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Introduction

In the last few years there has been carried out a large intensive study of

the analysis in sub-Riemannian spaces. These objects are the natural gen-

eralization of the Riemannian ones (see [3, 12, 27, 75, 91, 92, 114] for an

introduction). Precisely, we say that (M,D, g) is a sub-Riemannian space

if M is a smooth manifold of dimension n, D is a distribution of m−planes

(m ≤ n) and g is a Riemannian metric on D.

A sub-Riemannian space is also called Carnot-Carathéodory space because,

following Gromov ([91]), Carathéodory firstly introduced this type of struc-

ture in the mathematical foundation of Carnot’s thermodynamic ([30]).

A C-C structure on an open subset Ω ⊂ Rn (or, more generally, a mani-

fold) amounts to a family X = (X1, . . . , Xm) of vector fields such that every

couple of points x, y ∈ Ω can be joined by a curve whose derivative belongs

to the fiber bundle generated by the family X. Precisely, we require the ex-

istence of an absolutely continuous curve λ : [0, T ] −→ Ω and a measurable

function h : [0, T ] −→ Rm such that λ(0) = x, λ(T ) = y and

λ̇(t) =
m
∑

j=1

hj(t)Xj(λ(t)) and |h(t)| ≤ 1 a.e. (1)

A curve satisfying (1) is said subunit.

Every C-C spaces can be endowed, like in the Riemannian setting, with a

canonical distance, named C-C distance, namely:

dcc(x, y) := inf{T > 0 | ∃ λ : [0, T ] −→ Ω subunit, λ(0) = x, λ(T ) = y}.

The metric space (Ω, dcc) presents new features quite different from the

Riemannian ones such as, for istance, the non-uniqueness of geodesics and
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the gap between the topological and metric dimensions (see, for istance,

[3, 12, 91, 114]).

Among the C-C spaces an important role is played by Carnot groups. A

Carnot group G of step k is a connected and simply connected Lie group of

dimension n with stratified Lie algebra G of step k; which means that there

are subspaces V1, . . . , Vk of G such that

G ≡ Rn = V1 ⊕ . . .⊕ Vk,

[V1, Vj ] = Vj+1 j = 1, . . . , k − 1,

[V1, Vk] = {0}.

It is well-known that, by means of the exponential map exp : G ≡ Rn −→ G,

G can be identified with Rn. There are two main reasons to deal with Carnot

groups. First of all they have a rich analytical and geometrical structure. In

particular, we point out the presence of a one parameter family of group

isomorphism, the so called dilations δr : G −→ G, r > 0. Moreover, in a

Carnot group the distance dcc has a well behaviour with respect to the group

law and the dilation family. Precisely, for every x, y, z ∈ G and every r > 0:

dcc(z · x, z · y) = dcc(x, y);

dcc(δr(x), δr(y)) = dcc(x, y).

On the other hand a Carnot group can be considered as a local approxima-

tion of a C-C space. Indeed, it can be proved that up to a suitable blow-up

procedure (see [109]) a Carnot group is a natural ”tangent” space to a C-

C space like an Euclidean space is a tangent space to a Riemannian manifold.

C-C spaces and Carnot groups were applied in several areas of analysis

and geometry. Just to mention some of them we recall their role in the un-

derstanding of hypoelliptic equations [39, 94, 126], degenerate elliptic and

parabolic equations [20, 52, 56, 70, 73, 74, 105, 108, 114, 139], singular in-

tegrals [39], potential theory [20, 129], control theory [3] and geometry of

Banach spaces [32, 33]. More recently they were fundamental in many ap-

plied research areas, such as mathematical finance [49], theoretical computer
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science and mathematical models in neurosciences [48, 50, 51, 93].

In the PDE’s context the role of C-C spaces and Carnot groups has been

recognized to be fundamental since the work of Hörmander ([94]) who proved

that under some algebraic assumptions on the vector fields X0, . . . , Xk (the

so called Hörmander’s condition) the operator

L =
k
∑

i=1

X2
i +X0

is hypoelliptic. In addition, Rothschild and Stein ([126]) proved that for

these operators a priori estimates of Lp type for second order derivatives

with respect to the family X0, . . . , Xk hold. The subsequent literature on

these and more general operators in C-C spaces and Carnot groups is huge.

We refer the reader to the monograph [20] and the references therein.

Here we want only to specify some typical difficulties which arise when dealing

with these kind of problems. To avoid notational complications we restrict

ourself to H1, the first Heisenberg group. Precisely, H1 is a Carnot group of

step 2 with stratification h1 ⊕ h2, where

h1 := span{∇H
1 ,∇H

2 } and h2 := span{∇H
3 }

and the only nonvanishing commutator relations are given by [∇H
1 ,∇H

2 ] =

2∇H
3 . Let us consider the following nonlinear equation:

∆H1u := divH

(

|∇Hu|p−2∇Hu
)

= 0 p ≥ 2, (2)

where divH u := ∇H
1 u + ∇H

2 u and ∇Hu := (∇H
1 u,∇H

2 u) (see for istance [15,

61, 62, 63, 105, 108]). Let us note that the vertical derivative ∇H
3 u does not

appear directly in the operator. It rather appears only in an intrinsic way

after commutation. Such a lack of ellipticity in the vertical direction is often

the basic source of problems in the regularity theory ([108]). Indeed, when

attempting to differentiate the equation (2), derivative in the the vertical

direction appears and there is no a priori control on the Lp norm of such

derivative ([23]).
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Another typical problem in PDEs is the study of so-called characteristic

points for the boundary of a domain Ω of a Carnot group G. Indeed, in

many situations is important to know under which regularity properties on

a domain Ω ⊂ G some estimates hold up to the boundary ∂Ω. This problem

is already not trivial in the Euclidean setting (see [2, 66]) but in the context

of Carnot groups and C-C spaces it is complicated by the presence of the

so called characteristic points. Precisely, if Ω ⊂ H1 is an open set with

regular boundary, then x ∈ ∂Ω is said characteristic if ∇H
1Φ(x) = 0 and

∇H
2Φ(x) = 0, where Φ = 0 is a local equation for ∂Ω. We refer the reader

to the very interesting papers [10, 103, 104, 115, 137] and in particular to

the work of Danielli-Garofalo and Nhieu [53] and the references therein for a

complete discussion on this and more general problems.

Another very active research line which exponentially grew up in the last

few years especially after the work of Pansu [122], is the attempt to develope

geometric measure theory in C-C spaces and in particular in Carnot groups,

with emphasis on the Heisenberg group Hn. We refer the reader to the

monograph [27] for a comprehensive introduction. A very interesting prob-

lem in this setting is the possibility of giving good definitions of rectifiability

[80, 102, 103, 104]. We point out that the classical Euclidean definition of

rectifiability of Federer [69], which use Lipschitz functions, cannot be applied

in C-C spaces, which in general are purely unrectifiable [5]. To overcome this

problem Franchi-Serapioni and Serra Cassano proposed in their very interest-

ing paper [80] an alternative definition of rectifiability modeled on a different

notion of intrinsic regular submanifold. Precisely, they called intrinsic regu-

lar hypersurface every S ⊂ G (here G denotes a general Carnot group) which

is (locally) the level set of a function f : G −→ R with nonvaninshing con-

tinuous horizontal gradient. This notion was also extended, for codimension

one, to general Carnot-Carathéodory spaces in [45] and, for general codimen-

sions, firstly in the setting of the Heisenberg group ([82]) and then in general

Carnot group ([103]). We point out that an intrinsic hypersurface can be

very irregular from an Euclidean point of view and in general these surfaces

are not Euclidean C1 submanifolds, not even locally (see [97]). Nevertheless,
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they are invariant with respect to group left-translations or group intrinsic

dilations.

The intrinsic regular hypersurfaces share a lot of properties with the Eu-

clidean ones. In particular an implicit function theorem holds ([80] or Theo-

rem 3.1.1). More precisely, given an intrinsic regular hypersurface S ⊂ G ≡
Rn and an open set U ⊂ G, there are complementary subgroups G1 ≡ Rn−1

and G2 ≡ R1( i.e subgroups of G closed under dilations, such that G1 ·G2 = G

and G1 ∩G2 = {0}) and a continuous function φ : ω ⊂ G1 −→ G2 for which

S ∩ U can be written (locally) as the intrinsic graph of φ, that is

S ∩ U = {x · φ(x) | x ∈ ω},

or, up to a change of coordinates,

S ∩ U = {(φ(x), x) | x ∈ ω}.

Let us also recall that the implicit function theorem and the notion of intrinsic

graph have been also extended to general Carnot-Carathéodory structures in

[45] and later in [102]. Actually, at least in the Heisenberg group, the map

φ : ω ⊂ G1 ≡ R2n −→ G2 ≡ R is not only continuous, indeed in [6] authors

proved that φ is uniformly∇φ−differentiable. Which means, that there exists

an homogeneous homomorphism L : G1 ≡ R2n −→ G2 ≡ R (i.e. a group

homomorphis such that L(δr(x)) = rL(x) for all x ∈ G1 and G1, G2 are

complementary subgroups in Hn) such that

lim
r→0

M(φ, z, L, r) = 0

where

M(φ, z, L, r) := sup
x,y∈Ir(z),x 6=y

{ |φ(x)− φ(y)− L(πG1(Φ(y)
−1 · Φ(x)))|

dφ(x, y)

}

.

Where Ir(z) ⊂ ω is a suitable neighborhood of z, Φ(x) := (φ(x), x) and

dφ(x, y) :=
1

2

(

‖πG1(Φ(x)
−1 · Φ(y))‖+ ‖πG1(Φ(y)

−1 · Φ(x))‖
)

is a quasidistance on ω. We point out that, as in the Euclidean setting, we

can represent the map L using a suitable intrinsic gradient. Precisely, if L
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and φ are as above then defining the family ∇φ = (∇φ
1 , . . . ,∇φ

2n−1) of vector

fields (see [6, 45]), namely of first order differential operators, on ω by

∇φ
i (x) = ∂xi

− xi+n∂x2n , for n ≥ 2 and i = 1, . . . , n− 1, (3)

∇φ
n(x) = ∂xn

+ 2φ(x)∂x2n ,

∇φ
i (x) = ∂xi

+ xi−n∂x2n , for n ≥ 2 and i = n+ 1 . . . , 2n− 1,

and by

∇φ
1(x) = ∂x1 + 2φ(x)∂x2 if n = 1.

then

L(y) =
〈

∇φφ, π̃(y)
〉

∀y ∈ G1 (4)

where 〈·, ·〉 denotes the Euclidean scalar product in R2n−1 and

π̃(x1, . . . , x2n−1, x2n) := (x1, . . . , x2n−1) ∀x ∈ G1.

We call the vector ∇φφ the ∇φ−gradient of φ at x ∈ ω. The intrinsic

differentiation has been deeply studiend and generalized to more general

spaces in [45].

It is well known that a fundamental object to enstablish a good theory of

rectifiable sets is a correct notion of Lipschitz functions. It is easy to see that

the classical definition of metric Lipschitz function (i.e the one made using

the distance dcc)in a Carnot group ([122]) does not fit the geometry. To

overcome this problem Franchi-Serapioni and Serra Cassano in [79] proposed

to call intrinsic Lipschitz those functions φ : G1 −→ G2 (where G1 and G2

are complementary subgroups of a Carnot group G) such that there exists

α > 0 for which for every point q ∈ Φ(G1)

CG1,G2(q, 1/α) ∩ Φ(ω) = {q}

where

CG1,G2(q, α) := {p = (s, x) ∈ Hn | ‖πG1(q
−1 · p)‖ ≤ α‖πG2(q

−1 · p)‖}

and πG1 , πG2 are the projections on G1 and G2 respectively.

First of all notice that this notion is really intrinsic, indeed it is invariant
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under left translations of the graph ([79, Propositions 3.11]), i.e. if we left

translate an intrinsic Lipschitz graph we obtain an intrinsic Lipschitz graph.

We also point out that intrinsic Lipschitz functions are not metric Lipschitz,

that is they are not Lipschitz as maps φ : (ω, dcc) → (G2, dcc) where ω ⊂ G1

is an open set (see [79, Remark 3.13]). Nevertheless, the intrinsic Lipschitz

functions amount to a thick class of functions. Indeed, it holds that ([79,

Propositions 4.8 and 4.11])

Lip(ω) ( LipG1,loc(ω) ( C
1/2
loc (ω) ,

where, respectively, Lip(ω) and C
1/2
loc (ω) denote the classes of real valued

Euclidean Lipschitz and locally 1/2-Hölder functions on ω. Besides intrinsic

Lipschitz functions share a lot of properties with the Euclidean Lipschitz

ones as proved in [79]. In particular, if φ : G1 ≡ R2n −→ G2 ≡ R is intrinsic

Lipschitz where G1 and G2 are complementary subgroups of Hn, then φ is

∇φ-differentiable for L2n-a.e x ∈ ω. Moreover, the subgraph

Eφ := {(s, x) ∈ Hn | s < φ(x)}

is a set of locally finite perimeter in Hn (see [79]). We point out that, in the

setting of Hn, it is still open the intriguing question whether a Rademacher

type theorem holds for k-codimenisonal intrinsic Lipschitz graphs with 2 ≤
k ≤ n.

Using these notions a good rectifiability theory has been established. Never-

theless many interesting questions remain open, see [79, 80, 103].

For example we briefly recall the problem of regularity for the minimal sur-

faces equation for intrinsic graphs in Hn. Indeed, it can be proved that the

analogous of the minimal surface equation in Hn is:

∇φ
( ∇φφ
√

1 + |∇φφ|2
)

= 0 (5)

where ∇φ is the nonlinear family of vector fields defined in (3). We recall

some literature on this equation, which attempt to answer to the problems

of existence, unicity and regularity (see [6, 11, 24, 25, 34, 35, 36, 37, 54,

55, 88, 113]). Equation (5) presents some new problems with respect to
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the formally equivalent Euclidean one. Indeed, it is a priori non trivial, to

provide estimates on the missing direction ∇φ
2n := [∇φ

1 ,∇φ
n+1], moreover the

structure of the vector fields ∇φ and the geometry of Hn does not allow the

use of some classical Euclidean techniques.

In the first part of this thesis we provide some results which improve the

theory of intrinsic Lipschitz functions in the Heisenberg group.

In particular we provide an approximation theorem in terms of regular func-

tions for a given intrinsic Lipschitz map φ : ω ⊂ G1 −→ G2 where G1,G2

are the following complementary subgroups of Hn, G1 := {(t, x1, . . . , x2n) ∈
Hn | t = 0} and G2 := {(t, x1, . . . , x2n) ∈ Hn | x1 = . . . = x2n = 0} (see

Theorem 4.2.7 and [46]). More precisely our first result is the following:

Theorem 1. Let φ be a real valued intrinsic Lipschitz function defined on

an open and bounded ω ⊂ G1 ≡ R2n, then there exists a sequence {φi}i∈N of

real valued smooth maps defined on ω such that:

(i) φi → φ locally uniformly in ω;

(ii) |∇φiφi(x)| ≤ ||∇φφ||L∞(ω) ∀x ∈ ω;

(iii) ∇φiφi(x) → ∇φφ(x) L2n−a.e x ∈ ω.

The technique used to obtain this result relies on some classical ideas due

to Ennio de Giorgi ( see [57, 58, 59]) and on some new facts developed in

[46]. In particular, we are able to prove an area formula for intrinsic Lipschitz

functions (see Theorem 4.2.4 and [46]).We prove the following:

Theorem 2. If φ : G1 ≡ R2n −→ G2 ≡ R is an intrinsic Lipschitz func-

tion then there exists a dimensional constant cn > 0 such that the following

equality hold:

|∂Eφ|H(R× ω) = cnS2n+1(graph(φ)) =

∫

ω

√

1 + |∇φφ|2 dL2n.

where S2n+1 denotes the spherical Hausdorff measure in Hn (see Definition

1.1.13) and |∂Eφ|H is the intrinsic perimeter measure (see Definition 1.2.7).
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An interesting consequence of our approximation result is an estimate of

the Lipschitz constant of a given intrinsic Lipschitz function in terms of the

L∞−norm of its intrinsic gradient (see Proposition 4.2.9). Precisely,

Proposition 1. Let ω ⊂ G1 ≡ R2n, φ : ω −→ G2 ≡ R be open and bounded

and n ≥ 2. Then for each x̄ ∈ ω and each r > 0 sufficiently small

Lip(φ, Uφ(x̄, r)) ≤ c
(

4
√

‖∇φφ‖L∞(ω) + 1
)

‖∇φφ‖L∞(ω)

for a suitable geometric positive constant c. Moreover, if n = 1 it holds:

Lip(φ, Uφ(x̄, r)) ≤ c
√

1 + ‖∇φφ‖2L∞(ω) (6)

where Lip(φ, Uφ(x̄, r)) is the intrinsic Lipschitz constant of φ on the ball

Uφ(x̄, r) := {y ∈ ω | dφ(x̄, y) < r} (see Definition 3.2.2).

Our second contribution in this framework is a Poincaré inequality for

intrinsic Lipschitz functions ([47]), which hopefully could be used in the study

of minimal surfaces in Hn. Precisely,

Theorem 3. Let ω be a bounded and open subset of G1 ≡ R2n with n ≥ 2.

Let φ : ω −→ R be an intrinsic Lipschitz function. Then there exists a

constant C (independent of the Lipschitz constant L of φ) such that
∫

Ωφ(x)(x,r)

|φ(y)− φr(x)|dL2n(y) ≤

≤ CrL
Q+2
2

∫

Ωφ(x)(x,Cr(1+L))

|∇φφ(y)|dL2n(y)

for each x ∈ ω, r > 0 such that Ωφ(x)(x, r),Ωφ(x)(x, C r(1 + L)) ⊂ ω. Where

φr(x) is a suitable mean defined in terms of the fundamental solution Γ of a

properly defined sub-Laplacian operator (see Definition 4.94), Ωφ(x)(x, r) are

the super-levels of Γ (see (4.100)) and Q is the homogeneous dimension of

Hn−1 × R.

In the second part of the thesis we prove some extensions, to the sub-

Riemannian setting, of a couple of PDE’s results, well known in the Euclidean

context.
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Our first contribution ([124]) is a geometric Poincaré type inequality for

a stable solution u of the following semilinear equation in the Engel group

∆Eu = f(u) (see Definition 5.3) where f is smooth. We prove the following,

Theorem 4. Let u be a stable solution of ∆Eu = f(u) then for any η ∈
C∞

0 (E)

∫

E0

W|∇Eu|2η2 ≤
∫

E
|∇Eη|2|∇Eu|2 (7)

where E0 := {x ∈ Ω | ∇Eu(x) 6= 0} and W is a suitable kernel depending

only on u whose explicit expression is contained in Theorem 5.1.1.

Finally we prove a non existence result for solution of ∆Eu = f(u) using

our Poincaré type inequality.

Our second result ([125]) is an extension of the so called Dual Estimate

to the obstacle problem for quasilinear elliptic equations in the Heisenberg

group. Precisely we prove that for every solution ūε of the following varia-

tional problem

inf
u∈K

Fε(u; Ω), where Fε(u; Ω) :=

∫

Ω

(ε+ |∇Hnu|2)p/2, (8)

where ε > 0

K :=
{

u ∈ W 1,p
Hn (Ω) s.t. u ≤ ψ, and u− u? ∈ W 1,p

Hn,0(Ω)
}

and for all p ∈ P(ψ,Ω) (see Definition 6.1.1) the following Theorem hold:

Theorem 5. Let ūε, ψ, K and p be as above then the following Lewy-

Stampacchia inequality hold:

0 ≤ divHn

(

(ε+ |∇Hn ūε|2)(p/2)−1∇Hn ūε

)

≤
(

divHn

(

(ε+ |∇Hnψ|2)(p/2)−1∇Hnψ
))+ (9)

in the sense of distributions.

We also prove a similar result for ε = 0.
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The structure of the thesis is the following:

In Chapter 1 we recall some basic facts about Lie algebras and Lie groups,

with particular attention to the class of nilpotent and stratified Lie groups.

In particular, in Section 1.1 we provide some basic and well known results on

Lie algebras and Lie groups. Then, we recall the definition of the Lie algebra

associated to a Lie group and how, starting from a stratified Lie algebra,

it is possible to construct a Carnot group. Finally we study in details the

main analytical pecurialities of the Carnot group’s structure. To this end we

introduce the dilations family {δλ}, the C-C distance and the horizontal fiber

bundle. In Section 1.2 we outline some basic results of first order calculus

and geometric measure theory in Carnot groups. In particular we analyze

functions of G−bounded variation and sets of finite G−perimeter and we

recall some interesting results about them. Section 1.3 is entirely devoted

to the study of three important examples of Carnot groups, namely the

Euclidean space Rn, the Heisenberg group Hn and the Engel group E.

Chapter 2 is a brief introduction to the theory of sub-Laplacian in Carnot

groups. We start recalling the main definitions and some easy properties of

the sub-Laplacian. Next the introduce the fundamental solution associated to

a given sub-Laplacian and we point out some of its computational properties.

Particular attention will be given to some representation formulas. With this

term we refer to the possibility of represent a given smooth function in terms

of some a propri known operators.

In particular we state a result contained in [20] and then we prove a Theorem

due to Citti-Lanconelli and Garofalo ([42]) which permits to represent a

smooth function defined on a C-C space with vector fields X1, . . . , Xm using

the fundamental solution Γ associated to the sub-Laplacian L =
∑m

j=1X
2
j

and the super-levels of Γ, which are Ωr(x) := {y ∈ Rm | Γ(x, y) > 1
r
}.

Chapter 3 is entirely devoted the study of intrinsic hypersurfaces in the

Heisenberg group Hn. We start defining the class of intrinsic hypersurfaces

in Hn pointing out some interesting and non-trivial properties. Then we

recall the implicit function Theorem for an intrinsic hypersurface S which

provides a continuous function φ which locally parametrizes S. We continue
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analyzing some further differentiability properties of φ. In particular we

introduce the concept of intrinsic differentiability recallig the original defini-

tion of Ambrosio-Serra Cassano and Vittone ([6]) and Citti-Manfredini ([45])

which provides the key tool to characterize all the maps which parametrize

intrinsic hypersurfaces.

Finally in subsection 3.2.1 we state some interesting results due to Bigolin

and Serra Cassano ([13, 14]) which represent an alternative way to charac-

terize the maps whose graph is an intrinsic hypersurface.

Chapter 4 is devoted to the exposition of the results obtained in [46]

and [47] in collaboration with G.Citti, M.Manfredini and F.Serra Cassano.

In Section 4.1 we introduce the space of intrinsic Lipschitz functions in the

Heisenberg group, LipW(ω), and we point out some of its main properties.

Section 4.2 contains the proof of approximation result stated in the Introduc-

tion (see also [46]). In subsection 4.2.1 we prove a characterization of the class

of intrinsic Lipschitz function in terms of approximating sequences. In other

words, we prove that if for a given continuous function φ there is a sequence

of smooth functions which satisfies (i), (ii) and (iii) in the approximation

Theorem then the limit function is locally intrinsic Lipschitz. Moreover we

prove the estimate for the Lipschitz constant of a given φ ∈ LipW(ω) in terms

of the L∞−norm of its intrinsic gradient mentioned in the Introduction, see

Proposition 4.2.9.

The second part of Chapter 4 is dedicated to the work [47]. Subsections 4.3.2

and 4.3.3 are preparatory ones. In particular, we recall the notion of frozen

vector fields introduced in [126] and subsequently refined in many works (see

[41, 40]) and some useful estimates for the fundamental solution of the sub-

Laplacian associated to these frozen vector fields. Then prove the Poincaré

inequality stated above.

Chapter 5 contains a work made in collaboration with E.Valdinoci [124].

After a very brief introduction to the theory of semilinear problems in the

Engel group we consider the particular equation ∆Eu = f(u) on Ω ⊂ E and

we give the proof of the estimate (7). Finally in Section 5.3 we provide a

possible application of our estimate.
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Chapter 6 contains another work written in collaboration with E.Valdinoci

[125]. In Section 6.2, 6.3 and 6.4 we provide the details of the estimate (9)

pointing out some extension in particular when ε → 0. We conclude the

exposition with an Appendix which contains the detailed proof of some well

known inequality used throughout the chapter.
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Chapter 1

Introduction to Carnot groups

In this chapter we introduce Carnot groups. To this end we start recalling

the notion of finite dimensional Lie algebras with particular attention to the

nilpotent and stratified ones. Next we briefly recall first order calculus in

Carnot groups and we provide the basic tools for the geometric measure

theory in this setting, with particular emphasis on the theory of intrinsic

finite perimeter sets. At the end of the chapter we examine in detail three

important examples of Carnot groups.

1.1 Lie algebras

In this section we recall some well known notions and results on Lie algebras,

see [95] for a more detailed treatment.

Definition 1.1.1. A vector space g, with an operation [·, ·] : g× g −→ g, is

called a Lie algebra if:

• [·, ·] is a bilinear map;

• [x, y] = −[y, x] ∀x, y ∈ g;

• [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 ∀x, y, z ∈ g.

Example. If g = Rn and [x, y] = 0 for each x, y ∈ g then g is a Lie algebra.
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Example. The vector space Γ(TM) of all vector fields on a smooth manifold

M with the operation defined by

[X, Y ] := XY − Y X (1.1)

is a Lie algebra.

Definition 1.1.2. A subspace t of a Lie algebra g is called a Lie subalgebra

if it is closed under [·, ·], i.e if

∀x, y ∈ t ⇒ [x, y] ∈ t.

Definition 1.1.3. Let U be a subset of Γ(TM), where M is a smooth man-

ifold. We denote by Lie(U) the least sub-algebra of Γ(TM) containing U .

Precisely,

Lie(U) :=
⋂

h

where h is a sub-algebra of Γ(TM) containing U .

Let a and b be subalgebras of a Lie algebra g, we define:

[a, b] := span {[X, Y ] | X ∈ a, Y ∈ b} .

Definition 1.1.4. A Lie algebra g is nilpotent with step equal to k, if and

only if, setting
{

g(1) := g

g(i+1) := [g, g(i)] i ≥ 1

it holds g(k) 6= {0} and g(k+1) = {0}.

Definition 1.1.5. A Lie algebra g is said to be stratified with step equal to

k if there exists linear subspaces V1, · · · , Vk of g such that

g = V1 ⊕ · · · ⊕ Vk

Vj = [V1, Vj−1] for j = 2, · · · , k
[V1, Vk] = {0} .
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Remark 1.1. It is well known that any finite dimensional stratified Lie algebra

of step k is in particular nilpotent of the same step, see [103]. We point out

that the converse is not true in general. Considering the family of vector

fields

X = ∂x − xy∂t, Y = ∂y + x∂w, Z = ∂z + x∂t

then the Lie algebra generated by X, Y, Z, that is Lie({X, Y, Z}), has dimen-

sion 5 and a basis is (X, Y, Z,W, T ) where

W := [X, Y ] = ∂w + x∂t, T = [X,Z] = ∂t.

This Lie algebra is nilpotent of step 4 whereas it is not stratified since T is

a commutator of both steps 2 and 3, see [19].

Definition 1.1.6. An homomorphism between Lie algebras F : G −→ S is

said to be a Lie homomorphism if it is linear and

F ([X, Y ]) = [F (X), F (Y )] ∀X, Y ∈ G

1.1.1 From a Lie group to its Lie algebra

Definition 1.1.7. A Lie group (G, ·) is a smooth manifold with a group

structure ·, such that the maps

G×G 3 (x, y) 7→ x · y ∈ G

G 3 x 7→ x−1 ∈ G

are differentiable. Moreover we say that a Lie group is commutative if G is

commutative as a group conversely we say that G is non-commutative.

Example. If (G, ·) = (Rn,+), where + denotes the usual sum operation,

is the simplest commutative Lie group. The general linear group (GL(n), ·)
equipped by the standard matrix multiplication is a noncommutative Lie group.

Definition 1.1.8. A smooth vector field X on a Lie group (G, ·) is left

invariant if for all x, y ∈ G

dyτx(X(y)) = X(x · y)
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where for each x ∈ G the map τx : G −→ G is defined by τx(y) := x · y and

dyτx denotes its differential at the point y ∈ G.

Let G be the subset of Γ(TG) whose elements are all the left invariant

vector fields on a Lie group G, it is easy to see that if X, Y ∈ G then

[X, Y ] := XY − Y X ∈ G.

Hence G equipped by the bracket defined in (1.1) is a Lie subalgebra of

Γ(TG) and it is called the Lie algebra associated to G. Moreover, let e be

the identity element of G, then the map

Φ : TeG −→ G
v 7→ Φ(v) = X

where X is defined by X(g) = deLg(v) ∀g ∈ G, is an isomorphism of vector

spaces; hence the dimension of G is equal to the topological dimension of G.

Proposition 1.1.1 ([60]). Let G be a Lie group with Lie algebra G. For each
X ∈ G, there exists a unique solution γX : R −→ G of the system











d
dt
γX(t)|t=0 = X(γX(t))

γX(0) = e.

Remark 1.2. Note that for a Lie group γX is defined for all t ∈ R, while in

general this is not true.

Definition 1.1.9. Let G be a Lie group with Lie algebra G. We define the

exponential map exp : G → G by

exp(X) := γX(1). (1.2)

In the following proposition we recall some basic properties of the expo-

nential map. See [60] and [1].

Proposition 1.1.2. If G is a Lie group and G is its Lie algebra, then

1. exp is an analytic function;
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2. exp is a diffeomorphism in a neighborhood of the origin of G;

3. exp(tX) = γX(t) for all X ∈ G, t ∈ R;

4. exp((t+ s)X) = exp(tX)exp(sX) for all X ∈ G, t, s ∈ R.

1.1.2 From a stratified Lie algebra to a Carnot group

Definition 1.1.10. A Lie group G is said to be nilpotent with step equal to

k ∈ N if the associated Lie algebra G is nilpotent of the same step. Moreover,

a finite dimensional, connected and simply connected Lie group with stratified

Lie algebra with step equal to k is said to be a Carnot group of step k.

Remark 1.3. By Remark 1.1 it follows that every Carnot group of step k is

also nilpotent of step k, but the converse is not true.

The following result is one of the main properties of the exponential map

and it generalizes (2) in Proposition 1.1.2, see [20] for a proof.

Theorem 1.1.3. Let G be a nilpotent, connected and simply connected Lie

group with Lie algebra G then exp : G −→ G is a global diffeomorphism.

Theorem 1.1.3 says that from an analitycal point of view a Lie group

is not so far from its Lie algebra. In the remaining part of this section we

will prove that a nilpotent Lie group and its Lie algebra are similar in the

algebraic sense too. To this end we equip a nilpotent Lie algebra by a group

law using the so called Baker-Campbell-Hausdorff formula.

Definition 1.1.11. Let X, Y ∈ G, where G is a nilpotent Lie algebra of step

k we define

X � Y :=
k
∑

n=1

(−1)n+1

n

∑

1≤|α|+|β|≤k

(Ad(X))α1(Ad(Y ))β1 . . . (AdX)αn(AdY )βn−1(Y )

α!β!|α + β|

(1.3)

where for any Z ∈ G the map AdZ : G −→ G is defined by AdZ(W ) := [Z,W ]

and for any α ∈ Nn we have assumed the convention α! :=
∏n

s=1 αs and

|α| :=∑n
s=1 αs.
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Remark 1.4. Since G is nilpotent it follows that the sum in (1.3) is finite,

moreover it is well known that � defines a group law on G, see [20, 95, 103].

Theorem 1.1.4. Let (G, ·) be a nilpotent connected and simply connected

Lie group with Lie algebra G. Then (G,�) is a Lie group and the map

exp : (G,�) −→ (G, ·)

is a group isomorphism.

The following theorem is due to Lie and is one of the most important and

deep result in Lie group theory, see [134].

Theorem 1.1.5. If G is a finite dimensional Lie algebra then there exists a

connected and simply connected Lie group whose Lie algebra is isomorphic to

G.

Using Theorems 1.1.4 and 1.1.5 we are now in position to prove the fol-

lowing result

Proposition 1.1.6. Let G be a stratified Lie algebra of step k, then there

exist a natural number m and a group law · on Rm such that (Rm, ·) is a

Carnot group with stratified Lie algebra of step k isomorphic to G.

Proof. By Remark 1.1 we know that G is nilpotent of step k. By Theorems

1.1.4 and 1.1.5 there exist a Lie group G whose Lie algebra is isomorphic to

G and such that the map exp : (G,�) −→ (G, ·G) is a group isomorphism.

We prove that a coordinate version of (G,�) is a Lie group isomorphic to G

with Lie algebra isomorphic to G. Since G = V1 ⊕ . . .⊕ Vk then we can find

a basis of G

B := (X
(1)
1 , . . . , X

(1)
dim(V1)

, . . . , X
(k)
1 , . . . , X

(k)
dim(Vk)

)

such that (X
(i)
1 , . . . , X

(i)
dim(Vi)

) is a basis of Vi (i ∈ {1, . . . , k}). Let us define

m :=
k
∑

i=1

dim(Vk). (1.4)
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and consider the coordinate map given by

πB :G −→ Rm

X :=
k
∑

i=1

dimVi
∑

j=1

xijX
(i)
j 7→ (x(1), . . . , x(r)) (1.5)

where x(i) := (x
(i)
1 , . . . , x

(i)
dimVi

) ∈ RdimVi . Next, we set

Ψ := exp ◦ (πB)−1 : Rm −→ G

and we equip Rm with the composition law · defined by

x · y := Ψ−1(Ψ(x) ·G Ψ(y))

It is easy to see that (Rm, ·) is a Lie group and that Ψ is a Lie group isomor-

phism between (Rm, ·) and (G, ·G). It remains to prove that the Lie algebra

G∗ of (Rm, ·) is isomorphic to G. To this end we consider the map

Φ := exp−1 ◦Ψ−1 ◦ exp : G −→ G∗

and since all the components of Φ are isomorphism we conclude that Φ is an

isomorphism too and hence G∗ is stratified of step k.

1.1.3 Carnot groups in details

Let G = V1 ⊕ . . .⊕ Vk be a stratified Lie algebra of step k ∈ N, if we denote

by m :=
∑k

i=1 dim(Vi) then by Proposition 1.1.6 there exist a group law · on
Rm such that (Rm, ·) is a Carnot group whose Lie algebra is isomorphic to

G.
The presence of a stratification on G allows us to introduce a group of auto-

morphisms of G, the dilations. Indeed, for each λ > 0 we define δλ : V1 −→ V1

setting δλ(X) := λX. This map can be extended to G by δλ(X) := λiX if

X ∈ Vi and then by linearity. It can be shown that ∀λ, µ > 0, ∀X, Y ∈ G

δλµ = δλ ◦ δµ;
δλ([X, Y ]) = [(δλ(X), δλ(Y )];

δλ(X � Y ) = δλ(X)� δλ(Y ).
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By using the map πB defined in Proposition 1.1.6, we can project the dilations

on (Rm, ·) as follows
δλ(x) := πB(δλ(π

−1
B (x))).

It can be checked that ∀λ, µ ≥ 0 and ∀x, y ∈ Rm

δλµ = δλ ◦ δµ,
δλ(x · y) = δλ(x) · δλ(y).

and that

δλ : Rm −→ Rm

(x1, · · · , xm) 7→ (λx(1), · · · , λkx(k))

where x(i) := (x
(i)
1 , . . . , x

(i)
dimVi

) with i ∈ {1, . . . , k}. From now on we say that

every element of x(i) has degree equal to i ∈ N e we denote it deg(xi)

Moreover, in a Carnot group G ≡ (Rm, ·) a natural sub-Riemannian dis-

tance between two points x, y ∈ G can be introduced as the infimum of all

time T > 0 for which there exists a subunit curve joining x and y. More pre-

cisely, we say that an absolutely continuous curve λ : [0, T ] −→ G is subunit

if there exists a measurable function h : [0, T ] −→ RdimV1 such that

• λ̇(t) =
∑dimV1

i=1 hi(t)Xi(λ(t)) a.e t ∈ [0, T ]

• ||h||L∞([0,T ]) ≤ 1 in [0, T ].

where (X1, . . . , XdimV1) denotes a basis of V1. Therefore we can state the

following

Definition 1.1.12. Let G be a Carnot group, we define the Carnot-

Carathéodory distance in the following way:

dcc : G×G −→ [0,+∞]

(x, y) 7→ inf{T > 0 | ∃λ : [0, T ] −→ G subunit, λ(0) = x, λ(T ) = y}

Actually, it is well known that in any Carnot group G = (Rm, ·) the

Hörmander condition is satisfied, i.e.

Lie[X1, . . . , Xn1 ](x) = TxR
m ∀x ∈ Rm, (1.6)
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hence by the Chow’s theorem (see [38, 115]) we have

dcc(x, y) ≤ +∞ ∀x, y ∈ G.

Therefore (G, dcc) turn out to be a metric space. Using the stratification of

G it can be proved that the distance dcc is translation invariant and homo-

geneous of degree 1, more precisely

Proposition 1.1.7 ([138]). For all x, y, z ∈ G ≡ Rm and for all λ ≥ 0

1. dcc(z · x, z · y) = dcc(x, y) (translation invariance);

2. dcc(δλ(x), δλ(y)) = λdcc(x, y) (homogeneity).

Remark 1.5. For any fixed euclidean compact set K ⊂ G, there exists a

constant C = C(K) > 0 such that

1

C
|x− y| ≤ dcc(x, y) ≤ C|x− y| 1k (1.7)

for any x, y ∈ G. Hence inequality (1.7) implies that the topology induced

by the Carnot-Carathéodory distance is the same of the one induced by the

Euclidean distance.

