l−1), ϕ(k−1,l), ϕ(k+1,l), ϕ(k,l+1), ϕ(k+1,l+1)

} ∈ Uϕ(k,l) ,

(23)

(b) Moreover, for each k, l ∈ N we can define elements �Xk, �Yl ∈ Γ∞
c (M ←

·∗V B), where

�Xk
.= ẽxp−1

ϕ(k−1,l)

(
ϕ(k,l)

)
, (24)

2For (20) to be defined, one should additionally require �X1 + �X−1 ∈ uϕ0 (Uϕ0 ∩ U). This
can be done, e.g., by restriction of the chart open convex uϕ0 (Uϕ0 ) ⊂ Γ∞

c (M ← ϕ∗V B) to

a subset uϕ0 (Wϕ0 ) which exists by continuity of the additivity in topological vector spaces

and satisfies uϕ0 (Wϕ0 ) + uϕ0 (Wϕ0 ) ⊂ uϕ0 (Uϕ0 ).
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�Yl
.= ẽxp−1

ϕ(k,l−1)

(
ϕ(k,l)

)
; (25)

whose exponential flows generate all the above sections:

ϕ1 = ẽxp
( �Xn

) ◦ · · · ◦ ẽxp
( �X1

) ◦ ϕ0 ≡ ϕ(n,0);

ϕ−1 = ẽxp
( �Yn

) ◦ · · · ◦ ẽxp
( �Y1

) ◦ ϕ0 ≡ ϕ(0,n);

and

ϕ = ẽxp
( �Xn

) ◦ · · · ◦ ẽxp
( �X1

) ◦ ẽxp
( �Yn

) ◦ · · · ◦ ẽxp
( �Y1

) ◦ ϕ0.

Proof. We are considering ϕ0 as a background section, and then, application
of a number of exponential flows of the above fields will generate new sections
interpolating between ϕ0 and ϕ,ϕ1, ϕ−1, such that each section in the inter-
polation procedure has the adjacent sections in the same chart as described
in (23). For a pair of generic sections, this is not trivial; however, due to the
requirement of mutual compact support between sections, our case is special.
Due to the relative compact support of ϕ1, ϕ−1 with respect to ϕ0, let K
be any compact containing the compact subsets suppϕ0

(ϕ1), suppϕ0
(ϕ−1).

Since B is itself a paracompact manifold, it admits an exhaustion by compact
subsets and a Riemannian metric compatible with the fibered structure. The
exponential mapping exp of this metric will have a positive injective radius
throughout any compact subset of B. Thus, let H be any compact subset of
B containing the bounded subset

{
b ∈ π−1(K) ⊂ B : sup

x∈K
d(ϕ0(x), b)

< 2max
(

sup
x∈K

d(ϕ0(x), ϕ1(x)), sup
x∈K

d(ϕ0(x), ϕ−1(x))
)}

,

where d is the distance induced by the metric chosen. Let δ > 0 be the injective
radius of the metric on the compact H. If r = max

(
supx∈K d(ϕ0(x), ϕ1(x)),

supx∈K d(ϕ0(x), ϕ−1(x))
)
, there will be some finite n ∈ N such that nδ < r <

(n + 1)δ, and thus, we can select a finite family of sections
{
ϕ(k,l)

}
k,l=1,...,n

interpolating between ϕ0 = ϕ(0,0) and ϕ1 = ϕ(n,0), ϕ−1 = ϕ(0,n), ϕ = ϕ(n,n)

such that

(|k − k′| − 1)
δ

2
+ (|l − l′| − 1)

δ

2
< sup

x∈K
d
(
ϕ(k,l)(x), ϕ(k′,l′)(x)

)

< (|k − k′|)δ

2
+ (|l − l′|)δ

2
,

This property ensures that we are interpolating in the right direction; that
is, as k (resp. l) grows, new sections are nearer to ϕ1 (resp. ϕ−1) and further
away from ϕ0. Eventually modifying exp to ẽxp as done in (90), set

�X(k,l)
.= ẽxp−1

ϕ(k−1,l)

(
ϕ(k,l)

)
,

�Y(k,l)
.= ẽxp−1

ϕ(k,l−1)

(
ϕ(k,l)

)
.

We claim that those are the vector fields interpolating between sections. They
are always well defined because, by construction, we choose adjacent sections
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to be separated by a distance where ẽxp is still a diffeomorphism. Due to the
mutual disjoint support of ϕ1 and ϕ−1, we can identify �X(k,l) (resp. �Y(k,l))
with each other �X(k,l′) (resp. �Y(k′,l)) for all ≤ l, l′ ≤ n (resp. ≤ k, k′ ≤ n);
therefore, it is justified to use one index to denote the vector fields as done in
(24) and (25). Moreover, for each k, l ∈ N, we have

ẽxp
( �Xk

) ◦ ẽxp
( �Yl

)
= ẽxp

( �Yl

) ◦ ẽxp
( �Xk

)
;

which provides a uniquely defined section ϕ. �

Proposition 3.9. Let F ∈ Fc(B,U), then the following statements are equiva-
lent:

(i) F is additive;
(ii) F is ϕ0-additive for all ϕ0 ∈ U ;
(iii) F ∈ Floc(B,U).

Proof. Let us start proving the equivalence between (i) and (ii).
(i)⇒ (ii) If ϕj ∈ U ∩ Uϕ0 with j = 1, 0,−1 are as in (ii) above, take �Xj

such that u−1
ϕ0

( �Xj) = ϕj . Writing (21) in terms of Fϕ0 yields (20).
(ii)⇒ (i) Let us take sections ϕj with j = 1, 0,−1 such that suppϕ0

(ϕ1)∩
suppϕ0

(ϕ−1) = ∅, combining Lemma 3.8 with ϕ-additivity for each section
yields

F (ϕ) = Fϕ(n−1,n−1)

( �Xn + �Yn

)

= Fϕ(n−1,n−1)

( �Xn

)
+ Fϕ(n−1,n−1)

( �Yn

)− Fϕ(n−1,n−1)(0)

= F
(
ϕ(n,n−2)

)
+ F

(
ϕ(n−1,n−1)

)− F
(
ϕ(n−1,n−2)

)

+ F
(
ϕ(n−2,n)

)
+ F

(
ϕ(n−1,n−1)

)− F
(
ϕ(n−2,n−1)

)− F
(
ϕ(n−1,n−1)

)

= F
(
ϕ(n,n−2)

)− F
(
ϕ(n−1,n−2)

)
+ F

(
ϕ(n−2,n)

)
+ F

(
ϕ(n−2,n−1)

)

+ F
(
ϕ(n−1,n−2)

)− F
(
ϕ(n−2,n−2)

)− F
(
ϕ(n−2,n−1)

)

= F
(
ϕ(n,n−2)

)
+ F

(
ϕ(n−2,n)

)− F
(
ϕ(n−2,n−2)

)
.

Repeating the above argument an extra n− 2 times, we arrive at

F (ϕ) = F
(
ϕ(n,0)

)
+ F

(
ϕ(0,n)

)− F
(
ϕ(0,0)

) ≡ F (ϕ1) + F (ϕ−1)− F (ϕ0).

We conclude proving that (ii) and (iii) are equivalent.
(iii) ⇒ (ii) Take ϕj , �Xj

.= uϕ0(ϕj), with j = 1, 0,−1 as in (i) Defini-
tion 3.7. Then,

Fϕ0( �X1 + �X−1)− Fϕ0( �X1) + Fϕ0(0)− Fϕ0( �X−1)

=
∫ 1

0

d
dt

(
Fϕ0( �X1 + t �X−1)− Fϕ0(t �X−1)

)
dt

=
∫ 1

0

d
dt

(∫ 1

0

d
dh

Fϕ0(h �X1 + t �X−1)dh

)
dt

=
∫ 1

0

∫ 1

0

d2Fϕ0[h �X1 + t �X−1]( �X1, �X−1)dhdt.
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By locality, we have that supp
(
d2Fϕ0

) ⊂ �2M ; however, supp( �X1)∩supp( �X−1)
= ∅ implying that the integrand on the right-hand side of the above equation
is identically zero.

(ii) ⇒ (iii) Fix any ϕ0 ∈ U , consider two vector fields �X1, �X−1 ∈
Γ∞(

M ← ϕ∗
0V B

)
such that supp( �X1) ∩ supp( �X−1) = ∅. Additionally, let

ϕj
.= u−1

ϕ0
( �Xj) for j = 1,−1. As a result, suppϕ(ϕ1) ∩ suppϕ(ϕ−1) = ∅. By

direct computation, we get

F (2)
ϕ0

[0]( �X1, �X−1) =
d2

dt1dt2

∣∣∣∣
t1=t2=0

Fϕ0(t1 �X1 + t2 �X−1)

=
d2

dt1dt2

∣
∣∣∣
t1=t2=0

(
Fϕ0(t1 �X1)− Fϕ0(0) + Fϕ0(t2 �X−1)

)
≡ 0.

�
As a result, we have shown that locality and additivity are consistent

concepts in a broader generality than done in [9]. Of course, additivity strongly
relates to Bogoliubov’s formula for S-matrices, and therefore, we expect that
as long as we can formulate different concepts consistently, those must be
equivalent formulations. We also mention that when the exponential map used
to construct ultralocal charts is a global diffeomorphism, then additivity and
ϕ additivity become trivially equivalent since the chart can be enlarged to
Vϕ ≡ {ψ ∈ Γ∞(M ← B) : suppϕ(ψ) ⊂M is compact}.
Remark 3.10. The ultralocal notion of additivity, i.e., (i) in Definition 3.7,
is independent from the ultralocal chart: Suppose that F is ϕ0-additive in
{Uϕ0 , uϕ0}, take another chart {U ′

ϕ0
, u′

ϕ0
} such that U ′

ϕ0
∩ Uϕ �= ∅, set �Xj =

uϕ0(ϕj), �Yj = u′
ϕ0

(ϕj), for j = 1,−1, we have3

F ◦ u′−1
ϕ0

( �Y1 + �Y−1) = F ◦ u−1
ϕ0
◦ uϕ0 ◦ u′−1

ϕ0
( �Y1 + �Y−1) = F ◦ u−1

ϕ0
( �X1 + �X−1)

= F ◦ u−1
ϕ0

( �X1)− F ◦ u−1
ϕ0

(0) + F ◦ u−1
ϕ0

( �X−1)

= F ◦ u′−1
ϕ0

( �Y1)− F ◦ u′−1
ϕ0

(0) + F ◦ u′−1
ϕ0

( �Y−1)

where uϕ0 ◦ u′−1
ϕ0

( �Y1 + �Y−1) = �X1 + �X−1 is due to the fact that the two vector
fields have mutually disjoint supports. We then see that ϕ0-additivity does not
depend upon the chosen chart.

Remark 3.11. Functionals are generally defined in CO-open subsets instead
of more general Whitney open sets since we can always extend them from
WO∞-open domains to a CO-open subsets. To wit, suppose F : U → R is a
smooth functional with compact spacetime support, then consider the function
χ ∈ C∞

c (M) having 0 ≤ χ ≤ 1, χ ≡ 1 inside K ⊃ supp(F ) and, given any
ϕ0 ∈ U , define

iχ,ϕ0 : Γ∞(M ← B)→ Vϕ0 , ψ̃ �→ ψ. (26)

3In the subsequent calculations, we can assume, without loss of generality, that �Y1 + �Y−1 ∈
u′

ϕ0
(U ′

ϕ0
), for if this is not the case we can use an argument involving Lemma 3.8 to make

this expression meaningful.
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The mapping can be constructed using with Lemma 3.8: Starting with ϕ0, we
can modify the latter inside K so that ẽxp( �Xn) ◦ · · · ◦ ẽxp( �X1)ϕ0|K = ψ̃|K ,
then setting ψ = ẽxp(χ �Xn) ◦ · · · ◦ ẽxp(χ �X1)ϕ0, we have that ψ = ψ̃ inside
supp(F ), ψ = ϕ0 outside K. iχ,ϕ0 is a continuous and smooth mapping, and
when U is a WO∞ open neighborhood of ϕ0, i−1

χ,,ϕ0
(U) is a CO-open. Then,

we can seamlessly extend the functional F to F̃ : Ũ ≡ ∪ϕ0∈U i−1
χ,ϕ0

(U) → R.
The functional will remain smooth, and all its derivatives will not be affected
by the cutoff function χ.

We now give the characterization of microlocality; we will find that, con-
trary to additivity, the latter representation will be limited to a chart domain,
in the sense that the functional can be represented as an integral provided
we shrink its domain to a chart, and this representation, however, will not be
independent from the chosen chart.

We recall that a mapping T : U ⊂ X → Y between locally convex spaces
is locally bornological if for any x ∈ X there is a neighborhood V � x contained
in U such that T |V maps bounded subsets of V into bounded subsets of Y .
From this definition, it follows a technical result:

Lemma 3.12. Let U ⊂ Γ∞(M ← B) be CO-open, then a smooth, spacetime
compactly supported functional F satisfies: dF : Uϕ → Γ∞

c (M ← ϕ∗V B′ ⊗
Λm(M)) is Bastiani smooth if and only if it is locally bornological.

Sketch of a proof. The proof of this result when B = M × R can be found in
[9, Lemma 2.6]. Since we are allowing for a bit more generality (i.e., we are
considering distributional sections of the bundle ϕ∗V B → M), we will just
highlight the minor changes to the argument presented in the aforementioned
Lemma 2.6. From Bastiani smoothness of F , we can see F (1) as a Bastiani
smooth mapping Uϕ → Γ−∞

c (M ← ϕ∗V B); combining the support property
of F with the fact that it is microlocal, we obtain that F (1) can be viewed as
a mapping T : Uϕ → Γ∞

K (M ← ϕ∗V B ⊗ Λm(M)) for some compact subset K
of M . To prove the lemma, it is enough to show that T is Bastiani smooth
if and only if it is locally bornological. Necessity follows from the fact that
composing T with (Bastiani smooth) chart mappings yields a Bastiani smooth,
hence continuous, mapping Γ∞

c (M ← ϕ∗V B)→ Γ∞
K (M ← ϕ∗V B ⊗ Λm(M)).

Both spaces are semi-Montel, i.e., every bounded subset is relatively compact.
Thus, let W ⊂ W ⊂ V ⊂ uϕ(Uϕ), with W bounded, then T (W ) is compact,
hence bounded, due to continuity of F . As a result T |V is locally bornological.
The sufficiency condition is guaranteed if,
• given any compact subset K ⊂ M and a finite cover of K of the form

ψ−1
α (Q) where Q ⊂ R

n is the open m-cube and ψα are the charts of M ;
• given any partition of unity fα of the above cover, the induced conve-

niently smooth4 mappings Tα : Uϕ → E ′(Q;V
)
, ϕ �→ (ψα)∗

(
fαT (ϕ)

)
,

where V � R
d is the typical fiber of the bundle ϕ∗V B′ ⊗ Λm(M)→M ,

4We recall, as in [35, Definition 3.6], that a mapping is conveniently smooth if it maps
smooth curves in Uϕ to smooth curves of D(

E|Q
)
.
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can be equivalently seen as conveniently smooth mappings Tα : Uϕ →
D(Q;V

)
.

By hypothesis, we know that Tα : Uϕ → D
(
Q;V

)
is locally bornological,

to complete the proof we note that each projection mapping πi : V → R, i =
1, . . . , n, induces continuous and also bounded mappings (πi)∗ : D(Q;V

) →
D(Q). Thus, by claims (i), (ii) in the proof of Lemma 2.6 in [9], each (πi)∗Tα :
Uϕ → D(Q), which remains locally bornological, maps smooth curves of Uϕ

to smooth curves of D(Q) implying that Tα : Uϕ → D
(
Q;V

)
is convenient

smooth as well for any α. �

Proposition 3.13. Let U ⊂ Γ∞(M ← B) be CO-open and F ∈ Fμloc(B,U) ,
then f (1) : U ⊂ Γ∞(M ← B) � ϕ �→ f

(1)
ϕ [0] ∈ Γ∞

c (M ← ϕ∗V B′ ⊗ Λm(M)) is
locally bornological if and only if for each Uϕ0 ⊂ U there is a m-form λF,ϕ0 ≡
λF,0 with λF,0(j∞ϕ) having compact support for all ϕ ∈ Uϕ0 such that

F (ϕ) = F (ϕ0) +
∫

M

(jr
xϕ)∗λF,0. (27)

Proof. Suppose F (ϕ) = F (ϕ0) +
∫

M
(jrϕ)∗λF,0 for all ϕ ∈ Uϕ0 , we evaluate

dFϕ[0] and find that its integral kernel may always be recast in the form

f (1)
ϕ [0](x) = ei[λ, ϕ0](j2r

x ϕ)dyi ⊗ dμg(x)

where ei[λ, F, ϕ0]dyi ⊗ dμg : Γ∞(M ← B)→ Γ∞
c (M ← ϕ∗V B′ ⊗ Λm(M)) are

the Euler–Lagrange equations associated with λF,ϕ0 evaluated at some field
configuration. Using the ultralocal differential structure of the source space,
and keeping in mind that ei[λ, F ] : Uϕ0 → Γ∞

c (M ← ϕ∗V B′ ⊗ Λm(M)) is an
operator of bounded order, we can apply Theorem B.14 and by Lemma 3.12
to get that f (1) is locally bornological.

Conversely suppose that f (1) is locally bornological, by Lemma 3.12 it is
Bastiani smooth as a mapping as well. Fix ϕ0 ∈ U and call �X = uϕ0(ϕ), by
microlocality combined with Schwartz kernel theorem,

F (ϕ)− F (ϕ0) = Fϕ0( �X)− Fϕ0(0)

=
∫ 1

0

dFϕ0 [t �X]( �X)dt =
∫ 1

0

dt

∫

M

f (1)
ϕ0

[t �X]( �X).

Applying the Fubini–Tonelli theorem to exchange the integrals in the above re-
lation yields our candidate for jrϕ∗λF,0: the m-form x �→ θ[ϕ](x) ≡ ∫ 1

0
f

(1)
ϕ0 [t �X]

( �X)(x)dt. We have to show that this element depends at most on jr
xϕ. Notice

that, a priori, θ[ϕ](x) might not depend on jr
xϕ, however, we can say that if

ϕ1, ϕ2 possess the same germ at x ∈M , then θ[ϕ1]|V = θ[ϕ2]|V for a suitably
small neighborhood V of x. To see this, set �X1 = uϕ0(ϕ1), �X2 = uϕ0(ϕ2), by
ultralocality of the charts, they agree in a suitably small neighborhood V ′ ⊂ V
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of x; moreover,

θ[ϕ1](x)− θ[ϕ2](x) =
∫ 1

0

dt
(
f (1)

ϕ0
[t �X1]( �X1)(x)− f (1)

ϕ0
[t �X2]( �X2)(x)

)

=
∫ 1

0

dt
(
f (1)

ϕ0
[t �X1]i(x) �Xi

1(x)− f (1)
ϕ0

[t �X2]i(x) �Xi
2(x)

)

=
∫ 1

0

dt

∫ 1

0

dhf (2)
ϕ0

[t �X2 + th �X1

− th �X2]ij(x)(t �X1 − t �X2)i(x) �Xj
1(x);

where in the last equality we used locality of F and linearity of the de-
rivative. The last line of the above equation identically vanishes in V ′ due
the support properties of f

(2)
ϕ0 and the fact that �X1|V ′ = �X2|V ′ . Therefore,

θ[ϕ](x) ∈ ϕ∗V B′ ⊗ Λm(M) depends at most on germx(ϕ).
We wish to apply Peetre–Slovak’s theorem to θ; the germ dependence

hypothesis has been verified above, so one has to show that θ is also weakly
regular; that is, if R × M � (t, x) �→ ϕt(x) ∈ B is compactly supported
variation, then (t, x) �→ θ[ϕt](x) is again a compactly supported variation. θ is
a compactly supported form, and thus, it maps compactly supported variations
into compactly supported variations. Moreover, it is Bastiani smooth since

ϕ �→ F (ϕ0) +
∫

M

θ[ϕ]dμg(x) = F (ϕ)

is an observable. Then, we can conclude by Lemma C.3.
Finally, applying the Peetre–Slovak we deduce that for each neighborhood

of x there exists r = r(x, ϕ0) ∈ N, an open neighborhood Ur ⊂ JrB of jrϕ0

and a mapping λF,0 : JrB ⊃ Ur → Γ∞
c (M ← ϕ∗

0V B′ ⊗ Λm(M)) such that
λF,0(jr

xϕ) = θ[ϕ](x) for each ϕ with jrϕ ∈ Ur. Due to compactness of supp(θ),
we can take the order r to be independent from the point x on M ; then

F (ϕ) = F (ϕ0) +
∫

M

λF,0(jr
xϕ).

