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Abstract

Chernoff approximations for Feller semigroups and the associated diffusion processes in Riemannian
manifolds are studied. The manifolds are assumed to be of bounded geometry, thus including all compact
manifolds and also a wide range of non-compact manifolds. Sufficient conditions are established for a class
of second order elliptic operators to generate a Feller semigroup on a (generally non-compact) manifold of
bounded geometry. A construction of Chernoff approximations is presented for these Feller semigroups in
terms of shift operators. This provides approximations for solutions to initial-value problems for parabolic
equations with variable coefficients on the manifold. It also yields the weak convergence of a sequence
of random walks on the manifolds to the diffusion processes associated with the elliptic generator. For
parallelizable manifolds this result is applied in particular to the representation of the Brownian motion on
the manifolds as limits of the corresponding random walks.
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1 Introduction

The relations between, on the one hand, evolution equation and semigroup theory and, on the other hand,
functional integration and the theory of stochastic processes is an extensively studied topic [3, 21, 28, 32, 34, 49]
with a long history. Its roots can be traced back to the pioneering papers by Richard Feynman [22, 23], who
proposed an heuristic representation of the solution of Schrödinger equation in terms of limits of integrals over
finite Cartesian powers of some spaces. Feynman’s ideas inspired Marc Kac [31], who rigorously proved a
representation of the solution of the heat equation in terms of an integral on the space of continuous paths
with respect to the Wiener measure. This formula, which is nowadays known as the celebrated ”Feynman-
Kac formula”, is the first and most famous example of the connections between parabolic equations associated
to second order elliptic operators and stochastic processes. Remarkably, Feynman heuristically presented two
mathematical constructions (hopefully theorems under suitable mathematical assumptions) which are now as-
sociated with names of Trotter [58] and Chernoff [14], who rigorously proved them much later. Trotter and
Chernoff formulas provide approximations for evolution (semigroups) that, in several cases, pave the way for
the proof of representation formulas of Feynman-Kac type.

In the present paper, new Chernoff approximations are established for a particular class of Feller semigroups
on a type of generally non-compact Riemannian manifolds. In addition, these formulas are also proved to
have a nice probabilistic interpretation on the said class of manifolds, since they allow the proof of the weak
convergence of a sequence of random walks on the manifold to the diffusion process associated with the elliptic
operator generating the said Feller semigroups.

Literature on the subject. From a general perspective, this work refers to the theory of some strongly
continuous semigroups of linear operators (V (t))t∈R+ on the Banach space C0(M) of continuous real-valued
functions vanishing at ∞ on a locally compact metric space M. Such semigroups are called Feller semigroups.
They are naturally associated with strong-Markov stochastic processes (Xx(t))t∈R+ with values in the one-point
compactification of M in such a way that the action of the operators V (t) on a function f ∈ C0(M) can be
represented in terms of the following formula

(V (t)f)(x) = E[f(Xx(t))], x ∈M, t ∈ R+ .

E is the mathematical expectation. This paper considers the concrete case where M is a smooth Riemannian
manifold M and the generator of the Feller semigroup when restricted to the space C∞c (M) of smooth functions
with compact support is given by the second-order differential operator

(L0f)(x) =
1

2

r∑
k=1

(AkAkf)(x) +A0f(x), x ∈M, (1)

where Ak, k = 0, . . . , r are smooth vector fields. The stochastic processes associated with this particular kind
of Feller semigroups are named Feller-Dynkin diffusions. They have continuous paths and can be constructed
in terms of the (martingale) solution of stochastic differential equations of the form [19, 27, 28, 60]

dX(t) =

r∑
j=1

Aj(X(t)) ◦ dBj(t) +A0(X(t))dt. (2)

This work is in particular devoted to the application of Chernoff theorem (see theorem 6 below) to the con-
struction of an approximation formula for, on the one hand, the Feller semigroup and, on the other hand,
the associated diffusion process and solutions to evolution equation. This technique has been extensively im-
plemented, e.g. in the study of Chernoff approximations of Feller semigroups (hence of corresponding Feller
processes) [8, 9, 10, 11], in the construction of solutions to evolution equations [4, 7, 12], and in the construction
of Wiener measure on compact manifolds [2, 54] (see for overviews [13, 55, 56]). Most of the results present
in literature are restricted to the case where either M = Rd or M is compact. More general classes of Ck

(with k = 1, 2 . . . ,∞ depending on the case) Riemannian manifolds were studied in [29, 42, 37] (see also [38] for
an introductory review of Brownian motion and diffusion processes on manifolds). In those papers, generally
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speaking, conditions are assumed about (a) the existence of a specific covering of open sets with both uniform
metric properties and uniform bounds on the vector fields {Ak}k=0,...,r associated to the dynamical system (2)
and (b) the validity of specific bounds on some curvatures. Under these conditions it is possible to prove the
existence of Feller semigroups associated to the differential operator (1) as well as the non explosion property
of the associated process [37]. In [29, 42] similar conditions allow to prove the convergence of geodesic random
walks to the Brownian motion on the manifold. A recent remarkable book on semigroups on L2(M) (instead
of C0(M)) for generally non-compact manifolds M and the special case of Schrödinger-like operators is [25].
There, heat kernels are extensively studied for Schrödinger-like operators on Hermitian bundles on generally
non-compact base manifolds, extending to these geometric structures many known results valid in Rn.

Results of this work. Differently from the quoted literature, the present work focus on continuous semigroups
on C0(M) with generators of the form (1) for the case of a generic smooth Riemannian manifolds (M, g) of
bounded geometry, also requiring uniform boundedness properties of the involved vector fields for general elliptic
operators (1). Manifolds of bounded geometry are for instance Rd, compact manifolds, and a wide class of non-
compact manifolds that are also relevant in applications, like Lie groups and homogeneous manifolds. The main
results of this work are the following ones.

(a) As a first result, in Section 3, we show that, if the vector fields {Ak}k=0,...,r enjoy a property known as
C∞−boundedness [57], then an extension of the differential operator L0 in (1) is the generator a a Feller-Dynkin
semigroup on C0(M) and we provide a family of operator cores. This result paves the way for the proof of
theorem 29, the second result of this paper, where a Chernoff approximation formula (Eq. (34)) for the Feller
semigroup in terms of a family of rather simple shift operators is presented. The idea of using shift operators
instead of integral operators on Rd goes back to [45, 46, 59, 47] and is now applied to manifolds for the first time.
We also extend the described results to more general operators L0 + c, where c ≤ 0 is a bounded continuous
scalar potential.

(b) The probabilistic interpretation of the approximation formulas (32) and (34) in the case c = 0 is discussed
in Section 4. There, as the third main result, we show that it allows to construct the diffusion process associated
to the Feller semigroup in terms of the weak limit of a sequence of random walks on M . Several interesting
convergence results for diffusion processes on manifolds can be found in literature, see e.g. [39, 15, 29, 42, 37]. It
is worth mentioning the approximation schemes for Wiener measure proposed in [1, 2], the proof of convergence
of random walks to Brownian motion on sub-Riemannian manifolds [24] and the recent application of the
notion of controlled rough path to Riemannian manifolds [18]. Differently from the above mentioned results,
in particular [29, 42, 37], where only geodesic paths are used in M so that the 2nd order ODE are relevant,
in this paper we provide three different approximation schemes associated to 1st order differential equations
of curves in M . These equations are just the ones of the integral lines of the aforementioned vector fields
{Ak}k=0,...,r. Indeed, the first approximation scheme involves a sequence of jump process with random jumps
along integral curves of the vector fields {Ak}k=0,...,r. Notice that more than one vector field is necessary to
change the direction of the random walk when dealing with vector fields in M in place of geodesics. The second
approximation scheme is a sequence of random walks with continuous piecewise geodesic paths. Finally the
third approximation scheme involves a sequence of random walks with continuous paths where the single steps
are integral curves of the vector fields {Ak}k=0,...,r.

(c) These techniques are eventually applied in section 5 to the Chernoff approximation of the specific case
of the heat semigroup and the Brownian motion on parallelizable Riemannian manifolds. In this context we
acheive the final results presented in this work. As said above, besides the traditional approximation of Brow-
nian motion in terms of the weak limit of a sequence of random walks with piecewise geodesic paths (theorem
42), we provide a new approximation result in terms of the limit of random walks with paths along the integral
curves of a family of parallelizing vector fields (theorem 43).

Structure, notations, and conventions. The paper is organized as follows. Section 2 presents some basic
definitions and results on Feller semigroups, Chernoff approximations and Riemannian geometry notions that
are used throughout the paper. Section 3 presents the construction of the Feller semigroup and its Chernoff
approximation. Section 4 is devoted to the probabilistic interpretation of the Chernoff approximation formula
and to the construction of three different sequences of random walks on M converging weakly to the diffusion
process associated to the Feller semigroup. Finally, section 5 extends these results to the study of approximations
of the heat semigroup and the Brownian motion on parallelizable manifolds of bounded geometry. An appendix
contains the proofs of several technical propositions used in the main text.

From now on the notation A ⊂ B includes the case A = B and, referring to a universe set M, if A ⊂ M,
then Ac :=M\A. We adopt throughout the definition R+ := [0,+∞). If M is a smooth manifold the symbol
C∞c (M) denotes the complex space of smooth compactly supported complex-valued functions on M .

An operator A is always understood as a linear operator and its domain, denoted by D(A), is always assumed
to be a linear subspace. The symbol B throughout indicates a Banach space over the field C or R and L (B)
denotes the set of all bounded linear operators in A : D(A)→ B with D(A) = B.
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If A : D(A) → B and B : D(B) → B are operators with D(A), D(B) ⊂ B, then (i) the domain of A + B is
defined as D(A+B) := D(A)∩D(B), (ii) the domain of AB is defined as D(AB) := {x ∈ D(B) |Bx ∈ D(A)},
(iii) the domain of aA, with a ∈ R or C, is D(aA) := D(A) except for a = 0, where D(0A) = B; finally, A ⊂ B
means D(A) ⊂ D(B) and B|D(A) = A.

2 Analytic and Geometric Preliminaries

We assume that the reader is familiar with the theory of C0-semigroups and we recall here just some basic
definitions and results in order to fix the notation and the used terminology. We also recall some basic facts about
the connection of the theory of C0-semigroups and the theory of random processes with particular emphasis
on Feller semigroups and Feller processes. Generally speaking, we shall focus attention only on the notions
and the results which are strictly necessary to state and prove the results in the work. Details appear in the
classical monographs [20, 34, 21, 5, 49, 28] and references therein. Section 2.3 contains some basic notions about
Chernoff-functions [14] which will be used in this work. In sections 2.4 and 2.6 we shall remind the reader some
basic notions of Riemannian geometry used throughout. Classical reference texts are [36, 16, 41, 33]. Section
2.5 introduces the basic notions and results on manifolds of bounded geometry. A recent review on the subject
is [17].

2.1 C0-semigroups and evolution equations

Definition 1. A mapping V : R+ → L (B), is called a C0-semigroup, or a strongly continuous one-
parameter semigroup (of bounded operators) if it satisfies the following conditions,

(1) V (0) = I the identity operator on B,

(2) V (t+ s) = V (t)V (s) if t, s ∈ R+ (semigroup law),

(3) R+ 3 t 7→ V (t)x is continuous for every x ∈ B, i.e., V is continuous in the strong operator topology. �

As is well known [20], if (V (t))t≥0 is a C0-semigroup in Banach space B, then the set

D(L) :=

{
ϕ ∈ B

∣∣∣∣ ∃ lim
t→+0

V (t)ϕ− ϕ
t

}
(3)

is a dense linear subspace of B invariant under the action of each V (t), t ≥ 0. The operator L : D(L)→ B

Lϕ = lim
t→+0

V (t)ϕ− ϕ
t

, ϕ ∈ D(L)

is called the (infinitesimal) generator of the C0-semigroup V . The generator turns out to be a closed linear
operator that defines V uniquely which, in turn, is denoted1 as V (t) = etL.

If L : D(L)→ B with D(L) ⊂ B is an operator, the problem of finding a function u : R+ → B such that{
d
dtu(t) = Lu(t); t ≥ 0,
u(0) = u0,

(4)

is called the abstract Cauchy problem (for the evolution equation) associated to L. A function u : R+ → B
is called a classical solution to abstract Cauchy problem (4) if, for every t ≥ 0, the function u has a continuous
derivative (in the topology of B) u′ : R+ → B, it holds u(t) ∈ D(L) for t ∈ R+, and (4) holds. The following
fact can be found as Proposition 6.2 in [20], p. 145.

Proposition 2. Let the operator L : D(L)→ B be the generator of a strongly continuous semigroup (V (t))t≥0

in the Banach space B. Then, for every u0 ∈ D(L) there is a unique classical solution to abstract Cauchy
problem (4), which is given by the formula u(t) = V (t)u0.

2.2 Feller semigroups and random processes

C0-semigroups are of particular interest because of their strong interplay with the theory of evolution equa-
tions, on the one hand, and with probability theory, on the other hand; from the probabilistic point of view the
so-called Feller semigroups [34, 21] are particularly important.

1As is well known, this notation is only formal in the general case even if in some situations it has a rigorous meaning in terms
of norm-converging series if L is bounded respectively spectral functional calculus in Hilbert spaces when L is normal.
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Let M be a locally-compact metric space. With the symbol C(M) we denote the space of continuous
functions f : M → C. With C0(M) we shall denote the Banach space of continuous functions vanishing at
∞, i.e.

C0(M) := {f ∈ C(M) | ∀ε > 0 ∃K ⊂M compact |f(x)| < ε ∀x ∈ Kc},

endowed with the ‖ ‖∞-norm. If M is compact, it is natural to define C0(M) := C(M).
A linear operator U : C0(M) → C0(M) is said to be positive if (Uf)(x) ≥ 0 for x ∈ M whenever

f ∈ C0(M) and f(x) ≥ 0 if x ∈M. U is said to be a contraction if ‖Uf‖ ≤ ‖f‖ for f ∈ C0(M).

Definition 3. If M is a locally-compact metric space, a strongly continuous semigroup made of positive
contractions on C0(M) is called a Feller semigroup. �

A crucial result is the following one (theorem 2.2 Ch.4 in [21]):

Theorem 4. Let M be a locally compact metric space and L1 : D → C0(M) an operator with domain D ⊂
C0(M) subspace. L1 is closable and its closure L := L1 is the generator of Feller semigroup if the following
conditions are valid.

(a) D is dense in C0(M),

(b) L1 satisfies the positive maximum principle:

for each f ∈ D : if sup
x∈M

f(x) = f(x0) ≥ 0 for x0 ∈M, then (L1f)(x0) ≤ 0 , (5)

(c) Ran(L1 − λI) is dense in C0(M) for some λ > 0.

Remark 5.
(1) Given a closed operator L : D(L) ⊂ B → B on a Banach space B, a dense subspace D ⊂ D(L) is called a
core for L if L|D is closable and L|D = L.
Theorem 4 in fact yields the existence of the semigroup as well as a core for its generator.
(2) In this paper, M is a Riemannian manifold (M, g). We will introduce and use three types of operators: L0

is always a differential operator defined on the whole C∞(M), L1 is its restriction to a suitable subspace Dk

satisfying the theorem above, L = L1 is the generator of the Feller semigroup. �

By the Riesz-Markov theorem, it is possible to associate to any Feller semigroup V a family (pt(x))t≥0,x∈M
of positive Borel measures on M such that, for all t ≥ 0,

(V (t)f)(x) =

∫
M
f(y)pt(x, dy), x ∈M

and, for all f ∈ C0(M),

lim
xn→x

∫
M
f(y)pt(xn, dy) =

∫
M
f(y)pt(x, dy).

