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A B S T R A C T   

West Nile virus (WNV) is among the most recent emerging mosquito-borne pathogens in Europe where each year 
hundreds of human cases are recorded. We developed a relatively simple technique to model the WNV force of 
infection (FOI) in the human population to assess its dependence on environmental and human demographic 
factors. To this aim, we collated WNV human case-based data reported to the European Surveillance System from 
15 European Countries during the period 2010–2021. We modelled the regional WNV FOI for each year through 
normal distributions and calibrated the constituent parameters, namely average (peak timing), variance and 
overall intensity, to observed cases. Finally, we investigated through regression models how these parameters are 
associated to a set of climatic, environmental and human demographic covariates. Our modelling approach 
shows good agreement between expected and observed epidemiological curves. We found that FOI magnitude is 
positively associated with spring temperature and larger in more anthropogenic semi-natural areas, while FOI 
peak timing is negatively related to summer temperature. Unsurprisingly, FOI is estimated to be greater in re-
gions with a larger fraction of elderly people, who are more likely to contract severe infections. Our results 
confirm that temperature plays a key role in shaping WNV transmission in Europe and provide some interesting 
hints on how human presence and demography might affect WNV burden. This simple yet reliable approach 
could be easily adopted for early warning and to address epidemiological investigations of other vector-borne 
diseases, especially where eco-epidemiological data are scarce.   

1. Introduction 

West Nile Virus (WNV), a flavivirus that was first isolated in Uganda 
in 1937 [1], is one of the most recent and frequent emerging mosquito- 
borne pathogens in Europe. WNV is maintained in an enzootic cycle, 
transmitted primarily between avian hosts and mosquito vectors [2]. 
Mosquitoes acquire infection after biting an infectious bird and, after an 
incubation period, they become infectious and thus can transmit the 
virus through subsequent blood meals. Mammals, including humans and 
equines, act as incidental hosts in the natural transmission cycle, i.e. 
they cannot transmit the virus to mosquitoes [2]. However, human to 
human transmission may occur through blood or organ transplantation. 
While most human infections are asymptomatic, about 25% of the in-
fections present symptoms such as fever and headache and less than 1% 

develop more severe neurological complications which can have a fatal 
outcome [2]. In horses, neurological symptoms are observed in about 
8% of the infections, with a fatality rate ranging between 22% and 44% 
[3]. Several vaccines have been licensed for equids [3] but so far none 
for humans, for which reducing exposure to mosquito bites remains the 
most efficient prevention strategy. 

WNV (lineage 2) has most probably first arrived in Europe in 
Hungary thanks to migratory birds at the beginning of the 21st century 
[4], since when it has spread to many European countries causing 
thousands of human cases. There is substantial heterogeneity in inci-
dence both spatial (i.e. between and within different countries) and 
temporal (i.e. between different years). Each year the first cases are 
usually recorded in June and most of the infections occur between July 
and October [5]. In Europe, Culex pipiens mosquitoes appear to be the 
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major vector for WNV transmission, while several bird species were 
found susceptible to infection and in particular high prevalences were 
observed in wild carrion crows, Eurasian blackbirds, Eurasian blackcaps, 
European robins, and magpies [6]. 

Being a significant threat for human health, several modelling efforts 
have been undertaken both in Europe and North America to investigate 
WNV circulation and help public health authorities identify areas at risk 
and determine early warning drivers [7–12]. Essentially, models can be 
categorized in two macro-groups: statistical, which aim at identifying 
significant associations between some covariates of interest and epide-
miological parameters (e.g. [13–18] and dynamical, which are used to 
study virus circulation by explicitly mimicking the transmission process 
(e.g. [7,9,12,19]). As WNV is characterized by a quite complex trans-
mission cycle, design of dynamical models is not so straightforward as 
usually several simplifying assumptions have to be made. For instance, 
only one host species is generally considered (see however [20,21]), or 
mosquito population dynamics might not be explicitly modelled, as in 
[22]. The use of a mechanistic dynamical model is also hindered by the 
scarcity of available precise quantitative data on vector abundance or 
the actual prevalence in mosquito and host populations. Collecting such 
data might be particularly challenging and demanding, especially at a 
fine temporal and spatial scale [23]. In this study, we present a simple 
modelling approach to estimate the WNV force of infection (FOI) in the 
human population using time series of reported cases only, without any 
need for additional entomological or avian data. We then carried out a 
statistical analysis to investigate how WNV FOI is associated with 
several climatic, environmental and human demographic factors of 
interest. 

