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It is well known that the neutrino flavor in extreme astrophysical environments changes under the
effect of three contributions: the vacuum oscillation, the interaction with the surrounding matter,
and the collective oscillations due to interactions between different neutrinos. The latter adds
a nonlinear contribution to the equations of motion, making the description of their dynamics
complex. In this work we study various strategies to simulate the coherent collective oscillations
of a system of N neutrinos in the two-flavor approximation using quantum computation. This was
achieved by using a pair-neutrino decomposition designed to account for the fact that the flavor
Hamiltonian, in the presence of the neutrino-neutrino term, presents an all-to-all interaction that
makes the implementation of the evolution dependent on the qubit topology.

We analyze the Trotter error caused by the decomposition demonstrating that the complexity of
the implementation of time evolution scales polynomially with the number of neutrinos and that the
noise from near-term quantum device simulation can be reduced by optimizing the quantum circuit
decomposition and exploiting a full-qubit connectivity. We find that the gate complexity using
second order Trotter-Suzuki formulas scales better with system size than with other decomposition
methods such as Quantum Signal Processing. We finally present the application and the results of
our algorithm on a real quantum device based on trapped-ion qubits.

I. INTRODUCTION

Quantum computation can provide an enormous ad-
vantage for the physical description of many-body quan-
tum systems due to the fact that it does not necessarily
require an exponential scaling of computational resources
as the size of the system increases [1, 2]. The prospect
of employing quantum devices to study standard model
physics has led to a world wide effort to design algorithms
and apply them to currently available quantum platforms
(see, e.g., Ref. [3] for a recent review).

Given a quantum system in some fixed initial state
|Ψ0〉, its time evolution under the Hamiltonian H is given
by the action of the real-time evolution operator:

U(t) = e−iHt , (1)

transforming the state according to the time-dependent
Schrödinger equation |Ψ(t)〉 = U(t) |Ψ0〉. In general, a
direct approach based on this description faces an expo-
nentially growing cost on classical computers as the size
of the system increases due to both the enormous mem-
ory requirements to encode the states of the system and
to the operational cost needed to perform matrix mul-
tiplications. Important exceptions to this behavior are
found, for instance, in stabilizer states [4, 5] or in sys-
tems with low levels of bipartite entanglement [6, 7].

According to the Deutsch model [8] of a quantum com-
puter, given a system in a pure state |ϕ0〉, a quantum
algorithm consists of a unitary transformation U which
produces a certain final state |ϕf 〉 = U |ϕ0〉 according
to quantum mechanical rules. It is then possible to per-
form quantum measurements yielding the probability of
finding the systems in a given state of a given basis, prob-

ability that constitutes the result of the calculation. The
Solovay–Kitaev theorem [9] demonstrates that there is
a finite set of quantum gates, which can approximate,
with arbitrary accuracy, any unitary transformation U .
In this sense, the Deutsch model is universal.

An interesting many-body system amenable for explor-
ing simulations of the time evolution on a quantum com-
puter is that of collective flavor oscillations of neutrinos
caused by forward neutrino-neutrino scattering. These
are predicted to occur in extreme astrophysical environ-
ments like core-collapse supernovae, neutron star merg-
ers, and the early Universe [10–16]. The description
of flavor oscillations is a crucial aspect of such studies
since the physics of matter under extreme conditions is
strongly flavor dependent [17, 18], and moreover the en-
ergy spectrum is different for different neutrino flavors
[19]. A star with a sufficiently large mass (' 8 M�) un-
dergoes a gravitational collapse that can result in a neu-
tron star or a black hole. During the collapse it emits a
very large amount of energy (∼ 1053 erg) in the form of a
large number of neutrinos (∼ 1058). In a few seconds the
10% of the gravitational mass of the star is converted
into neutrinos flowing with an energy Eν ' (10 ÷ 30)
MeV. The evolution of this neutrino sea plays a funda-
mental role in supernova collapse phenomena. They are
in fact the main carriers of the lepton number within the
reactions taking place in the interior. Moreover, they
are responsible for the loss of entropy and can increase
the instability of the star by eventually generating the
explosion [20]. A simple diagram showing the regions
where different neutrino processes are active in a core
collapse supernovae, assumed to have spherical symme-
try, is shown in Fig. 1. Collective neutrino oscillations
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are generally expected to be dominant in a range of in-
termediate distances from the core (∼ 100 km) where
the density of neutrinos is large while the external lep-
ton electron density is not sufficiently large to suppress
flavor oscillations [20]. The external shell, in which the
neutrino density is lower, is instead dominated by vac-
uum oscillations and interactions with the surrounding
matter leading to the MSW effect [21].

A full description of the dynamical evolution of flavor
in these processes is hindered by the large computational
cost required to carry out simulations with large numbers
of interacting neutrinos. A common approach adopted to
circumvent the problem is to use a mean-field approxi-
mation for the equation of motions, allowing one to study
large-scale systems with complex geometries [22–25]. A
full treatment of correlation effects in the complete many-
body evolution can, however, be attained in relatively
small systems with O(10) neutrinos [26–28], in situations
of large symmetry [29–32] and/or small levels of bipar-
tite entanglement using tensor network methods [33–35].
Semiclassical methods are another class of approaches
that retain some of the correlations while maintaining
numerical efficiency; these methods were recently applied
to the neutrino problem in Ref. [36]. Quantum simula-
tions offer an alternative to explore out-of-equilibrium
flavor dynamics in regimes that are not accessible by
these classical approaches. Early calculations on small
systems with up to four neutrinos have been carried out
on both digital quantum computers [37, 38] and quan-
tum annealers [39] showing that both careful algorithm
design and error mitigation techniques have to be consid-
ered when tackling this challenging problem on current
generation devices. In this work we propose an efficient
quantum algorithm to describe the evolution of the flavor
state of a many-neutrino system using a digital quantum
computer and paying attention to the optimal quantum
gate decomposition and to the complexity of the quan-
tum circuit needed for the simulation. We analyze in
detail the scaling of the Trotter error, the number of op-
erations needed to perform the evolution at a fixed error,
and the complexity of the quantum gate decomposition of
the evolution operator, paying attention to the machine-
aware compilation that has to consider the topology of
the qubit system. We note that to obtain physical in-
formation about the many-neutrino system one does not
need to simulate the evolution of all the 1058 emitted neu-
trinos, but it is sufficient to limit the simulation only to
a number of neutrinos in a space region that is causally
connected. Furthermore, collective oscillations can op-
erate on timescales much smaller than the total propa-
gation time needed for a neutrino to leave the system
starting from the neutrino sphere. Finally, even small-
scale simulations can provide crucial information about
the conditions required for specific collective modes to
appear as well as the nature of correlations responsible
for them (see, e.g., Refs. [28, 30, 32–34]).