�

Remark 3.14. One could also strengthen the hypothesis of Proposition 3.13;
for example, by requiring that for every k ∈ N, R > 0 and every ϕ0 ∈ U ,
whenever

sup
x∈K
j≤k

∣∣∣∇j
(
uϕ0(ϕ1)− uϕ0(ϕ2)

)
(x)

∣∣∣ ≡
∣∣∣∣uϕ0(ϕ1)− uϕ0(ϕ2)

∣∣∣∣
K,k+r

< R,

there exists a positive constant C for which
∣
∣
∣
∣f (1)

ϕ0
[ϕ1]− f (1)

ϕ0
[ϕ2]

∣
∣
∣
∣
K,k
≤ C

∣
∣
∣
∣uϕ0(ϕ1)− uϕ0(ϕ2)

∣
∣
∣
∣
K,k+r

. (28)

This condition implies that f (1) is locally bornological; moreover, it is sufficient
(see Lemma 1 together with (B) of Theorem 1 in [47]) to imply that the order
r from Proposition 3.13 is independent from the section ϕ and thus globally
constant.
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As mentioned above, this characterization is limited to the ultralocal
chart chosen: Given charts {Uϕj

, uϕj
}, j = 1, 2 such that ϕ ∈ Uϕ1 ∩ Uϕ2 , let

�Xj = uϕj
(ϕ) and suppose F satisfies the hypothesis of Proposition 3.13, then

according to (27)

F (ϕ) = F (ϕ1) +
∫

M

(jr1ϕ)∗λF,1 = F (ϕ2) +
∫

M

(jr2ϕ)∗λF,2.

Assuming r1 = r2 ≡ r and using the same argument as in the proof of Propo-
sition 3.13,

(jrϕ)∗λF,1(x) =
∫ 1

0

f (1)
ϕ1

[t �X1]
( �X1

)
(x)dt

=
∫ 1

0

f (1)
ϕ2

[uϕ1ϕ2(t �X1)]
(
uϕ1ϕ2( �X1)

)
(x)dt

=
∫ 1

0

f (1)
ϕ2

[uϕ1ϕ2(t �X1)]
( �X2

)
(x)dt,

whereas

(jrϕ)∗λF,2(x) =
∫ 1

0

f (1)
ϕ2

[t �X2]
( �X2

)
(x)dt,

we therefore see that the lack of linearity of the transition mapping uϕ1ϕ2 ,
namely uϕ1ϕ2(t �X1) �= tuϕ1ϕ2( �X1) = t �X2, does not allow us to conclude
(j∞ϕ)∗λF,1(x) = (j∞ϕ)∗λF,2(x).

Remark 3.15. We give another argument that prevents the characterization in
Proposition 3.13 from being intrinsic. This relies on the variational sequence5:
a cohomological sequence of forms over JrB for some finite r ∈ N

0 R Ω1(JrB)/ ∼ . . . Ωm(JrB)/ ∼

Ωm+1(JrB)/ ∼ Ωm+2
h (B)/ ∼ . . . ΩN (B) 0,

E0 E1

Em

Em+1 EN

where each element of the sequence is the quotient of the space of p-forms in
JrB modulo some relation that cancel the exact forms (in the sense of the
de Rham differential on the manifold JrB) and accounts for integration by
parts when the order is greater then m = dim(M). In particular, the mth
differential Em is the operator which, given a horizontal m-form, calculates
its Euler–Lagrange form and the (m + 1)th differential Em+1 is the operator
which associates with each Euler–Lagrange form its Helmholtz–Sonin form.
By the Poincaré lemma, if σ ∈ ker(Em+1), there exists a local chart (V r, ψr)
in JrB and a horizontal m-form λ ∈ Ωm(V r) having Em|V r (λ) = σ|V r . Es-
tablishing whether this condition holds globally amounts to determine, given
some Euler–Lagrange equations satisfying certain conditions (the associated
Helmholtz–Sonin form vanishes), whether they arise from the variation of some
Lagrangian. The variational sequence implies that a sufficient condition is the

5A complete exposition can be found in, e.g., [36].
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vanishing of the m-th cohomology group, i.e., whenever topological obstruc-
tions are not present.

Now, if Proposition 3.13 could somehow reproduce (27) for each ϕ ∈ U
with an integral over the same m-form λF , we would have found a way to cir-
cumvent the topological obstructions that ruin the exactness of the variational
sequence. Furthermore, in the derivation of λF,0 we did not even require that
the associated Euler–Lagrange equations had vanishing Helmholtz–Sonin form,
but instead a Bastiani smoothness requirement that, due to Proposition B.14,
will always be met by integral functionals constructed from smooth geomet-
ric objects. It appears therefore that the two approaches bear some kind of
duality: Given a representative F

(1)
ϕ [0] ∈ Ωm+1(JrB)/∼, one can, on the one

hand, get a ultralocal chart dependent Lagrangian via Proposition 3.13, i.e., a
global m-form on the bundle JrB which, however, describe the functional only
when evaluated in a small neighborhood of a background section ϕ0; on the
other hand, prioritize ultralocal chart independence, therefore having a local
m-form defined on the bundle Jr(π−1U) for some open subset U of M , which,
however, describes the functional for all sections of Γ∞(U ← π−1(U)).

Proposition 3.16. Let U ⊂ Γ∞(M ← B) be CO-open, F ∈ Fμloc(B,U) satis-
fying the hypothesis of Proposition 3.13 and the bound (28). Fix ϕ ∈ Uϕ0 and
suppose that

F (ϕ) = F (ϕ0) +
∫

M

(jrϕ)∗λF,0 = F (ϕ0) +
∫

M

(jrϕ)∗λ′
F,0,

then λF,0 − λ′
F,0 = dhθ for some θ ∈ Ωm−1

hor (JrB) if and only if the m-th de
Rham cohomology group Hm

dR(B) = 0. In particular, the above condition is
verified whenever B is a vector bundle with finite-dimensional fiber and M is
orientable non-compact and connected.

Proof. Using the notation introduced above for the variational sequence, we
have that Em(λF,0) = f

(1)
ϕ0 [0] = Em(λ′

F,0); thus, their difference is zero and
λf,ψ−λ′

f,ψ ∈ Ωm(JrB)/ ∼. The latter cohomology group is isomorphic; by the
abstract de Rham theorem, to Hm

dR(B), therefore λF,0−λ′
F,0 = dhθ if and only

if Hm
dR(B) = 0. When B is a vector bundle over M its de Rham cohomology

groups are isomorphic to those of M . Finally, if M is orientable, non-compact
and connected, it has Hm

dR(M) = 0. The latter claim can be established using
Poincaré duality, i.e., Hm

dR(M) � H0
dR,c(M). If M is non-compact and con-

nected, e.g., when it is globally hyperbolic, there are no compactly supported
functions with vanishing differential other than the zero function, so the m-th
cohomology group is zero. �

We shall conclude this section by introducing generalized Lagrangians,
which, as the name suggests, will be used to select a dynamic on Γ∞(M ← B).
We stress that unlike the usual notion of Lagrangian—either a horizontal m-
form over JrB or a morphism JrB → Λm(M)—this definition will allow us to
evaluate the action functional as an integral over the whole manifold (instead
of a compact subset) as well as avoid the presence of singularities which might
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arise when the cutoff function f is the characteristic function χK of a compact
subset K ⊂M .

Definition 3.17. Let U ⊂ Γ∞(M ← B) be CO-open. A generalized Lagrangian
L on U is a mapping

L : C∞
c (M)→ Fc(B,U),

such that
(i) supp(L(f)) ⊆ supp(f) and L(f) is Bastiani smooth for all f ∈ C∞

c (M),
(ii) for each f1, f2, f3 ∈ C∞

c (M) with supp(f1) ∩ supp(f3) = ∅,
L(f1 + f2 + f3) = L(f1 + f2)− L(f2) + L(f2 + f3).

Given the properties of the above definition, we immediately get:

Proposition 3.18. Let U ⊂ Γ∞(M ← B) be CO-open, L a generalized La-
grangian on U . Then,

(i) supp(L(f + f0)− L(f0)) ⊆ supp(f) for all f , f0 ∈ C∞
c (M),

(ii) for all f ∈ C∞
c (M), L(f) is a local functional.

The proof is the same as those of [9, Lemma 3.1 and 3.2].
Combining the linearity of C∞

c (M), property (ii) Definition 3.17 and
Proposition 3.18, we obtain that each generalized Lagrangian can be written
as a suitable sum of arbitrarily small supported generalized Lagrangians. To
see it, fix ε > 0 and consider L(f). By compactness supp(f) admits a finite
open cover of balls, {Bi}i∈I of radius ε such that none of the open balls is
completely contained in the union of the others. Let {gi}i∈I be a partition of
unity subordinate to the above cover of supp(f), set fi

.= gi · f . Using (ii)
Definition 3.17

L(f) = L
(
∑

i

fi

)

=
∑

J⊂I

cJL
⎛

⎝
∑

j∈J

fj

⎞

⎠ ,

where J ⊂ I contains the indices of all balls Bi having non-empty intersection
with a fixed ball (the latter included), and cJ = ±1 are suitable coefficients
determined by the application of (ii) Definition 3.17. By construction, each
index J has at most two elements and supp(

∑
j∈J fj) is contained at most in

a ball of radius 2ε. We have thus split L(f) as a sum of generalized Lagrangians
with arbitrarily small supports.

Definition 3.19. Let U ⊂ Γ∞(M ← B) be CO-open, L a generalized La-
grangian on U . The k-th Euler–Lagrange derivative of L in ϕ ∈ U along
( �X1, . . . , �Xk) ∈ Γ∞

c (M ← ϕ∗V B)k is

δ(k)L(1)ϕ[0]( �X1, . . . , �Xk)
.
=

dk

dt1 . . . dtk

∣
∣∣
∣
t1=...=tk=0

L(f)ϕ[0](t1 �X1 + · · · + tk
�Xk)

(29)

where f |K ≡ 1 on a suitable compact K containing all compacts supp( �Xi).
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From now on, we will assume that generalized Lagrangian used are mi-
crolocal, i.e., L(f) ∈ Fμloc(B,U) for each f ∈ C∞

c (M); this means that the
first Euler–Lagrange derivative can be written as

δ(1)L(1)ϕ[0]( �X) =
∫

M

E(L)ϕ[0]( �X), (30)

where by microlocality E(L)ϕ[0] ∈ Γ∞
c (M ← ϕ∗V B′ ⊗ Λm(M)).

A generalized Lagrangian L is trivial whenever supp
(L(f)

) ⊂ supp(df)
for each f ∈ C∞

c (M). Triviality induces an equivalence relation on the space
of generalized Lagrangians; namely, two L1, L2 are equivalent whenever their
difference is trivial. We can show that if two Lagrangians L1, L2 are equiva-
lent, then they end up producing the same first variation (30). For instance,
suppose that L1(f) − L2(f) = ΔL(f) with ΔL(f) a trivial generalized La-
grangian for each f ∈ C∞

c (M). To evaluate δ(1)ΔL(1)ϕ[0]( �X), one has to
choose some f which is identically 1 in a neighborhood of supp( �X); however,
by (i) Definition 3.17 supp

(
ΔL(f)

) ⊂ supp(df) ∩ supp( �X) = ∅. By Lemma
3.4, E(ΔL)ϕ[0]( �X) = 0 and

δ(1)L1(f)ϕ[0]( �X) = δ(1)L2(1)ϕ[0]( �X) + δ(1)ΔL(1)ϕ[0]( �X)

=
∫

M

E(L2)ϕ[0]( �X) +
∫

M

E(ΔL)ϕ[0]( �X)

= δ(1)L2(1)ϕ[0]( �X).

Finally, we compare our generalized action functional with the standard action
which is generally used in classical field theory (see, e.g., [19,36]). One gen-
erally introduce the standard geometric Lagrangian λ of order r, as a bundle
morphism

JrB Λm(M)

M M

λ

πr ρ

between (JrB, πr,M) and (Λm(M), τΛ,M,∧mT ∗
· M), where the latter is the

vector bundle whose sections are m-forms. Two Lagrangian morphisms λ1,
λ2 are equivalent whenever their difference is an exact form. Its associated
standard geometric action functional will therefore be

AD(ϕ) =
∫

M

χD(x)λ(jr
xϕ) (31)

where λ an element of the equivalence class of Lagrangian morphisms, D is a
compact region of M whose boundary ∂D is an orientable (m − 1)-manifold
and χD its characteristic function. One could be tempted to draw a parallel
with a generalized Lagrangian by considering the mapping

χD �→ A(χD) =
∫

M

χD(x)λ(jr
xϕ). (32)

However, (32) differs from Definition 3.17 in the singular character of the cutoff
function. Indeed, the functional AD ∈ Floc(B,U) for each choice of compact
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D but it is never microlocal, for the integral kernel of A(χD)(1)ϕ [0] has always
singularities localized in ∂D. This is a severe problem when attempting to
calculate the Peierls bracket for local functionals, a way out is to extend this
bracket to less regular functionals (see Definition 4.9) maintaining the closure
of the operation (see Theorem 4.13); however, we cannot outright extend the
bracket to all local functionals. Therefore, in order to accommodate those less
regular functionals such as (31), one would need to place severe restrictions on
the possible compact subsets D which cut off possible integration divergences.
Restrictions, however, are not consistent with the derivation of Euler–Lagrange
equations by the usual variation technique which requires to consider each
D ⊂M compact.

Of course, given a Lagrangian morphism λ of order r we can always define
a generalized microlocal Lagrangian as a microlocal-valued distribution, i.e.,

C∞
c (M)× U � (f, ϕ) �→ L(f)(ϕ) =

∫

M

f(x)λ(jr
xϕ).

4. The Peierls bracket

We will define the Peierls bracket using the linearized field equations associated
with the second derivative of a generalized microlocal Lagrangian, which are
assumed to be normally hyperbolic. We start by reviewing some basic notions
from the theory of normally hyperbolic (NH) operators.

Let E, F → M be vector bundles over a globally hyperbolic Lorentzian
manifold M , a differential operator D : Γ∞(M ← E) → Γ∞(M ← F ) is
of second order if locally, it can be written as second-order partial differen-
tial operator. D is called normally hyperbolic if its principal symbol σD ∈
Γ∞(S2TM ⊗ E∗ ⊗ F ) can be written as

σ2(D) =
1
2
g−1 ⊗ idE (33)

where g is the Lorentzian metric on M .

Theorem 4.1. Let E → M be a vector bundle over a globally hyperbolic
Lorentzian manifold M , and let D be a normally hyperbolic differential op-
erator. Then, D admits global Green operators

G±
M : Γ∞

c (M ← E)→ Γ∞(M ← E)

and their causal propagator G = G+−G−, satisfying the following properties:
(i) Continuity. G±, G are continuous linear operators where Γ∞

c (M ← E)
has the LF-topology and Γ∞(M ← E) the standard Fréchet topology.
Moreover, each operator admits a continuous and linear extension to the
spaces Γ−∞

± (M ← E) topological dual to Γ∞
∓ (M ← E) = {σ ∈ Γ∞(M ←

E) : ∀x ∈M supp(�u) ∩ J∓(x) is compact }.
(ii) Support Properties.

supp(G±u) ⊂ J±(supp(u))

for all u ∈ Γ−∞
± (M ← E).
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(iii) Cauchy problem. For every v ∈ Γ−∞
c (M ← E) and spacelike Cauchy

hypersurface i : Σ ↪→M with supp(v) ⊆ I±(Σ) and all u0, u̇0 ∈ Γ∞
c (M ←

i∗E) there is a unique u± ∈ Γ−∞(M ← E) with

Du± = v,

supp(u±) ⊆ J±(
supp(u0) ∪ supp(u̇0)

) ∪ J±(supp(v)).

The section u± also depends continuously on v, u0 and u̇0.
(iv) Wave Front Sets.

WF(G±) = {(x, x; ξ,−ξ) ∈ Ṫ ∗(M ×M) with (x; ξ) ∈ Ṫ ∗M}
∪ {(x1, x2; ξ1, ξ2) ∈ Ṫ ∗(M ×M)with (x1, x2; ξ1,−ξ2) ∈ BiChg

γ},
WF(GM ) = {(x1, x2; ξ1, ξ2) ∈ Ṫ ∗(M ×M) with (x1, x2; ξ1,−ξ2) ∈ BiChg

γ};
where BiChg

γ is the bicharacteristic strip of the lightlike geodesic γ, i.e.,
the set of points (x1, x2; ξ1, ξ2) such that there is an interval [0,Λ] ⊂ R

for which (x1, ξ1) = (γ(0), g�γ̇(0)) and (x2,−ξ2) = (γ(Λ), g�γ̇(Λ)).
(v) Propagation of Singularities. Given u ∈ Γ−∞

± (M ← E), (x, ξ) ∈
WF(G±(u)) if either (x, ξ) ∈WF(u) or there is a lightlike geodesic γ and
some (y; η) ∈ WF(u) such that (x, y; ξ,−η) ∈ BiChg

γ . Similarly, (x, ξ) ∈
WF(G(u)) if there is a lightlike geodesic γ and some (y, η) ∈WF(u) such
that (x, y; ξ,−η) ∈ BiChg

γ .

We recall that in the above theorem the notation Γ−∞(M ← E) denotes
distributional sections of the vector bundle E, i.e., continuous linear mappings
Γ∞

c (M ← E) → C, where the first space is endowed with the usual limit
Fréchet topology. We also recall that the wave front set at x ∈ M of a distri-
butional section u of a vector bundle E of rank k is calculated as follows: Fix
a trivialization (Uα, tα) on E, u is then locally represented by k distributions
ui ∈ D′(Uα), each of which will have its own wave front set. Then, we set

WF(u) .=
k⋃

i=1

WF
(
ui
)
. (34)

We can view the second Euler–Lagrange derivative (c.f. Definition 3.19)
of a microlocal generalized Lagrangian L as a mapping

δ(1)E(L)ϕ[0] : Γ∞
c (M ← ϕ∗V B)→ Γ∞

c

(
M ← ϕ∗V B′ ⊗ Λm(M)

)
. (35)

Equivalently, we can say that the linearized field equations around ϕ induce
a differential operator of second order. If we fix an auxiliary metric h on the
standard fiber of B and use the Lorentzian metric g of M together with its
Hodge isomorphism ∗g, we define

Dϕ
.= (ϕ∗h)� ◦ (idϕ∗V B′ ⊗ ∗g) ◦ δ(1)E(L)ϕ[0] : Γ∞(M ← ϕ∗V B)
→ Γ∞(M ← ϕ∗V B). (36)

Remark 4.2. Notice that if Dϕ is a differential operator induced by the lin-
earized equations of some microlocal generalized Lagrangian L as in (36), then
its principal symbol is independent from the section ϕ chosen.
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Indeed, by (15),

δ(1)E(L)ψ[0]( �X1, �X2) = δ(1)E(L)ϕ[0]
(
d1uϕψ[uψ(ϕ)]( �X1), d1uϕψ[uψ(ϕ)]( �X2)

)

+ E(L)ϕ[0]
(
d2uϕψ[uψ(ϕ)]( �X1, �X2)

)
.

