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Abstract
We study subsets S of curves X whose double structure does not impose independent
conditions to a linear series L , but there are divisors D ∈ |L| singular at all points
of S. These subsets form the Terracini loci of X . We investigate Terracini loci, with a
special look towards their non-emptiness, mainly in the case of canonical curves, and
in the case of space curves.
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1 Introduction

Terracini loci T(X , L, x) of a projective variety X (over an algebraically closed field
of characteristic 0) are subsets of the set S(X , x) of all reduced finite subsets S ⊂ Xreg
of cardinality x , with the property that the double scheme 2S on S does not impose
independent conditions to the linear series L , and there are divisors in |L| passing
through 2S. Terracini loci are certainly involved in the study of interpolation properties
of the image of X in the map induced by L , but they also assume great importance
in the theory of secant varieties to embedded varieties X , for they are connected with
points of the abstract secant variety of X in which the differential of the map to the
embedded secant variety drops rank. More details on the initial properties of Terracini
loci can be found in [1].
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In this paper, we focus the attention to Terracini loci of curves. Even if curves are
never defective, so that their secant varieties always have the expected dimension, yet
there are special points p in which the Terracini Lemma fails to provide the dimension
of the Zariski tangent space to the secant variety. This happens typically when the set
of points in X which generates p belongs to some Terracini locus.

We are mainly concerned with the problem of the non-emptiness of a Terracini
locus T(X , L, x). Certainly T(X , L, x) is empty when X is a rational normal curve
in P

r , L is the complete hyperplane linear series and x ≤ (r + 1)/2, because every
subscheme of length ≤ r + 1 in X is linearly independent. We will see that, for odd r ,
the emptiness ofT(X , L, (r +1)/2) characterizes rational normal curves (Proposition
7). This means that there is a large mass of examples of non-empty Terracini loci of
curves.

Our analysis considers mainly two cases: canonically embedded curves (Sect. 4)
and curves in P

3 (Sect. 5).
In the former case, the series L is the complete canonical linear series KX , and

one can easily expect that the existence of sets in T(X , KX , x) strongly depends on
the geometry of linear series on the curve. We show indeed that subsets of theta-
characteristics on X prove that T(X , KX , x) is non-empty when g/2 ≤ x ≤ g − 1.
For x < g/2 we see (Proposition 4) that the non-emptiness of T(X , KX , x) is linked
to the gonality of X .

For space curves, we use induction on the degree and genus, with the technique of
smoothing reducible curves, to prove that T(X , L, x) is non-empty for some smooth
curves of degree d and genus g ≤ d − 3, when 6 ≤ 2x ≤ d (Theorem 3). We also
prove the existence of smooth special curves with non-empty Terracini loci in some
components of the Hilbert scheme of space curves even outside the Brill-Noether
range (Theorem 4 and Remark 7).

We would like to thank the anonymous referees for precious observations on the
preliminary versions of the paper.

2 Preliminaries

We work over an algebraically closed field of characteristic 0.

2.1 Notation

For any 0-dimensional subscheme S we denote with �(S) the length of S. When S is
reduced, then �(S) is the cardinality of S.

Let X be an integral projective variety. For any point P ∈ Xreg, with homogeneous
maximal ideal mP,X , we denote with (2P, X) the subscheme of X defined by m2

P,X .
If S = {P1, . . . , Px } ⊂ X is a finite set of points, then we denote with (2S, X) the
non-reduced scheme 2S = ⋃x

i=1(2Pi , X).
When it is clear which X we refer to, then we will write simply 2S instead of

(2S, X).
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Terracini loci of curves 449

For any scheme X and for any integer x wedenotewithS(X , x) the set of all reduced
finite subsets S ⊂ Xreg of length x .S(X , x) is an open subset of the symmetric product
X (x).

Let X be a projective curve, and let S be a finite subset of Xreg. When S identifies
a Cartier divisor on X , by abuse, we will continue to denote it with S. We will also
denote with |S| the complete linear series associated to S, and we will denote with
h0(S) the dimension of the space of sections of the associated line bundle. We will
use the same convention for 2S.

For any scheme Z ⊂ P
r let 〈Z〉 ⊆ P

r denote the minimal linear subspace of P
r

containing Z .

2.2 Terracini loci

We recall from [1] the definition of Terracini locus of a projective variety.

Definition 1 Let X be an integral projective variety, L a line bundle on X and V ⊆
H0(L) a linear subspace. Set m := dim X . Fix S ∈ S(X , x). We say that S is in
the Terracini locus T(X , L, V , x) if V (−(2S, X)) �= (0) and dim V (−(2S, X)) >

dim V − x(m + 1).
We say that the integer δ(S, X , L, V ) := dim V (−(2S, X)) − dim V + x(m + 1)

is the (Terracini) defect of S with respect to (L, V ).
When V = H0(L), we will drop V in the notation.

We will consider, throughout the paper, mainly the case where X is a curve, i.e.
m = 1. In this situation a finite set S of length x lies in the Terracini locus when
dim V (−(2S, X)) > max{dim V − 2x, 0}.

