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Abstract

In this paper, a microwave imaging method for reconstructing two-dimensional di-
electric scatterers is presented. Staring from an integral formulation of the electro-
magnetic scattering phenomena, the method is aimed at determining the dielectric
profile of the scatterer under test by means of an innovative particle swarm algo-
rithm. In order to preliminary assess the effectiveness of the proposed method,
some numerical experiments are carried out in noiseless as well as in noisy condi-
tions. The obtained results confirm the capabilities of the proposed method in term

of reconstruction accuracy and robustness.
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1 Introduction

Tomographic microwave imaging techniques are aimed at producing a two-dimensional
map of the electromagnetic properties of a region of interest (namely the investigation
domain) from measurements of the field taken outside that region [1]. The object image
can prove very useful in medical diagnosis [2], non-destructive evaluation [3], and sub-
surface monitoring [4]. Unfortunately, the determination of medium properties requires
inverting Lippmann-Schwinger equations [5] and consequently, the solution of an ill-posed
and nonlinear problem. Generally, a regularized solution is defined as the global minimum
of a suitable cost function [6].

Due to the nonlinear nature of the arising cost function, deterministic procedures will
converge to the sought result when started within a proper sphere of the solution space
enclosing the solution [7]. Unfortunately, it results very difficult to evaluate the extent
of the global minimum attraction basin so that the reliability of the approach cannot be
guaranteed and the trial solution could be trapped in a local minimum.

In order to overcome this drawback, global optimization approaches have been success-
fully applied (see [8][9][10] and the references therein) but, because of the computational
cost proportional to the dimension of the problem at hand, practicable serial single-step
implementations are limited to a relatively small resolution accuracy and parallel imple-
mentations are currently under test [11]. On the other hand, a large number of control
parameters need to be set. Consequently, a time-consuming heuristic tuning is required
or generally sub-optimal values should be considered [12].

Recently, an innovative evolutionary technique called Particle Swarm Optimization
(PSO) have been proposed in order to accomplish the same goal of other global opti-
mization methods in a new and faster way [15]. Compared to GA, the main advantage
of PSO lies in the minor complexity of the algorithm especially in the tuning phase due
to the few control parameters to be calibrated. PSO have been successfully applied in

many engineering areas as artificial neural network training [16], fuzzy system control [17],



biomedical applications [18], and power-system stabilizers design [19]. Then, the purpose
of this paper is to investigate the foundations and the performances of the PSO algorithm
when applied to the microwave imaging problem.

The paper is organized as follows. Section 2 is aimed at describing the microwave
imaging problem. In Section 3, the PSO algorithm is presented and customized to the
inverse scattering problem. Successively (Section 4), some numerical experiments are
reported in order to preliminary assess the capabilities of the PSO algorithm in dealing
with highly nonlinear inverse scattering problems. Finally (Section 5), some conclusions

point out current limitations and also future developments of the proposed methodology.

2 Mathematical Formulation

Let us consider the two-dimensional scenario shown in Figure 1 where an unknown scat-
terer, characterized by the following object function
(o) =elem) -1 -1 700 @y es (1)
2 f
where ¢, and o are the relative permittivity and conductivity, respectively, lies in an
investigation domain, D, illuminated by a set of V incident electromagnetic fields of
TM type, EY, (z,y)v = 1,...,V, radiated by an electromagnetic source operating at the
working frequency f. The background medium is assumed to be lossless, non-magnetic,
homogeneous and characterized by known dielectric parameters, 7(z,y) = 79 (z,y) €
{D - S}.
Starting from the measure of the scattered electric field, EV, ., (z,,yp) v =1,...,V; p=
1,..., P, collected in a set of P measurement points lying in the observation domain,
O, and from the knowledge of the incident electric field, EY, .(z,y) v = 1,...,V, inside

the investigation domain, the problem is recast in an optimization one by defining the



following discretized (according to the Richmond’s formulation [20]) cost function:

(I){f} {ZU 1Zp 1‘Escatt(zp’yp scatt{f(zp7yp }‘ }
- Ep 121; 1|Escatt %;yp)' (2)
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f@nyyn) = {7(@n, Yn), By (TnsYn)in =1,..., N;v =1,...,V} being the unknown array
and where (U (2, y) = 15 [ 7(2', ) By (o', 4/ )Gap (2,y | 2, y') da'dy’ (z,y) € O, Ebl(z,y) =
E? (z,y)—Clon(z,y) (z,y) € D, Gyp is the two-dimensional Green’s function of the back-
ground medium [5], « is a regularizing constant, and the index n denotes a discretization
sub-domain of D.

Due to the nonlinearity of the inverse scattering equations [21], the approach for the
minimization of (2) should be able to avoid (by recurring to a global optimization tech-
nique [8][10]) or to limit (by considering a suitable choice of the searched unknown [22|[23])
the occurrence of local minima. In the framework of multiple-agent global optimization
techniques, the particle swarm algorithm (PSO) [24] represents an innovative and very

promising technique [25].