Remark 1.6. Since dcc(x, y) is an implicit function, i.e it cannot be directly

computed starting from the coordinates of x and y it is often preferible to

use an equivalent and explicit distance on G ≡ (Rm, ·). One possible choice

is

d∞(x, y) := ‖y−1 · x‖ (1.8)

where

‖x‖ := ‖(x1, . . . , xm)‖ :=
m
∑

j=1

|xj|
1

deg(xj) (1.9)

or

‖x‖ := ‖(x1, . . . , xm)‖ := max
j

{ εj|xj|
1

deg(xj) } (1.10)
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and ε1, . . . , εm ∈ (0, 1] are such that (1.10) defines a norm and deg(xj) is

the degree of xj. It is easy to prove that the distance d∞ is such that

d∞(z·x, z·y) = d∞(x, y) and d∞(δλ(x), δλ(y)) = λd∞(x, y) ∀x, y, z ∈ G, ∀λ >
0. Moreover, for each compact set K ⊂ G there exists C(K) > 0 such that

C−1d∞(x, y) ≤ dcc(x, y) ≤ Cd∞(x, y) ∀x, y ∈ K.

Definition 1.1.13. We shall denote by Hm the m−dimensional Hausdorff

measure obtained from the distance d∞. Analogously, Sm will denote the

corresponding m−dimensional spherical Hausdorff measure.

Definition 1.1.14. Let G = (Rm, ·) be a Carnot group with Lie algebra

G = V1 ⊕ · · · ⊕ Vk.

We call the homogeneous dimension of G the number

Q :=
k
∑

i=1

i dim(Vi)

Remark 1.7. In [109] it is proved that the integer Q is the Hausdorff dimen-

sion of G with respect to the distance dcc.

Proposition 1.1.8 ([115]). If we denote by Lm the Lebesgue measure on

G ≡ (Rm, ·), then for each measurable E ⊂ Rm

Lm(x · E) = Lm(E · x) ∀x ∈ G.

Moreover, for all x ∈ G ≡ (Rm, ·) and for all r ≥ 0 it holds

Lm(B(x, r)) = rQLm(B(0, 1))

where B(x, r) := {y ∈ G | dcc(x, y) < r}.

Remark 1.8. From Proposition 1.1.8 it follows that them−dimensional Lebesgue

measure is the Haar measure of G.
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Definition 1.1.15. Let G be a Carnot group with Lie algebra G = V1⊕. . .⊕Vk
and let X1, . . . , XdimV1 be a basis of V1. The horizontal bundle HG is the

subbundle of the tangent bundle TG whose fibers HpG are spanned by the

horizontal vectors X1(p), . . . , XdimV1(p). We fix a scalar product on G is

such a way that the scalar product induced on each fiber 〈·, ·〉p makes the

horizontal basis orthonormal.

As usual, once we have a vector bundle one can introduce its sections,

namely a continuous map F : G −→ HG such that F (p) ∈ HpG ∀p ∈ G.

Since we fixed an horizontal basis on each fiber HpG, there are Fi : G −→ R

(i ∈ {1, . . . , dimV1}) such that

F (p) =

dimV1
∑

i=1

Fi(p)Xi(p) ∀p ∈ G

hence we can identify a section F with its representation in coordinates, that

is F ≡ (F1, . . . , FdimV1). Moreover, if Ω ⊆ G is an open set, we denote

by C∞(Ω, HG) the set of C∞ section of HG in Ω where, of course, the C∞

regularity is understood as regularity between manifolds, similarly we denote

by C∞
c (Ω, HG) ⊂ C∞(Ω, HG) the set of sections with compact support in

Ω.

1.2 Calculus on Carnot Groups

The aim of this section is to outline some basic results of first order calculus

and geometric measure theory in a general Carnot group, standard references

are [20, 103, 138, 80].

Throughout this section we will denote by G = (Rn, ·, dcc,G) and by S =

(Rm, ·, dcc,S) Carnot groups with Lie algebra G and S and homogeneous norms

|| · ||G and || · ||S respectively. Moreover, we will denote by n1 ∈ N the

dimension of the first layer of G, by (X1, . . . , Xn1) one of its basis and by

U(p, r) := {q ∈ G | dcc,G(p, q) < r}. Finally, Q ∈ N will be the homogeneous

dimension of G.
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1.2.1 First order calculus on Carnot groups

Definition 1.2.1. A map L : G −→ S, is said to be a homogeneous homo-

morphism if L is a group homomorphism and L ◦ δλ = δ̄λ ◦L, where we have

denoted by δ̄λ the dilations in S.

Example. If G = RN and S = R then L : RN −→ R is an homogeneous

homomorphism if and only if L is a linear map.

Definition 1.2.2. Let Ω ⊆ G be an open set. A map f : Ω ⊂ G −→ S

is Pansu-differentiable (or simply P-differentiable) at x ∈ Ω if there is an

homogeneous homomorphism Dx(f) : G −→ S such that

∃ lim
y→x

∣

∣

∣

∣

∣

∣

(

Dx(f)(x
−1 · y)

)−1

· f(x)−1 · f(y)
∣

∣

∣

∣

∣

∣

S

‖x−1 · y‖G
= 0

If a such Dx(f) exist we call it the Pansu-differential of f (or simply P-

differential). If f : Ω ⊂ G −→ S is P-differentiable at every x ∈ Ω and

the P-differential depends continuously on x we say that f is a continuosly

P-differentiable function and we write f ∈ C1
G(Ω, S).

Definition 1.2.3. Let Ω ⊂ G be an open set and f : Ω −→ R be a continuous

map, then we define the horizontal gradient of f as the function ∇Gf : Ω −→
Rn1

∇Gf := (X1f, . . . , Xn1f) (1.11)

where Xif denotes the distributional derivative of f along Xi.

Proposition 1.2.1 ([122]). Let Ω ⊂ G be an open set and let f : Ω −→ R be

a continuous function. Then f ∈ C1
G(Ω,R) if and only if the distributional

derivative Xif ∈ C0(Ω,R) with i ∈ {1, . . . , n1}.

As in the Euclidean case we have a representation theorem for the P-

differential of f ∈ C1
G(Ω,R) in terms of its intrinsic gradient.

Theorem 1.2.2 ([122]). Let Ω ⊂ G ≡ (Rn, ·) be an open set and f ∈
C1

G(Ω,R), then for all x, y ∈ Ω

Dy(f)(y
−1 · x) =

〈

∇Gf(y), π(y
−1 · x)

〉

Rn1
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where π : G −→ Rn1 is π(x) = π((x1, . . . , xn)) := (x1, . . . , xn1) and 〈·, ·〉Rn1

denotes the Euclidean scalar product on Rn1.

Proposition 1.2.3 ([115]). Let f : Ω ⊆ G −→ S be P-differentiable at

x ∈ Ω and g : f(Ω) −→ P P-differentiable at f(x) ∈ f(Ω). Then the map

g ◦ f : Ω −→ P is P-differentiable at x and

Dx(g ◦ f) = Df(x)(g) ◦Dx(f)

We conclude this part pointing out the relationship between Euclidean

C1 functions and C1
G functions.

Proposition 1.2.4 ([103]). Let Ω ⊆ G be an open set. Then

C1(Ω) ⊂ C1
G(Ω).

Remark 1.9. We refer to Section 1.3 for an example of function f ∈ C1
G(Ω) \

C1(Ω).

1.2.2 Lipschitz functions and geometric measure the-

ory

Definition 1.2.4. We say that a function f : Ω ⊂ G −→ S is Lipschitz and

we write f ∈ Lipcc(G, S), if there exists a constant L > 0 such that

dcc,S(f(x), f(y)) ≤ Ldcc,G(x, y) ∀x, y ∈ Ω. (1.12)

We call Lipschitz constant of f , and we write Lipcc(f), the infimum of L > 0

such that (1.12) hold.

The following fundamental theorem is due to Pansu and the proof is

contained in [122].

Theorem 1.2.5. If f : G −→ S is a Lipschitz function then it is P-

differentiable for Ln−a.e x ∈ G. Moreover, if S ≡ R then the derivatives

Xif , i = 1, . . . , n1 exist in distributional sense, are measurable function and

||∇Hf ||L∞(G) ≤ Lipcc(f). (1.13)
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Remark 1.10. We point out that the Carnot group structure is useless in

order to prove inequality (1.13), indeed it holds in all Carnot Carathéodory

spaces as proved in [115].

Theorem 1.2.5 open the possibility of proving much finer results on Lips-

chitz functions f ∈ Lipcc(G, S) especially when S ≡ R. To this end we recall

some notions of geometric measure theory in Carnot groups, see [75, 80, 115,

103, 138, 87] and the reference therein for the details.

Definition 1.2.5. Let Ω ⊂ G be an open set and ϕ ∈ C0(Ω, HG). Then

ϕ = (ϕ1, . . . , ϕn1) and we call horizontal divergence of ϕ the first order

operator:

divG ϕ :=

n1
∑

j=1

Xjϕj.

Remark 1.11. We point out that the previous definition does not depend on

the basis (X1, . . . , Xn1), see [103].

Using Definition 1.2.5 and simply rephrasing the classical definition it is

possible to introduce the notion of a function of G−bounded variation.

Definition 1.2.6 ([80, 26]). We say that f : Ω −→ R is of bounded G

variation in an open set Ω ⊂ G and we write f ∈ BVG(Ω), if f ∈ L1(Ω) and

|Df |G(Ω) := sup
{

∫

Ω

f divG ϕ dLn | ϕ ∈ C∞
c (Ω, HG), |ϕ|Rn1 ≤ 1

}

< +∞

Moreover we say that f is of locally finite G−variation in Ω (in short f ∈
BVG,loc(Ω)) if f ∈ L1

loc(Ω) and f ∈ BVG(Ω
′) for every Ω′

b Ω.

Definition 1.2.7. A set E ⊂ G is said to be of finite G−perimeter in Ω if

χE ∈ BVG(Ω), that is

|∂E|G(Ω) := sup
{

∫

E

divG ϕ dLn | ϕ ∈ C∞
c (Ω, HG), |ϕ|Rn1 ≤ 1

}

< +∞

Analogously a set E ⊂ G is of locally finite G−perimeter in Ω if χE ∈
BVloc,G(Ω).
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Remark 1.12. It is well-known that if E ⊆ G is a set of locally finite perimeter

in Ω, then |∂E|G is a Radon measure on Ω and its support is such that

spt(|∂E|G) ⊆ (∂E ∩Ω). Moreover it is not difficult to see that a set of finite

Euclidean perimeter has finite G−perimeter too and that this inclusion is

strict ([138, Example 3.8]).

Proposition 1.2.6 ([80, 103, 138]). If E is a Euclidean Lipschitz domain,

then

|∂E|G =

√

√

√

√

n1
∑

i=1

〈Xi, ν〉 Hn1 ∂E,

where with ν we denote the unit normal to ∂E.

Proposition 1.2.7 ([81, 26]). Let f, fj ∈ L1(Ω), j ∈ N, be such that fj → f

in L1(Ω). Then

|Df |G(Ω) ≤ lim inf
j→∞

|Dfj|G(Ω).

In analogy with the Euclidean case, by Riesz’s representation Theorem,

the following formula holds

Theorem 1.2.8 ([81, 80]). Let E ⊂ Ω be a set with locally finite G−perimeter.

Then then there exists a |∂E|G− measurable section νE of HG called gener-

alized inward normal such that |νE(p)|Rn1 = 1 for |∂E|G a.e p ∈ Ω and for

all ϕ ∈ C∞
0 (G, HG) we have

∫

E

divG ϕdLn = −
∫

G
〈νE, ϕ〉 d|∂E|G.

where 〈·, ·〉 denotes the scalar product defined in Definition 1.2.2.

Definition 1.2.8 ([81]). (i) Let E ⊂ G be a set of locally finite perimeter;

we say that p ∈ ∂∗GE (the G−reduced boundary of E) if

1. |∂E|G(U(p, r)) > 0 ∀ r > 0;

2. ∃ limr→0

∫

U(p,r)
νE d|∂E|G =: νE;

3. 〈νE(p), νE(p)〉 = 1.
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(ii) Let E ⊂ G be a measurable set, we say that p ∈ ∂∗,GE, the measure

theoretic boundary of E, if

lim sup
r→0+

Ln(E ∩ U(p, r))
Ln(U(p, r))

> 0

and

lim sup
r→0+

Ln(Ec ∩ U(p, r))
Ln(U(p, r))

> 0

Lemma 1.2.9. The G−reduced boundary of a set of finite perimeter is in-

variant under group translations, that is if q ∈ ∂∗GE if and only if p · q ∈
∂∗G(p · E), moreover, νE(q) = νp·E(p · q).

Lemma 1.2.10 ([4]). Assume E is a set of locally finite perimeter in G,

then

lim
r→0

∫

U(p,r)

νE d|∂E|G = νE(p) for |∂E|G − a.e p ∈ G

Theorem 1.2.11 ([80]). Let G = (Rn, ·) be a Carnot group of step two and

E ⊆ G a set with locally finite G−perimeter then there exist c = c(n) > 0

such that

|∂E|G = c Sn ∂∗GE. (1.14)

Remark 1.13. From Definition 1.2.8 and Lemma 1.2.10 we immediately de-

duce that |∂E|G−a.e p ∈ G belongs to the reduced boundary ∂∗GE.

We end this section with a collection of results that are the Carnot coun-

terpart of the BV function theory in the Euclidean space, see [80], [81] and

[27].

Theorem 1.2.12. For any f ∈ BVG(Ω) the following coarea formula holds

|Df |G(Ω) =
∫

R
|∂Et|G(Ω)dt (1.15)

where Et := {x ∈ Ω | f(x) > t}.

Now, some observation related to the coarea formula are in order.

Lemma 1.2.13. If u ∈ Lipcc(Ω,R) then, for every c ∈ R, the set {x ∈
Ω | ∇Gu(x) 6= 0} ∩ {x ∈ Ω | u(x) = c} has zero Lebesgue measure.
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Proof. For every f ∈ L1(Ω) by the coarea formula (1.15) we have

∫

Ω

f |∇Gu|dx =

∫ +∞

−∞

(

∫

{x∈Ω | u(x)=t}
fd|∂Et|G

)

dt.

If we take as f the characteristic function of the set V ∩{u = c} where V ⊆ Ω

is a bounded domain, then
∫

{x∈Ω | u(x)=t}
fd|∂Et|G = 0 ∀ t 6= c

hence
∫

V ∩{u=c}
|∇Gu|dx = 0

that implies the desired result.

Using Lemma 1.2.13 and (1.7) it easily follows the following

Corollary 1.2.14. If u ∈ Lipcc,loc(Ω) then, for every c ∈ R, the set {x ∈
Ω | ∇Gu(x) 6= 0} ∩ {x ∈ Ω | u(x) = c} has zero Lebesgue measure.

Theorem 1.2.15 ([65]). There is a constant c > 0 independent of r > 0

such that for any set E ⊂ G of locally finite G−perimeter, ∀p ∈ G, ∀r > 0

min{Ln(E ∩ U(p, r)),Ln(Ec ∩ U(p, r))}
Q−1
Q ≤ c|∂E|G(U(p, r)) (1.16)

and

min{Ln(E),Ln(Ec)}
Q−1
Q ≤ c|∂E|G(G). (1.17)

Definition 1.2.9. For each q ∈ G, we define the map πq : G −→ HG(q)

πq(p) =

n1
∑

j=1

xjXj(q)

where (x1, . . . , xn1) ∈ Rn1 are the first n1 coordinates of the point p.

Theorem 1.2.16 ([80]). Let G be a Carnot group of step two. Then if E is a

locally finite G−perimeter set, p ∈ ∂∗GE and νE(p) ∈ HGp is the generalized

inward normal to E in p, it holds

lim
r→0

1Er,p
= 1S+

G
(νE(p)) in L1

loc(G) (1.18)
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where Er,p := δ1/r(p
−1 · E). Moreover, for all R > 0 it holds

lim
r→0

|∂Er,p|G(U(0, R)) = |S+
G (νE(p))|G(U(p, r)), (1.19)

where S+
G (νE(p)) :=

{

q ∈ G | 〈πp(q), νE(p)〉 ≥ 0
}

.

1.3 Examples

In this section we describe three important examples of Carnot groups,

namely the Euclidean space Rn, the Heisenberg group Hn and the Engel

group E.

1.3.1 Euclidean space

The easiest example of Carnot group is the additive group (Rn,+). Its dila-

tions are

δλ(x) = λx (λ > 0),

and a basis of its Lie algebra is (∂1, · · · , ∂n), hence Rn is a Carnot group

of step 1 with homogeneous dimension Q = n. Moreover, since the subunit

curves are straight lines we immediately obtain that

dcc(x, y) = |x− y|Rn

where | · |Rn denotes the Euclidean norm. We stress that (Rn,+) is the only

Carnot group with step 1 (and n generators).

1.3.2 The Heisenberg group

Our second example is the Heisenberg group Hn that is the most simple non

commutative Carnot group. It is a privileged object of study in analysis and

geometry.

Definition 1.3.1. A Lie algebra hn is said to be the Heisenberg algebra if

there exists a basis (∇H
1 , . . . ,∇H

2n,∇H
2n+1) of hn such that the only non trivial
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commutation is

[∇H
i ,∇H

n+i] = 2∇H
2n+1 ∀i = 1, . . . , n.

The Heisenberg group Hn is the connected, simply connected and nilpotent

Lie group associated to hn.

Remark 1.14. Defining

h1 := span{∇H
1 , . . . ,∇H

2n}
h2 := span{∇H

2n+1}

hn becomes a stratified Lie algebra of step 2. Hence Hn is a Carnot group

of step 2 with Hausdorff dimension equal to Q = 2n + 2 and topological

dimension equal to 2n+ 1.

By using Proposition 1.1.6, we identify Hn with (R2n+1, ·) where, if p =

(s, x) = (s, x1, . . . , x2n), q = (t, y) = (t, y1, . . . , y2n) ∈ R× R2n, then

q · p = (s+ t, x1 + y1, . . . (1.20)

. . . , x2n + y2n + (syn − txn) +
n
∑

i=1

(

yn+ixi − yixn+i

)

and the canonical basis of hn is


























∇H
1 = ∂s − xn∂2n

∇H
i+1 = ∂i − xi+n∂2n if and i = 1, . . . , n− 1

∇H
i+1 = ∂i + xi−n∂2n if and i = n+ 1, . . . , 2n− 1

∇H
2n+1 = ∂2n

(1.21)

In Chapter 4 we will use another coordinate representation of Hn. Namely,

instead using the classical exponential map definend in (1.2) we will use the

global diffeomorphism exp∗ : hn −→ Hn defined by

exp∗(X) = exp∗(s∇H
1 +

2n
∑

i=1

xi∇H
i ) := exp(s∇H

1 )exp(
2n
∑

i=1

xi∇H
i )(0) (1.22)

As in the classical case exp∗ defines an isomorphism between (hn,�) and

(Hn, ·). Hence by Proposition 1.1.6 it follows that (Hn, ·) is isomorphic as
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a Lie group to (R2n+1, ·) where, if p = (s, x) = (s, x1, . . . , x2n), q = (t, y) =

(t, y1, . . . , y2n) ∈ R× R2n, then

q · p = (s+ t, x1 + y1, . . . (1.23)

. . . , x2n + y2n +
n−1
∑

i=1

(xi+nyi − yi+nxi) + 2(xn + yn)t)

In these new coordinates the canonical basis of hn, if n ≥ 2, is expressed as






































∇H
1 = ∂s

∇H
i+1 = ∂i − xi+n∂2n if and i = 1, . . . , n− 1

∇H
n+1 = ∂n + 2s∂2n

∇H
i+1 = ∂i + xi−n∂2n if and i = n+ 1, . . . , 2n− 1

∇H
2n+1 = ∂2n

(1.24)

The homogeneous dilatations δλ : R2n+1 −→ R2n+1 are

δλ(s, x1, . . . , x2n) = (λs, λx1, . . . , λ
2x2n) λ > 0

and

d∞(x, y) = ‖y−1 · x‖ (1.25)

where

‖(s, x1, . . . , x2n)‖ := max
{ ∣

∣

∣(s, x1, . . . , x2n−1)
∣

∣

∣

R2n
,
∣

∣

∣x2n

∣

∣

∣

1
2
}

(1.26)

or equivalently

‖(s, x1, . . . , x2n)‖ :=
(∣

∣

∣(s, x1, . . . , x2n−1)
∣

∣

∣

R2n
+
∣

∣

∣x2n

∣

∣

∣

2) 1
4

(1.27)

Moreover, we denote by U(x, r) = {y ∈ Hn | d∞(x, y) < r}.
Remark 1.15. We are now in position to provide an explicit example of a

function f ∈ C1
H(Ω) \ C1(Ω). Indeed, let us consider

f :H1 −→ R

(s, x1,x2) 7→ s−
√

s4 + x41 + x22

then it is clear that f is not C1 regular at the origin but it is C1
H regular in

a neighbourhood of 0.
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1.3.3 The Engel group

Definition 1.3.2. The Engel algebra is the finite dimensional Lie algebra e

with basis (X1, X2, X3, X4) where the only nonvanishing commutators rela-

tionship among the generators are

[X1, X2] = X3, [X1, X3] = [X2, X3] = X4. (1.28)

The Engel group, denoted by E, is the connected, simply connected and nilpo-

tent Lie group associated to e.

Remark 1.16. It is easy to see that the Engel algebra is stratified of step 3.

Hence E is Carnot group of step 3 with homogeneous dimension Q = 7 and

topological dimension equal to 4.

Since E is a Carnot group by Prosition 1.1.6 we can represent it by (R4, ·)
where for all (x1, x2, x3, x4), (y1, y2, y3, y4) ∈ E ≡ R4

(x1, x2, x3, x4) · (y1, y2, y3, y4) := (1.29)

=
(

x1 + y1, x2 + y2, x3 + y3 +
1

2
(x1y2 − x2y1),

x4 + y4 +
1

2
[(x1y3 − x3y1) + (x2y3 − x3y2)]+

+
1

12
[(x1 − y1 + x2 − y2)(x1y2 − x2y1)].

)

The rappresentation of the basis (X1, X2, X3, X4) in these coordinates gives


































X1(x1, x2, x3, x4) = ∂1 −
x2
2
∂3 −

(x3
2

+
x2
12

(x1 + x2)
)

∂4

X2(x1, x2, x3, x4) = ∂2 +
x1
2
∂3 −

(x3
2

− x1
12

(x1 + x2)
)

∂4

X3(x1, x2, x3, x4) = ∂3 +
1

2
(x1 + x2)∂4

X4(x1, x2, x3, x4) = ∂4.

(1.30)

The homogeneous dilations on E are

δλ(x1, x2, x3, x4) := (λx1, λx2, λ
2x3, λ

3x4) λ > 0

and for every x = (x1, x2, x3, x4) ∈ E, we denote by

‖x‖ :=
(

(x21 + x22)
6 + x63 + x44

) 1
12

and then d∞(x, y) = ‖y−1 · x‖ is a homogeneous distance on E.





Chapter 2

Sub-Laplacian and

Fundamental Solution

The goal of this chapter is to present basic aspects of Sub-Laplacian theory

on a general Carnot group. In particular we will focus on some representation

formulas for smooth functions, which will be fundamental in Chapter 4.

Throughout this chapter we will denote by G = (Rm, ·, δλ) a Carnot group
with Lie algebra

G = V1 ⊕ . . .⊕ Vr.

Moreover,X1, . . . , Xn1 will be a linear basis of V1 andQ ∈ N the homogeneous

dimension of G.

2.1 Classical theory

Definition 2.1.1. We call sub-Laplacian related to the stratification

(V1, . . . , Vr) the second order differential operator defined as

L :=

n1
∑

j=1

X2
j . (2.1)

Sometimes we will also adopt the notation ∆G in order to emphasize the

Carnot group which we use.



24 Sub-Laplacian and Fundamental Solution

Example. If (G, ·) = (RN ,+) then, the sub-Laplacian associated to G is the

classical Laplacian operator:

L = ∆ :=
N
∑

j=1

∂2j .

Example. If G = H1 then h = h1 ⊕ h2 where

h1 := {∇H
1 ,∇H

2 }
h2 := {∇H

3 }

hence ∆H1 = (∇H
1 )

2 + (∇H
2 )

2 and using the explicit representation of ∇H
1 and

∇H
2 (see (1.21)) we obtain

∆H1 = (∂x,x + ∂y,y) + 4(x2 + y2)∂t,t + 4(y∂x − x∂y)∂t. (2.2)

Example. If G = E then the first layer of the stratification is generated by

X1, X2 whose explicit expression is as in (1.30). Then the associated sub-

Laplacian is

∆E = ∂1,1 + ∂2,2 − x2∂1,3 + x1∂2,3 −
(

x3 +
x1x2
6

+
x22
6

)

∂1,4+

+
(

− x3 +
x1x2
6

+
x21
6

)

∂2,4 +
1

6
(x2 − x1)∂4+

+
(

− x1x3
2

+
x31
12

+
x21x2
12

+
x32
12

+
x22x1
12

+
x2x3
2

)

∂3,4+

+
1

4
(x21 + x22)∂3,3 +

[(x3
2

− x1
12

(x1 + x2)
)2

+
(x3
2

+
x2
12

(x1 + x2)
)2]

.

Here ∂i,j := ∂xi,xj
.

Remark 2.1. It is interesting to note that a sub-Laplacian is not necessarly

a second order partial differential operator when we write it using Euclidean

derivatives.

Lemma 2.1.1 ([20]). Let L be a sub-Laplacian on G. Then

1. L is hypoelliptic, i.e. every distributional solution of Lu = f is smooth

is f is smooth.
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2. L is invariant w.r.t. the left traslations on G, i.e. for every fixed

q ∈ G it holds L(u(τq(x))) = L(u)(τq(x)) for every x ∈ G and every

u ∈ C∞(Rm). Here τq(p) := q · p.

3. L is homogeneous of degree 2, i.e for every fixed λ > 0 it holds

L(u(δλ(x))) = λ2(Lu)(δλ(x))

for every x ∈ G and every u ∈ C∞(Rm).

4. Let A(x) be the m×m matrix obtained as A(x) := σ(x)σ(x)T where σ

is the m×n1 matrix whose columns are the coefficients of X1, . . . , Xn1,

then

L = div(A(x)∇T ).

Moreover if we define the characteristic form of L as

qL(x, ξ) := 〈A(x)ξ, ξ〉

it holds qL(x, ξ) =
∑n1

i=1 〈A(x)ei, ξ〉
2 where {ei}i is the canonical basis

of Rn1.

5. As in the Euclidean case L is the second order differential operator

related to the energy

u 7→
∫

Ω

|∇Gu|2dLm.

More precisely, it can be proved that u is a critical point of the previous

functional if and only if u is a weak solution of Lu = 0, that is, u ∈
C∞(Ω,R) and

∫

Ω

〈∇Gu,∇Gϕ〉 dLm = 0 ∀ϕ ∈ C∞
c (Ω,R).

Remark 2.2. Since qL(x, ξ) =
∑n1

i=1 〈A(x)ei, ξ〉
2, thenA(x) is positive semidef-

inite for every x ∈ G. Moreover, it is easy to prove that if G has step

greater than 2 then L is not elliptic at any point of G. Indeed, since

qL(x, ξ) =
∑n1

i=1 〈A(x)ei, ξ〉
2 we have,

N(x) : = {ξ ∈ Rm | qL(x, ξ) = 0}
= {ξ ∈ Rm | 〈A(x)ei, ξ〉 , ∀ i ∈ {1, . . . , n1}}.
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Since the vectors A(x)ei, i ∈ {1, . . . , n1}, are linearly independent in Rm for

every fixed x ∈ G, it follows that if n1 < m, that is if the stratification of G

is greater that 2, then for every x ∈ G there exists ξ ∈ Rm \ {0} such that

qL(x, ξ) = 0 . From the previous discussion the non ellipticity of L follows.

Definition 2.1.2. Let G be a Carnot group and let L be a fixed sub-Laplacian

on G. Let Ω ⊂ G be an open set. A smooth function u : Ω −→ R is called

L−harmonic on Ω if

Lu = 0 on Ω (2.3)

We briefly recall two fundamental results on sub-Laplacian, see [20] for a

more detailed treatment.

Theorem 2.1.2 ([20]). (Weak maximum principle) Let L be a sub-

Laplacian on a Carnot group G, let Ω ⊂ G be an open bounded set and let

u : Ω −→ R be a C2 function such that

Lu ≥ 0 in Ω

lim sup
x→y

u(x) ≤ 0 ∀ y ∈ ∂Ω

then

u(x) ≤ 0 ∀ x ∈ Ω

Corollary 2.1.3 ([20]). Let L be a sub-Laplacian on a Carnot group G,

then the only entire L−harmonic function vanishing at infinity is the null

function.

Theorem 2.1.4 ([20]). (Strong maximum principle) Let L be a sub-

Laplacian on a Carnot group G, let Ω ⊂ G be a connected open set and let

u : Ω −→ R be a C2 function such that

u ≤ 0 in Ω

Lu ≥ 0 in Ω

If there exists a point x0 ∈ Ω such that u(x0) = 0 then u(x) = 0 for every

x ∈ Ω.
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We are now in position to introduce the concept of fundamental solution

of a sub-Laplacian,

Definition 2.1.3. Let L be a sub-Laplacian on G. A function Γ : Rm \
{0} −→ R is said to be a fundamental solution for L if

1. Γ ∈ C∞(Rm \ {0});

2. Γ ∈ L1
loc(R

m);

3. lim|x|→∞ Γ(x) = 0;

4.
∫

Rm Γ(x)Lϕ(x)dx = −ϕ(0) ∀ ϕ ∈ C∞
0 (Rm).

Remark 2.3. Using the hypoellipticity of L it can be proved that for every

sub-Laplacian there exists a fundamental solution, see [20].

The following rappresentation formula holds:

Proposition 2.1.5. Let L be a sub-Laplacian on G and let Γ be a funda-

mental solution of L, then for every ϕ ∈ C∞
0 (Rm)

∫

Rn

Γ(y−1 · x)Lϕ(x)dx = ϕ(y) ∀ y ∈ Rm.

Proof. If y−1 · x = z then

∫

Rn

Γ(y−1 · x)Lϕ(x)dx =

∫

Rn

Γ(z)Lϕ(y · z)dz (2.4)

since L is left invariant on G we have

(Lϕ)(y · z) = L(ϕ(y · z))

and using (4) in Definition 2.1.3 we get the thesis.

Now we are going to prove that a fundamental solution of a sub-Laplacian

is unique. Before doing so we need the following elementary result, see [20].
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Proposition 2.1.6 ([20]). Let L be a sub-Laplacian on G. If u ∈ L1
loc(R

m)

is such that
∫

Rm

u(x)Lϕ(x)dx = 0 ∀ ϕ ∈ C∞
0 (Rm) (2.5)

then for every ε > 0 the mollification uε of u is such that

Luε(x) = 0 ∀x ∈ G (2.6)

Theorem 2.1.7. Let L be a sub-Laplacian on a Carnot group G, then the

fundamental solution Γ of L is unique.

Proof. If Γ1 and Γ2 are fundamental solution of L then u := Γ1 − Γ2 is such

that u ∈ L1
loc(R

m),
∫

Rm u(x)Lϕ(x)dLm = 0 ∀ϕ ∈ C∞
0 (Rm) and u(x) → 0 as

|x| → ∞. Hence by Proposition 2.1.6 we obtain that ∀ε > 0

Luε(x) = 0 ∀x ∈ Rm.

Then, since uε → 0 as |x| → ∞, Corollary 2.1.3 implies uε ≡ 0. On the other

hand uε → u in L1
loc(R

m), therefore u(x) = 0 a.e x ∈ Rm, so that Γ1 = Γ2 in

Rm \ {0}.

Hence we proved the uniqueness part of the following important theorem,

for the existence part we refer to the classical paper of Hörmander [94].

Theorem 2.1.8. Let L be a sub-Laplacian on G. Then there exists a unique

fundamental solution of L.

Proposition 2.1.9. Let L be a sub-Laplacian on G and let Γ be the funda-

mental solution of L. Then

1. Γ is symmetric, i.e. Γ(x−1) = Γ(x) ∀x ∈ G \ {0},

2. Γ is homogeneous of degree 2 − Q, i.e. Γ(δλ(x)) = λ2−QΓ(x) ∀ x ∈
G \ {0}, ∀λ > 0,

3. Γ is positive, i.e. Γ(x) > 0 ∀x ∈ G \ {0},

4. Γ has a pole at 0, i.e limx→0 Γ(x) = ∞.
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Proof. 1. Given ϕ ∈ C∞
0 (Rm), define

u(x) :=

∫

Rm

Γ(y−1 · x)Lϕ(y)dLm(y), x ∈ G.

Then, u is smooth and vanishes at infinity. Hence, for every ψ ∈
C∞

0 (Rm),
∫

Rm

Lu(x)ψ(x)dLm =

∫

Rm

u(x)Lψ(x)dLm

= −
∫

Rm

Lϕ(y)
(

∫

Rm

Γ(y−1 · x)Lψ(x)dLm(x)
)

dLm

=

∫

Rm

Lϕ(x)ψ(x)dLm(x)

so, L(u − ϕ) = 0 in G. Since u − ϕ is an entire harmonic function

vanishing at infinity we deduce u− ϕ ≡ 0 in Rm. Therefore, for every

ϕ ∈ C∞
0 (Rm)

ϕ(0) = u(0) = −
∫

Rm

Γ(y−1)Lϕ(y)dLm(y)

and hence y → Γ(y−1) is a fundamental solution of L, the thesis follows
by Theorem 2.1.8.

2. For any λ > 0 let us define Γ̄(x) := λQ−2Γ(δλ(x)), then obviously Γ̄

satisfies (1), (2) and (3) in Definition 2.1.3. Moreover for every ϕ ∈
C∞

0 (Rm) we have
∫

Rm

Γ̄(x)Lϕ(x)dLm(x) = λQ−2

∫

Rm

Γ(δλ(x)Lϕ(x)dLm(x)

= λ−2

∫

Rm

Γ(y)(Lϕ)(δ1/λ)dLm(y)

=

∫

Rm

ΓL(ϕ(δ1/λ(y)))dLm(y) = ϕ(0)

and then the thesis follows by the uniqueness of the fundamental solu-

tion of L.

3. For every ϕ ∈ C∞
0 (Rm) , ϕ ≥ 0. We define

u(y) :=

∫

Rm

Γ(y−1 · x)ϕ(x)dLm(x), y ∈ G
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then it is easy to see that u ∈ C∞(Rm) and that u vanishes at infinity.

Moreover Lu = ϕ, indeed for every ψ ∈ C∞
0 (Rm) one has

∫

Rm

(Lu)(x)ψ(y)dLm(y) =

∫

Rm

u(x)Lψ(y)dLm(y)

=

∫

Rm

ϕ(x)
(

∫

Rm

Γ(y−1 · x)Lψ(y)dLm(y)
)

dLm

and by symmetry of Γ we conclude
∫

Rm

(Lu)(x)ψ(y)dLm(y) =

∫

Rm

ϕ(x)
(

∫

Rm

Γ(x−1 · y)Lψ(y)dLm(y)
)

dLm

−
∫

RN

ϕ(x)ψ(x)dx

and the thesis follows by the fundamental Lemma of calculus of varia-

tions. Since Lu(x) = −ϕ(x) ≤ 0 ∀x ∈ G and lim|x|→∞ u(x) = 0 then by

the maximum principle u(x) ≥ 0 ∀x ∈ G. Hence Γ(x) ≥ 0 ∀x ∈ G\{0}
and the thesis follows by the strong maximum principle and the fact

that a fundamental solution of L cannot be identically 0.

4. Let d be a fixed homogeneous norm on G. Then

k := min{Γ(x) | d(x) = 1} > 0

therefore

Γ(x) =
1

d(x)
Γ(δ1/d(x)(x)) ≥

k

d(x)Q−2

and the thesis follows.

The following fundamental result is proved in [129].

Theorem 2.1.10. For every open and bounded set Ω ⊂ Rm there exist

C1, C2, r0 > 0 such that for every x ∈ Ω and every y ∈ Ω \ {x} with

dcc(x, y) ≤ r0

1. C1
dcc(x,y)2

|B(x,dcc(x,y))| ≤ Γ(x, y) ≤ C2
dcc(x,y)2

|B(x,dcc(x,y))| ;
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2. |∇GΓ(x, y)| ≤ C2
dcc(x,y)

|B(x,dcc(x,y))|

Here B(x, r) is the ball of center x and radious r > 0 made with respect to

the distance dcc.

Definition 2.1.4. Let L be a sub-Laplacian on G. A norm d ∈ C∞(Rm\{0})
is said an L−gauge if it is symmetric (i.e d(x−1) = d(x)), homogeneous and

such that

L(d2−Q)(x) = 0 ∀ x ∈ Rm \ {0}.

Example. We know that if (G, ·, δλ) = (RN ,+, λ) with N ≥ 3 then the

canonical sub-Laplacian is the classical Laplace operator, hence denoting by

d(x) := |x| the Euclidean norm it follows that d is smooth out of the origin,

1−homogeneous and such that

∆(d2−N) = 0

so it is a ∆−gauge on G.