We can extend the definition of Terracini loci to include some non-reduced 0-
dimensional subschemes.

Definition 2 Let C ⊂ P
r be a smooth and connected non-degenerate curve. For each

positive integer x let C (x) denote the symmetric product of x copies of C . The vari-
ety C (x) is a connected projective variety of dimension x parametrizing the degree
x zero-dimensional schemes of X , and there is a non-empty Zariski open subset
S(C, x) ⊂ C (x) which parametrizes subsets of cardinality x . For each positive inte-
ger x let T̃(C, x) denote the set of all Z ∈ C (x) such that dim〈2Z〉 ≤ 2x − 2 and
〈2Z〉 �= ∅. Obviously,T(C, 1) = T̃(C, 1) = ∅. The inclusion S(C, x) ⊂ C (x) induces
an inclusion T(C, x) ⊆ T̃(C, x). The semicontinuity theorem for cohomology gives
that T̃(C, x) contains the closure of T(C, x) in C (x). Sometimes, T̃(C, x) is not equal
to the closure of T(C, x) in C (x) (Example 1).

Example 1 Fix an even integer d ≥ 4, a line D ⊂ P
2 and p ∈ D. There is a smooth

degree d curve C ⊂ P
2 such that p ∈ C and D∩C = dp, i.e. p is a total ramification

point of C with D as its tangent line. Since C has only finitely many multitangent
lines, T(C, x) is finite and hence it is closed in T̃(C, x). Since d is even and d ≥ 4,
d
2 p lies in T̃(C, d/2)\T(C, d/2).
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3 Generalities

Example 2 Let X ⊂ P
N be an integral curve. Here we take L = OX (1) and V =

the linear series of hyperplanes. For a general S = {P1, . . . , Px } ⊂ Xreg write 2S for
(2S, X). The elements of V (−2S) correspond to hyperplanes containing the tangent
lines to X at the points Pi ’s. It follows that S lies in the Terracini locus when the span
of the x tangent lines at the points of X has dimension smaller than the expected one.
Then by definition T(X , L, V , 1) is always empty.

On the other hand, when the map induced by the linear series V is not birational
onto the image the Terracini locus T(X , L, V , 1) may contain some points.

Example 3 Let X be a smooth hyperelliptic curve of genus g ≥ 2. We can describe all
the Terracini loci with respect to L = KX and V = H0(KX ).

Let B ⊂ X be the set of the Weierstrass points of X . For any integer x let S(B, x)
denote the set of all subsets of B with cardinality x . The set B is the ramification
locus of the g12 of X . Since we work in characteristic 0, �(B) = 2g + 2. Fix a positive
integer x and take S ∈ S(X , x). If x ≥ g, then deg(KX (−(2S, X))) < 0 and hence
h0(KX (−(2S, X))) = 0. Thus T(X , KX , x) = ∅ for all x ≥ g.

Assume that 1 ≤ x ≤ g− 1. Let h : X → P
1 be the morphism associated to the g12

of X . The linear system |KX | is the minimal sum of g−1 copies of the g12 of X . Hence
every base-point free special line bundle on X is the sum of at most g−1 copies of the
g12. Thus T(X , KX , 1) = B and T(X , KX , g − 1)) = S(B, g − 1). More generally,
S belongs to T(X , KX , x) if and only if we have that either S ∩ B �= ∅ or there are
p, q ∈ S such that p �= q and h(p) = h(q) for these conditions are equivalent to
h0(KX (−(2S, X))) > g − 2x .

It is easy to realize that, for each x ∈ {2, . . . , g − 2}, the elements of T(X , KX , x)
with (maximal) defect x are the elements of S(B, x). If e := #(S ∩ B) and S
has f distinct sets {pi , qi }, 1 ≤ i ≤ f , with pi �= qi and h(pi ) = h(qi ), then
h0(KX (−2S)) = g − 2x + e + f .

For the rest of the section let us go back to the case in which X ⊂ P
N is an integral

curve, and we take L = OX (1) and V = the linear series of hyperplanes.

Example 4 Let us consider what happens when x = 2 and X is a plane curve. Thus
max{dim V − 2x, 0} = 0. Then S = {P, Q} ∈ S(2) belongs to the Terracini locus if
and only if the tangent lines to X in P and Q coincide. Since in characteristic 0 not
every tangent line is bitangent, then T(X , L, V , 2) is either empty or finite.

If N > 2, the tangent lines to two general points of X span a 3-dimensional linear
subspace (recall that we work in characteristic 0). The set S = {P, Q} lies in the
Terracini locus T(X , L, V , 2) when the tangent lines in P, Q meet at some point P0,
i.e. there exists a plane containing the two tangent lines. In this case, the projection of
X from P0 is a curve with (at least) two cusps.
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4 Canonically embedded curves

Let us turn now to the case where X is a smooth curve of genus g and we consider the
complete canonical linear series L = KX . We will describe in several cases the locus
T(X , KX , x).