3 Particle swarm algorithm

The PSO is a stochastic multiple-agent algorithm for finding optimal regions of complex
search spaces through the interaction of individuals in a population of particles. The
algorithm is based on a metaphor of social interactions and simulates the collective be-
havior of simple individuals interacting with their environment and each other. In the
same way of other population based optimization approaches |26], PSO updates the set of
individuals according to the cost function (or fitness function, ®) information so that the
population move towards better solution areas. Instead of using evolutionary operators
to manipulate the individuals, each individual (called particle, f = {f;; i =1,..., 1} being

I =(N+1)xV) flies as a “bird” in the search space with a velocity dynamically changed



according to its experience and the experience of other particles.
The PSO, when applied in the framework of microwave imaging to minimize (2),

requires the definition of a population of particles (or particle swarm)

So={f5q=1,..Q} (3)

and a corresponding flying velocity array

% = {Q(()q); q= la s Q} (4)

@ being the dimension of the trial solution population. Iteratively (being k& the iteration
number), the trial solutions are ranked according their fitness measures

Fo={2{f9};q=1,..Q} (5)

The best swarm particle ( ﬁ:”t) = arg [mz’nq (CD { L(cq)})]) and the best previous position
of each particle ( igj) =arg [minhzl,_,,k (@ { ﬁf)})]) are stored. Then, new swarms of trial

solutions are obtained updating each particle according to the following equation
[ =13 + o (6)

being
opt

where § and « are two random values included in the range [0, 2] with a uniform distri-

bution generated by a pseudo-random number generator; w is the inertia weight [27].
The iterative process stops when the termination criterion, based on a maximum

number of iterations, K (i.e., k = K) or on a threshold on the fitness measure, ¢ (i.e.,

E:*pt) < 4), is verified and L(c‘f’t) is assumed as the microwave imaging problem solution.



4 Numerical Results

In this section, some tomographic reconstructions obtained by using simulated data are
presented in order to numerically assess the effectiveness of the PSO-based inverse scat-
tering procedure. In the numerical examples, an object of unknown support S, whose
contrast has to be reconstructed, is positioned inside a test square domain, D, of known
dimensions Ay X Ag (A¢ being the wavelength of the background medium). The test do-
main is partitioned into N = 10 x 10 sub-squares. The observation domain is chosen to
be a circle of radius Ay where P = 10 uniformly distributed receivers are located. The
investigation domain is illuminated with plane waves incident from a set of known angles

v

ve=@w—=1)%;v=1,..,V; V = 4. A multi-illumination /multi-view [5] acquisition sys-
tem is adopted. The object to be reconstructed consists of a off-centered square cylinder,
20 X S0, with dielectric permittivity ,(z,y) = 2.5 as shown in Fig. 2(a).

For the forward problem, in order to avoid the possibility of committing the “inverse
crime” (by using the same numerical method in the inversion algorithm as is used for solv-
ing the direct problem to produce the synthetic measured data), a different discretization
of the investigation domain has been taken into account (Ngp = 50 x 50). Moreover,
the initial values of the object function for the iterative procedure have been always as-
sumed equal to the background value, and the starting guess for the field distribution
equal to the incident field. As far as the setting parameters for the PSO are concerned,
the following values have been chosen: @ = 200, K = 2.0 x 10*, § = 107%, and w = 0.4.
The inertia weight parameter controls the balance between the global and local search
capabilities of the optimization procedure. Similarly to the temperature parameter in
simulated annealing method [8], a large inertia weight facilitates a global search while a
small inertia facilitates a local search. According to the literature suggestions and in this
preliminary PSO assessment, a value equal to 0.4 seems to guarantee a good trade-off

between convergence rate and capability to avoid the solution be trapped in local minima

of the cost function. On the other hand, various tests on classical benchmarks confirm



that the PSO with different population size has almost the similar performances [27].
Consequently, the choice of a population dimension equal to 200 seems to be appropriate
also if more detailed comparisons are necessary in order to extend general considerations
to the microwave imaging framework.

Figure 2 gives reconstructed images of the investigation domain at different iterations
of the iterative PSO-based approach. Starting from the empty distribution (Fig. 2(b),
where the dashed line indicates the reference perimeter of the actual object), when the
number of iterations increases, the background becomes more clear and the location as
well as the reconstruction of the scatterer more accurate. At the convergence iteration,
k°Pt = 5200 (Fig. 2(f)), the estimated profile results very close to the reference profile
(Fig. 2(a)). Moreover, it should be observed the smooth distribution of the permittivity
values inside the scatterer domain as well as a clear identification of the scatterer edges
obtained without additional terms in the functional to be minimized aimed at achieving
these characteristics.