Moreover pt(x,M) ≤ 1.
If all the measures of the family (pt(x))t≥0,x∈M are probability measures, then the Feller semigroup is said

conservative. In this case, from the semigroup law, the family of probability measures satisfies the Chapman-
Kolmogorov equation:

pt+s(x,A) =

∫
M
pt(y,A)ps(x, dy), for every Borel set A ⊂M. (6)

As a consequence, given an arbitrary probability measure µ on the Borel σ-algebra B(M) of M, it is possible
to construct a Markov process (Xµ

t )t≥0 with values in M with finite dimensional distributions

P(Xµ
t1 ∈ A1, . . . X

µ
tn ∈ An) =

∫
1A1

(x1) · · · 1An(xn)ptn−tn−1
(xn−1, dxn) · · · pt1(x0, dx1)dµ(x0), (7)

for 0 ≤ t1 ≤ · · · ≤ tn and A1, ..., An ∈ B(M). The existence of the process is guaranteed by the Kolmogorov
existence theorem [5], the family of measures (7) being consistent due to the Chapman-Kolmogorov identity
(6). In the general case, it is still possible to define the associated Markov process (Xµ

t )t≥0 with values in the
1-point compactificationM′ :=M∪ ∂ ofM and the process enjoys the strong Markov property [49]. If Xs = ∂
∀s ≥ t whenever either Xt− = ∂ or Xt = ∂, then these processes are called Feller-Dynkin (FD-) processes. The
random variable

ξ := inf{t ∈ R+|Xt = ∂}
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is called lifetime or explosion time of the process. In fact, if the Feller semigroup is conservative then ξ = +∞
almost surely, hence the FD-process can be thought as a stochastic process with values in M instead of M′
and it is called conservative.

By (7) the action of the semigroup admits the following probabilistic representation

(V (t)f)(x) = E[f(Xx
t )], x ∈M, (8)

where Xx
t is the aforementioned Markov process with initial distribution µ = δx, the Dirac measure concentrated

at x ∈M.
An important class of FD-processes are the diffusions, also called Feller-Dynkin diffusions [28, 49]. They

are defined as FD-processes with continuous paths up to the explosion time. The generator L of the associated
semigroup is a local operator with a domain that includes the set of smooth functions with compact support
and L satisfies the maximum principle (5) there. If x ∈M and (Xx

t ) is the diffusion process starting at x, then
its law P x is a probability measure on the metric space C(R+,M) of continuous paths onM or, more generally
in the case of explosion, on C(R+,M′). The family {P x}x∈M is called a system of diffusion measures.
In the case where the state space M of the Feller-Dynkin diffusion is Rd, it is well known (see e.g. [49, 34])
that the restriction of L to C∞c (Rd) is a second-order elliptic operator of the form

(L0f)(x) =
∑
i,j

aij(x)
∂2f

∂xi∂xj
(x) +

∑
j

bj(x)
∂f

∂xj
(x) + c(x)f(x), x ∈ Rd, f ∈ C∞c (Rd) . (9)

where aij , bj , c, i, j = 1, . . . , d, are real-valued continuous functions, c ≤ 0 and the matrix of coefficients aij(x)
is symmetric and non-negative definite. The corresponding semigroup V provides a classical solution of the
Cauchy problem (in the above semigroup sense) for u0 ∈ C∞c (Rd),{

u′t(t, x) = Lu(t, x) for t > 0, x ∈ Rd
u(0, x) = u0(x) for x ∈ Rd (10)

Actually, by formula (8), the function u : R+ × Rd → R admits the probabilistic representation formula
u(t, x) = E[u0(Xx

t )].
Conversely, given globally Lipschitz maps σik : Rd → R and bi : Rd → R and setting aij =

∑
k σ

i
kσ

j
k, it is

possible to prove that there exists a Feller semigroup whose generator restricted to C∞c (Rd) has the form (9)
with c = 0. The associated diffusion process is constructed in terms of the so called martingale solution of the
stochastic differential equation

dXi
t =

d∑
k=1

σik(Xt)dB
k
t + bi(Xt)dt, (11)

where (Bt)t∈R+ , is a d-dimensional Brownian motion. For an extended discussion of this topic see, e.g. [49, 28].

2.3 Chernoff approximations for C0-semigroups

Here we recall Chernoff’s theorem [14, 20, 6] which provides approximation method for C0-semigroups on
Banach space in terms of suitable operator valued functions.

Theorem 6 (The Chernoff theorem). Let (etL)t≥0 be a C0-semigroup on a Banach space B with generator
L : D(L)→ B and let S : R+ → L (B) be a map satisfying the following conditions:

1. There exists ω ∈ R such that ‖S(t)‖ ≤ eωt for all t ≥ 0;

2. The function S is continuous in the strong topology in L (B);

3. S(0) = I, i.e., S(0)f = f for every f ∈ B;

4. There exists a linear subspace D ⊂ D(L) that is a core for the operator L : D(L) → B and such that
limt→0(S(t)f − f − tLf)/t = 0 for each f ∈ D.

Then the following holds:

lim
n→∞

sup
t∈[0,T ]

∥∥S(t/n)nf − etLf
∥∥ = 0, for every f ∈ B and every T > 0, (12)

where S(t/n)n is a composition of n copies of the linear bounded operator S(t/n).

Remark 7. Let (etL)t≥0 be a C0-semigroup on a Banach space B with generator L : D(L) → B and let
S : R+ → L (B) be a map satisfying formula (12) then:
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(a) S is called a Chernoff function for operator L or Chernoff-equivalent to C0-semigroup (etL)t≥0 [51].

(b) The expression S(t/n)nf is called a Chernoff approximation expression for etLf .

(c) The B-valued function
U(t) := lim

n→∞
S(t/n)nu0 = etLu0

is the classical solution of the Cauchy problem (4) due to Proposition 2 and Theorem 6 if u0 ∈ D(L), so
Chernoff approximation expressions become approximations to the solution with respect to norm in B.

A definition of Chernoff equivalence and Chernoff function was suggested in 2002 [51] and developed in
[52, 53, 54, 55, 56, 48]. New wording was proposed in [44, 46]. Every C0-semigroup S(t) = etL is a Chernoff
function for its generator L, actually it is the only one Chernoff function which has a semigroup composition
property. Also there are other statements known as Chernoff-type theorems and they produce different notions
of Chernoff function. Here we will not give an overview of this topic. We just fix one version of the Chernoff
theorem, one definition of Chernoff function and work with it.

2.4 Structures on Riemannian manifolds

In this section we recall some general notions of Riemannian geometry. For more details we refer to [36, 16,
41, 33]. Let (M, g) be a smooth (i.e., C∞) Riemannian manifold, which we will always assume to be connected,
Hausdorff, and 2nd countable. The Riemannian distance of p, q ∈M is defined as

d(M,g)(p, q) = inf
γ∈Cp,q

Lg(γ) . (13)

Above, Cp,q is the set of the smooth curves γ : [a, b]→M with γ(a) = p and γ(b) = q (a < b depend on γ) and

Lg(γ) :=

∫ b

a

‖γ̇(t)‖gdt ,

– where γ̇ is the tangent vector to γ and ‖γ̇(t)‖g =
√
gγ(t)(γ̇(t), γ̇(t)) its standard g-norm (see below) – is the

length of the curve γ computed with respect to g. The Riemannian distance makes M a metrical space whose
metrical topology coincides with the original topology of M as topological manifold.

If p ∈M and Up ⊂ TpM is a sufficiently small open neighborhood of the origin 0 ∈ TpM , the exponential
map at p, denoted by expp : Up → M , is the map associating v ∈ Up with σ(1, p, v), where [0, 1] 3 s 7→
σ(s, p, v) ∈ M is the restriction to [0, 1] of the maximal g-geodesic in M starting from p, at s = 0, with initial
tangent vector v. It is known that if Up is sufficiently small, expp is a diffeomorphism from Up ⊂ TpM onto the
open neighborhood Vp := expp(Up) ⊂M of p. Furthermore, such Vp can be chosen to be an open d(M,g)-metric

ball Vp = B
(M,g)
r (p) of sufficiently small radius r > 0 (in this case Up will be the open ball in TpM with radius

r).

With the said choice of B
(M,g)
r (p), if N := {e1, . . . ed} is a g-orthonormal basis of TpM , we can construct a

bijective map denoted by exp−1
p,N : B

(M,g)
r (p)→ Br(0) ⊂ Rd as:

exp−1
p,N : B(M,g)

r (p) 3 q 7→ (y1(q), . . . , yd(q)) ∈ Br(0) ⊂ Rd where
∑d
j=1 y

j(q)ej = exp−1
p (q).

This map is smooth with its inverse and its image (i.e., the coordinate representation of the open neighborhood
of the origin of TpM previously denoted by Up) is a standard ball Br(0) ⊂ Rd centered at the origin with

the same radius r as B
(M,g)
r (p). The pair (B

(M,g)
r (p), exp−1

p,N ) is called a (local) normal Riemannian chart

centered on p and the coordinates y1, . . . , yd, Riemannian coordinates centered on p.
It turns out that, referring to this coordinate patch,

(a) the components at y ∈ Br(0) of the metric and its inverse respectively satisfy gab(0) = δab and gab(0) = δab

for a, b = 1, . . . , d;

(b) the Levi-Civita connection coefficients (see (18) below) Γcab(y) associated to metric satisfy Γcab(0) = 0

and it also holds ∂gab
∂yc |0 = ∂gab

∂yc |0 = 0 for a, b, c = 1, . . . , d;

(c) the Rd-Euclidean norm in Br(0) coincides with the distance from p in the following sense:

‖y‖ = d(M,g)

expp

 d∑
j=1

yj(q)ej

 , p

 ; (14)
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(d) there is a unique geodesic segment γ joining p and q ∈ B(M,g)
r (p) and completely included in B

(M,g)
r (p). In

Riemannian coordinates centered on p, it coincides with the Rd segment joining the origin to (y1(q), . . . , yd(q)).
The length Lg(γ) is d(M,g)(p, q).

(M, g) is said to be geodesically complete if all geodesics are defined for all values of their affine parameter
in R. Another way to say the same is that the exponential map expx, for every given x ∈M , is defined on the
whole TxM (even if this does not imply that it defines a diffeomorphism on the whole TxM). The celebrated
Hopf-Rinow theorem proves that geodesical competeness is equivalent to the fact that M is complete as a metric
space with respect to d(M,g). In turn this is equivalent to the fact that closed bounded (with respect to the
geodesical distance) subsets of M are compact. Finally for geodesically complete manifolds, every pair p, q ∈M
admits a (not necessaily unique) geodesic joining them and the length of this geodesic segment coincides with
d(M,g)(p, q), since the said geodesic minimizes the length of the curves joining the points.

The injectivity radius at p ∈ M , denoted by I(M,g)(p) ∈ R+, is the supremum of the set of radii r of

the open ball B
(M,g)
r (p) ⊂ M such that (B

(M,g)
r (p), exp−1

p,N ) is a normal Riemannian chart centered at p for an
orthonormal basis N of TpM (it does not depend on N). The injectivity radius of (M, g) is

I(M,g) := inf
p∈M

I(M,g)(p) .

Remark 8. Compact smooth Riemannian manifolds in particular have always strictiy positive injectivity radius
as the reader easily proves. �

Strictly positivity of the injectivity radius has several important consequences, the following one in particular.

Lemma 9. If (M, g) is a connected smooth manifold with strictly positive injectivity radius, then (M, g) is
geodesically complete and all closed bounded sets are compact.

Proof. See the appendix.

2.5 Manifolds of bounded geometry

For future use, we introduce the definition of manifold (M, g) of bounded geometry. This is a class of
Riemannian manifolds where, in particular, the thesis of Lemma 9 is valid. See [17] for a recent extended review
and [35, 57] for a summary of notions and results used in this paper. Roughly speaking (see remark 12 below),
bounded geometry means that, on the one hand, every point p ∈ M on the manifold there is a geodesical

ball B
(M,g)
r (p) covered by Riemannian coordinates centered on p of radius r > 0 independent of p. On the

other hand, there are uniform bounds on all derivatives of the component of the metric in the said Riemannian

coordinates in B
(M,g)
r (p) independent of p. Here is the formal definition.

Definition 10. A connected smooth Riemannian manifold (M, g) is said of bounded geometry if (M, g) has
strictly positive injectivity radius and for some constants ck < +∞, k = 0, 1, . . .

‖‖∇(g)kR‖g‖∞ ≤ ck , k = 0, 1, . . . .

�

Above and henceforth, ∇(g) indicates the covariant derivative of the Levi-Civita connection associated to g,
R indicates the Riemannian curvature tensor and ‖ · ‖g denotes the natural point-wise norm associated to the
metric g acting on smooth tensor fields of a given order (order (1, 3 + k) concerning ∇(g)kR). For instance, if
T is a smooth tensor field of order (n,m), so that their components at q ∈M in coordinates y1, . . . , yd around
q are T a1···anb1···bm(y(q)), we have

‖T (q)‖2g =
∑

a1,...,an,b1,...,bn,c1,...,cn,d1,...,dn

ga1c1(y(q)) · · · gancn(y(q))gb1d1(y(q)) · · · gbmdm(y(q))

T a1···anb1···bm(y(q))T c1···cnd1···dm(y(q)) . (15)

Example 11. From the definition above, the following manifolds in particular are of bounded geometry (Ex-
ample 2.1 in [17, 57]):

(i) every smooth compact Riemannian manifold;

(ii) Rm equipped with its natural metric;

(iii) every smooth Riemannian locally flat manifold with strictly positive injectivity radius;
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(iv) some classical manifolds as the m-dimensional hyperbolic space (the unit ball B1(0) in Rm equipped with
the Poincaré disk metric);

(v) Homogeneous manifolds with invariant metric;

(vi) covering manifolds of compact manifolds with a Riemannian metric which is lifted from the base manifold.
�

Another crucial feature of a smooth Riemannian manifolds of bounded geometry is the one that follows [17].

For every given r ∈ (0, I(M,g)], there is a sequence of finite constants C
(r)
k ∈ R+, k = 0, 1, 2, . . . and a constant

c(r) > 0 such that

det[gab(y)] ≥ c(r) , if y ∈ Br(0) and max
|α|≤k

‖∂αy gab(y)‖(Br(0))
∞ ≤ C(r)

k , a, b = 1, . . . , d (16)

where y1, . . . , yn are the coordinates of every normal Riemannian chart with domain B
(M,g)
r (p) centered at

p ∈M and gab(y) are the components of the metric in that local coordinate system. We stress that the constant
Ck do not depend on p and all domains have the same geodesical radius r.

From (16) taking advantage of the Kramer rule to compute the element gab(y) of the inverse of the matrix
of the coefficients gab(y), as well as recursively using the identity

∂gab

∂yi
= −

∑
c,d

gacgbd
∂gcd
∂yi

,

it easily arises the existence of another sequence of finite constants H
(r)
k ∈ R+, k = 0, 1, 2, . . . such that

max
|α|≤k

‖∂αy gab(y)‖(Br(0))
∞ ≤ H(r)

k , a, b = 1, . . . , d (17)

where, as above, y1, . . . , yn are the coordinates of every normal Riemannian chart with domain B
(M,g)
r (p)

centered at p ∈M of radius r ∈ (0, I(M,g)].
Finally, referring to Levi-Civita’s connection coefficients

Γabc(y) :=
1

2

∑
d

gad(y)
(
∂ycgbd + ∂ybgdc − ∂ydgbc

)
, (18)

from the above pair of results, we obtain the existence of another sequence of finite constants J
(r)
k ∈ R+,

k = 0, 1, 2, . . . such that

max
|α|≤k

‖∂αy Γabc(y)‖(Br(0))
∞ ≤ J (r)

k , a, b, c = 1, . . . , d (19)

valid in every normal Riemannian chart around every p ∈ M as before defined on a metric ball of radius
r ∈ (0, I(M,g)] with center p.

Remark 12. We observe en passant that if (M, g) has strictly positive injectivity radius and satisfies (16) for a
given r ∈ (0, I(M,g)) – so that it also satisfies (17) and (19) – it is necessarily of bounded geometry, just in view
of the polynomial expression in components of the Riemann tensor in terms of Γcab and their first derivatives.�

2.6 Completeness of vector fields

Let M be a general smooth manifold. As a vector field A on M is a map A : M → TM , we use the notation
A(p) ∈ TpM .

Assuming that A is smooth, let us consider the Cauchy problem{
γ̇(s) = A(γ(s))
γ(t0) = x

(20)

A solution γ : (α, β)→ M of (20) is called maximal if it is not the proper restriction of any other solution of
(20). By the uniqueness of local solution of the Cauchy problem [41] there exists only one maximal solution γ
of (20) and any other solution is one of its restrictions. γ is called the maximal integral curve of A starting
at x. A smooth vector field A on the smooth manifold M is said to be complete [[41], p. 51] if each of its
maximal integral curves is defined on the entire real line. We finally quote an elementary but crucial technical
results whose proof is incuded for completeness in the appendix.
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Lemma 13. Let (M, g) be a connected geodesically complete Riemannian manifold. Let A be a smooth vector
field such that

‖‖A‖g‖∞ < +∞ . (21)

Then the maximal solutions of
d

dt
γ(t) = A(γ(t)) (22)

are complete.