2. Materials and methods 

2.1. Data collection 

We obtained WNV case-based data collected between 2010 and 2021 
from The European Surveillance System (TESSy) provided by Austria, 
Bulgaria, Croatia, Cyprus, Czech Republic, France, Germany, Greece, 
Hungary, Italy, the Netherlands, Romania, Slovenia, Slovakia, and Spain 
and released by ECDC. Each WNV notification includes date of disease 
onset, importation status, age group and the probable place of infection 
(when available) provided at the NUTS (Nomenclature of territorial 
units for statistics) 3 level [24]. We restricted our analysis to probable 
and confirmed autochthonous cases only when the region of infection 
was identified. We denote by hy,i(w) the number of recorded WNV cases 
with region i as place of infection with symptoms onset occurred during 
week w of year y (w∈{1, …, 52}, y∈{2010, …, 2021}), by Hy,i the whole 
time series, i.e. Hy,i =

⋃52
w=1 hy,i(w), and by Σy,i the total number of cases 

with place of infection identified as i recorded during year y, i.e. Σy,i =
∑52

w=1hy,i(w). 
We collected bioclimatic, environmental and demographic data from 

various sources to extract potentially relevant drivers of WNV across the 
European continent. Monthly 5 km resolution Land Surface Tempera-
ture (LST) was derived from the MODIS MOD11c3 datasets [25]. 
Monthly 5 km resolution cumulative precipitation data were derived 
from downscaled daily ECMWF ERA5-Land datasets and downloaded 
from the Climate Data Store [26]. Proportions of land cover classes for 
each spatial unit were derived from the 2018 Corine Land Cover (CLC) 
data inventory [27]. The number of inhabitants, also stratified by age 
group, for each considered NUTS3 region was retrieved from the Euro-
stat database [28]. 

2.2. Modelling analysis 

We assumed hy,i(w) coming from a Poisson distribution with average 
∑

t∈Tw

Ni⋅λy,i(t), where λy, i(t) denotes the WNV FOI in region i and year y at 

day t, TW represents the set of days in week w and Ni is the number of 
inhabitants of the region. In addition, we assumed that the FOI for re-
gion i and year y could be modelled through the density function of a 
normal distribution, i.e. 

λy,i(t) = cy,i⋅
1

σy,i
̅̅̅̅̅
2π

√ e
− 1

2

(
t− μy,i

σy,i

)2

.

Where μy,i and σy,i represent respectively the average and standard 
deviation of the distribution and cy,i is a magnitude rescaling factor, 
representing the overall intensity of infections in that year and 
geographical area. These three parameters were estimated by matching 
the generated epidemiological curve to the observed data through a 
maximum likelihood approach. Specifically, we computed the Poisson 
likelihood of observing Hy,i (considering only series with Σy, i ≥ 5) with 
the set of parameters Ψ = {μy,i, σy,i, cy,i} as 

L
(
Hy,i,Ψ

)
=

∏52

w=1
e− hy,i(w)⋅

hy,i(w)
hy,i(w)

hy,i(w)!

Where hy,i(w) represents the number of WNV infections expected 
during week w according to λy,i computed with parameters Ψ. We esti-
mated the three free parameters by maximizing L(Hy, i,Ψ) using the 
Nelder-Mead algorithm [29]. We denote with M, S and C the estimated 
distributions of μy,i, σy,i and cy,i respectively. We also carried out a 
sensitivity analysis (see Appendix A) by modelling λy,i through the 
density function of a gamma distribution. 

We then quantified the relationships between the response variables 
S, M and C with a set of 7 covariates of potential interest, suggested by 
previously published studies [8,13,30]: 

1) η(i): the total percentage of CLC labelled as urban or agricultural 
area. This measure can be interpreted as a proxy of the anthropogenic 
impact on the region i. 