While the second piece modifies the expression of the differential operator, it
does not alter its principal symbol since the local form of d2uϕψ[uψ(ϕ)]( �X1, �X2),
due to the ultralocal nature of the chart mapping, does not yield extra deriva-
tives. We therefore conclude that if we use a generalized Lagrangian L whose
linearized equations differential operator, Dϕ, is normally hyperbolic for some
ϕ0 ∈ U , then it is normally hyperbolic (with the same principal symbol) for
all ϕ ∈ Uϕ0 .

Let us give a more specific example on how to calculate the principal
symbol from a microlocal generalized Lagrangian. Recalling formula (18) with
λ : J1(M ×N)→ Λm(M), we have

d2Lf,λ,ϕ[0]( �X1, �X2) =

∫

M

f(x)

{
∂2λ

∂yi∂yj
�Xi
1

�Xj
2 +

∂2λ

∂yi
μ∂yj

dμ

( �Xi
1
) �Xj

2

+
∂2λ

∂yi
μ∂yj

�Xi
1dμ

( �Xj
2

)
+

∂2λ

∂yi
μ∂yj

ν

dμ

( �Xi
1
)
dν

( �Xj
2

)
}

(x)dμg(x),

where dμ is the horizontal differential on jet bundles. The key ingredient for the
principal symbol is the quantity mμν

ij
.= ∂2λ

∂yi
μ∂yj

ν
. Applying the transformations

to get the differential operator of linearized field equations, as in (36), to the
above quantity yields the principal symbol

σ2(Dϕ) = hijmμν
jk ⊗ ∂μ ∨ ∂ν ⊗ ei ⊗ ej . (37)

In case this quantity satisfies the condition of (33), we can conclude that the
operator is normally hyperbolic. There are also other notions of hyperbolicity,
for instance, see [15], where the hyperbolicity condition is strictly weaker than
the one employed here.

From now on, we shall assume that our microlocal Lagrangian produces
always normally hyperbolic linearized equations6. We can invoke the results of
Theorem 4.1: To each ϕ in the domain of L, we associate operators

G±
ϕ : Γ∞

c (M ← ϕ∗V B)→ Γ∞(M ← ϕ∗V B). (38)

satisfying properties (i) − (v) in the above theorem. Given �X ∈ Γ∞
c (M ←

ϕ∗V B), we can view G±( �X) as a mapping

U � ϕ �→ G±
ϕ ( �X) ∈ Γ∞(M ← ϕ∗V B),

where the target space is endowed with the Fréchet topology. Then, we can
show the following result:

6We shall show in Sect. 6 that a physically relevant example is the Lagrangian functional of
wave maps
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Lemma 4.3. Let γ : R → U ⊂ Γ∞(M ← B) be a smooth curve, then for each
fixed �X ∈ Γ∞

c (M ← ϕ∗V B) the mapping R � t �→ G±
γ(t)( �X) ∈ Γ∞(M ←

ϕ∗V B) is Bastiani smooth. In particular, we have

dG±
ϕ ( �X) = lim

t→0

1
t

(
G±

u−1
ϕ (t �X)

−G±
ϕ

)
= −G±

ϕ ◦D(1)
ϕ ( �X) ◦G±

ϕ , (39)

where U � ϕ �→ Dϕ( �X) ∈ Γ∞(M ← ϕ∗V B) is the mapping induced by (36).

Proof. We just show the claim for the retarded propagator since for the ad-
vanced one the result follows in complete analogy. We have to evaluate

lim
t→0

1
t

(
G+

γ(t)( �X)−G+
γ(0)( �X)

)
.

The mapping D( �X) ◦ γ : R � t �→ Dγ(t)( �X) ∈ Γ∞(M ← ϕ∗V B) is smooth;
therefore,

lim
t→0

1
t
Dγ(t)

(
G+

γ(t) −G+
γ(0)

)
( �X) = lim

t→0

1
t

(
Dγ(t)G

+
γ(t) −Dγ(t)G

+
γ(0)

)
( �X)

= lim
t→0

1
t

(
idΓ∞(M←γ(0)∗V B) −Dγ(t)G

+
γ(0)

)
( �X)

= lim
t→0

1
t

(
Dγ(0)G

+
γ(0) −Dγ(t)G

+
γ(0)

)
( �X)

= lim
t→0

1
t

(
Dγ(0) −Dγ(t)

)(
G+

γ(0)( �X)
)

= −D
(1)
γ(0)(γ̇(0)) ◦G+

γ(0)

( �X)
.

Since γ is a smooth curve in Γ∞(M ← B), given any interval [−ε, ε] with
ε > 0, there is a compact subset Kε of M for which γ(t)(x) is constant in t

on M\Kε, then differential operator D
(1)
γ(0) �= 0 only inside Kε; therefore, the

quantity
(
D

(1)
γ(0)(γ̇(0))◦G±

γ(0)

)
( �X) has compact support for any �X ∈ Γ∞(M ←

γ(0)∗V B). Finally, using continuity of G+
ϕ and Dϕ, we can write

lim
t→0

1
t

(
G+

γ(t) −G+
γ(0)

)
= −G+

γ(0) ◦D
(1)
γ(0)(γ̇(0)) ◦G+

γ(0).

Iterating the above expression, one can show that all iterated derivatives of
G+

ϕ exist and are continuous, thus showing smoothness. �

Remark 4.4. Notice that Lemma 4.3 establishes that the operators G±
· ( �X) :

Γ∞(M ← B) → Γ∞(M ← ϕ∗V B) are conveniently smooth, however, since
the target space is Fréchet and the fact that both the convenient and Bastiani
smooth structure of Γ∞(M ← B) possesses the same smooth curves (c.f. [35,
Remark 42.2]) implies that G±

· ( �X) is Bastiani smooth as well.

Similarly, for the causal propagator we find

dGϕ( �X) .= lim
t→0

1
t

(
Gu−1

ϕ (t �X) −Gϕ

)

= −Gϕ ◦D(1)
ϕ ( �X) ◦G+

ϕ −G−
ϕ ◦D(1)

ϕ ( �X) ◦Gϕ. (40)
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Given the Green’s functions G±
ϕ , set

G±
ϕ

.= G±
ϕ ◦ (ϕ∗h)� ◦ (id(ϕ∗V B)′ ⊗ ∗g) : Γ∞

c (M ← (ϕ∗V B)′ ⊗ Λm(M))

→ Γ∞(M ← ϕ∗V B), (41)

Gϕ
.= Gϕ ◦ (ϕ∗h)� ◦ (id(ϕ∗V B)′ ⊗ ∗g) : Γ∞

c (M ← (ϕ∗V B)′ ⊗ Λm(M))

→ Γ∞(M ← ϕ∗V B). (42)

Remark 4.5. Note how, up to this point, we used some auxiliary metric h in
(36) in order to have a proper differential operator for the subsequent steps.
As a consequence, the resulting operator Dϕ(h) does depend on the metric
chosen and so do its retarded and advanced Green’s operators G±

ϕ (h). What
about their counterparts G±

ϕ (h)?
From the definition of Green’s operators, we have

{
Dϕ(h) ◦G±

ϕ (h) = idΓ∞
c (M←ϕ∗V B),

G±
ϕ (h) ◦ Dϕ(h)|Γ∞

c (M←ϕ∗V B) = idΓ∞
c (M←ϕ∗V B).

The latter is equivalent to
{

δ(1)E(L)ϕ[0] ◦ G±
ϕ (h) = idΓ∞

c (M←ϕ∗V B′⊗Λm(M)),

G±
ϕ (h) ◦ δ(1)E(L)ϕ)[0]

∣∣
Γ∞

c (M←ϕ∗V B)
= idΓ∞

c (M←ϕ∗V B).

Notice that the family of propagators {G±
ϕ (h)}, together with the differential

operator δ(1)E(L)ϕ[0] of the linearized equations at ϕ, defines a family of
Green-hyperbolic type operators (see [1, Definition 3.2]). Then, [1, Theorem
3.8] ensures uniqueness for the advanced and retarded propagators, which in
turn results in the independence of the Riemannian metric h used before.

Lemma 4.6. Let g a Lorentzian metric on M and D : Γ∞(M ← E) →
Γ∞(M ← E) a linear partial differential operator. Then, D is formally self
adjoint with respect to the pairing 〈, 〉 : Γ∞

c (M ← E) ⊗ Γ∞
c (M ← E) → R

given by
〈
s, �t 〉 =

∫

M

(idE′ ⊗ ∗g ◦ h�(�t ))s =
∫

M

h�(�t )s dμg

if and only if its integral kernel D(x, y) is symmetric. Moreover, if D is nor-
mally hyperbolic, G+

M and G−
M are each the adjoint of the other in the common

domain.

Proof. The equivalent condition follows from
〈
Ds, �t 〉

=
∫

M

h�(�t)(x)Ds(x) dμg(x)

=
∫

M

h�(�t)(x)h� ◦ (idE′ ⊗ ∗g)D(x, s) dμg(x)

=
∫

M2
D(x, y)�t(x)s(y)dμg(x)dμg(y),

where D is the integral kernel of D. If D is self adjoint, then
〈
s,G−

M
�t 〉

=
〈
DG+

Ms,G−
M

�t 〉
=

〈
G+

Ms,DG−
M

�t 〉
=

〈
G+

Ms, �t 〉
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whence the desired adjoint properties are G+
M and G−

M . �
For future convenience, we calculate the functional derivatives of G±

ϕ and
Gϕ, which are clearly smooth by combining Lemma 4.3 with (41) and (42),
whence

dkG±
ϕ ( �X1, . . . , �Xk)

=
k∑

l=1

(−1)l
∑

(I1,...,Il)
∈P(1,...,k)

(
©l

i=1 G±
ϕ ◦ δ(|Iσ(i)|+1)E(L)ϕ[0]

( �XIi

)) ◦ G±
ϕ , (43)

dkGϕ( �X1, . . . , �Xk)

=
k∑

l=1

(−1)l
∑

(I1,...,Il)∈P(1,...,k)

l∑

m=0

(
©m

i=1 G−
ϕ ◦ δ(|Ii|+1)E(L)

( �XIi

))

◦Gϕ ◦
(
©l

i=m+1 δ(|Ii|+1)E(L)ϕ

( �XIi

) ◦ G+
ϕ

)
, (44)

where (I1, . . . , Il) is partition of the set {1, . . . , k}, and �XI = ⊗i∈I
�Xi. We stress

that in (44) the pattern of the compositions of propagators and derivatives of
E(L) is as follows: First the G−

ϕ ’s, then a single G and at the end some G+
ϕ ’s

each intertwined by derivatives of E(L). These will be key to some later proofs.
We are now in a position to introduce the Peierls bracket:

Definition 4.7. Let U ⊂ Γ∞(M ← B) be CO-open, and F , H ∈ Fμloc(B,U).
Fix a generalized microlocal Lagrangian L whose linearized equations induce a
normally hyperbolic operator. The retarded and advanced products RL(F,H),
AL(F,H) are functionals defined by

RL(F,H)(ϕ) .=
〈
dFϕ[0],G+

ϕ dHϕ[0]
〉
, (45)

AL(F,H)(ϕ) .=
〈
dFϕ[0],G−

ϕ dHϕ[0]
〉
, (46)

while the Peierls bracket of F and H is

{F,H}L .= RL(F,H)− AL(F,H). (47)

We recall that for a microlocal functional F , by (14)

dFϕ[0]( �X) =
∫

M

f (1)
ϕ [0]i(x)Xi(x)dμg(x),

therefore we can write {F,H}L (ϕ) as
∫

M2
f (1)

ϕ [0]i(x)Gij
ϕ (x, y)h(1)

ϕ [0]j(y)dμg(x, y) (48)

where repeated indices as usual follows the Einstein notation. This implies
clearly that Definition 4.7 is well posed. Moreover, as a consequence of Lemma
4.6 we see that the Peierls bracket of F and H can also be equivalently viewed
as RL(F,H)− RL(H,F ) = AL(H,F )− AL(F,H).

We begin our analysis of the Peierls bracket by listing the support prop-
erties of the functionals defined in Definition 4.7.
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Proposition 4.8. Let U , F , H be as in the above definition, then the retarded
and advanced products and the Peierls bracket are Bastiani smooth with the
following support properties:

supp (RL(F,H)) ⊂J+(supp(F )) ∩ J−(supp(H)), (49)

supp (AL(F,H)) ⊂J+(supp(H)) ∩ J−(supp(F )), (50)

which combined yields

supp ({F,G}L) ⊂ (
J+(supp(F )) ∪ J−(supp(F ))

)

∩ (
J+(supp(H)) ∪ J−(supp(H))

)
. (51)

Proof. By definition, the support properties of G±
ϕ and G±

ϕ are analogue, so
combining these properties with RL(F,H) = 1

2RL(F,H) + 1
2AL(H,F ) yields

the desired result. We now turn to the smoothness. We calculate the k-th
derivative of RL. By the chain rule, taking P(1, . . . , k) the set of permutations
of {1, . . . , k}, we can write

dkRL(F,H)ϕ[0]( �X1, . . . , �Xk)

=
∑

(J1,J2,J3)⊂Pk

〈
F (|J1|+1)

ϕ [0](⊗j1∈J1
�Xj1) ,

d(|J2|)G+
ϕ (⊗j2∈J2

�Xj2)H
(|J3|+1)
ϕ [0](⊗j3∈J3

�Xj3)
〉

, (52)

and similarly

dkAL(F,H)ϕ( �X1, . . . , �Xk)

=
∑

(J1,J2,J3)⊂Pk

〈
F (|J1|+1)[ϕ](⊗j1∈J1

�Xj1) ,

d(|J2|)G−
ϕ (⊗j2∈J2

�Xj2)H
(|J3|+1)
ϕ [0](⊗j3∈J3

�Xj3)
〉

. (53)

To see that the pairing in the derivatives of the advanced and retarded products
is well defined, we use the kernel notation (14); therefore, we write the integral
kernel of RL(F,H), which by a little abuse of notation we call RL(F,H)(x, y)
for x,y ∈M . It is

RL(F,H)(x, y) = f (1)
ϕ [0]i(x)

(G+
ϕ

)ij (x, y)h(1)
ϕ [0]j(y).

Using this notation, we can write the integral kernel dkRL(F,H)ϕ[0]( �X1, . . . ,
�Xk)(x, y) in (52) as a sum of terms with two possible contributions:

1. [J2 = ∅]
f (p+1)

ϕ [0]i(x, �X1, . . . , �Xp)(G+
ϕ )ij(x, y)h(q+1)

ϕ [0]j(y, �Xq+1 . . . �Xp+q),

where p + q = k. Due to smoothness of the functionals F, H and, by
Remark 4.4, of G±

ϕ , this is well defined and is Bastiani smooth.
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2. [J2 �= ∅]
∫

Mk−2
f (|J1|+1)

ϕ [0]i
(
x, �XJ1

) (G+
ϕ

)ij1 (x, z1)δ(|I1|+1)E(L)ϕ[0]j1j2

(
z1, z2, �XI1

)

× (G+
ϕ

)j2j3 (z2, z3)δ(|I2|+1)E(L)ϕ[0]j3j4

(
z3, z4, �XI2

) · · ·
δ(|Il|+2)E(L)ϕ[0]j2l−1j2l

(
z2l−1, z2l, �XIl

)

× (G+
ϕ

)j2lj (z2l, y)h(|J3|+1)
ϕ [0]j(y, �Xp+k1+···+kl+1, . . . , �XJ3)dμg(z1, . . . , z2l),

where I1∪· · ·∪Il = J2. Then again, due to the Bastiani smoothness of F, H, G±
ϕ

and L, we conclude that this piece exists and is Bastiani smooth. Repeating the
above calculations for AL amounts to substituting each + with −, resulting
in Bastiani smoothness for the advanced product. Finally, since {F,H}L =
RL(F,H)− AL(F,H), we conclude that it is smooth as well. �

We have seen that the Peierls bracket is well defined for microlocal func-
tionals, and we stress, however, that the image under the Peierls bracket of
microlocal functionals fails to be microlocal, so it is necessary to broaden the
domain of this bracket. An idea is to use the full potential of microlocal anal-
ysis and use wave front sets to define pairings. First though we make explicit
the “good” subsets of T ∗M , that is, those subsets in which the wave front can
be localized.

Definition 4.9. Let (M, g) be a Lorentzian spacetime, define Υk(g) ⊂ T ∗Mk

as follows:

Υk(g) .=
{

(x1, . . . , xk, ξ1, . . . , ξk) ∈ T ∗Mk\0 :

(x1, . . . , xk, ξ1, . . . , ξk) /∈ V
+

k (x1, . . . , xk) ∪ V
−
k (x1, . . . , xk)

}
(54)

where

V
±
k (x1, . . . , xk) =

k∏

j=1

V
±

(xj).

If U ⊂ Γ∞(M ← B) is open, we say that a functional F : U → R with
compact support is microcausal with respect to the Lorentz metric g in ϕ if
WF(dkFϕ[0]) ∩ Υk(g) = ∅ for all k ∈ N. We say that F is microcausal with
respect to g in U if F is microcausal for all ϕ ∈ U . We denote the set of
microcausal functionals in U by Fμc(B,U , g).

One can show by induction, using (17), that testing microcausality by
calculating WF(∇kFϕ[0]) or WF(dkFϕ[0]) is equivalent. The case k = 1 is
trivial, while the case with arbitrary k follows from:

Lemma 4.10. Let F be a functional and Φ a symmetric linear connection with
covariant derivative ∇. Then, F is microcausal if and only if ∇kFϕ[0] does
not have wave front set contained in Υk(g) for all k ∈ N.
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Proof. We show this by induction on the derivative order. For k = 1, we have
∇Fϕ[0] = dFϕ[0]. More generally, suppose WF

(∇k−1Fϕ[0]
)∩Υk−1(g) = ∅, we

claim

WF
(∇kFϕ[0]

) ∩Υk(g) = ∅.
From (17), we have

∇kFϕ[0]( �X1, . . . , �Xk) .= dkFϕ[0]( �X1, . . . , �Xk)

+
k∑

j=1

1
k!

∑

σ∈P(k)

∇k−1Fϕ[0](Γϕ( �Xσ(j), �Xσ(k)),

�Xσ(1), . . . , �̂Xσ(j), . . . �Xσ(k−1)).

Assume that ∇k−1Fϕ[0] is microcausal. Since F is microcausal as well, it is
sufficient to show microcausality holds for the other terms in the sum. Due
to symmetry of the connection, we can simply study the wave front set of a
single term such as

∇k−1Fϕ(Γϕ( �Xj , �Xk), �X1, . . . , �̂Xj , . . . �Xk−1). (55)

The idea is to apply Theorem 8.2.14 in [32]. Recall that a connection Γϕ can be
seen as a mapping Γ∞

c (M ← ϕ∗V B)× Γ∞
c (M ← ϕ∗V B)→ Γ∞

c (M ← ϕ∗V B)
with associated integral kernel Γ[ϕ](x, y, z) defined by

⊗3Γ∞
c (M ← ϕ∗V B)→ R : ( �X, �Y , �Z)

�→
∫

M3
hkl(ϕ(x))Γ[ϕ]lij(x, y, z) �Xi(x) �Y j(y) �Zk(z)dμg(x, y, z)

where h is an auxiliary Riemannian metric on the fiber of the bundle B which
is to be regarded as a tool for calculations7. Using the support properties of
the connection coefficients Γϕ, we obtain Γ[ϕ]lij(x, y, z) = Γl

ij(ϕ(x))δ(x, y, z),
where Γl

ij(ϕ(x)) are the Christoffel coefficients of the connection on the typical
fiber of B as in (92). Then,

WF (Γ[ϕ]) = {(x, y, z, ξ, η, ζ) ∈ T ∗M3\0 : x = y = z, ξ + η + ζ = 0}.
Composition of the two integral kernels in (55) is well defined provided WF′

(∇n−1Fϕ[0])M ∩WF (Γ[ϕ])M = ∅ and that the projection map : �3M → M
is proper. The former is a consequence of WF (Γ[ϕ])M = ∅, and the latter is
a trivial statement for the diagonal embedding. Then, we can apply Theorem
8.2.14 and estimate

WF
(∇k−1Fϕ ◦ Γϕ

) ⊂
{
(x1, . . . , xk, ξ1, . . . , ξk) ∈ T ∗Mk : ∃(y, η) :

(xj , xk, y, ξj , ξk, −η) ∈ WF (Γ[ϕ]) ,

(y, x1, . . . , x̂j , . . . , xk−1, η, ξ1, . . . , ξ̂j , . . . , ξk−1) ∈ WF
(∇k−1Fϕ[0]

) }

⋃{
(x1, . . . , xk, ξ1, . . . , ξk) ∈ T ∗Mk : xj = xk, ξj = ξk = 0,

7We can without loss of generality assume that Γ are the Christoffel symbols with respect
to the metric h.
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(y, x1, . . . , x̂j , . . . , xk−1, 0, ξ1, . . . , ξ̂j , . . . , ξk−1) ∈ WF
(∇k−1Fϕ[0]

) }

⋃{
(x1, . . . , xk, 0, . . . , 0, ξj , 0, . . . , 0, ξk) ∈ T ∗Mk : (xj , xk, y, ξj , ξk, 0) ∈ WF (Γϕ) ,

(y, x1, . . . , x̂j , . . . , xk−1, η, 0, . . . , 0) ∈ WF
(∇k−1Fϕ[0]

) }

= Π1 ∪ Π2 ∪ Π3.