Remark 14. The thesis of the lemma is automatically satisfied for a smooth field in the case of compact
manifolds (for instance as consequence of remark 8 and lemma 9, but the result is elementary and valid also in
absence of metric g). Yet, assuming that A is C∞-bounded (see definition 21 below), the remaining hypotheses
are true for manifolds of bounded geometry, as a consequence of lemma 9. Hence the thesis of lemma 13 is valid
also in this case. �

3 Feller semigroups and Chernoff approximations for diffusions on
Riemannian manifolds

This section is devoted to the study of diffusions on Riemannian manifolds (M, g) of bounded geometry. We
consider second-order elliptic operators L0 : C∞(M) → C∞(M) of the form (23) proving that they admit an
extension L : D(L) ⊂ C0(M)→ C0(M) that generates a Feller semigroup (etL)t∈R+ on C0(M). We also provide
a family of operator-cores for L. This result is finally applied in section 3.3 to the construction of Chernoff
approximations for the semigroup (etL)t∈R+ in terms of a family of shift operators.

3.1 Relevant operators and subspaces of C0(M)

Let (M, g) be a d-dimensional C∞ connected Riemannian manifold which we also assume to be geodesically
complete. Let {Ak}k=0,1,...,r be a family of C∞ vector fields on M . We start by considering the second order
differential operator L0 : C∞(M)→ C∞(M)

(L0f)(x) :=
1

2

r∑
k=1

Ak(Akf)(x) + (A0f)(x), x ∈M , f ∈ C∞(M) (23)

In every local coordinate neighbourhood U containing x, if σik(x) are the components of the vector Ak, the
operator L0 can be represented by the differential operator

(L0f)(x) =
1

2

∑
i,j

aij(x)
∂2

∂xi∂xj
f(x) +

∑
i

bi(x)
∂

∂xi
f(x), x ∈ U, (24)

with bi(x) = σi0(x)+ 1
2

∑
j,k σ

j
k(x) ∂

∂xj σ
i
k(x) and aij(x) =

∑
k σ

i
k(x)σjk(x) are the entries of a positive semidefinite

matrix.
(L0 + c) : C∞(M) → C(M) with L0 taking the form (24) in every coordinate patch, and c ∈ C(M) used

as a multiplicative operator, is said to be elliptic at x ∈ M if the matrix of coefficients aij(x) is positive
semidefinite and non-singular in every local coordinate system of M around x. If this condition holds for every
x ∈ M , then L0 + c is said to be elliptic. It is easy to see that L0 + c is elliptic if the matrices of coefficients
aij are positive semidefinite and non-singular in every chart of an atlas of M .

Remark 15. If Ak, k = 0, . . . r, are smooth vector fields on the smooth manifold M , then the 2nd order
operator L0 +c := 1

2

∑r
i=1AiAi+A0 +c is elliptic at p ∈M if and only if the vector fields Ak, with k = 1, . . . , r,

define a set of generators of TpM . (In particular, ellipticity requires r ≥ d := dimM necessarily). In order

to prove this fact, it is sufficient to notice that aij(p) =
∑
k σ

i
k(p)σjk(p) is automatically positive semidefinite,

hence ellipticity at p is equivalent to

r∑
k=1

〈σk(p), ω〉σk(p) = 0 iff ω = 0 when ω ∈ T ∗pM , (25)

where 〈·, ·〉 is the standard pairing on TpM × T ∗pM and (25) holds iff {Aj(p)}j=1,...,d generates TpM . �

L0 + c is said uniformly elliptic (with respect to the metric g) if there is a costant C > 0 such that

n∑
i,j=1

aij(x)ξiξj ≥ C
n∑

i,j=1

gij(x)ξiξj for every ξk ∈ R, k = 1, . . . , d, and every coordinate patch over M .
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It is easy to see that if the condition above is true for the local charts of an atlas of M and a given C > 0, then
it is true for all local charts of M for the same C.

Remark 16. It is elementary to prove that, if L0 + c is elliptic and M is compact, then L0 + c is uniformly
elliptic. �

In general, the space C∞c (M) is dense in C0(M).

Proposition 17. If M is a smooth manifold, then C∞c (M) is dense in C0(M) in the norm || · ||∞.

Proof. See the appendix.

3.2 Generators of Feller semigroups on Riemannian manifolds

This section is devoted to the construction of generators of Feller semigroup on C0(M) as well as to the
description of their cores. In the following we shall always assume that (M, g) is a smooth manifold of bounded
geometry. We start by giving the definition of some relevant subspaces of smooth functions.

Definition 18. Let (M, g) be a manifold of bounded geometry. A function f : M → R is said Ck-bounded if
f ∈ Ck(M) and if for every r0 ∈ (0, I(M,g)) and every multiindex α, with |α| ≤ k there is a constant Cα < ∞
such that |∂αx f(x)| ≤ Cα < +∞ in every local Riemannian chart (B

(M,g)
r0 , exp−1

p,N ) centered at every p ∈M .

A function f : M → R is said C∞-bounded if f is Ck-bounded for any k ≥ 0.
The space of Ck-bounded functions on M is denoted with the symbol Ckb (M) for k = 0, 1, . . . ,∞. �

Remark 19. It is easy to prove [57] that f ∈ Ck(M) is Ck-bounded iff there exists a constant C < +∞ such
that the covariant derivative ‖∇kf‖∞ < C.

Let us consider the operator L0 (23) and define L1 as its restriction to one of the linear subspacesDk ⊂ C0(M)

Dk := {f ∈ C0(M) ∩ C∞(M) ∩ Ckb (M) | L0f ∈ C0(M)} for k = 0, 1, . . . ,∞. (26)

Each Dk is non-trivial and dense in C0(M) since C∞c (M) ⊂ Dk and by proposition 17. Actually, for every given
k, L1 satisfies hypotheses (a) and (b) of theorem 4, the latter can be trivially proved by direct inspection. If we
are able to prove that also hypothesis (c) of theorem 4 is fulfilled (there exists a λ > 0 such that Ran(L1 − λI)
is dense in C0(M)), then theorem 4 proves that L := L1 is the generator of a Feller semigroup (V (t))t≥0 on
C0(M).

Remark 20. In the case M = Rd and the coefficients aij , bj of the differential operator (9) are bounded and
globally Lipschitz (their smoothness is guaranteed by the assumptions that the vector fields Ak are smooth),
probabilistic arguments [49] provide the existence of a Feller semigroup. The associated diffusion process is
constructed in terms of the martingale solution of the stochastic PDE (11). In this case the representation
formula (8) allows to prove that the generator restricted on the space C∞c (Rd) is actually given by the second
order operator (9).
Analogous results can be obtained in the case where the manifold M is compact, extensively studied, e.g., in
[28]. If Aj , j = 0, ..., r are smooth vector fields, it is possible to construct a diffusion process X = (X(t))
solution of the stochastic PDE

dX(t) =

r∑
j=1

Aj(X(t)) ◦ dBj(t) +A0(X(t))dt

where ◦ denotes the Stratonovich stochastic integral. The action of the Feller semigroup V (t) : C(M)→ C(M)
given by V (t)f(x) = Ex[f(X(t))] and the generator extends the operator (23) (see [28, 27] for details).

However, we stress that this technique does not directly provide a core for the generator.

This section presents some sufficient conditions for the validity of the hypotesis (c) in Riemannian manifolds
different form Rd.

Definition 21. [57] Let (M, g) a manifold of bounded geometry. A differential operator of order n, P :
C∞(M)→ C∞(M), in local coordinates,

(Pf)(x) =
∑
|α|≤n

Pα(x)∂αx f

is said to be C∞-bounded if, for every r0 ∈ (0, I(M,g)) and every pair of multiindeces α, β there is a constant

Cα,β ≥ 0 such that |∂βxPα(x)| ≤ Cα,β in every local Riemannian chart (B
(M,g)
r0 , exp−1

p,N ) centered at every p ∈M .
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Remark 22.
(1) It is possible to prove [57] that a C∞-bounded vector field A on M fulfills the following conditions

‖‖∇(g)kA‖g‖∞ ≤ ak , k = 0, 1, . . . .

for some constants ak < +∞, k = 0, 1, . . ..
(2) It is possible to prove [57] that if a vector field A on M is C∞-bounded, then every differential operator
given by the p-th power Ap is C∞-bounded. Obviously, linear combinations of C∞-bounded operators are
C∞-bounded operators. Therefore the operator L0 (23) is C∞-bounded if (M, g) is of bounded geometry and
the smooth vector fields Aj are C∞-bounded for j = 0, . . . , r.
(3) Every C∞ vector field on a compact Riemannian manifold is automatically C∞-bounded. Analogously,
the operator L0 (23) is C∞-bounded in the case the smooth Riemannian manifold M is compact and the fields
{Aj}j=0,...,r are smooth. �

From now on ∇(g) ·A denotes the scalar field called covariant divergence of A completely defined in local
coordinates around p ∈M as

∇(g) ·A :=

d∑
j=1

(∇(g)
j A)j =

d∑
j=1

(
∂jA

j |p +Aj∂j log
√
|g|
)
.

Let us move on to state and prove the pivotal technical result of this section which we will use to prove that
its closure L = L1 generates a Feller semigroup. Everything relies upon the following technical result proved in
the appendix and based on fundamental achievements by Shubin (Theorem 2.2 in [57]), some of them already
established in [35] where analytic semigroups in Lp-spaces are in particular studied in manifolds of bounded
geometry.

Proposition 23. Let (M, g) be a smooth Riemannian manifold of bounded geometry and consider a uniformly
elliptic 2nd order differential operator L0 : C∞(M)→ C∞(M) be of the form (23), where the r ≥ d real smooth
vector fields Ai are C∞-bounded and A0 is defined as

A0 :=
1

2

r∑
i=1

(∇(g) ·Ai)Ai . (27)

Then,

(i) L := L1 – with L1 := L0|Dk and Dk defined in (26) – is the generator of a Feller semigroup in C0(M) for
every fixed k = 0, 1, . . . ,∞.

(ii) Both the generator L and the generated semigroup are independent of k.

Proof. (i) What we have to prove is nothing but that the three hypotheses of theorem 4 are satisfied for
L1 : Dk → C0(M). Condition (a) has been established in proposition 17. Condition (b) immediatey arises from
the form of L0 and the ellipticity property it satisfies. Regarding (c), the pivotal result appears in the following
lemma proved in the appendix.

Lemma 24. With (M, g) and Aj (j = 0, . . . , r) and L0 as in the hypothesis – in particular A0 as in (27)– for
every h ∈ C∞c (M) and λ > 0 there exists f ∈ C0(M) ∩ C∞b (M) fulfilling

L0f − λf = h . (28)

Proof. See the appendix.

Now observe that, due to lemma 24, if λ > 0 and h ∈ C∞c (M), there is f ∈ C0(M) ∩ C∞b (M) (hence
f ∈ Dk for all k = 0, 1, . . . ,∞) such that L0f = λf + h. This fact can be rephrased to (L1 − λI)f = h. Since
C∞c (M) is dense in C0(M) due to proposition 17, we have proved that Ran(L1 − λI) is dense in C0(M) for
λ > 0, demonstrating that also the hypothesis (c) in theorem 4 is satisfied. Let us finally prove (ii). This is
consequence of the following general lemma.

Lemma 25. Let M : D(M) → B and N : D(N) → B be two closed densely defined operators in the Banach
space B which are generators of corresponding strongly continuous semigroups. If M ⊂ N , then M = N .

Proof. See the appendix.

The proof ends observing that L0|Dk+1
⊂ L0|Dk so that L0|Dk+1

⊂ L0|Dk and both operators are generators of
strongly-continuous semigroups on C0(M). The case D∞ is encompassed since, e.g., D∞ ⊂ D1.
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We can finally prove the main result of this section, by relaxing the requirement on the form of A0.

Theorem 26. Let (M, g) be a smooth Riemannian manifold of bounded geometry and consider a uniformly
elliptic 2nd order differential operator L0 : C∞(M)→ C∞(M) of the form (23), where A0 and the r ≥ d vector
fields Ai are real, smooth and C∞-bounded. Then,

(i) L := L1 – with L1 := L0|Dk and Dk defined in (26) – is the generator of a Feller semigroup in C0(M) for
every fixed k = 0, 1, . . . ,∞.

(ii) Both the generator L and the generated semigroups are independent of k.

Proof. (ii) has the same proof as that of (ii) in proposition 23. The proof of (i) is based on the following technical
result.

Lemma 27. With (M, g) and Aj (j = 1, . . . , r) and L0 as in the hypothesis assume that

A0 :=
1

2

r∑
i=1

(∇(g) ·Ai)Ai +B , (29)

for a real C∞-bounded vector field B. If there exists c > 0 independent of the used local chart around x ∈ M
such that

d∑
a,b=1

Ba(x)Bb(x)ξaξb ≤ c
d∑

a,b=1

r∑
i=1

Aai (x)Abi (x)ξaξb for every ξk ∈ R and every x ∈M (30)

then L := L1 – with L1 := L0|Dk and Dk defined in (26) is the generator of a Feller semigroup in C0(M).

Proof. See the appendix

In view of lemma 27, to prove (i), it is sufficient to prove that (30) is always satisfied however we choose the
real smooth C∞-bounded vector field B. If we think of the numbers ξk as the components of a form ξ ∈ T ∗xM ,
dividing both sides for ||ξ||2g 6= 0, the inequality can be rephrased to, where 〈·, ·〉 is the standard pairing on
TxM × T ∗xM ,

|〈B(x), ξ(x)〉|2

||ξ||2g
≤ c

∑r
i=1 |〈Ai(x), ξ(x)〉|2

||ξ||2g
.

The left-hand side above satisfies

|〈B(x), ξ(x)〉|2

||ξ||2g
≤
||B(x)||2g||ξ||2g
||ξ||2g

≤ ||‖B‖g||2∞ < +∞

whereas the right-hand side fulfils ∑r
i=1 |〈Ai(x), ξ(x)〉|2

||ξ||2g
≥ C
||ξ||2g
||ξ||2g

= C > 0

just in view of the uniformly ellipticity condition. Choosing c := ||‖B‖g||2∞/C, which is necessarily finite, (30)
is satisfied.

To conclude, we prove that we can modify L0 by adding a zero-order term in a certain class of continuous
functions preserving the results above.

Theorem 28. Let (M, g) be a smooth Riemannian manifold of bounded geometry and consider a uniformly
elliptic 2nd order differential operator L0c : C∞(M)→ C(M) of the form

L0c := L0 + c , (31)

where L0 is the operator defined in theorem 26 and c ∈ C0
b (M) being bounded and continuous, defines a multi-

plicative operator c ∈ L (C0(M)). Then,

(i) Assuming additionally that c(x) ≤ 0 for all x ∈M we obtain that L := L1c – with L1c := L0c|Dk and Dk

defined in (26) – is the generator of a Feller semigroup in C0(M) for every fixed k = 0, 1, . . . ,∞.

(ii) Under condition c(x) ≤ 0 for all x ∈M both the generator L and the generated semigroups are independent
of k.
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(iii) If condition c(x) ≤ 0 for all x ∈ M does not hold, then L as in (i) is still the generator of a strongly
continuous semigroup in C0(M) for every fixed k = 0, 1, . . . ,∞, and (ii) is still valid.