2–3) Tspring(y,i) and Tsummer(y,i): respectively the average spring 
(April–May) and summer (June–July) LST recorded in region i during 
year y. 

4–5) Pspring(y,i) and Psummer(y,i): respectively the cumulated spring 
(April–May) and summer (June–July) precipitation occured in region i 
during year y. 

6) ξ(i): the fraction of people older than 65 years living in region i. 
7) WNV_BEFOREy,i: a factor variable defined as in [30]. Specifically, 

the factor is set to 0 if no WNV was recorded the previous year; 1 if WNV 
was recorded the previous year, and NR (not Recorded) for the first year 
the disease was recorded. 

We first computed a full Linear Model which can be represented by 
the following equation: 

Y ∼ η+ Tspring +Tsummer +Pspring +Psummer + ξ+WNV BEFORE.

Where Y can either be S, M or log(C) (we normalized the C distri-
bution by log-transforming it). We checked for potential collinearity 
among explanatory variables by computing Variance Inflation Factors 
(VIFs) [31]. We then computed all possible submodels and selected as 
best the model with the lowest Akaike Information Criterion (AIC) score 
and whose coefficients were all statistically different from 0 at 5% level. 
Model assumptions were verified by checking residuals distributions 
and by plotting residuals versus fitted values and versus each covariate 
in the model [31]. All analysis was carried out in R v4.2.0 [32] using 
libraries “tidyverse” [33] and “MuMIn” [34]. 

3. Results 

Between 2010 and 2021, a total of 3300 autochthonous cases were 
reported from 190 different NUTS3 regions located especially in 
Southern and Eastern Europe (Fig. 1a). The lowest number of infections 
was observed in 2014 (42 cases), and the highest (1434 cases) in 2018. 
The cumulative epidemiological curve (total number of cases per week 
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of symptoms onset across all years and countries, Fig. 1c) clearly shows a 
peak around the 32nd week of the year (first half of August). Finally, 
Fig. 1d highlights the observed higher likelihood for older people to 
develop symptoms and thus being notified to the surveillance system. 

Panels a & b in Fig. 2 show some different realizations for the force of 
infection λ obtained with different parameter combinations. The timing 
of the FOI peak depends on the average μ, which indicates the Julian day 
for which λ reaches its maximum. The curve width can depend on σ: a 
smaller value corresponds to a steeper curve, if the other two parameters 

do not change. Thus, σ provides an estimate for the length (in days) of 
the epidemiological season. Finally, parameter c by definition rescales 
the whole curve, hence it can be interpreted as a measure of the FOI 
magnitude. It is thus clear that the total number of expected infections 
depends directly on c, while σ and μ can be regarded as parameters 
concerning the timing of infections. 

We applied our FOI modelling approach to 172 epidemiological 
curves Hy,i with on average 15.9 total cases (min = 5, max = 96, sd =
15.2). An instance of fit is presented in Fig. 2c, while additional 
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Fig. 1. WNV cases recorded in Europe between 2010 and 2021. Total number of cases by administrative area (NUTS3 level, panel a), by year (panel b), by week of 
symptoms onset (panel c) and by age group (panel d). Administrative boundaries were retrieved from [24]. 

Fig. 2. FOI model. Panels a-b: examples of λ realization with c = 0.01, 0.001 (dashed and continuous lines respectively), σ = 20, 30 (orange and blue respectively) 
and μ = 200, 250 (panel a and b respectively, shown by the vertical dashed line). Panel c: predicted (pink, circles) and observed (purple, triangles) WNV cases for a 
selected time series Hy,i. Panel d: predicted (Σy,i) and observed (Σy, i) total yearly number of WNV cases for each region. (For interpretation of the references to colour 
in this figure legend, the reader is referred to the web version of this article.) 
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examples can be found in the Appendix A. We can note that qualitatively 
the modelled time series well matches the observed one. Moreover, we 
generated stochastically the number of cases with day of symptoms 
onset t expected for region i and year y by drawing from a Poisson dis-
tribution Pois(λy,i(t)) and found that 99% of the simulated total number 
of weekly cases lie within the 95% Confidence Interval (CI) of model 
predictions (see Appendix A). Finally, there is a very good correlation 
(Pearson correlation coefficient = 0.97) between the predicted and 
observed Σy,i values (Fig. 2d), with an average squared error 
E
(
Σy,i − Σy,i