If by contradiction, we had that ∇k−1Fϕ ◦ Γϕ was not microcausal, there
would be elements of its wave front set for which all ξ1, . . . , ξk are, say, future
pointing. In this case, those must belong to Π1, but then η is future pointing
as well by the form of WF(Γϕ), contradicting our initial assumption. �

One can also show that microcausality does not depend upon the con-
nection chosen by computing

∇nFϕ[0]( �X1, . . . , �Xn) − ∇̃nFϕ[0]
( �X1, . . . , �Xn

)

=

n∑

j=1

1

n!

∑

σ∈P(n)

∇n−1Fϕ[0]
(
Γϕ

( �Xσ(j), �Xσ(n)

)
, �Xσ(1), . . . , �̂Xσ(j), . . . �Xσ(n−1)

)

−
n∑

j=1

1

n!

∑

σ∈P(n)

∇̃n−1Fϕ[0]
(
Γ̃ϕ

( �Xσ(j), �Xσ(n)

)
, �Xσ(1), . . . , �̂Xσ(j), . . . �Xσ(n−1)

)
;

and then combining induction with Lemma 4.10 to get an empty wave front set
for the terms on right-hand side of the above equation. Another consequence
of Lemma 4.10 is that microcausality of a functional does not depend on the
ultralocal charts used to perform the derivatives. We immediately have the
inclusion Freg(B,U) ⊂ Fμc(B,U , g).

Proposition 4.11. Let U ⊂ Γ∞(M ← B) be CO-open, then if F ∈ Fμloc(B,U),

WF
(
F

(k)
ϕ [0]

)
is conormal to�k(M), i.e., WF

(
F

(k)
ϕ [0]

)
⊂ {(x, . . . , x, ξ1, . . . , ξk):

ξ1 + · · · + ξk = 0} for all k ≥ 2 and ϕ ∈ U . Therefore Fμloc(B,U) ⊂
Fμc(B,U , g).

Proof. By Lemma 4.10, microcausality is an intrinsic property of functionals
in Γ∞(M ← B), and therefore, it suffices to verify the claim in a generic
chart Uϕ. Note that by Definition 3.5, WF(F (1)

ϕ [0]) = ∅. Consider therefore
dkFϕ[0]( �X1, . . . , �Xk) with k ≥ 2, the associated integral kernel has the form

∫

Mk

f (k)
ϕ [0]i1···ik

(x1)δ(x1, . . . , xk) �Xi1
1 (x1) · · · �Xik

k (xk)dμg(x1, . . . , xk) .

where f
(k)
ϕ [0]i1···ik

is some smooth function for each indices i1, . . . , ik. There-
fore,

WF(F (k)
ϕ [0]) = N∗�k(M)

=
{

(x1, . . . , xk, ξ1, . . . , ξk) ∈ T ∗Mk\0 : x1 = · · · = xk;
k∑

j=1

ξj = 0
}

.
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In addition, if (x, . . . , x, ξ1, . . . , ξk) is in WF
(
F

(k)
ϕ [0]

)
and has, say, the first

k − 1 covectors in V
+

k−1(x, . . . , x), then ξk = −(ξ1 + · · · + ξk−1) and we see
that ξk ∈ V

−
(x); whence microlocality implies microcausality. �

Theorem 4.12. Let U ⊂ Γ∞(M ← B) be CO-open and L a generalized mi-
crolocal Lagrangian with normally hyperbolic linearized equations. Then, the
Peierls bracket associated with L extends to Fμc(B,U , g), has the same sup-
port property of Proposition 4.8 and depends only locally on L; that is, for all
F , H ∈ Fμc(B,U , g), {F,H}L is unaffected by perturbations of L outside the
right-hand side of (51). The same locality property holds for the retarded and
advanced products.

Proof. Clearly, {F,H}L is well defined, in fact since WF(H(1)
ϕ [0]) is spacelike,

and Gϕ, according to Theorem 4.1, propagates only lightlike singularities along
lightlike geodesics, then GϕdHϕ[0] must be smooth, giving a well-defined pair-
ing. As for support properties, the proof can be carried on analogously to the
proof of Proposition 4.8.

For the support behavior of the bracket, suppose L1 and L2 are gen-
eralized Lagrangians, such that for some fixed ϕ ∈ U , δ(1)E(L1)ϕ[0] and
δ(1)E(L2)ϕ[0] differ only in a region outside

O .=
(
J+(supp(F )) ∪ J−(supp(F ))

) ∩ (
J+(supp(H)) ∪ J−(supp(H))

)
.

(56)

By the support properties of retarded and advanced propagators of Proposi-
tion 4.8, we have

〈
dFϕ[0], (G+

ϕ,L1
− G+

ϕ,L2
)dHϕ[0]

〉
= 0,

as well as
〈
dFϕ[0], (−G−

ϕ,L1
+ G−

ϕ,L2
)dHϕ[0]

〉
= 0.

Taking the sum of the two, we find

{F,H}L1 − {F,H}L2 = 0.

�

Theorem 4.13. Let U ⊂ Γ∞(M ← B) CO-open and L a generalized La-
grangian. If F , H ∈ Fμc(B,U , g), we have that {F,H}L ∈ Fμc(B,U , g) as
well.

Proof. By Faà di Bruno’s formula,

dk {F,G}L,ϕ [0]( �X1, . . . , �Xk)

=
∑

(J1,J2,J3)⊂Pk

〈
F (|J1|+1)

ϕ [0](⊗j1∈J1
�Xj1) ,

d(|J2|)Gϕ(⊗j2∈J2
�Xj2)G

(|J3|+1)
ϕ [0](⊗j3∈J3

�Xj3)
〉

. (57)
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while by (44),

d|J2|Gϕ( �X1, . . . , �Xk) =
k∑

l=1

(−1)l
∑

(I1,...,Il)
∈P(J2)

l∑

p=0

(
©p

i=1 G−
ϕ ◦ δ(|Ii|+1)E(L)

( �XIi

))

◦Gϕ ◦
(
©l

i=p+1 δ(|Ii|+1)E(L)ϕ

( �XIi

) ◦ G+
ϕ

)
, (58)

where ©p
i=1 stands for composition of mappings indexed by i from 1 to p. For

the rest of the proof, we will use the integral notation we used in (14) and in the
proof of Proposition 4.8. Recall that the mapping δ(n)E(L)ϕ[0] has associated
a compactly supported integral kernel L(1)(n+1)

ϕ [0](x, z1, . . . , zn) and its wave
front is in N∗�n+1(M) by Proposition 4.11. Then again, we have two general
cases:

1. J2 = ∅. Let |J1| = p, |J3| = q = k − p, the typical term has the form

dk {F, H}ϕ [0](z1, . . . , zk)

=

∫

M2
f(p+1)

ϕ [0]i(x, z1, . . . , zp), Gij
ϕ (x, y)h(q+1)

ϕ [0]j(y, zp+1, . . . , zk)dμg(x, y).

(59)

Suppose by contradiction that there is some (x1, . . . , xk, ξ1, . . . , ξk) ∈
WF({F,H}ϕ [0]) having (ξ1, . . . , ξk) ∈ V

+

k (x1, . . . , xk) (the argument works

similarly for (ξ1, . . . , ξk) ∈ V
−
k (x1, . . . , xk)). Using twice Theorem 8.2.14

in [32] in the above pairing yields

WF
({

F,H
}(k)

ϕ
[0]

)

⊆
{

(z1, . . . , zk, ξ1, . . . , ξk) : ∃(y, η) ∈ T ∗M(x, z1, . . . , zp,−η, ξ1, . . . , ξp)

∈WF(F (p+1)
ϕ [0]i),

(x, zp+1, . . . , zk, η, ξp+1, . . . , ξk) ∈WF
(Gij

ϕ H(q+1)
ϕ [0]j

)}

⊂
{

(z1, . . . , zk, ξ1, . . . , ξk) : ∃(x, η), (y, ζ) ∈ T ∗M :

(x, z1, . . . , zp,−η, ξ1, . . . , ξp) ∈WF
(
F (p+1)

ϕ [0]i
)

(x, y, η,−ζ) ∈WF(Gij
ϕ ), (y, zp+1, . . . , zk, ζ, ξp+1, . . . , ξk)

∈WF(H(q+1)
ϕ [0]j)

}
.

So if (z1, . . . , zk, ξ1, . . . , ξk) ∈ WF
( {F,H}(k)

ϕ

)
, then ∃ (x, η), (y, ζ) ∈

T ∗M such that
⎧
⎪⎨

⎪⎩

(x, z1, . . . , zp,−η, ξ1, . . . , ξp) ∈WF(F (p+1)
ϕ [0]i))

(x, y, η,−ζ) ∈WF(Gij
ϕ )

(y, zp+1, . . . , zk, ζ, ξp+1, . . . , ξk) ∈WF(H(q+1)
ϕ [0]j).



R. Brunetti and A. Moro Ann. Henri Poincaré

By (iv) Theorem 4.1, WF(Gij
ϕ ) contains pairs of lightlike covectors with

opposite time orientation, so in case η ∈ V
+
(x) (resp. η ∈ V

−
(x)),

ζ ∈ V
+

(y) (resp. ζ ∈ V
−

(y)) in which case WF
(
H

(q+1)
ϕ [0]j

)
(resp.

WF
(
F

(p+1)
ϕ [0]i

)
) does violate the microcausality condition of Definition 4.9.

2. J2 �= ∅. Then again, call |J1| = p, |J3| = k− q, set also, referring to (58),
|Ij | = kj for j = 1, . . . , l so that |J2| = k1 + · · ·+kl. Combining (57) with
(58) with the integral kernel notation, we get

{F,G}(k)
ϕ [0](z1, . . . , zk)

=
∫

Mk

f (p+1)
ϕ [0]i(x, z1, . . . , zp)G− ij1

ϕ (x, x1)d(k1+2)Lϕ[0]j1i1(x1, y1, zI1)

G− i1j2
ϕ (y1, x2) · · · G− im−1jm

ϕ (ym−1, xm)d(km+2)Lϕ[0]jmim
(xm, ym, zIm

)

Gimjm+1
ϕ (ym, xm+1)d(km+1+2)Lϕ[0]jm+1im+1(xm+1, ym+1, zIm+1)

G+ im+1jm+2
ϕ (ym+1, zm+2) . . . d(kl+2)Lϕ[0]jlil

(xl, yl, zIl
, )G+ ilj(yl, y)

h(k−q+1)
ϕ [0]j(y, zq+1, . . . , zk)dμg(x, x1, y1, . . . , xl, yl, y). (60)

Using in [32, Theorem 8.2.14], Theorem 4.1 and Proposition 4.11, we can
estimate the wave front set of the integral kernel of {F,H}(k)

ϕ [0] as all elements
(z1, . . . , zk, ξ1, . . . , ξk) ∈ T ∗Mk for which there are (x, η), (x1, η1), . . . , (xlηl),
(y1, ζ1), . . . , (yl, ζl) (y, ζ) ∈ T ∗M having
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(x, z1, . . . , zp,−η, ξ1, . . . , ξp) ∈WF
(
f

(p+1)
ϕ [0]i

)
,

(x, x1, η,−η1) ∈WF(G− ij1
ϕ ),

(x1, y1, z|I1|, η1,−ζ1, ξI1) ∈WF
(
d(k1+2)Lϕ[0]i1j1

)
,

...
...

(ym−1, xm, ζm−1,−ηm) ∈WF(G− im−1jm
ϕ ),

(xm, ym, zIm
, ηm,−ζm, ξIm

) ∈WF
(
d(km+2)Lϕ[0]imjm

)
,

(ym, xm+1, ζm,−ηm+1) ∈WF(Gimjm+1
ϕ ),

(xm+1, ym+1, zIm+1 , ηm+1,−ζm+1, ξIm+1) ∈WF
(
d(km+1+2)Lϕ[0]im+1jm+1

)
,

(ym+1, xm+2, ζm+1,−ηm+2) ∈WF(G+ im+1jm+2
ϕ ),

...
...

(yl−1, xl, ζl−1,−ηl) ∈WF(G+ il−1jl
ϕ ),

(xl, yl, zIl
, ηl,−ζl, ξIl

) ∈WF
(
d(kl+2)Lϕ[0]iljl

)
,

(yl, y, ζl,−ζ) ∈WF(G+ ilj
ϕ ),

(y, zk−q+1, . . . , zk, ζ, ξk−q+1, . . . , ξk) ∈WF
(
h

(k−q+1)
ϕ [0]j

)
.

Suppose by contradiction that (z1, . . . , zk, ξ1, . . . , ξk) ∈ WF
({F,H}(k)

ϕ

)
has

(ξ1, . . . , ξk) ∈ V
+

k (z1, . . . , zk)
(
resp. (ξ1, . . . , ξk) ∈ V

−
k (z1, . . . , zk)

)
. Then, ζm

and ηm+1 are both either lightlike future directed, or lightlike past directed.
In the first case, propagation of singularities implies that ζ is lightlike future
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directed, contradicting microcausality of H
(k−q+1)
ϕ [0] (resp. ζ is lightlike past

directed, contradicting the microlocality of H
(k−q+1)
ϕ [0]); in the second case,

propagation of singularities implies that η is lightlike past directed, contra-
dicting microcausality of F

(p+1)
ϕ [0] (resp. η is lightlike future directed, contra-

dicting the microlocality of F
(p+1)
ϕ [0]). We remark that in the wave front set

of {F,H}(k)
ϕ [0] is the (finite) union under all possible choices of indices for all

wave front sets of the form (59) or (60), each of which is, however, microcausal,
implying that their finite union will be microcausal as well. �

Theorem 4.14. The mapping (F,H) �→ {F,H}L defines a Lie bracket on
Fμc(B,U , g), for all U CO-open.

Proof. Bilinearity and antisymmetry are clear from Definition 4.7, while The-
orem 4.13 ensures the closure of the bracket operation. We are thus left with
showing Jacobi identity

{F, {G,H}L}L + {G, {H,F}L}L + {H, {F,G}L}L = 0.

∀F, G, H ∈ Fμc(B,U , g).

Using the integral kernel notation as in the above proof, we have

{F, {G,H}L}L(ϕ) =
∫

M2
f (1)

ϕ [0]i(x)Gij
ϕ (x, y){G,H}(1)L ϕ[0]j(y)dμg(x, y)

=
∫

M4
f (1)

ϕ [0]i(x)Gij
ϕ (x, y)

(
g(2)

ϕ [0]jk(y, z)Gkl
ϕ (z, w)h(1)

ϕ [0]l(w)

+ g(1)
ϕ [0]k(z)Gkl

ϕ (z, w)h(2)
ϕ [0]jl(y, w)

)
dμg(x, y, z, w)

−
∫

M6
f (1)

ϕ [0]i(x)Gij
ϕ (x, y)

(
d(3)Lϕ[0]jj1i1(y, y1, x1, )G− kj1

ϕ (z, y1)g(1)
ϕ [0]k(z)Gi1l

ϕ (x1, w)h(1)
ϕ [0]l(w)

+ d(3)Lϕ[0]jj1i1(y1, x1, y)Gkj1
ϕ (z, y1)

g(1)
ϕ [0]k(z)G+ i1l

ϕ (x1, w)h(1)
ϕ [0]l(w)

)
dμg(x, y, z, w, x1, y1).

Summing over cyclic permutations of the first two terms yields
∫

M4

(
f (1)

ϕ [0]i(x)Gij
ϕ (x, y)g(2)

ϕ [0]jk(y, z)Gkl
ϕ (z, w)h(1)

ϕ [0]l(w)

+ f (1)
ϕ [0]i(x)Gij

ϕ (x, y)g(1)
ϕ [0]k(z)Gkl

ϕ (z, w)h(2)
ϕ [0]jl(y, w)

+ g(1)
ϕ [0]i(x)Gij

ϕ (x, y)h(2)
ϕ [0]jk(y, z)Gkl

ϕ (z, w)f (1)
ϕ [0]l(w)

+ g(1)
ϕ [0]i(x)Gij

ϕ (x, y)h(1)
ϕ [0]k(z)Gkl

ϕ (z, w)f (2)ϕ[0]jl(y, w)

+ h(1)
ϕ [0]i(x)Gij

ϕ (x, y)f (2)ϕ[0]jk(y, z)Gkl
ϕ (z, w)g(1)

ϕ [0]l(w)

+ h(1)
ϕ [0]i(x)Gij

ϕ (x, y)f (1)
ϕ [0]k(z)Gkl

ϕ (z, w)g(2)
ϕ [0]jl(y, w)

)
dμg(x, y, z, w)

= 0,
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while for the other two,
∫

M6
dμg(x, y, z, w, x1, y1)
(
f (1)

ϕ [0]i(x)Gij
ϕ (x, y)d(3)Lϕ[0]jj1x1(y, y1, i1, )

G− kj1
ϕ (z, y1)g(1)

ϕ [0]k(z)Gi1l
ϕ (x1, w)h(1)

ϕ [0]l(w)

+ f (1)
ϕ [0]i(x)Gij

ϕ (x, y)d(3)Lϕ[0]jj1i1(y, y1, x1)

Gkj1
ϕ (z, y1)g(1)

ϕ [0]k(z)G+ i1l
ϕ (x1, w)h(1)

ϕ [0]l(w)

+ g(1)
ϕ [0]i(x)Gij

ϕ (x, y)d(3)Lϕ[0]jj1i1(y, y1, x1, )

G− kj1
ϕ (z, y1)h(1)

ϕ [0]k(z)Gi1l
ϕ (x1, w)f (1)

ϕ [0]l(w)

+ g(1)
ϕ [0]i(x)Gij

ϕ (x, y)d(3)Lϕ[0]jj1i1(y, y1, x1)

Gkj1
ϕ (z, y1)h(1)

ϕ [0]k(z)G+ i1l
ϕ (x1, w)f (1)

ϕ [0]l(w)

+ h(1)
ϕ [0]i(x)Gij

ϕ (x, y)d(3)Lϕ[0]jj1i1(y, y1, x1, )

G− kj1
ϕ (z, y1)f (1)

ϕ [0]k(z)Gi1l
ϕ (x1, w)g(1)

ϕ [0]l(w)

+ h(1)
ϕ [0]i(x)Gij

ϕ (x, y)d(3)Lϕ[0]jj1i1(y, y1, x1)

Gkj1
ϕ (z, y1)f (1)

ϕ [0]k(z)G+ i1l
ϕ (x1, w)g(1)

ϕ [0]l(w)
)

= 0.