Proof. (i) Let us start the proof by establishing that the multiplicative operator −c is accretive ([43] Definition
on p. 240). In fact, if f ∈ C0(M), let p ∈M be such that |f(p)| = supx∈M |f(x)|. Let us construct a normalized
functional λ ∈ C0(M)′ tangent to f ∈ C0(M) as

λ(h) := f(p)h(p) , h ∈ C0(M) ,

It holds trivially ||λ|| = ||f || and λ(f) = ||f ||2 so that λ is normalized and tangent to f , and also λ((−c)f) ≥ 0
(notice that c ≤ 0), so that −c is accretive. At this juncture we can apply the lemma on p. 244 of [43]
with 0 ≤ a < 1/2, b := supM |c|, A := −L0|Dk , and2 B := −c ∈ L (C0(M)). Since L0|Dk generates a Feller

semigroup which is a contraction semigroup by definition, we conclude from the above lemma that L0|Dk + c is

the generator of a contraction semigroup. Since c ∈ L (C0(M)), we also have L0|Dk +c = (L0 + c)|Dk = L0c|Dk .
According to definition 3 of Feller semigroup, the proof of (i) ends by proving that the generated semigroup of
contractions is made of positive operators. This fact immediately arises from the Trotter product formula

e−tA+Bf = lim
n→+∞

(
e−tA/ne−tB/n

)n
f ,

i.e., Theorem X.51 in [43], with A = −L0c|Dk and B = −c, which is valid because A+B generates a contraction
semigroup as established above. Now observe that e−tA/n is positive, since it is an element of a Feller semigroup,
and e−tB/n is positive as well just because, by direct inspection, it is nothing but the multiplicative operator
with a positive function etc(x). Since the limit in the Trotter formula here is computed with respect to the norm

|| · ||∞, we find e−tA+Bf ≥ 0 if f ≥ 0, so that the semigroup generated by L is made of positive elements and
the proof of (i) ends.

The proof of (ii) is identical to that of (ii) in theorem 26.
To prove (iii) it is sufficient to write c(x) = c̃(x)+supx c(x) with c̃ = c−supx c(x) and apply items (i) and (ii)

to L0+c̃, noting that the added constant supx c(x) does not affect domains and closures. The resulting semigroup
Vc(t) has the form Vc(t) = et supx c(x)Vc̃(t), where Vc̃(t) is the Feller semigroup generated by L0c̃|Dk .

3.3 Chernoff functions for the Feller semigroup

In this section we discuss how the Feller semigroup V (t) generated by L can be obtained by a suitable
Chernoff function S again constructed out of the vector fields Aj .

In the following we shall assume that the smooth Riemannian manifold (M, g) is of bounded geometry. In
particular this implies that (M, g) is geodesically complete (see definition 10 and lemma 9).

Theorem 29. Let (M, g) be a smooth Riemannian manifold of bounded geometry and consider a uniformly
elliptic 2nd order differential operator L0 : C∞(M) → C∞(M) of the form (23), where A0 and the r ≥ d
vector fields Ai are real, smooth and C∞-bounded. Let c ∈ C0

b (M) and let L0c := L0 + c and L := L1c – with
L1c := L0c|Dk and Dk defined in (26) for k = 0, 1, . . . ,∞.
For any x ∈M , t ≥ 0 and f ∈ C0(M) let us define

(S(t)f)(x) =
1

4r

r∑
j=1

(
f
(
γx,Aj (

√
2rt)

)
+ f

(
γx,−Aj (

√
2rt)

))
+

1

2
f(γx,A0(2t)) + tc(x)f(x). (32)

where γx,Aj : R+ → M is the integral curve of the vector field Aj starting at time t = 0 at the point x ∈ M ,
namely the solution of the initial value problem{

d
dtγx,Aj (t) = Aj(γx,Aj (t)),
γx,Aj (0) = x.

(33)

Then the following holds.

1. For all t ≥ 0 S(t)(C0(M)) ⊂ C0(M).

2. If (V (t))t≥0 is the strongly continuous semigroup on C0(M) generated by L (according to theorems 26 and
28) then for any f ∈ C0(M) and T > 0 the following holds

lim
n→∞

sup
t∈[0,T ]

‖S(t/n)nf − V (t)f‖ = 0 . (34)

2Notice that in [43] semigroups are represented as e−tA whereas for us they are represented as etL this explains the sign minus
in front of the operators.
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Proof. We remark that the right hand side of (32) is well defined for all t ≥ 0 since by lemma (13) the maximal
solution of the Cauchy problem (33) is defined for all t ≥ 0, the manifold (M, g) being geodesically complete by
the assumption of bounded geometry. Let us first assume c = 0.

1. The continuity of the functions x 7−→ f(γx,A0
(2t)) and x 7−→ f(γx,Aj (

√
2rt)), j = 1, . . . , r, follows from

the continuity of the maps x 7−→ γx,Aj (τ) for all j = 0, . . . , r and τ ∈ R+. Moreover, if f ∈ C0(M),
then for any x ∈ M , τ ∈ R+ and k = 0, ..., r, the map x 7−→ f(γx,Aj (τ)) belongs to C0(M) proving 1
in th thesis. Indeed, given ε > 0 there exists a compact set Kε such that |f(y)| < ε for y ∈ Kc

ε . Set
supx∈M ‖Aj(x)‖ := cj < ∞ and consider the set Kε,τ defined as the closure of the set of points y ∈ M
whose distance from Kε is less then cjτ :

Kε,τ := {y ∈M | d(y,Kε) ≤ cjτ}, (35)

where d(y,Kε) := infx∈Kε d(y, x). Since Kε is compact, it is bounded, namely it is contained in some
closed geodesical ball of finite radius R centered on some x0 ∈ M . Therefore, the closed set Kε,τ is
bounded as well since it is enclosed in a closed ball of radius R + cjτ centered on x0 and it is therefore
compact by the Hopf-Rinow theorem because (M, g) is complete. If x ∈ Kc

ε,τ then γx(τ) ∈ Kc
ε , hence

|f(γx,Aj (τ))| < ε. Indeed if this was not true, i.e. if γx,Aj (τ) ∈ Kε, then:

d(x,Kε) ≤ d(x, γx,Aj (τ)) ≤
∫ τ

0

‖γ̇x,Aj (s)‖ds =

∫ τ

0

‖Aj(γx,Aj (s))‖ds < cjτ.

2. (a) First of all we prove that if f ∈ C0(M) then supx∈M |(S(t)f)(x)| ≤ supx∈M |f(x)|.
Indeed, for all x ∈M we use the fact that function f is bounded and obtain

|(S(t)f)(x)| ≤ 1

4r

r∑
k=1

(∣∣∣f (γx,Aj (√2rt)
)∣∣∣+

∣∣∣f (γx,−Aj (√2rt)
)∣∣∣)+

1

2
|f(γx,A0(2t))|

≤ 1

4r

r∑
k=1

(
2 sup
z∈M
|f(z)|

)
+

1

2
sup
z∈M
|f(z)| = sup

z∈M
|f(z)|.

(b) The mapping R+ 3 t 7−→ S(t)f ∈ C0(M) is continuous.
It is sufficient to show that for any k = 0, . . . r the map R+ 3 τ 7−→ Sj(τ)f ∈ C0(M) given by
Sj(τ)f(x) := f(γx,Aj (τ)) is continuous in the sup-norm.
Let τ0 ∈ R+ and fix ε > 0. Since f ∈ C0(M), there exists a compact set Kε such that |f(y)| < ε/2
for y ∈ Kc

ε . If cj := supx∈M ‖Aj(x)‖ and considering the compact set Kε,τ defined in (35) with
τ = τ0 + 1, we have that if t ∈ [0, τ0 + 1] then γx,Aj (t) ∈ Kc

ε for any x ∈ Kc
ε,τ0+1, hence

|f(γx,Aj (τ))− f(γx,Aj (τ0))| < ε, ∀x ∈ Kc
ε,τ0+1.

If x ∈ Kε,τ0+1, then for t ∈ [0, τ0 + 1] we have γx,Aj (t) ∈ K ′ε,τ0+1, where K ′ε,τ0+1 is the compact set
defined as

K ′ε,τ0+1 = {y ∈M | d(y,Kε,τ0+1) ≤ cj(τ0 + 1)}.
Since f is continuous on M , it is uniformly continuous on the compact set K ′ε,τ0+1 and for any ε > 0
there exists a δ > 0 such that |f(x)−f(y)| < ε for x, y ∈ K ′ε,τ0+1 such that |x−y| < δ. If x ∈ Kε,τ0+1

and |τ − τ0| < min{1, δ/cj}, then γx(τ), γx(τ0) ∈ K ′ε,τ0+1 and |γx(τ)− γx(τ0)| < δ, hence:

|f(γx,Aj (τ))− f(γx,Aj (τ0))| < ε, ∀x ∈ Kε,τ0+1.

(c) If ϕ belongs to the core Dk of L with k ≥ 3 we have

S(t)ϕ = ϕ+ tL1ϕ+ o(t) as R+ 3 t→ 0 in the uniform norm

– where Dk is defined in (26) and L1 := L0|Dk with L0 defined in (23).

For fixed x ∈M and k ∈ {1, . . . , r} let us consider the map t 7→ ϕ(γx,Aj (t)) which is smooth by the
stated assumptions on ϕ ∈ Dk and Aj . By Taylor expansion we have for t ↓ 0:

ϕ(γx,Aj (t)) = ϕ(γx,Aj (0)) + t
d

dt
|t=0ϕ(γx,Aj (t)) +

t2

2

d2

dt2
|t=0ϕ(γx,Aj (t)) +Rj(x, t) (36)

= ϕ(x) + t (Ajϕ) (x) +
t2

2
(AjAjϕ) (x) +Rj(x, t), (37)

(38)
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where

Rj(x, t) =
t3

3!
(AjAjAjϕ) (u),

with u = γx,Aj (ξ), ξ ∈ [0, t]. Analogously for j = 0 we have:

ϕ(γx,A0
(t)) = ϕ(γx,A0

(0)) + t
d

dt
|t=0ϕ(γx,A0

(t)) +R0(x, t)

= ϕ(x) + t (A0ϕ) (x) +R0(x, t),

with R0(x, t) = t2

2! (A0A0ϕ) (u), with u = γx,A0(ξ), ξ ∈ [0, t]. Hence

S(t)ϕ(x) =
1

4r

r∑
j=1

(
ϕ
(
γx,Aj (

√
2rt)

)
+ ϕ

(
γx,−Aj (

√
2rt)

))
+

1

2
ϕ(γx,A0

(2t))

= ϕ(x) +
1

4r

r∑
j=1

2rt (AjAjϕ) (x) + t (A0ϕ) (x) + t3/2R̃(t, x)

= ϕ(x) + tL1ϕ(x) + t3/2R̃(t, x)

where

R̃(t, x) =
√
t(A0A0ϕ)(u0) +

√
2r

12

r∑
j=1

(
(AjAjAjϕ) (uj) + (AjAjAjϕ) (u′j)

)
,

for suitable u0, uj , u
′
j ∈M , j = 1, . . . , r. The proof concludes by proving that supt∈[0,1],x∈M |R̃(x, t)| <

∞. This fact arises from the bounds

‖(A0A0ϕ)‖∞ , ‖(AjAjAjϕ)‖∞ , j = 1, . . . , r,

due to the very definition (26) of Dk as well as on the assumption that the vector fields {Aj}j=0,...r

are C∞-bounded and ϕ ∈ Dk with k ≥ 3.

This concludes the proof of (2) since the conditions (1)-(4) in theorem 6 assuring the validity of (2) are
valid in view of the results above ((3) is trivially true).

The case c 6= 0 has now an easy proof. Let S0 denote the Chernoff function of L with c = 0 and let S denote
the analog for the case c 6= 0. If f ∈ C0(M) then S(t)f = S0(t)f + tcf ∈ C0(M) because S0(t)f ∈ C0(M),
f ∈ C0(M) and c is continuous and bounded. Hence (1) is true. Regarding (2), the estimate ‖S(t)f‖ =
‖S0(t)f + tcf‖ ≤ ‖S0(t)‖||f || + t‖c‖‖f‖ = (1 + t supx∈M |c(x)|)||f || ≤ et‖c‖||f || proves that condition (1) in
theorem 6 is valid. Requirement (2) is valid because S = S(t) is the sum of two continuous L (C0(M))-valued
functions of t. (3) is trivially true. Condition (4) is satisfied because if ϕ ∈ Dk with k ≥ 3, exploiting condition
(c) in (2) above, and where L1 is referred to the case c = 0,

S(t)ϕ = S0(t)ϕ+ tcϕ = ϕ+ tL1ϕ+ o(t) + tcϕ = ϕ+ t(L1 + c)ϕ+ o(t) = ϕ+ tL1cϕ+ o(t) .

Hence theorem 6 implies that (2) is valid.

Theorem 30. Under assumptions of theorem 29, the following facts hold.

(1) For the operator L defined in theorem 28 and S(t) defined in (32), we have that the classical solution3 u
of the Cauchy problem {

∂
∂tu(t, x) = Lu(t, x)
u(0, x) = u0(x)

is given for u0 ∈ D(L) by
u(t, x) = lim

n→∞
(S(t/n)nu0)(x). (39)

(2) In the case A0 = 0 and c = 0, then an alternative equivalent form for the operator S(t) : C0(M)→ C0(M),
t ≥ 0, is:

(S(t)f)(x) =
1

2r

r∑
j=1

(
f
(
γx,Aj (

√
2rt)

)
+ f

(
γx,−Aj (

√
2rt)

))
, f ∈ C0(M) (40)

Proof. Result (1) immediately arises from (34), which is valid for all f ∈ C0(M), for all x ∈ M , and all t ≥ 0.
(2) It can be proved with a proof strictly analogous to that of the corresponding statement in the theorem
29.

3In sense of Proposition 2.
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4 A probabilistic interpretation of Chernoff construction

The convergence result stated by Chernoff construction can be equivalently formulated (see [20] Th 5.2 Ch.
III) in the following way for all t ≥ 0 and f ∈ C0(M):

V (t)f = lim
n→∞

(S(1/n)bntcf) .

Assuming that the function c = 0, the latter formula admits a probabilistic interpretation in terms of the limit
of expectations with respect to a sequence of random walks on the manifold M . Actually, in the following
sections we shall set c = 0 and provide three different constructions.

4.1 A jump process on M

Let {Xn(t)}n≥1 be a sequence of jump processes on M defined as{
Xn(0) ≡ x,
Xn(t) := Xn(bntc/n) = Yn(bntc) t > 0,

(41)

the jump chain {Yn(m)}m≥1 is a Markov chain with transition probabilities given (for each Borel set B ⊂ M)
by

P(Yn(m) ∈ B|Yn(m− 1) = y) =

=
1

4r

r∑
j=1

(
δ
γy,Aj

(√
2r/n

) (B) + δ
γy,−Aj

(√
2r/n

) (B)

)
+

1

2
δγy,A0

(2/n) (B) , B ∈ B(M). (42)

Actually (Xn(t))t≥0 is a random walk onM with steps given by integral curves of the vector fields Ak, k = 0, . . . r.
Now equation (39) can be written in the following form:

u(t, x) = lim
n→∞

(S(1/n)bntcu0)(x) = lim
n→∞

E[u0(Xn(t))] (43)

Actually, the sequence of jump processes {Xn} converges weakly to the diffusion process (X(t))t∈R+ on M
associated to the Feller semigroup V (t), as we are going to show.

Let DM [0,+∞) denote the space of cádlág M−valued functions over the interval [0,+∞), i.e the functions
which are right-continuous and admit left hand limits. It is possible to define a distance function (i.e. metric)
on DM [0,+∞) under which it becomes a separable metric space. The topology induced by the metric is
called Skorohod topology [5, 21]. In the following, with the symbol SM we shall denote the corresponding
Borel σ−algebra on DM [0,+∞). In fact SM coincides with the σ− algebra generated by the projection maps
πt : DM [0,+∞)→M

SM = σ(πt, t ≥ 0) (44)

where
πt(γ) := γ(t), γ ∈ DM [0,+∞). (45)

As a consequence, a stochastic process X = (Ω,F ,Ft, (X(t)),P) with trajectories in DM [0,+∞) can be
looked at as a DM [0,+∞)−valued random variable, i.e. as a map X : Ω→ DM [0,+∞) defined as:

X(ω) := γω, γω(t) := X(t)(ω), t ∈ [0,+∞), ω ∈ Ω.

The measurability of the map X from (Ω,F) to (DM [0,+∞),SM ) follows from (44). We shall denote with µX
the probability measure on SM obtained as the pushforward of P under X, defined for any Borel set I ∈ SM as
µX(I) = P(X(ω) ∈ I).

Considered the sequence of jump processes (Xn) defined on a probability space (Ω,F ,P) by (41), let µXn
be the corresponding distribution on (DM [0,+∞),SM ). Further, let µX be the analogous distribution corre-
sponding to the Feller process X.