In Sec. II we present the description of the physical sys-
tem of several neutrinos used in this work. In Sec. III we

Figure 1. Sketch of the environment in a core-collapse super-
nova assuming spherical symmetry. Near the proto-neutron
star the large local neutrino density causes an important ef-
fect from pairwise neutrinos scattering, while at large radii
the interaction with electrons prevails instead. Moreover, we
assume a narrow cone of forward peaked emitted neutrinos.

analyze the decomposition of the unitary propagator in
Eq. (1) containing an all-to-all interaction. In order to do
that, we exploit the pair property of the potential, show-
ing some of the advantages of a full-qubit connectivity
which guarantees greater freedom in the decomposition
and therefore less complexity of the final implementation.
In Sec. IV we present the optimal decomposition tech-
nique to find the best quantum circuit for the trapped-
ion quantum device used to perform the real quantum
simulation [a Quantinuum System Model (QSM) H1-2
trapped-ion device]. In Sec. V we report the results ob-
tained from the real quantum simulations for a single
Trotter step propagation using different time steps and
for multistep long time evolution in the cases of N = 4
and N = 8 neutrinos. Finally, in Sec. VI we present a de-
tailed derivation of the Trotter error scaling introduced
by the decomposition of U(t) and the time discretiza-
tion. We also compare the gate complexity to that of
other decomposition methods such as qubitization. Fi-
nally, we demonstrate the usefulness of the decomposi-
tion proposed in Sec. III, which ensures that the number
of necessary operations follows a low degree polynomial
with the number of particles.

II. SU(2) MODEL OF A MANY-NEUTRINO
SYSTEM

The Hamiltonian of a many-neutrino system includ-
ing the effect of forward scattering is equivalent to an
all-to-all coupled spin system and thus represents an in-
teresting many-body quantum problem governed by the
weak interaction. The first approximation we make is to
consider only two neutrino flavors in the description: the
electron flavor νe and a single heavy flavor νx which is
a combination of µ and τ neutrinos. This can be jus-
tified if the mixing angle θ13 = 0 as shown in [40]. In
this way the general flavor state of each neutrino, given
by the two-flavor superposition |Ψ〉 = α |νe〉+β |νx〉, can
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be fully encoded in the state of a qubit by means of the
mapping:

|νe〉 7−→ |0〉 , |νx〉 7−→ |1〉 . (2)

The flavor Hamiltonian in this basis can be decomposed
into three main terms [20, 41]: (1) a one-body contribu-
tion describing vacuum mixing Hvac := H(1) which takes
into account the flavor oscillations of each neutrino due to
the misalignment between flavor states and mass eigen-
states; (2) a second one-body part describing the coupling
to external matter leading to the MSW effect and (3) the
neutrino-neutrino interaction term Hνν := H(2) gener-
ated by forward scattering. In this work we neglect the
second contribution since we are interested in describing
the dynamics in the coherent oscillation-dominated re-
gion, and only focus on a simplified Hamiltonian of the
form [41]

H = H(1) +H(2) =

N−1∑
i=0

hi +

N−1∑
i<j

hij

=

N−1∑
i=0

b · σi +

N−1∑
i<j

Jijσi · σj ,

(3)

where we used bold symbols to denote three-dimensional

vectors. The vectors σi = (σ
(x)
i , σ

(y)
i , σ

(z)
i ) are formed by

the Pauli matrices acting on the ith neutrino. Here and in
the following we suppress the identity operators acting on

the other spins, for example, σ
(x)
1 = 1⊗σ(x)⊗1⊗· · ·⊗1.

The simple structure of the neutrino-neutrino interaction
term originates from treating neutrinos as plane waves
with definite momentum and the weak interaction as a
contact term in coordinate space. In order to extend
this formulation to take into account, in a more realistic
way, the spatial localization of neutrinos, especially im-
portant in inhomogeneous systems [42], it is possible to
consider instead the evolution of neutrino wave packets.
Extensions along these lines are left for future work. In
the flavor basis, the vector b in the first term describes
vacuum mixing of neutrinos with the same energy and is
given explicitly by

b =
δm2

4E
(sin(2θν), 0,− cos(2θν)) . (4)

In this expression δm2 = m2
2 − m2

1 is the square mass
difference between mass eigenstates, which is of order
10−4 eV2, θν is the mixing angle that we took equal to
θν = 0.195, and E is the neutrino energy. The two-
body interaction term is described by the SU(2) invariant
product of Pauli matrices in which, also in this case, the
tensor products with the other particles are implicit. For
example,

σ
(x)
0 σ

(x)
2 = σ(x) ⊗ 1⊗ σ(x) ⊗ 1⊗ · · · ⊗ 1 . (5)

The coupling constant of the pair interaction can be writ-
ten explicitly as follows,

Jij =

√
2GF
V

(1− cos(θij)) :=
µ

N
(1− cos(θij)) , (6)
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Figure 2. Exact evolution of a system of N = 4 neutrinos with
initial state |Ψ0〉 = |0011〉. The panel (a) shows the evolution
of the expectation value 〈Zi〉 while the panel (b) shows the
evolution of the flavor inversion probability.

and it depends on the relative angle of propagation,

cos(θij) =
pi · pj
‖pi‖‖pj‖

, (7)

where pi is the momentum of the ith neutrino. This
means that the neutrinos that interact the most are those
that propagate in directions with a larger relative angle.
In Eq. (6) we introduced the energy scale µ =

√
2GFnν ,

where GF if the Fermi constant, nν = N/V the neutrino
number density, and V the volume of the system. We
choose the neutrino energy in order to obtain the same
coupling constant for the one-body and two-body ener-
gies,

µ

N
=
δm2

4E
, (8)

and measure time in units of µ−1. As done in previous
work [37], we take a simple grid of angles,

θij = arccos(0.9)
|i− j|

(N − 1)
, (9)

meant to reproduce a narrow cone of forward peaked
neutrinos in accordance with the geometry displayed in
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Fig. 1. With this choice of angular distribution, and for
even N , the neutrino Hamiltonian in Eq. (3) turns out
to be symmetric under the particle exchange

νk ←→ νN−1−k , (10)

for k = 0, . . . , N/2. The initial state of the system, used
for all the simulations presented in this work, consists of
setting the first N/2 neutrinos in the |νe〉 flavor state and
the other N/2 in the |νx〉 state. In this way the initial
state is symmetric under the composition of particle ex-
change and flavor inversion. For N = 4 neutrinos, for
instance, the initial state is given by

|Ψ0〉 = |ν0ν1ν2ν3〉 = |0011〉 = |νeνeνxνx〉 . (11)

One can obtain the exact time evolution by directly per-
forming a matrix multiplication |Ψ(t)〉 = U(t) |Ψ0〉. In
the spin basis, the flavor content of an individual neu-
trino is obtained from the expectation value of the Pauli

matrix σ
(z)
i = Zi,

〈Zi(t)〉 = 〈Ψ(t)|Zi|Ψ(t)〉 , (12)

where the tensor products are implicit for the other par-
ticles. In a similar way, the flavor inversion probability
Pi(t) can be expressed as

Pi(t) =
| 〈Zi(0)〉 − 〈Zi(t)〉 |

2
. (13)

We display the exact evolution of both quantities in
Fig. 2: The top panel shows results for 〈Zi(t)〉 while the
bottom panel displays the inversion probabilities. As ex-
pected from the exchange symmetry in Eq. (10) and the
asymmetric choice of initial state |Ψ0〉, the flavor evolu-
tion of neutrinos ν0 and ν1 is the mirror image of neu-
trinos ν3 and ν2 (respectively). This is reflected in the
equivalence of inversion probabilities for these neutrinos
(bottom panel of Fig. 2). Because of the presence of this
symmetry, in the rest of this work we show results for
inversion probabilities only.