To make the simplifications, we used the antisymmetry of the integral kernel
Gϕ(x, y), the adjoint relation between the propagators G+

ϕ (x, y) = G−
ϕ (y, x)

(see Lemma 4.6) and Gij
ϕ = Gji

ϕ . �

5. Structure of the Space of Microcausal Functionals

The first point of emphasis is to give a topology to Fμc(B,U , g). The simplest
guess, as well as the weakest, on Fμc(B,U , g) is the initial topology induced
by the mappings

F → F (ϕ) ∈ R.

Taking into account smoothness of functionals, we could refine the above topol-
ogy by requiring continuity of

F → F (ϕ) ∈ R,

F → ∇kFϕ[0] ∈ Γ−∞
c

(
Mk ← �k (ϕ∗V B)

)
.

This time we are leaving out all information on the wave front set which plays
a role in defining microcausal functionals. To remedy this, we would like to
set up the Hörmander topology on the spaces Γ−∞

Υk,g

(
Mk ← �k (ϕ∗V B)

)
. This

is, however, not immediately possible since the sets Υk,g are open cones, and
the Hörmander topology requires closed ones. To tackle this issue, we need the
following result:



Non-trivial Bundles and Algebraic

Lemma 5.1. Given the open cone Υk(g), it is possible to find a sequence of
closed cones {Vm(k) ⊂ T ∗Mk}m∈N such that Vm(k) ⊂ Int(Vm+1(k)) and
∪m∈NVm(k) = Υk(g) for all k ≥ 1.

We refer to [9, Lemma 4.1] for the proof of the above result. We are then
able to topologize the distributional space Γ−∞

c Υk,g

(
Mk ← �k (ϕ∗V B)

)
.

Lemma 5.2. The topology on Γ−∞
c Υk,g

(
Mk ← �k (ϕ∗V B)

)
induced as a direct

limit topology of the spaces Γ−∞
c Vm(k)

(
Mk ← �k (ϕ∗V B)

)
each possessing the

Hörmander topology is a Hausdorff nuclear locally convex space.

Proof. By Lemma 5.1, we have

Γ−∞
c Υk(g)

(
Mk ← �kϕ∗V B

)
= lim

m∈N−−→
Γ−∞

c Vm(k)

(
Mk ← �kϕ∗V B

)
. (61)

By construction of the direct limit, we have mappings

Γ−∞
c Vm(k)

(
Mk ← �k (ϕ∗V B)

)→ Γ−∞
c Υk(g)

(
Mk ← �k (ϕ∗V B)

)

where each source space can be given the Hörmander topology. In particular, by
the remark after [31, Theorem 18.1.28], when dealing with standard compactly
supported distributions, the limit topology can be defined to be the initial
topology with respect to the mappings

F → F (ϕ) ∈ C,

F → PF ∈ Γ∞
c

(
Mk ← �k (ϕ∗V B)

)

where ϕ is any smooth section of B → M and P any properly supported
pseudo-differential operator of order zero on the vector bundle �k (ϕ∗V B)→
Mk such that WF(P )∩Vm(k) = ∅. Generalizing to vector bundles [31, Defini-
tion 18.1.32, Theorem 18.1.16] and [32, Theorem 8.2.13] using (34) for the wave
front set of vector-valued distributions; we can argue as in [9, Corollary 4.1, p.
50] that each Γ−∞

c Vm(k)

(
Mk ← �k (ϕ∗V B)

)
is a Hausdorff topological space.

By Theorem B.11, since the base manifold M is separable and the fibers are
finite-dimensional vector spaces, Γ∞

c

(
Mk ← �k (ϕ∗V B)

)
is a nuclear Haus-

dorff LF space, and thus, each dual

Γ−∞
c Vm(k)

(
Mk ← �k (ϕ∗V B)

)

is nuclear as well. Finally, by [46, Proposition 50.1, p. 514] the direct limit
topology on

Γ−∞
c Υk,g

(
Mk ← �k(ϕ∗V B)

)

is nuclear for all k (and also Hausdorff). �
Theorem 5.3. Given the set Fμc(B,U , g), consider the mappings

Fμc(B,U , g) � F �→ F (ϕ) ∈ R, (62)

Fμc(B,U , g) � F �→ ∇kFϕ[0] ∈ Γ−∞
c Υk,g

(
Mk ← �k (ϕ∗V B)

)
, (63)

and the related initial topology on Fμc(B,U , g). Then, Fμc(B,U , g) is a nuclear
locally convex topological space with a Poisson *-algebra with respect to the
Peierls bracket of some microlocal generalized Lagrangian L.
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Proof. Nuclearity follows from the stability of nuclear spaces under projective
limit topology (see, e.g., [46, Proposition 50.1 pp. 514]) using the nuclearity
of both Γ−∞

c Υk,g

(
Mk ← �k (ϕ∗V B)

)
(by Lemma 5.2) and R (trivially). The

Peierls bracket is well defined by Theorem 4.13 and satisfies the Jacobi identity
due to Theorem 4.14, and thus, we are left with the Leibniz rule, that is,

{F,GH}L = G{F,H}L + {F,G}LH.

Using d(F ·G)ϕ[0] = dFϕ[0]G(ϕ)+F (ϕ)dGϕ[0], Leibniz rule follows if we show
that the product F,G �→ F ·G is closed in Fμc(B,U , g).

dk(F ·G)ϕ[0]( �X1, . . . , �Xk) =
∑

σ∈P(1,...,k)

k∑

l=0

dlFϕ[0]( �Xσ(1), . . . , �Xσ(l))

dk−lGϕ[0]( �Xσ(k−l+1), . . . , �Xσ(k)),

where P(1, . . . , k) is the set of permutations of {1, . . . , k}. For each of those
terms, using [32, Theorem 8.2.9], we have

WF(F (l)
ϕ [0]G(k−l)

ϕ [0]) ⊂WF(F (l)
ϕ [0])×WF(G(k−l)

ϕ [0])
⋃

WF(G(k−l)
ϕ [0])×

(
supp(G(k−l)

ϕ [0])× {0}
)

⋃(
supp(F (l)

ϕ [0])× {0}
)
×WF(G(k−l)

ϕ [0]),

implying microcausality of F ·G. �

Notice that closed linear subspaces of Fμc(B,U , g) are nuclear as well
(see, e.g., [46, Proposition 50.1, p. 514]), thus Fμloc(B,U , g) is a Hausdorff
nuclear space. The space Fμc(B,U , g) can be given a C∞-ring structure8, more
precisely

Proposition 5.4. If F1, . . . , Fn ∈ Fμc(B,U , g) and ψ ∈ V ⊂ R
n → R is smooth,

then ψ(F1, . . . , Fn) ∈ Fμc(B,U , g) and

supp(ψ(F1, . . . , Fn)) ⊂
n⋃

i=1

supp(Fi).

Proof. First we check the support properties. Suppose that x /∈ ∪n
i=1supp(Fi),

we can find an open neighborhood V of x for which given any ϕ ∈ U and
any �X ∈ Γ∞

c (M ← ϕ∗V B) having supp( �X) ⊂ V implies (Fi ◦ uϕ)(t �X) =
(Fi ◦ uϕ)(0) for all t in a suitable neighborhood of 0 ∈ R. Then, ψ

(
(F1 ◦

uϕ)(t �X), . . . , (Fn ◦ uϕ)(t �X)
)

= ψ
(
(F1 ◦ uϕ)(0), . . . , (Fn ◦ uϕ)(0)

)
as well, im-

plying x /∈ supp(ψ◦(F1, . . . , Fn)). Due to (ii) Proposition B.13 and smoothness

8An algebra A has the C∞-ring structure if, given any a1, . . . , an ∈ A, f ∈ C∞(Kn, K),
there are mappings ρf : ×nA → A such that if g ∈ C∞(Km, K), fi ∈ C∞(Kn, K) with
i = 1, . . . , m, then

ρh

(
ρf1 (a1, . . . , an), . . . , ρfm (a1, . . . , an)

)
= ρh◦(f1,...,fm)(a1, . . . , an).

The field K can either be R or C.



Non-trivial Bundles and Algebraic

of f , we see that the composition f ◦ (F1, . . . , Fn) is Bastiani smooth. Its kth
derivative is

dkψ(F1, . . . , F1)ϕ[0]( �X1, . . . , �Xk)

=
∑

(J1,...,Jn)
∈P(1,...,k)

∂kψ(F1(ϕ), . . . , Fn(ϕ))
∂zJ1+···+Jn

(
F

(|J1|)
1 ϕ [0]( �Xj1,1 , . . . , �Xj|J1|,1) · . . .

·F (|Jn|)
n ϕ [0]( �Xj1,n

, . . . , �Xj|Jn|,n)
)

where J1, . . . , Jn denotes a partition of {1, . . . , k} into n subsets and z ∈ R
n.

Since ψ is smooth, the only contribution to the wave front set of the compo-
sition is the product of functional derivatives in the above sum for which, [32,
Theorem 8.2.9], gives

WF
(
F

(|J1|)
1 , . . . , F (|Jn|)

n

)
⊂ WF

(
F

(|J1|)
1 ϕ

)
× . . .×WF

(
F (|Jn|)

n ϕ

)

⋃
supp

(
F

(|J1|)
1 ϕ

)
× {�0}|J1| ×WF

(
F

(|J2|)
2 ϕ

)
× . . .×WF

(
F (|Jn|)

n ϕ

)

. . .
⋃

WF
(
F

(|J1|)
1 ϕ

)
× . . .×WF

(
F

(|Jn−1|)
n−1 ϕ

)
× supp

(
F (|Jn|)

n ϕ

)
× {�0}|Jn|

. . .
⋃

supp
(
F

(|J1|)
1 ϕ

)
× {�0}|J1| × . . .× supp

(
F

(|Jn−1|)
n−1 ϕ

)

× {�0}|Jn−1| ×WF
(
F (|Jn|)

n ϕ

)
.

Therefore, if any element of WF
(
F

(|J1|)
1 , . . . , F

(|Jn|)
n

)
was contained in either

V
k

+,g or V
k

−,g then at least one of the starting functionals would not be micro-
causal. �

Going through the same calculation for the proof of Proposition 5.4, we
get the expression for the Peierls bracket of this composition:

{ψ(F1, . . . , Fn), G}L =
n∑

j=1

(
∂ψ

∂zj
(F1, . . . , Fn){Fj , G}L

)
. (64)

Remark 5.5. With the topology of Theorem 5.3, the space of microcausal func-
tionals lacks sequential completeness. Consider as an example the simpler case
where B = M × R, then let F : ϕ ∈ U �→ ∫

M
ϕ(x)ω for some smooth com-

pactly supported m-form ω over M , and also let {fn} be a sequence of smooth
functions fn : R → [0, 1] supported in [−2, 2] and converging pointwise to
the characteristic function χ[−1,1] of [−1, 1]. Sequences of derivatives of fn all
converge pointwise to the zero function on R. If we define Fn(ϕ) = fn ◦ F (ϕ),
then Fn(ϕ)→ χ[−1,1] ◦ F (ϕ) and each

F (k)
n ϕ[0](ψ1, . . . , ψk) = f (k)

n (F (ϕ))
∫

M

ψ1(x)ω(x) . . .

∫

M

ψk(x)ω(x)
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converges pointwise to the zero functional in the topology of Theorem 5.3.
However, χ[−1,1] ◦ F (·) is not even continuous, let alone microcausal.

Proposition 5.6. We can endow Fμc(B,U , g) with a nuclear, locally convex
topology τsc, called the strong convenient topology, generated by strengthening
(62), (63) with the seminorms

‖F‖k,I,ϕ,B
.= sup

t∈I⊂R

γ∈C∞(R,U0)

( �X1,..., �Xk)∈B⊂�kΓ∞(M←ϕ∗V B)

∣∣∇(k)F [γ(t)]( �X1, . . . , �Xk)
∣∣,

(65)

where k ∈ N, I ⊂ R is a compact interval, ϕ ∈ U and B ⊂ �kΓ∞(M ← ϕ∗V B)
is a closed, bounded subset.

Sketch of a proof. Similarly to Lemma 3.12, we rely on [9, Remark 4.3, pp. 53]
for the full discussion and highlight the key differences in our setting. We start
with the following observations:
• in any CO-open subset U of Γ∞(M ← B) the Bastiani smooth curves

γ : I ⊆ R→ U are precisely the conveniently smooth curves from I to U ;
• each U can be decomposed as the disjoint union of CO-open subsets
%ϕ∈UU ∩Vϕ, each of which is topologically isomorphic to an open subset
of Γ∞

c (M ← ϕ∗V B) with the LF topology;
• by Corollary B.8 we see that each smooth curve γ : I → U is just valued

in some Vϕ for some ϕ ∈ U .
• given ϕ0 ∈ U , we can consider the ultralocal chart representation Fϕ0 :
U0 ≡ uϕ0(U ∩ Uϕ0)→ R of any functional F ∈ Fc(U , B);

• similarly to Remark 3.11, using the fact that the functional has compact
support we can extend it to F̃ϕ0 =: Ũ0 ⊂ Γ∞(M ← ϕ∗

0V B) → R where
Ũ0 is CO-open;

• if we equip Γ∞(M ← ϕ∗
0V B) with the CO-open topology, then it becomes

a Fréchet space (the compact-open topology is equivalent to the topology
of uniform convergence on compact subsets), thus, on Ũ0, the notions of
Bastiani smoothness and convenient smoothness do coincide by [35, (1)
Theorem 4.11, pp. 39] and [23, Theorem 1, pp. 71].
Next we claim that we can write

C∞(Ũ0, R) = lim←−
γ̃∈C∞(R,Ũ0)

C∞(R, R)

=

⎧
⎨

⎩
{F̃}γ̃ ∈

∏

γ̃∈C∞(R,Ũ0)

C∞(R, R) : F̃γ̃ ◦ κ = F̃γ̃◦κ

⎫
⎬

⎭
(66)

where the inverse limit is taken with respect to the pre-order γ ≤ γ′ if and
only if there is κ ∈ C∞(R, R) with γ = γ′ ◦κ. To wit, notice that any mapping
Fγ such that Fγ ◦ g = Fγ◦g for all reparameterization g ∈ C∞(R, R) gives rise
to a mapping F : Ũ0 → Y by setting F (ϕ) = Fγϕ

(t) where γϕ : t �→ ϕ ∈ Ũ0

is the constant curve if g is any reparameterization, then Fγϕ
◦ g = Fγϕ◦g but
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γ ◦ g(t) ≡ ϕ thus F is not altered; finally F is smooth since F ◦ γ ≡ Fγ ∈
C∞(R, R). On the other hand, any smooth function F : Ũ0 → R gives rise
to {Fγ}γ by setting Fγ = F ◦ γ, then Fγ ◦ g = F ◦ γ ◦ g = Fγ◦g for any
g ∈ C∞(R, R).

We induce on C∞(Ũ0, R) the initial topology from the Fréchet space
topology on C∞(R, R) through the pullbacks γ∗. This is a nuclear and com-
plete topology (see the discussion in remark 4.3, pp. 55 on [9]); finally, since
Fc(B,U0) is closed in C∞(Ũ0, R), nuclearity and completeness are inherited in
the quotient topology. This space is even a locally convex topological vector
space with the seminorms

sup
t∈I⊂R

γ∈C∞(R,U0)

( �X1,..., �Xk)∈B⊂�kΓ∞(M←ϕ∗V B)

∣∣∇(k)F [γ(t)]( �X1, . . . , �Xk)
∣∣, (67)

where I, B are as in (65).
Finally, we can induce a topology τsc, which we call the strong convenient

topology, on Fμc(B,U , g) by substituting the seminorms (67) in place of (62)
and (63). τsc will enjoy the following additional properties:
(a) it remains a nuclear locally convex space topology;
(b) it will have a well-controlled and nuclear9 completion, i.e., its completion

is equivalent to the initial topology induced from the completion of the
spaces Γ−∞

c Υk,g
(M ← ϕ∗V B);

(c) the Poisson *-algebra and C∞-ring operations are continuous and remain
such when passing to the completion described in (b), thanks to the
results in [5]. �
Prior to the next result, let us recall some notions from [35, § 16]. A

topological space (X, τ) is Lindelöf if given any open cover of X there is a
countable open subcover, it is separable if it admits a countable dense subset,
and it is second countable if it admits a countable basis for the topology.

Let X be a Hausdorff locally convex topological space, possibly infinite
dimensional, and S ⊂ C(X, R) a subalgebra. We say that X is S-normal if for
all closed disjoint subsets A0, A1 of X there is some f ∈ S such that f |Ai

= i,
while we say it is S-regular if for any neighborhood U of a point x there exists
a function f ∈ S such that f(x) = 1 and supp(f) ⊂ U . A S-partition of unity
is a family {ψj}j∈J of mappings S � ψj : X → R with

(i) ψj(x) ≥ 0 for all j ∈ J and x ∈ X;
(ii) the set {supp(ψj) : j ∈ J} is a locally finite covering of X,
(iii)

∑
j∈J ψj(x) = 1 for all x ∈ X.

When X admits such partition we say it is S-paracompact.
Proposition 5.7. The following facts hold true:

(i) Given any U ⊂ Γ∞(M ← B) CO-open and any ϕ0 ∈ U there is some F ∈
Fμc(B,U , g) such that F (ϕ0) = 1, 0 ≤ F |U ≤ 1 and F |Γ∞(M←B)\Uϕ0

= 0,
i.e., U is Fμc(B,ϕ0, g)-regular.

9See Proposition 5.3.1 in [44].
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(ii) Any U ⊂ Γ∞(M ← B) CO-open admits locally finite partitions of unity
belonging to Fμc(B,U , g), i.e., U is Fμc(B,ϕ0, g)-paracompact.

(iii) Given any U ⊂ Γ∞(M ← B) CO-open, the algebra Fμc(B,U , g) separates
the points of U , i.e., if ϕ1 �= ϕ2, there is a microcausal functional F that
has F (ϕ1) �= F (ϕ2).

Proof. To show (i), take any chart (Uϕ0 , uϕ0) and consider the open subset U∩
Uϕ0 , fix some compact set K ⊂M and some ω ∈ Γ∞

c (M ← ϕ∗V B′⊗Λm(M))
with supp(ω) ⊂ K. Define a functional

Gω : U ∩ Uϕ0 � ϕ �→ Gω(ϕ) =
∫

M

ω(uϕ0(ϕ)).

By construction G(ϕ0) = 0. Let now W = {ϕ ∈ U ∩ U0 : G(ϕ) < ε2} for some
constant ε, then if χ ∈ C∞

c (R) with 0 ≤ χ ≤ 1, χ(t) = 0 for |t| ≥ 1, χ(t) = 1 for
t ∈ [− 1

2 , 1
2 ]. Consider the new functional F = χ ◦ ( 1

ε2 G), since G is microlocal,
χ is smooth, by Propositions 4.11 and 5.4, F is microcausal. Outside W, F is
identically zero so we can smoothly extend it to zero over the rest of U to a new
functional, which we denote always by F , that has the required properties. We
first show that (ii) holds for Uϕ. Using the chart (Uϕ, uϕ), we can identify Uϕ

with an open subset of Γ∞
c (M ← ϕ∗V B). If we show that Uϕ is Lindelöf and is

Fμc(B,ϕ0, g)-regular, then we can conclude by [35, Theorem 16.10, pp. 171].
Fμc(B,U , g)-regularity was point (i) while the Lindelöf property follows from
Theorem B.11. Now, we observe that any U can be obtained as the disjoint
union of subsets Vϕ0

.= {ψ ∈ U : suppϕ0
(ψ) is compact}. Each of those is

Lindelöf and metrizable by Theorem B.11, so given the open cover {Uϕ}ϕ∈Vϕ0
,

we can extract a locally finite subcover where each elements admits a partition
of unity and then construct a partition of unity for the whole Vϕ0 . The fact that
U = %Vϕ0 implies that the final partition of unity is the union of all others.
Finally for (iii) just take Uϕ1 , Uϕ2 and F as in (i) constructed as follows: If
ϕ2 ∈ Uϕ1 , we choose ε < G(ϕ2) for which F (ϕ1) �= F (ϕ2), if not then any
ε > 0 suffices. �
Definition 5.8. Let U ⊂ Γ∞(M ← B) be CO-open and L a generalized mi-
crolocal Lagrangian. We define the on-shell ideal associated with L as the
subspace IL(B,U , g) ⊂ Fμc(B,U , g) whose microcausal functionals are of the
form

F (ϕ) = �Xϕ (E(L)ϕ[0]) (68)

with X : U → TU : ϕ �→ (ϕ, �Xϕ) is a smooth vector field.