For comparison purposes, Figure 3 shows the reconstructed profiles obtained by apply-
ing inversion procedures based on a standard conjugate-gradient algorithm (Fig. 3(a)),
on a suitable genetic algorithm (GA) (Fig. 3(b)), and on the PSO-based procedure (Fig.
3(c)). As far as the GA method is concerned the following parameter configuration has
been used: @ = 200, P, = 0.7 (crossover probability), P,, = 0.8 (mutation probability),
Py, = 0.01 (bit-mutation probability).

In order to quantitatively evaluate the reconstruction accuracy, let us define the fol-

lowing normalized reconstruction error

N,
1 & |7'($z', yi) - Tactual(ﬂfi,yi)\}
Xi = =~ x 100 8
’ Nj ; { Tactual(xia yi) ( )

where 7 and 7,01 are the values of the reconstructed and actual object function, /V; can
range over the whole investigation domain (j = tot), or over the area where the actual

scatterer is located (j = int), or over the background belonging to the investigation



domain (j = ext), has been assumed as quality figure. Table I summarizes the ob-
tained results. As can be observed, the PSO approach slightly outperforms the GA-based

(PSO)

method (X§§’;A) = 1.8 versus x;,; ~ = 1.7, and X(GA)

it = 9.0 versus ngtso) = 8.9). But if
the GA requires (in its preliminary implementation for microwave imaging applications)
the calibration of different probabilities or the definition of customized meta-heuristic
strategies, the PSO requires the tuning of only one parameter (i.e., the inertia weight w).

Finally, to examine the stability of the PSO method, an additive noise has been added
to the measured data. Let us consider a gaussian noise characterized by an assigned
signal-to-noise ration, SNR. Figure 4 shows the inversion results for a SNR varying
between 30dB to 5dB. As expected, it results that although the computational burden
notably increases (e.g., k°?* = 0.7 x 10* for a SNR = 30dB versus k%' = 1.5 x 10* in
correspondence with SINR = 20 dB) the reconstruction accuracy as well as the decreasing
in the cost function strongly reduces as shown in Tab. II. However, also in high-noise
conditions (SNR = 5dB), the location and the shaping of the scatterer are acceptable

and limited spatial noise (easily detectable and avoidable with simple additive penalty

terms in the cost function) appears in the reconstructed background.

5 Conclusions

An inverse-scattering approach based on the particle swarm algorithm has been presented.
The method has been applied to the reconstruction of two dimensional dielectric scatterers
placed inside an inaccessible domain. In order to asses the capabilities of the proposed
method, some preliminary results have been presented and compared with those obtained
with state-of-the-art approaches. Quite satisfactory results have been achieved in noiseless
as well as in noisy conditions which seems to candidate the PSO-approach as an useful
tool for microwave imaging applications. However, in order to completely determine the
effectiveness and limitations of the proposed procedure, future researches are mandatory.

In this framework, particular attention should be devoted in defining an accurate trade-



off between local and global searching achievable, for example, by linearly decreasing
the inertia weight from its initial value during the iterative process or with an adaptive

unsupervised tuning of the same quantity.
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Figure Caption
e Figure 1. Problem Geometry.

e Figure 2. Iterative Process - Estimated permittivity distributions at the iteration
(b) k=0, (¢) k=1000, (d) k = 2000, () k = 4000, and (f) k = k°?*. (a) Reference

distribution.

e Figure 3. Reconstruction accuracy - Estimated permittivity distribution with (a)

CG-based Procedure, (b) GA-based Procedure, and (¢) PSO-based Procedure.

e Figure 4. Noisy Conditions - Estimated permittivity distributions with PSO-based
Procedure when (a) SNR = 30dB, (b) SNR=20dB, (¢c) SNR=10dB, and (d)
SNR =5dB.
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Table Caption

e Table I. Noiseless Conditions - Error Figures.

e Table II. Noisy Conditions - Error Figures.
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Fig. 1 - S. Caorsi et al., “Location and Imaging of ...”
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Fig. 2 - S. Caorsi et al., “Location and Imaging of ...”
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Xtot | Xint | Xext
GC | 5.7]15.0]4.80
GA | 1.819.0 [1.02

PSO | 1.7] 8.9 |1.03

Tab. I - S. Caorsi et al., “Location and Imaging of ...”
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SNR [dB] kopt (I)opt Xtot Xint | Xext
30 0.7 x 10*[1.0 x 10=*| 1.71 | 9.29 |0.96
20 1.5 x 10*19.4 x 1073 3.38 [20.97 | 1.64
10 2.0 x 10*]3.9 x 1072 6.37 |20.19|5.01
5 2.0 x 10*[1.1 x 1071]10.3425.33|8.86

Tab. IT - S. Caorsi et al., “Location and Imaging of ...”
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