III. IMPLEMENTATION OF THE TIME
EVOLUTION OPERATOR

In order to carry out a quantum simulation, one always
needs two ingredients: (1) a state encoding map and (2)
a way to map operators into quantum gates. Because of
the two-flavor approximation presented in Sec. II, the
flavor state of neutrinos can be directly encoded into
a qubit according to the map in Eq. (2). In the case
of digital quantum simulations, the operator U(t) must
then be decomposed into a sequence of quantum gates
from a fixed set. In this way the initial state encod-
ing the flavor state |Ψ0〉 is evolved under a sequence of
unitary transformations, overall implementing the real-
time propagator. A projective measurement of the final

state of the qubits eventually allows us to extract flavor
observables from the simulation. In the computational
basis, the operator U(t) is represented by a 2N ×2N uni-
tary matrix which must be decomposed into the gate set
provided by the machine, usually composed by single- or
two-qubit elementary gates. One way to decompose this
operator is to explicitly exploit the actual interaction of
the physical system which occurs in pairs and which can
therefore be implemented by considering only a pair of
qubits at a time. The approach followed in Ref. [37] uses
the exact pair propagator. This can be obtained in two
steps: First, one symmetrizes the one-body term and
expresses the total Hamiltonian as a sum of two-body
terms, namely,

H =

N−1∑
i<j

(
b · (σi + σj)

N − 1
+Jijσi ·σj

)
:=

N−1∑
i<j

Hij . (14)

Then, the total propagator can be approximated by the
product of pair propagators:

U(t) ≈
N−1∏
i<j

e−iHijt . (15)

The approximation introduces an error of orderO(t2) due
to the noncommutativity of the symmetrized two-body
terms, namely, [Hij , Hik] 6= 0. A first improvement of
this implementation can be made by considering that the
entire one-body and two-body terms commute, namely,[
H(1), H(2)

]
= 0, and therefore their separation does not

introduce any errors:

U(t) = e−iH
(2)te−iH

(1)t := U2(t)U1(t) . (16)

Subsequently, the two-body term alone can be efficiently
implemented as a pair decomposition:

U2(t) ≈ Ũ2(t) =

N−1∏
i<j

e−ihijt :=

N−1∏
i<j

uij(t) . (17)

The implementation in Eq. (15) might lead to an increase
in the error due to the lack of commutativity between in-
dividual one- and two-body contributions and can cause
an explicit breaking of the symmetry under particle ex-
change. However, the approach can still be useful in
the case of a particle-dependent external field, in which
b→ bi, as it occurs when different neutrinos have differ-
ent energies E → Ei (a necessary ingredient to observe
spectral splits [20, 28]).

A. Qubit connectivity and pair ordering

The Hamiltonian in Eq. (3) contains an all-to-all in-
teraction term. Using the implementation of U2(t) from
Eq. (17), we have to make all qubits interact with all
the others at least once during the simulation. This fact
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Figure 3. SWAP network for N = 4 qubits that implements
the two-body propagator U2(t) using a chain of linearly con-
nected qubits. Vertical lines represent the qubit interaction
and crosses the SWAP operation. The pair ordering influ-
ences the total error; here, we use the map (q0, q1, q2, q3) =
(ν0, ν2, ν1, ν3).

implies that in a quantum computation the circuit imple-
menting the sequence of U2(t) operators for each particle
pair must be adapted to the particular topology of the
specific quantum device employed for the simulation. As
shown in Ref. [37] it is possible to construct U2(t) with
only linear connectivity and with a gate depth of N us-
ing a SWAP network (SN)—the same scheme was later
adopted for tensor-network simulations in Ref. [33]. The
algorithm consists in applying the uij propagator to a
qubit pair followed by a SWAP gate which exchanges
the qubit state. The new unitary wij is thus

wij = SWAP× uij , (18)

where in the computational basis the SWAP unitary is

SWAP =

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 . (19)

For example, the SWAP network required for the case
of N = 4 is depicted in Fig. 3. It should be pointed
out that the error introduced by the approximation in
Eq. (17) also depends on the order in which the pairs
interact. This is due to the dependence of the error in
Eq. (17) on sums of the commutators [hij , hkl] taken with
a given order (see Appendix A for additional details). It
is then worth looking for an optimal ordering allowing us
to maximize the cancellations between the commutators
minimizing the decomposition error. Note that, once the
four-layer network structure shown in Fig. 3 is fixed, the
ordering can be chosen by varying the initial encoding
of each neutrino into the qubits. The structure of the
SWAP network, dictated by the available qubit topology,
imposes a constraint on the possible ordering of the pair
propagators. In principle, any ordering could be achieved
by adding additional SWAP gates or additional layers but
at the cost of increasing the complexity in terms of depth
and number of two-qubit gates of the scheme. For our
Hamiltonian, and in the case of N = 4, we find that the
best interaction order would be the one described by the

Figure 4. Implementation of the two-body propagator U2(t)
on a qubit system with all-to-all connectivity. This scheme
can implement the optimal ordering of pairs to minimize the
decomposition error. For our system this corresponds to the
qubit to neutrino map (q0, q1, q2, q3) = (ν0, ν1, ν2, ν3).

network in Fig. 4. Such ordering cannot be expressed
using a SWAP network with four layers (as shown in
Fig. 3) if restricted to the use of linear qubit connectivity.
In fact, one can easily show that at least five layers would
be needed. With all-to-all connectivity, however, this
algorithm can be implemented using only three layers, as
shown in Fig. 4. This is due to the fact that each layer is
full, in the sense that the maximum number of possible
operations at the same time is performed. Determining
the optimal ordering for large systems is not feasible, in
general, as this would require a superexponential cost in
the system size N . For large systems a randomization
procedure for the order could prove valuable to control
the error [43, 44].