Example. If G = H1 then

∆H1 = (∂2x + ∂2y) + 4(x2 + y2)∂2t + 4(y∂x − x∂y)∂t

is the canonical sub-Laplacian on H1. Let us define

d(x, y, t) := (|(x, y)|4R2 + 16|t|2) 1
4

then d is smooth out of the origin, 1−homogeneous and symmetric. More-

over, since Q = 4 we obtain 2−Q = −2 and

∆H1(d−2) = 0 on H1 \ {0}.

we conclude that d is a ∆H1−gauge on H1.

Remark 2.4. Let us observe that for any Carnot group G there exists at least

one L−gauge on G. Indeed, let Γ be the fundamental solution of L then, by

Proposition 2.1.9, the function

d(x) :=

{

Γ(x)1/(2−Q) if x ∈ G \ {0}
0 if x = 0

is an L−gauge on G.
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Now we state, without proof, a representation formula which we will use

in Chapter 4, see [20].

Theorem 2.1.11. Let L be a sub-Laplacian on G and let d be an L−gauge

on G. Let u ∈ C2(Ω) where Ω ⊂ G is open. Then, for every x ∈ Ω and r > 0

such that B̄d(x, r) ⊂ Ω, we have

u(x) =
β(Q− 2)

rQ−1

∫

∂Bd(x,r)

|∇Gd|2(x−1 · z)
|∇(d(x−1·))|(z)u(z)dH

m−1(z)− (2.7)

− β

∫

Bd(x,r)

(d2−Q(x−1 · z)− r2−Q)Lu(z)dLm(z)

where

(β)−1 := (Q− 2)

∫

∂Bd(0,1)

|∇Gd|2(z)
|∇(d(0 ◦ ·))|(z)dH

m−1(z) (2.8)

Corollary 2.1.12. If u ∈ C2(Ω) is L−harmonic then

u(x) =
β(Q− 2)

rQ−1

∫

∂Bd(x,r)

|∇Gd|2(x−1 · z)
|∇(d(x−1 · ·))|(z)u(z)dH

m−1(z)

Remark 2.5. If G = (RN ,+, λ) and L = 4 then Corollary 2.1.12 gives the

classical Gauss theorem for 4−harmonic functions. Indeed in this case

|∇Gd|2(x−1 · z)
|∇(d(x−1·))|(z) = 1

and the second integral is equal to 0.

Using Theorem 2.1.11 we can prove that L−gauges are unique up to

multiplicative constants

Proposition 2.1.13. Let L be a sub-Laplacian on G. If d is an L−gauge

on G and β is the constant in (2.8) then

Γ := βd2−Q (2.9)

is the fundamental solution of L.
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Proof. Let ϕ ∈ C∞
0 (Ω) and let r > 0 such that supp(ϕ) ⊂ Bd(0, r). Appling

Theorem 2.1.11 we obtain

ϕ(0) = β

∫

Bd(0,r)

(d2−Q(z)− r2−Q)Lϕ(z)dLm(z) (2.10)

Moreover,
∫

Bd(0,r)

Lϕ(x)dLm(x) =

∫

∂Bd(0,r)

〈A · ∇u, ν〉 dHm−1 = 0

where A is as in Lemma 2.1.1 and ν is the exterior normal to ∂Bd(0, r).

Hence, for every ϕ ∈ C∞
0 (Ω)

ϕ(0) = β

∫

Bd(0,r)

d2−Q(z)Lϕ(z)dLm(z) (2.11)

By the uniqueness of the fundamental solution of L, it remains to prove that

the function Γ := βd2−Q satisfies (2) and (3) in Definition 2.1.3. To prove

(2) we can proceed as follows,
∫

Bd(0,r)

d2−Q(z)dLm(z) =
m
∑

i=1

∫

{r/2i+1≤d≤r/2i}
d2−Q(z)dLm(z)

≤
(r

2

)2−Q
m
∑

i=0

1

2i(2−Q)

∫

{r/2i+1≤d≤r/2i}
dLm(z)

=
(r

2

)2−Q
m
∑

i=0

1

2i(2−Q)

( r

2i

)Q
∫

{1/2≤d≤1}
dLm(z)

= CrQ
(r

2

)2−Q
m
∑

i=0

2−2i

and this implies that d2−Q ∈ L1
loc(R

m) . Finally, (3) easily follows from the

fact that d is a distance and 2−Q ≤ 0.

We conclude this section providing another representation Theorem due

to Citti-Garofalo and Lanconelli and proved in [42].

To this end, for every x ∈ G ≡ Rm and r > 0, we define by analogy with

the Euclidean case the set

Ωr(x) :=
{

y ∈ Rm | Γ(x, y) > 1

r

}

(2.12)

and we call it the L− ball centered at x with radius r.
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Lemma 2.1.14. Let Ω ⊂ Rm be an open set. If x ∈ Ω is fixed, there exists

r̄ = r̄x > 0 such that for every 0 < r < r̄

Ω̄r(x) ⊂ Ω.

Moreover, ∂Ωr(x) is an (m−1)−dimensional manifold of class C∞ for almost

all r ∈ (0, r̄).

We are now in position to prove the following representation Theorem,

Theorem 2.1.15 ([42]). Let A be a symmetric, positive definite matrix such

that L = div(A∇T ) as in Lemma 2.1.14. If Ω ⊂ Rm is a smooth open set

then for every u ∈ C∞(Ω), every x ∈ Ω and almost every r ∈ (0, r̄) where

r̄ > 0 is as in Lemma 2.1.14:

u(x) =

∫

∂Ωr(x)

A∇Γ · ∇Γ

|∇Γ| u dHm−1 +

∫

Ωr(x)

A∇Γ · ∇udLm (2.13)

where we have let Γ = Γ(x, ·) and ∇ denotes the Euclidean gradient.

Sketch of the Proof: Let us fix x ∈ Ω and let r̄ > 0 as in Lemma 2.1.14. For

each 0 < ε < r < r̄ we denote by Uε the open set defined by

Uε := Ωr(x) \ Ω̄ε(x)

and v := Γ(x, ·). By the divergence theorem and by using the fact that

Lv = 0 in Uε we obtain
∫

Uε

A∇Γ · ∇u dLm =

∫

∂Ωr(x)

(A∇Γ · ν)u dHm−1 −
∫

∂Ωε(x)

(A∇Γ · ν)u dHm−1

(2.14)

Now, since (A∇Γ · ∇u)1/2 is locally integrable (see [42]) we have

lim
ε→0

∫

Uε

A∇Γ · ∇u dLm =

∫

Ωr(x)

A∇Γ · ∇udLm.

On the other hand since ∂Ωr(x) = ∂
{

y | Γ(x, y) > 1/r
}

, we have

∫

∂Ωr(x)

(A∇Γ · ν)u dHm−1 = −
∫

∂Ωr(x)

A∇Γ · ∇Γ

|∇Γ| udHm−1. (2.15)
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Now, for each ϕ ∈ C∞
c (Ω) cut off on Ω̄ε(x) denoting by Sε := {Γ(x, y) ≤ 1/ε}

and S̃ε := {Γ(x, y) = 1/ε} we have

u(x) = −
∫

Rm

Γ(x, y)L(uϕ)(y)dLm(y) = − lim
ε→0

∫

Sε

Γ(x, y)L(uϕ)(y)dLm(y)

(2.16)

= lim
ε→0

(

∫

Sε

A∇Γ · ∇(uϕ)dLm(y)− 1

ε

∫

S̃ε

A∇(uϕ) · νdHm−1
)

(2.17)

Integrating by parts and using the divergence theorem we obtain:

u(x) =− lim
ε→0

∫

Sε

LΓuϕdLm(y)− lim
ε→0

∫

S̃ε

(A∇Γ · ν)u dHm−1−

− lim
ε→0

1

ε

∫

{Γ(x,y)≥1/ε}
Lu dLm(y)

= − lim
ε→0

∫

S̃ε

(A∇Γ · ν)u dLm(y)

where in the last equality we used the fact LΓ = 0 on {Γ(x, y) ≤ 1/ε} and

1

ε

∣

∣

∣

{

Γ(x, y) ≥ 1

ε

}∣

∣

∣
=

1

ε
|Ωε(x)| = o(1)

as ε → 0 (see [42]). Passing to the limit as ε → 0 in (2.14) we obtain the

thesis.





Chapter 3

Hypersurfaces in the

Heisenberg group

The aim of this chapter is to introduce the concept of H−regular hyper-

surfaces, i.e noncritical level sets of C1
H functions. These surfaces are the

natural Heisenberg counterpart of C1 Euclidean hypersurfaces, nevetheless

they can be very irregular from an Euclidean point of view. These objects

were firstly studied in [80] in connection to the theory of rectifiable sets

in the Heisenberg group. Successively they were introduced in more general

Carnot groups ([81]) and in the context of Carnot-Carathéodory spaces ([45]).

One of the main important feature that H−regular hypersurfaces share with

C1 Euclidean hypersurfaces is the presence of an implicit function theorem

([80, 45]). More precisely, for every H−regular hypersurface S, there is a con-

tinuous map φ which locally parametrizes S in a suitable intrinsic sense, see

Theorem 3.1.1. Actually, the map φ is not only continuous, indeed in [6, 45]

it is proved that φ is uniformly ∇φ−differentiable, see Definition 3.2.4. As we

will see later, it is a difficult task to verify directly the ∇φ−differentiability

of a given function. Nevertheless this difficulty can be, somehow, bypassed

using some interesting results contained in a series of papers ([14, 13, 117])

which we report at the end of the chapter.
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Throughout this chapter we will use the notations introduced in section

1.3. More precisely, we refer to Hn as R2n+1 equipped by the group law

defined in (1.23) and we identify points p ∈ Hn with (s, x1, . . . , x2n) ∈ R×R2n

in such a way that p = exp(s∇H
1 )exp(

∑2n
i=1 xi∇H

i )(0).

3.1 Hypersurfaces and the implicit function

Theorem

Definition 3.1.1. A set S ⊂ Hn is an H−regular hypersurface if for each

p ∈ S there are an open p ∈ U ⊂ Hn and f ∈ C1
H(U,R) such that ∇Hf 6= 0

in U and

S ∩ U = {w ∈ U | f(w) = 0}.

Remark 3.1. We point out that the notion of H−regular hypersurface intro-

duced in Definition 3.1.1 is very similar to the classical one. However there

are H−regular hypersurfaces that, from an Euclidean point of view, are very

irregular. For example, there is an H−regular hypersurface with fractional

Euclidean dimension equal to 2.5, see [97]. A more explicit example is

S := {(s, x1, x2) ∈ H1 | s =
√

s4 + x41 + x22}

indeed, by Remark 1.15 we know that S is the zero set of a C1
H function with

non zero intrinsic gradient and hence S is an H−regular hypersurface; on the

other hand we also know that this function is not Euclidean regular at the

origin.

Remark 3.2. Let S ⊂ Hn be an Euclidean C1 hypersurface then it is an

H−regular hypersurface if it hasn’t characteristic points, i.e if for all p ∈ S

HpS * TpS

where TpS denotes the Euclidean tangent space to S at p.

We denote by νS(p) the horizontal normal to S at p ∈ S, i.e the vector

νS(p) := − ∇Hf(p)

|∇Hf(p)|p
(3.1)
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and by THS(p) the tangent plane to S at p,

THS(p) := p · T g
HS(p)

where T g
HS(p) :=

{

q ∈ Hn | 〈νp−1·S(0), π(q)〉
}

, where π is as in Definition

1.2.9.

Remark 3.3. A priori it should seem that the horizontal normal depends on

the particular choice of f , we will see later that this is not the case, see

Remark 3.4

As already said in the introduction of this chapter, one of the main ad-

vantage of definition 3.1.1 is the presence of an implicit function theorem. In

other words, every H−regular hypersurface is locally the graph of a continu-

ous function in a suitable intrinsic sense. Before stating the precise statement

we recall some basic concepts.

The exponential map exp∗ definend in Section 1.3 induces a split in Hn

into homogeneous subgroups, i.e subgroups of Hn closed under the dilation

family. Indeed, denoting:

W := {p ∈ Hn | p = (0, x), x ∈ R2n} (3.2)

V := {p ∈ Hn | p = (s, 0), s ∈ R}

we have that Hn = W · V and W ∩ V = {0}. It is clear that the maps

πW :Hn −→ W (3.3)

(s, x) 7→ (0, x)

and

πV :Hn −→ V (3.4)

(s, x) 7→ (s, 0)

are continuous and

c(‖πW(p)‖+ ‖πV(p)‖) ≤ ‖p‖ ≤ (‖πW(p)‖+ ‖πV(p)‖), (3.5)
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for some constant c = c(W,V) > 0 (see also [9] for a generalization of

this statement in Carnot groups of any step).

Note that, if (s, 0) ∈ V, (0, x) ∈ W, then the sum turn out to be:

(0, x) · (s, 0) = (s, x). (3.6)

From now on we will denote a point (0, x) ∈ W by x ∈ R2n and (s, 0) ∈ V

by s ∈ R

Definition 3.1.2. The intrinsic (left) graph of a function φ : ω ⊆ W −→ V

is the set

graph(φ) : = {x · φ(x) | x ∈ ω} (3.7)

= {(φ(x), x) | x ∈ ω}

the intrinsic subgraph of φ is the set

Eφ := {(s, x) ∈ R× ω | s ≤ φ(x)} (3.8)

and the graph map of φ is the function Φ : ω −→ Hn defined by

Φ(x) := x · φ(x) = (φ(x), x) (3.9)

We are now in position to state the implicit function theorem forH−regular

hypersurfaces, see [80, 45].

Theorem 3.1.1. Let U ⊆ Hn be open, 0 ∈ U and let f ∈ C1
H(U,R) be such

that ∇H
1 f(0) > 0 and f(0) = 0. Let

E := {p ∈ Ω | f(p) < 0}

and

S := {p ∈ Ω | f(p) = 0};

Then there exists an open and bounded ω ⊂ W and h > 0, such that if we

put U := ω × J where J := {(s, 0) ∈ R× R2n | s ∈ (−h, h)}, then

E has finite H−perimeter in U; (3.10)

∂E ∩ U = S ∩ U ; (3.11)

|∂E|H U is concentrated on S and νE = νS |∂E|H − a.e on U (3.12)
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Furthermore, there is a continuous function φ : ω −→ (−h, h) such that

S ∩ U = graph(φ).

Remark 3.4. By (3.12) it follows that the horizontal normal to an H−regular

hypersurface does not depend on the defining function f .

Remark 3.5. Theorem 3.1.1 has been generalized in many directions. In

[81] authors proved an analogous result for hypersurfaces defined in general

Carnot groups whereas in [45] is given a similar theorem for codimension 1

hypersurfaces in Carnot-Carathéodory spaces and in [102] for general codi-

mension surfaces. Finally, in [9], is proved that an H−regular submanifold

(not necessarily of codimension 1) is locally the intrinsic graph of a continu-

ous function.

3.2 Intrinsic differentiability

In this section we provide some necessary conditions for which the image of

a continuous function φ : ω ⊂ W −→ V ≡ R is an H−regular hypersurface,

we refer to [6, 45] for the details.

We begin our discussion introducing a suitable function defined on ω.

Definition 3.2.1. Let φ : ω ⊂ W −→ V be a continuous function. The

graph distance between x, y ∈ W is defined by

dφ(x, y) :=
1

2

(

‖πW(Φ(x)−1 · Φ(y))‖+ ‖πW(Φ(y)−1 · Φ(x))‖
)

(3.13)

where Φ is as in (3.9).

Rewriting (3.13) in coordinates we obtain that for each x = (x1, . . . , x2n)

y = (y1, . . . , y2n) ∈ W

dφ(x, y) =
1

2
max

{

|(x1 − y1, . . . , x2n−1 − y2n−1)|R2n−1 , (3.14)

|y2n − x2n − 2φ(x)(yn − xn) + σ(x, y)|1/2
}

+

+
1

2
max

{

|(x1 − y1, . . . , x2n−1 − y2n−1)|R2n−1 ,

|x2n − y2n − 2φ(y)(xn − yn) + σ(y, x)|1/2
}
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where

σ(x, y) :=
n−1
∑

i=1

(yixn+i − yn+ixi) if n ≥ 2

and

σ(x, y) = 0 if n = 1.

Remark 3.6. By some simple manipulations it is easy to see that dφ is equiv-

alent to the quantity introduced by Ambrosio-Serra Cassano and Vittone in

[6], that is:

max{|(x1 − y1, . . . , x2n−1 − y2n−1)|R2n−1 , (3.15)

|y2n − x2n − (φ(x) + φ(y))(yn − xn) + σ(x, y)|1/2},

where σ(x, y) is as in (3.14).

Definition 3.2.2. Let φ : ω ⊂ W −→ V ≡ R. We say that φ is an (intrinsic)

Lipschitz continuous function in ω and we write φ ∈ LipW(ω), if there is a

constant L > 0 such that

|φ(x)− φ(y)| ≤ L dφ(x, y) ∀x, y ∈ ω. (3.16)

The Lipschitz constant of φ in ω is the infimum of the numbers L such

that (3.16) holds and we write Lip(φ) to denote it. Moreover we say that

φ : ω ⊂ W −→ R is a locally (intrinsic) Lipschitz function in ω and we write

φ ∈ Liploc,W(ω), if φ ∈ LipW(ω
′) for every ω′

b ω, we denote by Lip(φ, ω′)

the Lipschitz constant of φ|ω′.

Proposition 3.2.1 ([6]). If φ ∈ LipW(ω) with Lipschitz constant L > 0,

then dφ is a quasidistance on ω, that is

• dφ(x, y) = 0 iff x = y;

• dφ(x, y) = dφ(y, x) ∀x, y ∈ ω;

• there is C = C(L) > 0 such that dφ(x, y) ≤ C
(

dφ(x, z) + dφ(z, y)
)

∀x, y, z ∈ ω.
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Proof. We only prove the third statement, while we refer to [6, 43, 45] for the

others ones. It immediately follows from the explicit expression of dφ that:

dφ(x, y) ≤ (3.17)

≤ dφ(x, z) + dφ(y, z) + |φ(x)− φ(z)|1/2|zn − yn|1/2+
+ |φ(y)− φ(z)|1/2|zn − xn|1/2

hence since φ ∈ LipW(ω) we have

dφ(x, y) ≤ (1 + (Lip(φ))1/2)
(

dφ(x, z) + dφ(y, z)
)

Definition 3.2.3. An homomorphism L : W −→ V is said an homogeneous

homomorphism if

L(δr(x)) = rL(x) ∀r > 0, ∀x ∈ W

Definition 3.2.4 ([6, 45]). Let ω ⊂ W be open and let ψ, φ : ω −→ R be

given continuous functions, then

1. We say that ψ is ∇φ−differentiable at y ∈ ω if there is an homogeneous

homomorphism L : R2n −→ R such that

lim
x→y

|ψ(x)− ψ(y)− L(πW(Φ(y)
−1 · Φ(x)))|

dφ(x, y)
= 0.

2. We say that ψ is uniformly ∇φ−differentiable at z = (z1, . . . , z2n) ∈ ω

if there is an homogeneous homomorphism L : R2n −→ R such that

lim
r→0

M(ψ, z, L, r) = 0

where

M(ψ, z, L, r) := sup
x,y∈Ir(z),x 6=y

{ψ(x)− ψ(y)− L(πW(Φ(y)
−1 · Φ(x)))

dφ(x, y)

}

.

Where we denoted by Ir(z) the set

Ir(z) :=

{(x1, . . . , x2n) ∈ ω | |(x1, . . . , x2n−1)− (z1, . . . , z2n−1)|R2n−1 < r, |x2n − z2n| < r}.

The map L is called the ∇φ−differential of ψ at y.
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We point out that definition 3.2.4 is well posed. Indeed, it can be

proved that if ψ : ω ⊂ W −→ R is ∇φ−differentiable at x ∈ ω, then its

∇φ−differential is unique, see [6, Lemma 3.4].

Moreover, as in the Euclidean case, the following Proposition holds:

Proposition 3.2.2. If ψ, φ : ω ⊂ W −→ R, then

(i) If ψ is ∇φ−differentiable at x ∈ ω, then it is continuous at x.

(ii) If ψ is uniformly ∇φ−differentiable at x ∈ ω, then ψ is an intrinsic

Lipschitz function in a neighbourhood of x.

Proof. Since ψ is ∇φ−differentiable at x, denoting by L : W −→ V its

∇φ−differential we can write

ψ(y)− ψ(x) =
ψ(y)− ψ(x)− L(πW(Φ(y)

−1 · Φ(x)))
dφ(x, y)

dφ(x, y)+ (3.18)

+ L(πW(Φ(y)−1 · Φ(x)))

hence (i) follows taking into account that ψ is ∇φ−differentiable at x and

that dφ(x, y) is bounded near x. In order to prove (ii), we note that, by

definition, there exists C, r > 0 such that

ψ(y)− ψ(x)− L(πW(Φ(y)
−1 · Φ(x)))

dφ(x, y)
≤ C (3.19)

for all y ∈ Ir(x). Hence by (3.18) it suffices to show that there exists a

constant N = N(φ, ψ) > 0 such that for all y ∈ Ir(x)

L(πW(Φ(y)
−1 · Φ(x))) ≤ Ndφ(x, y).

The previous relation holds since, as we will prove in the next subsection,

for every homogeneous homomorphism L : W ≡ R2n −→ V ≡ R there is a

unique wL ∈ R2n−1 such that

L(y) = 〈wL, π̃(y)〉 ∀y ∈ W.

where 〈·, ·〉 denotes the Euclidean standard scalar product and

π̃(x1, . . . , x2n−1, x2n) := (x1, . . . , x2n−1) ∀x ∈ W.
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3.2.1 Intrinsic gradient and nonlinear vector fields

In what follow we recall some useful consequences of definition 3.2.4, we refer

to [6] and to [45] for a more detailed treatment.

As in the Euclidean case, there is a rappresentation theorem for the

∇φ−differential of a map ψ : ω ⊂ W −→ R in terms of a properly defined

intrinsic gradient of ψ. Precisely, if φ : ω −→ R is a continuous function

defined on an open and bounded set ω ⊂ W ≡ R2n. We introduce the fam-

ily ∇φ = (∇φ
1 , . . . ,∇φ

2n−1) of vector fields (see [6, 45]), namely of first order

differential operators, on ω by

∇φ
i (x) = ∂xi

− xi+n∂x2n , for n ≥ 2 and i = 1, . . . , n− 1, (3.20)

∇φ
n(x) = ∂xn

+ 2φ(x)∂x2n ,

∇φ
i (x) = ∂xi

+ xi−n∂x2n , for n ≥ 2 and i = n+ 1 . . . , 2n− 1,

and by

∇φ
1(x) = ∂x1 + 2φ(x)∂x2 if n = 1.

Remark 3.7. Let us notice that if n ≥ 2 then ∀p ∈ W ≡ R2n the family

(∇φ
1(p), . . . ,∇φ

2n−1(p))

span the horizontal tangent space HpW of W, moreover adding, as in the

Heisenberg case, a non horizontal vector field

∇φ
2n(x) = ∂x2n

to the family {∇φ
i }i we obtain, for every p ∈ W, a basis of the whole Euclidean

tangent plane TpW of W,

Proposition 3.2.3 ([6]). Let ψ, φ : ω −→ R be such that ψ is ∇φ differ-

entiable at x ∈ ω with ∇φ−differential equal to L. Then there is a unique

vector wL ∈ R2n−1 such that

L(y) = 〈wL, π̃(y)〉 ∀y ∈ W (3.21)
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where 〈·, ·〉 denotes the Euclidean scalar product in R2n−1 and

π̃(x1, . . . , x2n−1, x2n) := (x1, . . . , x2n−1) ∀x ∈ W.

We call the vector wL the ∇φ−gradient of ψ at x ∈ ω.

Proof. The proof is substantially the Euclidean representation Theorem for

linear maps. Indeed For any x2n ∈ R we have

2L((0, x2n)) = L((0, 2x2n)) =
√
2L((0, x2n))

hence L(0, x2n) = 0. Thus

L((x1, . . . , x2n)) = L((x1, . . . , x2n−1, 0)) + L((0, . . . , 0, x2n)) =

= L((x1, . . . , x2n−1, 0)).

This implies that an homogeneous homomorphism does not depend on the

last coordinate, therefore the map

(x1, . . . , x2n−1) → L((x1, . . . , x2n−1, 0))

is linear and the statement follows from the standard representation theorem

for Euclidean linear maps.

The following two Theorems explain why, in Definition 3.2.3, we called

the vector wL ∈ R2n−1 the ∇φ−gradient of ψ at x ∈ ω. Precisely, we prove

that the family ∇φ plays the role of a gradient at least for regular functions

φ : ω −→ R.

Theorem 3.2.4 ([6, 45]). Let φ, ψ ∈ C0(ω) such that ψ is ∇φ−differentiable

at x ∈ ω. For every j = 1, . . . , 2n − 1 let λj : [−δ, δ] −→ ω be a C1 integral

curve of the vector field ∇φ
j with λj(0) = x and such that the function

Fj :[−δ, δ] −→ R

s 7→ Fj(s) := φ(λj(s))

is of class C1. Then it holds

lim
s→0

ψ(λj(s))− ψ(λj(0))

s
= ∇φ

jψ(x). (3.22)
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Proof. We will give the proof only for the case n ≥ 2, as it can be easily

adapted for n = 1. If λj(t) = (λj1(t), . . . , λ
j
2n(t)) is as in the statement and

j 6= n then by direct computations we have that for every t ∈ [δ, δ],

πW

(

Φ(λj(t))−1 · Φ(λj(0))
)

= tej (3.23)

dφ(λ
j(s), λj(0)) = s (3.24)

where ej denotes the j−th element of the canonical basis of R2n. Hence

(3.22) follows immediately as a consequence of the ∇φ−differentiability of ψ.

For j = n we have λni (t) = xi if i 6= n, 2n, whereas

λnn(t) = xn + t

λn2n(t) = x2n + 2

∫ t

0

φ(λn(η))dη.

Hence,

πW

(

Φ(λn(t))−1 · Φ(λn(0))
)

= ten. (3.25)

Moreover, there is a constant C > 0 such that

dφ(λ
n(s), λn(0)) ≤ Cs2. (3.26)

Indeed,

dφ(λ
n(s), λn(0)) =

∣

∣

∣

∣

∣

∣πW

(

Φ(λj(t))−1 · Φ(λj(0))
)∣

∣

∣

∣

∣

∣

= |s|+
∣

∣

∣
2sφ(λn(s))− 2

∫ s

0

φ(λn(η))dη
∣

∣

∣

1/2

= |s|
(

1 +
1

|s|
∣

∣

∣
2sφ(λn(s))− 2

∫ s

0

φ(λn(η))dη
∣

∣

∣

1/2)

:= |s|
(

1 +
1

|s|
∣

∣

∣∆(s)
∣

∣

∣

1/2)

since

∆(s) =
∣

∣

∣
2s[φ(λn(s))− φ(λn(0))]− 2

∫ s

0

[φ(λn(η))− φ(λn(0))]dη
∣

∣

∣

1/2



48 Hypersurfaces in the Heisenberg group

and using the fact that Fn(s) = φ(λn(s)) is of class C1 we conclude that

|∆(s)| ≤ C̃s2 for some positive constant C̃ > 0. Hence (3.26) holds with

C := 1 +
√

C̃. By (3.25) and (3.26) we have

|ψ(λj(s))− ψ(λj(0))− s∇φ
jψ(x)|

|s|

≤ (1 +
√

C̃)

∣

∣

∣ψ(λj(s))− ψ(λj(0))− L
(

πW

(

Φ(λn(s))−1 · Φ(λn(0))
))∣

∣

∣

dφ(λn(s), λn(0))

and letting s→ 0 and using the ∇φ−differentiability of ψ the thesis follows.

Theorem 3.2.5 ([6, 45]). If ψ, φ ∈ C1(ω) then ψ is uniformly ∇φ differen-

tiable in ω and

∇φψ(A) = (∇φ
1ψ(A), . . . ,∇φ

2n−1ψ(A)).

We are now in position to recall the important result of Ambrosio-Serra

Cassano and Vittone [6], which states that the graph S of a continuous map

φ : ω ⊂ W −→ R is an H−regular hypersurface if and only if φ is uniformly

∇φ−differentiable in ω.

Theorem 3.2.6. Let φ : ω ⊂ W −→ R be a continuous map and let S :=

graph(φ) ⊂ Hn be the intrinsic graph of φ, as defined in (3.7). Then the

following are equivalent:

1. S is an H−regular hypersurface and νS,1(p) < 0 for all p ∈ S, where

νS,1 denotes the first component of the horizontal normal to S.

2. φ is uniformly ∇φ−differentiable in ω.

Theorem 3.2.6 is not entirely satisfactory since in general it is hard to

prove that a function is uniform ∇φ−differentiable. In what follow we recall

an interesting result due to Ambrosio-Serra Cassano and Vittone ([6]) and

successively refined by Bigolin and Serra-Cassano ([14, 13]) which permit to

partially overcome this difficulty.
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Definition 3.2.5. Let ω ⊂ R2n be an open set and let w = (w1, . . . , w2n−1) ∈
C0(ω;R2n−1). We say that a continuous function φ : ω −→ R is a distribu-

tional solution of the system ∇φφ = w if for each ϕ ∈ C∞
c (ω)

∫

ω

φ∇φ
i ϕ dL2n = −

∫

ω

wiϕ dL2n ∀ i 6= n (3.27)

and
∫

ω

(

φ
∂ϕ

∂xn
+

1

2
φ2 ∂ϕ

∂x2n

)

dL2n = −
∫

ω

wn+1ϕ dL2n. (3.28)

Definition 3.2.6. Let φ : ω ⊆ R2n → R and w = (w2, ..., w2n) : ω ⊆ R2n →
R2n−1 be continuous functions. We call φ a broad* solution of the system

∇φφ = w in ω (3.29)

if for every A ∈ ω, ∀ j = 1, ..., 2n − 1 there exists a map, which will call

exponential map,

expA(·∇φ
j )(·) : [−δ2, δ2]× Iδ2(A) → Iδ1(A) b ω

where 0 < δ2 < δ1, such that if γBj (s) = exp(s∇φ
j )(B),

(E.1) γBj ∈ C1([−δ2, δ2])

(E.2)

{

γ̇Bj = ∇φ
j ◦ γBj

γBj (0) = B

(E.3) φ
(

γBj (s)
)

− φ
(

γBj (0)
)

=

∫ s

0

wj

(

γBj (r)
)

dr

∀B ∈ Iδ2(A), ∀ j = 2, ..., 2n.

Remark 3.8. It is important to note that both the uniqueness and the global

continuity of the exponential map

exp(·∇φ
j )(·) : [−δ2, δ2]× Iδ2(A) → Iδ1(A)

are not guaranteed provided only φ,w are continuous as explicitely stated in

[138, Remark 3.4].
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In the following lemma we provide two sufficient conditions to garantee

the existence of a broad* solution of ∇φφ = w, see [138, 6] for a proof.

Lemma 3.2.7. Let φ : ω ⊂ W → R be continuous, and suppose that

(i) there exists w ∈ C0(ω) such that φ is a ditributional solution of the

system

∇φφ = w;

(ii) there is a family of functions {φε}ε>0 ⊂ C1(ω) such that for each ω′
b ω

we have

φε → φ, ∇φεφε → w uniformly on ω′.

Then φ is a broad* solution of the system ∇φφ = w. Moreover,

wj(B) =
d

ds
φ
(

expA(s∇φ
j )(B)

)

|s=0

for each B ∈ Iδ2(A).

Theorem 3.2.8 ([6]). Let φ : ω ⊂ W −→ R be a continuous map. Then the

following are equivalent:

(i) φ is uniformly ∇φ−differentiable for each x ∈ ω;

(ii) φ is a broad* solution of the system ∇φφ = w and

lim
r→0+

sup
{ |φ(x)− φ(y)|

|x− y|1/2 | x, y ∈ ω′, 0 < |x− y| < r
}

= 0 (3.30)

for each ω′
b ω.

Actually, Theorem 3.2.8 can be refined in the following way.

Theorem 3.2.9 ([14]). Let ω ⊆ R2n be an open set and let φ : ω −→ R

and w = (w1, ..., w2n−1) : ω → R2n−1 be a continuous functions. Then the

following conditions are equivalent:

i φ is a broad* solution of the system ∇φφ = w in ω;

ii S = Φ(ω) is an H-regular hypersurface and ν
(1)
S (P ) < 0 for all P ∈ S.
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Another possible way to prove that a continuous function φ : ω ⊂ W −→
R locally parametrizes an H−regular hypersurface in Hn is contained in the

following theorem; see [13] for a proof.

Theorem 3.2.10. Let ω ⊂ R2n be an open set and let φ : ω −→ R be a

continuous function. Then following conditions are equivalent:

(i) The set S := Φ(ω) is an H-regular hypersurface and ν1S(P ) < 0 for all

P ∈ S.

(ii) There exists w = (w1, . . . , w2n−1) ∈ C0(ω;R2n−1) such that φ is a dis-

tributional solution of the system ∇φφ = w.

Remark 3.9. Putting together Theorem 3.2.9 and Theorem 3.2.10 we con-

clude that a continuous function φ : ω ⊂ W −→ R is broad* solution of

the system ∇φφ = w with w ∈ C0(ω,R2n−1) if and only if φ is a distribu-

tional solution of the same system. Moreover, we also have that Φ(ω) is an

H−regular hypersurface if and only if the distributional intrinsic gradient of

φ is a continuous map.

We conclude this chapter recalling an interesting result due to R.Monti

and D.Vittone and proved in [117] which provides, in analogy to the Eu-

clidean case ([90, 89]), another way to prove that a set E ⊂ Hn with finite

H−perimeter is an H−regular hypersurface.

Theorem 3.2.11. Let E ⊂ Hn be a set with finite H−perimeter in Br :=

B∞(0, r) with r > 0 and let S2n−1 be the unit sphere in R2n. Suppose there

exists a continuous mapping ν̄ : Br −→ S2n−1 such that νE(p) = ν̄(p) for

|∂E|H− a.e p ∈ Br. Then, possibly modifying E in a set of L2n+1 measure

zero, ∂E ∩ Br is an H−regular hypersurface.





Chapter 4

Intrinsic Lipschitz functions

This chapter is entirely devoted to the study of intrinsic Lipschitz functions,

see Definition 3.2.2.

Before starting we spend some words in order to motivate Definition 3.2.2.

Indeed, it is not the unique possible. Precisely, if W and V are as in (3.2) it

is natural to speak of metric Lipschitz functions. Restricting the metric d∞

to W and V we say that a function φ : ω ⊂ W −→ V is metric Lipschitz if

there is a constant L > 0 such that

|φ(x)− φ(y)| ≤ Ld∞(x, y) ∀ x, y ∈ ω.

We point out that the concepts of intrinsic Lipschitz and metric Lipschitz

are different ones. In particular, there are metric Lipschitz functions which

are not intrinsic Lipschitz and viceversa (see [79] for some interesting and

explicit examples). Nevertheless, there are at least two reasons to adopt

Definition 3.2.2 rather than the metric one. First of all, by Proposition 3.2.2

and Theorem 3.2.6 it follows that every H−regular hypersurface is locally the

intrinsic graph of an intrinsic Lipschitz map. Moreover, intrinsic Lipschitz

graphs are invariant under dilations and left translations (see Proposition

4.1.2) in Hn whereas this is in general not true for metric Lipschitz functions.
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4.1 General properties

In this section we recall an alternative and equivalent characterization of

LipW introduced in [79]. Moreover, we provide some interesting consequences

which follow from this equivalence.

We begin our treatment pointing out what a closed cone is;

Definition 4.1.1. Let q ∈ Hn and α > 0. The intrinsic (closed) cone

CW,V(q, α) with base W, axis V, vertex q and opening α is

CW,V(q, α) := {p = (s, x) ∈ Hn | ‖πW(q−1 · p)‖ ≤ α‖πV(q−1 · p)‖},

where πW and πV are defined respectively in (3.3) and (3.4).

The following picture (due to the courtesy of R.Serapioni) is an example

of intrinsic cone in H1:

Figure 4.1: Intrinsic Cone in H1
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We are now in position to prove the following:

Proposition 4.1.1. φ : ω ⊂ W ≡ R2n −→ V ≡ R is an intrinsic Lipschitz

function if and only if there is L > 0 such that, for all q ∈ graph(φ),

CW,V(q, 1/L) ∩ graph(φ) = {q}. (4.1)

Proof. By [79, Proposition 4.6], φ : ω ⊂ W −→ V satisfies (4.1) if and only

if there is L > 0 such that ∀p, q ∈ ω

|φ(x)− φ(y)| ≤ L‖φ(y)−1 · y−1 · x · φ(y)‖

where φ(y) ≡ (φ(y), 0) ∈ R2n+1. By a direct computation

‖πW(Φ(y)−1 · Φ(x))‖ = ‖φ(y)−1 · y−1 · x · φ(y)‖. (4.2)

Moreover,

‖πW(Φ(x)−1 · Φ(y))‖ ≤ ‖πW(Φ(y)−1 · Φ(x))‖+
√
2|xn − yn|

1
2 |φ(x)− φ(y)| 12

hence

2‖πW(Φ(x)−1 · Φ(y))‖ ≤ 2dφ(x, y) +
√
2|xn − yn|

1
2 |φ(x)− φ(y)| 12 (4.3)

since φ ∈ LipW(ω)

‖πW(Φ(x)−1 · Φ(y))‖ ≤
(

1 +
1√
2
Lip(φ)

)

dφ(x, y) (4.4)

From (4.2) and (4.4) the thesis follows.