With our usual integral kernel notation, we can also write (68) as

F (ϕ) =
∫

M

�Xi
ϕ(x)E(L)ϕ[0]i(x)dμg(x). (69)

We stress that functionals of the form (68) are those which can be seen as the
derivation of the Euler–Lagrange derivative by kinematical vector fields over
U ⊂ Γ∞(M ← B).

Proposition 5.9. IL(B,U , g) is a Poisson ∗-ideal of Fμc(B,U , g).
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Proof. If G ∈ Fμc(B,U , g), G · F (ϕ) = G(ϕ)X(ϕ) (E(L)ϕ[0]). Then, X ′ =
G · X ∈ X(TU) and G · F is in the ideal and is associated with the new
vector field X ′. Finally, we have to show that if F ∈ IL(B,U , g) then also
{F,G}L ∈ IL(B,U , g). Fix ϕ ∈ U , �Yϕ ∈ TϕU , by the chain rule

dFϕ[0]( �Yϕ) =
∫

M

[ �X(1)
ϕ [0]i( �Yϕ) (E(L)ϕ[0]i) + �Xi

ϕ

(
E(1)(L)ϕ[0]i( �Yϕ)

)]
dμg

and

{F,G}L(ϕ) = 〈dFϕ[0],GϕdGϕ[0]〉

=
∫

M

[ �X(1)
ϕ [0]ij

(
Gjk

ϕ g(1)
ϕ [0]k

)
(E(L)ϕ[0]i)

+ �Xi
ϕ

(
E(1)(L)ϕ[0]ij

(
Gjk

ϕ g(1)
ϕ [0]k

))]
dμg

=
∫

M

{[ �X(1)
ϕ [0]ij

(
Gjk

ϕ g(1)
ϕ [0]k

)]
(E(L)ϕ[0]i)

}
dμg

where we used that Gϕ associates with its argument a solution of the linearized

equations. Defining ϕ �→ �Zϕ = �X(1)
ϕ [0]ij

(
Gjk

ϕ g
(1)
ϕ [0]k

)
∂i ∈ Γ∞

c (M ← ϕ∗V B)
yields a smooth mapping (by smoothness of X, the functional G and the
propagator Gϕ) defining the desired vector field. �

Definition 5.10. Let U ⊂ Γ∞(M ← B) be CO-open and L a generalized mi-
crolocal Lagrangian. We define the on-shell algebra on U associated with L as
the quotient

FL(B,U , g) .= Fμc(B,U , g)/IL(B,U , g). (70)

This accounts for the algebra of observables once the condition E(L)ϕ[0] =
0 has been imposed on U .

6. Wave Maps

Finally, we introduce, as an example of physical theory, wave maps. The con-
figuration bundle is B = M × N , where M is an m-dimensional Lorentzian
manifold and N an n-dimensional manifold equipped with a Riemannian met-
ric h. The space of sections is canonically isomorphic to C∞(M,N) and pos-
sess a differentiable structure induced by the atlas

{(Uϕ, uϕ,Γ∞
c (M ← ϕ∗

TN)
)}

ϕ∈C∞(M,N)
, where uϕ is given in (88). The generalized Lagrangian for

wave maps is

LWM(f)(ϕ) =
1
2

∫

M

f(x)Trace(g−1 ◦ (ϕ∗h))(x)dμg(x); (71)

obtained by integration of the standard geometric Lagrangian density λ =
1
2gμνhij(ϕ)ϕi

μϕj
νdμg smeared with a test function f ∈ C∞

c (M). Computing the
first functional derivative, as per (30), we get the associated Euler–Lagrange
equations which, written in jets coordinates, reads

hijg
μν

(
ϕi

μν + {h}iklϕ
k
μϕl

ν − {g}λμνϕi
λ

)
= 0, (72)
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where we denoted by {h}, {g} the coefficients of the Levi-Civita linear connec-
tion associated with h and g, respectively. Computation of the second Euler
derivative of (71) yields

δ(1)E(LWM )ϕ[0] : Γ∞
c (M ← ϕ∗TN)× Γ∞

c (M ← ϕ∗TN)→ R

( �X, �Y ) �→
∫

M

1
2
[
gμν(x)hij(ϕ(x))∇μXi(x)∇νY j(x)

+Aμ
ij(ϕ(x))

(∇μXi(x)Y j(x) +∇μY i(x)Xj(x)
)

+ Bij(ϕ(x))Xi(x)Y j(x)
]
dμg(x) , (73)

where we choose f ≡ 1 in a neighborhood of supp( �X)∪supp( �Y ) as done before.
One can show (see, e.g., [13, § 4.6, pp. 130]) that the coefficients Aμ

ij always
vanish and

δ(1)E(LWM )ϕ[0]( �X, �Y )

=
∫

M

1
2
(
gμν(x)hij(ϕ(x))∇μXi(x)∇νY j(x)

+ Rk
ilj(ϕ(x))pα

k (ϕ(x))ϕl
α(x)Xi(x)Y j(x)

)
dμg(x)

where R are the components of the Riemann tensor of the Riemannian metric
h, and pα

k
.= ∂λ

∂yk
α

is the conjugate momenta of the Lagrangian density λ. It is
evident that the induced differential operator Dϕ can be locally expressed as

Dϕ( �X)(x) =
(
gμν(x)hij(ϕ(x))∇μν

�Xi(x)

+Rk
ilj(ϕ(x))pα

k (ϕ(x))ϕl
α(x)Xi(x)

)
dyj

∣∣
ϕ(x)

, (74)

where dyj
∣
∣
ϕ(x)

is the vertical differential of the bundle M × N evaluated at
ϕ(x) ∈ N . The associated principal symbol is

σ2(Dϕ) =
1
2
gμν ∂

∂xν

∂

∂xμ
⊗ idϕ∗TN .

Theorem 4.1 then ensures the existence of the advanced and retarded propa-
gators for Wave Maps G±

WM [ϕ]. Their difference defines the causal propagator
and consequently the Peierls bracket as in Definition 4.7. For greater clarity,
let us write the expression of the causal propagator when m = 4.

We start by writing a parametrix for the differential operator (74), we
shall use its coefficients to determine the form of the (unique) advanced and
retarded fundamental solutions which in turn give the causal propagator. We
shall assume, in order to be able to write explicitly the above quantities, to
have chosen a suitable neighborhood O of the diagonal of M2 such that

• for each (x, y) ∈ O there is a geodesically convex normal open set Ω
containing both x and y;
• If Ω, Ω′ are geodesically convex normal sets, then their intersection is

still geodesically convex.

This is always possible in view of [39, Theorem 10, pp. 130].
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Any distributional section H ∈ Γ−∞(M2 ← �2ϕ∗TN) can be written,
by choosing trivializations on the vector bundle, as

Hϕ(x, y) = Hai(ϕ(x), ϕ(y))∂a|ϕ(x) � ∂i|ϕ(y).

where each Hai ∈ D′(M ×M). H is a parametrix if

Dϕ(x)Hϕ(x, ·)− δx ∈ C∞(M) , Dϕ(y)Hϕ(·, y)− δy ∈ C∞(M).

For notational convenience, we shall omit the subscript ϕ from the operator
Dϕ introduced in (74). One can show, using, e.g., [22, Theorem 4.2.1, pp. 131,
Theorem 4.3.1 and Lemma 4.3.2, pp. 142], that

Hai(x, y) =
1
2π

Uai(x, y)
σ(x, y)

+ Ṽ ai(x, y) , (75)

where σ(x, y) is the squared geodesic distance between x and y, Ṽ ai(x, y) =
∑

l≥0 V ai
l (x, y)σl(x,y)

l! ρ(clσ(x, y)) with ρ ∈ C∞
c (R), ck ↗ ∞ and Uai, V ai ∈

C∞(M ×M) are the solution of the differential equations involving the so-
called van Vleck–Morette determinant Δ:

gμν∇μσ
(
∇νUai − 1

2
∇νΔ

Δ
Uai

)
= 0,

V ai
0 + gμν∇μσ

(
∇νV ai

0 −
1
2
∇νΔ

Δ
V ai

0

)
= −1

2
DUai,

V ai
l +

1
l + 1

gμν∇μσ
(
∇νV ai

l −
1
2
∇νΔ

Δ
V ai

l

)
= − 1

2l(l + 1)
DV ai

l−1.

The calculations show that Hϕ is symmetric in its variables, and moreover, we
can equivalently write Dϕ(x)Hϕ(x, ·)− δx ∈ C∞(M) as

∫

M

Dϕ ab(x)Hai(x, y) �Xb(x)dμg(x)

= �Xi(y) +
∫

M

Dab(x)W ai(x, y) �Xb(x)dμg(x) ∀ �X ∈ TϕC∞(M,N) ,

where W ∈ Γ∞(M2 ← �2(ϕ∗TN)) denotes the smooth reminder which forbids
H from being a solution. To get the fundamental solutions from the parametrix,
we denote by δ±(σ), θ±(σ) ∈ D′(O) the distributions defined by

δ±(σ) = lim
ε↘0

δ(σ ∓ ε)

θ±(σ)(x, y) =

{
1 if x ∈ J±(y) ,

0 if x /∈ J±(y);

then, we can show (see, e.g., [22, Theorem 4.5.1, pp. 154]) that

G±
ϕ

.=
1
2π

(
Uδ±(σ) + V±

)
, (76)

with V± ∈ Γ∞(M2 ← �2(ϕ∗TN)), supp(V±) = supp
(
θ±(σ)

)
, are the unique

advanced and retarded fundamental solutions. Equivalently, for all �X ∈ Γ∞
c (M
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← ϕ∗TN),
∫

M

Dab(x)Gai
± (x, y) �Xb(x)dμg(x) = �Xi(y).

In particular,

V ai
± (x, y) = Ṽ ai(x, y) +

∫

J±(y)∩J∓(x)

Ṽ aj(x, z)Li
j(z, y)dμg(z)

+
∫

J±(y)∩∂J∓(x)

Ũaj(x, z)Li
j(z, y)dμσ(z) ,

(77)

where dμσ ≡ dμg|σ=0, L ∈ Γ∞(M2 ← ϕ∗TN ′ � ϕ∗TN) is the inverse kernel
of DW ∈ Γ∞(M2 ← ϕ∗TN � ϕ∗TN ′) (see [22, Lemma 4.4.2, pp. 149 and
Theorem 4.4.2, pp. 150] for the existence of the inverse kernel), i.e., it satisfies

�Xi(y) +
∫

M

DW i
a(x, y) �Xa(x)dμg(x) = �Y i(y) ≡

∫

M

DHi
a(x, y) �Xa(x)dμg(x)

⇔ �Xa(x) = �Y a(x) +
∫

M

La
i (x, y) �Y i(y)dμg(y).

Finally, we can write the causal propagator as

Gϕ = G+
ϕ − G−

ϕ =
1
2π

[
U
(
δ+(Γ)− δ−(Γ)

)
+ V+ − V−

]
. (78)

The results of Sects. 4 5 do apply to wave maps: It is therefore possible to
obtain a ∗-Poisson algebra generated by microcausal functionals Fμc(M×N, g)
and endow the latter space with the topology of a nuclear locally convex space.

7. Conclusions and Outlook

With the present paper, we have partially explored the generalization of [9] to
the space of configurations which are general fiber bundles. We remark that
the main technical difficulties are the lack of a vector space structure for im-
ages of fields and the fact that while C∞(M) is a Fréchet space, Γ∞(M ← B)
is not even a vector space. This forces us to use a manifold structure for
Γ∞(M ← B) and an appropriate calculus as well. For the manifold structure,
we choose locally convex spaces as modeling topological vector spaces. The
notion of smooth mappings is, however, not unique; for instance, one could
have used the convenient calculus of [35]; however, this calculus has the rather
surprising property that smooth mappings need not be continuous (see [25] for
an example). This is rather annoying in view of the heavy usage of distribu-
tional spaces in Sects. 4 and 5, and therefore, we deemed more fitting Bastiani
calculus (see [2,37]).

As in the case of finite-dimensional differentiable manifolds—where geo-
metric properties can equivalently be described locally but are independent
from the local chart used—here too we tried to establish, where possible, inde-
pendence from the choice of ultralocal charts. It stands out that the character-
ization of microlocality by Proposition 3.13 is, to the best of our knowledge,
inherently chart dependent. Notice that a sufficient condition to avoid this
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unpleasant fact is to provide a combination of topological conditions on the
bundle and regularity conditions on the integral kernel of the first derivative
of the functional. A noteworthy question would be which additional hypothe-
ses, if any, could one add to Proposition 3.13 to make the characterization of
microlocal functionals intrinsic.

Another possible interesting point to develop in the future is the time-
slice axiom [12,14,29] in this classical setting. Here, however, we would need
more structural insights coming from the full equation of motion, not only the
linearized version that we use in the paper (see, e.g., [10]).

Finally, we mention that the definition we use of wave front set for distri-
butional sections of vector bundles, see 2, does leave some space for improve-
ment, in particular one could use the refined notion of polarization wave front
sets which appeared in [16] and attempt to re-derive all important result with
this finer notion of singularity.
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Appendix A: Bastiani Calculus

The notion of calculus in locally convex spaces we need is the so-called Bastiani
calculus, and its origin can be traced back to [2,37]. Here, we introduce the
basic definitions and properties.

In the sequel, we will use complete locally convex spaces and denote them
by capital letters X, Y , Z.

Definition A.1. Let U ⊂ X be an open subset, a mapping P : U ⊂ X → Y is
Bastiani differentiable if the following conditions hold:

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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(i) limt→0
1
t

(
P (x+tv)−P (x)

)
= dP [x](v) exists for all x ∈ U , v ∈ X, giving

rise to a mapping dP : U ×X → Y linear in the second entry;
(ii) The mapping dP : U ×X → Y, (x, v) �→ dP [x](v) is jointly continuous.

Theorem A.2. Let γ : [a, b] ⊂ R→ X be a continuous curve, then there exists
a unique object

∫ b

a
γ(t)dt ∈ X such that

(i) for every continuous linear mapping l : X → R

l

(∫ b

a

γ(t)dt

)
=

∫ b

a

l(γ(t))dt;

(ii) for every seminorm pi on X,

pi

(∫ b

a

γ(t)dt

)
≤

∫ b

a

pi(γ(t))dt;

(iii) for all continuous curves γ, β,
∫ b

a

(
γ(t)+β(t)

)
dt =

∫ b

a
γ(t)dt+

∫ b

a
β(t)

)
dt;

(iv) for all λ ∈ R,
∫ b

a

(
λγ(t)

)
dt = λ

(
∫ b

a
γ(t)dt

)
;

(v) for all a ≤ c ≤ b,
∫ b

a
γ(t)dt =

∫ c

a
γ(t)dt +

∫ b

c
γ(t)dt.

The proof of this result is quite standard (see, e.g., [30, Theorem 2.2.1,
pp. 71]).

Lemma A.3. Let U ⊂ X, V ⊂ Y be open subsets, and let P : U → Y and
Q : V → Z be Bastiani differentiable mappings such that P (U) ⊂ V , then Q ◦
P : U → Z is Bastiani differentiable and d(Q◦P )[x](v) = dQ[P (x)]

(
dP [x](v)

)

for each x ∈ U , v ∈ X.

Proof. We claim that P is Bastiani differentiable if and only if there is a
continuous mapping L : U × U ×X → Y linear in the third entry such that

P (x1)− P (x2) = L[x1, x2](x1 − x2).

In particular, we have L[x, x](v) = dP [x](v). The necessity condition follows
by considering the smooth curve γ(t) = x1 + t(x2 − x1) with t ∈ [0, 1], then
dP [γ(t)](v) is a smooth curve for each v ∈ X, and by A.2, define

L[x1, x2](v) .=
∫ 1

0

dP [γ(t)](v)dt.

It is clear that L is continuous and linear in the third entry, and moreover, since
d
dtP (γ(t)) = dP [γ(t)](x1−x2), we get L[x1, x2](x1−x2) = dP [x1](x1−x2). For
the sufficiency condition, just note that 1

t

(
P (x+ tv)−P (x)

)
= L(x, x+ tv)[v],

so taking the limit we get our claim. Next suppose that

P (x1)− P (x2) = L[x1, x2](x1 − x2),
Q(y1)−Q(y2) = M [y1, y2](y1 − y2).

Then, Q(P (x + tv)) − Q(P (x)) = M [P (x + tv), P (x)]
(
P (x + tv) − P (x)

)
=

tM [P (x + tv), P (x)]
(
L[x + tv, x](v)

)
, thus dividing by t and taking the limit

yields d(Q◦P )[x](v) ≡M [P (x), P (x)]
(
L[x, x](v)

)
= dQ[P (x)]

(
dP [x](v)

)
. �
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Definition A.4. A mapping f : U ⊂ X → Y is k times Bastiani differentiable
if dk−1f : U ×X · · · ×X → Y is Bastiani differentiable. The kth derivative of
f at x is defined by recursion

dkf [x](v1, . . . , vk) .= lim
t→0

1
t

(
dk−1f [x + tvk](v1, . . . , vk−1)

−dk−1f [x + tvk](v1, . . . , vk−1)
)
. (79)

Explicit computation of d
(
dk−1f

)
in (x, v1, . . . , vk−1) yields

d
(
dk−1f

)
[x, v1, . . . , vk−1](vk, w1, . . . , wk−1)

=
k−1∑

j=1

dk−1f [x](v1, . . . , v̂j , wj , . . . , vk−1)

+ lim
t→0

1
t

(
dk−1f [x + tvk](v1, . . . , vk−1)− dk−1f [x + tvk](v1, . . . , vk−1)

)
,

and we can then see that d
(
dk−1f

)
is Bastiani differentiable if and only if the

limit of (79) exists and is a continuous mapping U × Xk → Y . We can thus
state

Lemma A.5. A mapping f : U ⊂ X → Y is k times Bastiani differentiable if
and only if for each 0 ≤ j ≤ k all the derivative mappings djf : U ×Xj → Y
exist and are jointly continuous.

Appendix B: Topologies on Spaces of Mappings

Let M , N be finite-dimensional paracompact Hausdorff topological spaces, de-
note the space of continuous functions by C(M,N). The compact-open topol-
ogy τCO or CO-topology is the topology generated by a basis whose elements
have the form

N(K,V ) = {ϕ ∈ C(M,N) : ϕ(K) ⊂ V }, (80)

where K ⊂ M is a compact subset and V ⊂ N is open. Roughly speaking,
this topology controls the behavior of functions only on small regions of M ,
whereas their behavior “at infinity” is not specified.

Lemma B.1. Let M , N as described above, if N is normal, then
(
C(M,N), τCO

)

is Hausdorff.

Proof. Supposing ϕ �= ψ, then at least ϕ(x) �= ψ(x) for some x ∈ M . By
continuity of ϕ, ψ there exists an open subset Ux such that ϕ(y) �= ψ(y) for
each y ∈ Ūx. Without loss of generality, we can suppose that Ux is compact,
and then, ϕ(Ux), ψ(Ux) are compact and therefore closed. Since N is normal,
there are disjoint open subsets Vϕ, Vψ, respectively, containing ϕ(Ux), ψ(Ux),
then

N
(
Ux, Vϕ

) ∩N
(
Ux, Vψ

)
= ∅.

�
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Lemma B.2. Let M , N be topological spaces, if N is a complete metric space,
then

(
C(M,N), τCO

)
is a complete metric space as well.