We analyze the effect of different orderings on a single
time step in Fig. 5. A similar study, made for a different
Hamiltonian, about the Trotter error dependence on the
ordering can be found in Ref. [45]. The two top pan-
els show the evolution of the inversion probability as a
function of the time step dt ∈ [0, 40]µ−1 for the same
initial state as in Fig. 2 and for different implementation
of the propagator: The dotted curve is the exact evolu-
tion, and the solid blue line is the one obtained by apply-
ing the implementation proposed in this work [Eqs. (16)
and (17)] together with the optimal ordering (OO) from
Fig. 4. The dashed orange and red lines are the evolu-
tion using the implementation proposed in Ref. [37] and
described by Eq. (15), and the SN scheme from Fig. 3.
Panel (a) shows results for neutrinos ν0 and ν3 while
panel (b) shows those for ν1 and ν2. The results highlight
the preservation of the exchange symmetry from Eq. (10)
of the scheme introduced in this work and afforded by the
separation between the one- and two-body contributions
in Eq. (16). Note that this property, observed for N = 4,
does not hold for general system sizes. For instance, we
were not able to find an ordering choice preserving this
property while keeping the minimum number of layers
for the case of N = 8. Furthermore, the breaking of
exchange symmetry in the N = 4 system for the (SN)
results shown in Fig. 5 is to be ascribed to the Trotter
breakup from Eq. (15), which for the (SN) ordering gen-
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Figure 5. Top panels: inversion probability after a single
Trotter step for different values of the time steps dt. Panel
(a) shows the evolution for neutrinos ν0 and ν3, and panel (b)
for ν1 and ν2. The dotted black curve is the exact evolution,
and the solid blue line is the one obtained by applying the
implementation proposed in this work [Eqs. (16) and (17))
together with the scheme in Fig. 4. The dashed orange and
red lines are the evolution using the implementation proposed
in Ref. [37] and described by Eq. (15), and the scheme from
Fig. 3. Panel (c) shows the error in spectral norm between
the exact propagator and the two Trotter decompositions.

erates an explicit symmetry breaking.
Panel (c) of Fig. 5 shows the error, for a single Trotter

step, of the two approximations for the time evolution
operator as a function of the time step dt. We calculate
the error using the spectral norm (i.e., the maximum sin-
gular value of the matrix)

ε(dt) =
∥∥∥Ũ2(dt)− U2(dt)

∥∥∥ . (20)

The results displayed in the top panels show that the
error in the inversion probability is lower for the (SN)
approximation when dt < 30µ−1. This is mostly an ef-
fect of choosing a particular initial state |Ψ0〉 and this
specific observable. For general initial states and observ-
ables, the error displayed in panel (c) shows that the
(OO) approximation has indeed the smallest worst-case
error for all time steps. The main advantage of using
the optimal order is evident when the goal of the sim-
ulation is to describe the evolution of the system for a
long total time T in which the accumulation of the er-
ror is dominant. In Fig. 6 we plot the time evolution of
the inversion probability for the neutrino ν1 (set in the
electron flavor |0〉 at the beginning) for a long total time
T = 1200µ−1 using a time step dt = 16µ−1. For each

0 200 400 600 800 1000 1200
Total time evolution T [μ−1]

0

0.5

1
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 Ideal SN OO

Figure 6. Time evolution of the inversion probability for neu-
trino ν1 using a time step dt = 16µ−1. The dotted black curve
is the exact evolution, the orange dashed curve is the Trotter
decomposition with the best possible SN while the solid blue
curve uses the OO achievable using the full connectivity.

time, we sequentially apply the approximate propagator

|Ψ(kdt)〉 = Ũ2(dt)kU1(dt)k |Ψ0〉 , (21)

where Ũ2(dt) is defined in Eq. (17). We employ two
different orderings: (1) the best possible ordering that
is achievable with a SN with linear connectivity as pre-
sented in Fig. 3 above, and denoted by the dashed orange
curve in Fig. 6, and (2) the optimal ordering, achievable
by allowing all-to-all connectivity, shown in Fig. 4, pre-
sented as the solid blue curve in Fig. 6. As we can see,
the results obtained using OO are much more stable than
with SN and allow us to reach long evolution times even
with large time steps.

IV. OPTIMIZED QUANTUM CIRCUIT

In order to implement the unitary propagator, we need
to decompose it as a sequence of elementary gates from
the universal gate set used by the quantum machine. The
one-body part is trivial because it is the tensor product
of the same single-qubit gate applied to each qubit:

U1(dt) =

N−1⊗
i=0

exp (−ib · σidt) . (22)

The two-body part of the propagator, as approximated
in Eq. (17), is the product of pair terms of the form

uij(dt) = e−idtJij(X⊗X+Y⊗Y+Z⊗Z) . (23)

In the case of full-qubit connectivity we do not need
to add the SWAP gate after the pair interaction [see
Eq. (18)] and we can directly implement the uij(dt) op-
erator. This results in a decomposition with a smaller
number of single-qubit gates. In fact using the result in
Ref. [46], the optimal CNOT-based decomposition for the
SU(2) invariant unitary operator uij in Eq. (23) can be
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written as

Rz(φ) • Rz(
π
2 )

Rz(−π2 ) • Ry(−φ) Ry(φ) •

(24)

where we introduced the angle φ = −(2dtJij + π/2).
When performing a quantum simulation, it is always

advisable to write the circuit using the physical gates
actually implemented by the machine and optimize it.
This procedure allows us to reduce the number of gates
necessary for the simulation. In this work we simulate
the real-time evolution of N = 4 and N = 8 neutrino
systems using the QSM H1-2 trapped-ion device, sim-
ilar to the machine described in Ref. [47]. Like other
trapped-ion-based quantum devices, it offers the advan-
tage of a full connectivity between the qubits, high fi-
delity: a single-qubit error of ∼ 10−4 and a two-qubit
gate error of ∼ 10−3, and the possibility to perform par-
allel operations between different qubits in different zones
simultaneously. The native single-qubit gates used are as
follows:

Rz(λ) =

(
e−iλ/2 0

0 eiλ/2

)
(25)

and:

Uq(θ, ϕ) =

(
cos θ/2 −ie−iϕ sin θ/2

−ieiϕ sin θ/2 cos θ/2

)
. (26)

Currently, only two possible values θ = π, π/2 are na-
tively available on the device. This means that up to four
physical gates are required to compile a general SU(2)
unitary. The two-qubit gate is

ZZ = exp
(
−iπ

4
Z ⊗ Z

)
=

1 0 0 0
0 i 0 0
0 0 i 0
0 0 0 1

 . (27)

In the circuit from Eq. (24), we can replace the following
ZZ-based implementation of the CNOT gate:

•
= ZZ

Rz(−π2 )

Uq(−π2 ,
π
2 ) Uq(

π
2 , π) Rz(−π2 )

(28)

Then, using (1) commutation properties, (2) all possi-
ble simplifications including cancellation and gate merg-
ers, and (3) translating all single-qubit gates into native
gates, we obtain the circuit displayed in Fig. 7 that imple-
ments the two-body part of the evolution for one pair of
neutrinos using only native gates. The angle parameter
α is defined, for every qubit pair, as α = −dtJij .