Remark 4.1. Using cones it is possible to generalize the notion of intrinsic

Lipschitz function to more general splitting (see [79]). Precisely, for any

couple of homogeneous subspaces W̃, Ṽ of Hn such that W̃ · Ṽ = Hn and

W̃∩ Ṽ = {0} (hence we don’t assume any restriction on the dimension of W̃

and Ṽ) we say that a function φ : W̃ −→ Ṽ is intrinsic Lipschitz if there exists

L > 0 such that for any point p of its intrinsic graph S, the intrinsic cone

with vertex p and opening L (the definition is similar to the one proposed in

Definition 4.1.1) intersect S only in p.
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In the following proposition we collect some interesting properties of

LipW, see [79].

Proposition 4.1.2. Let φ : ω ⊂ W −→ V, then

(i) if φ is intrinsic Lipschitz and S = Φ(ω) ⊂ Hn is its intrinsic graph

then, for each λ > 0, the set δλ(S) remain a graph. Precisely, denoting

by φλ := δλ ◦ φ ◦ δ1/λ it holds:

δλ(S) = graph(φλ)

moreover φλ ∈ LipW(δλ(ω)).

(ii) if φ is intrinsic Lipschitz, S = Φ(ω) ⊂ Hn is its intrinsic graph and p ∈
Hn. Then p · S is a graph. Precisely, denoting by ωp := πW(p · ω) ⊂ W

and by φp : ωp −→ R, φp(y) := πV((p · πW((p · y))−1)) · φ(πW((p · y)−1))

it holds:

p · S = graph(φp).

(iii) If φq and ωq are as in (ii) then φ ∈ LipW(ω) if and only if for each

q ∈ Hn it holds φq ∈ LipW(ωq). Moreover, φ is intrinsic Lipschitz if

and only if there is L > 0 such that, for all p ∈ graph(φ) and for all

x ∈ ωp−1 it holds:

‖φp−1(x)‖ ≤ L‖x‖. (4.5)

(iv) if φ is intrinsic Lipschitz function then for every ω′
b ω there exists a

constant C = C(Lip(φ), ||φ||L∞(ω), ω
′) > 0 such that

|φ(x)− φ(y)| ≤ C|x− y| 12 ∀ x, y ∈ ω′.

(v) If φ is Euclidean Lipschitz and ω is open and bounded then φ is indeed

intrinsic Lipschitz in a neighborhood of each point of ω.

Proof. (i): Let us observe that p ∈ δλ(S) if and only if there exists q ∈ S

such that p = δλ(q) = δλ(πW(q)) · δλ(πV(q)). By definition q = (φ(x), x) for

some x ∈ ω. Then

p = δλ((0, x)) · (λφ(x), 0). (4.6)
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Hence defining ωλ := {z ∈ W | ∃ x ∈ ω, z = δλ(x)} and φλ : ωλ −→ V by

φλ := δλ ◦ φ ◦ δ1/λ we achive the thesis. The fact that φλ ∈ LipW(δλ(ω)) is

straighforward.

(ii): With an easy algebraic trick (see [79, Proposition 3.6] for the details)

we can prove that for each q ∈ Hn

ξq :W −→ W (4.7)

x→ πW(q · (0, x))

is injective. It follows that

q · S = {(φq(x), x) | x ∈ ωq}

where ωq := {πW(q · x) | x ∈ ω} and, for y = πW(q · x) ∈ ωq

φq(y) := πV(q · πW(q · y)−1) · φ(πW(q · y)−1).

(iii): By definition, graph(φq) = q ·graph(φ). Hence p ∈ graph(φq) if and

only if p = q · p̄ for p̄ ∈ graph(φ). Then, if φ ∈ LipW(ω),

{p} = {q · p̄} = q · (CW,V(p̄, α) ∩ graph(φ)) = CW,V(p, α) ∩ graph(φq).

Hence φq is intrinsic Lipschitz. For the converse, let us observe that for each

p, q ∈ Hn it holds

(φq)p = φp·q. (4.8)

Then, by the first part of the proof, if φq is intrinsic Lipschitz then (φq)q−1

is also intrinsic Lipschitz. Finally, by (4.8), we deduce (φq)q−1 = φ and the

thesis follows.

For the second part, let us start pointing out that for each q ∈ graph(φ)

0 ∈ ωq−1 , φq−1 ∈ LipW(ωq−1) and φq−1(0) = 0.

Hence, by definition, there exists L > 0 such that for all p = (φq−1(x), x) ∈
graph(φq−1) it holds

‖πV(p)‖ ≤ L‖πW(p)‖
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therefore

|φq−1(x)| ≤ L‖x‖

The reverse inequality is obvious and follows again from (4.8).

(iv): Let M := supω̄′ |φ| and ∆ := supp∈ω̄′ ‖p‖. Then

dφ(x, y) ≤ |x− y|R2n + (1 +
√
2M)|x− y|

1
2

R2n + |σ(x, y)| 12 (4.9)

≤ (1 + 2
√
∆+

√
2M)|x− y|

1
2

R2n + |x− y|
1
2

R2n‖y‖
1
2 (4.10)

where in the last inequality we used |σ(x, y)| = |σ(x−y, x)| ≤ ||x−y||R2n ||y||R2n .

(v): Let M := ||φ||L∞(ω) < ∞. To get the thesis it suffices to prove that

there exists a constant C = C(M) > 0 such for each x, y in a sufficiently

small Euclidean neighborhood of each p ∈ ω it holds

|x− y|R2n ≤ Cdφ(x, y).

Clearly,

|x− y|R2n ≤ |(x1 − y1, . . . , x2n−1 − y2n−1)|R2n−1 + |x2n − y2n|,

hence we have only to prove that there exists a constant C > 0 such that

|x2n − y2n| ≤ Cdφ(x, y).

If
1

2
|x2n − y2n| ≥ | − 2(φ(x) + φ(y))(yn − xn) + σ(x, y)|

then the thesis follows provided x, y are close to p. On the other hand if

1

2
|x2n − y2n| ≤ | − 2(φ(x) + φ(y))(yn − xn) + σ(x, y)|

then
1

2
|x2n − y2n| ≤ 2||φ||L∞(ω)|yn − xn|+ |σ(x, y)|

and since |σ(x, y)| = |σ(x− y, x)| ≤ ‖x− y‖R2n‖y‖R2n the conclusion follows.

As pointed out in [130], LipW(ω) is not a vector space. Nevertheless, it

is closed under max and min. Precisely,
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Proposition 4.1.3 ([79]). Let ψ, φ be intrinsic Lipschitz functions on W

with the same Lipschitz constant L > 0. Then there exists L̄ = L̄(L) ≥ L

such that max{φ, ψ} and min{φ, ψ} are L̄−intrinsic Lipschitz.

Proposition 4.1.4 ([79]). Let φ : ω ⊂ W → V be an intrinsic Lipschitz

function, then there is φ : W −→ V intrinsic Lipschitz such that Lip(φ̄) >

Lip(φ) and

φ(x) = φ(x) ∀ x ∈ ω.

Theorem 4.1.5 ([117]). Let E ⊂ Hn be a set with finite H−perimeter in

Ur, r > 0, νE be the measure theoretic inward normal of E, and ν ∈ S2n−1.

Assume there exists k ∈ (0, 1] such that πV(νE(p)) ≤ −k for |∂E|H−a.e

p ∈ Ur. Then there exists α > 0 such that possibly modifying E in a negligible

set, for all p ∈ ∂E ∩ Ur

{q ∈ Ur | ‖πW(p−1 · q)‖ < −απV(p−1 · q)} ⊂ E

{q ∈ Ur | ‖πW(p−1 · q)‖ < απV(p
−1 · q)} ⊂ Hn \ E

If in particular n = 1

α2 + 2α ≤ h

2
, with h :=

√

k2

2− k2
(4.11)

One of the main achivements in the theory of intrinsic Lipschitz functions

is the following result.

Theorem 4.1.6 ([79]). Let φ ∈ LipW(W) then the subgraph Eφ is a set with

locally finite H−perimeter.

Theorem 4.1.6 open the possibility of proving much finer results on in-

trinsic Lipschitz functions. In particular, by using a blow-up argument it is

possible to prove a Rademacher’s type Theorem for this class of functions. In

other words, as in the Euclidean situation, each intrinsic Lipschitz function

is almost everywhere ∇φ−differentiable.

Theorem 4.1.7 ([79]). Let ω ⊂ W be open and φ ∈ LipW(ω). Then φ is

intrinsic ∇φ−differentiable L2n−a.e in ω.
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Sketch of the Proof: First of all, since ∇φ−differentiability is a local notion,

by Proposition 4.1.4, we may assume that φ is intrinsic Lipschitz defined on

all W. Hence, by Theorem 4.1.6, we know that Eφ is a set of locally finite

H−perimeter hence we denote by ∂∗Eφ the H−reduced boundary of Eφ as

in Definition 1.2.8 and by νEφ
the inward unit normal to Eφ as in Theorem

1.2.8. By Theorem 1.2.16 it follows that:

lim
r→0

1(Eφ)r,p = 1S+
H
(νEφ

(p)) in L1
loc(H

n) (4.12)

where (Eφ)r,p and S+
H (νEφ

(p)) are as in Theorem 1.2.16. As proved in [79,

Proposition 4.6], φ is differentiable at any point x ∈ ω such that (φ(x), x) ∈
∂∗Eφ. Hence to conclude the proof it suffices to prove that

L2n(πW(graphφ \ ∂∗Eφ)) = L2n(W \ πW(∂∗Eφ)) = 0. (4.13)

We prove here a more general result. Precisely,

(Φ)∗(L2n) = ν1Eφ
|∂Eφ|H (4.14)

where (Φ)∗(L2n) denotes the pushforward measure induced by the graph map

of φ and ν1Eφ
is the first component of νEφ

. Since Eφ is a set of locally finite

H−perimeter then ∀g ∈ C1
c (H

n)

∫

Eφ

∇H
1 g dL2n+1 =

∫

Hn

ν1Eφ
g d|∂Eφ|H

=

∫

W
g(Φ(x)) dL2n.

By a change of variables (see [107]) we obtain:

∫

Hn

gν1Eφ
d|∂Eφ|H =

∫

W
g(Φ(x)) dL2n

=

∫

Hn

g dΦ∗(L2n)

which is the thesis.

Some interesting consequences of Theorems 4.1.6 and 4.1.7 are in order:
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Proposition 4.1.8 ([79]). Let ω ⊂ W ≡ R2n be a bounded open set, and let

φ ∈ LipW(ω). Then

∇φφ ∈ (L∞(ω))2n−1 . (4.15)

Proof. Let S = Φ(ω). We begin proving that there exists a constant c =

c(W,V, φ) > 0 such that for all p ∈ S there is a rp = r(W,V, p) > 0 for

which

cr2n+1 ≤ L2n(πW(U(p, r) ∩ S)) ∀ r ∈ (0, rp). (4.16)

Being S an intrinsic Lipschitz graph there exists 0 < L < ∞ such that

for all p ∈ S

CW,V(p, 1/L) ∩ S = {p}. (4.17)

From (ii) of Proposition 4.1.2, without loss of generality, we can assume that

p = e. First, let us prove that, if α := 1/L, there exists re = r(W,V, e) > 0

such that

πW(
◦
CW,V (e, α) ∩ U(e, c1

Lc2
r)) ⊆ πW(U(e, r) ∩ S) (4.18)

for each r ∈ (0, re), where c1 and c2 are the constants such that

c1(‖πW(p)‖+ ‖πV(p)‖) ≤ ‖p‖ ≤ c2(‖πW(p)‖+ ‖πV(p)‖) ∀ p ∈ Hn.

Because of e ∈ S = Φ(ω), it follows that e ∈ ω. Thus there exists re > 0

such that U(e, r) ⊆ R × ω for each r ∈ (0, re). Then, in order to get (4.18)

we need to prove that if p ∈
◦
CW,V (e, α) ∩ U(e, (c1/Lc2)r) then

πW(p) · φ(πW(p)) ⊂ U(e, r) ∀ r ∈ (0, re). (4.19)

Let p ∈
◦
CW,V (e, α) ∩ U(e, (c1/Lc2)r) and assume that p = (s, x) with x ∈ ω.

By (4.17) and (iii) in Proposition 4.1.2 it follows that

|φ(x)| < L|s|. (4.20)

Since

c1(‖x‖+ |s|) ≤ ‖p‖ < c1
Lc2

r
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it follows from (4.20) that

‖(φ(x), x)‖ ≤ c2(‖x‖+ |φ(x)|) < c2(‖x‖+ |s|) < r.

Therefore (4.19) is proved. Moreover, if we define

c := (
c1
c2
)2n+1L2n(πW(

◦
CW,V (e, α) ∩ U(e, 1)))

then c > 0 because πW is an open map. By group dilations and [79, Lemma

4.3]

L2n(πW(
◦
CW,V (e, α) ∩ U(e, c1

c2
r))) = L2n(πW(δ c1

c2
r(

◦
CW,V (e, α) ∩ U(e, 1))))

(4.21)

= cr2n+1

By (4.18) and (4.21), the proof is accomplished. We are now in position to

prove the corollary.

First, let us prove that

−ν1 ≥
c

2
w2n−1 |∂Eφ|H − a.e (4.22)

where ν1, c, w2n−1 denote, respectively, the first component of the intrinsic

inward normal to Eφ, ν = (ν1, . . . , ν2n), the constant in (4.16) and the (2n−
1)-dimensional Lebesgue measure of the unit ball of R2n−1. Notice that, by

definition, for all p ∈ S := Φ(ω) and for all r > 0

Φ−1(U(p, r) ∩ S) = πW(U(p, r) ∩ S).

Then, by (4.16), Theorem 4.1.6 and Corollary 4.14, it follows that, for each

p ∈ S there is a rp = r(W,V, p) > 0 such that for each r ∈ (0, rp)

cr2n+1 ≤ L2n(ω ∩ Φ−1(U(p, r) ∩ S)) =
∫

U(p,r)

(−ν1)d|∂Eφ|H (4.23)

Recall also that

∂∗HEφ ∩ (ω · R) ⊆ ∂Eφ ∩ (ω · R) ⊆ S (4.24)

∃ lim
r→0+

∫

U(p,r)

(−ν1)d|∂Eφ| = −ν1(p) ∀p ∈ ∂∗HEφ (4.25)

∃ lim
r→0

|∂Eφ|(U(p, r))
r2n+1

= 2w2n−1 ∀p ∈ ∂∗HEφ (4.26)

|∂Eφ|H(Hn \ ∂∗HEφ) = 0. (4.27)
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From (4.23),(4.24),(4.25),(4.26) and (4.27), inequality (4.22) follows at once.

Indeed, for each p ∈ ∂∗HEφ we have

− ν1(p)
(4.25)
= lim

r→0

∫

U(p,r)

(ν1)d|∂Eφ|H
(4.23)
= lim

r→0

L2n(ω ∩ Φ−1(U(p, r) ∩ S))
|∂Eφ|H(U(p, r))

(4.23)

≥ lim
r→0

cr2n+1

|∂Eφ|H(U, p, r)
(4.26)
=

c

2w2n−1

.

Finally, since |ν| = 1 |∂Eφ|H−a.e and

∇φφ =
(ν2, . . . , ν2n)

−ν1
◦ Φ L2n − a.e in ω

by (4.22), the proof is complete.

Corollary 4.1.9 ([79]). Let φ ∈ LipW(ω). Then

∂∗,HEφ ∩ (ω · R) = ∂Eφ ∩ (ω · R) = graph(φ) (4.28)

and

S2n+1(∂∗,HEφ \ ∂∗HEφ) = 0. (4.29)

Here S denotes the spherical Hausdorff measure introduced in (1.1.13).

We conclude this section comparing the distance dφ with the distance of

points of the graph.

To this end we denote by Uφ(x, r) := {y ∈ ω | dφ(x, y) < r}.

Proposition 4.1.10. If φ ∈ LipW(ω) then there is C1 = C1(Lip(φ)) > 0

such that

Uφ(x, C1r) ⊆ πW(U(Φ(x), r) ∩ graph(φ)) ⊆ Uφ(x, r/c) (4.30)

for all x ∈ ω and r > 0. Here Uφ(x, r) := {y ∈ ω | dφ(x, r) < r} and c > 0

is defined in (3.5).

Proof. Let z ∈ πW(U(Φ(x), r)∩ graph(φ)) then d(Φ(x),Φ(z)) < r. Since the

intrinsic projection πW : Hn −→ W is such that ∀p ∈ Hn

‖πW(p)‖ ≤ 1

c
‖p‖
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where c > 0 is as in (3.5), we have

dφ(x, z) =
1

2

(

‖πW(Φ(x)−1 · Φ(z))‖+ ‖πW(Φ(z)−1 · Φ(x))‖
)

≤ 1√
2c

(

‖(Φ(x)−1 · Φ(z))‖+ ‖(Φ(z)−1 · Φ(x))‖
)

=
1

c
d(Φ(x),Φ(z)) <

r

c

Hence the second inclusion follows.

For the first inclusion, let us note that for all x, z ∈ ω

d(Φ(x),Φ(z)) ≤ |φ(z)− φ(x)|+ dφ(x, z)

therefore, since φ ∈ LipW(ω), for every z ∈ Uφ(x, Cr) with C > 0 to be

determinated we obtain

d(Φ(x),Φ(z)) ≤ Lip(φ)dφ(x, z) + dφ(x, z)

< C(Lip(φ) + 1)r

and the first inclusion follows choosing 0 < C < 1/(Lip(φ) + 1).

4.1.1 Rectifiable Sets

In this subsection we provide an interesting application of Theorems 4.1.6 and

4.1.7 to the theory of rectifiable sets in Hn. This notion was first introduced

in [82] and successively refined, extended and studied by many authors, see

for example [81, 97, 80, 44]. The idea is simply to use intrinsic objects to

restate the classical notion of rectifiability introduced in [69]. Precisely,

Definition 4.1.2. We say that E ⊂ Hn is (2n,H)−rectifiable if there exists

a sequence of H−regular hypersurfaces (Si)i∈N such that, for any bounded

U ⊂ Hn,

S2n+1
(

(E ∩ U) \
⋃

i∈N
Si

)

= 0. (4.31)

We can restate a classical result proved by De Giorgi in [58] and [57], in

the context of Heisenberg group.



4.1 General properties 65

Theorem 4.1.11 ([80]). If E ⊂ Hn has finite H−perimeter then ∂∗HE is

(2n,H) rectifiable.

Another natural definition of rectifiability, which in the Euclidean case

coincide with the one stated above, is the following one:

Definition 4.1.3. We say that E ⊂ Hn is (2n,HL)−rectifiable if there exists

a sequence of Lipschitz graphs (Gi)i∈N such that, for any bounded U ⊂ Hn,

S2n+1
(

(E ∩ U) \
⋃

i∈N
Gi

)

= 0. (4.32)

Using Theorem 4.1.6 we have the following

Proposition 4.1.12. E ⊂ Hn is (2n,H)−rectifiable if and only if E is

(2n,HL) rectifiable.

Proof. If E is (2n,H)−rectifiable then, by definition, there is a sequence of

H−regular hypersurface (Si)i∈N for which (4.31) holds. Since each H−regular

hypersurface is locally the graph of an intrinsic Lipschitz function (see Propo-

sition 3.2.2 and Theorem 3.2.6) then it clearly follows that E is (2n,HL)

rectifiable. On the other hand, if E is (2n,HL)−rectifiable then there exists

a sequence of Lipschitz graphs (Gi)i∈N for which (4.32) holds. Hence, by def-

inition, there are φi : ωi ⊂ W −→ R intrinsic Lipschitz functions such that

Gi = graph(φi). By the extension property (Proposition 4.1.4) we can as-

sume ωi ≡ W for all i ∈ N. Hence, by Theorem 4.1.6, the subgraph of φi has

locally finite H−perimeter and hence it is (2n,H)−rectifiable by Theorem

4.1.11. This proves that all of E is (2n,H)−rectifiable.

We conclude stating an interesting representation result for the intrinsic

generalized inward normal of the subgraph of an intrinsic Lipschitz function.

Corollary 4.1.13. Let φ ∈ LipW(ω) then the intrinsic generalized inward

normal νEφ
to the subgraph Eφ has the following representation

νEφ
(Φ(x)) =

( −1
√

1 + |∇φφ(x)|2
,

∇φφ(x)
√

1 + |∇φφ(x)|2
)

(4.33)

for L2n−a.e x ∈ ω.
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4.2 C∞ approximation of intrinsic Lipschitz

functions

In this section we face the problem of approximate a given intrinsic Lipschitz

map with a more manageable class of functions. Precisely, what we want

is an analogous for intrinsic Lipschitz functions of the following well known

result for Euclidean Lipschitz functions:

Proposition 4.2.1. Let Ω ⊂ Rn be open and bounded and f : Ω −→ R be a

Lipschitz function. Then there exists a sequence {fn}n∈N of smooth functions

fn : Ω −→ R such that

1. fn converge uniformly to f on the compact sets of Ω;

2. |∇fn(x)| ≤ ‖∇f‖L∞(Ω);

3. ∇fn(x) → ∇f(x) a.e in Ω.

The proof of Proposition 4.2.1 is well known (see [128, 127]) and it is basi-

cally done by convolution. On the other hand, for the intrinsic Lipschitz case

the approach via convolution fails, essentially because the intrinsic gradient

is non linear.

We start proving some auxiliary results:

Proposition 4.2.2. Let ω ⊂ W be open and bounded and let φ ∈ LipW(ω).

Then for each ϕ = (ϕ1, . . . , ϕ2n) ∈ C1
c (R× ω,R2n)

−
∫

Ω

〈ϕ, νE〉 d|∂Eφ|H =

∫

ω

ϕ1 ◦ Φ−
〈

∇φφ, ϕ̂ ◦ Φ
〉

dL2n (4.34)

where ϕ̂ := (ϕ2, . . . , ϕ2n) and Φ : ω −→ Hn is as in (3.9).

Proof. Let we denote by E := Eφ the subgraph of φ and by Ω := ω · Re1 =
R × ω. By Theorem 4.1.6 E is a set of locally finite perimeter in Hn, then

there exists a unique |∂E|H-measurable function νE : Ω −→ R2n such that

|νE|R2n = 1 |∂E|H-a.e in Ω and
∫

E

divH ϕ dL2n = −
∫

Ω

〈ϕ, νE〉 d|∂E|H ∀ϕ ∈ C1
c (Ω,R

2n), |ϕ|R2n ≤ 1.
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By using Corollary 4.1.13 and 4.14, we have that the first component ν
(1)
E of

νE is such that ν
(1)
E < 0 |∂E|H−a.e in Ω.

Hence
∫

Ω

〈ϕ, νE〉 d|∂E|H =

∫

Ω

〈ϕ, νE〉
ν
(1)
E

ν
(1)
E d|∂E|H

and by (4.14) we obtain

∫

Ω

〈ϕ, νE〉 d|∂E|H = −
∫

Ω

〈ϕ, νE〉
ν
(1)
E

dΦ#(L2n W)

finally by a change of variables
∫

Ω

〈ϕ, νE〉
ν
(1)
E

dΦ#(L2n W) =

∫

ω

〈νE ◦ Φ, ϕ ◦ Φ〉
ν
(1)
E ◦ Φ

dL2n.

Now, by the characterization of the inward normal provided in Corollary

4.1.13 we have for every ϕ ∈ C1
c (Ω,R

2n) with |ϕ|R2n ≤ 1,

∫

Ω

〈ϕ, νE〉 d|∂E|H =−
∫

ω

〈νE ◦ Φ, ϕ ◦ Φ〉
ν
(1)
E ◦ Φ

dL2n

= −
∫

ω

ϕ1 ◦ Φ +
2n
∑

i=2

(νE ◦ Φ)i(ϕ ◦ Φ)i
ν
(1)
E ◦ Φ

dL2n

= −
∫

ω

ϕ1 ◦ Φ−
〈

∇φφ, ϕ̂ ◦ Φ
〉

dL2n,

where ϕ̂ = (ϕ2, . . . , ϕ2n). Hence

−
∫

Ω

〈ϕ, νE〉 d|∂E|H =

∫

ω

ϕ1 ◦ Φ−
〈

∇φφ, ϕ̂ ◦ Φ
〉

dL2n (4.35)

as desidered.

Now we are going to prove that the gradient∇φφ of a Lipschitz continuous

function φ ∈ LipW(ω) also agrees with the distributional gradient.

Proposition 4.2.3. Let ω ⊂ R2n be open and bounded and let φ ∈ LipW(ω).

Then for each ψ ∈ C1
c (ω)

(i)
∫

ω
φ ∇φ

i ψ dL2n = −
∫

ω
∇φ

i φ ψ , dL2n ∀i 6= n;

(ii)
∫

ω
(φ∂n+1ψ + φ2∂2n+1ψ) dL2n = −

∫

ω
∇φ

nφ ψ dL2n.
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Proof. Let us denote byM := ||φ||L∞(ω) < +∞. By standard considerations,

there is a sequence {φj}j∈N ⊂ C∞
c (ω) converging uniformly to φ on every

ω′
b ω. We denote by Φj : ω −→ Hn the graph map of φj and by Ej the

subgraph of φj. Therefore, by Proposition 4.2.2, we obtain that for every

ϕ = (ϕ1, . . . , ϕ2n) ∈ C1
c (R× ω,R2n)

∫

ω

ϕ1 ◦ Φ−
〈

∇φφ, ϕ̂ ◦ Φ
〉

dL2n =

∫

E

divH ϕ dL2n =

= lim
j→∞

∫

Ej

divH ϕ dL2n = lim
j→∞

∫

ω

ϕ1 ◦ Φj −
〈

∇φjφj, ϕ̂ ◦ Φj

〉

dL2n.

where ϕ̂ = (ϕ2, . . . , ϕ2n). If ϕ((s, x)) := ψ(x)ξ(s) with ξ = (ψ2, . . . , ψ2n−1) ∈
C1

c (ω,R
2n−1) and ξ ∈ C1

c (R) such that ξ(s) = 1 for all s ∈ R with M − 1 ≤
s ≤M + 1, then ϕ ∈ C1

c (R× ω,R2n). Hence

∫

ω

〈

∇φφ(x), ψ(x)ξ(φ(x))
〉

dL2n = lim
j→∞

∫

ω

〈

∇φjφj(x), ψ(x)ξ(φj(x))
〉

dL2n.

(4.36)

and since φj converges uniformly to φ, there exist j̄ ∈ N such that for all

j ≥ j̄ and for all x in the support of ψ,

M − 1 ≤ φj(x) ≤M + 1

and hence ξ(φj(x)) = 1 for all j ≥ j̄ and for all x in the support of ψ. This

implies that

∫

ω

〈

∇φφ(x), ψ(x)
〉

dL2n = lim
j→∞,j≥j̄

∫

ω

〈

∇φjφj(x), ψ(x)
〉

dL2n. (4.37)

If ψ(x) := (0, . . . , ψi(x), . . . , 0) ∈ C1
c (ω,R

2n−1) and i 6= n then by (4.37) we

obtain

∫

ω

∇φ
i φ ψ dL2n = lim

j

∫

ω

∇φj

i φj ψ dL2n =

= − lim
j→∞,j≥j̄

∫

ω

φj∇φ
jψdL2n =

∫

ω

φ∇φψdL2n
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where we used the fact that if j 6= n then ∇φjφj = ∇φφj. On the other hand

if j = n we obtain
∫

ω

∇φ
nφ ψ dL2n = lim

j→∞,j≥j̄

∫

ω

∇φj
n φj ψ dL2n =

= − lim
j→∞,j≥j̄

∫

ω

(φj∂nψ + φ2
j∂2nψ) dL2n = −

∫

ω

(φ∂nψ + φ2∂2nψ) dL2n.

In the following Theorem we provide a representation formula for the

H−perimeter and for the spherical Hausdorff (2n + 1)−measure of the in-

trinsic graph of a Lipschitz function φ in terms of its ∇φ−gradient.

Theorem 4.2.4. If φ ∈ LipW(ω) with ω ⊂ W open and bounded, then there

exists a dimensional constant cn > 0 such that the following area formula

hold

|∂Eφ|H(R× ω) = cnS2n+1(graph(φ)) =

∫

ω

√

1 + |∇φφ|2 dL2n.

where S2n+1 denotes the spherical Hausdorff measure in Hn.

Proof. Denoting by E the subgraph of φ and by Ω the cylinder R×ω, being

|∂E|H a Radon measure, a classical approximation result ensure the existence

of a sequence

(ϕj)j∈N = ((ϕj,1, . . . , ϕj,2n))j∈N ⊂ C1
c (Ω,R

2n)

with |ϕj|R2n ≤ 1 such that

ϕj → νE |∂E|H − a.e in Ω

moreover by Corollary 4.1.13 it is easy to see that

ϕj ◦ Φ → νE ◦ Φ L2n − a.e in ω.

Inserting this sequence in (4.35) of Prosposition 4.2.2 we obtain that for all

j ∈ N,

−
∫

Ω

〈ϕj, νE〉 d|∂E|H =

∫

ω

ϕj,1 ◦ Φ−
〈

∇φφ, ϕ̂j ◦ Φ
〉

dL2n (4.38)
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and the first part of the thesis follows taking the limit as j → ∞ in (4.38).

The fact that |∂Eφ|H(ω · R) = cnS2n+1(grap(φ)) for some dimensional con-

stant cn > 0 is a direct consequence of Theorem 1.2.11 and Lemma 4.1.9.

Before stating the approximation Theorem we need to recall two results

which we will be fundamental in the proof.

Theorem 4.2.5 ([136]). Let f : Rn −→ R be a strictly convex function and

let (gj)j and g be in (L1(Ω))n. If

1. gj → g weakly in (L1(Ω))n;

2.
∫

Ω
f ◦ gj dLn →

∫

Ω
f ◦ g dLn

then gj → g strongly in (L1(Ω))n.

Lemma 4.2.6 ([130]). Suppose that M > 0 c > 0 and u ∈ C1((−M,M) ×
ω,R) ∩ C0([−M,M ]× ω) are such that ∇H

1 u ≤ 0 and

u(x,M) > c, u(x,−M) ≤ 0 ∀x ∈ ω.

Assume also that ∇H
1 u(p) < 0 on the set A = {p ∈ (−M,M) × ω : u(p) =

c. Then there exists φ : ω −→ (−M,M) such that φ is uniformly ∇φ-

differentiable in ω and

{u > c} ∩ (−M,M)× ω = Eφ ∩ (−M,M)× ω.

We are now in position to state and prove the approximation Theorem.

We will strictly follow here the approximation techniques contained in [117]

and [130], which are extensions to the Heisenberg setting of the classical De

Giorgi’s techniques for the Euclidean case [59].

Theorem 4.2.7. Let φ : W ≡ R2n −→ V ≡ R be a bounded intrinsic

Lipschitz function. Then, for each bounded open set ω ⊂ W, there exist a a

sequence {φk}k∈N of smooth functions on ω such that

(i) φk → φ locally uniformly in ω;

(ii) |∇φkφk(x)| ≤ ‖∇φφ‖L∞(ω) ∀x ∈ ω;
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(iii) ∇φkφk(x) → ∇φφ(x) L2n−a.e x ∈ ω;

Proof. Let us assume firstly that φ : W −→ R. Let M := ‖φ‖L∞(W) < +∞.

For each α > 0 we define uα : Hn −→ R by

uα(p) := (ρα ∗ χEφ
)(p) =

∫

Hn

ρα(p · q−1)χEφ
(q) dL2n+1(q) (4.39)

=

∫

Hn

ρα(q)χEφ
(q−1 · p) dL2n+1(q)

where ρα(x) := α2n+2ρ(δ1/α(x)) and ρ ∈ C∞
c (U(0, 1)) is a smooth mollifier

with ρ(p−1) = ρ(−p) = ρ(p) ∀p ∈ Hn. Namely let us exploit the classical

technique of approximation by convolution in Hn introduced in [75] of which

the main properties are collected in [130, Lemma 2.4].

Claim 0. Let us first show in detail that uα is constant far from the graph

of φ, so that the integral (4.39) is indeed extended only in a neighborhood of

the graphs itself.

To this end, for each α > 0 it follows that uα ∈ C∞
c (Hn) and

spt(uα) ⊂ U(0, α) · spt(χEφ
)

Moreover, observe that for each α > 0

0 ≤ uα(p) ≤ 1 ∀p ∈ Hn;

and for all sufficiently small α > 0

uα(p) = 1 ∀p ∈ W · (−∞,−2M ] = (−∞,−2M ]×W. (4.40)

Notice also that Eφ is open in Hn and

spt(χEφ
) = Eφ ⊆ {(s, x) | x ∈ R2n, s ≤ φ(x)} (4.41)

⊆ (−∞,M ]×W.

Hence

spt(uα) ⊆ Ūα · spt(χEφ
) ⊆ (−∞, 2M)×W (4.42)
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for α < M . In particular, (4.42) implies

uα(p) = 0 ∀ p ∈ [2M,+∞)×W. (4.43)

Claim 1. Let us compute explicitly ∇H
1 uα.

Let ϕ ∈ C∞
c ((−3M, 3M)× ω), then

〈

∇H
1 uα, ϕ

〉

= −
∫

(−3M,3M)×ω

uα(p
′

)∇H
1 ϕ(p

′

)dL2n+1(p
′

) (4.44)

= −
∫

Ūα

ρα(p)dL2n+1(p)

∫

(−3M,3M)×ω

χEφ
(p−1 · p′

)∇H
1 ϕ(p

′

)dL2n+1(p
′

)

= −
∫

Ūα

ρα(p)dL2n+1(p)

∫

p−1·((−3M,3M)×ω)

χEφ
(q)∇H

1 ϕ(p · q)dL2n+1(q).

With the notation ϕp(q) = ϕ(p · q) we have ∇H
1 (ϕ(p · q)) = ∇H

1 ϕp(q), because

∇H
1 is left-invariant; moreover ϕp ∈ C∞

c (p−1 · ((−3M, 3M)× ω)), then
〈

∇H
1 uα, ϕ

〉

= (4.45)

= −
∫

Ūα

ρα(p)dL2n+1(p)

∫

p−1·((−3M,3M)×ω)

χEφ
(q)∇H

1 ϕp(q)dL2n+1(q).

Put C(p, 3M) := p−1 · ((−3M, 3M)× ω) then by an integration by parts, we

have
∫

C(p,3M)

χEφ
(q)∇H

1 ϕp(q)dL2n+1(q) = −
∫

C(p,3M)

ν1Eφ
(q)ϕp(q)d|∂Eφ|(q) (4.46)

where ν1Eφ
is the first component of the horizontal inward normal νEφ

=

(ν1Eφ
, . . . , ν2nEφ

) to Eφ.

Because spt(ϕp) b C(p, 3M) and p ∈ Uα if α is small enough, we can re-

place C(p, 3M) by C(0, 3M). Thus, by Fubini-Tonelli Theorem and a change

of variable, we obtain

〈

∇H
1 uα, ϕ

〉

=

∫

C(0,3M)

ν1Eφ
(q)d|∂Eφ|(q)

(

∫

Hn

ρα(q)ϕ(p · q)dL2n+1(p)
)

.

Then for each p ∈ C(0, 3M) = (−3M, 3M)×ω and for all small enough α > 0

∇H
1 uα(p) =

∫

C(0,3M)

ρα(p · q−1)ν1(q)d|∂Eφ|(q) = (4.47)

=

∫

UR(p,α)

ρα(p · q−1)ν1(q)d|∂Eφ|(q)
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where UR(p, α) := U(0, α) · p.
In particular we immediately deduce from (4.47) the following assertion:

For each couple (ω, ω0) of open and bounded subset of W with ω0 c ω there

exists ᾱ = ᾱ(ω0) > 0 such that for all 0 < α < ᾱ

∫

(−2M,2M)×ω

|∇Huα|dL2n+1 ≤ |∂Eφ|((−2M, 2M)× ω0). (4.48)

Analogously we also obtain

∇H
n+1∇H

1 uα(p) =

∫

C(0,3M)

∇H
n+1

(

ρα(p · q−1)
)

ν1(q)d|∂Eφ|(q). (4.49)

Claim 2. For every fixed α and c ∈ (0, 1) the set

A = {p ∈ (−2M, 2M)× ω : uα(p) = c}

implicitly defines a function φα : ω −→ R. This family has a subsequence

{φk}k such that |∇φkφk| ≤ ‖∇φφ‖L∞(ω) ∀k ∈ N on ω ⊂ W and {φk}k con-

verge strongly to φ in L1(ω).

From Claim 1 we will first deduce that

∇H
1 uα(p) < 0 ∀p ∈ A. (4.50)

Indeed, recalling that (see Corollary 4.1.13)

ν1 ◦ Φ = − 1
√

1 + |∇φφ|2
in ω

and denoting by

Iα(p) :=

∫

UR(p,α)

ρα(p · q−1)d|∂Eφ|(q) (4.51)

we obtain

∇H
1 uα(p) ≤ − 1

√

1 + ‖∇φφ‖2L∞(ω)

Iα(p) ∀p ∈ (−3M, 3M)× ω. (4.52)
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In order to prove (4.50) for every c ∈ (0, 1) let us define

Eα = Eα,c := {p ∈ ω · R | uα(p) > c}

and notice that for each p ∈ (−2M, 2M)× ω with uα(p) = c

L2n+1(UR(p, α) ∩ Eφ) > 0 L2n+1(UR(p, α) ∩ Ec
φ) > 0. (4.53)

Otherwise, by contradiction, assume, for instance, that L2n+1(UR(p, α) ∩
Eφ) = 0. Then, since Eφ is open, we can assume UR(p, α) ∩ Eφ = ∅. By

definition of convolution, it follows that uα(p) = 0 and then a contradiction.