If M is compact and (N, dN ) is metric, then a neighborhood of ϕ in the
compact-open topology can be given as

Bε(ϕ) .= {ψ ∈ C(M,N) : dN

(
ϕ(x), ψ(x)

)
< ε(x) ∀x ∈M

}
,

where ε : M → R+ is a continuous function.
Given ϕ ∈ C(M,N), let Gϕ : M → M × N be the graph mapping

associated with ϕ, set Im(Gϕ) ≡ gh(ϕ) = {(x, ϕ(x)) ∈M ×N : x ∈M}.
Definition B.3. The wholly open topology τWO or WO-topology on C(M,N)
is generated by a subbasis of open subsets of the form

W (V ) = {ϕ ∈ C(M,N) : ϕ(M) ⊂ V }, (81)

where V ⊆ N is open.

Note that the WO-topology is not Hausdorff, for it cannot separate sur-
jective functions.

Definition B.4. The graph topology τWO0 or WO0-topology on C∞(M,N) is
the one induced by requiring

G : C(M,N) � ϕ �→ Gϕ ∈
(
C(M,M ×N), τWO

)

to be an embedding.

By Definition B.3, the open subbasis of C(M,M ×N) is given by subsets
of the form

W (Ṽ ) = {f ∈ C(M,M ×N) : f(M) ⊂ Ṽ }
with Ṽ ⊂ M × N open subsets. When f = Gϕ for some ϕ ∈ C(M,N), then
the trace topology on the subset G

(
C(M,N)

)
is generated by a subbasis of

elements W (Ṽ ) where Ṽ = M × V with V ⊂ N open subset. Clearly, G is an
injective mapping, and bijective onto its image. Therefore, a subbasis for the
WO0-topology is given by

W (Ṽ ) = {ϕ ∈ C(M,N) : Gϕ ⊂M × V } (82)

Lemma B.5. The WO0-topology is finer than the CO-topology and is therefore
Hausdorff.

Proof. We show that idC(M,N) :
(
C(M,N), τWO0

) → (
C(M,N), τCO

)
is con-

tinuous. Let N(K,V ) be an open subset as in (80), and U1, U2 be a cover of
M such that K ⊂ U1 and U2 = M\K. Consider the open subset

W (U1 × V ∪ U2 ×N) = {ϕ ∈ C(M,N) : Gϕ ⊂ U1 × V ∪ U2 ×N};
the former is a WO0-open subset, which is, however, equal to N(K,V ). �
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The main difference from the compact-open topology is that the WO0

topology does control the behavior of a mapping over the whole space, while
the CO topology was limited to a compact region. Notice that although in
general the WO0 topology is finer than the CO topology, when the manifold
M is compact, the two become equivalent.

Lemma B.6. Let M be paracompact and (N, d) be a metric space, then a basis
of neighborhood of ϕ ∈ C(M,N) for the WO0-topology is given by

Wϕ(ε) =
{
ψ ∈ C(M,N) : d

(
ϕ(x), ψ(x)

)
< ε(x) ∀x ∈M

}
, (83)

where ε : M → R+ is continuous.

Proposition B.7. Let M be paracompact and (N, d) be a metric space, then for
any sequence {ϕn} ⊂ C(M,N), the following are equivalent:
(i) ϕn → ϕ in the WO0-topology;
(ii) there exists a compact set K ∈ M such that ϕn

∣∣
M\K

≡ ϕ
∣∣
M\K

for each
n ∈ N, and ϕn → ϕ uniformly on K.

Notice that, due to Proposition B.7, the space C(M,E) with E vector
space is not a topological vector space, in particular the multiplication mapping
cannot be continuous since if λ ∈ R goes to 0, then λ · f �→ 0 unless f = 0
outside some compact subset of M .

Proof. Suppose ϕn → ϕ in the WO0-topology, however, for all K ⊂ M com-
pact, either ϕn �→ ϕ uniformly over K or there is x ∈ M\K such that
ϕn(x) �= ϕ(x). In the first case ϕn �→ ϕ in the CO-topology as well, con-
tradicting the initial hypothesis. In the second case, let {Kn} be an exhaus-
tion of compact subsets of M , then for each n ∈ N there is xn ∈ M\Kn

having ϕn(xn) �= ϕ(xn). Set 0 < εn = supKn
d(ϕn(x), ϕ(x)). For each n, con-

sider the sequence of open neighborhoods of ϕ, Wϕ(εn) as per Lemma B.6,
by construction ϕn /∈ Wϕ(εn) which contradicts the convergence hypothe-
sis. On the other hand, let εn : M → R+ be the constant functions with
εn = supx∈K d(ϕn(x), ϕ(x)), then Wϕ(εn0) ∩ {ϕn} = {ϕ}n>n0 by uniform
convergence over K. Implying ϕn → ϕ in τWO0 . �
Corollary B.8. Let M and N as in Proposition B.7 and γ : I ⊂ R→ (

C(M,N),
τWO0

)
be a continuous mapping with I compact. Then, there exists a compact

K ⊂M such that

γ(t) : x ∈M → N

is constant in M\K for each t ∈ I.

Proof. We argue by contradiction, let Kn be an exhaustion of compact subsets
of M , then for each n ∈ N there is some tn ∈ I, and some xn ∈ M\Kn such
that γ(tn)[xn] �= γ(t)[xn] for at least a t ∈ I. Since {tn} is a sequence on
a compact space, we may assume, eventually passing to a subsequence, that
tn → t0 ∈ I, by construction, {xn} does not admit a cluster point in M .
Finally, by continuity, tn → t0 =⇒ γ(tn) → γ(t) in the WO0-topology, by
Proposition B.7 there has to be a compact subset K such that γ(tn) ≡ γ(t)
outside K thus the sequence {xn} admits a cluster point. �
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From now on, we assume that M , N are smooth m, n-dimensional mani-
folds, respectively, consider the kth-order jet bundle Jk(M,N). Recall as well
the mappings α : Jk(M,N)→M , β : Jk(M,N)→ N .

Definition B.9. The Whitney Ck-topology, or WOk-topology, on Cr(M,N) for
0 ≤ k ≤ r ≤ ∞ is the topology induced by requiring

jk : Cr(M,N)→
(
C
(
M,Jk(M,N)

)
, τWO0

)

to be topological embedding.

Proposition B.10. The WOk-topology on Cr(M,N) enjoys the following prop-
erties:
(i) A subbasis of open subsets of the topology has the form

W (Ũ) = {ϕ ∈ Cr(M,N) : jkϕ(M) ⊂ Ũ} (84)

where Ũ ⊂ Jk(M,N) is an open subset.
(ii) If dk is a metric on Jk(M,N), then a basis of neighborhoods for the

WOk-topology of ϕ ∈ Cr(M,N) is

Nk
ϕ(ε) = {ψ ∈ Cr(M,N) : dk(jk

xψ, jk
xϕ) < ε(x)}

where ε ∈ C(M, R+).
(iii) The sequence {ϕn} ⊂ Ck(M,N) converges to ϕ in the WOk-topology if

and only if there is a compact subset K ⊂M such that ϕn ≡ ϕ in M\K
and jkϕn → jkϕ uniformly over K.

(iv) If I ⊂ R is compact and γ : I → (
Cr(M,N), τWOk

)
is continuous, then

there is a compact subset such that

evxγ : I � t �→ γ(t)[x]

is constant for all x ∈M\K.
(v) WO∞ on C∞(M,N) is the projective limit topology of all WOk-topologies

for 0 ≤ k ≤ ∞.
(vi) A basis of open neighborhood of the WO∞ topology on C∞(M,N) consists

of open subsets

W (Ũ) = {ϕ ∈ C∞(M,N) : j∞ϕ(M) ⊂ Ũ} (85)

where Ũ ⊂ J∞(M,N) is open.
(vii) If {Kn}n is an exhaustion of compact subsets of M , a basis for the WO∞

topology on C∞(M,N) consists of open subsets

M(U, n) = {ϕ ∈ C∞(M,N) : jnf(M\Ko
n) ⊂ Un}

where Un ⊂ Jn(M,N) are open.

Proof. We claim that for the mapping jk : C∞(M,N) → C(M,Jk(M,N))
the WO0 and WO topologies on jk

(
C∞(M,N)

) ⊂ C(M,Jk(M,N)) coincide.
Indeed,

Gjkϕ(M) ⊂M × Jk(M,N) = {(x, jk
xϕ) : x ∈M)} � Jk(M,N),
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where the last is a topological embedding, therefore open subsets of Jk(M,N)
and Gjk(Cr(M,N)) ⊂ M × Jk(M,N) coincide. As a result, we obtain (84)
by combining the above result with (81). (ii) follows by combining (i) with
Lemma B.6. Using that ϕn → ϕ in WOk if and only if jkϕn → jkϕ in WO0

over C(M,Jk(M,N)) in conjunction with Proposition B.7 we get (iii). Sim-
ilarly, (iv) is obtained by combining Corollary B.8 with the above argument.
The argument for (v) and (vi) is the following: The topology on J∞(M,N) is
the coarsest such that each π∞

k : J∞(M,N)→ Jk(M,N) is continuous. Note
that we have an embedding

J∞(M,N) �M ×M J∞(M,N) ↪→M × J∞(M,N).

Therefore, we construct the following commutative diagram

J∞(M,N) M × J∞(M,N)

Jk(M,N) M × Jk(M,N),

π∞
k idM ×π∞

k

where the horizontal mapping are embeddings. Then, a subbasis of C
(
M,J∞

(M,N)
)

for the WO0-topology is

W (U∞) = {j∞ϕ ∈ C∞(M,N) : j∞(M) ⊂ U∞}
with U∞ ⊂ J∞(M,N) open. Finally we show (vii). Let Un ⊂ Jn(M,N) be
open subsets, then each

M(U) = {ϕ ∈ C∞(M,N) : ∀n ∈ N, j∞ϕ(M\Ko
n) ⊂ (π∞

n )−1Un};
is an open subset of the WO∞ topology. Setting Vn = (π∞

0 )−1(U0) ∩ · · · ∩
(π∞

n )−1(Un) we have that

{ϕ ∈ C∞(M,N) : ∀n ∈ N, j∞ϕ(Kn+1\Ko
n) ⊂ Vn} = M(U).

The inclusion ⊃ is clear; for the other, observe that in each region Kn+1\Ko
n

we have the requirement j∞ϕ(Kn+1\Ko
n) ⊂ Vn for all n which is way stronger

then the corresponding j∞ϕ(M\Ko
n) ⊂ (π∞

n )−1Un for all n. Since J∞(M,N)
is a fiber bundle with finite-dimensional base and Fréchet space fiber and has
the coarsest topology making each π∞

k continuous, we may write

M(Ṽ ) = {ϕ ∈ C∞(M,N) : ∀n ∈ N, j∞ϕ(Kn+1\Ko
n) ⊂ Ṽn}.

where each Ṽn ⊂ J∞(M,N) is open. We claim that M(Ṽ ) generates a topology
equivalent to the WO∞ topology. The latter’s open subsets possess the form
(85) is thus clear that M(Ṽ ) ⊂ W (∪nṼn), thus making the former topology
finer then the latter. To see the converse observe that j∞ϕ(Kn+1\Ko

n) is a
compact subset of a metric space for each n, thus there is some εn > 0 for which
the open subset {j∞

x ψ ∈ R
∞ : d(j∞

x ϕ, j∞
x ψ) < εn ∀x ∈ Kn+1\Ko

n} ⊂ Ṽn.
Let then ε ∈ C(M) be a continuous function such that ε(x) < εn for all
x ∈ Kn+1\Ko

n, then N∞
ϕ (ε) is an open subset of the Whitney topology which

is contained in M(Ṽ ). �
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As a consequence of Proposition B.7, when N is metrizable and M para-
compact and second countable, given any sequence {ϕn}n∈N we can charac-
terize its convergence in the following way:

(i) ϕn → ϕ in the WO∞−topology ,
(ii) ∀n′ ∈ N ∃Kn′ ⊂ M compact such that if n ≥ n′ then ϕn|M\Kn′ =

ϕ|M\Kn′ and ϕn|K′
n
→ ϕ|K′

n
uniformly with all its derivatives.

This fact has important implications; for if we consider the finite-
dimensional vector bundle E →M , the vector space Γ∞(M ← E) will not be
a topological vector space due to the failure of continuity for the multiplication
by scalar. This can be readily seen from condition (ii) above: If, for instance,
we had σ ∈ Γ∞(M ← E), R � εn → 0 and εnσ → 0, then each εnσ must
possess compact support, and thus, σ itself ought to be compactly supported.
As a consequence, we get the following result:

Theorem B.11. Let (E, π,M) be a finite-dimensional vector bundle, then Γ∞
c

(M ← E) ⊂ Γ∞(M ← E), equipped with trace of the Whitney topology on
C∞(M,E). Then, Γ∞

c (M ← E) is the maximal locally convex space contained
in Γ∞(M ← E). Moreover, the trace topology coincides with the (natural) final
topology induced by the projective limit

lim−→
K⊂M

Γ∞
K (M ← E) = Γ∞

c (M ← E). (86)

Consequently, Γ∞
c (M ← E) is a complete, nuclear and Lindelöf space, hence

paracompact and normal. In particular, for each open cover Ui of Γ∞
c (M ← E),

there are Bastiani smooth bump functions ρi : Γ∞
c (M ← E)→ R each of which

has supp(ρi) ⊂ Ui, satisfying
∑

i

ρi(σ) = 1

for each σ ∈ Γ∞
c (M ← E).

From a topological standpoint, Theorem B.11 implies that Γ∞
c (M ←

E) ⊂ Γ∞(M ← E) equipped with the Whitney topology is the maximal
topological vector subspace. Thus, if we want to give a topological manifold
structure to spaces such as Γ∞(M ← E) (or C∞(M,N)), this forces us to use
Γ∞

c (M ← E) as the topological vector space on which to model the manifold
(see Definition C.1). It is therefore natural to seek charts of the form (σ0 +
Γ∞

c (M ← E), uσ0) where uσ0(σ) = σ − σ0. The undesirable fact is that σ0 +
Γ∞

c (M ← E) would then become a closed subset. To remedy this problem,
we refine the Whitney topology just enough to make the above subsets open.
To wit consider the following equivalence class: Given M , N smooth finite-
dimensional manifolds, set ϕ ∼ ψ if suppϕ(ψ) = {x ∈M : ϕ(x) �= ψ(x)} ⊂ M
is compact.

Definition B.12. The refined Whitney topology, or refined WO∞ topology, is
the coarsest topology on C∞(M,N) which is finer than the WO∞-topology
and for which the sets Uϕ = {ψ ∈ C∞(M,N) : ψ ∼ ϕ} are open.
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The refined Whitney topology has the same converging sequences and
smooth curves as the Whitney topology since the proofs of B.7 and Corol-
lary B.8 remain essentially valid. Notice that the refinement we imposed on
the topology was made by adding big open subsets, i.e., the trace topology on
subspaces of the form Γ∞

c (M ← E) is not altered, thus the aforementioned
properties remain valid. Clearly, Γ∞

c (M ← E) ⊂ Γ∞(M ← E) will then be-
come open and moreover Γ∞(M ← E) becomes a topological affine space
with model topological vector space Γ∞

c (M ← E). The locally convex model-
ing space Γ∞

c (M ← E) will, however, no longer be a Baire space: If N = R and
Kn is an exhaustion of compact subsets of M , then ∪nC∞

Kn
(M) = C∞

c (M),
and, however, C∞

Kn
(M) ⊂ C∞

c (M) is not dense for all n ∈ N.

Proposition B.13. Let M , M ′, N , N ′ be smooth finite-dimensional manifolds,
(i) if f : M ′ → M is a proper smooth mapping, then f∗ : C∞(M,N) →

C∞(M ′, N) is continuous in both the Whitney and refined Whitney topol-
ogy;

(ii) if h : N → N ′ is a smooth mapping, then h∗ : C∞(M,N)→ C∞(M,N ′)
is continuous in both the Whitney and refined Whitney topology.

Proof. The proof of (i) can be directly obtained by using Proposition 7.3 in [38]
while keeping in mind that f∗(ϕ) = ϕ ◦ f . For (ii), consider a Whitney open
subset M ′(U) = {ϕ ∈ C∞(M,N ′) : jnϕ(M\Kn)} ⊂ Un ⊂ Jn(M,N ′)∀n ∈ N}
in C∞(M,N ′). The mapping jnh : Jn(M,N) → Jn(M,N ′) is smooth and
hence continuous, and thus, set Vn = (jnh)−1(Un). Then, (h∗)−1(M ′(U)) =
M(V ) which implies continuity of h∗ in the Whitney topology. For the refined
Whitney topology, one notes that if ϕ ∼ ϕ′, then h ◦ ϕ ∼ h ◦ ϕ′ as well, thus
h∗Uϕ = Uh∗ϕ, which in turn implies that h∗ remains continuous even when
refining the topology. �
Theorem B.14 (Proposition 4.8, pp. 38 [38]). Let (Ei, πi,M), i = 1, 2 be finite-
dimensional vector bundles, suppose that α : U ⊂ E1 → E2 is a smooth
fibered morphism projecting to the identity of M and let σ0 ∈ Γ∞

c (M ← E1)
having σ0(M) ⊂ U , α(σ0) ∈ Γ∞

c (M ← E2). Then, the mapping α∗ : U =
{σ ∈ Γ∞

c (M ← E1) : σ(M) ⊂ U} → Γ∞
c (M ← E2) is a Bastiani smooth

mapping; moreover, if dvα : V U → E2 is the vertical derivative of α, we have
d(α∗) = (dvα)∗.

We remark that given any connection on the vector bundle E1 it induces
a splitting TE1 = HE1 ⊕ V E1 into horizontal and vertical vector bundle, and
the latter is of course independent from the connection chosen. Thus, if we
use local fibered coordinates on E1 and E2 induced by local frames ei, fi,
respectively, and study α in a neighborhood of p ∈ E1, α(p) =

∑
αi(x, y)fi,

then dvα : VpE1 → E2, (p;σ) =
∑ ∂αi(x,y)

∂yj σjfi ∈ E2|x.

Proof. It is clear that if U is open, U = {σ ∈ Γ∞
c (M ← E1) : σ(M) ⊂ U} is

open in Γ∞
c (M ← E1) with the Whitney topology as well by (vi) of Propo-

sition B.10 taking Ũ = (π∞)−1(M × U). Next we show that α∗ is Bastiani
differentiable. This is equivalent to show that d(α∗) : U × Γ∞

c (M ← E1) →
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Γ∞
c (M ← E2) exists and is continuous in the Whitney topology (see Defini-

tion B.9). We thus claim that

lim
t→0

α∗(σ + tσ′)− α∗(σ)
t

= (dvα)∗(σ;σ′) (87)

in the Whitney topology. We start by showing that for any neighborhood U of
x0 ∈M , α∗(σ+tσ′)−α∗(σ)

t converges uniformly to (dvα)∗(σ;σ′)(x) in U . This is
a local problem, and we can thus study it using local coordinates. Notice that
if U lies outside the support of σ′, then the claim is trivial. By an abuse of
notation, we set σ(x) = (x, σ(x)) and likewise for σ′. Then by Taylor theorem,
we have

(
α∗(σ + tσ′)− α∗(σ)

)i(x)

= αi(x, σ(x) + tσ′(x))− αi(x, σ(x))

= t∂jα
i(x, σ(x))σ′j(x)

+ t2
∫ 1

0

(1− λ)∂jkαi(x, σ(x) + tλσ′(x))σ′j(x)σ′k(x)dλ,

We can then estimate in U
∣∣∣∣

(
α∗(σ + tσ′)− α∗(σ)

)i(x)
t

− (
(dvα)∗(σ;σ′)

)i(x)

∣∣∣∣ ≤ |t|Cα,σ,σ′,U

for each x ∈ U , establishing uniform convergence. Moreover, since dvα : V U ⊂
V E1 → E2 remains a smooth fibered morphism, the mapping (dvα)∗ : U ×
Γ∞

c (M ← E1)→ Γ∞
c (M ← E2) is continuous by Proposition B.10. Moreover,

if dk
vα : ⊗k

MVpU is the mapping locally defined by

dk
vα[p] : ⊗kVpE1 � (s1, . . . , sk) �→ ∂j1...jk

αi(p)sj1
1 · · · sjK

k ,

a similar argument to the one above shows that for each x ∈ U the mapping
d(k−1)(α∗)[σ+tσ′](σ1, . . . , σk−1)(x)−d(k−1)(α∗)[σ](σ1, . . . , σk−1)(x) converges
uniformly to (dk

vα)∗(σ;σ′, σ1, . . . , σk−1)(x). Then again, Proposition B.13 im-
plies the continuity of d(k)(α∗) : U × Γ∞

c (M ← E1) · · · × Γ∞
c (M ← E1) →

Γ∞
c (M ← E2). Finally, by (iii) in Proposition B.10, this shows that the map-

ping α∗ : U → Γ∞
c (M ← E2) is Bastiani smooth. �

Appendix C: Manifolds of Mappings and Sections

We begin with the definition of infinite-dimensional manifolds. As we men-
tioned earlier, we shall choose to model those on locally convex spaces in view
of the results by [17,18,43].