A single Trotter step is implemented by first applying
the one-body part in Eq. (22), made up of single-qubit
gates, followed by the optimal ordered sequence of pair

interactions. A scheme for the circuit of a complete sin-
gle Trotter step is presented in Fig. 8 where each two-
qubit gate is implemented by the circuit in Fig. 7. The
evolution for a total time T using a time step dt is imple-
mented by sequentially applying the scheme in Fig. 8 for
r = T/dt times and moving to full one-body part to the
beginning. In these cases the overall gate count for the
circuit can be further optimized using an inverted inter-
action order in alternate steps [this means performing the
last interactions (1, 2) + (0, 3) at the beginning, which is
also an equally optimal ordering] resulting in a reduction
of 3N/2 ZZ gates for each step. This alternating scheme
can also reduce the overall approximation error since it
then becomes equivalent to a second order Trotter step
with time step 2dt (see Sec. VI for additional details).

V. RESULTS OF QUANTUM SIMULATIONS

In this section we report the results obtained from the
simulations carried out on the Quantinuum trapped-ion
device. We perform two distinct simulation: First, we
approximate the full time evolution with a single Trotter
step with different values of dt, as done in Ref. [37]. Sec-
ond, we perform a multistep simulation fixing dt = 4µ−1.
The single-step results are obtained using both a system
with N = 4 neutrinos—equivalent to the one studied in
Ref. [37] on a superconducting device and in Ref. [39] on
a quantum annealer—and a larger system with N = 8.
Similarly to this work, the simulation on superconducting
circuits required a number of qubits equal to N , while,
using the strategy described in Ref. [39], in order to map
the problem into a quantum annealer, we would need at
least 2N+2 physical qubits in the ideal case of all-to-all
connectivity (corresponding to 64 qubits for N = 4 and
1024 qubits for N = 8). However, due to the limited
connectivity in these devices, a large number of auxiliary
qubits need to be employed. With the Pegasus topol-
ogy implemented in the D-Wave Advantage system, the
N = 4 simulation presented in Ref. [39] required ≈ 2000
physical qubits; by extrapolating the resource require-
ments estimated in Fig. 9 there, a simulation with N = 8
neutrinos will require ≈ 105 physical qubits and is likely
out of reach in the near future.

For each simulation, the circuit is repeated M = 200
times in order to collect statistics for the measurement
outcomes. The results of the simulation are then ana-
lyzed by calculating statistical confidence intervals using
the Bayesian approach already employed in Ref. [37].

A. Single Trotter step propagation

The initial flavor states for N = 4 and N = 8 are
chosen to contain a mixture of both e and x flavors as

|Ψ(4)
0 〉 = |0011〉 , |Ψ(8)

0 〉 = |00001111〉 , (29)
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Uq(−π2 ,
π
2

)

ZZ

Uq(
π
2
, π) Rz(2α− 3

2
π)

ZZ

Uq(−π2 ,
π
2

)

ZZ

Uq(
π
2
, π)

Uq(2α,
π
2

) Rz(− 3
2
π) Uq(2α,

π
2

) Rz(−π2 )

Figure 7. Decomposition of the two-body propagator uij(dt) in Eq. (23) using native gates and setting α = −dtJij .

respectively, and are prepared using single-qubit gates
Uq. We then apply the Trotter step according to the
diagram displayed in Fig. 8 (and its generalization to
the N = 8 case) using the gate decomposition in Fig. 7.
This requires a number of two-qubit ZZ gates equal to
18 (for N = 4) and 84 (for N = 8). Since the trapped-
ion device has more than four qubits at our disposal,
in order to minimize the execution cost of the N = 4
experiments, we always use two sets of four qubits at
the same time, each one performing the circuit sequence
corresponding to two different values of dt. Thus, the
results presented below are all obtained from experiments
using eight qubits with a two-qubit gate depth given by
either 9 or 21 (for the N = 4 and N = 8 simulations,
respectively).

Figure 9 shows the results for the inversion probability
obtained for the simulation of a system of N = 4 neu-
trinos while Fig. 10 shows those for a system of N = 8
neutrinos. In both figures the pairs of neutrinos related
by the exchange symmetry from Eq. (10) are represented
in the same panel: neutrinos ν0 and ν7 in panel (a), ν1

and ν6 in panel (b), ν2 and ν5 in panel (c), and ν3 and
ν4 in panel (d). In the limit of negligible machine er-
rors, the implementation of the propagator proposed in
this work guarantees perfect symmetry under particle ex-
change in the case of N = 4, and the results obtained
on the real device almost always respect this symmetry
within a confidence interval of 68% and always in the in-
terval of 90%. Because of our choice of using eight qubits
to perform two simulations for N = 4 in parallel, these
errors might, in principle, be affected by the cross-talk
between the two simulations. However, by analyzing the
results of three parallel executions over 12 qubits using
time steps dt = 16, 24, 32µ−1, we found them to be com-
patible with the results shown in Fig. 9, indicating that

Figure 8. Scheme for implementing a single Trotter step. We
first apply the single-qubit gates corresponding to the one-
body propagator U1(dt) and then the pair propagator using
the optimal ordering implementing U2(dt).
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Trotter
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Figure 9. Single Trotter step evolution for the inversion prob-

ability starting with the initial state |Ψ(4)
0 〉 = |0011〉. Panel

(a) is for neutrinos ν0 and ν3, and panel (b) is for ν1 and ν2.
The dotted line represents the ideal results using the exact
propagator, while the solid black line indicates the ideal result
obtained using one Trotter step. The results obtained from
experiments on QSM H1-2 are represented by data points and
error bars with and without caps corresponding to 68% and
90% confidence intervals, respectively.

cross-talk effects are minimal.
For N = 8 neutrinos our implementation of the prop-

agator respects the symmetry of particle exchange up to
dt ≈ 24µ−1 as can be seen by the theoretical results
shown as solid lines in Fig. 10. The real data respect
the same symmetry within the 90% confidence interval.
The results obtained for the evolution of a single step
are very promising and much more compatible with the
theoretical ones than those obtained in Ref. [37].

In order to compare the results obtained in this work
using a trapped-ion device and with optimal ordering OO
to the previous results obtained using a swap network SN
on the IBMQ Vigo superconducting device [37], in Table I
we present the values for χ2 of the inversion probabilities
of each neutrino for the N = 4 simulation. The quality
of the results is assessed by measuring the distance from
the theoretical prediction of the inversion probability of

neutrino i at time t, P
(th)
i (t), of the computed results

Pi(t) by means of the following function:

χ2
i =

1

10

10∑
k=1

(
Pi(kdt)− P (th)

i (kdt)
)2

δPi(kdt)2
, (30)
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Figure 10. Single Trotter step evolution for the inversion

probability starting with the initial state |Ψ(8)
0 〉 = |00001111〉.