Analogously, it follows that uα(p) = 1 if L2n+1(UR(p, α) ∩ Ec
φ) = 0.

By (4.53) and Theorem 1.2.15, we have |∂Eφ|(UR(p, α)) > 0

∀p ∈ (−2M, 2M)× ω with uα(p) = c, then

Iα(p) > 0 p ∈ (−2M, 2M)× ω with uα(p) = c. (4.54)

From (4.52) and (4.54), (4.50) follows. Applying the implicit function Lemma

4.2.6 we deduce that there is a function φα : ω −→ [−2M, 2M ] such that

Eα ∩ ([−2M, 2M ]× ω) = Eφα
∩ ([−2M, 2M ]× ω), (4.55)

From (4.43), (4.40), it follows that

∂Eα ∩ (R× ω) = {p ∈ [−2M, 2M ]× ω | uα(p) = c} = Φα(ω) (4.56)

where Φα : ω −→ Hn is the graph map defined as in (3.9).

We can now estimate from above the gradient of φα. Letting

∇̂Huα := (∇H
2 uα, . . . ,∇H

2nuα),

ν̂Eφ
= (ν2Eφ

, . . . , ν2nEφ
) and arguing as in Claim 1 we get,

|∇φαφα| =
|∇̂Huα(p)|
|∇H

1 uα(p)|
≤ (4.57)

1

|∇H
1 uα(p)|

∫

UR(p,α)

|ν̂Eφ
(q)||ρα(p · q−1)| d|∂Eφ|(q)

≤ Iα(p)
‖∇φφ‖L∞(UR(p,α))

|∇H
1 uα(p)|

√

1 + ‖∇φφ‖2
L∞(UR(p,α))

≤ ‖∇φφ‖L∞(UR(p,α)),
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the last inequality being a consequence of (4.52). It follows that for all α > 0

|∇φαφα| ≤ ‖∇φφ‖L∞(ω) in ω. (4.58)

Let us finally prove the convergence of φk in L1(ω). By definition of Eα,

it follows that

uα − χEφ
> c in Eα \ Eφ

χEφ
− uα ≥ (1− c) in Eφ \ Eα

and thus
∫

(−2M,2M)×ω

|uα − χEφ
|dL2n+1 ≥ c̄L2n+1(Eα∆Eφ)

where c̄ := min{c, 1− c}. Since

lim
α→0

‖uα − χEφ
‖L1((−2M,2M)×ω) = 0,

we also get

lim
α→0

‖χEα
− χEφ

‖L1((−2M,2M)×ω) = lim
α→0

L2n+1(Eα∆Eφ) = 0. (4.59)

A simple application of Fubini theorem shows that

‖φα − φ‖L1(ω) = ‖χEα
− χEφ

‖L1((−2M,2M)×ω)

and hence

φα → φ in L1(ω). (4.60)

Claim 3. {φk}k converges uniformly to φ on the compact subsets of ω.

Indeed, let (αh) be a positive sequence converging to 0. Because of (4.58),

|φα| ≤ 2M ∀α > 0 and the fact that the functions φα are 1
2
−Hölder con-

tinuous on every ω′
b ω with Hölder constant independent from α ( [117,

Lemma 3.1]), by Ascoli-Arzelá’s Lemma there exists a subsequence (αhk
)k

and a continuous function φ̄ ∈ C0(ω) such that

φαhk
→ φ̄ uniformly on compact subsets of ω. (4.61)
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From (4.60) and (4.61), it follows that φ̄ ≡ φ and the claim follows.

Claim 4. There exists a positive sequence (αh)h such that, if φh ≡ φαh
then

∇φhφh(x) → ∇φφ(x) L2n − a.e x ∈ ω. (4.62)

In order to get (4.62), we need only to prove that there exists a positive

sequence (αh)h converging to 0 such that there exists

lim
h→∞

∫

ω

√

1 + |∇φhφh|2dL2n =

∫

ω

√

1 + |∇φφ|2dL2n (4.63)

where φh ≡ φαh
. Indeed, up to subsequence, by (4.58) and Proposition 4.2.3

we can assume , that the sequence in (4.63) also satisfies

∇φhφh → ∇φφ weakly in (L1(ω))2n−1. (4.64)

Then, by Theorem 4.2.5, it follows that

∇φhφh → ∇φφ strongly in (L1(ω))2n−1. (4.65)

Therefore, up to a subsequence, (4.62) follows. Let us now prove (4.63). It is

sufficient to show that there exists c̄ ∈ (0, 1) and (αh)h ⊂ (0,+∞) converging

to 0 such that

∃ lim
h→∞

|∂Eαh,c̄|H((−2M, 2M)× ω) = |∂Eφ|H((−2M, 2M)× ω). (4.66)

In fact, by Proposition 4.2.4 and well-known H−perimeter properties
∫

ω

√

1 + |∇φφ|2dL2n = |∂Eφ|H(R× ω) = (4.67)

= |∂Eφ|H((−∞, 2M ]× ω) + |∂Eφ|H((−2M, 2M)× ω)+

+ |∂Eφ|H([2M,+∞)× ω) =

= |∂Eφ|H((−∞,−2M ]× ω ∩ ∂Eφ) + |∂Eφ|H((−2M, 2M)× ω)+

+ |∂Eφ|H([2M,+∞)× ω ∩ ∂Eφ) =

= |∂Eφ|H((−2M, 2M)× ω),
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where in the last equality we have used the inequality |φ| ≤ M which im-

plies (−∞,−2M ] × ω ∩ ∂Eφ = [2M,+∞) × ω ∩ ∂Eφ = ∅. Analogously, by

(4.55),(4.40) and (4.43)

|∂Eαh,c|H((−2M, 2M)× ω) = |∂Eφh
|H((−2M, 2M)× ω) (4.68)

and
∫

ω

√

1 + |∇φhφh|2dL2n = |∂Eφh
|(R× ω) (4.69)

= |∂Eφh
|H((−2M, 2M)× ω), (4.70)

where φh = φαh
. Therefore (4.67),(4.68) and (4.69) imply (4.63). Finally let

us prove (4.66). We will follow the technique exploited in [130]. Notice that,

by the semicontinuity of H−perimeter measure and (4.59), we have

|∂Eφ|H((−2M, 2M)× ω) ≤ lim inf
α→0+

|∂Eα,c|H((−2M, 2M)× ω) (4.71)

for each c ∈ (0, 1). On the other hand, by (4.71) and the coarea formula it

follows that

|∂Eφ|H((−2M, 2M)× ω) ≤
∫ 1

0

lim inf
α→0+

|∂Eα,c|H((−2M, 2M)× ω)dc ≤

≤ lim inf
α→0+

∫ 1

0

|∂Eα,c|H((−2M, 2M)× ω)dc =

= lim inf
α→0+

∫

(−2M,2M)×ω

|∇Huα|dL2n+1 =: I(ω, c).

Now, for each ω0 c ω open and bounded, by Claim 2, it holds

I(ω, c) ≤ |∂Eφ|H((−2M, 2M)× ω0). (4.72)

Indeed, by Claim 2, for each ω0 c ω open and bounded there exists a sequence

{αh}h ⊂ (0,+∞) which converges to 0 and h̄ = h̄(ω0) > 0 such that for each

h ≤ h̄
∫

(−2M,2M)×ω

|∇uαh
|dL2n+1 ≤ |∂Eφ|H((−2M, 2M)× ω0). (4.73)
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Hence

I(ω, c) ≤ |∂Eφ|H((−2M, 2M)× ω0) (4.74)

for each c ∈ (0, 1) and each ω0 c ω open and bounded. Moreover, since

|∂Eφ|H is a Radon measure then by a standard approximation argument we

can rewrite (4.72) with ω instead of ω0. Using again (4.71), we obtain that

L1−a.e c ∈ (0, 1)

lim inf
α→0

|∂Eα,c|H((−2M, 2M)× ω) = |∂Eφ|H((−2M, 2M)× ω).

In particular there exists c̄ ∈ (0, 1) and a positive sequence (αh)h converging

to 0 such that (4.66) holds.

We conclude the proof proving that the assumption φ : W −→ R can

be relaxed to φ : ω −→ R where ω ⊂ W is open and bounded. Indeed,

by (iii) of Theorem 4.1.2 φ is locally uniformly continuous on ω. Thus φ

can be extended to a continuous function φ : ω → V ≡ R and let M :=

supω |φ| < +∞. By Theorem 4.1.2 (i), there exists a Lipschitz extension

φ : W ≡ R2n → V ≡ R of φ. Define φ∗ : W → V ≡ R by

φ∗(x) = max{min{φ(x), M}, −M} x ∈ W .

Theorem 4.1.2 (ii) yields that φ∗ is a bounded Lipschitz function, which

still extends φ. Applying the previous part of the proof to φ∗ we get the

thesis.

Remark 4.2. We point out that Theorem 4.1.5 provides another way to prove

the uniform convergence of the family {φα}, see [46].

4.2.1 Some Applications

In this subsection we provide an estimate of the Lipschitz constant of a given

φ ∈ LipW(ω) in terms of the L∞−norm of its intrinsic gradient. This result

implies a characterization of LipW(ω) in terms of approximating sequences.

In other words, if for a given continuous function φ there is a sequence of

smooth functions which satisfies (i), (ii) and (iii) of Theorem 4.2.7 then

φ ∈ LipW,loc(ω).
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The family {∇φ
i } (i ∈ {1, . . . , 2n − 1}) satisfy the Hörmander condition

if n ≥ 2 (if n = 1, it well known that there is no connectivity). Hence we

can define another distance in ω, namely the Carnot-Carathéodory distance

dcc,φ (see [20, 27, 91, 114] for the details). From now on we will denote by

Ucc,φ(x, r) := {y ∈ ω | dcc,φ(x, y) < r} and we recall that Uφ(x, r) := {y ∈
ω | dφ(x, y) < r}.

Proposition 4.2.8. Let ω ⊂ W be open and bounded, n ≥ 2 and φ : ω −→ R

be a Lipschitz function with respect to the distance dcc,φ with Lipcc(φ) its

Lipschitz constant and denote

M := max
{

Lipcc(φ), 2Lip(φ, ω)(1 + 9(1 + Lip(φ, ω)1/2)4)
}

.

Then there are positive constants C1 and C2 depending only on M in an

increasing way such that for each x̄ ∈ ω and for each r > 0 such that

Ucc,φ(x̄, 2r) ⊂ ω it holds:

Uφ(x̄, r/C2) ⊂ Ucc,φ(x̄, r). (4.75)

Moreover, for each x̄ ∈ ω and each r > 0 such that Uφ(x̄, r) ⊂ ω it holds:

Ucc,φ(x̄, r/C1) ⊂ Uφ(x̄, r). (4.76)

Proof. We denote x̄ = (x̄1, . . . , x̄2n), and choose y = (y1, . . . , y2n) ∈ Ucc(x̄, r).

In order to establish the inclusion (4.76), we estimate from below dcc,φ(x̄, y).

By definition there exist h = (h1, . . . , h2n−1) ∈ L∞((0, 1),R2n−1) with |h| <
2dcc,φ(x̄, y) and an absolutely continuous curve γ̃ such that

˙̃γ(t) =
2n−1
∑

j=1

hj(t)∇φi

j (γ̃(t)) a.e t ∈ (0, 1) (4.77)

and

γ̃(0) = x̄, γ̃(1) = y.

Denoting by γ̃(t) = (γ̃1(t), . . . , γ̃2n(t)) and using the explicit form of the

vector fields {∇φi} we easily obtain that:

|yn − x̄n| = |γ̃n(1)− x̄n| ≤ 2dcc,φ(x̄, y). (4.78)
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This implies that the dcc,φ distance is equivalent to the exponential dis-

tance defined in terms of all the vector fields (∇φ)i=1···2n, and the equivalence

of this last distance and the dφ is already contained in [45] for general vector

fields. We repeat here the proof in our special case. Let us consider the curve

γ : [0, 1] → R2n, γ(s) := exp(s(yn − x̄n)∇φ
n)(x̄)

then in coordinates

γ(s) = (x̄1, . . . , x̄n + s(yn − x̄n), . . . , x̄2n−1, 2(yn − x̄n)

∫ s

0

φ(γ(τ))dτ + x̄2n).

Note that the points γ(1) and y have the same n-th component, so that

while computing their distance, we can discard the vector field ∇φ
n and the

family {∇φ} reduces the standard Heisenberg vector fields in Hn−1. Hence

there exists geometric constants c1, c2 > 0 (independent of y) such that:

c1dcc,φ(γ(1), y) ≤ dφ(γ(1), y) ≤ c2 dcc,φ(γ(1), y). (4.79)

Let us also notice that, by simple calculations:

max
t∈[0,1]

dφ(γ(t), x̄) ≤|yn − x̄n|+
√
2|yn − x̄n|

1
2M

1
2

[

max
t∈[0,1]

dφ(γ(t), x̄)
] 1

2
(4.80)

+ 2
√
2|yn − xn|

1
2M

1
2C(M)

1
2

[

max
t∈[0,1]

dφ(γ(t), x̄)
] 1

2

where C(M) is as in (3.17). Since M1/2 ≤ C(M) we obtain

max
t∈[0,1]

dφ(γ(t), x̄) ≤ |yn − x̄n|+ 3
√
2|yn − x̄n|

1
2C2(M)

[

max
t∈[0,1]

dφ(γ(t), x̄)
] 1

2

hence

max
t∈[0,1]

dφ(γ(t), x̄) ≤ |yn − x̄n|+ 9|yn − x̄n|C(M)4 +
maxt∈[0,1] dφ(γ(t), x̄)

2

and finally:

max
t∈[0,1]

dφ(γ(t), x̄) ≤ 2(1 + 9C(M)4)|yn − x̄n| (4.81)

which implies that ∀t ∈ [0, 1]

|φ(γ(t))− φ(x̄)| ≤ 2M(1 + 9C(M)4)|yn − x̄n|. (4.82)
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By the triangle inequality stated in (3.17) and using (4.82) with M̃ := 2M(1+

9C(M)4) we infer:

dφ(x̄, y) ≤ dφ(γ(1), x̄) + dφ(γ(1), y) + |φ(γ(1))− φ(x̄)|1/2|x̄n − yn|1/2 (4.83)

≤ dφ(γ(1), x̄) + c2 dcc,φ(γ(1), y) + M̃1/2dcc,φ(γ(1), x̄)

≤ dφ(γ(1), x̄) + c2 dcc,φ(γ(1), x̄) + c2 dcc,φ(y, x̄)+

+ M̃1/2dcc,φ(γ(1), x̄).

By definition of dcc,φ and (4.78):

dcc,φ(γ(1), x̄) ≤ |yn − x̄n| ≤ 2dcc,φ(x̄, y) (4.84)

hence by (4.78), (4.83), (4.84) and (4.81) we obtain:

dφ(x̄, y) ≤ dφ(γ(1), x̄) + c2 dcc,φ(γ(1), x̄) + c2 dcc,φ(y, x̄)+

+ M̃1/2dcc,φ(γ(1), x̄)

≤ (3c2 + 2M̃1/2)dcc,φ(y, x̄) + 4(1 + 9C(M)4)dcc,φ(x̄, y).

The proof of inclusion (4.75) is analogous: by the triangle inequality we have

dcc,φ(x̄, y) ≤ dcc,φ(γ(1), x̄) + dcc,φ(γ(1), y) (4.85)

and calling c := 1/c2 and by simple calculations we obtain:

dcc,φ(γ(1), y) ≤ c dφ(x̄, y) + 2c|yn − x̄n|1/2
∫ 1

0

|φ(γ(τ))− φ(x̄)|1/2dτ

+ 2c|yn − x̄n|1/2
∫ 1

0

|φ(γ(τ))− φ(y)|1/2dτ

≤ c dφ(x̄, y) + 2cM1/2|yn − x̄n|1/2
∫ 1

0

|dcc,φ(γ(τ), x̄)|dτ

+ 2cM1/2|yn − x̄n|1/2
∫ 1

0

|dcc,φ(γ(τ), y)|dτ

≤ c dφ(x̄, y) + 4cM1/2|yn − x̄n|
≤ c(1 + 4M1/2)dφ(x̄, y).

Therefore by (4.85) we have:

dcc,φ(x̄, y) ≤ (c(1 + 4M1/2) + 1)dφ(x̄, y), (4.86)
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and inclusion (4.75) follow.

Proposition 4.2.9. Let ω ⊂ W be open and bounded, φ ∈ LipW(ω) and

n ≥ 2. Then for each x̄ ∈ ω and each r > 0 sufficiently small

Lip(φ, Uφ(x̄, r)) ≤ c
(

4
√

‖∇φφ‖L∞(ω) + 1
)

‖∇φφ‖L∞(ω)

for a suitable geometric positive constant c. Moreover, if n = 1 it holds:

Lip(φ, Uφ(x̄, r)) ≤ c
√

1 + ‖∇φφ‖2L∞(ω) (4.87)

Proof. Let us fix φ ∈ LipW(ω) and M := ||∇φφ||L∞(ω). Let {φi}i∈N be a

sequence of smooth functions as in Theorem 4.2.7.

For every x̄ ∈ ω, let us define r̄ :=
dφ(x̄,∂ω)

2C1
> 0 where C1 is as in Proposition

4.2.8 and depend only on ||∇φφ||L∞(ω).

Then by Proposition 4.2.8, for each r < r̄ and for each i sufficiently big

it holds:

Ucc,φi
(x̄, r) b ω, (4.88)

hence by [86, Theorem 2.7] we infer that

|φi(x)− φi(y)| ≤ ‖∇φiφi‖L∞(ω)dcc,φi
(x, y) ∀x, y ∈ Ucc,φi

(x̄, r/2).

Hence

|φi(x)− φi(y)| ≤ ‖∇φiφi‖L∞(ω)dcc,φi
(x, y) ∀x, y ∈ Uφi

(x̄, r/(2C2)).

Moreover, since for each x, y ∈ Ucc,φi
(x̄, r), dcc,φi

(x, y) < r < r̄, and the local

equivalence of the distance dcc,φ and dφ we conclude that:

|φi(x)− φi(y)| ≤ C2||∇φiφi||L∞(ω)dφi
(x, y) ∀x, y ∈ Uφi

(x̄, r/(2C2)). (4.89)

By Theorem 4.2.7 we know that for all i ∈ N ||∇φiφi||L∞(ω) ≤ M , hence

taking the limit for i→ ∞ in (4.89) we get the thesis.

For n = 1, we use the fact, recalled in in Definition 4.1.1, that the cone

opening is the inverse of the Lipschitz constant, and the estimate of the cone

opening provided in Theorem 4.1.5, with k = − 1√
1+|∇φφ|2
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Using Proposition 4.2.9 we immediately get:

Proposition 4.2.10 (Characterization of locally intrinsic Lipschitz func-

tions). Let ω b W be open and bounded, and let φ : ω → R. Then the

following are equivalent:

(i) φ ∈ LipW,loc(ω);

(ii) there exist {φk}k∈N ⊂ C∞(ω), C > 0 and w ∈ (L∞(ω))2n−1 such that

(ii1) {φk}k∈N uniformly converges to φ on the compact sets of ω;

(ii2) |∇φkφk(x)| ≤ C L2n-a.e. x ∈ ω, k ∈ N;

(ii3) ∇φkφk(x) −→ w(x) L2n−a.e x ∈ ω.

Moreover if (ii) holds, then w ≡ ∇φφ L2n−a.e in ω.
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4.3 Poincaré inequality

In this section we prove a Poincaré inequality for intrinsic Lipschitz func-

tions. It is well known that the Poincaré inequality play a crucial role in

the study the regularity properties for operators of the form
∑m

i=1X
2
i . In

particular, Poincaré’s inequality is fundamental in the so called Moser itera-

tion technique used to obtain Harnack inequalities and Hölder continuity for

solutions of various quasilinear degenerate equations. For smooth Hörman-

der’s vector fields, Poincaré’s inequality has been proved by Jerison in [96]

and improved in [101] and in [78] for different exponents. Some weighted

version of Poincaré’s inequality are proved in [76], in [78] and in [100]. For

the non smooth case: in [77] the authors proved the Poincaré inequality in a

low regularity situation for vector fields of diagonal form, i.e. Xi = λi(x)∂i,

i = 1, . . . , n, and the λi’s were required to satisfy some strong condition,(a

strong form of a reverse Hölder inequality involving integral curves of vector

fields). Lanconelli-Morbidelli in [98] have developed a general approach to

Poincaré’s inequality for (possibly nonsmooth) vector fields: they first prove

an abstract result, which deduces Poincaré’s inequality from a property which

they call representability of balls by means of controllable almost exponential

maps, introduced in [118]. In the recent paper [112], the Poincaré inequality

is proved by developping the method of [98] for not smooth and not diagonal

vector fields of step two, assuming Lipschitz condition on the vector fields

plus some other structural and regular conditions on the commutators. We

also quote the paper [106] where Poincaré inequality for families of Lipschitz

continuous vector fields satisfying a Hörmander-type condition of step two,

in a low regularity conditions for the commutators. In [21] the author prove

Poincaré’s inequality for a family of Cr−1,1 vector fields satisfying Hörman-

der’s rank condition of some step r. These proofs of the Poincaré inequal-

ity (also in the non-smooth setting) are based on the Nagel-Stein-Weinger’s

lemma and doubling condition on the ball of the metric (see [121]).

In our case, the family ∇φ has only Hölder regularity when φ ∈ LipW(ω),

hence all the previous approaches don’t work. Aim of this section is to pro-

vide a method to obtain a Poincaré inequality starting from the non smooth
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family ∇φ.

4.3.1 Local approximation of the vector fields

If φ : ω ⊂ R2n −→ R is an intrinsic Lipschitz function then, by Proposition

4.1.2, the family {∇φ} has coefficients which are only Hölder continuous. To

overcome this lack of regularity on the coefficients we use the approach intro-

duced in [121] and refined in [39]. The idea is to associate to the family {∇φ}
a new family of Hörmander vector fields with regular coefficients. Precisely,

for each x0 ∈ ω we define

∇φ(x0)
i := ∇φ

i if i 6= n

∇φ(x0)
n := ∂xn

+ 2φ(x0)∂x2n

∇φ(x0)
2n = ∂x2n .

Since the point x0 ∈ ω is fixed, then the vector fields ∇φ(x0)
i are C∞ and

nilpotent, whose generated Lie algebra is G = hn−1 × R, moreover we will

denote by Q the homogeneous dimension of the Lie group associated to G.
Then we can repeat for these vector field the general procedure introduced

for the definition of the Heisenberg group.

We use the exponential mapping

Expφ(x0),x : G −→ W, Expφ(x0),x(y) = exp
(

2n
∑

i=1

yi∇φ(x0)
i

)

(x).

where we have identified the element y ∈ G with its coordinates on the

basis {∇φ(x0)}. Its inverse mapping will be denoted by Logφ(x0),x and if

x = (x1, . . . , x2n) and y = (y1, . . . , y2n) then:

Logφ(x0),x(y) = (y1 − x1, . . . , y2n−1 − x2n−1, y2n − x2n − 2(yn − xn)φ(x0)+

+ σ(x, y))

with

σ(x, y) :=
n−1
∑

i=1

(yixn+i − yn+ixi).
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Moreover, we define the function dφ(x0) : W×W −→ R by

dφ(x0)(x, y) := ‖Logφ(x0),x(y)‖. (4.90)

where ‖(x1, . . . , x2n)‖ := max
{

|(x1, . . . , x2n−1|, |x2n|
1
2

}

.

Remark 4.3. We point out that for each x0 ∈ ω, dφ(x0) is distance on ω.

Moreover, by (3.14), we immediately deduce the following equality:

dφ(x, y) =
1

2

(

dφ(x)(x, y) + dφ(y)(x, y)
)

.

In order to study the dependence of the vector fields {∇φ(x0)} on the point

x0 ∈ ω we prove the following:

Proposition 4.3.1. Let ω ⊂ W be open and bounded and let us fix x0 ∈ ω.

If we denote by ∇ = (∇1, . . . ,∇2n−1) the family of vector fields defined on

R2n whose coordinate representation is

∇i := ∇φ(x0)
i for i 6= n,

∇n := ∂xn
,

then,

1. For each ψ ∈ C1(R2n) and each i ∈ {1, . . . , 2n− 1} it holds

∇φ(x0)
i ψ(x) = ∇iψ̃(Logφ(x0),x0(x)),

where ψ̃ : R2n −→ R is defined by:

ψ̃(x̃) := ψ(Log−1
φ(x0),x0

(x̃)).

2. The exponential distance d̃ associated to the family {∇} is independent

of x0 and of class C∞. Moreover, the following relation is satisfied

dφ(x0)(x, y) = d̃(Logφ(x0),x0(x), Logφ(x0),x0(y)). (4.91)
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Proof. Let us first prove (1). If i 6= n the thesis is obvious. On the other

hand if i = n then

(∇nψ̃)(Logφ(x0),x0(x)) = lim
h→0

ψ̃(exp(h∇n)(Logφ(x0),x0(x))− ψ̃(Logφ(x0),x0(x))

h

= lim
h→0

ψ(exp
(

h∇φ(x0)
n

)

(x))− ψ(x)

h

= (∇φ(x0)
n ψ)(x).

Since {∇} does not depend on x0 it is clear that d̃ is independent of x0. Let

us explicitely observe that

dφ(x0)(x, y) = ‖(z1, . . . , z2n)‖∞ if y = exp(
2n
∑

i=1

zi∇φ(x0)
i )(x) (4.92)

and

d̃(x̃, ỹ) = ‖(z̃1, . . . , z̃2n)‖∞ if ỹ = exp(
2n
∑

i=1

z̃i∇i)(x̃) (4.93)

where ỹ := Logφ(x0),x0(y) and x̃ := Logφ(x0),x0(x). Since ∇i = ∇φ(x0)
i if i 6= n

we have z̃i = zi if i 6= 2n. The fact that z̃2n = z2n follows from a direct

computation.

4.3.2 Sub-Laplacian and fundamental solution

In this subsection we use some ideas already introduced in Chapter 2, in

order to study the sub-Laplacian associated to the family {∇φ(x0)}.

If

Lφ(x0) :=
2n−1
∑

i=1

∇φ(x0)
i ∇φ(x0)

i (4.94)

is the sub-Laplacian associated to {∇φ(x0)} then, by Theorem 2.1.8, Lφ(x0)

admits a fundamental solution (see Definition 2.1.3) which we will denote by

Γφ(x0).
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Lemma 4.3.2. Under the change of variable Logφ(x0),x0, the operator Lφ(x0)

is transformed into the operator

L :=
2n−1
∑

i=1

∇i∇i. (4.95)

That is, for each ψ ∈ C1(R2n):

(Lφ(x0)ψ)(x) = (Lψ̃)(Logφ(x0),x0(x)) ∀ x ∈ R2n,

where ψ̃ is defined as in Proposition 4.3.1.

Proof. Let ψ ∈ C1(R2n), then if i 6= n we have

(∇i∇iψ̃)(Log
−1
φ(x0),x0

(x)).

On the other hand, if i = n

(∇n∇nψ̃)(Log
−1
φ(x0),x0

(x)) = (∂xn
∂xn

ψ̃)(Log−1
φ(x0),x0

(x)) (4.96)

and by a direct calculation:

(∂n∂nψ̃)(Log
−1
φ(x0),x0

(x)) = ∂2x2
ψ(x)− 4φ(x0)∂x2x4ψ(x) + 4φ(x0)

2∂2x4
ψ(x)

= (∇φ(x0)
n ∇φ(x0)

n ψ)(x)

Since the vector fields ∇i are of class C∞ and satisfy the Hörmander

condition, then the second order differential operator L is a sub-laplacian

operator. Then, by Theorem 2.1.8, it has a fundamental solution Γ of class

C∞ far from the pole x = y, which is homogeneous of degree 2 − Q. This

means, by Theorem 2.1.10, that there exist positive constants C1, C2 such

that for every x and y in R2n, x 6= y

C1

d̃(x, y)Q−2
≤ Γ(x, y) ≤ C2

d̃(x, y)Q−2
;

|∇iΓ(x, y)| ≤
C2

d̃(x, y)Q−1
; (4.97)

|∇j∇iΓ(x, y)| ≤
C2

d̃(x, y)Q
,
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for every i, j = 1, . . . , 2n− 1. We can correlate Γφ(x0) and Γ in the following

way

Lemma 4.3.3 ([43]). With the same notations as above, for every x, y ∈ R2n

with x 6= y and every i = 1, . . . , 2n− 1

∇φ(x0)
i Γφ(x0)(x, y) = ∇iΓ(Logφ(x0),x0(x), Logφ(x0),x0(y)) (4.98)

and

Γφ(x0)(x, y) = Γ(Logφ(x0),x0(x), Logφ(x0),x0(y)). (4.99)

It follows that inequalities (4.97) are satisfied also for Γφ(x0)(x, y) and

dφ(x0)(x, y) with the same constants. In particular it is clear that these con-

stants are independent of x0.

Lemma 4.3.4 ([42]). For every x, x0 ∈ ω and r > 0 we define

Ωφ(x0)(x, r) :=
{

y ∈ R2n | Γφ(x0)(x, y) > r2−Q
}

, (4.100)

then Ωφ(x0)(x, r) is regular and defines spheres locally equivalent to the spheres

of the distance dφ(x0). Moreover,

Ωφ(x0)(x, r) =
{

y ∈ R2n | Γ(Logφ(x0),x0(x), Logφ(x0),x0(y)) > r2−Q
}

(4.101)

hence

Ωφ(x0)(x0, r) =
{

y ∈ R2n | Γ(0, Logφ(x0),x0(y)) > r2−Q
}

(4.102)

= Expφ(x0),x0

(

Ω̃(0, r)
)

,

where

Ω̃(0, r) :=
{

ỹ ∈ R2n | Γ(0, ỹ) > r2−Q
}

. (4.103)

From now on we will denote by

N(ỹ) := Γ
−1
Q−2 (0, ỹ), ỹ ∈ R2n. (4.104)
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4.3.3 A representation formula

In this subsection we firstly restate Theorem 2.1.15 using family {∇φ(x0)} and
then we improve it in order to obtain a reppresentation formula containing

derivatives with respect to the non linear family {∇φ}.

The following Proposition follows from Theorem 2.1.15 via Coarea For-

mula:

Proposition 4.3.5 ([42]). Let ω ⊂ R2n be a bounded open set and let φ :

ω −→ R be of class C∞(ω). Then for every x0 ∈ ω and R > 0 such that

Ωφ(x0)(x0, R) ⊂ ω we have

φ(x0) =
Q

(Q− 2)RQ

∫

Ωφ(x0)
(x0,R)

|∇φ(x0)Γφ(x0)(x0, y)|2

Γ
2(Q−1)/(Q−2)
φ(x0)

(x0, y)
φ(y) dL2n(y) (4.105)

+
Q

RQ

∫ R

0

rQ−1

∫

Ωφ(x0)
(x0,r)

〈

∇φ(x0)Γφ(x0)(x0, y),∇φ(x0)φ(y)
〉

dL2n(y)dr.

Remark 4.4. We explicitly note that, if we choose φ ≡ 1, then we get from

the previous formula

1 =
Q

(Q− 2)RQ

∫

Ωφ(x0)
(x0,R)

|∇φ(x0)Γφ(x0)(x0, y)|2

Γ
2(Q−1)/(Q−2)
φ(x0)

(x0, y)
dL2n(y). (4.106)

This remark allows to say that Proposition 4.3.5 represents a function φ

as the sum of its mean on a suitable level set ball, and its gradient ∇φ(x0).

Hence, it is natural to give the following definition

Definition 4.3.1. Let φ : ω ⊂ R2n −→ R be L1
loc(ω). For every x0 ∈ ω and

R > 0 such that Ωφ(x0)(x0, R) ⊂ ω we call mean of φ on Ωφ(x0)(x0, R)

φ̃R(x0) =
Q

(Q− 2)RQ

∫

Ωφ(x0)
(x0,R)

|∇φ(x0)Γφ(x0)(x0, y)|2

Γ
2(Q−1)/(Q−2)
φ(x0)

(x0, y)
φ(y) dL2n(y).

In the sequel we will need an other mean of φ on the same ball Ωφ(x0)(x0, R)

φR(x0) =
2

R

∫ R

R/2

φ̃r(x0)dr.
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We will slightly modify the mean formula in Proposition 4.3.5, which

contains derivatives in the direction of the vector fields ∇φ(x0) of φ, in order

to obtain a mean representation formula which contains derivatives with

respect to the vector fields ∇φ of φ.

Proposition 4.3.6. Let ω ⊂ R2n be open and bounded and φ : ω −→ R of

class C∞(ω). Then for every x0 ∈ ω and R > 0 such that Ωφ(x0)(x0, R) ⊂ ω

we have

φ(x0)− φR(x0) =

=
1

R

∫ R

0

f1(r)

∫

Ωφ(x0)
(x0,r)

〈

∇φ(x0)Γφ(x0)(x0, y),∇φφ(y)
〉

dL2n(y) dr

+
1

R

∫ R

0

f1(r)

∫

Ωφ(x0)
(x0,r)

(φ(y)− φ(x0))
〈

F2

(

Logφ(x0),x0(y)
)

,∇φφ(y)
〉

dL2n(y) dr

+
1

R

∫ R

R/2

1

rQ

∫

Ωφ(x0)
(x0,r)

(φ(y)− φ(x0))
〈

F3

(

Logφ(x0),x0(y)
)

,∇φφ(y)
〉

dL2n(y) dr,

where f1 is a smooth and bounded function defined on R and F2, F3 : G −→
R2n are defined by;

F2(Logφ(x0),x0(y)) = (∇φ(x0)
n+1 ∇φ(x0)

n Γφ(x0)(x0, y), 0,−∇φ(x0)
1 ∇φ(x0)

n Γφ(x0)(x0, y), 0),

F3(Logφ(x0),x0(y)) = S(y)
(

−∇φ(x0)
n+1 Γφ(x0)(x0, y), 0,∇φ(x0)

1 Γφ(x0)(x0, y), 0
)

.

Here

S(y) :=
Q

Q− 2

∇φ(x0)
n Γφ(x0)(x0, y)

Γ
2(Q−1)/(Q−2)
φ(x0)

(x0, y)

and the non zero components of F2 and F3 are the first and the (n+ 1)th.

Proof. Throughout the proof we will denote by Ωr the set Ωφ(x0)(x0, r) and

by ∂Ωr the boundary of Ωr where x0 ∈ ω and 0 < r < R are as in the

statement. By Proposition 4.3.5 we have

φ(x0) =
Q

(Q− 2)RQ

∫

Ω

|∇φ(x0)Γφ(x0)(x0, y)|2

Γ
2(Q−1)/(Q−2)
φ(x0)

(x0, y)
φ(y) dL2n(y)+

+
Q

RQ

∫ R

0

rQ−1

∫

Ω

〈

∇φ(x0)Γφ(x0)(x0, y),∇φ(x0)φ(y)
〉

dL2n(y)dr
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hence

φ(x0) =
Q

(Q− 2)RQ

∫

ΩR

|∇φ(x0)Γφ(x0)(x0, y)|2

Γ
2(Q−1)/(Q−2)
φ(x0)

(x0, y)
φ(y) dL2n(y)+

+
Q

RQ

∫ R

0

rQ−1

∫

Ωr

〈

∇φ(x0)Γφ(x0)(x0, y),∇φφ(y)
〉

dL2n(y)dr+

+
Q

RQ

∫ R

0

rQ−1

∫

Ωr

∇φ(x0)
n Γφ(x0)(x0, y)(φ(x0)− φ(y))∂2nφ(y) dL2n(y)dr.

Let us compute the last term of the previous equality keeping in mind that

∂2n =
1

2

(

∇φ(x0)
1 ∇φ

n+1 −∇φ(x0)
n+1 ∇φ

1

)

Ωφ(x0)(x0, r) =
{

Γ
−1/(Q−2)
φ(x0)

(x0, y) < r
}

,

hence

Q

RQ

∫ R

0

rQ−1

∫

Ωr

∇φ(x0)
n Γφ(x0)(x0, y)(φ(x0)− φ(y))∂2nφ(y) dL2n(y)dr = A− B

where

A :=
Q

2RQ

∫ R

0

rQ−1

∫

Ωr

∇φ(x0)
n Γφ(x0)(x0, y)(φ(x0)− φ(y))∇φ(x0)

1 ∇φ
n+1φ(y) dL2n(y)dr

B :=
Q

2RQ

∫ R

0

rQ−1

∫

Ωr

∇φ(x0)
n Γφ(x0)(x0, y)(φ(x0)− φ(y))∇φ(x0)

n+1 ∇φ
1φ(y) dL2n(y)dr

we estimate separately the two terms,

A =
Q

2RQ

∫ R

0

rQ−1

∫

∂Ωr

H1(y)∇φ(x0)
n Γφ(x0)(x0, y)(φ(x0)− φ(y))∇φ

n+1φ(y)dH2n−1(y)dr−

− Q

2RQ

∫ R

0

rQ−1

∫

Ωr

∇φ(x0)
1

(

∇φ(x0)
n Γφ(x0)(x0, y)(φ(x0)− φ(y))

)

∇φ
n+1φ(y) dL2n(y)dr =

where

H1(y) :=
∇φ(x0)

1 Γφ(x0)(x0, y)

|∇EΓφ(x0)(x0, y)|
,

whereas

B =
Q

2RQ

∫ R

0

rQ−1

∫

∂Ωr

H̄1(y)∇φ(x0)
n Γφ(x0)(x0, y)(φ(x0)− φ(y))∇φ

1φ(y)dH2n−1(y)dr−

− Q

2RQ

∫ R

0

rQ−1

∫

Ωr

∇φ(x0)
n+1

(

∇φ(x0)
n Γφ(x0)(x0, y)(φ(x0)− φ(y))

)

∇φ
1φ(y) dL2n(y)dr =
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where

H̄1(y) :=
∇φ(x0)

n+1 Γφ(x0)(x0, y)

|∇EΓφ(x0)(x0, y)|
.