Theorem 31. Under the assumptions of theorem 29, the sequence of processes Xn converges weakly in DM [0,+∞)
and its weak limit is the Feller process X.

Proof. The proof is a direct application of (43) and of theorem 2.6 Ch 4 of [21], see also theorem 19.25 in
[32].
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4.2 A piecewise geodesic random walk

For any T > 0, let us consider the space CM [0, T ] of continuous functions γ : [0, T ] → M endowed with
the topology of uniform convergence. The corresponding Borel σ-algebra BM is generated by the coordinate
projections πt, t ∈ [0, T ] defined as above (see Eq. (45)) [3].

The stochastic process X associated to the Feller semigroup V (t) is a diffusion process, hence it has contin-
uous trajectories.

Let us consider the sequence of processes (Zn)n with sample paths in CM [0, T ), obtained by continuous
interpolation of the paths of (Xn)n by means of geodesic arcs. More precisely, the process (Zn(t))t≥0 is defined
as 

Zn(0) ≡ x,
Zn(m/n) ≡ Xn(m/n), m ∈ N,
Zn(t) = γXn(m/n),Xn((m+1)/n)(t−m/n), t ∈ [m/n, (m+ 1)/n]

(46)

, where γx,y(t) denotes an arbitrary shortest geodesics in M such that γx,y(0) = x and γx,y(1/n) = y.
Let us denote with µn, resp. µ, the Borel measure over the space CM [0, T ] induced by the process Zn, resp.

X. The following holds.

Theorem 32. Under the assumptions above, Zn converges to X on CM [0, T ].

In other words, theorem 32 states that the sequence of measures {µn} converges weakly to µ. Before proving
theorem 32 we recall some preliminary results.

Definition 33. Let (M,d) be a separable metric space. The modulus of continuity of a function γ : [0, T ]→M
is defined for any δ > 0 as:

w(γ, δ) := sup{d(γ(t), γ(s)), s, t ∈ [0, T ], |t− s| < δ}.

Lemma 34. let νn be a sequence of probability measures on DM [0, T ] converging weakly to a finite measure ν
which is concentrated on CM [0, T ]. Then for any ε > 0

lim
δ↓0

lim sup
n∈N

νn({γ ∈ DM [0, T ] : w(γ, δ) > ε}) = 0 (47)

For a proof see [54].

Proof of theorem 32. Let us consider the trajectories γω of the process Zn, defined as γω(t) := Zn(t)(ω). Fix
δ > 0 and take n sufficiently large in such a way that 1/n < δ. Consider s, t ∈ [0, T ], s < t, |t− s| < δ. We will
have s ∈ [m/n, (m+ 1)/n] and t ∈ [m′/n, (m′ + 1)/n], with m ≤ m′. We have:

d(γω(s), γω(t))

≤ d (γω(s), γω((m+ 1)/n)) + d (γω((m+ 1)/n), γω(m′/n)) + d (γω(m′/n), γω(t))

≤ d (γω(m/n), γω((m+ 1)/n)) + d (γω((m+ 1)/n), γω(m′/n)) + d (γω(m′/n), γω((m′ + 1)/n))

≤ 3 max{d (γω(m/n), γω(m′/n)) , |m/n−m′/n| < δ}

We can then estimate the probability that the modulus of continuity of the trajectories of Zn exceeds a
given ε > 0 as

µn ({γ ∈ CM [0, T ] : w(γ, δ) > ε})

≤ µn
(
{γ ∈ CM [0, T ] : max

m
{d(γ(m/n), γ(m+ 1)/n))} > ε/3}

)
= µXn ({γ ∈ DM [0, T ] : w(γ, δ) > ε/3})

By theorem 31 and lemma 34, we get for any ε > 0

lim
δ↓0

lim sup
n

µn ({γ ∈ CM [0, T ] : w(γ, δ) > ε}) = 0

Since Zn(0) = x for any n, the sequence of probability measures {µn} is tight [5] and the measure µ, i.e. the
law of X is the only possible limit point.

18



4.3 A different interpolation scheme

Let us consider the sequence of processes (Z̃n)n with sample paths in CM [0, T ), obtained by continuous
interpolation of the paths of (Xn)n by means of integral curves of the vector fields Ak, k = 0, ..., r. More
precisely, introduced a sequence of i.i.d. discrete random variables ξj with distribution

P(ξj = 0) = 1/2, P(ξj = k) =
1

2r
, k = 1, . . . , 2r,

and the map τ : {0, . . . , 2r} × [0, 1]→ R defined by

τ(k, t) =

{
2t k = 0√

2rt k = 1, . . . 2r

the process (Z̃n(t))t∈R+ can be defined as{
Z̃n(0) ≡ x,
Z̃n(t) = γZ̃n(m/n),(−1)ξmAξm/2

(τ(ξm, t−m/n)) t ∈ [m/n, (m+ 1)n],
(48)

where for ax ∈M and a smooth vector field A on M , γx,A denotes the maximal solution of the Cauchy problem
(20). In particular the following holds:

Z̃n(m/n) = Xn(m/n), m ∈ N.

Analogously to the case of geodesic interpolation studied in the previous section, it is possible to prove the
weak convergence of Z̃n to X on CM [0, T ]. Let µ̃n (resp. µ) be the Borel probability measure on CM [0, T ]
induced by the process Z̃n (resp. X).

4.3.1 A technical interlude

In this subsection we introduce some results that will be applied to the proof of theorem 38.
In this section, if t =

∑d
i=1 t

iei and s =
∑d
i=1 s

iei, where (ej)j=1,...,d is the standard orthonormal basis of
Rd,

‖t‖ :=

√√√√ d∑
i=1

(ti)2 and 〈t, s〉 :=

d∑
i=1

tisi

respectively denote the standard Euclidean norm and the standard inner product in Rd. Furthermore, dRd(p, q) :=
‖p− q‖ ∈ [0,+∞) denotes the usual Euclidean distance of p, q ∈ Rd.
Let us start by considering the case where M = Rd.

Proposition 35. Let A : Rd → Rd be a smooth vector field such that, for some M1,M2 ∈ (0,+∞),

1. ‖A(x)‖ ≤M1 if x ∈ Rd

2. the components Ai : Rd → R satisfy ‖∇Ai(x)‖ ≤M2 for all i = 1, .., d if x ∈ Rd.

Consider the unique maximal and complete (for 1) smooth solution γ : R→ Rd of the Cauchy problem{
γ̇(t) = A(γ(t))
γ(0) = γ0

(49)

for every γ0 ∈ Rd and define dγ0 : [0,+∞)→ R as

dγ0(t) := dRd(γ(0), γ(t)).

Then there exists T > 0 independent of γ0 such that the function dγ0 is non-decreasing in [0, T ]. Even more,
dγ0 is strictly increasing in [0, T ] if A(γ0) 6= 0.

Proof. First of all let us remark that if A(γ(0)) = 0 then dγ0(t) = dRd(γ(0), γ(t)) = 0 and the result holds trivially
for any T > 0. Let us therefore restrict ourselves to the case A(γ(0)) 6= 0 where, by the local uniqueness of the
solutions of the Cauchy problem (49), we have that A(γ(t)) 6= 0 for all t 6= 0. Let fγ0 : [0,+∞) → R be the
smooth map fγ0(t) = dγ0(t)2 = ‖γ(t)− γ(0)‖2. To prove the thesis it is enough to demonstrate that

if A(γ0) 6= 0, then there exists T > 0 independent of γ0 such that f ′γ0(t) > 0 for all t ∈ (0, T ]. (50)
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To prove (50), we start by notincing that linearity and symmetry of the inner product in Rd and the trivial
identity arising from (49)

γ(t)− γ(u) =

∫ t

u

A(γ(s))ds (51)

yield

fγ0(t) =

〈∫ t

0

A(γ(s))ds,

∫ t

0

A(γ(u))du

〉
= 2

∫ t

0

∫ s

0

〈A(γ(s)), A(γ(u))〉 duds.

The derivative f ′γ0(t) appearing in (50) therefore admits the explicit form

f ′γ0(t) = 2

∫ t

0

〈A(γ(t)), A(γ(u))〉 du. (52)

The components Ai(γ(u)) (i = 1, .., d) of the vector field A(γ(u)) can be expanded as

Ai(γ(u)) = Ai(γ(t)) +
〈
∇Ai(ξi,u,t), γ(u)− γ(t)

〉
(53)

where, according to the Lagrange for of the remainder of the Rd Taylor expansion,

ξi,u,t = γ(t) + θi(γ(u)− γ(t)) with θi ∈ [0, 1]. (54)

Plugging (53) in the right-hand side of (52), a trivial computation leads to

f ′γ0(t) = 2

∫ t

0

d∑
i=1

(
|Ai(γ(t))|2 +Ai(γ(t)) 〈∇Ai(ξi,u,t), γ(u)− γ(t)〉

)
du. (55)

The proof the theorem ends proving that there exists T > 0 such that, if 0 ≤ t ≤ T , then

d∑
i=1

|Ai(γ(t))
〈
∇Ai(ξu,t), γ(u)− γ(t)

〉
|

wish to prove
<

d∑
i=1

|Ai(γ(t))|2 = ‖A(γ(t))‖2. (56)

Indeed, (56) entails that the integrand in (55) – that is the one in (52) – is strictly positive so that (50) is
valid because the integrand of (52) is also u-continuous. To prove (56), let us focus on its left-hand side. It is
bounded by

d∑
i=1

|Ai(γ(t))
〈
∇Ai(ξu,t), γ(u)− γ(t)

〉
| ≤

d∑
i=1

|Ai(γ(t))| |
〈
∇Ai(ξu,t), γ(u)− γ(t)

〉
|

≤
d∑
i=1

‖A(γ(t))‖‖∇Ai(ξu,t)‖‖γ(u)− γ(t)‖ ≤ dM2‖A(γ(t))‖‖γ(u)− γ(t)‖. (57)

The bound (57) can be further improved estimating ‖γ(u) − γ(t)‖ with the following argument where we use

the notation γ(t) =
∑d
i=1 γ

i(t)ei and we exploit again (51) and (53)-(54).

γi(u)− γi(t) =

∫ u

t

Ai(γ(s))ds =

∫ u

t

Ai(γ(t))ds+

∫ u

t

〈
∇Ai(ξi,s,t), γ(s)− γ(t)

〉
ds

= Ai(γ(t))(u− t) +

∫ u

t

〈
∇Ai(ξi,s,t), γ(s)− γ(t)

〉
ds.

Since ‖∇Ai(x)‖ ≤M2 due to condition 2, we therefore have

|γi(u)− γi(t)| ≤ ‖A(γ(t)‖(t− u) +

∫ t

u

M2‖γ(s)− γ(t)‖ds,

so that

‖γ(u)− γ(t)‖ ≤
√
d

(
‖A(γ(t))‖(t− u) +

∫ t

u

M2‖γ(s)− γ(t)‖ds
)
. (58)

Let us iterate this inequality for ‖γ(u) − γ(t)‖ finding an improved estimate in terms of ‖A(γ(t))‖ and t − u,
hence in terms of T because 0 ≤ u ≤ t ≤ T . Let us start by applying inequality (58) to the term ‖γ(s)− γ(t)‖
on the integrand in the right-hand side of (58):

‖γ(u)− γ(t)‖ ≤
√
d‖A(γ(t))‖

(
(t− u) +M2

√
d

∫ t

u

(t− s1)ds1

)
+ (M2

√
d)2

∫ t

u

∫ t

s1

‖γ(s2)− γ(t)‖ds2ds1.
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Applying (58) again, we obtain

‖γ(u)− γ(t)‖ ≤
√
d‖A(γ(t))‖

(
(t− u) +M2

√
d

∫ t

u

(t− s1)ds1 + (M2

√
d)2

∫ t

u

∫ t

s1

(t− s2)ds2ds1

)
+ (M2

√
d)3

∫ t

u

∫ t

s1

∫ t

s2

‖γ(s3)− γ(t)‖ds3ds2ds1.

To state the general estimate, let us introduce the n-dimensional orthogonal simplex,

∆n := {(s1, ..., sn) ∈ [u, t]n : u ≤ s1 ≤ ... ≤ sn ≤ t}

which is the a corner of n-dimensional cube [u, t]n with length of the corner-touching edges t − u. The n-
dimensional Lebesgue measure of ∆n equals |∆n| = (t − u)n/n! and a direct calculation shows that |∆n+1| =∫

∆n
(t− sn)dsn . . . ds1. With this notation, the last inequality reads

‖γ(u)− γ(t)‖ ≤
√
d‖A(γ(t))‖

(
|∆1|+M2

√
d|∆2|+ (M2

√
d)2|∆3|

)
+ (M2

√
d)3

∫
∆3

‖γ(s3)− γ(t)‖ds3ds2ds1.

Applying (58) to this inequality as many times as we need for each n ≥ 1, and recalling that M2 6= 0, we have

‖γ(u)− γ(t)‖ ≤
√
d‖A(γ(t))‖ 1

M2

√
d

(
M2

√
d|∆1|+ (M2

√
d)2|∆2|+ · · ·+ (M2

√
d)n|∆n|

)
+ (M2

√
d)n+1

∫
∆n

‖γ(sn)− γ(t)‖dsn . . . ds1,

which, after exploiting |∆n| = (t− u)n/n!, becomes

‖γ(u) − γ(t)‖ ≤ ‖A(γ(t))‖
M2

n∑
m=1

(
M2

√
d(t− u)

)n
n!

+ (M2

√
d)n+1

∫
∆n

‖γ(sn) − γ(t)‖dsn . . . ds1. (59)

An estimate of the remainder in this formula arises from the trivial bound

‖γ(t)− γ(u)‖ =

∥∥∥∥∫ t

u

A(γ(s))ds

∥∥∥∥ ≤ ∫ t

u

‖A(γ(s))‖ds ≤M1(t− u) if 0 ≤ u ≤ t (60)

which specializes to ‖γ(sn)− γ(t)‖ ≤M1(t− sn) in (59), yielding∣∣∣∣(M2

√
d)n+1

∫
∆n

‖γ(sn)− γ(t)‖dsn . . . ds1

∣∣∣∣ ≤ (M2

√
d)n+1

∫
∆n

M1(t− sn)dsn . . . ds1

= M1(M2

√
d)n+1|∆n+1| =

M1

(
M2

√
d(t− u)

)n+1

(n+ 1)!
−→ 0 as n→∞.

As a consequence, taking the limit as n→∞ in (59), we finally obtain

‖γ(u)− γ(t)‖ ≤ ‖A(γ(t))‖
M2

(
eM2

√
d(t−u) − 1

)
. (61)

Combining (61) with (57) we find

d∑
i=1

|Ai(γ(t))
〈
∇Ai(ξu,t), γ(u)− γ(t)

〉
| ≤ dM2‖A(γ(t))‖‖γ(u)− γ(t)‖

≤ dM2‖A(γ(t))‖‖A(γ(t))‖
M2

(
eM2

√
d(t−u) − 1

)
= d‖A(γ(t))‖2

(
eM2

√
d(t−u) − 1

)
≤ d‖A(γ(t))‖2

(
eM2

√
dT − 1

)
,

where at the last step we used the fact that that R 3 y 7−→ ey is monotonically increasing and that t− u ≤ T
because 0 ≤ u ≤ t ≤ T . In summary, we have established that, for all T > 0, if 0 ≤ u ≤ t ≤ T , then

d∑
i=1

|Ai(γ(t))
〈
∇Ai(ξu,t), γ(u)− γ(t)

〉
| ≤ d‖A(γ(t))‖2

(
eM2

√
dT − 1

)
. (62)
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This inequality is sufficient to prove (56) concluding the proof, just choosing T > 0 such that

d‖A(γ(t))‖2
(
eM2

√
dT − 1

)
< ‖A(γ(t))‖2 if 0 ≤ t ≤ T . (63)

This is always feasible because, as observed at the beginning of the proof, A(γ(t)) 6= 0 if A(γ(0)) 6= 0 as we
supposed in (50). We can therefore divide both sides of (63) for ||A(γ(t))|| 6= 0, and the resulting inequality is
solved as (taking the constraint T > 0 into account),

0 < T <
1

M2

√
d

ln

(
1 +

1

d

)
(64)

Notice that this T can be chosen independent of γ0 = γ(0).