Panel (a) shows result for the pair (ν0, ν7), panel (b) for
(ν1, ν6), panel (c) for (ν2, ν5), and panel (d) for (ν3, ν4).
Curves and data points follow the same convention used in
Fig. 9.

where δPi(t) is the estimated variance (taken to coincide
with the 68% confidence interval) and 10 is the number
of simulated points, for each neutrino, used to calculate
χ2. The last third row shows results from the super-
conducting IBMQ device after error mitigation. In our
current simulation we did not attempt to mitigate errors
and the report values are the bare results. It can be no-
ticed that there is an important increase of the fidelity
in the results presented in this work. This is a com-
bined effect of the higher gate fidelity provided by the
trapped-ion device and the reduction in complex one-
qubit rotations afforded by the different Trotter decom-
position from Eq. (16) adopted here. The number of
general SU(2) single-qubit operations in a single step for
N = 4 is in fact reduced from 40 with the decomposition
adopted in Ref. [37] to 36 in the present work. More im-
portantly, the 40 rotations adopted in the previous work
have arbitrary angles due to the combination of the pair
propagator and the SWAP gate and always require three
elementary rotations to be implemented. Exploiting in-
stead the full connectivity and the optimal decomposition
in Fig. 7, about 2/3 of the unitaries consist of rotations
of angles which are multiples of π/2. This helps reduce

ν0 ν1 ν2 ν3

OO + QSM H1-2 (bare) 0.36 0.35 0.27 0.14

SN + IBMQ Vigo (bare) 424.31 527.64 545.28 502.60

SN + IBMQ Vigo (mit) 71.35 73.64 126.38 142.72

SN + IBMQ Vigo (bare*) 10.36 12.88 13.31 12.27

Table I. Values of χ2 for each neutrino calculated on the re-
sults obtained from the propagation of a single Trotter step.
The results denoted IBMQ Vigo are taken from Ref. [37] while
the QSM H1-2 ones are from the present work.

the effect of coherent errors in the final results. Finally,
the results of the simulations carried out on IBMQ are
obtained using a much larger statistical sample (8192 cir-
cuit repetitions instead of 200), in order to more directly
compare the new results with the ones obtained there; in
the last line of Table I, we also report the estimated χ2

we would have expected to see if we reduced the statistics
of the bare IBMQ results. The same procedure cannot
be consistently performed for the mitigated results since
such an estimate is also affected by systematic errors (for
more details see Refs. [37, 48, 49]). However, the strong
effect of an increased gate fidelity is still evident.

B. Multiple Trotter steps for N = 4

In order to reach long simulation times while keep-
ing the error under control, the standard approach is to
divide the full interval into time steps which are then
approximated using a short-time approximation. For a
system of N = 4 neutrinos, initially in the state |Ψ0〉,
this can be done through the sequential application of
the scheme depicted in Fig. 8 for a number of time steps
k, obtaining the final state

|Ψ(kdt)〉 = Ũ2(dt)kU1(dt)k |Ψ0〉 . (31)

For the results shown in this section, we used k ∈ [1, 10]
with a time step dt = 4µ−1. Also in this case, in order
to exploit the specific features of the trapped-ion ma-
chine, we have carried out the simulations in pairs in
which the first four neutrinos are evolved up to a time
T = kdt and the last four up to T = (k + 1)dt. This
means that the circuit to simulate the first two times
T = 1 and T = 2 contains 18 ZZ gates applied to the
first four qubits and 36 to the last four. We summarize
the gate counts needed to simulate the system up to a
certain evolution time T = kdt, divided into the number
of two-qubit ZZ gates and one-qubit SU(2) unitaries, in
Table II. For each step we need 6 × 3 two-qubit gates
while, exploiting cancellations between neighboring pair
propagators, the number of general single-qubit rotations
needed scales as 32× k + 4.

In this quantum machine, measurements are carried
out by default at the end of the circuit. Our simulations
include two independent circuits applied on two separate
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Figure 11. Real-time evolution of a system with N = 4 neu-
trinos for time step dt = 4µ−1 and for a total time of T = kdt
with k ∈ [1, 10] using the QSM H1-2 trapped-ion device. The
top panel shows neutrinos ν0 and ν3 and the bottom one ν1
and ν2. Dashed black lines are the ideal evolution, which,
using this small time step, is almost the same as the Trotter
approximated propagation.

blocks of qubits where the first ends before the second.
This means that the first four qubits are subject to idle
errors which, in the case of trapped ions, are mainly re-
lated to dephasing. One way to improve the simulation is
to use a Dynamical Decoupling approach [50] consisting
in applying to idle qubits a sequence of single-qubit gates
that have the overall effect of an identity.

# of steps k 1 2 3 4 5 6 7 8 9 10

# of ZZ gates 18 36 54 72 90 108 126 144 162 180

# of SU(2) gates 36 68 100 132 164 196 228 260 292 324

Table II. Number of SU(2) gates and ZZ gates to evolve the
system to a fixed time T = kdt to produce the results in Fig.
11.

VI. ERROR SCALING AND GATE COST

In this section we analyze the scaling of the Trotter
error and the gate cost of the circuit necessary to evolve
a system of neutrinos as a function of the number N
of neutrinos. To compare the different decomposition
techniques, we look at the scaling corresponding to a de-
scription of a system in which we fix the neutrino density
nν = N/V and increase the dimension of the system. Ad-
ditional details on the results presented here can be found
in the appendices.

The implementation in Eq. (17) approximates the two-

body part of the propagator U2(dt) = e−iH
(2)dt using a

standard first order Trotter formula:

L1(dt) =

N−1∏
i<j

e−ihijdt . (32)

By leveraging the results in Ref. [51] (see Appendix A
for additional details), we can bound the spectral norm
error in this approximation as

ε1(dt) :=
∥∥∥L1(dt)− e−iH

(2)dt
∥∥∥ ≤ O(dt2µ2N) . (33)

Using the union bound to obtain ε1(T ) ≤ rε1(dt) with
dt = T/r, one also finds that the total number of steps
r1 required to evolve for a final time T while keeping the
total error below ε scales linearly with system size. We
can then bound the gate cost C1 of a quantum circuit by
implementing the full evolution in terms of the number of
general SU(4) two-qubit gates needed to implement all
the steps (which, on the trapped-ion system used for this
work, could be decomposed as shown in Fig. 7). For N
neutrinos we have N(N − 1)/2 interaction terms in each
Trotter steps, so the gate cost using a first order product
formula scales with

C1 =
N(N − 1)

2
r1 ≤ O

(
T 2µ2N3

ε

)
. (34)

Since SU(4) transformations can be decomposed with at
most three entangling gates [46], as we did for the native
gate set available on the QSM H1-2 system in Fig. 7, the
total count for two-qubit gates is given by 3C1.