Definition C.1. Let M be a Hausdorff topological space, we say that M admits
a Bastiani smooth manifold structure if

(i) there is a family {(Ui, ui, Ei)}i∈I where {Ui}i∈I is an open cover of M ,
{Ei}i∈I is a family of complete locally convex spaces and ui : Ui → Ei a
family of homeomorphisms onto the open subsets ui(Ui) ⊆ Ei;
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(ii) for all i, j ∈ I, having Uij = Ui ∩ Uj �= ∅, the mapping

uij = uj ◦ u−1
i : ui(Uij) ⊆ Ei → uj(Uij) ⊆ Ej

and its inverse uji = ui ◦ u−1
j are Bastiani smooth.

We then call charts elements of the family {(Ui, ui, Ei)}i∈I .

It follows from condition (ii) above that the locally convex spaces Ei

linearly isomorphic. A subset N ⊂ M of a differentiable manifold is called
a splitting submanifold of M if for each p ∈ N , there are charts (U , u, E)
of M such that u(p) = 0 ∈ E and U(U ∩ N ) = u(U) ∩ F , where F is a
closed vector subspace of E for which E = F ⊕ F c. The collection of charts
{(Ui∩N , ui|Ui∩N , Fi)} then makes N a manifold itself as per Definition C.1.
A weaker notion of submanifolds requires that F is just a closed subspace of
E, and in this case we say that N is a non-splitting submanifold.

Next we define the tangent bundle. Let M be a Bastiani smooth man-
ifold with atlas {(Ui, ui, Ei)}. A tangent vector is an equivalence class of el-
ements (p, v, Ui, ui, Ei), with p ∈ M and v ∈ Ei, where (p, v,Ui, ui, Ei) and
(p′, w, Uj , uj , Ej) are equivalent if p = p′ and d(uij [ui(p)])(v) = w. We de-
note by TpM the set of all tangent vectors to p; moreover, setting TM =⊔

p∈M TpM we obtain the space of tangent vectors of M . It is easy to see
that TM carries a natural structure of Bastiani smooth manifold. To wit,
observe that we can always define a canonical projection τ : TM → M . For
the family of charts set {(Ũi, ũi, Ei × Ei)} where (Ui, ui, Ei) is a chart of M ,
Ũi = τ−1

(Ui

)
, ũi : τ−1(Ui) � p̃ �→ (ui(x), v) ∈ Ei × Ei.

The topology on TM is the unique one making each ũi into a homeo-
morphism, and also, the transition mapping ũij : (x, v) �→ (uij(y), duij [x](v))
is Bastiani smooth since uij is itself smooth in the first place. It is easily shown
that TM is Hausdorff, and thus, TM is a differentiable manifold according
to Definition C.1.

Next we give a manifold structure to C∞(M,N) with M, N smooth
finite-dimensional manifolds. We first recall that given any Riemannian h on N
there exists the Riemannian exponential expy : U ⊂ TyN → N,w �→ expy(w),
where expy(w) is the value of the geodesic starting at y with velocity w at time
t = 1. Since expy(0) = y, and Ty expy = idTyN , expy is a local diffeomorphism,
then we can define a local diffeomorphism (τN , exp) : Ũ ⊂ TN → O ⊂ N×N :
(y, w)→ (y, expy(w)) onto an open subset O of the diagonal of N ×N .

Theorem C.2. Let M , N be smooth finite-dimensional manifolds, then C∞

(M,N) is a Bastiani smooth manifold according to Definition C.1, modeled on
the nuclear locally convex space Γ∞

c (M ← f∗TN).

Proof. Let ϕ ∈ C∞(M,N), then define Uϕ to be the subset of all g ∈ C∞(M,N)
with compact support with respect to ϕ, such that (ϕ,ψ)(M) ⊂ (τN , exp)

(
Ũ
)
,

then Uϕ is an open subset, for example, by (vii) in Proposition B.10. Let then

uϕ : Uϕ � ψ �→ uϕ(ψ) ∈ Γ∞
c (M ← ϕ∗TN)
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defined as follows:

uϕ(ψ)(x) = (τN , exp)−1(ϕ(x), ψ(x)) � (
ϕ(x), exp−1

ϕ(x)(ψ(x))
)
. (88)

It is clear that uϕ(ψ) is a smooth mapping, its image is valued in ϕ∗TN ,
and moreover, since ϕ �= ψ only in a compact subset of K ⊂ M , then
exp−1

ϕ(x)(ψ(x)) �= 0 if and only if x ∈ K. Thus uϕ is valued into
{ �X ∈ Γ∞

c (M ←
ϕ∗TN) : �X(M) ⊂ (τN , exp)−1

(
ϕ∗Ũ

)}
. Therefore, the mapping uϕ becomes a

homeomorphism between Uϕ with the trace of the refined Whitney topology
and an open subset of Γ∞

c (M ← ϕ∗TN) with the usual limit Fréchet topol-
ogy. If Uϕψ = Uϕ ∩ Uψ �= ∅, then we can consider the transition mapping
uϕψ

.= uψ ◦ u−1
ϕ : Γ∞

c (M ← ϕ∗TN) → Γ∞
c (M ← ψ∗TN). This mapping can

be constructed as the push forward of

Tϕ(x)N � (x,w) �→ (
x, exp−1

ψ(x)

(
expϕ(x)(w)

)) ∈ Tψ(x)N,

which is a smooth global fibered isomorphism ϕ∗Ũ ⊂ ϕ∗TN → ψ∗Ũ ⊂ ψ∗TN .
Then by Theorem B.14 we also have that ufg is a smooth mapping together
with its inverse uϕψ. Finally, if one chooses a different metric h′ on N inducing
the exponential exp′ and new charts u′

ϕ, then again, the transition mapping
u′

ϕ ◦ uϕ can be obtained as the push forward of the local fibered isomorphism

ϕ∗Ũ ⊂ ϕ∗TN � (x,w) �→ (
x, (exp′

ϕ(x))
−1

(
expϕ(x)(w)

)) ∈ ϕ∗Ũ ′ ⊂ ϕ∗TN.

which by Theorem B.14 is smooth. Therefore, the smooth structure on C∞

(M,N) does not depend on the choice of the exponential mapping. �

We remark that in [38], the role of the mapping (τN , exp) is played by
the so-called local addition, that is, a mapping A : TN → N × N which is a
local diffeomorphism onto an open subset of the diagonal for which A(0y) = y
for all y ∈ N . One can show [38, Lemmas 10.1 and 10.2 pp. 90] that (τN , exp)
is a local addition, and then, the proof of Theorem C.2 can be repeated along
the same lines.

In the general case of a non-trivial bundle π : B → M , Γ∞(M ← B)
can be topologized as follows: First we give C∞(M,B) the refined Whitney
topology, and then, we note that ϕ ∈ Γ∞(M ← B) ⊂ C∞(M,B) if and only
if π∗(ϕ) = π ◦ ϕ = idM . By (ii) in Proposition B.13, π∗ is continuous, so
the equation π∗(·) = idM in C∞(M,B) defines a closed subset in the refined
Whitney topology. We wish to show that Γ∞(M ← B) is a splitting sub-
manifold of C∞(M,B). First, notice that if ϕ ∈ Γ∞(M ← B) ⊂ C∞(M,B),
then Uϕ ∩ Γ∞(M ← B) is the set of all ψ ∈ Γ∞(M ← B) such that ψ,
ϕ differ only on a compact subset of M . Secondly, observe that TB can be
split by the choice of a connection as HB ⊕ V B, this induces the splitting
Γ∞

c (M ← ϕ∗TB) = Γ∞
c (M ← ϕ∗HB) ⊕ Γ∞

c (M ← ϕ∗V B) at the level of
locally convex spaces. Finally, if ϕ ∈ Γ∞(M ← B) and (Uϕ, uϕ) is a chart of
C∞(M,B), then

uϕ|Uϕ∩Γ∞(M←B) : Uϕ ∩ Γ∞(M ← B)→ Γ∞
c (M ← ϕ∗TB)
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with

uϕ(ψ)(x) =
(
x, exp−1

ϕ(x)(ψ(x))
)
. (89)

Notice that even though the image of x ∈M through ψ, ϕ, lies in the same fiber
π−1(x) we are not guaranteed that exp−1

ϕ(x)(ψ(x)) ∈ Vϕ(x)B, for π−1(x) might
fail to be totally geodesic for the Riemannian metric chosen on B; therefore,
in general, the geodesic joining ϕ(x) and ψ(x) might travel outside π−1(x).
If we were able to solve this issue and show that exp−1

ϕ(x)(ψ(x)) ∈ Vϕ(x)B, we
could then proceed by noticing that although the splitting depends on the
connection chosen, the vertical subbundle V B = ker(τB : TB → B) does not,
and therefore, Γ∞

c (M ← ϕ∗TB) = Γ∞
c (M ← ϕ∗HB) ⊕ Γ∞

c (M ← ϕ∗V B)
depends on the connection chosen just on the horizontal part. We are thus left
with solving the issue of π−1(x) being not totally geodesic. By [38, Lemma 10.9]
to each section ϕ, we can find a tubular neighborhood, i.e., a vector bundle
(Eϕ, π̃, ϕ(M)) with Eϕ ⊂ B and π̃ = π|Eϕ

. Moreover, by [38, Lemma 10.6], we
can modify (through smooth diffeomorphisms) the local addition (τB , expB)
defining the chart (Uϕ, uϕ) of C∞(M,B) to a local addition (τEϕ

, ẽxp) on Eϕ

for which

ẽxp−1
ϕ (ψ) ∈ Γ∞

c (M ← ϕ∗TEϕ).

By construction, if ψ(x) ∈ Eϕ, for all x ∈M

ẽxp−1
ϕ(x)(ψ(x)) ∈ Tϕ(x)

(
Eϕ|ϕ(x)

) � Vϕ(x)Eϕ � Vϕ(x)B. (90)

In the sequel, we will write the charts of Γ∞(M ← B) as (Uϕ, uϕ) understand-
ing that there are the slice charts induced above. We shall call them ultralocal
charts10 in order to differentiate them from the local chart of finite-dimensional
manifolds that were mentioned before.

Lemma C.3. Let P : Γ∞(M ← B) → Γ∞(M ← C) be a differential operator
and Γ∞(M ← B), Γ∞(M ← C) be endowed with the infinite-dimensional
structure described in Theorem C.2; then if P is smooth it is weakly regular11.

Proof. Suppose that ϕs is a compactly supported variation of ϕ0. We suppose
also that s ∈ I ⊂ R with I compact, but the general case is a straightforward
generalization. We claim that s �→ ϕs is a smooth curve in Γ∞(M ← B), then

10The term ultralocal has been introduced in [20] to signify that the mapping uϕ does just
depend on the point values of the mappings ψ, ϕ without dependence on higher derivatives
of the two.
11To define weak regularity, consider a jointly smooth family of mappings Φ : R × M → B
such that

• for each t ∈ R fixed, Φt : M → BinΓ∞(M ← B);
• there is a compact subset H ⊂ M such that for all x /∈ H, Φt(x) is constant in t.

We call such a family of mappings a one parameter compactly supported variation. We
say that a differential operator P : Γ∞(M ← B) → Γ∞(M ← C) is weakly regular if
given any compactly supported variation Φ, the mapping P [Φ] : R × M → C, defined by
P [Φ](t, x) = P [Φt](x), is again a compactly supported variation.
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again by Lemma 3.8, we can assume that the image of this path lies in a chart
Uϕ, and therefore, our claim is equivalent to smoothness of

s �→ uϕ0(ϕs) ∈ Γ∞
c (M ← ϕ∗V B),

where uϕ is the chart mapping defined in (89). If K ⊂ M is the compact
where ϕs �= ϕ0, then uϕ(ϕs) �= uϕ(ϕ0) in K as well. Then, it is enough to test
differentiability at each order in the Fréchet space Γ∞

K (M ← ϕ∗V B).
• If we see uϕ as a mapping from a neighborhood of the diagonal O ⊂

B × B to the tangent space of B, then it is smooth, and thus, by (ii) in
Proposition B.13, we conclude that uϕ(ϕs) = (uϕ)∗ ◦ ϕs is continuous.

• To show differentiability, note that ϕ(π(ϕs(x))) = ϕ(x) for all x ∈ M ,
therefore uϕ(ϕs) = ẽxp−1

ϕ (ϕs), then for all x ∈M

d

ds
uϕ(ϕs)(x) = Tϕs(x)ẽxp−1

ϕ(x)(ϕ̇s);

thus, the derivative d
dsuϕ(ϕs) exists and by (ii) in Proposition B.13 is

continuous due to smoothness of T•ẽxp−1
• : TO → TTB.

• Iterating this argument, we have shown smoothness of uϕs
.

Since P is smooth, then P (ϕs) is a smooth curve in Γ∞(M ← C), and eventu-
ally shrinking I we can assume that P (ϕs) ⊂ VP (ϕ0), i.e., it lies inside a chart
(VP (ϕ0), vP (ϕ0)) of Γ∞(M ← C). Then, vP (ϕ0)

(
P (ϕs)

) ⊂ Γ∞
c (M ← σ∗V C) is

smooth. By (iii), P (ϕs) ∈ C∞(M,C) is a smooth curve and there is a compact
subset K ′ such that P (ϕs) ≡ P (ϕ0) outside K ′. Therefore,

vP (ϕ0)

(
P (ϕs)

) ⊂ Γ∞
K′(M ← σ∗V C),

the latter being a Fréchet space we can apply [35, (2) Lemma 3.9] and
conclude. �

The tangent space at each point ϕ is TϕΓ∞(M ← B) ≡ Γ∞
c (M ←

ϕ∗V B). The tangent bundle (TΓ∞(M ← B), τΓ,Γ∞(M ← B)) is defined
in analogy with the finite-dimensional case and carries a canonical infinite-
dimensional bundle structure with trivializations

tϕ : τ−1
Γ (Uϕ)→ Uϕ × Γ∞

c (M ← ϕ∗V B).

As usual, we can identify points of TΓ∞(M ← B) by elements t−1
ϕ

(
ϕ, �Xϕ

)
.

With those trivializations, a tangent vector to Γ∞(M ← B), i.e., an element
of TϕΓ∞(M ← B), can equivalently be seen as a section of the vector bun-
dle Γ∞

c (M ← ϕ∗V B). When using the latter interpretation, we will write the
section in local coordinates as �X(x) = �Xi(x)∂i

∣∣
ϕ(x)

. Finally, we will use Ro-
man letters, e.g., (s, �u, . . . ) to denote elements of the topological dual space
Γ−∞

c (M ← ϕ∗V B) ≡ (
Γ∞

c (M ← ϕ∗V B)
)′.

Definition C.4. A connection over the (possibly infinite dimensional) bundle
(C, π,X) is a vector-valued one form Φ ∈ Ω1(C;V C) satisfying

(i) Im(Φ) = V C,
(ii) Φ ◦ Φ = Φ.
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The mapping Φ represents the projection onto the vertical subbundle
of TC. Given a connection Φ, it is always possible to associate its canonical
Christoffel form Γ .= idTC −Φ which will define the projection onto the space
of horizontal vector fields. In our case, we consider C = TΓ∞(M ← B), and
the latter has canonical trivialization

Ttϕ : τ−1
TΓ ◦ τ−1

Γ (Uϕ)→ Uϕ × Γ∞
c (M ← ϕ∗V B)

×Γ∞
c (M ← ϕ∗V B)× Γ∞

c (M ← ϕ∗V B).

Therefore given Tt−1
ϕ

( �Yϕ, s �X
)
∈ TTΓ∞(M ← B), we can write the connec-

tion locally as

t∗ϕΦ
( �Yϕ, s �X

)
=

(�0ϕ, s �X − Γϕ( �X, �Y )
)

,

where the Christoffel form

Γϕ ≡ t−1
ϕ Γ : Γ∞

c (M ← ϕ∗V B)× Γ∞
c (M ← ϕ∗V B)→ Γ∞

c (M ← ϕ∗V B)

can be chosen to be linear in the first two entries. For additional details
about connections, see [35, Chapter VI, § 37]. Instead of using the abstract
notion provided by Definition C.4, in the case of manifolds of mappings,
there is a more intuitive way of generating a connection. For simplicity’s
sake, we shall do the easier case of C∞(M,N), since the generalization to
general bundles is almost immediate. Let Γ̃ be a connection on the finite-
dimensional manifold TN , then we induce a connection Φ on TC∞(M,N)
as follows: Fix f ∈ C∞(M,N), �X, �Y ∈ TfC∞(M,N) � Γ∞

c (M ← f∗TN),
s ∈ T �XTfC∞(M,N) � Γ∞

c (M ← f∗TN), then
(
t−1
f Φ

)(
f, �X, �Y , s

) .=
(�0f , s− Γf ( �X, �Y )

)
(91)

where Γf ( �X, �Y ) ∈ Γ∞
c (M ← f∗TN) is defined by

Γf ( �X, �Y )(x) .= Γ̃i
jk(f(x)) �Xj(x) �Y k(x)∂i|f(x). (92)

Equivalently, we are setting Γf = Γ̃∗, by Theorem B.14, the mappings Γf , Φf

are Bastiani smooth, and moreover, they induce a connection Φ. In the sequel,
we shall use (16) to induce a connection as in (91).
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[13] Carfora, M., Marzuoli, A.: Quantum Triangulations: Moduli Space, Quantum
Computing, Non-linear Sigma Models and Ricci Flow, vol. 942. Springer, Berlin
(2017)

[14] Chilian, B., Fredenhagen, K.: The time slice axiom in perturbative quantum
field theory on globally hyperbolic spacetimes. Commun. Math. Phys. 287(2),
513–522 (2009)

[15] Christodoulou, D.: The Cction Principle and Partial Differential Equations, vol.
146. Princeton University Press, Princeton (2000)

[16] Dencker, N.: On the propagation of polarization sets for systems of real principal
type. J. Funct. Anal. 46(3), 351–372 (1982)

[17] Eells, J., Elworthy, K.D.: On the differential topology of Hilbertian manifolds.
In: Proceeding of Summer Institute Global Analysis (1968)

[18] Eells, J., Elworthy, K.D.: Open embeddings of certain Banach manifolds. In:
Annals of Mathematics 465–485 (1970)

[19] Fatibene, L., Francaviglia, M.: Natural and Gauge Natural Formalism for Clas-
sical Field Theories: A Geometric Perspective Ispinors and Gauge Theories.
Springer, Berlin (2003)
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[23] Frölicher, A.: Smooth structures. In: Category Theory: Applications to Alge-
bra, Logic and Topology Proceedings of the International Conference Held at
Gummersbach, July 6–10, 1981. Springer, Berlin, pp. 69–81 (2006)

http://arxiv.org/abs/1409.7662


Non-trivial Bundles and Algebraic

[24] Geroch, R.: Domain of dependence. J. Math. Phys. 11(2), 437–449 (1970)
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