This result can be extended to Riemannian manifold (M, g) of bounded geometry. Indeed, in this case the
following result allows to prove a bound for the euclidean norm of the components of a vector field A annd of
its covariant derivative ∇A in local normal charts in terms of their Riemannian norm ‖A‖g and ‖∇A‖g.

Proposition 36. Let (M, g) be a d-dimensional smooth Riemannian manifold of bounded geometry. If r0 ∈
(0, I(M,g)) is sufficiently small, then there exist four constants k1, k2, k3.k4 ∈ [0,+∞) such that for every local

normal Riemannian chart centered at every p ∈ M (B
(M,g)
r0 (p), exp−1

p,N ) with coordinates y1, . . . , yn and every
smooth vector field A on M , the following uniform bounds hold:

(a) ||A(y(q))||2 ≤ k1||A(q)||2g ,

(b) ||∇A(y(q))||2 ≤ k2||∇(g)A(q)||2g + k3||A(q)||2g + k4||∇(g)A(q)||g||A(q)||g ,

when q ∈ B(M,g)
r0 (p) (i.e. y(q) ∈ Br0(0) ⊂ Rd).

Above ∇ denotes the standard gradient in Rd and || · || indicates the standard pointwise Euclidean norm of
vectors and Rd-(1, 1) tensors referring to their components in Cartesian coordinates y1, . . . , yd:

||A(y)||2 =

d∑
a=1

|Aa(y)|2 and ||T (y)||2 :=

d∑
a,b=1

|T ab (y)|2 ,

whereas || · ||g denotes the previously defined natural point-wise norm associated to the metric g acting on vector
fields and tensor fields of order (1, 1) and ∇(g) is the Levi-Civita covariant derivative associated to the metric.

Proof. See the appendix

We are now in a position to state the final result which extends proposition 35 to Riemannian manifolds of
bounded geometry.

Proposition 37. Let (M, g) be a smooth Riemannian manifold of bounded geometry (thus geodesically complete)
and A a smooth vector field on M such that, for some c1, c2 ∈ (0,+∞),

1. supx∈M ‖A(x)‖g ≤ c1,

2. supx∈M ‖∇(g)A‖g ≤ c2.

Consider the unique maximal and complete (for 1) smooth solution γ : R→M of the Cauchy problem{
γ̇(t) = A(γ(t))
γ(0) = γ0

(65)

for every γ0 ∈M and define dγ0 : [0,+∞)→ R as

dγ0(t) := d(M,g)(γ(0), γ(t)).

Then, there exists T > 0 independent of γ0 such that the function dγ0 is non-decreasing in [0, T ]. Even more,
dγ0 is strictly increasing in [0, T ] if A(γ0) 6= 0.
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Proof. First of all, exactly as for the caseM = Rd, we remark that ifA(γ(0)) = 0 then dγ0(t) = d(M,g)(γ(0), γ(t)) =
0 and the result holds trivially for any T > 0. Let us therefore restrict ourselves to the case A(γ(0)) 6= 0 where,
by the local uniqueness of the solutions of the Cauchy problem (65), we have that A(γ(t)) 6= 0 for all t 6= 0. Let
fγ0 : [0,+∞)→ R be the smooth map fγ0(t) = dγ0(t)2. To prove the thesis it is enough to demonstrate that

if A(γ0) 6= 0, then there exists T > 0 independent of γ0 such that f ′γ0(t) > 0 for all t ∈ (0, T ]. (66)

Statement (66) will be demonstrated by reducing to the analogous proof in Rd here performed in a suitably
Riemannian coordinate patch centered on γ(0). To this end it is fundamental to prove that the solution γ(t)
cannot exit such a Riemannian coordinate domain. For a given γ(0) ∈M take r ∈ (0, I(M,g)) and consider the

geodesical ball B
(M,g)
r (γ(0))). We prove that there is T ′ > 0, independent of γ(0), such that γ(t) ∈ B(M,g)

r (γ(0)))
for t ∈ [0, T ′]. From the definition (13) of d(M,g) we have that

d(M,g)(γ(T ′), γ(0)) ≤
∫ T ′

0

‖γ̇(t)‖dt =

∫ T ′

0

‖A(γ(t))‖dt ≤
∫ T ′

0

c1dt = T ′c1 .

We conclude that, defining T ′ := r/c1, we have that γ(t) ∈ B
(M,g)
r (γ(0))) for t ∈ [0, T ′] as wanted. We

henceforth restrict our attention to the ball B
(M,g)
r (γ(0))), since the curve cannot exit it if t ∈ [0, T ′), looking

for T ∈ (0, T ′) satisfying (66). We can describe the curve γ in Riemannian coordinates y1, . . . , yd centered on
γ(0) inside the ball Br(0) ⊂ Rd, taking advantage of the results already proved in Rd in proposition 35. Now,
the crucial observation is that, due to (14) and noticing that γ(0) coincides to the origin 0 of Rd when describing
it in Riemannian coordinates y1, . . . , yd, we have that

dγ(0)(t) = ||γ(t)− γ(0)|| ,

where the norm is the Euclidean one in Rn when describing the curve γ in coordinates γ(t) ≡ (y1(t), . . . , yd(t)).
From now on the proof of (66) is identical to that of (50), using the fact that, in the said coordinate patch,
conditions 1 and 2 in proposition 35 are true for x ∈ Br(0) if choosing the initial r = r0 sufficiently small that
proposition 36 is valid (observe that this choice is independent of γ(0)). As a matter of fact, with the said r0,
taking advantage of (a) and (b) in proposition 36, we can choose

M1 ≥
√
k1c1 and M2 ≥

√
k2c21 + k3c22 + k4c1c2 .

With the proof of proposition 35 and M1,M2 as above (taking M2 > 0 as in the proof of proposition 35), the
wanted T is every T ∈ (0, T ′) which also satisfies (64). It is clear from the procedure that T can be chosen
independent of γ(0).

4.3.2 Weak convergence of the sequence Zn to X

Coming back to the sequence Z̃n of random walks defined in (48), the results of proposition 37 allow to
prove that for any T > 0 the sequence of measures µ̃n on (C([0, t],M),B(C([0, t],M)) induced by Z̃n converges
weakly to the measure µ induced by the diffusion process X.

Theorem 38. Under the assumptions of theorem 29, the sequence of measures µ̃n on (C([0, t],M),B(C([0, t],M))
induced by the random walks Z̃n defined by (48) converges weakly to the measure µ on (C([0, t],M),B(C([0, t],M))
induced by the diffusion process X associated with the elliptic operator L.

Proof. Since by assumptions (M, g) is of bounded geometry and the vector fields {Ak}k=0,...,r are C∞-bounded,
they satisfy the assumptions of proposition 37. In particular there exists two constants c1, c2 ∈ R+ such that
for all k = 0, . . . , r

sup
x∈M
‖Ak(x)‖g ≤ c1, sup

x∈M
‖∇(g)Ak‖g ≤ c2,

and there exists a T > 0 such that for all k = 0, . . . , r and x ∈ M the functions dk : R+ → R defined as
dk(t) := d(x, γx,±Ak(t) in non-decreasing for t ∈ [0, T ], with γx,A denoting the maximal solution of the Cauchy
problem (20).

The main argument is now completely similar to the one in the proof of theorem 32. Let us consider the
trajectories γω of the process Z̃n, defined as γω(t) := Z̃n(t)(ω). By proposition 37 there exists T > 0 such that
for any x ∈ M we have d(x, γx(t)) ≤ d(x, γx(t′)) for all 0 ≤ t ≤ t′ ≤ T , with γx : [0,+∞)→ M is the maximal
solution of the Cauchy problem (65). Fix δ > 0 and take n sufficiently large in such a way that 1/n < min(δ, T )
and . Consider s, t ∈ [0, T ], s < t, |t − s| < δ. We will have s ∈ [m/n, (m + 1)/n] and t ∈ [m′/n, (m′ + 1)/n],
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with m ≤ m′, hence:

d(γω(s), γω(t))

≤ d (γω(s), γω((m+ 1)/n)) + d (γω((m+ 1)/n), γω(m′/n)) + d (γω(m′/n), γω(t))

≤ d (γω(m/n), γω((m+ 1)/n)) + d (γω((m+ 1)/n), γω(m′/n)) + d (γω(m′/n), γω((m′ + 1)/n))

≤ 3 max{d (γω(m/n), γω(m′/n)) , |m/n−m′/n| < δ}

The probability that the modulus of continuity of the trajectories of Z̃n exceeds a given ε > 0 can be
estimated by

µn ({γ ∈ CM [0, T ] : w(γ, δ) > ε})

≤ µn
(
{γ ∈ CM [0, T ] : max

m
{d(γ(m/n), γ(m+ 1)/n))} > ε/3}

)
= µXn ({γ ∈ DM [0, T ] : w(γ, δ) > ε/3})

By theorem 31 and lemma 34, we get for any ε > 0

lim
δ↓0

lim sup
n

µn ({γ ∈ CM [0, T ] : w(γ, δ) > ε}) = 0

Since Z̃n(0) = x for any n, the sequence of probability measures {µn} is tight [5] and the measure µ, i.e. the
law of X is the only possible limit point.

5 Heat equation and Brownian motion on parallelizable manifolds

The results of the previous sections can be also applied to the construction on the Brownian motion on
M . Here we shall assume that the manifold M is parallelizable i.e. that there exist smooth vector fields
{ek}k=1,...,d such that for any x ∈M the vectors {ek}k=1,...,d provide a linear basis of TxM . Examples of such
manifolds are e.g. the spheres S1, S3, S7 and Lie groups as well as orientable 3-manifolds. Without loss of
generality, we can take {ek}k=1,...,d in such a way that for any x ∈M the vectors {ek}k=1,...,d are orthonormal
with respect to the metric tensor g. Further, given a local neighborhood U , the components eik the vectors ek
with respect to the local basis ∂i := ∂

∂xi satisfy the following equality:

d∑
k=1

eik(x)ejk(x) = gij(x)

Let us consider the Laplace-Beltrami operator L0 := ∆LB on M defined in local coordinates on the smooth
maps u ∈ C∞(M) as:

∆LBu =

d∑
i,j=1

gij∇(g)
i ∇

(g)
j u ,

or, more explicitly

(∆LBu)(x) =

d∑
i,j=1

gij(x)

(
∂2u

∂xi∂xj
(x)−

d∑
k=1

Γkij
∂u

∂xk
(x)

)
.

Under suitable hypotheses, the results of previous sections can be applied to ∆LB providing on the one
hand the existence of an associated Feller semigroup - the heat semigroup - in C0(M) and, on the other hand, a
Chernoff approximation in terms of translation operators of the form (32) or (67). From the probabilistic point
of view, these results yield also an approximation for the Brownian motion on M , i.e. the diffusion process
associated to the heat semigroup, in terms of the weak limit of sequences of different types of random walks on
M .

More precisely we have the following result.

Theorem 39. Let (M, g) be a smooth Riemannian manifold of bounded geometry. Then the closure in C0(M)
of ∆LB |Dk where Dk is defined in (26) with L0 := 1

2∆LB is the generator of a (unique) Feller semigroup on
C0(M). Both the generator and the semigroup are independent of k = 0, 1, . . ..

Proof. Since (M, g) is of bounded geometry −∆LB is C∞-bounded, furthermore ∆LB |C∞c is symmetric and
−∆LB |C∞c ≥ 0. Finally −∆LB is automatically uniformly elliptic since the matrix defining its pricipal symbol
is nothing but the metric g. Hence ∆LB enjoys exactly the same properties as those of the operator L0 we used
in the proof of lemma 24 and proposition 23. The proof for ∆LB is therefore identical.
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5.1 An approximation in terms of random walk with piecewise geodesic paths

Lemma 40. Let (M, g) be a smooth parallelizable Riemannian manifold of bounded geometry.
For each x ∈M , t ≥ 0, f ∈ C0(M) set

(S(t)f)(x) =
1

2d

d∑
k=1

(
f
(
γx,
√
dek

(
√
t)
)

+ f
(
γx,−

√
dek

(
√
t)
))

(67)

where γx,v denotes the geodesics starting at time 0 at the point x ∈M with initial velocity v ∈ TxM . Further let
L0 : C∞(m)→ C∞(M) be the differential operator L0 = 1

2∆LB and let L1 := L0|D, where D is given by (26).
Then, with respect to the norm ‖f‖ = supx∈M |f(x)|, the following holds:

(I) for each t ≥ 0 and f ∈ C0(M) we have S(t)f ∈ C0(M) and ‖S(t)f‖ ≤ ‖f‖.

(II) for each f ∈ Dk, with k ≥ 3, we have limt→+0 ‖S(t)f − f − tL1f‖/t = 0.

(III) if t→ t0, tn ≥ 0 and f ∈ C0(M), then lim
t→t0
‖S(t)f − S(t0)f‖ = 0 for each t0 ≥ 0.

Proof. First of all we remark that under the stated assumptions the manifold is geodesically complete. Indeed,
this follows from the bounded geometry assumption and lemma 9.
The proof of I) and III) is completely analogous to the proof of points 2., 3a. and 3b. of theorem 29. We can
restrict ourselves to prove point II).
for t ↓ 0, we have

f(γx,v(t)) = f(x) + vf(x)t+
1

2

d2

ds2
f(γx,v(s))|s=0t

2 +
t3

3!
R(t, x),

with R(t, x) = d3

ds3 f(γx,v(s))|s=u, u ∈ [0, t]. In particular, by the geodesic equation

γ̈kx,v(t) = −Γkij γ̇
i
x,v(t)γ̇

j
x,v(t), (68)

we obtain

d2

dt2
f(γx,v(t)) =

∑
i,j

∂2
ijf(γx,v(t))γ̇

i
x,v(t)γ̇

j
x,v(t) +

∑
i

∂if(γx,v(t))γ̈
i
x,v(t),

=
∑
i,j

∂2
ijf(γx,v(t))γ̇

i
x,v(t)γ̇

j
x,v(t)−

∑
i,j,k

∂kf(γx,v(t))Γ
k
ij γ̇

i
x,v(t)γ̇

j
x,v(t).

Analogously,

d3

dt3
f(γx,v(t)) =

(
(2ΓimjΓ

m
lk − ∂lΓikj)∂if + ∂lkjf + 3Γikl∂ijf

)
γ̇lx,v(t)γ̇

k
x,v(t)γ̇

j
x,v(t), (69)

(where, for notational simplicity, we have used the convention on the sum over repeated indices). Hence, by
using the identity

∑
k e

i
ke
j
k = g(x)ij :

S(t)f(x) = f(x) +
1

2

∑
k=1

∑
i,j

∂2
ijf(x)eike

j
k −

∑
k,i,j

∂kf(x)Γkije
i
ke
j
k

 t+ t3/2R(t, x)

= f(x) + L1f(x) + t3/2R(t, x),

with

R(t, x) =
1

12d

d∑
k=1

(
d3

dt3
f(γx,

√
dek

(t))|t=uk +
d3

dt3
f(γx,−

√
dek

(t))|t=u′k

)
with uk, u

′
k ∈ [0,

√
d], k = 1, . . . , d, and d3

dt3 f(γx,
√
dek

(t)) is given by (69).

Let us take an r0 ∈ (0, I(M,g))] sufficiently small in such a way that the thesis of proposition 36 holds and

consider an atlas made of local normal Riemannian charts (B
(M,g)
r0 (p), exp−1

p,N ). By the assumption that (M, g)
is of bounded geometry, estimate (19), the bound

|γ̇ix,v(t)| ≤

√√√√ d∑
i=1

|γ̇ix,v(t)|2 ≤ k1‖v‖g
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resulting from statement (a) of proposition 36 and by the geodesic equation (68), and the condition f ∈ Dk

with k ≥ 3, we obtain:
sup

t∈[0,1],x∈M
|R(t, x)| <∞,

which yields II.

Corollary 41. Under the assumptions of lemma 40 the closure in C0(M) of L1 is the generator of a Feller
semigroup V and for any f ∈ C0(M) and T > 0:

lim
n→∞

sup
t∈[0,T ]

‖S(t/n)nf − V (t)f‖ = 0 . (70)

The heat semigroup V provides a solution of the heat equation on M{
∂
∂tu(t, x) = 1

2∆LBu(t, x)
u(0, x) = u0(x)

(71)

in the sense that if u0 ∈ D(L) then u(t) := V (t)u0 ∈ D(L) and d
dtu(t) = Lu(t) in the strong sense.