It is possible to obtain a more accurate approximation
by using a second order Trotter-Suzuki formula which
can be expressed compactly as

L2(dt) = L1

(
dt

2

)
L†1
(
−dt

2

)
. (35)

As shown in more detail in Appendix B, one can also
show that in this case the single-step error scales at most
linearly with N . In particular,

ε2(dt) ≤ O(dt3µ3N) . (36)

In this case, the number of steps needed to guarantee a
total error ε for simulation up to T = rdt scales as

r2 ≤ O

(
(Tµ)

3/2

√
N

ε

)
. (37)
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Decomposition type Single-step error Number of steps Circuit complexity

First order Trotter O(dt2µ2N) O
(
T2µ2

ε
N
)

O
(
T2µ2

ε
N3

)
Second order Trotter O(dt3µ3N) O

(
T3/2µ3/2
√
ε

√
N
)

O
(
T3/2µ3/2
√
ε

N5/2
)

Qubitization - O (TµN + log(1/ε)) O
(
TµN3 + log(1/ε)N2

)
Table III. Asymptotic scaling of the error, needed steps, and number of two-qubit operations to evolve a system until T , keeping
the error below ε as a function of the number of particles N and for different methods of propagator decomposition.

Since the number of SU(4) gates is now N(2N − 3)/2
(assuming, as before, N even) the total gate cost is now

C2 =
N(2N − 3)

2
r2 ≤ O

(
(Tµ)3/2

√
ε

N5/2

)
. (38)

The scaling with the number of neutrinos N has sub-
stantially improved within this scheme. The use of even
higher order formulas could allow one to reach an almost
optimal scaling C(N2+δ) for δ � 1, but with possibly
much larger constant prefactors.

Finally, we comment on the prospect of using more
modern approaches to simulate the time evolution oper-
ator, such as qubitization [52, 53]. This scheme also ap-
proximates the propagator over small time intervals but,
contrary to Trotter-Suzuki-based approaches, is able to
reach an optimal scaling in both T and the error ε for
the number of steps

rQ ≤ O
(
TαH + log

(
1

ε

))
. (39)

Here, αH is a suitable norm of the Hamiltonian operator
which, for the two-body neutrino Hamiltonian, is given
by

αH = 3
µ

N

N∑
i<j

(1− cos(θij)) = O(µN) . (40)

For a general angular distribution, the gate cost for each
segment scales as the number of different coefficients, and
thus the gate cost for the algorithm scales as

CQ ≤ O
(
TµN3 +N2 log

(
1

ε

))
. (41)

For a fixed evolution time T and target error ε, the second
order Trotter-Suzuki scheme then scales better than a
qubitization-based approach. This is not a special prop-
erty of the neutrino system; it has been noted already
in other applications (e.g., simulations of the Schwinger
model [54, 55]) and is related to the fact that qubitiza-
tion does not exploit the commutation properties of the
terms that form the Hamiltonian. We summarize the re-
sults on the bounds for both the number of time steps
and the circuit (gate) complexity of a simulation with
N neutrinos, maximum time T , and error tolerance ε in
Table III.

The actual implementation cost is several orders of
magnitude lower than what is predicted by the theoret-
ical bounds. Moreover, as demonstrated in Sec. III, the
cost can be further reduced by using a good decomposi-
tion of the propagator which guarantees a smaller error
and therefore allows us to use a greater value of time step
dt. For a total evolution time T = 40µ−1 and target er-
ror ε = 0.15, we show in Fig. 12 the theoretical bounds’
gate count C1 and C2 for the first and second order de-
compositions as solid blue and orange lines, respectively.
We also numerically determine the actual range of gate
counts required for this simulation as we vary the order
in the Trotter decomposition, which we show in Fig. 12
as the shaded green and yellow bands for first and second
formulas respectively. The real complexity is calculated
using a linear accumulation error; that is, we search dt
such that r = T/dt guarantees

r
∥∥∥Ũ2(T/r)− U2(T/r)

∥∥∥ ≤ ε = 0.15 , (42)

where Ũ2(T/r) = L1(T/r) or Ũ2(T/r) = L2(T/r) as de-
fined in Eqs. (32) and (35), respectively. Using the exact
accumulation of error,∥∥∥Ũ2(T/r)r − U2(T )

∥∥∥ ≤ 0.15 (43)

the number of needed steps could potentially be smaller.

VII. CONCLUSION

In this work we considerably extended the work of
Ref. [37] in terms of designing efficient ways to simu-
late through a quantum computer the time evolution of
a system of several neutrinos interacting with an all-to-all
Hamiltonian, demonstrating that the complexity of the
algorithm scales in a polynomial way with the number of
particles. In particular, we have shown that the choice of
an optimal order in the decomposition can decrease the
Trotter error and therefore the number of steps neces-
sary to simulate the evolution of the system for a certain
time. This is possible thanks to the use of a machine
with full connectivity between the qubits. Devices of this
type allow us to implement the evolution in circuits with
a smaller number of single- and two-qubit gates, poten-
tially decreasing the computational error. The proposed
algorithm was tested on the Quantinuum H1-2 quantum
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Figure 12. Number of two-qubit operations C, as a function
of N , needed to evolve the system of a total time T = 40µ−1

with an error ε1(T ) ≤ ε = 0.15. The solid blue line cor-
responds to the first order bound and the green band to the
real scaling achievable using different pair ordering. The solid
orange line refers to the second order bound instead, and
the yellow band is the corresponding real achievable com-
plexity. Using the optimal decomposition, for the system of
N = 4 neutrinos, the number of two-qubit universal opera-
tions needed is equal to 10N(N − 1)/2 = 60 and corresponds
to 180 CNOT or ZZ gates, which we actually use to obtain
the last point in Fig. 11.

computer to carry out the evolution of a system of N = 4
and N = 8 neutrinos. The device employed had very
good fidelity gates, and the results obtained, even with-
out error mitigation, have remarkably small errors even
in the largest circuits we implemented, containing up to

616 SU(2) rotations and 342 two-qubit gates on eight
qubits. In the previous study from Ref. [37], error miti-
gation using zero noise extrapolations was instead crucial
to obtain acceptable results, even for circuits with a sig-
nificantly lower number of operations (cf. Table I here).