)2
= 17.2. Modelling λy,i through a gamma distribution 

density function yielded a worse fit (see Appendix A). 
Fig. 3 shows the estimated distributions of the three free parameters 

(c, μ, σ) over all years and geographical areas. The average parameter μ 
ranged between 195 and 275 (July 16–October 3) with a mean value of 
232 (August 21) and a 95%Confidence Interval (CI) lying within 
205–256 (July 25–September 14)). The average for S is about 26.5 days 
(95%CI 10–49.2). Finally, the rescaling parameter is on average 
5.94•10− 5 (95%CI 5.8•10− 6-3.2•10− 4). 

We built the full models to statistically investigate how the estimated 
values of the three parameters are associated with non-collinear cova-
riates of interest as explained in the Methods section. VIFs were all 
below 3 so we did not discard any explanatory variable [31]. The best 
model for C, whose coefficients are reported in Table 1, includes three 
covariates. As shown also in Fig. 4, we found that FOI magnitude is 
positively associated with spring temperature (Tspring) and decreases 
when human impact on the environment (η) increases. Moreover, FOI is 
estimated to be greater in areas with higher proportions of elderly 
people (ξ). The best model for M includes only the average summer 
temperature (see Table 1) indicating that warmer summers correspond 
to an earlier timing of the incidence peak. Finally, for S none of cova-
riates was statistically significant. 

4. Discussion 

WNV has becoming an increasing concern for public health author-
ities in several European countries. Its recent introduction to northern 
areas in Germany and the Netherlands [35] confirms the potential 
environmental suitability for its establishment and spread into new as 
yet unaffected geographic areas in the continent, calling for effective 
preventive and responsive measures. 

Because of its complex cycle, modelling WNV transmission is not so 
straightforward, especially when detailed quantitative data on mosquito 
and host abundance along with their infection rates are scarce or not 
available. Here we proposed a simple yet reliable framework to model 
the WNV FOI using only human case data, which can also be realized 
stochastically (see Appendix A). Its simplicity lies in the modelling as-
sumptions, as the incidence is represented by a normal distribution 
function with three free parameters which can be easily interpreted. 
Namely, μ measures the timing of the maximum incidence, σ provides an 
indication for the length of the epidemiological season and c quantifies 
the overall incidence magnitude. Hence, the infection is implicitly 

modelled by a Susceptible-Infected-Susceptible (SIS) model [36] with an 
external FOI. We did not consider an SIR (Recovered) model as recorded 
human cases are a negligible fraction compared to the total population 
of the areas under study. Moreover, at the moment, there are no avail-
able quantifications of human immunization following infection. 

Our analysis highlights different drivers shaping the WNV FOI in 
Europe. We found that spring temperatures are positively associated 
with C. This confirms previous findings remarking the importance of 
spring conditions in Europe for WNV circulation [12,15,30]. Similarly, 
the timing of the peak WNV incidence appears to be influenced only by 
summer temperature; infection peak tends to be earlier when summer 
temperature is higher. Indeed, warmer conditions might amplify virus 
transmission by increasing the biting rate [37,38] and the host-to-vector 
transmission probability [39,40] and by accelerating the mosquito viral 
incubation period [41]. On the other hand, high summer temperatures 
increase mosquito mortality [42], thus decreasing infection risk. The 
WNV FOI is expected to be higher in more natural less disturbed habi-
tats, where avian competent hosts might be more likely to dwell or 
mosquito abundance might be higher [43], and complies with previous 
findings of a positive association between WNV circulation and presence 
of anthropized semi-natural areas such as populated forests [15], wet-
lands [17] and river basins [14]. Finally, FOI is estimated to be greater in 
areas with a higher number of elderly (age > 65 years) people, consis-
tent with the fact that age is one of the main risk factors for developing 
severe symptoms upon infection [44]. 