Analogously to the case of diffusion processes on manifolds, the approximation result stated in corollary 41
admits a probabilistic interpretation. Indeed, we can still define a sequence of random walks on M with steps
given by geodesic arcs according to the following construction.

For any n ∈ N, let Xn be a jump process defined as

Xn(0) = x, Xn(t) := Xn(bntc/n) = Yn(bntc),

where {Yn(m)}m is a Markov chain with transition probabilities

P(Yn(m) ∈ I|Yn(m − 1) = y) =
1

2d

d∑
k=1

(
δ
γy,
√
dek(y)(

√
1/n)

(I) + δ
γy,−

√
dek(y)(

√
1/n)

)
(I) , I ∈ B(M). (72)

Analogously, let (Zn) the sequence of processes with continuous paths obtained by Xn as geodesic interpolation,
namely:

Zn(0) = x, Zn(m/n) = Xn(m/n), Zn(t) = γXn(m/n),Xn((m+1)/n)(t−mn), t ∈ [m/n, (m+ 1)/n]

where γx,y is the geodesic such that γx,y(0) = x and γx,y(1/n) = y.
Denoted with X the diffusion process on M associated to the semigroup generated by the operator L = L̄1

we have the following result

Theorem 42. Under the assumption of corollary 41, for any T > 0, Xn converges weakly to X in DM [0, T ]
and Zn converges weakly to X in CM [0, T ]

The proof is completely similar to the proofs of theorems 31 and 32.

5.2 An approximation in terms of random walk with steps along integral curves
of the parallelizing vector fields

In the case where the parallelizing vector fields e1, . . . , ed of the manifold (M, g) (simultaneously of bounded
geometry and parallelizable) are C∞-bounded, we can view ∆LB as a subcase of the operator L0 discussed in
Section 3 and recast all the discussion therein using the paths constructed out of the integral lines of the fields

ek instead of the geodesics. In fact, since
∑d
i=1 e

a
i (x)ebi (x) = gab(x) and using the fact that ∇(g)

k gab = 0, we can
write

∆LB =

d∑
a,b=1

gij∇(g)
a ∇

(g)
b =

d∑
a,b=1

∇(g)
a gab∇(g)

b =

d∑
a,b=1

∇(g)
a

d∑
i=1

eai e
a
i∇

(g)
b =

d∑
i=1

d∑
a,b=1

∇(g)
a eai e

a
i∇

(g)
b

=

d∑
i=1

d∑
a,b=1

eai∇(g)
a eai∇

(g)
b +

d∑
i=1

(∇(g) · ei)ei

In other words ∆LB is the operator L0 in (23) generated by the vector fierlds e1, . . . , ed, with a suitable choice
for e0 since, if f ∈ C∞(M),

(∆LBf)(x) =

d∑
i=1

ei(eif)(x) + (e0f)(x) where e0 :=

d∑
i=1

(∇(g) · ei)ei .
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In this case theorem 38 holds yielding the Brownian motion on M , i.e. the diffusion process associated with
the Laplace-Beltrami operator ∆LB , as the weak limit of a sequence of random walks {Z̃n} of the form (48),
with steps constructed out of integral curve of the vector fields {ek}k=1,...,d. This result can be rephrased in
following form.

Theorem 43. Let (M, g) be a smooth parallelizable manifold of bounded geometry admitting a set of parallelizing
vector fields e1, . . . , ed which are C∞-bounded. Then the Wiener measure µ on (C([0, t],M),B(C([0, t],M)), i.e.
the law of the diffusion process associated to the Laplace Beltrami operator ∆LB is the weak limit of the sequence
of probability measures µ̃n on (C([0, t],M),B(C([0, t],M)) induced by the random walks Z̃n defined by (48) with
Ak = ek.
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7 Proof of some technical propositions

Proof of Lemma 9. Suppose there is a maximal geodesic γ : I 3 t → γ(t) ∈ M , where t is the a length
parameter along γ used as its affine parameter, such that sup I = ω < +∞ (the case −∞ < inf I is analo-
gous). Let {tn}n∈N ⊂ I be an increasing sequence such that tn → ω as n → +∞. Consider an element tn.
If there were an open ball Bn ⊂ Tγ(tn)M centered at the origin and of radius r > ω − tn where the expo-
nential map expγ(tn) Tγ(tn)Bn → M is a diffeomorphism onto its image, then Bn would include in particular
the tangent vector of γ at γ(tn) and also a longer parallel vector. As a consequence γ could be extended to a
longer geodesics. Since this is not possible, we conclude that I(M,g)(γ(tn)) < ω − tn. In turn, it would imply
0 ≤ I(M,g) ≤ infn∈N I(M,g)(γ(tn)) = 0, whereas I(M,g) > 0 by hypothesis. Hence all maximal geodesics must be
complete. The last statement immediately arises from Hopf-Rinow’s theorem. �

Proof of Lemma 22. Let γ : (a, b) → M be a maximal solution of (22) and let us assume ab absurdum that
b < +∞. Consider a t0 ∈ (a, b) and let f : (t0, b)→ R be the continuous function defined as

f(t) := d(γ(t), γ(t0)) ,

where d := d(M,g) is the above defined distance induced by the Riemannian metric. Since we have assumed that
b <∞, the function f cannot be bounded on [t0, b). Indeed, f were bounded, then there would exist an R > 0
such that γ(t) ∈ BR(γ(t0)) for all t ∈ [t0, b), where BR(γ(t0)) denotes the closed ball with radius R and center
γ(t0). On the other hand, under the stated assumptions on M , Hopf-Rinow theorem assures the compactness of
the closed metric balls. By a classical result (see, e.g., lemma 56, Ch. 1 in [41]), if there exists a compact set K
such that the maximal solution γ : [t0, b)→M satisfies the condition γ([t0, b)) ⊂ K, then b = +∞. Hence, since
f cannot be bounded, there exists a monotonically increasing sequence tn → b such that d(γ(tn), γ(t0)) → ∞.
Let s : [t0, b)→ R be the curvilinear abscissa along the curve γ, namely:

s(t) =

∫ t

t0

√
g(A(γ(u)), A(γ(u)))du. (73)

Clearly, for any n ≥ 1, the following holds

d(γ(tn), γ(t0))

tn − t0
≤ s(tn)− s(t0)

tn − t0
.

the latter inequality, the boundedness of the sequence {tn− t0} and the fact that {d(γ(tn), γ(t0))} is unbounded
and strictly positive gives

lim
n→∞

s(tn)− s(t0)

tn − t0
= +∞
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On the other hand, by Lagrange’s theorem applied to the (known to be differentiable) function s : [t0, b) → R
defined in (73), for any n there exist a un ∈ (t0, tn) such that√

g(A(γ(un)), A(γ(un))) =
ds

dt
(un) =

s(tn)− s(t0)

tn − t0
.

The left hand side of the above equality is bounded by the assumptions on A, while the right hand side is
unbounded by the discussion above and we have obtained a contradiction. �

Proof of Proposition 17. Let us start with the following lemma.

Lemma 44. Let M be a smooth manifold and f ∈ C0(M). For every ε > 0 there is ψ ∈ C∞(M)∩C0(M) such
that ||f − ψ||∞ < ε.

Proof. (There are different ways to prove this density result and this is just a possibility). It is sufficient to prove
the thesis for real functions and, in turn, for f ≥ 0. The general statement follows by decomposing f = f+−f−
where 0 ≤ f± = 1

2 (|f | ± f) ∈ C0(M). Let us therefore prove the thesis for 0 ≤ f ∈ C0(M).
If p ∈M , there is a local chart (U,ψ) such that p ∈ U . We can always restrict U to a smaller open neightborhood
V of p, such that V ⊂ U is a compact set. Since there is such a local chart for every p ∈ M and the topology
of M is 2nd countable, we can extract a subcovering of M made of charts {Vj , ψj}j∈J where J is finite or
countably infinite. Using paracompactness property of M , we can refine {Vj , ψj}j∈J to a locally finite covering
(equipped with corresponding coordinate maps ψj , the restrictions of the original ones) still indicated with the
same symbol {Vj , ψj}j∈J . Finally, we can define a partition of the unit {χj}j∈J subordered to the covering
{Vj}j∈J . Therefore

(i) χj ∈ C∞c (M),

(ii) 0 ≤ χj ≤ 1,

(iii) supp(χj) ⊂ Vj ,

(iv)
∑
j∈J χj(x) = 1 where, due to locally finiteness property, for every x ∈M there is an open set containing

x whose intesection with the Vj is not empty only for a finite number of indices j ∈ J , hence the sum is
always finite.

To go on we assume that J = N (the case of J finite is simpler). If f ∈ C0(M), the function f |Vn ≥ 0
represented in coordinates through the map ψn turns out to be the restriction of a contiunuous function defined
on a compact ψn(Vn) ⊂ Rn. Using Stone-Weierstrass theorem we conclude that, for every ε > 0, there is a
smooth function p(n,ε) defined on V that, in coordinates is the restriction to V of a polynomial defined in the
compact set ψn(Vn) ⊂ Rn, such that with obvious notation

||f |Vn − p(n,ε)||(Vn)
∞ < ε. (74)

It is always possible to choose
0 ≤ p(n,ε) ≤ f |Vn . (75)

In fact, for µ > 0 define gµ := f + µ. Using the same argument as above, there is a smooth function q(n,µ)

(in coordinates the restriction to the compact ψn(Vn) of a polynomial) such that the inequality holds ||q(n,µ) −
gµ||∞ < µ/3, that is if x ∈ Vn

−µ/3 ≤ q(n,µ)(x)− f(x)− µ < µ/3

which implies
2µ/3 < q(n,µ)(x)− f(x) < 4µ/3

so that
0 < f(x) + 2µ/3 < q(n,µ)(x) < f(x) + 4µ/3

Defining ε := 4µ/3 and p(n,ε) := q(n,µ) we have that (74) and (75) are valid simultaneously. In view of the
definition of the functions χn, (74) and (75) immediately imply

||f · χn − p(n,ε)χn||∞ < ε. (76)

and
0 ≤ p(n,ε) · χn ≤ f · χn. (77)

Notice that the functions p(n,ε) · χn and f · χn are everywhere well defined on M and belong to C∞c (M). To
conclude the proof, for ε > 0 define

ψ :=
∑
n∈N

χn · p(n,ε/2n+1)
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This function is well-defined belongs to C∞(M). Furthermore

0 ≤ ψ =
∑
n∈N

χn · p(n,ε/2n+1) ≤
∑
n∈N

χn · f = f

so that ψ ∈ C∞(M) ∩ C0(M). Finally

||f − ψ||∞ =

∣∣∣∣∣
∣∣∣∣∣∑
n∈N

χn · p(n,ε/2n+1) − χn · f

∣∣∣∣∣
∣∣∣∣∣
∞

≤
∑
n∈N
||χn · p(n,ε/2n+1) − χn · f ||∞ ≤

∑
n∈N

ε2n+1 = ε .

In view of the lemma, in turn, it is sufficient to prove that C∞c (M) is dense in C0(M) ∩ C∞(M). If
f ∈ C0(M) ∩ C∞(M) and ε > 0, then there is a compact K ⊂ M such that |f(x)| < ε if x 6∈ K. Let A ⊃ K
be an open set whose closure is compact (It can be constructed as follows. Every p ∈ K admits an open
neighborhood which is relatively compact – just work in a coordinate patch– due compactness , K is therefore
covered by a finite class of those relatively-compact open sets. The union of those sets is the wanted A.) Define
B := M \A. Since K and B are disjoint closed sets (K is closed because M is Hausdorff by hypothesis), from
the smooth Urysohn lemma, there exists χ ∈ C∞(M) such that |χ(x)| ≤ 1 for x ∈ M and K ⊂ χ−1({1}),
B ⊂ χ−1({0}). Furthermore, from the construction, we see that supp(χ) ⊂ A ∪ ∂A = A. We conclude that
χ ∈ C∞c (M). The function ψ := χ · f belongs to C∞c (M) as well and furthermore

||f − ψ||∞ ≤ ||f |K − ψ|K ||(K)
∞ + ||f |M\K − ψ|M\K ||(M\K)

∞

= ||f |K − f |K ||(K)||∞ + ||f · (1− χ)|M\K ||(M\K)
∞ ≤ 0 + ||f |M\K ||(M\K)

∞ = ε .

The proof is over since we have proved that if f ∈ C0(M) ∩ C∞(M) and ε > 0, then there exists ψ ∈ C∞c (M)
such that ||f − ψ||∞ < ε. �

Proof of Lemma 24. Noticing that C∞c (M) is dense in L2(M,µg), let us first establish that L0|C∞c (M) is
symmetric in L2(M,µg) – where from now on µg is the volume form (a positive Borel measure) associated to
the metric g. Furthermore we also prove that −L0|C∞c (M) ≥ 0.

Lemma 45. With the hypotheses of Lemma 24, (27) in particular, L0|C∞c (M) is symmetric and −〈h, L0h〉 ≥ 0
if h ∈ C∞c (M).

Proof. If A is a vector field viewed as differential operator, taking advantage of a partition of the unit, exploiting

Af = ∇(g)
A f =

∑
k A

j∇(g)
j f and the fact that ∇(g)

j |C∞c (M) is symmetric in L2(M,µg), one immediately sees that,
if h, h′ ∈ C∞c (M),

〈h′, Ah〉 = −〈Ah′, h〉 − 〈h′, (∇(g) ·A)h〉 ,

where ∇(g) ·A acts as multiplicative operator. Exploiting the fact that C∞c (M) is invariant under the action of
A0 and Ai we find

〈L0h
′, h〉 = 〈h′, L0h〉 − 2〈h′, A0h〉+

r∑
i=1

〈h′, (∇(g) ·Ai)Aih〉 − 〈h′,∇(g) ·A0h〉

+
1

2

r∑
i=1

〈h′,
(
∇(g) · (∇(g) ·Ai)Ai

)
h〉 = 〈h′, L0h〉

where we have used (27) in the last passage. We have proved that L0|C∞c (M) is symmetric because C∞c (M) is
dense and 〈L0h

′, h〉 = 〈h′, L0h〉 for all h, h′ ∈ C∞c (M).
Regarding positivity, we have for h ∈ C∞0 (M),

−〈h, L0h〉 = −1

2

r∑
i=1

∫
M

hAiAihdµg −
∫
M

hA0hdµg

=
1

2

r∑
i=1

〈Aih,Aih〉+
1

2

r∑
i=1

∫
M

(h∇(g) ·Ai)Aihdµg −
∫
M

hA0hdµg =
1

2

r∑
i=1

〈Aih,Aih〉 ≥ 0

where we have used again (27) in the last passage
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Let us pass to prove that there is a solution f ∈ C∞(M) of (28) when h ∈ C∞c (M). Since L0|C∞c (M)

is symmetric (“formally selfadjoint” in Shubin’s terminology), uniformly elliptic, and C∞-bounded, Corollary
4.2 in [57] implies that L0|C∞c (M) is essentially selfadjoint in L2(M,µg) and we will denote by L′ the unique
selfadjoint extension of L0|C∞c (M) (i.e., the closure of the latter in the Hilbert space L2(M,µg)). Let us focus
on the equation for the unknown f ∈ D(L′)

L′f − λf = h , (78)

when h ∈ C∞c (M) ⊂ L2(M,µg) and λ > 0 are given. By multiplying both sides with a test function h′ ∈ C∞0 (M)
and integrating the result, using the fact that L′ is a selfadjoint extension of L0|C∞c (M), we find that an f
satisfying (78), if any, must also satisfy (28) (where L0 appears instead of L′!) in distributional sense, since
f ∈ D(L′) ⊂ L2(M,µg) ⊂ D′(M). Elliptic regularity (Theorem 8.3.1 and Corollary 8.3.2 in [26]) applied to
the elliptic operator A = L0 − λI implies that, if f exists, f has to belong to C∞(M) and also satisfies (28) in
classical sense. As a matter of fact, f solving (78) exists because every λ > 0 belongs to the resolvent set of L′.
Indeed, −L′ ≥ 0 (that is true because −L′ is the Hilbert-space closure of −L0|C∞c (M) which is positive for the
lemma above) entails σ(−L′) ⊂ [0,+∞). A solution of (78) (which also solves (28) and is smooth) therefore
exists:

f = Rλ(L′)h (79)

where Rλ(L′) : L2(M,µg)→ L2(M,µg) is the resolvent operator of L′.
Let us pass to prove that f ∈ C0(M)∩C∞b (M) when M is not compact (otherwise there is nothing to prove). We
henceforth assume that M is non-compact. We can say much more about f in (79). First of all we observe that
the map D(M) = C∞c (M) 3 h 7→ Rλ(L′) = f ∈ L2(M ;µg) ⊂ D′(M) is sequentially continuous with respect to
the natural topologies [26] of C∞c (M) and D′(M) because Rλ(L′) is bounded in L2(M,µg). Therefore we can
apply Schwartz’ kernel theorem [26] that establishes that there exists a distribution G ∈ D′(M ×M) such that,
for every pair h, h′ ∈ C∞c (M),∫

M

h′(x) (Rλ(L′)h) (x)dµg(x) =

∫
M×M

G(x, y) h′(x)h(y) dµg(x)⊗ dµg(y) . (80)

The integral on the left-hand side is a standard integral, the one on the right-hand side is just a formal expression
accounting for the action of a distribution. However, Theorem 2.2 in [57] (in the case p = 2) proves that
(a) the distribution G is smooth outside the diagonal, i.e., G ∈ C∞(M ×M \∆), where ∆ = {(x, x) | x ∈M},
(b) there exists η > 0 such that for every δ > 0 and every pair of multiindices α, β, there exists Cα,β,δ > 0 with

|∂αx ∂βyG(x, y)| ≤ Cα,β,δe−ηdg(x,y) if dg(x, y) ≥ δ, (81)

where dg is the geodesical distance on (M, g) which is well defined since M is connectedand the derivatives ∂x
and ∂y are computed in a pair of Riemannian charts (possibly the same). Let us take x0 6∈ supp(h) and consider
an open neighborhood U of x0 such that U is compact and U ∩ supp(h) = ∅. Since U × supp(h) 3 (x, y) 6∈ ∆,
if h′ ∈ C∞c (M) is supported in U item (a) above permits us to intepret litterally the integral on the right-hand
side of (80). Taking advantage of the Fubini theorem, we can rearrange (80) to∫

M

h′(x)

(
f(x)−

∫
M

G(x, y)h(y)dµg(y)

)
dµg(x) = 0 .