Future improvements could be obtained using var-
ious error mitigation techniques, such as symmetry
protection [56], virtual distillation [57], and symmetry
verification [58]. Considering the quality of the results
obtained in this work, we conclude that it would be
possible to both increase the number of neutrinos in the
system and to evolve it for a greater total time T . In
order to describe more realistic and phenomenologically
rich neutrino systems, it will be important to extend the
algorithms presented here in order to simulate neutrinos
with different energies, which can be modeled with a
particle-dependent external field. Furthermore, another
issue to investigate is the description of collective
oscillations in the presence of electrons, thus including
the matter part in the Hamiltonian.
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Appendix A: First order Trotter error for the
interaction Hamiltonian

The 2-body part of the neutrino Hamiltonian in Eq.
(3) of the main text is a sum of Γ = N(N − 1)/2 terms:

H(2) =

N∑
i<j

hij :=

Γ∑
K=1

hK , (A1)

where hij = Jijσi ·σj and Jij = µ(1−cos(θij))/N . Note
that we count here the neutrinos from 1 to N instead of
from 0 to N − 1. Using the first order Trotter decompo-
sition we can implement the propagator with a product
formula:

U2(dt) ≈ L1(dt) =

N∏
i<j

e−ihijdt =

Γ∏
K=1

e−ihKdt . (A2)

Using the result from Proposition 9 of Ref. [51] we bound
the first order Trotter error as:

ε1(dt) =
∥∥∥L1(dt)− e−iH

(2)dt
∥∥∥

≤ dt2

2

Γ∑
K=1

∥∥∥∥∥
Γ∑

L=K+1

[hK , hL]

∥∥∥∥∥ , (A3)

where in our case K and L correspond to pair indices
K = (i, j) and L = (k, l). The sum inside the norm in
the expression above can be expressed explicitly as

Γ∑
L=K+1

[hK , hL] = δik

N∑
l=j+1

[hij , hkl]

+

N∑
k=i+1

N∑
l=k+1

[hij , hkl]

=

N∑
l=j+1

[hij , hil]

+

N∑
k=i+1

N∑
l=k+1

[hij , hkl] ,

(A4)

where we have separated the sum for L > K in two con-
tributions: those where the first index of K is the same
as the first index of L and those for which the first index
of L is greater than the first index of K. The last contri-
bution can be simplified by splitting the sum around the
index j and realizing that, for the commutator [hij , hkl]
to be different from zero, at least one index in (k, l) needs
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to match an index in (i, j). The result reads

N∑
k=i+1

N∑
l=k+1

[hij , hkl] =

j−1∑
k=i+1

[hij , hkj ]

+

N∑
l=j+1

[hij , hjl] .

(A5)

The Trotter error over a small time step dt thus reads

ε1(dt) ≤ dt2

2

N∑
i<j

∥∥∥∥∥
j−1∑
k=i+1

[hij , hkj ]

+

N∑
l=j+1

([hij , hil] + [hij , hjl])

∥∥∥∥∥∥ .
(A6)

The commutators between different two-body Hamilto-
nians can be computed straightforwardly as

[hij , hik] = JijJik[σi · σj ,σi · σk]

= 2iJijJikσi · (σj ∧ σk) ,
(A7)

where we used a∧b to denote the standard cross product
in three dimensions. Using the cyclic permutation equiv-
alence of the cross product, the fact that the coupling
matrix Jij is positive and the bound ‖σi · (σj ∧ σk)‖ ≤ 4
for all i, j, k ∈ [1, N ] one arrives at

ε1(dt) ≤ 4dt2
N∑
i<j

Jij

∥∥∥∥∥∥
N∑

l=j+1

(Jil − Jjl) +

j−1∑
k=i+1

Jkj

∥∥∥∥∥∥ .
(A8)

For a specific choice of angular distributions the sums
can be computed straightforwardly. However, in order
to obtain a general bound on the error we can introduce
Θ := maxi,j [1− cos(θij)] and obtain the upperbound

ε1(dt) ≤ 12dt2µ2 Θ2

N2

(
N

3

)
= O

(
dt2µ2N

)
. (A9)

Using a fixed Trotter time step dt and evolving the sys-
tem until a total time T using r = T/dt steps the total
additive error can be bound by:

ε1(T ) ≤ rε1(dt) ≤ 12
T 2

r
µ2 Θ2

N2

(
N

3

)
= O

(
T 2µ2N

r

)
.

(A10)
In order to have a total error less than some target error
ε1(T ) ≤ ε we need a number of steps that scales still
linearly with N :

r1 ≤ 12
T 2µ2Θ2

εN2

(
N

3

)
= O

(
T 2µ2N

ε

)
. (A11)

Appendix B: Second order Trotter error for the
interaction Hamiltonian

We present here the extension of the analysis presented
in Appendix A above to the second order Trotter formula.
The approximation to the propagator U2(dt) now reads

U2(dt) ≈ L2(dt) =

1∏
L=Γ

e−i
dt
2 hL

Γ∏
K=1

e−i
dt
2 hK , (B1)

where we used the multi-index notation K = (i, j), L =
(k, l) and Γ = N(N − 1)/2 as before. Using the result of
Proposition 10 from Ref. [51] one can bound the second
order Trotter error by:

ε2(dt) ≤dt
3

12

Γ∑
K

∥∥∥∥∥
Γ∑

L>K

Γ∑
M>K

[hL, [hM , hK ]]

∥∥∥∥∥
+
dt3

24

Γ∑
K

∥∥∥∥∥
Γ∑

L>K

[hK , [hK , hL]]

∥∥∥∥∥ .
(B2)

In order to bound the second term, we use a sim-
ilar procedure to the one adopted in the first order
case by expanding the sums and keeping contributions
[hij , [hij , hkl]] with one of the (k, l) indices matching one
of the (i, j) indices. The bound can be found by using
then the expression for the nested commutator

[hij , [hij , hik]] = J2
ijJik[σi · σj , [σi · σj ,σi · σk]]

= −4J2
ijJikσi · (σj ∧ (σj ∧ σk)) ,

(B3)

together with the bound ‖σi · (σj ∧ (σj ∧ σk))‖ ≤ 8.
The results for the second term in Eq. (B2) reads

dt3

24

Γ∑
K

∥∥∥∥∥
Γ∑

L>K

[hK , [hK , hL]]

∥∥∥∥∥ ≤ 4dt3
µ3Θ3

N3

(
N

3

)
. (B4)

To determine an upper bound for the first term in Eq.
(B2) we used the same procedure for both sums inside
the norm. In this way four terms are obtained, each
of which can be bounded with triangular inequalities by
estimating the number of non-zero terms. After some
calculations the final result reads

dt3

12

Γ∑
K

∥∥∥∥∥
Γ∑

L>K

Γ∑
M>K

[hL, [hM , hK ]]

∥∥∥∥∥
≤ dt3

12
32
µ3

N3
Θ3

(
21

(
N

4

)
+ 6

(
N

3

))
.

(B5)

So the total error reads

ε2(dt) ≤ dt3µ
3Θ3

N3

[
20

(
N

3

)
+ 56

(
N

4

)]
= O

(
dt3µ3N

)
,

(B6)



15

showing a linear scaling with N . The upper bound error
after r = T/dt steps is

ε2(T ) ≤ T 3

r2

µ3Θ3

N3

[
20

(
N

3

)
+ 56

(
N

4

)]
= O

(
T 3

r2
µ3N

)
.

(B7)

The total Trotter steps r needed to evolve up to T keeping
the total error under ε scales as

r2 ≤
(TµΘ)3/2

√
εN3/2

√
20

(
N

3

)
+ 56

(
N

4

)
= O

(
T 3/2µ3/2

√
N√

ε

)
.

(B8)
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