Now using the fact that

∂Ωr =
{

Γ
−1/(Q−2)
φ(x0)

(x0, y) = r
}

,

we obtain rQ−1 = Γ
−(Q−1)/(Q−2)
φ(x0)

(x0, y) on this set. It follows,

A =
Q

2RQ

∫ R

0

∫

∂Ωr

H1(y)H2(y)(φ(x0)− φ(y))∇φ
n+1φ(y)dH2n−1(y)dr−

− Q

2RQ

∫ R

0

rQ−1

∫

Ωr

∇φ(x0)
1

(

∇φ(x0)
n Γφ(x0)(x0, y)(φ(x0)− φ(y))

)

∇φ
n+1φ(y) dL2n(y)dr,

where

H2(y) :=
∇φ(x0)

n Γφ(x0)(x0, y)

Γ
(Q−1)/(Q−2)
φ(x0)

and

B =
Q

2RQ

∫ R

0

∫

∂Ωr

H̄1(y)H2(y)(φ(x0)− φ(y))∇φ
1φ(y)dH2n−1(y)dr−

− Q

2RQ

∫ R

0

rQ−1

∫

Ωr

∇φ(x0)
1

(

∇φ(x0)
n Γφ(x0)(x0, y)(φ(x0)− φ(y))

)

∇φ
1φ(y) dL2n(y)dr.

By the Coarea formula, see [80] or Chapter 3, we obtain that:

A =
Q

2RQ(Q− 2)

∫

ΩR

H2(y)

Γ
(Q−1)/(Q−2)
φ(x0)

(φ(x0)−φ(y))∇φ
n+1φ(y)∇φ(x0)

1 Γφ(x0)(x0, y) dL2n(y)dr

− Q

2RQ

∫ R

0

rQ−1

∫

Ωr

∇φ(x0)
1

(

∇φ(x0)
n Γφ(x0)(x0, y)(φ(x0)−φ(y))

)

∇φ
n+1φ(y) dL2n(y)dr,

and

B =
Q

2RQ(Q− 2)

∫

ΩR

H2(y)

Γ
(Q−1)/(Q−2)
φ(x0)

(φ(x0)−φ(y))∇φ
1φ(y)∇φ(x0)

n Γφ(x0)(x0, y) dL2n(y)dr

− Q

2RQ

∫ R

0

rQ−1

∫

Ωr

∇φ(x0)
n+1

(

∇φ(x0)
n Γφ(x0)(x0, y)(φ(x0)−φ(y))

)

∇φ
1φ(y) dL2n(y)dr.
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Hence, by the reppresentation formula we conclude that:

φ(x0) = φ̃R(x0) +
Q

RQ

∫ R

0

rQ−1

∫

Ωr

〈

∇φ(x0)Γφ(x0)(x0, y),∇φφ(y)
〉

dL2n(y)dr

+
Q

2RQ(Q− 2)

∫

ΩR

H2(y)

Γ
(Q−1)/(Q−2)
φ(x0)

(φ(x0)−φ(y))∇φ
n+1φ(y)∇φ(x0)

1 Γφ(x0)(x0, y) dL2n(y)dr

− Q

2RQ

∫ R

0

rQ−1

∫

Ωr

∇φ(x0)
1

(

∇φ(x0)
n Γφ(x0)(x0, y)(φ(x0)−φ(y))

)

∇φ
n+1φ(y) dL2n(y)dr+

− Q

2RQ(Q− 2)

∫

ΩR

H2(y)

Γ
(Q−1)/(Q−2)
φ(x0)

(φ(x0)−φ(y))∇φ
1φ(y)∇φ(x0)

n+1 Γφ(x0)(x0, y) dL2n(y)dr−

+
Q

2RQ

∫ R

0

rQ−1

∫

Ωr

∇φ(x0)
n+1

(

∇φ(x0)
n Γφ(x0)(x0, y)(φ(x0)−φ(y))

)

∇φ
1φ(y) dL2n(y)dr.

Integrating from R/2 to R and denoting by

D1,n := ∇φ(x0)
1 ∇φ(x0)

n

Dn+1,n := ∇φ(x0)
n+1 ∇φ(x0)

n .

we get

φ(x0)− φR(x0)

=
2

R

∫ R

R/2

Q

ρQ

∫ ρ

0

rQ−1

∫

Ωr

〈

∇φ(x0)Γφ(x0)(x0, y),∇φφ(y)
〉

dL2n(y) dr dρ

+
2

R

∫ R

R/2

Q

2rQ(Q− 2)

∫

Ωr

H2(y)

Γ
(Q−1)/(Q−2)
φ(x0)

(x0, y)
(φ(y)− φ(x0))

∇φ
n+1φ(y)∇φ(x0)

1 Γφ(x0)(x0, y) dL2n(y) dr

− 1

R

∫ R

R/2

Q

ρQ

∫ ρ

0

rQ−1

∫

Ωr

D1,nΓφ(x0)(x0, y)(φ(y)− φ(x0))∇φ
n+1φ(y) dL2n(y) dr

− 1

R

∫ R

R/2

Q

rQ(Q− 2)

∫

Ωr

∇φ(x0)
n Γφ(x0)(x0, y)

Γ
2(Q−1)/(Q−2)
φ (x0)(x0, y)

(φ(y)− φ(x0))

∇φ
1φ(y)∇φ(x0)

n+1 Γφ(x0)(x0, y) dL2n(y) dr

+
1

R

∫ R

R/2

Q

ρQ

∫ ρ

0

rQ−1

∫

Ωr

Dn+1,nΓφ(x0)(x0, y)(φ(y)− φ(x0))∇φ
1φ(y) dL2n(y) dr.
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Exchanging the order of integration in the first, third, and fifth integral, and

we setting

f1(r) =

(

r
R

)Q−1

− 1

−Q+ 1
if r ∈ [R/2, R]

and

f1(r) =
( r

R

)Q−11−
(

1
2

)−Q+1

−Q+ 1
if r ∈ [0, R]

we obtain that the previuos equality is equal to:

2

R

∫ R

0

f1(r)

∫

Ωr

〈

∇φ(x0)Γφ(x0)(x0, y),∇φφ(y)
〉

dL2n(y) dr

+
2

R

∫ R

R/2

Q

2rQ(Q− 2)

∫

Ωr

H2(y)

Γ
(Q−1)/(Q−2)
φ(x0)

(x0, y)
(φ(y)− φ(x0))

∇φ
n+1φ(y)∇φ(x0)

1 Γφ(x0)(x0, y) dL2n(y) dr

− 2

R

∫ R

0

f1(r)

∫

Ωr

D1,nΓφ(x0)(x0, y)(φ(y)− φ(x0))∇φ
n+1φ(y) dL2n(y) dr

− 1

R

∫ R

R/2

Q

rQ(Q− 2)

∫

Ωr

H2(y)

Γ
(Q−1)/(Q−2)
φ(x0)

(x0, y)
(φ(y)− φ(x0))

∇φ
1φ(y)∇φ(x0)

n+1 Γφ(x0)(x0, y) dL2n(y) dr

+
2

R

∫ R

0

f1(r)

∫

Ωr

Dn+1,nΓφ(x0)(x0, y)(φ(y)− φ(x0))∇φ
1φ(y) dL2n(y) dr.

Now calling F2 the vector whose components 1 and n + 1 are in the kernel

of the fifth and third integral respectively:

F2(Logφ(x0),x0(y)) := (∇φ(x0)
n+1 ∇φ(x0)

n Γφ(x0)(x0, y), 0,−∇φ(x0)
1 ∇φ(x0)

n Γφ(x0)(x0, y), 0),

and F3 the vector whose components 1 and n+1 are the kernels of the fourth

and second integral respectively:

F3(Logφ(x0),x0(y)) := S(y)
(

−∇φ(x0)
n+1 Γφ(x0)(x0, y), 0,∇φ(x0)

1 Γφ(x0)(x0, y), 0
)

.

we get the thesis.
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In order to compare two different mean values φr(x), we will first express

them as integral on the same sphere:

Lemma 4.3.7. We have

φ̃r(x0) =
Q

(Q− 2)

1

rQ

∫

Ω̃(0,r)

|∇Γ(0, ỹ)|2
Γ(0, ỹ)2(Q−1)/(Q−2)

φ(Expφ(x0),x0(ỹ)) dL2n(ỹ),

where Ω̃(0, r) is defined in (4.103).

Proof. By (4.102) we have that

Ωφ(x0)(x0, r) = Expφ(x0),x0(Ω̃(0, r)).

So that, by (4.99)

φ̃r(x0) =
Q

(Q− 2)

1

rQ

∫

Ωφ(x0)
(x0,r)

|∇φ(x0)Γφ(x0)(x0, y)|2
Γφ(x0)(x0, y)

2(Q−1)/(Q−2)
φ(y) dL2n(y) =

=
Q

(Q− 2)

1

rQ

∫

Ω̃(0,r)

|∇Γ(0, ỹ)|2
Γ(0, ỹ)2(Q−1)/(Q−2)

φ(Expφ(x0),x0(ỹ)) dL2n(ỹ)

Lemma 4.3.8. Let φ : ω ⊂ R2n −→ R be a C∞ function.

For each x0, x,∈ ω, ỹ ∈ Logφ(x0),x0(ω)∩Logφ(x),x(ω) we define

e = e(x, ỹ; x0) := Logφ(x0),Expφ(x0),x0 (ỹ)

(

Expφ(x),x(ỹ)
)

,

and

γỹ(t) = exp
(

te∇φ(x0)
)

(Expφ(x0),x0(ỹ)).

Then,

φ(Expφ(x),x(ỹ))− φ(Expφ(x0),x0(ỹ)) =

=

∫ 1

0

〈

Logφ(x0),x0(x),∇φ(x0)φ(γ(t))
〉

dt+ 2(φ(x)− φ(x0))ỹn

∫ 1

0

∂2nφ(γ(t))dt

+ 2
n−1
∑

i=1

(

(x− x0)iỹn+i − (x− x0)i+nỹi

)

∫ 1

0

∂2nφ(γ(t))dt.
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Proof. It is a direct calculation. Indeed the value of e can be explicitly

computed and it is:

e = Logφ(x0),x0(x)+

(0, · · · , 2(φ(x)− φ(x0))ỹn + 2
n−1
∑

i=1

((x− x0)iỹn+i − (x− x0)i+nỹi)).

Let us verify this computation:

Exp(ỹ∇φ(x))(x) =
(

ỹ1 + x1, · · · , ỹ2n−1 + x2n−1,

,
n−1
∑

i=1

(xiỹn+i − ỹixn+i) + 2ỹnφ(x) + ỹ2n + x2n

)

.

By definition of e

ei = (Expφ(x),x(y))i − (Expφ(x0),x0(ỹ))i = (y + x− y − x0)i = (x− x0)i,

for i = 1, . . . , 2n− 1, and

e2n = (Expφ(x),x(ỹ))2n − (Expφ(x0),x0(ỹ))2n−
−
∑

i

(Expφ(x),x(ỹ))i+n(Expφ(x0),x0(ỹ))i − (Expφ(x0),x0(ỹ))i+n(Expφ(x),x(ỹ))i−

− 2
(

(Expφ(x),x(ỹ))n − (Expφ(x0),x0(ỹ))n

)

φ(x0),

that is

e2n =
∑

i

(xiỹn+i − ỹixn+i) + 2ỹnφ(x) + ỹ2n + x2n

−
(

∑

i

(x0,iỹn+i − ỹix0,n+i) + 2ỹnφ(x0) + ỹ2n + x0,2n

)

−
∑

i

(

(x+ ỹ)i+n(x0 + ỹ)i − (x+ ỹ)i(x0 + ỹ)i+n

)

− 2(x− x0)φ(x0).

Therefore

e2n = x2n − x0,2n −
∑

i

(

xi+nx0,i − xix0,i+n

)

−

2(x− x0)φ(x0) + 2ỹn(φ(x)− φ(x0))+

+ 2
n−1
∑

i=1

((x− x0)iỹn+i − (x− x0)i+nỹi).
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Since φ ∈ C∞(ω) and γ is a horizontal curve, we obtain

φ(Expφ(x),x(ỹ))− φ(Expφ(x0),x0(ỹ)) =

∫ 1

0

(φ ◦ γ)′(t)dt

=
2n
∑

i=1

∫ 1

0

ei∇φ(x0)
i φ(γ(t))dt,

so that the thesis immediately follows using the expressions of ei.

Let us now prove the following proposition

Proposition 4.3.9. Let us denote γỹ(t) the integral curve introduced in

Lemma 4.3.8. Then the function (t, γỹ(t)) is invertible, and we will denote

(t, F̃ (z, t)) its inverse function. We have

φR(x)− φR(x0) =

=
1

R

∫ R

R/2

1

rQ

∫ 1

0

∫

N(F̃ (z,t))≤r

< G1(z),∇φφ(z) > dzdtdr

+
∑

i,j

Ai,j(x, x0)
1

R

∫ 1

0

∫

R/2≤N(F̃ (z,t))≤R

< G2i,j(z),∇φφ(z) > dzdt

+
∑

i,j

Bi,j(x, x0)
1

R

∫ R

R/2

1

rQ

∫ 1

0

∫

N(F̃ (z,t))≤r

< G3i,j(z),∇φφ(z) > dzdtdr

for suitable kernels G1, G2i,j, G3i,j (defined in (4.110), (4.111) below), func-

tions Ai,j, Bi,j. N is defined in (4.104). The kernel G1 is homogeneous of

order 1, G2i,j is homogeneous of order 1−Q, G3i,j is homogeneous of order

0, according to (4.112)-(4.114) below. The functions Ai,j, Bi,j satisfies

|Ai,j(x, x0)|+ |Bi,j(x, x0)| ≤ dφ(x, x0) + |φ(x)− φ(x0)|.

Proof. Calling

h(0, ỹ) =
Q

(Q− 2)

|∇Γ(0, ỹ)|2
Γ(0, ỹ)2(Q−1)/(Q−2)

,

by Lemma 4.3.7 we obtain

φ̃r(x)− φ̃r(x0) =

1

rQ

∫

Ω̃(0,r)

h(0, ỹ)
(

φ(Expφ(x),x(ỹ))− φ(Expφ(x0),x0(ỹ))
)

dL2n(ỹ).
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Using Lemma 4.3.8

φ̃r(x)− φ̃r(x0) =

1

rQ

∫

Ω̃(0,r)

h(0, ỹ)
(

∫ 1

0

< Logφ(x0),x0(x),∇φ(x0)φ(γỹ(t)) > dt+

+ 2(φ(x)− φ(x0))ỹn

∫ 1

0

∂2nφ(γỹ(t))dt+

+ 2
n−1
∑

i=1

((xi − x0,i)ỹn+i

∫ 1

0

∂2nφ(γỹ(t))dt−

− 2
n−1
∑

i=1

(xi+n − x0,n+i)ỹi

∫ 1

0

∂2nφ(γỹ(t))dt
)

dL2n(ỹ).

Let us make the change of variables (t, z) = (t, γỹ(t)). Its inverse will be

denoted

(t, ỹ) = (t, F̃ (z, t)).

F̃i(z, t) = t(x0,i − xi) + zi − x0,i i = 1, . . . , 2n− 1 (4.107)

In particular, if we consider F̃ as a function of z, its components F̃1 to F̃2n−1

are homogeneous of order 1 with respect to the vector fields ∇φ(x0). The

component 2n is homogeneous of order 2. For every fixed t the variable z

will belongs to the set

Dt,r = {z ∈ R2n : F̃ (t, z) ∈ Ω̃(0, r)} (4.108)

= {z ∈ R2n : N(F̃ (t, z)) < r},

where N is defined in (4.104). Hence

φ̃r(x)− φ̃r(x0) = (4.109)

=
1

rQ

∫ 1

0

∫

Dt,r

h(0, F̃ (z, t)) < Logφ(x0),x0(x),∇φ(x0)φ(z) > dL2n(z)dt

+2(φ(x)− φ(x0))
1

rQ

∫ 1

0

∫

Dt,r

F̃n(z, t)h(0, F̃ (z, t))∂2nφ(z)dL2n(z)dt

+2
n−1
∑

i=1

((xi − x0,i)
1

rQ

∫ 1

0

∫

Dt,r

F̃n+i(z, t)h(0, F̃ (z, t))∂2nφ(z)dL2n(z)dt
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−2
n−1
∑

i=1

(xi+n − x0,n+i)
1

rQ

∫ 1

0

∫

Dt,r

F̃i(z, t)h(0, F̃ (z, t))∂2nφ(z)dL2n(z)dt

=
1

rQ

∫ 1

0

∫

Dt,r

2n−1
∑

i=1

h(0, F̃ (z, t))(x− x0)i∇φ
i φ(z)dL2n(z)dt+

−(φ(x)− φ(x0))
(x− x0)n

rQ

∫ 1

0

∫

Dt,r

h(0, F̃ (z, t))∂2nφ(z)dL2n(z)dt+

+2(φ(x)− φ(x0))
1

rQ

∫ 1

0

∫

Dt,r

F̃n(z, t)h(0, F̃ (z, t))∂2nφ(z)dL2n(z)dt+

+2
n−1
∑

i=1

((xi − x0,i)
1

rQ

∫ 1

0

∫

Dt,r

F̃n+i(z, t)h(0, F̃ (z, t))∂2nφ(z)dL2n(z)dt

−2
n−1
∑

i=1

(xi+n − x0,n+i)
1

rQ

∫ 1

0

∫

Dt,r

F̃i(z, t)h(0, F̃ (z, t))∂2nφ(z)dL2n(z)dt.

Let us consider the second term:

−(φ(x)− φ(x0))
(x− x0)n

rQ

∫ 1

0

∫

Dt,r

h(0, F̃ (z, t))∂2nφ(z)dL2n(z)dt

(since ∂2n = [∇φ
1 ,∇φ

n+1])

= −(φ(x)− φ(x0))
(x− x0)n

rQ

∫ 1

0

∫

Dt,r

h(0, F̃ (z, t))[∇φ
1 ,∇φ

n+1]φ(z)dL2n(z)dt

(

integrating by parts and denoting by Zi(z, t) :=
∇φ

i N(F̃ (z,t))

|∇EN(F̃ (z,t))|

)

= −(φ(x)− φ(x0))
(x− x0)n

rQ

∫ 1

0

∫

N(F̃ (z,t))=r

h(0, F̃ (z, t))∇φ
n+1φ(z)Z1(z, t)dL2n(z)dt

+ (φ(x)− φ(x0))
(x− x0)n

rQ

∫ 1

0

∫

N(F̃ (z,t))=r

h(0, F̃ (z, t))∇φ
1φ(z)Zn+1(z, t)dL2n(z)dt

+ (φ(x)− φ(x0))
(x− x0)n

rQ

∫ 1

0

∫

Dt,r

∇φ
1h(0, F̃ (z, t))∇φ

n+1φ(z)dL2n(z)dt

− (φ(x)− φ(x0))
(x− x0)n

rQ

∫ 1

0

∫

Dt,r

∇φ
n+1h(0, F̃ (z, t))∇φ

1φ(z)dL2n(z)dt.
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Let us consider the third term and integrating by parts as before

(φ(x)− φ(x0))
1

rQ

∫ 1

0

∫

Dt,r

h(0, F̃ (z, t))F̃n(z, t)∂2nφ(z)dL2n(z)dt =

= (φ(x)− φ(x0))
1

rQ

∫ 1

0

∫

N(F̃ (z,t))=r

h(0, F̃ (z, t))F̃n(z, t)∇φ
n+1φ(z)Z1(z, t)dL2n(z)dt

− (φ(x)− φ(x0))
1

rQ

∫ 1

0

∫

N(F̃ (z,t))=r

h(0, F̃ (z, t))F̃n(z, t)∇φ
1φ(z)Zn+1(z, t)dL2n(z)dt

− (φ(x)− φ(x0))
1

rQ

∫ 1

0

∫

Dt,r

∇φ
1

(

h(0, F̃ (z, t))F̃n(z, t)
)

∇φ
n+1φ(z)dL2n(z)dt

+ (φ(x)− φ(x0))
1

rQ

∫ 1

0

∫

Dt,r

∇φ
n+1

(

h(0, F̃ (z, t))F̃n(z, t)
)

∇φ
1φ(z)dL2n(z)dt.

The other two terms can be handled in the same way, and we obtain:

(xi − x0,i)
1

rQ

∫ 1

0

∫

Dt,r

F̃n+i(z, t)h(0, F̃ (z, t))∂2nφ(z)dL2n(z)dt

= (xi − x0,i)
1

rQ

∫ 1

0

∫

N(F̃ (z,t))=r

h(0, F̃ (z, t))F̃n+i(z, t)∇φ
n+1φ(z)Z1(z, t)dL2n(z)dt

− (xi − x0,i)
1

rQ

∫ 1

0

∫

N(F̃ (z,t))=r

h(0, F̃ (z, t))F̃n+i(z, t)∇φ
1φ(z)Zn+1(z, t)dL2n(z)dt

− (xi − x0,i)
1

rQ

∫ 1

0

∫

Dt,r

∇φ
1

(

h(0, F̃ (z, t))F̃n+i(z, t)
)

∇φ
n+1φ(z)dL2n(z)dt

+ (xi − x0,i)
1

rQ

∫ 1

0

∫

Dt,r

∇φ
n+1

(

h(0, F̃ (z, t))F̃n+i(z, t)
)

∇φ
1φ(z)dL2n(z)dt,

and

− (xi+n − x0,n+i)
1

rQ

∫ 1

0

∫

Dt,r

F̃i(z, t)h(0, F̃ (z, t))∂2nφ(z)dL2n(z)dt

= −(xi+n − x0,n+i)
1

rQ

∫ 1

0

∫

N(F̃ (z,t))=r

h(0, F̃ (z, t))F̃i(z, t)∇φ
n+1φ(z)Z1(z, t)dL2n(z)dt

+ (xi+n − x0,n+i)
1

rQ

∫ 1

0

∫

N(F̃ (z,t))=r

h(0, F̃ (z, t))F̃i(z, t)∇φ
1φ(z)Zn+1(z, t)dL2n(z)dt

+ (xi+n − x0,n+i)
1

rQ

∫ 1

0

∫

Dt,r

∇φ
1

(

h(0, F̃ (z, t))F̃i(z, t)
)

∇φ
n+1φ(z)dL2n(z)dt

− (xi+n − x0,n+i)
1

rQ

∫ 1

0

∫

Dt,r

∇φ
n+1

(

h(0, F̃ (z, t))F̃i(z, t)
)

∇φ
1φ(z)dL2n(z)dt.



102 Intrinsic Lipschitz functions

Let us integrate (4.109) on the set [R/2, R]. Note that

2

R

∫ R

R/2

1

rQ

∫ 1

0

∫

N(F̃ (z,t))=r

f(z, t)
dL2n(z)dtdr

|∇EN(F̃ (z, t))|

=
2

R

∫ R

R/2

∫ 1

0

∫

N(F̃ (z,t))=r

f(z, t)

N(F̃ (z, t))Q
dL2n(z)dtdr

|∇EN(F̃ (z, t))|

=
2

R

∫ 1

0

∫

R/2≤N(F̃ (z,t))≤R

f(z, t)

N(F̃ (z, t))Q
dL2n(z)dt.

Then, denoting by g(z, t) := h(0,F̃ (z,t))

N(F̃ (z,t))Q
, NR := {R/2 ≤ N(F̃ (z, t)) ≤ R},

φx,x0 := φ(x)− φ(x0) and ∆xi := xi − x0,i we obtain:

φR(x)− φR(x0) =

=
2

R

∫ R

R/2

1

rQ

∫ 1

0

∫

Dt,r

2n−1
∑

i=1

h(0, F̃ (z, t))(x− x0)i,∇φ
i φ(z)dL2n(z)dtdr

− φx,x0

2

R

∫ 1

0

∫

NR

g(z, t)(x− x0)n∇φ
n+1φ(z)∇φ

1N(F̃ (z, t))dL2n(z)dt

+ φx,x0

2

R

∫ 1

0

∫

NR

g(z, t)(x− x0)n∇φ
1φ(z)∇φ

n+1N(F̃ (z, t))dL2n(z)dt

+ φx,x0

2

R

∫ R

R/2

1

rQ

∫ 1

0

∫

Dt,r

∇φ
1h(0, F̃ (z, t))(x− x0)n∇φ

n+1φ(z)dL2n(z)dtdr

− φx,x0

2

R

∫ R

R/2

1

rQ

∫ 1

0

∫

Dt,r

∇φ
n+1h(0, F̃ (z, t))(x− x0)n∇φ

1φ(z)dL2n(z)dtdr

+ φx,x0

2

R

∫ 1

0

∫

NR

g(z, t)F̃n(z, t)∇φ
n+1φ(z)∇φ

1N(F̃ (z, t))dL2n(z)dt

− φx,x0

2

R

∫ 1

0

∫

NR

g(z, t)F̃n(z, t)∇φ
1φ(z)∇φ

n+1N(F̃ (z, t))dL2n(z)dt

− φx,x0

2

R

∫ R

R/2

1

rQ

∫ 1

0

∫

Dt,r

∇φ
1

(

h(0, F̃ (z, t))F̃n(z, t)
)

∇φ
n+1φ(z)dL2n(z)dtdr

+ φx,x0

2

R

∫ R

R/2

1

rQ

∫ 1

0

∫

Dt,r

∇φ
n+1

(

h(0, F̃ (z, t))F̃n(z, t)
)

∇φ
1φ(z)dL2n(z)dtdr

+ 2
n−1
∑

j=1

∆xj
2

R

∫ 1

0

∫

NR

g(z, t)F̃n+j(z, t)∇φ
n+1φ(z)∇φ

1N(F̃ (z, t))dL2n(z)dt
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− 2
n−1
∑

j=1

∆xj
2

R

∫ 1

0

∫

NR

g(z, t)F̃n+j(z, t)∇φ
1φ(z)∇φ

n+1N(F̃ (z, t))dL2n(z)dt

− 2
n−1
∑

j=1

∆xj
2

R

∫ R

R/2

1

rQ

∫ 1

0

∫

Dt,r

∇φ
1

(

h(0, F̃ (z, t))F̃n+j(z, t)
)

∇φ
n+1φ(z)dL2n(z)dtdr

+ 2
n−1
∑

j=1

∆xj
2

R

∫ R

R/2

1

rQ

∫ 1

0

∫

Dt,r

∇φ
n+1

(

h(0, F̃ (z, t))F̃n+j(z, t)
)

∇φ
1φ(z)dL2n(z)dtdr

− 2
n−1
∑

j=1

∆xj+n
2

R

∫ 1

0

∫

NR

g(z, t)F̃j(z, t)∇φ
n+1φ(z)∇φ

1N(F̃ (z, t))dL2n(z)dt

+ 2
n−1
∑

j=1

∆xj+n
2

R

∫ 1

0

∫

NR

g(z, t)F̃j(z, t)∇φ
1φ(z)∇φ

n+1N(F̃ (z, t))dL2n(z)dt

+ 2
n−1
∑

j=1

∆xj+n
2

R

∫ R

R/2

1

rQ

∫ 1

0

∫

Dt,r

∇φ
1

(

h(0, F̃ (z, t))F̃j(z, t)
)

∇φ
n+1φ(z)dL2n(z)dtdr

− 2
n−1
∑

j=1

∆xj+n
2

R

∫ R

R/2

1

rQ

∫ 1

0

∫

Dt,r

∇φ
n+1

(

h(0, F̃ (z, t))F̃j(z, t)
)

∇φ
1φ(z)dL2n(z)dtdr.

The kernel in the first term is denotedG1. The kernel in the terms 2,3,6,7,10,11,

14 and 15 in the right hand side are denoted

G2i,j for i = 1, . . . 8, j = 1, . . . , n− 1 (4.110)

with G2i,j = 0 for i = 1, . . . , 4 and j = 2, . . . , n − 1, and corresponding we

will call:

A1,1(x, x0) = A2,1(x, x0) = A3,1(x, x0) = A4,1(x, x0) := φ(x)− φ(x0),

A5,j(x, x0) = A6,j(x, x0) := xj−x0,j , A7,j(x, x0) = A8,j(x, x0) := xj+n−x0,n+j .

The kernel in the terms 4,5,8,9,12,13,16 and 17 will be denoted

G3i,j for i = 1, . . . 8, j = 1, . . . , n− 1 (4.111)

with G3i,j = 0 for i = 1, . . . , 4 and j = 2, . . . , n − 1, and corresponding we

will call:

B1,1 = B2,1 = B3,1 = B4,1 := A1,1 B5,j = B6,j := A5,j, B7,j = B8,j := A7,j .
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Note that the function |h(0, F̃ (z, t))| is bounded by a constant C which de-

pends on C1 and C2 in (4.97), then

|G1(z, t)| ≤ Cdφ(x0)(x, x0). (4.112)

In the kernel of type G2i,j the functions ∇φ
k(N(F̃ (z, t))), k ∈ {1, n + 1} are

bounded by a constant C which also depends only on C1 and C2.

Then

|G2i,j(z, t)| ≤ C
dφ(x0)(x, x0)

(N(F̃ (z, t)))Q
. (4.113)

Analogously,

|G3i,j(z, t)| ≤ C. (4.114)

4.4 Main Theorem

The aim of this section is to prove a Poincaré inequality for the vector fields

∇φ defined in terms of φ. The Poincaré inequality we prove here is partially

inspired to the Sobolev type inequality for non regular coefficients contained

in [43] and extended to a more general class of vector fields by [111]. The

idea is to start with the representation formula proved in Theorem 4.3.9 and

deduce, via the approximation theorem, the following result:

Theorem 4.4.1. Let ω ⊂ R2n be open and bounded with n ≥ 2 and let

φ : ω −→ R be an intrinsic Lipschitz function. Then there exists a constant

C (independent of the Lipschitz constant L := Lip(φ)) such that, for each

x ∈ ω, r > 0 such that Ωφ(x)(x, r) ⊂ ω and Ωφ(x)(x, Cr(1 + L)) ⊂ ω
∫

Ωφ(x)(x,r)

|φ(y)− φr(x)|dL2n(y) ≤ CL
Q+2
2 r

∫

Ωφ(x)(x,Cr(1+L))

|∇φφ(y)|dL2n(y),

(4.115)

We will first establish the representation formula for (intrinsic) Lipschitz

continuous functions, which will be carried out by approximation, using the

reppresentation formula in Theorem 4.3.9 for C∞ functions and the approx-

imation results proved in Theorem 4.2.7. To this end we fix a bounded open
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set ω ⊂ R2n and an intrinsic Lipschitz function φ : ω −→ R. We also denote

{φk} ⊂ C∞(ω) its approximating sequence.

Then for every k we have defined in (4.92) the distance dφk(x0), in (4.99)

the fundamental solution Γφk(x0) of the operator associated to the function

φk and frozen at the point x0, and in (4.100) the level set Ωφk(x0)(x0, r) of the

fundamental solution Γφk(x0). Accordingly we will denote φk,r(x0) the mean

on the set Ωφk(x0)(x0, r) associated to the function φk.

Lemma 4.4.2. Let φ : ω −→ R be a (intrinsic) Lipschitz continuous func-

tion. Let also denote {φk} ⊂ C∞(ω) a sequence such that statements (i), (ii)

and (iii) of Theorem 4.2.7 hold. Then for every r > 0

Ωφk,x0(x0, r) → Ωφ,x0(x0, r) as k → +∞,

φ̃k,r(x0) → φ̃r(x0), uniformly in r > 0 as k → +∞.

Proof. We recall that

Ω̃(0, r) =
{

ỹ ∈ R2n | Γ(0, ỹ) > r2−Q
}

,

then, by (4.102) we have

Ωφk(x0)(x0, r) = Expφk(x0),x0(Ω̃(0, r)).

So that, by definition of φ̃k,r(x0) and (4.99)

φ̃k,r(x0) =
Q

Q− 2

1

rQ

∫

Ωφk(x0)
(x0,r)

|∇φk(x0)Γφk(x0)(x0, ỹ)|2
Γφk(x0)(x0, ỹ)

2(Q−1)/(Q−2)
φk(ỹ) dL2n(ỹ) =

=
Q

Q− 2

1

rQ

∫

Ω̃(0,r)

|∇Γ(0, ỹ)|2
Γ(0, ỹ)2(Q−1)/(Q−2)

φk(Expφk(x0),x0(ỹ)) dL2n(ỹ)

→ Q

Q− 2

1

rQ

∫

Ω̃(0,r)

|∇Γ(0, ỹ)|2
Γ(0, ỹ)2(Q−1)/(Q−2)

φ(Expφ(x0),x0(ỹ)) dL2n(ỹ) = φ̃r(x0),

uniformly in r > 0, as k → +∞.

Passing at the limit in the representation formulas in Propositions 4.3.6

and 4.3.9 we obtain the following representation theorem:
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Proposition 4.4.3. Let φ : ω −→ R be a (intrinsic) Lipschitz continuous

function.

φ(x0)− φR(x) =

=
1

R

∫ R

0

f1(r)

∫

Ωφ(x0)
(x0,r)

〈

∇φ(x0)Γφ(x0)(x0, ỹ),∇φφ(ỹ)
〉

dL2n(ỹ)

+
1

R

∫ R

0

f1(r)

∫

Ωφ(x0)
(x0,r)

(φ(ỹ)− φ(x0))
〈

F2

(

Logφ(x0),x0(ỹ)
)

,∇φφ(ỹ)
〉

dL2n(ỹ)

+
1

R

∫ R

R/2

1

rQ

∫

Ωφ(x0)
(x0,r)

(φ(ỹ)− φ(x0))
〈

F3

(

Logφ(x0),x0(ỹ)
)

,∇φφ(ỹ)
〉

dL2n(ỹ)

− 1

R

∫ R

R/2

1

rQ

∫ 1

0

∫

N(F̃ (z,t))≤r

< G1(z),∇φφ(z) > dL2n(z)dtdr

−
∑

i,j

Ai,j(x, x0)
1

R

∫ 1

0

∫

R/2≤N(F̃ (z,t))≤R

< G2i,j(z),∇φφ(z) > dL2n(z)dt+

−
∑

i,j

Bi,j(x, x0)
1

R

∫ R

R/2

1

rQ

∫ 1

0

∫

N(F̃ (z,t))≤r

< G3i,j(z),∇φφ(z) > dL2n(z)dtdr

where G1 is homogeneous of order 1, G2i,j is homogeneous of order 1 − Q,

G3i,j is homogeneous of order 0, according (4.112)-(4.114), F2 and F3 are

homogeneous of order −Q and 0 respectively. Moreover Ai,j and Bi,j satisfy

|Ai,j(x, x0)|+ |Bi,j(x, x0)| ≤ dφ(x, x0) + |φ(x)− φ(x0)|.

Proposition 4.4.4. Let φ : ω −→ R a (intrinsic) Lipschitz continuous

function. Then there exists a constant C such that for every x0 ∈ ω and

R > 0 such that x ∈ Ωφ(x0)(x0, R) ⊂ ω we have

|φ(x0)− φR(x)| ≤ CL

∫

Ωφ(x0)
(x0,R)

d1−Q
φ(x0)

(x0, ỹ)|∇φφ(ỹ)|dL2n(ỹ). (4.116)

Proof. Let us estimate the right hand side of the representation formula in

Proposition 4.4.3. We have noted that inequalities (4.97) hold for Γφ(x0) and

dφ(x0), with constants independent of L. Hence, we immediately get that

1

R

∫ R

0

f1(r)

∫

Ωφ(x0)
(x0,r)

〈

∇φ(x0)Γφ(x0)(x0, ỹ),∇φφ(ỹ)
〉

dL2n(ỹ) dr



4.4 Main Theorem 107

≤ C

∫

Ωφ(x0)
(x0,R)

d1−Q
φ(x0)

(x0, ỹ)|∇φφ(ỹ)|dL2n(ỹ).

Consider the second term in the right hand side of the representation formula

in Proposition 4.4.3

1

R

∫ R

0

f1(r)

∫

Ωφ(x0)
(x0,r)

(φ(ỹ)−φ(x0))
〈

F2

(

Logφ(x0),x0(ỹ)
)

,∇φφ(ỹ)
〉

dL2n(ỹ) dr

(using fact that F2 is homogeneous of orderQ and |φ(ỹ)−φ(x0)| ≤ Ldφ(x0)(x0, x))

≤ CL

∫

Ωφ(x0)
(x0,R)

d1−Q
φ(x0)

(x0, ỹ)|∇φφ(ỹ)|dL2n(ỹ).

The third term can be handled in a similar way.