Since C∞c (U) is dense in L2(U, dµg) and x0 and U as above are arbitrary, we can conclude that

f(x) =

∫
M

G(x, y)h(y)dµg(y) almost everywhere if x 6∈ supp(h). (82)

This result can be made even stronger observing that the function U×supp(h) 3 (x, y) 7→ G(x, y)h(y) is smooth
due (a) and thus continuous and bounded. Hence, a direct use of dominated convergence theorem proves that

U 3 x 7→
∫
M

G(x, y)h(y)dµg(y)

is continuous as well. Since the left-hand side of (82) is also continuous, we have proved that

f(x) =

∫
M

G(x, y)h(y)dµg(y) if x ∈M \ supp(h). (83)

Let us conclude the proof by establishing that f vanishes at infinity and ||Akf ||∞ < +∞ for k = 0, 1, . . . , r.
Since supp(h) is compact and the open geodesical balls are a basis of the topology of M , there is a finite covering
{Brn(xn)}n=1,...,N of supp(h) made of closed geodesical balls with finite radius. As a consequence there exist a
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sufficiently large closed ball BR(x0) including supp(f). (It is sufficient to enlarge the radius r0 of Br0(x0), to
R := D + P where D := max{dg(x0, xn) | n = 0, 1, . . . , N} and P = max{rn | n = 0, 1, . . . , N}.) Notice that
for every closed ball BR(x0), with arbitary large R > 0, it must hold M \ BR(x0) 6= ∅ necessarily, otherwise
M would be compact due to Lemma 9 since M is of bounded geometry, and M is not compact by hypothesis.
With η > 0 as in (b), choose δ > 0 and define another closed ball BR′(x0) with R′ > δ +R. If y ∈ BR(x0) and
x ∈M \BR′(x0) we have dg(x, y) ≥ dg(x, x0)−R > R′ −R > δ +R−R > δ so that we can use the inequality
(81) with α = β = 0, finding

|f(x)| ≤
∫
M

|G(x, y)||h(y)|dµg(y) ≤ volg(BR(x0))Cδ||h||∞eηRe−ηdg(x,x0) if x ∈M \BR′(x0) (84)

where, for x ∈M \BR′(x0) and y ∈ BR(x0), we took advantage of

R+ dg(x, y) ≥ dg(x, x0)

so that
−ηdg(x, y) ≤ −ηdg(x, x0) + ηR

which implies (84) through (81). To conclude, with h, x0, η, δ, R,R
′, Cδ fixed as above and if ||h||∞ > 0 (otherwise

there is nothing to prove since f = 0), for every ε > 0 define

Rε := −1

η
log

(
ε

volg(BR(x0))Cδ||h||∞eηR

)
.

For every ε > 0 (such small that Rε > R′), consider the closed ball BRε(x0) which is compact in view of Lemma
9. Here, (84) yields

|f(x)| ≤ volg(BR(x0))Cδ||h||∞eηRe−ηRε = ε if x ∈M \BRε(x0). (85)

We have proved that f ∈ C0(M). With a procedure similar to the we used to prove (83) based on Lagrange
theorem and dominated convergence theorem proves that in every Riemannian coordinate patch,

∂αx f(x) =

∫
M

∂αxG(x, y)h(y)dµg(y) if x ∈M \ supp(h). (86)

Every ∂αx f is necessarily bounded on a finite covering of Riemannian charts of a compact ball BRε including
supp(h). Outside BRε , a procedure similar to that followed to prove (85) and relying on (81) for β = 0 proves
that there is a constant Hα < +∞ such that, in every local Riemannian coordinate patch on M and for
i = 1, . . . , d,

|∂αx f(x)| < Hα . (87)

We have established that f ∈ C∞b (M) concluding the proof. �

Proof of Lemma 25. Let us consider u ∈ D(M) and the map u(t) := etMu for t ∈ [0,+∞). Due to Proposition
2 (i.e. Proposition 6.2 in [20]) u(t) ∈ D(M) and this map is the unique classical solution of the Cauchy problem
associated to M with initial datum u. In particular it is continuously differentiable and satisfies du

dt = Mu(t).

Since M ⊂ N , it also satisfies du
dt = Nu(t) and thus, again for Proposition 2, it is also the unique solution of the

Cauchy problem associated to N with initial datum u. That is u(t) = etNu. We have in particular found that,
if u ∈ D(M), then etNu ∈ D(M) for t ∈ [0,+∞), so that D(M) is invariant under the semigroup generated by
N . Proposition 6.2 in [20] implies that D(M) is a core for N . Since M ⊂ N and both operators are closed,
then M = N . �

Proof of Lemma 27. Let us denote by L′′ the Hilbert-space closure L0|C∞c (M). We remark that L0|C∞c (M) is
closable since its adjoint has a dense domain, as one can easely prove by a integration-by-parts argument. We
write L′′ in place of L′, to stress that the differential operator L0 whose L′′ is the Hilbert space closure over
the domain C∞c (M) now includes the perturbation B. The proof, except for a point, is identical to that of
proposition 23 using Proposition 4.1 in place of its Corollary 4.2 in [57], observing that elliptic regularity works
also for −L′′ since this property depends only on the second order part of L0, and noticing that the properties
of G established in Theorem 2.2 of [57], (81) in particular, are valid also if L0|C∞c (M) is not symmetric. The
only new item to prove separately is that there is a λ > 0 in the resolvent set of −L′′, which, differently from
−L′, is no longer positive and selfadjoint due to the presence of the term B. With this result the proof of
the thesis concludes. Let us prove the existence of such λ > 0 by establishing that L′′ is the generator of a
strongly continuous semigroup in L2(M,µg) under the hypotheseis (30): in this case, the standard spectral
bound of generators of strongly continuos semigroups (Corollary 1.13 in [20]) implies that Re(σ(L′′)) has finite
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upper bound so that ρ(L′′) ∩ (0,+∞) 6= ∅ and the requested λ > 0 exists. In the rest of the proof −L′ will
denote again the positive selfadjoint operator used in the proof of proposition 23, which is the Hilbert-space
closure of L0|C∞c (M), where A0 does not contain the perturbation B. As is known from Proposition 4.1 in [57],
D(L′′) = D(L′) = W 2

2 (M) (see [57] for the definition of those Sobolev spaces on smooth Riemannian manifolds
of bounded geometry). The operator B|C∞c (M) is L2(M,µg)-closable since its adjoint has dense domain (it
including C∞c (M)) and the closure of B|C∞c (M) has domain that evidently includes W 2

2 (M) because C∞c (M) is

dense in W 2
1 (M) ⊃ W 2

2 (M) [57]. We intend to prove that, defining L′ + B|C∞c (M) on the domain W 2
2 (M) of

the first addend, then L′+B|C∞c (M) is (i) closed and (ii) it is the generator of a strongly continuous semigroup.

Notice that, in this case L′ + B|C∞c (M) = L′′ since L′′ ⊂ L′ + B|C∞c (M) by construction (L′′ is the closure of
L0|C∞0 whereas the right-hand side is a closed extension of that) and the two sides of the inclusion have the same
domain W 2

2 (M). Hence (i) and (ii) imply that L′′ itself is the generator of a strongly continuous semigroup as
wanted. To conclude the proof, we prove that (i) and (ii) are true if (30) holds. Since σ(L′) ⊂ (−∞, 0] and L′

is selfadjoint, {etL′}t∈[0,+∞) is an analytic semigroup in L2(M,µg). To prove (i) and (ii), according to Theorem
X.54 in [43], it is sufficient to demonstrate that for every a > 0, there is a corresponding b > 0 such that (the
norm is that of L2(M,µg))

||B|C∞c (M)ψ|| ≤ a||L′ψ||+ b||ψ|| for all ψ ∈W 2
2 (M).

Observe that, since C∞c (M) is a core for L′(it is essentially selfadjoint thereon) and B|C∞c (M) is closed, the
condition above is equivalent to

||Bψ|| ≤ a||L′ψ||+ b||ψ|| for all ψ ∈ C∞c (M).

In turn, according to the remark on the condition (iii) on p. 162 of [43], the condition above is equivalent to
the next statement: For every a > 0 there is b > 0 such that

||Bψ||2 ≤ a||L′ψ||2 + b||ψ||2 for all ψ ∈ C∞c (M) (88)

(where these a, b are generally different from those in the previous inequality). To conclude we prove that (88)

is consequence of (30). From the latter, replacing ξk with ∇(g)
k ψ, if ψ ∈ C∞c (M), we have∫

M

(Bψ)(x)(Bψ)(x)dµg(x) ≤ c
∫
M

r∑
i=1

d∑
a,b=1

(Aai∇
(g)
a ψ)(x)(Abi∇

(g)
b ψ)(x)dµg(x)

= −2c

∫
M

ψ(x)(L′ψ)(x)dµg(x) .

Namely, if 〈·, ·〉 is the scalar product in L2(M,µg), standard results of spectral theory [40, 50] yield

||Bψ||2 ≤ 2c〈ψ,−L′ψ〉 = 2c

∫
R+

λdνψ(λ)

where νψ(E) = 〈ψ, P (−L′)(E)ψ〉, with P (−L′) being is the spectral measure of the selfadjoint positive operator
−L′ and E ⊂ R any Borel set. Here observe that, since c > 0, for every a > 0 there is b > 0 such that

2cλ ≤ aλ2 + b for all λ ≥ 0.

It is in fact sufficient to use b = c2/a. Therefore, again from standard results of spectral theory,

||Bψ||2 ≤ 2c

∫
R+

λdνψ(λ) ≤ a
∫
R+

λ2dνψ(λ) + b

∫
R+

1 dνψ(λ) = a|| − L′ψ||2 + b||ψ||2 .

In summary, for every a > 0, there is b > 0 such that (88) holds

||Bψ||2 ≤ a||L′ψ||2 + b||ψ||2 for all ψ ∈ C∞c (M),

concluding the proof. �

Proof of Proposition 36.
(a) Let us start with a given r ∈ (0, I(M,g)) and consider a Riemannian system of coordinates in the ball

B
(M,g)
r (p). Expanding gab(y) around 0 up to the first order with the usual Taylor expansion, we have

gab(y) = δab + 0 +R
(2)
ab (y)
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where, for some ξ ∈ Br(0),

R
(2)
ab (y) =

1

2!

∑
i,j

∂2gab
∂yi∂yj

|ξyiyj y ∈ Br(0), i, j = 1, . . . , d .

Taking the second bound in (16) into account for k = 2 and using |yk| ≤ r we have

∣∣||A(y(q))||2 − ||A(y(q))||2g
∣∣ =

∣∣∣∣∣∣
d∑

a,b=1

Aa(y)gab(y)Ab(y)−Aa(y)δabA
b(y)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
d∑

a,b=1

Aa(y)Ab(y)R
(2)
ab (y)

∣∣∣∣∣∣
≤

d∑
a,b=1

|Aa(y)||Ab(y)|1
2
C

(r)
2 d2r2 ≤ C

(r)
2 d2r2

2

d∑
i,j=1

‖A(y)‖‖A(y)‖ =
C

(r)
2 d4r2

2
||A(y)||2 .

In particular

||A(y(q))||2 − ||A(y(q))||2g ≤
C

(r)
2 d4r2

2
||A(y(q))||2

namely, if ||y|| < r, we have, (
1− C

(r)
2 d4r2

2

)
||A(y)||2 ≤ ||A(y(q))||2g .

Restricting r to r0 > 0 such that4 (1 − d4r2
0C

(r0)
2 /2) > 0 and defining k1 := (1 − d4r2

0C
(r)
2 /2)−1, we conclude

that (a) is valid for y ∈ Br0(0), i.e., q ∈ B(M,g)
r0 (p).

(b) Let us first show that, if r0 > 0 is suitably small, then

||T (y(q))||2 ≤ k2||T (q)||2g , for all q ∈ B(M,g)
r0 (p) (89)

for some k2 ≥ 0 independent of T and p, for every smooth tensor field T of order (1, 1). The proof is strictly
analogous to that of (a), observing that

||T (y(q))||2 − ||T (y(q))||2g =

d∑
a,b,i,j=1

T ia(y)
(
δabδij − gab(y)gij(y)

)
T jb (y) (90)

and
gab(y)gij(y) = δabδij + 0 +R

(2)ab
ij (y)

where, for some ξ ∈ Br(0),

R
(2)ab
ij (y) =

1

2!

∑
i,j

∂2gabgij
∂yi∂yj

|ξyiyj y ∈ Br(0), i, j = 1, . . . , d ,

Using in (90) both the second bound in (16) and (17) for k = 0, 1 as we did in the proof (a) we obtain (89). To
conclude the proof of (b), observe that, if y ∈ Br0(0),

∂yaA
i = (∇(g)

a A)i −
d∑
c=1

ΓiacA
c

so that, using (19) toghether with rough estimates |Ai| ≤ ||A||, |∇(g)
a Ai| ≤ ‖∇(g)A‖, we have

‖∇A‖2 ≤ ‖∇(g)A‖2 + 2d3J
(r0)
0 ‖A‖‖∇(g)A‖+ d4(J

(r0)
0 )2‖A‖2.

Finally observe that (a) and (89) respectively imply

‖A‖ ≤ k1‖A‖g and ‖∇(g)A‖ ≤
√
k2‖∇(g)A‖g

which, inserted in the previous inequality, yield

‖∇A(y(q))‖2 ≤ k2‖∇(g)A(q)‖2g + 2d3J
(r0)
0 k1

√
k2‖A(q)‖g‖∇(g)A(q)‖g + d4(J

(r0)
0 )2k2

1‖A(q)‖2g

which must hold if q ∈ B
(M,g)
r0 (p). By construction, the constants, k1, k2, k3 := d4(J

(r0)
0 )2k2

1, and k4 :=

2d3J
(r0)
0 k1

√
k2 do not depend on A and the estimate is valid for every p ∈M provided q ∈ B(M,g)

r0 (p). �

4It is always possible to find such r0 since the functions r 7→ C
(r)
k are monotone not-decreasing.
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[25] B. Güneysu. Covariant Schrödinger semigroups on noncompact Riemannian manifolds. Operator Theory:
Advances and Applications, 2017, 264.
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