It is interesting to note that σ, which can be interpreted as a measure 
of the length of the epidemiological season, has no significant associa-
tion with any of the considered covariates. However, we found that σ has 
a significant negative association with the magnitude rescaling factor c 
(see Appendix A). Indeed, a higher value of c increases the value of λ at 
all times of a year, and thus the length of the period in which cases are 
reported. On this basis, we can regard c, which is affected by different 
abiotic factors, as the most important parameter at shaping the FOI and 
predicting human incidence. A significant negative association has also 
been found between M and C, suggesting that in years with a longer 
period with WNV cases, the infection peak tends to occur earlier. 

We found that the model parameters are not significantly associated 
with precipitation-related variables, possibly because rainfall affects 
mosquito population dynamics in different ways. On one hand, precip-
itation can exert a positive influence by creating more breeding sites. On 

Fig. 3. Estimated M, S and C distributions (panel a-c respectively).  

Table 1 
Estimates, standard errors, t values and p-values of the parameters of the best 
models for C and M.  

Y Parameter Coefficient Estimate Standard Error t value p-value 

C Intercept − 12.697 0.806 − 15.752 <0.001 
η − 0.028 0.004 − 7.352 <0.001 
ξ 8.808 1.907 4.618 <0.001 
Tspring 0.142 0.036 3.927 <0.001 

M Intercept 258.7 9.592 26.97 <0.001 
Tsummer − 1.113 0.389 − 2.858 0.005  
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the other hand, heavy rainfall might have a flushing effect on immature 
populations, eventually decreasing their abundance. Consistently, pre-
vious studies reported different associations between precipitation and 
WNV human incidence in Europe, either negative [45], positive [15] or 
even inconsistent [16]. Notice that instead [18] found that high hu-
midity in early spring is positively correlated with WNV infections in 
Texas. 

Finally, we found that WNV detection in previous years was not 
associated with any parameter; this differs from the result found in a 
previous study in a very similar context (same geographical area and 
slightly shorter time period) [30]. It has to be noted that in this study we 
analysed only areas with a high WNV circulation (we applied our 
modelling approach to (y, i) such that Σy, i ≥ 5) while in the prior study 
WNV absence was explicitly considered. The analysis of WNV presence/ 
absence is beyond the scope of the current study but might be included 
in a future modelling effort. 

To the best of our knowledge, this is one of the first attempts at 
explicitly modelling the WNV FOI in Europe using detailed data on 
human cases only. If more detailed data, such as entomological collec-
tions providing both mosquito abundance and WNV prevalence, are 
available, then more sophisticated models might be developed to 
explicitly consider mosquito population dynamics and WNV trans-
mission between vector and host populations, also taking into account 
temperature-dependent parameters [7,12,22]. However, collecting such 
data might be very demanding and not always possible, especially at a 
fine spatial and temporal resolution. Our approach might therefore offer 
a simple analytical solution as it requires only human data, which are 
usually routinely collected by European health authorities. The model-
ling framework might be used to investigate WNV infection dynamics 
also in wild birds, if avian epidemiological data is available. However, 
we remark that in this case the FOI function λ should be modified in 
order to depend also on the current infection rate in the avian 

population, as birds are competent hosts for the virus. Moreover, birds’ 
mobility should be accounted for, so for instance the FOI in a region 
could depend also on the ones in the neighbouring areas. 

An important outcome of the study is that it confirms the association 
between unusually high spring temperature and intensity of WNV 
infection, that was established both through a mechanistic model [12] 
and by a statistical association with total number of yearly cases [30]. 
Thus, this association could be tested as a forecasting tool to provide 
early estimates of the potential burden of WNV on human health later in 
the season, and possibly target adequate control measures. Finally, we 
remark that our proposed modelling framework it is not specifically 
designed for WNV only but it could be applied to any other vector-borne 
disease for which the FOI has a seasonal pattern and does not depend on 
the number of infectious humans such as tick-borne encephalitis [46,47] 
or Usutu [48]. 
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