Consider the fourth term in the representation formula in Proposition

4.4.3:
∣

∣

∣

∣

1

R

∫ R

R/2

1

rQ

∫ 1

0

∫

N(F̃ (z,t))≤r

< G1(z),∇φφ(z) > dL2n(z)dtdr

∣

∣

∣

∣

(by (4.112))

≤ C
1

R

∫ R

R/2

dφ(x0)(x, x0)

rQ

∫ 1

0

∫

N(F̃ (z,t))≤r

|∇φφ(z)|dL2n(z)dtdr

≤ C
1

R

∫ R

R/2

∫ 1

0

∫

N(F̃ (z,t))≤r

1

(N(F̃ (z, t)))Q−1
|∇φφ(z)|dL2n(z)dtdr

≤ C

∫

Ωφ(x0)
(x0,R)

d1−Q
φ(x0)

(x0, ỹ)|∇φφ(ỹ)|dL2n(ỹ).

Consider the fifth term:
∣

∣

∣

∣

Ai,j(x, x0)
1

R

∫ 1

0

∫

R/2≤N(F̃ (z,t))≤R

< G2i,j(z),∇φφ(z) > dL2n(z)dt

∣

∣

∣

∣

(by (4.113))

≤ C Ldφ(x0)(x, x0)
1

R

∫ 1

0

∫

R/2≤N(F̃ (z,t))≤R

dφ(x0)(x, x0)

(N(F̃ (z, t)))Q
|∇φφ(z)|dL2n(z)dt

≤ C L

∫ 1

0

∫

R/2≤N(F̃ (z,t))≤R

1

(N(F̃ (z, t)))Q−1
|∇φφ(z)|dL2n(z)dt.

Finally, by (4.114) the sixth term in the representation formula can estimated

as the fourth term.
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We are now in position to prove Theorem 4.4.1

Proof. As before we denote by Ωr := Ωφ(x)(x, r) and Ω̂r := Ωφ(x)(x, C(1 +

L)r). Integrating both members on Ωr in the previous proposition we get

∫

Ωr

|φ(x0)− φr(x)|dL2n(x0) ≤

≤ CL

∫

Ωr

(

∫

Ωφ(x0)
(x0,r)

d1−Q
φ(x0)

(x0, ỹ)|∇φφ(ỹ)|dL2n(ỹ)
)

dL2n(x0).

In [45] it is proved that there are constants C1, C2 such that

C1

1 +
√
L
dφ(ỹ)(x0, ỹ) ≤ dφ(x0)(x0, ỹ) ≤ C2(1 +

√
L)dφ(x)(x0, ỹ)

so that there exists a constant C such that

d1−Q
φ(x0)

(x0, ỹ) ≤ C(1 +
√
L)Q−1d1−Q

φ(ỹ) (x0, ỹ).

Analogously, if ỹ ∈ Ωφ(x0)(x0, r), then there exists C such that

x0 ∈ Ωφ(ỹ)

(

ỹ, C(1 +
√
L)r
)

.

By the triangular inequality if dφ(x)(x, x0) ≤ r, and dφ(x0)(ỹ, x0) ≤ r then

dφ(x)(x, ỹ) ≤ 2rC(1 + L).

Hence
∫

Ωr

(

∫

Ωφ(x0)
(x0,r)

d1−Q
φ(x0)

(x0, ỹ)|∇φφ(ỹ)|dL2n(ỹ)
)

dL2n(x0)

≤ C(1 +
√
L)Q−1

∫

Ω̂r

|∇φφ(ỹ)|
(

∫

Ωφ(ỹ)(ỹ,r(1+
√
L))

d1−Q
φ(ỹ) (x0, ỹ)dL2n(x0)

)

dL2n(ỹ)

≤ Cr(1 +
√
L)Q

∫

Ω̂r

|∇φφ(ỹ)|dL2n(ỹ).



Chapter 5

Stable solutions in Engel groups

In this chapter we investigate the stable solution of a semilinear elliptic prob-

lem set in the Engel group E.

5.1 The problem: basic tools

While we refer to Section 1.3 for the standard definitions and properties of

the Engel group, we now introduce the problem we study.

Given a domain Ω ⊆ E and f ∈ C1(R), we consider u ∈ C2(Ω) to be a

(weak) solution of

∆Eu = f(u), (5.1)

that is we suppose that

−
∫

E
〈∇Eu,∇Eη〉E =

∫

E
f(u)η (5.2)

for every η ∈ C∞
0 (Ω).

We assume that u is stable, that is

0 ≤
∫

E
〈∇Eη,∇Eη〉E +

∫

E
ḟ(u)η2 (5.3)

for every η ∈ C∞
0 (Ω).

The stability condition in (5.3) has been widely studied in the calculus

of variation setting: indeed, it states that the second variation of the energy
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functional associated to (5.1) is nonnegative at the critical point u – hence,

for instance, minimal solutions are always stable, but, in principle, stability

is a weaker condition than minimality.

Equation (5.1) is called semilinear, since the only nonlinearity depends on

the solution u (not on the space, neither on the derivatives of u): such kind

of equations have been studied in detail in the Euclidean framework, and in

the subRiemannian one as well (see, e.g. [85, 16, 17, 20]), and they possess

the remarkable geometric property that the operator is constant along the

level sets of the solution.

At any point of

E0 := {x ∈ Ω | ∇Eu 6= 0}
we denote by ν the opposite of the intrinsic unit normal to the level set of u

as defined in (3.1), that is

ν =
∇Eu

|∇Eu|
.

We shall also consider the intrinsic tangent direction to the level set of u

v :=
X2u

|∇Eu|
X1 −

X1u

|∇Eu|
X2

Let us observe that ∀p ∈ E0

〈ν(p), v(p)〉p,E = 0

where 〈·, ·〉p,E is the standard scalar product defined in (1.1.15). We denote

by Hu the intrinsic Hessian matrix, i.e.

Hu :=

(

X1X1u X2X1u

X1X2u X2X2u

)

As usual, we define

(Hu)2 := (Hu)(Hu)T

and

|Hu| :=
√

|∇EX1u|2 + |∇EX2u|2

Also, in E0, following an analogy in the Heisenberg group (see [116, 123, 7, 8]),

we define the horizontal mean curvature

h := divE ν (5.4)
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and the imaginary curvature [7, 8]:

p := − X3u

|∇Eu|
(5.5)

5.1.1 The inequality

Denoting by

J := 2(X3X2uX1u−X3X1uX2u) + (X4u)(X1u−X2u)

we have:

Theorem 5.1.1.

∫

E0

[

|∇Eu|2
{(

p+

〈

(Hu)Tν, v
〉

|∇Eu|
)2

+ h2
}

− J
]

η2 ≤
∫

E
|∇Eη|2|∇Eu|2

for any η ∈ C∞
0 (E).

Before giving the proof some comments are in order. Theorem 5.1.1

is a sort of geometric weighted Poincaré inequality, in the sense that the

weighted L2-norm of any test function is bounded by a weighted L2-norm of

its gradient, and the weights are built with geometric objects.

In the Euclidean case, the analogue of Theorem 5.1.1 was established

in [131, 132], and recently many extensions have been performed (see, in

particular, [67, 68]). As far as we know, the first applications in the sub-

Riemannian setting, were performed in [71, 15] for the Heisenberg group

and in [72] for the Grushin plane. In several cases, these type of geometric

weighted inequalities lead to rigidity results (such as classification, symme-

try, or non existence, of solutions). Differently from the Euclidean case, the

weight on the left hand side of the inequality does not need to be positive in

general, due to the presence of J . Thus, the presence of noncommutating

vector fields, complicates the geometry of the level sets via the sign of J .

Indeed, if J ≤ 0, when the right hand side of the inequality in Theorem 5.1.1

vanishes, one obtains that the level sets of u satisfy the geometric equations,
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see Corollary 5.3.2,


















p+

〈

(Hu)Tν, v
〉

|∇Eu|
= 0

h = 0

(5.6)

The higher the step of the group, the more complicated are the combi-

natorics occurring in the inequality, and the more difficult is the geometric

interpretation of the quantities involved. Nevertheless, the Engel group still

mantains a reasonable level of geometric insight and provides a challenging

source of problems for this approach.

Remark 5.1. If, in Theorem 5.1.1, u does not depend on x4, then the situation

boils down to the one in the Heisenberg group (note indeed that X3X1u =

X1X3u, so Theorem 5.1.1 reduces to Theorem 2.3 in [71]).

5.2 Proof of the estimate

The proof of our first result needs some preliminary, technical computations,

by which we obtain some useful identities.

Lemma 5.2.1. Let j ∈ {1, 2}. If u ∈ C2(Ω) then in E0 we have

Xj|∇Eu| = 〈Xj(∇Eu), ν〉E. (5.7)

Moreover, for each η ∈ C∞
0 (Ω),

∇E(|∇Eu|η) =
η

|∇Eu|
(Hu)T∇Eu+ |∇Eu|∇Eη (5.8)

and

|∇E(|∇Eu|η)|2 =
η2

|∇Eu|2
|(Hu)T∇Eu|2 + 2η 〈∇Eu, (Hu)∇Eη〉E + |∇Eη|2|∇Eu|2

(5.9)

Proof. Equation (5.7) is straightforward. Also, the proof of (5.8) follows

from the following simple calculation:

∇E(|∇Eu|η) = η∇E(|∇Eu|) + |∇Eu|∇Eη = (5.10)

=
η

|∇Eu|
(Hu)T∇Eu+ |∇Eu|∇Eη
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Furthermore

|∇E(|∇Eu|η)|2 = 〈∇E(|∇Eu|η),∇E(|∇Eu|η)〉E =

=

〈

η

|∇Eu|
(Hu)T∇Eu,

η

|∇Eu|
(Hu)T∇Eu

〉

E

+

+ 2

〈

η

|∇Eu|
(Hu)T∇Eu, |∇Eu|∇Eη

〉

E

+

+ 〈|∇Eu|∇Eη, |∇Eu|∇Eη〉E .

Hence

|∇E(|∇Eu|η)|2 =
( η

|∇Eu|
)2

|(Hu)T∇Eu|2 + 2η
〈

(Hu)T∇Eu,∇Eη
〉

E
+

+ |∇Eη|2|∇Eu|2

=
( η

|∇Eu|
)2

|(Hu)T∇Eu|2 + 2η 〈∇Eu, (Hu)∇Eη〉E +

+ |∇Eη|2|∇Eu|2

and this proves (5.9).

Lemma 5.2.2. Let u ∈ C2(Ω) then

|Hu|2 −
〈

(Hu)2ν, ν
〉

E
= |(Hu)Tv|2. (5.11)

Moreover, in E0

|(Hu)Tv|2 = |∇Eu|2
{(

p+

〈

(Hu)Tν, v
〉

|∇Eu|
)2

+ h2
}

. (5.12)

Proof. We note that for each p ∈ E (ν(p), v(p)) is an orthonormal basis of

HpE. Then (5.11) follows, for instance, from Lemma 3 in [15].

In order to prove (5.12), we begin observing that

(Hu)T =

(

X1X1u X1X2u

X2X1u X2X2u

)

= (5.13)

=

(

X1X1u X2X1u

X1X2u X2X2u

)

+

(

0 X1X2u−X2X1u

X2X1u−X1X2u 0

)

=

= Hu+

(

0 X3u

−X3u 0

)

.
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Now we define

J :=

(

0 1

−1 0

)

Let also Z and Hν ∈ Mat (R, 2× 2) be defined as

Zij := νi
(

(Hu)Tν
)

j
and (Hν)ij := Xj(νi)

for i, j ∈ {1, 2}. So, we use (5.7) to obtain that

Zij + |∇Eu|(Hν)ij =

= νi〈Xj(∇Eu), ν〉E + |∇Eu|Xj

( Xiu

|∇Eu|
)

=

=
Xiu

|∇Eu|
〈Xj(∇Eu), ν〉E +XjXiu−

Xiu

|∇Eu|
Xj|∇Eu| =

= XjXiu

that is

Z + |∇Eu|Hν = Hu

Hence, we can rewrite (5.13) in the following way

(Hu)T = (X3u)J + Z + |∇Eu|Hν (5.14)

Furthermore

Jv = −ν (5.15)

and

(Zv)i =
2
∑

j=1

Zijvj =

=
2
∑

j=1

νi
(

(Hu)Tν
)

j
vj = νi 〈(Hu)Tν, v〉E

that is

Zv =
〈

(Hu)Tν, v
〉

E
ν (5.16)

By plugging (5.15) and (5.16) into (5.14), we conclude that

(Hu)Tv =
(

−X3u+
〈

(Hu)Tν, v
〉

E

)

ν + |∇Eu|Hνv (5.17)
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and so

|(Hu)Tv|2 =
〈

(Hu)Tv, (Hu)Tv
〉

E
=

=
(

−X3u+
〈

(Hu)Tν, v
〉

E

)2

+ |∇Eu|2|Hνv|2+

+ 2
(

−X3u+
〈

(Hu)Tν, v
〉

E

)

|∇Eu| 〈Hνv, ν〉E

From this and the definitions in (5.4) and (5.5), we obtain that the proof

of (5.12) is completed if we prove that

〈Hνv, ν〉E = 0 (5.18)

and that

|Hνv| = | divE ν| (5.19)

To this end, let us observe that, by (5.17),

|∇Eu| 〈Hνv, ν〉E =
〈

(Hu)Tv, ν
〉

E
− 〈(Hu)v, ν〉E +X3u (5.20)

Now, by (5.13),

(Hu)Tv − (Hu)v =













− X1u

|∇Eu|
X3u

− X2u

|∇Eu|
X3u













= −(X3u)ν

hence
〈

(Hu)Tv − (Hu)v, ν
〉

E
= −X3u

By plugging this into (5.20), we obtain (5.18).

To obtain (5.19), we argue as follows. By (5.18), we know that Hνv is

parallel (or antiparallel) to v, therefore

Hνv = ±|Hνv|v

Hence, by (5.17),

± |∇Eu| |Hνv| = 〈|∇Eu|Hνv, v〉E =

= 〈(Hu)Tv, v〉E =
2
∑

i,j=1

(XiXju)vivj
(5.21)
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Now, we remark that

ν2i = 1− v2i (5.22)

To prove this, we take i = 1 (the case i = 2 being analogous), and we observe

that

ν21 = v22 = 1− v21

which establishes (5.22).

On the other hand, if i 6= j,

νiνj = ν1ν2 = (−v2)(v1) = −vivj (5.23)

So, by (5.7), (5.22) and (5.23), we obtain

|∇Eu| | divE ν| = |∇Eu|
2
∑

i=1

Xi

( Xiu

|∇Eu|
)

=

=
2
∑

i=1

XiXiu−
Xiu

|∇Eu|
〈Xi(∇Eu), ν〉E =

=
2
∑

i=1

XiXiu−
2
∑

i,j=1

(XiXju)νiνj =

=
2
∑

i=1

XiXiu−
2
∑

i=1

(XiXiu)ν
2
i −

2
∑

i 6=j=1

(XiXju)νiνj =

=
2
∑

i=1

XiXiu−
2
∑

i=1

(XiXiu)(1− v2i ) +
2
∑

i 6=j=1

(XiXju)vivj =

=
2
∑

i=1

(XiXiu)v
2
i +

2
∑

i 6=j=1

(XiXju)vivj =

2
∑

i,j=1

(XiXju)vivj

(5.24)

By comparing (5.21) and (5.24), we see that

±|∇Eu| |Hνv| = |∇Eu| | divE ν|

which implies (5.19), as desired.
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Lemma 5.2.3. For each u ∈ C2(Ω) it holds that

X1∆Eu = ∆EX1u+ 2X3X2u+X4u; (5.25)

X2∆Eu = ∆EX2u− 2X1X3u+X4u; (5.26)

X3∆Eu = ∆EX3u− 2X4X1u− 2X4X2u; (5.27)

and X4∆Eu = ∆EX4u. (5.28)

Proof. For the first equality

X1∆Eu = X1(X1X1u) +X1(X2X2u)

= ∆EX1u+X1X2X2u−X2X2X1u

= ∆EX1u+X3X2u+X2X1X2u−X2X2X1u

= ∆EX1u+ 2X3X2u+X2X3u−X3X2u

= ∆EX1u+ 2X3X2u+X4u.

The second and the third equality follow in a similar way, indeed

X2∆Eu = X2(X1X1u) +X2(X2X2u)

= ∆EX2u−X1X1X2u+X2X1X1u

= ∆EX2u−X3X1u+X1X2X1u−X1X1X2u

= ∆EX2u−X3X1u−X1X3u

= ∆EX2u−X3X1u+X1X3u− 2X1X3u

= ∆EX2u− 2X1X3u+X4u

and

X3∆Eu = X3(X1X1u) +X3(X2X2u)

= X1X3X1u+X2X3X2u−X4X1u−X4X2u

= ∆EX3u− 2X4X1u− 2X4X2u.

The last is a direct consequence of X1X4u = X4X1u and X2X4u = X4X2u.

Using Lemma 5.2.3, we obtain
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Corollary 5.2.4. Let u ∈ C2(Ω) be a weak solution of (5.2) then

∆EX1u+ 2X3X2u+X4u = ḟ(u)X1u

and ∆EX2u− 2X1X3u+X4u = ḟ(u)X2u

We are now in the position of proving the following geometric inequality:

Proposition 5.2.5. Let u ∈ C2(Ω) be a stable weak solution of (5.1). Then,

for each η ∈ C∞
0 (Ω),

∫

E0

[|Hu|2 −
〈

(Hu)2ν, ν
〉

E
]η2 − 2

∫

E0

(X3X2uX1u−X3X1uX2u)η
2−

−
∫

E0

(X4u)(X1u−X2u)η
2 ≤

∫

E
|∇Eη|2|∇Eu|2

Proof. Multiplying by (X1u)η
2 equation (5.25) in Corollary 5.2.4 and by

(X2u)η
2 equation (5.26) and then integrating by parts we obtain

−
∫

E

〈

∇EX1u,∇E(X1uη
2)
〉

E
+ 2

∫

E
X3X2u(X1u)η

2 +

∫

E
X4u(X1u)η

2 =

=

∫

E
ḟ(u)(X1u)

2η2

−
∫

E

〈

∇EX2u,∇E(X2uη
2)
〉

E
− 2

∫

E
X1X3u(X2u)η

2 +

∫

E
X4u(X2u)η

2 =

=

∫

E
ḟ(u)(X2u)

2η2

Consequently, by summing term by term, we get

−
∫

E

(

|∇EX1u|2 + |∇EX2u|2
)

η2−

−
∫

E

〈

∇EX1u,∇Eη
2
〉

E
X1u−

∫

E

〈

∇EX2u,∇Eη
2
〉

E
X2u+ (5.29)

+ 2

∫

E
(X3X2uX1u−X1X3uX2u)η

2 +

∫

E
(X4u)(X1u+X2u)η

2 =

=

∫

E
ḟ(u)|∇Eu|2η2 (5.30)

On the other hand, since u is stable, by choosing |∇Eu|η as a test function

in (5.3) we obtain

0 ≤
∫

E
|∇E(|∇Eu|η)|2 +

∫

E
ḟ(u)|∇Eu|2η2 (5.31)
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By Corollary 1.2.14 we have that ∇E(|∇Eu|η) = 0 almost everywhere outside

E0; hence making use of (5.9) we obtain from (5.31) that

0 ≤
∫

E0

( η2

|∇Eu|2
|(Hu)T∇Eu|2 + 2η

〈

(Hu)T∇Eu,∇Eη
〉

E
+ |∇Eη|2|∇Eu|2

)

+

+

∫

E
ḟ(u)|∇Eu|2η2

So, noticing that 2η∇Eη = ∇Eη
2, and using (5.29), after a simplification we

obtain that
∫

E
|Hu|2η2 −

∫

E0

η2

|∇Eu|2
|(Hu)T∇Eu|2 − 2

∫

E
(X3X2uX1u−X1X3uX2u)η

2−

−
∫

E
(X4u)(X1u+X2u)η

2 ≤
∫

E0

|∇Eη|2|∇Eu|2.

Recalling that

X1X3u = X3X1u+X4u

we get the thesis.

Then, from Proposition 5.2.5 and Lemma 5.2.2 we immediately obtain

Theorem 5.1.1.

We end this section by giving some more geometric insight on the quan-

tity J , in relation with the intrinsic normal and tangent vectors:

Lemma 5.2.6. For every u ∈ C1(Ω) and every x ∈ E0 it holds

J (x) = −|∇Eu|(x) 〈∇EX3u(x), v(x)〉E − |∇Eu|(x)2 〈X3ν(x), v(x)〉E (5.32)

Proof. By definition in E0

〈∇EX3u, v〉E =
1

|∇Eu|
(X1X3uX2u−X2X3uX1u) (5.33)

and using (1.28) we obtain

〈∇EX3u, v〉E =
1

|∇Eu|
[

(X3X1uX2u−X3X2uX1u) +X4u(X2u−X1u)
]

.

(5.34)

Moreover, in E0,

〈X3ν, v〉E =
1

|∇Eu|2
(

X3X1uX2u−X3X2uX1u
)

(5.35)

hence adding (5.34) and (5.35) we get the thesis.
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Using Theorem 5.1.1 and Lemma 5.2.6 it immediately follows that

Corollary 5.2.7. Let u ∈ C2(Ω) be a stable weak solution of (5.1). Then,

for each η ∈ C∞
0 (Ω),

∫

E0

(

|∇Eu|2
{(

p+

〈

(Hu)Tν, v
〉

E

|∇Eu|
)2

+ h2
}

+ |∇Eu| 〈∇EX3u, v〉E + (5.36)

+ |∇Eu|2 〈X3ν, v〉E
)

η2 ≤
∫

E
|∇Eη|2|∇Eu|2

5.3 Some applications to entire stable solu-

tions: geometric equations and non exis-

tence results

It is interesting to investigate whether or not rigidity results and geometric

properties of stable solutions may be obtained from inequalties of the type

proved in the previous section (or by other methods as well).

In this spirit we prove a first non-existence result for semilinear equations in

the Engel group, see Theorem 5.3.3.

From now on, we will denote by

B(0, R) := {x ∈ E | ‖x‖ < R}

the gauge open ball centered at 0 of radius R, where ‖·‖ is as in Section 1.3.

The following Lemma is proved in [71].

Lemma 5.3.1. Let g ∈ L∞
loc(R

n, [0,+∞)) and let q > 0. Let also, for any

τ > 0,

η(τ) :=

∫

B(0,τ)

g(x)dx (5.37)

Then, for every 0 < r < R,
∫

B(0,R)\B(0,r)

g(x)

|x|q dx ≤ q

∫ R

r

η(τ)

τ q+1
dτ +

1

Rq
η(R)
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Corollary 5.3.2. Let u be a stable solution of ∆Eu = f(u) in the whole of E

with

J ≤ 0 in E0 (5.38)

For any τ > 0 and any x = (x1, x2, x3, x4) ∈ E, let us define

η(τ) :=

∫

B(0,τ)

|∇Eu(x)|2dx (5.39)

If

lim inf
R→∞

∫ R√
R

η(τ)

τ 3
dτ +

η(R)

R2

(logR)2
= 0 (5.40)

then, the level set of u in the proximity of noncharacteristic points are such

that

divE ν = 0 (5.41)

and on such sets the following equation holds

p = − 1

|∇Eu|
〈Huv, ν〉E (5.42)

Proof. This is a modification of the proof of Corollary 3.2 of [71], where we

take into account the more complicated algebraic calculations of the Engel

group. Given R > 1, we define

φR(x) :=











1 if x ∈ B(0,
√
R)

2(logR)−1 log(R/|x|) if x ∈ B(0, R) \B(0,
√
R)

0 if x ∈ E \B(0, R)

We observe that

X1|x|12 = 12(x21 + x22)
5x1 − Ax2 − 2x3x

3
4

and X2|x|12 = 12(x21 + x22)
5x2 + Ax1 − 2x3x

3
4

with A := 3x53 + (1/3)(x1 + x2)x
3
4. Since |x1| ≤ |x|, |x2| ≤ |x|, |x3| ≤ |x|2

and |x4| ≤ |x|3, we conclude that |A| ≤ C1|x|10 and so

|∇E|x|12| ≤ C2|x|11
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for some for some C1, C2 > 0.

Notice also that, in B(0, R) \B(0,
√
R),

φR(ξ) = C(R)− (1/6)(logR)−1 log |ξ|12

for some C(R) ∈ R, thus

|∇EφR(ξ)| = (1/6)(logR)−1|ξ|−12|∇E|ξ|12| ≤ C3(logR)
−1|ξ|−1

in B(0, R) \ B(0,
√
R), for some C3 > 0. Therefore, by (5.38) and Theo-

rem 5.1.1,

∫

E0

[

|∇Eu|2
{(

p+

〈

(Hu)Tν, v
〉

|∇Eu|
)2

+ h2
}

]

φ2
R

≤
∫

E
|∇EφR|2|∇Eu|2 ≤ C4(logR)

−2

∫

B(0,R)\B(0,
√
R)

|∇Eu|2
|ξ|2

for some C4 > 0. On the other hand, by Lemma 5.3.1,
∫

B(0,R)\B(0,
√
R)

|∇Eu|2
|ξ|2 ≤ 2

∫ R

√
R

η(τ)

τ 3
dτ +

1

R2
η(R)

All in all,

∫

E0

[

|∇Eu|2
{(

p+

〈

(Hu)Tν, v
〉

|∇Eu|
)2

+ h2
}

]

φ2
R

≤ 2C4(logR)
−2

[∫ R

√
R

η(τ)

τ 3
dτ +

1

R2
η(R)

]

Then the claim follows by sending R → ∞, thanks to (5.40).

Remark 5.2. Recalling Lemma 5.2.6, we observe that (5.38) is implied by the

following monotonicity conditions:

〈X3ν, v〉E ≥ 0 and 〈∇EX3u, v〉E ≥ 0

Remark 5.3. Condition (5.40) may be seen as a bound on the energy growth:

for instance, it is satisfied if η(R)/R2 stays bounded for large R, i.e. if the

energy in B(0, R) does not grow more than R2. Of course, this is quite a

strong assumption on the decay of ∇Eu in the variables (ξ3, ξ4) and it would

be desirable to investigate in which way such condition may be weakened.
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Remark 5.4. We stress that equations (5.41) and (5.42) may be seen as geo-

metric equations along the level sets of the solution u. In particular, (5.41)

may be stated as saying that the level set is a minimal surface for the Engel

framework (in analogy with the Euclidean setting and in the terminology

of [116]). Also, (5.42) is a prescription on the imaginary curvature p, in

relation with the Hessian, the normal, and the tangent vectors.

Remark 5.5. Let us observe that if u is solution of (5.1.1) that do not depend

on ξ3 and ξ4 then u satisfies ∆u = f(u), where ∆ is the classical Euclidean

Laplacian. Moreover, by [71, Remark 3.4], every bounded stable solution of

(5.1.1) that do not depend on the last two coordinates and satisties (5.40)

has to be constant.

Theorem 5.3.3. There exists no u ∈ C3(E) stable solution of ∆Eu = f(u)

satisfying

i. f ∈ C2(E) and the zeros of f̈ (if any) are isolated;

ii. {ξ ∈ E | ∇Eu(ξ) = 0} = ∅;

iii. u ∈ L∞(E);

iv. 〈X3ν, v〉E ≥ 0 in E;

v. 〈∇EX3u, v〉E ≥ 0 in E;

vi. the set {(X1u+X2u) = 0} has zero Lebesgue measure;

vii. lim inf
R→∞

∫ R√
R

η(τ)

τ 3
dτ +

η(R)

R2

(logR)2
= 0;

where η is as in Corollary 5.3.2.

Proof. By contradiction: let u ∈ C3(E) be a stable solution of (5.1) and

satisfying (i), (ii), (iii), (iv), (v), (vi) and (vii). By (iii) and [29, Th. 2.10]

we have

|∇Eu| ∈ L∞(E) (5.43)
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We claim that

X3u = 0 in E (5.44)

To this end, we argue by contradiction, supposing that there exists Q ∈ E

such that

X3u(Q) 6= 0. (5.45)

Thus we consider the following Cauchy problem

{

φ
′

(s) = v(φ(s))

φ(0) = Q

where v is the intrinsic tangent direction. By (ii) and the fact that v is

bounded it follows that the solution exists and it is defined for any s ∈ R.

Moreover,

u(φ(s))
′

=
〈

∇Eu(φ(s)), φ
′

(s)
〉

E
= |∇E(φ(s))| 〈ν(φ(s)), v(φ(s))〉E = 0 ∀s ∈ R

that is, φ lies on the level set of u, namely

φ(s) ∈ {ξ ∈ E | u(ξ) = u(Q)} ∀s ∈ R.

Furthermore,

|∇Eu(φ(s))|
′

=
〈

∇E|∇Eu|(φ(s)), φ(s)
′

〉

E
∀s ∈ R

and by (5.10) (applied here with η ≡ 1) and Corollary 5.3.2 (recall also

Remark 5.2) we get

|∇Eu(φ(s))|
′

=
1

|∇Eu(φ(s))|
〈

(Hu)T∇Eu(φ(s)), v(φ(s))
〉

E
=

= 〈ν(φ(s)), (Hu)v(φ(s))〉E = −|∇Eu(φ(s))| p(φ(s) =
= X3u(φ(s)) ∀s ∈ R

(5.46)

which, via (5.45), implies

|∇Eu(φ(s))|
′

|s=0 6= 0 ∀s ∈ R (5.47)
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From (5.46) we deduce

|∇Eu(φ(s))|
′′

= (X3u(φ(s)))
′

=
〈

∇EX3u(φ(s)), φ
′

(s)
〉

E
= (5.48)

= 〈∇EX3u(φ(s)), v(φ(s))〉E ∀s ∈ R

and by (iv) we deduce also that

|∇Eu(φ(s))|
′′ ≥ 0 ∀s ∈ R (5.49)

Therefore, defining Φ : R −→ R by

Φ(s) := |∇Eu(φ(s))| − |∇Eu(Q)|

we have that Φ ∈ C2(R), Φ(0) = 0, Φ
′

(s) 6= 0 ∀s ∈ R and Φ(s)
′′ ≥ 0 ∀s ∈ R,

thanks to (5.47) and (5.49). It follows that

sup
R

Φ = +∞

but this is in contradiction with (5.43), hence (5.44) is established.

Now we claim that

X4u = 0 (5.50)

By Lemma 5.2.3, we obtain

∆EX3u− 2X4X1u− 2X4X2u = X3∆Eu =

= X3(f(u)) = ḟ(u)X3u

and so by (5.44) it follows that

X4(X1u+X2u) = 0 (5.51)

Moreover, by Corollary 5.2.4 and (5.44),

∆EX1u−X4u = ∆EX1u− 2X4u+X4u =

= ∆EX1u− 2(X2X3 −X3X2)u+X4u = ∆EX1u+ 2X3X2u+X4u =

= ḟ(u)X1u

(5.52)
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and

∆EX2u+X4u = ∆EX2u− 2X1X3u+X4u =

= ḟ(u)X2u
(5.53)

By adding (5.52) and (5.53) we obtain

∆E(X1u+X2u) = ḟ(u)(X1u+X2u) (5.54)

and so, by Lemma 5.2.3,

∆EX4(X1u+X2u) = X4∆E(X1u+X2u) =

= X4

(

ḟ(u)(X1u+X2u)
)

=

= f̈(u)X4u(X1u+X2u) + ḟ(u)X4(X1u+X2u)

(5.55)

Accordingly, using (5.55) and (5.51), we conclude that

f̈(u)X4u(X1u+X2u) = 0 in E

Hence, by (vi)

f̈(u)X4u = 0 almost everywhere in E

and so, by continuity,

f̈(u)X4u = 0 everywhere in E

This implies that (5.50) holds at any point of the open set G := {ξ ∈
E | f̈(u(ξ)) 6= 0}. So, by continuity, (5.50) holds at any point of its clo-

sure G.

We show that (5.50) also holds at points of E \ G (if any). For this, let

us take ξo ∈ E \ G. Since the latter is an open set, there exists an open

neighborhood V such that

ξo ∈ V ⊆ (E \G) ⊆ E \G = {ξ ∈ E | f̈(u(ξ)) = 0}.

In particular, f̈(u(ξ)) = 0 for any ξ ∈ V . Thus, by (i), u(ξ) must be

constant for any ξ ∈ V . Therefore, X4u(ξ) = 0 for any ξ ∈ V , and, in

particular, X4u(ξo) = 0.
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This shows that (5.50) holds at points of E \ G too, and so the proof

of (5.50) is completed.

Now, by (5.44) and (5.50), we conclude that u does not depend on ξ3 and

ξ4 and by Remark 5.5 we conclude that u is constant but this is impossible

by (ii), which proves Theorem 5.3.3.

Remark 5.6. Of course, we do not believe that our Theorem 5.3.3 is optimal:

we just consider it a first attempt towards the understanding of semilinear

equations in the Engel framework and, as far as we know, this is the first

non-existence result in this setting. We think it would be interesting to

develop a stronger theory and possibly to drop some structural assumptions

in Theorem 5.3.3.





Chapter 6

A Lewy-Stampacchia Estimate

for quasilinear variational

inequalities

in the Heisenberg group

In this chapter, we extend the so called Dual Estimate of [99] to the obstacle

problem for quasilinear elliptic equations in the Heisenberg group.

6.1 An introduction to the problem and some

basic tools

For the notations and the definitions we refer to Chapter 1. Throughout this

chapter we denote by (x, y, t) ∈ Rn×Rn×R a point in Hn. We are interested

in studying the obstacle problem in this framework. For this, we consider a

smooth function ψ : Hn → R, which will be our obstacle (more precisely, ψ

is supposed to have continuous derivatives of second order in X and Y ).

Fixed a bounded open set Ω with smooth boundary, and p ∈ (1,+∞),

we consider the space W 1,p
Hn (Ω) to be the set of all functions u in Lp(Ω)

whose distributional horizontal derivatives Xju and Yju belong to Lp(Ω),
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for j = 1, . . . , n.

Such space is naturally endowed with the norm

‖u‖W 1,p
Hn (Ω) := ‖u‖Lp(Ω) +

n
∑

j=1

(

‖Xju‖Lp(Ω) + ‖Yju‖Lp(Ω)

)

.

We call W 1,p
Hn,0(Ω) the closure of C∞

0 (Ω) with respect to this norm.

We fix a smooth domain Ω? c Ω, u? ∈ W 1,p
Hn (Ω?) ∩ L∞(Ω?) and we

introduce the space

K :=
{

u ∈ W 1,p
Hn (Ω) s.t. u ≤ ψ, and u− u? ∈ W 1,p

Hn,0(Ω)
}

.

Loosely speaking, K is the space of all the functions having prescribed Dirich-

let boundary datum equal to u? along ∂Ω and that stay below the obstacle ψ.

Now we consider a parameter ε ≥ 0 and we deal with the variational

problem

inf
u∈K

Fε(u; Ω), where Fε(u; Ω) :=

∫

Ω

(ε+ |∇Hnu|2)p/2. (6.1)

By direct methods, it is seen that such infimum is attained (see, e.g., the

compactness result in [135, 52] or references therein) and so we consider a

minimizer ūε.

Then, ūε is a solution of the variational inequality1

∫

Ω

(ε+ |∇Hn ūε|2)(p−2)/2∇Hn ūε · ∇Hn(v − ūε) ≥ 0, (6.2)

1Formula (6.2) may be easily obtained this way. Fixed v ∈ W
1,p
Hn (Ω) with v ≤ ψ,

and v − ūε ∈W
1,p
Hn,0(Ω), for any t ≥ 0, let u(t) := ūε + t(v − ūε). Notice that

u(t) := (1− t)ūε + tv ≤ (1− t)ψ + tψ ≤ ψ,

hence u(t) ∈ K. So, by the minimality of ūε, we have Fε(u
(0); Ω) = Fε(ūε; Ω) ≤ Fε(u

(t); Ω)

for any t ≥ 0. Consequently,

0 ≤ lim
t↘0

Fε(u
(t); Ω)−Fε(u

(0); Ω)

t

=

∫

Ω

(ε+ |∇Hn ūε|2)(p−2)/2∇Hn ūε · ∇Hn(v − ūε),

that is (6.2).
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for any v ∈ W 1,p
Hn (Ω) with v ≤ ψ, and v − ūε ∈ W 1,p

Hn,0(Ω).

These kind of variational inequalities has now receiving a considerable

attention (see, e.g., [56] and references therein), even when p = 2 (notice

that in such a case ε does not play any role). We observe that, when p 6= 2,

the operator driving the variational inequality in (6.2) is not linear anymore

(in fact, it may be seen as the Heisenberg group version of the p-Laplace

operator): for these kind of operators even the regularity theory is more

problematic than expected at a first glance, and many basic fundamental

questions are still open (see, e.g., [62], [105], [108] and [139]): this is a crucial

difference with respect to the Euclidean case, so we think it is worth dealing

with the problem in such a generality.

Now, we introduce the set of p’s for which our main result holds. The

definition we give is slightly technical, but, roughly speaking, consists in

taking the set of all the p’s for which a pointwise bound for the operator of

a sequence of minimal solutions is stable under uniform limit. The further

difficulty of taking this assumption is due to the lack of a thoroughgoing

regularity theory for the quasilinear Heisenberg equation (as remarked in

Lemma 6.5.7 at the end of this chapter, this technicality may be skipped

when p = 2).

Definition 6.1.1. Let p ∈ (1,+∞). We say that p ∈ P(ψ,Ω) if the following

property holds true:

For any ε > 0, any v ∈ W 1,p
Hn (Ω), any M > 0, any sequence Fk =

Fk(r, ξ) ∈ C([−M,M ]× Ω), with Fk(·, ξ) ∈ C1([−M,M ]) and

0 ≤ ∂rFk ≤
(

divHn

(

(ε+ |∇Hnψ|2)(p/2)−1∇Hnψ
))+

, (6.3)

if uk : Ω → [−M,M ] is a sequence of minimizers of the functional
∫

Ω

1

p
(ε+ |∇Hnu(ξ)|2)p/2 + Fk(u(ξ), ξ) dξ (6.4)

over the functions u ∈ W 1,p
Hn (Ω), u− v ∈ W 1,p

Hn,0(Ω), with the property that uk

converges to some u∞ uniformly in Ω, we have that

0 ≤ divHn

(

(ε+ |∇Hnu∞|2)(p/2)−1∇Hnu∞
)

≤
(

divHn

(

(ε+ |∇Hnψ|2)(p/2)−1∇Hnψ
))+ (6.5)
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in the sense of distributions.

As remarked2 in Lemma 6.5.7 at the end of this chapter, we always have

that

2 ∈ P(ψ,Ω).

In particular, our main result (i.e., the forthcoming Theorem 6.1.1) always

holds for p = 2 without any further restriction. We think that it is an in-

teresting open problem to decide whether or not other values of p belong

to P(ψ,Ω), in general, or at least when the right hand side of (6.5) is close

to zero (e.g., when the obstacle is almost flat). For instance, the property

in Definition 6.1.1 would be satisfied in presence of a Hölder regularity the-

ory for the horizontal gradient for solutions of quasilinear equations in the

Heisenberg group – namely, if one knew that bounded solutions of

divHn ((ε+ |∇Hnu|2)(p/2)−1∇Hnu) = f,

with f bounded, have Hölder continuous horizontal gradient, with interior

estimates (this would be the Heisenberg counterpart of classical regularity

results for the Euclidean case, see, e.g., Theorem 1 in [133]); notice also

that this would be a regularity theory for the equation, not for the obstacle

problem. As far as we know, such a theory has not been developed yet,

not even for minimal solutions (see, however, [28, 108, 139] for the case of

homogeneous equations). Nevertheless, we think it is worth stating our result

in the more abstract setting of P(ψ,Ω), because, once the regularity theory

becomes available, our result would be valid in general – and also because

the setting we use is somewhat more general and weaker than the regularity

theory itself.

The result we prove is:

Theorem 6.1.1. If p ∈ P(ψ,Ω) then

0 ≤ divHn

(

(ε+ |∇Hn ūε|2)(p/2)−1∇Hn ūε

)

≤
(

divHn

(

(ε+ |∇Hnψ|2)(p/2)−1∇Hnψ
))+ (6.6)

2As usual, the superscript “+” denotes the positive part of a function, i.e. f+(x) :=

max{f(x), 0}.
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in the sense of distributions.

The result in Theorem 6.1.1 is quite intuitive: when ūε does not touch

the obstacle, it is free to make the operator vanish. When it touches and

sticks to it, the operator is driven by the one of the obstacle – and on these

touching points the obstacle has to bend in a somewhat convex fashion, which

justifies the first inequality in (6.6) and superscript “+” in the right hand

side of (6.6).

Figure 1, in which the thick curve represents the touching between ūε and

the obstacle, tries to describe this phenomena. On the other hand, the set

in which ūε touches the obstacle may be very wild, so the actual proof of

Theorem 6.1.1 needs to me more technical than this.

In fact, the first inequality of (6.6) is quite obvious since it follows, for in-

stance, by taking v := ūε−ϕ in (6.2), with an arbitrary ϕ ∈ C∞
0 (Ω, [0,+∞))),

so the core of (6.6) lies on the second inequality: nevertheless, we think it is

useful to write (6.6) in this way to emphasize a control from both the sides

of the operator applied to the solution.

We remark that the right hand side of (6.6) is always finite when ε > 0,

and when ε = 0 and p ≥ 2. In this case, (6.6) is an L∞-bound and may be

seen as a regularity result for the solution of the obstacle problem. It is worth

noticing that such regularity result holds for ε = 0 as well, only assuming

that p ∈ P(ψ,Ω), which is a requirement on the problem when ε > 0.

On the other hand, if ε = 0 and p ∈ (1, 2), the right hand side of (6.6)

may become infinite (in this case (6.6) is true, but maybe meaningless, stating

that something is less than or equal to an infinite quantity).

In the Euclidean setting, the analogue of (6.6) was first obtained in [99]

for the Laplacian case, and it is therefore often referred to with the name of

Lewy-Stampacchia Estimate. It is also called Dual Estimate, for it is, in a

sense, obtained by the duality expressed by the variational inequality (6.2).

Other Authors refer to it with the name of Penalization Method, for the role

played by ε.

After [99], estimates of these type became very popular and underwent

many important extensions and strengthenings: see, among the others, [119,
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ū

ψ

Figure 6.1: Touching the obstacle

83, 64, 18, 110]. As far as we know, the estimate we prove is new in the

Heisenberg group setting, even for p = 2.

Hereafter, we deal with the proof of Theorem 6.1.1. First, in § 6.2, we

prove Theorem 6.1.1 when ε > 0.

The proof when ε = 0 is contained in § 6.4 and it is based on a limit

argument, i.e., we consider the problem with ε > 0, we use Theorem 6.1.1

in such a case, and then we pass ε ↘ 0. This procedure is quite deli-

cate though, because, as far as we know, it is not clear whether or not the

Heisenberg group setting allows a complete Hölder regularity theory for first

derivatives (see [62]). To get around this point, in § 6.3, we study the Lp-

convergence of the solution ūε of the ε-problem to the solution ū0 of the

problem with ε = 0, which, we believe, is of independent interest (see, in

particular Propositions 6.3.1 and 6.3.2).

We point out that the same arguments hold verbatim for nilpotent stratified

Lie groups of any steps and we work in Hn only for the sake of notational

simplicity.
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6.2 Lewy-Stampacchia estimate when ε > 0

We prove (6.6) in the simpler case ε > 0 (the case ε = 0 will be dealt

with in § 6.4). The technique used in this proof is a variation of a classical

penalized test function method (see, e.g., [119, 83, 64, 18, 110] and refer-

ences therein), and several steps of this proof are inspired by some estimates

obtained by [31] in the Euclidean case.

First of all, we set

µ := −1 + min
{

inf
Ω
ψ, inf

Ω
u?
}

∈ R

and we observe that

ūε ≥ µ (6.7)

a.e. in Ω. Indeed, let w := max{ūε, µ}. Since ψ and u? are below µ in Ω, we

have that w ∈ K, thus

0 ≤ Fε(w; Ω)−Fε(ūε; Ω) = −
∫

Ω∩{ūε<µ}
(ε+ |∇Hn ūε|2)p/2 ≤ 0,

and, from this, (6.7) plainly follows.

Now, let η ∈ (0, 1), to be taken arbitrarily small in the sequel. Let also

h :=
(

divHn

(

(ε+ |∇Hnψ|2)(p/2)−1∇Hnψ
))+

. (6.8)

Notice that

‖h‖L∞(Ω) < +∞, (6.9)

because ε > 0. For any t ∈ R, we consider the truncation function

Hη(t) :=



















0 if t ≤ 0,

t/η if 0 < t < η,

1 if t ≥ η.

Now, we take uη to be a weak solution of






divHn

(

(ε+ |∇Hnuη|2)(p/2)−1∇Hnuη

)

= h ·
(

1−Hη(ψ − uη)
)

in Ω,

uη = ūε on ∂Ω.

(6.10)
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where, as usual, the boundary datum is attained in the trace sense: such a

function uη may be obtained by the direct method in the calculus of varia-

tions, by minimizing the functional
∫

Ω

1

p
(ε+ |∇Hnu(ξ)|2)p/2 + Fη(u(ξ), ξ) dξ

over u ∈ W 1,p
Hn (Ω), u− ūε ∈ W 1,p

Hn,0(Ω), where

Fη(r, ξ) :=

∫ r

0

h(ξ) ·
(

1−Hη(ψ(ξ)− σ)
)

dσ.

Now, we claim that

uη ≤ ψ a.e. in Ω. (6.11)

To establish this, we use the test function (uη −ψ)+ in (6.10). Since, on ∂Ω,

we have (uη − ψ)+ = (ūε − ψ)+ = 0, we obtain that

−
∫

Ω

(

(ε+ |∇Hnuη|2)(p/2)−1∇Hnuη

)

· ∇Hn(uη − ψ)+

=

∫

Ω

h ·
(

1−Hη(ψ − uη)
)

(uη − ψ)+ =

∫

Ω

h · (uη − ψ)+.

Consequently, by (6.8),
∫

Ω

[(

(ε+ |∇Hnuη|2)(p/2)−1∇Hnuη

)

−
(

(ε+ |∇Hnψ|2)(p/2)−1∇Hnψ
)]

· ∇Hn(uη − ψ)+

=

∫

Ω

[

divHn

(

(ε+ |∇Hnψ|2)(p/2)−1∇Hnψ
)

− h
]

· (uη − ψ)+

≤ 0.

By the strict monotonicity of the operator (i.e., by the strict convexity of the

function R2n 3 ζ 7→ (ε + |ζ|2)p/2), it follows that (uη − ψ)+ vanishes almost

everywhere in Ω, proving (6.11).

Now, we claim that

ūε ≥ uη a.e. in Ω. (6.12)

To verify this, we consider the test function

τ := ūε + (uη − ūε)
+.
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We notice that

τ =







ūε in {uη ≤ ūε},
uη in {uη > ūε},

hence τ ≤ ψ, due to (6.11). Furthermore, on ∂Ω, we have that τ = ūε, due

to the boundary datum in (6.10). Therefore the obstacle problem variational

inequality (6.2) gives that

0 ≤
∫

Ω

(

(ε+ |∇Hn ūε|2)(p/2)−1∇Hnūε

)

· ∇Hn(τ − ūε)

=

∫

Ω

(

(ε+ |∇Hnūε|2)(p/2)−1∇Hn ūε

)

· ∇Hn(uη − ūε)
+.

(6.13)

On the other hand, from (6.10),
∫

Ω

(

(ε+ |∇Hnuη|2)(p/2)−1∇Hnuη

)

· ∇Hn(uη − ūε)
+

= −
∫

Ω

h ·
(

1−Hη(ψ − uη)
)

· (uη − ūε)
+ ≤ 0.

(6.14)

By (6.13) and (6.14), we obtain that
∫

Ω

[(

(ε+ |∇Hnuη|2)(p/2)−1∇Hnuη

)

−
(

(ε+ |∇Hn ūε|2)(p/2)−1∇Hnūε

)]

· ∇Hn(uη − ūε)
+ ≤ 0.

This and the strict monotonicity of the operator implies that (uη − ūε)
+

vanishes almost everywhere in Ω, hence proving (6.12).

Now, we claim that

ūε ≤ uη + η in Ω. (6.15)

To do this, we set

θ := ūε − (ūε − uη − η)+.

Notice that θ ≤ ūε ≤ ψ, and also that, on ∂Ω, θ = ūε. As a consequence, (6.2)

gives that

0 ≤
∫

Ω

(

(ε+ |∇Hnūε|2)(p/2)−1∇Hn ūε

)

· ∇Hn(θ − ūε)

= −
∫

Ω

(

(ε+ |∇Hnūε|2)(p/2)−1∇Hn ūε

)

· ∇Hn(ūε − uη − η)+.

(6.16)
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On the other hand, (ūε − uη − η)+ = 0 on ∂Ω, and

{ūε − uη − η > 0} ⊆ {ψ − uη > η}
⊆

{

1−Hη(ψ − uη) = 0
}

,

and therefore, by (6.10),
∫

Ω

(

(ε+ |∇Hn(uη + η)|2)(p/2)−1∇Hn(uη + η)
)

· ∇Hn(ūε − uη − η)+

=

∫

Ω

(

(ε+ |∇Hnuη|2)(p/2)−1∇Hnuη

)

· ∇Hn(ūε − uη − η)+

=−
∫

Ω

h ·
(

1−Hη(ψ − uη)
)

· (ūε − uη − η)+ = 0.

(6.17)

Then, (6.16) and (6.17) yield that
∫

Ω

[(

(ε+ |∇Hnūε|2)(p/2)−1∇Hn ūε

)

−
(

(ε+ |∇Hn(uη + η)|2)(p/2)−1∇Hn(uη + η)
)]

· ∇Hn(ūε − uη − η)+

≤ 0.

Thus, in this case, the strict monotonicity of the operator implies that (ūε −
uη − η)+ vanishes almost everywhere in Ω, and so (6.15) is established.

In particular, by (6.11), (6.15) and (6.7),

‖uη‖L∞(Ω) ≤ 2 + ‖ψ‖L∞(Ω) + ‖u?‖L∞(Ω). (6.18)

Moreover, by (6.12) and (6.15), we have that

uη converges uniformly in Ω to ūε (6.19)

as η ↘ 0.

Furthermore

0 ≤ ∂rFη(r, ξ) ≤ h(ξ) =
(

divHn

(

(ε+ |∇Hnψ|2)(p/2)−1∇Hnψ
))+

hence (6.6) follows3 from (6.19) and the fact that p ∈ P(ψ,Ω) (recall (6.5)

in Definition 6.1.1).

3It is worth pointing out that this is the only place in the chapter where we use the

condition that p ∈ P(ψ,Ω). In particular, all the estimates in § 6.3 are valid for all p ∈
(1,+∞).
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6.3 Estimating the Lp-distance between ∇Hnū0

and ∇Hnūε

The purpose of this section is to consider the solution ūε of the ε-problem

and the solution ū0 of the problem with ε = 0, and to bound the Lp-norm of

|∇Hn ū0−∇Hn ūε|. Such estimate is quite technical and it is different according

to the cases p ∈ (1, 2] and p ∈ [2,+∞): see the forthcoming Propositions 6.3.1

and 6.3.2.

As a matter of fact, we think that the estimates proved in Proposi-

tions 6.3.1 and 6.3.2 are of independent interest, since they also allow to

get around the more difficult (and in general not available in the Heisenberg

group) Hölder-type estimates.

For all g ∈ L1(Ur), we define the average of g in Br as

(g)r :=
1

L(Ur)

∫

Ur

g,

where Br is the ball centered at 0 ∈ Hn with radius r > 0 with respect to

the norm definend in 1.27. In what follows, we focus on Lp-estimates around

a fixed point, say ξ?, of Ω. Without loss of generality, we take ξ? to be the

origin, and we fix R ∈ (0, 1) so small that UR b Ω.

Then, we denote by ū0 : Ω → R the minimizer of problem (6.1) with ε = 0.

Then, for a fixed ε > 0, we take ūε : UR → R to be the minimizer of Fε(u;UR)

among all the functions u ∈ W 1,p
Hn (UR), u ≤ ψ, and u− ū0 ∈ W 1,p

Hn,0(UR). We

can then extend ūε also on Ω \UR by setting it equal to ū0 in such a set. By

construction
∫

UR

|∇Hnū0|p = F0(ū0; Ω)−
∫

Ω\UR

|∇Hn ū0|p

≤ F0(ūε; Ω)−
∫

Ω\UR

|∇Hn ū0|p =
∫

UR

|∇Hnūε|p
(6.20)

and
∫

UR

(ε+ |∇Hn ūε|2)p/2 = Fε(ūε;UR)

≤ Fε(ū0;UR) =

∫

UR

(ε+ |∇Hnū0|2)p/2.
(6.21)
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Proposition 6.3.1. Assume that

p ∈ (1, 2]. (6.22)

Then, there exists C > 0, only depending on n and p, such that

∫

UR

|∇Hnū0 −∇Hnūε|p ≤ C
(

1 + (|∇Hnū0|p)R
)1−(p/2)

ε(p/2)
2

RQ. (6.23)

Proof. The technique for this proof is inspired by the one of Lemma 2.3

of [120], where a similar result was obtained in the quasilinear Euclidean

case (however, our proof is self-contained). We have

|∇Hnūε −∇Hnū0|2 ≤
(

|∇Hn ūε|+ |∇Hn ū0|
)2

≤ C
(

|∇Hnūε|2 + |∇Hn ū0|2
)

.
(6.24)

Here, C is a positive constant, which is free to be different from line to line.

By (6.22), (6.21) and (6.24), we obtain

∫

UR

(ε+ |∇Hnū0|2 + |∇Hn ūε|2)(p/2)−1|∇Hnūε −∇Hnū0|2

≤C

∫

UR

|∇Hnūε|2 + |∇Hn ū0|2
(ε+ |∇Hnū0|2 + |∇Hn ūε|2)1−(p/2)

=C

(∫

UR

|∇Hn ūε|2
(ε+ |∇Hnū0|2 + |∇Hn ūε|2)1−(p/2)

+

∫

UR

|∇Hn ū0|2
(ε+ |∇Hnū0|2 + |∇Hn ūε|2)1−(p/2)

)

≤C

(∫

UR

|∇Hn ūε|2
(ε+ |∇Hnūε|2)1−(p/2)

+

∫

UR

|∇Hn ū0|2
(ε+ |∇Hnū0|2)1−(p/2)

)

≤C

(∫

UR

(ε+ |∇Hn ūε|2)p/2 +
∫

UR

(ε+ |∇Hn ū0|2)p/2
)

≤C

∫

UR

(ε+ |∇Hnū0|2)p/2.

(6.25)

Thus, (6.25) and Lemma 6.5.4, applied here with a := ∇Hn ū0 and b := ∇Hnūε,
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yield that
∫

UR

(ε+ |∇Hnū0|2 + |∇Hn ūε|2)p/2

≤ C

∫

UR

(ε+ |∇Hn ū0|2 + |∇Hnūε|2)(p/2)−1|∇Hn ūε −∇Hn ū0|2+

+ C

∫

UR

(ε+ |∇Hn ū0|2)(p/2)

≤ C

∫

UR

(ε+ |∇Hn ū0|2)(p/2).

(6.26)

Now, from (6.20),
∫

UR

(ε+ |∇Hnū0|2)(p/2) −
∫

UR

(ε+ |∇Hnūε|2)(p/2)

≤
∫

UR

(ε+ |∇Hnū0|2)(p/2) −
∫

UR

|∇Hnūε|p

≤
∫

UR

(ε+ |∇Hnū0|2)(p/2) −
∫

UR

|∇Hnū0|p.

(6.27)

Moreover, using (6.22) and some elementary calculus, we see that

|(1 + τ)p/2 − τ p/2| ≤ C

for any τ ≥ 0. Therefore, taking τ := θ/ε, we obtain that

|(ε+ θ)p/2 − θp/2| ≤ Cεp/2 (6.28)

for any θ ≥ 0. Thus, using (6.27) and (6.28) with θ := |∇Hnū0|2, we conclude
that

∫

UR

(ε+ |∇Hn ū0|2)(p/2) −
∫

UR

(ε+ |∇Hn ūε|2)(p/2) ≤ Cεp/2RQ. (6.29)

Now, we estimate the left hand side of (6.29) from below. For this scope, we

define

h := t∇Hnū0 + (1− t)∇Hnūε,

J := p

∫

UR

(ε+ |∇Hn ūε|2)(p/2)−1∇Hn ūε · (∇Hnū0 −∇Hnūε)

and J̃ := p

∫

UR

[

∫ 1

0

(1− t)
d

dt

(

(ε+ |h|2)(p/2)−1h · (∇Hn ū0 −∇Hnūε)
)

dt
]

.
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We observe that the variational inequality in (6.2) for ūε gives that

J ≥ 0. (6.30)

Also, using the Fundamental Theorem of Calculus, we obtain
∫

UR

(ε+ |∇Hnū0|2)(p/2) −
∫

UR

(ε+ |∇Hn ūε|2)(p/2)

=

∫

UR

[

∫ 1

0

d

dt
(ε+ |t∇Hnū0 + (1− t)∇Hnūε|2)(p/2) dt

]

= p

∫

UR

[

∫ 1

0

(ε+ |t∇Hnū0 + (1− t)∇Hnūε|2)(p/2)−1

× (t∇Hnū0 + (1− t)∇Hnūε) · (∇Hn ū0 −∇Hn ūε) dt
]

= p

∫

UR

[

∫ 1

0

(ε+ |h|2)(p/2)−1h · (∇Hn ū0 −∇Hn ūε) dt
]

.

Integrating by parts the latter integral in t (by writing dt = d
dt
(t−1) dt), and

exploiting (6.30), we obtain
∫

UR

(ε+ |∇Hnū0|2)(p/2) −
∫

UR

(ε+ |∇Hn ūε|2)(p/2)

= J + J̃ ≥ J̃ .

(6.31)

Making use of Lemma 6.5.3 – applied here with a := ∇Hnū0 and b := ∇Hn ūε

– we have that

J̃ ≥ 1

C

∫

UR

[

∫ 1

0

(1−t)(ε+|t∇Hnū0+(1−t)∇Hnūε|2)(p/2)−1|∇Hnū0−∇Hn ūε|2 dt
]

.

From this and Lemma 6.5.5 – applied here with κ := 1 and Ψ(x) := x1−(p/2),

which is nondecreasing, thanks to (6.22) – we deduce that

J̃ ≥ 1

C

∫

UR

(ε+ |∇Hnū0|2 + |∇Hn ūε|2)(p/2)−1|∇Hnū0 −∇Hn ūε|2. (6.32)

In view of (6.29), (6.31) and (6.32), we conclude that
∫

UR

(ε+ |∇Hnū0|2 + |∇Hn ūε|2)(p/2)−1|∇Hnū0 −∇Hn ūε|2 ≤ Cεp/2RQ. (6.33)

Then, (6.23) follows from (6.26), (6.33) and Lemma 6.5.6, applied here

with f := ∇Hnū0 and g := ∇Hn ūε.
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In the degenerate case p ∈ [2,+∞) the estimate obtained in Proposi-

tion 6.3.1 for the singular case p ∈ (1, 2] needs to be modified according to

the following result:

Proposition 6.3.2. Suppose that

p ∈ [2,+∞). (6.34)

Then, there exists C > 0, only depending on n and p, such that
∫

UR

|∇Hnū0 −∇Hn ūε|p ≤ C
(

1 + (|∇Hnū0|p)R
)1−(1/p)

εRQ.

Proof. The variational inequalities (6.2) for ū0 and ūε imply that
∫

UR

|∇Hn ū0|p−2∇Hn ū0 · (∇Hnūε −∇Hnū0) ≥ 0

and

∫

UR

(ε+ |∇Hnūε|2)(p/2)−1∇Hn ūε · (∇Hnū0 −∇Hn ūε) ≥ 0.

Consequently,
∫

UR

(

|∇Hnū0|p−2∇Hnū0− (ε+ |∇Hnūε|2)(p/2)−1∇Hn ūε

)

· (∇Hnū0−∇Hn ūε) ≤ 0.

Using this and (6.40) of Lemma 6.5.1, applied here with A := ∇Hn ū0 and

B := ∇Hn ūε, we obtain
∫

UR

|∇Hn ū0 −∇Hnūε|p

≤ C

∫

UR

(

|∇Hnū0|p−2∇Hnū0 − |∇Hn ūε|p−2∇Hn ūε

)

· (∇Hn ū0 −∇Hn ūε)

≤ C

∫

UR

(

(ε+ |∇Hnūε|2)(p/2)−1∇Hn ūε − |∇Hn ūε|p−2∇Hn ūε

)

· (∇Hnū0 −∇Hn ūε).

This and Corollary 6.5.2, applied here with a := ∇Hnūε, give
∫

UR

|∇Hn ū0 −∇Hnūε|p

≤ C

∫

UR

(

(ε+ |∇Hnūε|2)(p/2)−1 − |∇Hnūε|p−2
)

|∇Hn ūε| |∇Hn ū0 −∇Hnūε|

≤ Cε

∫

UR

(ε+ |∇Hn ūε|2)(p−2)/2
(

|∇Hn ū0|+ |∇Hn ūε|
)

.
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Therefore, recalling (6.34), noticing that

p− 2

p
+

1

p
+

1

p
= 1

and using the Generalized Hölder Inequality with the three exponents p/(p−
2), p and p, we obtain

∫

UR

|∇Hnū0 −∇Hn ūε|p

≤ Cε

(∫

UR

(ε+ |∇Hnūε|2)p/2
)(p−2)/p(∫

UR

(

|∇Hnū0|p + |∇Hn ūε|p
)

)1/p

RQ/p.

Then, by the minimal property of ū0 in (6.20),
∫

UR

|∇Hnū0 −∇Hn ūε|p

≤ Cε

(∫

UR

(ε+ |∇Hnūε|2)p/2
)(p−2)/p(∫

UR

|∇Hnūε|p
)1/p

RQ/p

≤ Cε

(∫

UR

(ε+ |∇Hn ūε|2)p/2
)(p−1)/p

RQ/p

≤ Cε

(

RQ +

∫

UR

|∇Hn ūε|p
)(p−1)/p

RQ/p

≤ Cε

(

RQ +

∫

UR

|∇Hn ū0|p
)(p−1)/p

RQ/p,

from which the desired result follows.

Corollary 6.3.3. For all p ∈ (1,+∞), we have that

lim
ε↘0

‖∇Hn ūε −∇Hnū0‖Lp(UR) = 0. (6.35)

Also, there exist a subsequence of ε’s and a function G ∈ Lp(UR) such that

|∇Hnūε(x)| ≤ G(x) (6.36)

for almost every x ∈ UR.

Furthermore, if we set

Γε := (ε+ |∇Hnūε|2)(p/2)−1∇Hn ūε, (6.37)
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then there exist a subsequence of ε’s and a function G? ∈ L1(UR) such that

|Γε(x)| ≤ G?(x) (6.38)

for almost every x ∈ UR.

Proof. We obtain (6.35) from Propositions 6.3.1 and 6.3.2, according to

whether p ∈ (1, 2) or p ∈ [2,+∞).

From (6.35), one deduces (6.36) (see, e.g., Theorem 4.9(b) in [22]).

Now, we define G? := 2(p/2)(G + Gp−1). We observe that G? ∈ L1(UR),

since G ∈ Lp(UR) ⊆ L1(UR) and Gp−1 ∈ Lp/(p−1)(UR) ⊆ L1(UR) . So, in

order to obtain the desired result, we have only to show that the inequality

in (6.38) holds true.

For this, we notice that, if p ∈ (1, 2),

|Γε| =
|∇Hnūε|

(ε+ |∇Hn ūε|2)1−(p/2)
=

|∇Hn ūε|p−1|∇Hn ūε|2−p

(ε+ |∇Hn ūε|2)1−(p/2)

≤ |∇Hn ūε|p−1(ε+ |∇Hn ūε|2)(2−p)/2

(ε+ |∇Hn ūε|2)1−(p/2)
= |∇Hnūε|p−1 ≤ Gp−1,

which implies (6.38) in this case.

On the other hand, if p ∈ [2,+∞),

|Γε| ≤ 2(p/2)−1
(

ε(p/2)−1 + |∇Hn ūε|p−2
)

|∇Hn ūε|
≤ 2(p/2)−1(1 +Gp−2)G,

which implies (6.38) in this case too.

6.4 Lewy-Stampacchia estimate when ε = 0

By Theorem 6.1.1 (for ε > 0, which has been proved in § 6.2), we know that,

for a sequence ε↘ 0,

0 ≤
∫

UR

Γε · ∇ϕ ≤
∫

UR

(

divHn

(

(ε+ |∇Hnψ|2)(p/2)−1∇Hnψ
))+

ϕ, (6.39)

for any ϕ ∈ C∞
0 (UR, [0,+∞)), as long as UR ⊂ Ω, where Γε is as in (6.37).
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By possibly taking subsequences, in the light of (6.35) and (6.38), we

have that

lim
ε↘0

Γε = |∇Hn ū0|p−2∇Hn ū0

almost everywhere in UR, and that Γε is equidominated in L1(UR). Conse-

quently, we can pass to the limit in (6.39) via the Dominated Convergence

Theorem and obtain (6.6) for ū0. This completes the proof of Theorem 6.1.1

also when ε = 0.

6.5 Appendix

In this appendix, we collect some technical and well known estimates of

general interest that will be used in the proofs of the main results.

We start with some classical estimates (see, e.g. Lemma 3 in [84] and

references therein), which turns out to be quite useful to deal with nonlinear

operators of degenerate type:

Lemma 6.5.1. Let M ∈ N, M ≥ 1, and p ∈ [2,+∞). Then, there exists

C > 1, only depending on M and p, such that, for any A, B ∈ RM ,

|A− B|p ≤ C
(

|A|p−2A− |B|p−2B
)

· (A− B) (6.40)

and
∣

∣

∣|A|p−2A− |B|p−2B
∣

∣

∣ ≤ C|A−B|
(

|A|p−2 + |B|p−2
)

. (6.41)

Corollary 6.5.2. Let N ∈ N and and p ∈ [2,+∞). Then, there exists

C > 1, only depending on N and p, such that for any ε > 0 and any a ∈ RN

(

(ε+ |a|2)(p/2)−1 − |a|p−2
)

|a| ≤ Cε(ε+ |a|2)(p−2)/2.

Proof. We let A := (a, ε) and B := (a, 0) ∈ RN+1 and we exploit (6.41). We
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obtain

2Cε(ε+ |a|2)(p−2)/2

≥ Cε
(

(ε+ |a|2)(p−2)/2 + |a|p−2
)

= C|A−B|
(

|A|p−2 + |B|p−2
)

≥
∣

∣

∣
|A|p−2A− |B|p−2B

∣

∣

∣

=
∣

∣

∣(ε+ |a|2)(p−2)/2(a, ε)− |a|p−2(a, 0)
∣

∣

∣

=
∣

∣

∣

(

(

(ε+ |a|2)(p−2)/2 − |a|p−2
)

a, (ε+ |a|2)(p−2)/2ε
)∣

∣

∣

≥
(

(ε+ |a|2)(p−2)/2 − |a|p−2
)

|a|,

as desired.

In the subsequent Lemmata 6.5.3 and 6.5.4, we collect some simple, but

interesting, estimates that are used in Proposition 6.3.1:

Lemma 6.5.3. Let N ∈ N, N ≥ 1, t ∈ [0, 1], ε > 0, and a, b ∈ RN .

Let h(t) := ta + (1 − t)b. Then, there exists C > 1, only depending on N

and p, such that

d

dt

(

(ε+ |h|2)(p/2)−1h · (a− b)
)

≥ 1

C
(ε+ |ta+ (1− t)b|2)(p/2)−1|a− b|2.

Proof. We have

d

dt

(

(ε+ |h|2)(p/2)−1h · (a− b)
)

=
d

dt

(

(ε+ |h|2)(p/2)−1h
)

· (a− b)

= (ε+ |h|2)(p/2)−2
(

ε+ (p− 1)|h|2
)dh

dt
· (a− b)

≥ 1

C
(ε+ |h|2)(p/2)−1|a− b|2

=
1

C
(ε+ |ta+ (1− t)b|2)(p/2)−1|a− b|2,

as desired.

Lemma 6.5.4. Let

p ∈ (1, 2]. (6.42)
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Let N ∈ N, N ≥ 1, ε > 0, and a, b ∈ RN . Then, there exists C > 1, only

depending on N and p, such that

(ε+ |a|2 + |b|2)p/2 ≤ C
[

(ε+ |a|2 + |b|2)(p/2)−1|b− a|2 + (ε+ |a|2)(p/2)
]

.

Proof. We have

|b|2 = |b− a+ a|2 ≤
(

|b− a|+ |a|
)2 ≤ C

(

|b− a|2 + |a|2
)

and so

(ε+ |a|2 + |b|2)p/2

= (ε+ |a|2 + |b|2)(p/2)−1(ε+ |a|2 + |b|2)
≤ C(ε+ |a|2 + |b|2)(p/2)−1(ε+ |a|2 + |b− a|2)
= C(ε+ |a|2 + |b|2)(p/2)−1|b− a|2 + C(ε+ |a|2 + |b|2)(p/2)−1(ε+ |a|2).

Therefore, by (6.42),

(ε+ |a|2 + |b|2)p/2

≤ C(ε+ |a|2 + |b|2)(p/2)−1|b− a|2 + C(ε+ |a|2)(p/2),

that is the desired claim.

The following result deals with some technical estimates on monotone

integrands.

Lemma 6.5.5. Let N ∈ N, N ≥ 1. Let κ ∈ {0, 1}. Let ε, ε′ > 0. Let a,

b ∈ RN . Let Ψ : [ε,+∞) → [ε′,+∞) be a measurable and nondecreasing

function. Then

∫ 1

0

(1− t)κ

Ψ(ε+ |ta+ (1− t)b|2) dt ≥
1

2Ψ(ε+ |a|2 + |b|2) . (6.43)

Proof. If |a| ≤ |b|, for any t ∈ [0, 1],

|ta+ (1− t)b|2 ≤ t2|a|2 + (1− t)2|b|2 + 2t(1− t)|a||b|
≤ t2|b|2 + (1 + t2 − 2t)|b|2 + 2t(1− t)|b|2 = |b|2.
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On the other hand, if |a| ≥ |b|, for any t ∈ [0, 1],

|ta+ (1− t)b|2 ≤ t2|a|2 + (1− t)2|b|2 + 2t(1− t)|a||b|
≤ t2|a|2 + (1 + t2 − 2t)|a|2 + 2t(1− t)|a|2 = |a|2.

In any case,

ε+ |ta+ (1− t)b|2 ≤ ε+ |a|2 + |b|2

and the claim follows from the monotonicity of Ψ.

The next is a useful Hölder/Lp type estimate, that is exploited in Propo-

sition 6.3.1.

Lemma 6.5.6. Let N ∈ N, N ≥ 1. Let f , g ∈ Lp(BR,RN). Suppose that

p ∈ (1, 2]. (6.44)

Then
∫

BR

|f − g|p

≤
(∫

BR

(ε+ |f |2 + |g|2)(p/2)−1|f − g|2
)p/2

×
(∫

BR

(ε+ |f |2 + |g|2)p/2
)(2−p)/2

.

Proof. We observe that

|f − g|p

=
[

(ε+ |f |2 + |g|2)(p/2)−1|f − g|2
]p/2[

(ε+ |f |2 + |g|2)p/2
](2−p)/2

,

and so the desired result follows from the Hölder Inequality with expo-

nents 2/p and 2/(2− p), which can be used here due to (6.44).

To end this chapter, we remark that Definition 6.1.1 is always nonvoid

(independently of ψ and Ω), in the sense that

Lemma 6.5.7. 2 ∈ P(ψ,Ω).
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Proof. The functional in (6.4) when p = 2 boils down to

∫

Ω

1

2
|∇Hnu(ξ)|2 + Fk(u(ξ), ξ) dξ, (6.45)

up to an additive constant that does not play any role in the minimization.

Hence, if uk minimizes this functional, we have that

−
∫

Ω

∇Hnuk(ξ) · ∇Hnϕ(ξ) dξ =

∫

Ω

∂rFk(uk(ξ), ξ)ϕ(ξ) dξ

for any ϕ ∈ C∞
0 (Ω).

Accordingly, if also uk approaches some u∞ uniformly in Ω, it follows that

∫

Ω

u∞∆Hnϕ = lim
k→+∞

∫

Ω

uk∆Hnϕ

= lim
k→+∞

−
∫

Ω

∇Hnuk · ∇Hnϕ = lim
k→+∞

∫

Ω

∂rFk(uk, ξ)ϕ

(6.46)

for any ϕ ∈ C∞
0 (Ω).

Also, from (6.3),

0 ≤ ∂rFk ≤ (∆Hnψ)+

and so (6.46) gives that

0 ≤
∫

Ω

u∞∆Hnϕ ≤
∫

Ω

(∆Hnψ)+ ϕ (6.47)

for any ϕ ∈ C∞
0 (Ω, [0,+∞)).

On the other hand, since uk is a minimizer for (6.45), we have that

sup
k∈N

‖∇Hnuk‖L2(Ω) < +∞

and so, up to a subsequence, we may suppose that ∇Hnuk converges to

some ν ∈ L2(Ω) weakly in L2(Ω). It follows from the uniform convergence

of uk that

−
∫

Ω

ν · ∇Hnϕ = − lim
k→+∞

∫

Ω

∇Hnuk · ∇Hnϕ

= lim
k→+∞

∫

Ω

uk ∆Hnϕ =

∫

Ω

u∞ ∆Hnϕ
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for any ϕ ∈ C∞
0 (Ω). That is, ∇Hnu∞ = ν in the sense of distributions, and

so as a function. In particular, ∇Hnu∞ ∈ L2(Ω), and therefore (6.47) yields

that

0 ≤
∫

Ω

∇Hnu∞ · ∇Hnϕ ≤
∫

Ω

(∆Hnψ)+ ϕ,

for any ϕ ∈ C∞
0 (Ω, [0,+∞)). This shows that u∞ satisfies (6.5) in the distri-

butional sense.





Bibliography

[1] E. Abbena, S. Console, and S. Garbiero. Gruppi di Lie. Dipartimento

di Matematica - Universitá di Torino.
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[77] B. Franchi and E. Lanconelli. Hölder regularity theorem for a class

of linear nonuniformly elliptic operators with measurable coefficients.

Ann.Scuola.Norm.Sup.Pisa Cl.Sci., 10:523–541, 1983.

[78] B. Franchi, G. Lu, and R.L. Wheeden. Representation formu-
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Carathéodory spaces. J. D’analyse Mathématique, 74:67–97, 1998.
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