Since we already treated the case of hyperelliptic curves in Example 3, we assume
that g ≥ 3 and KX embeds X in P

g−1.
We start with a very easy observation, which shows that we need to distinguish two

cases, depending if x is smaller than g/2 or not.

Proposition 1 A reduced set S of length x lies in T(X , KX , x) if and only if either
2x < g and h0(2S) > 1, i.e. the linear series |2S| is not a singleton, or 2x ≥ g and
h0(KX − 2S) > 0, i.e. 2S is special.

Proof By definition S lies in T(X , KX , x) if and only if h0(KX − 2S) >

min{0, h0(KX ) − 2x}. Since h0(KX ) = g, we distinguish between 2x < g and
2x ≥ g. In the latter case S lies in T(X , KX , x) if and only if h0(KX − 2S) > 0. In
the former case, since by Riemann–Roch h0(2S) = 2x − g + 1 + h0(KX − 2S), S
lies in T(X , KX , x) if and only if h0(2S) > 1. �

It follows from the previous proposition that the Terracini locus T(X , KX , x) is
empty if x ≥ g, because in this case the degree of KX − 2S is negative.

Let us consider the extremal case x = g − 1.

Example 5 A set S (resp. scheme) of length g − 1 belongs to T(X , KX , g − 1) (resp.
T̃(X , KX , g − 1)) if and only if h0(KX − 2S) > 0 which, for degree reasons, implies
that 2S is a canonical divisor. Thus subsets S ∈ T(X , KX , g−1) correspond to divisors
in some non empty linear series G such that 2G = KX , i.e. a theta-characteristic of
X .

It is well known ([5]) that X has a finite number, exactly 22g , theta-characteristics.
A theta-characteristic is odd or even, depending on the parity of h0(G). The number
of odd theta-characteristics is 2g−1(2g − 1) while there are 2g−1(2g + 1) even theta-
characteristics.

Now assume that X is general in themoduli spaceMg . In this case, by [5] Corollary
1.11, h0(G) ≤ 1 for every theta-characteristic G on X , and for each odd theta-
characteristic G on X the divisor D with {D} = |G| is reduced. Thus for X ∈ Mg

general the Terracini locus T(X , KX , g − 1) is finite, of cardinality 2g−1(2g − 1).
There are X ∈ Mg with theta-characteristics G such that h0(G) ≥ 2. For such

curves T(X , KX , g − 1) is infinite.
On the contrary, a natural question is to ask if there are X ∈ Mg such that

T(X , KX , g − 1) = ∅, i.e. no reduced divisor is the zero-locus of an effective
theta-characteristic.

In the case g = 3 this is equivalent to ask if there is a smooth degree 4 plane curve
X with 28 flexes of higher order, i.e. 28 lines L ⊂ P

2 meeting X at a unique point.
The total weight of all flexes of a smooth plane quartic is 24, because its Hessian
determinant has degree 6. Thus there is no such X for g = 3. For any X we have
#T̃(X , KX , g − 1) ≥ 2g−1(2g − 1) and either #T̃(X , KX , g − 1) = 2g−1(2g − 1)
(case h0(G) ≤ 1 for all theta-characteristic G of X ) or dim T̃(X , KX , g − 1) > 0.
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In any case, taking subsets of a theta-characteristic, we obtain immediately the
following

Proposition 2 Fix an integer x such that g/2 ≤ x ≤ g − 1. Then the Terracini locus
T̃(X , KX , x) is non empty.

Of course when X has a positive dimensional theta-characteristic, then also
T(X , KX , x) is infinite for all x between g/2 and g − 1.

Remark 1 Fix an integer x such that g/2 ≤ x ≤ g−2. One can try to extend elements
of T(X , KX , x) to elements T(X , KX , x + 1), with the addition of suitable points.
Respect to this, we can observe:

(a) Assume that there exists S ∈ T(X , KX , x) with dim〈2S〉 = g − 2, i.e. H :=
〈2S〉 is a hyperplane. The point p ∈ X\S has the property that S ∪ {p} lies in
T(X , KX , x + 1) if and only if p ∈ H and H is tangent to X at p. There is
Z ∈ T̃(KX , x + 1) containing S if and only if either H is tangent to X at a point
of X\S or there is o ∈ S such that the scheme H ∩ X contains o with multiplicity
at least 4.

(b) Assume that there exists S ∈ T(X , KX , x)with dim〈2S〉 = g−3. The differential
of the rational map φ : X\X ∩ 〈2S〉 → P

1 induced by the linear projection
from 〈2S〉 shows that there are only finitely many p ∈ X\S such that S ∪ {p} ∈
T(X , KX , x + 1). There are at least 2 such points p, because φ extends to a
morphism ψ : X → P

1 by the smoothness of X and X has at least 2 ramification
points, because g > 0.

(c) Assume that there exists S ∈ T(X , KX , x)with dim〈2S〉 = g−4−2k− ε, with k
non-negative integer and ε ∈ {0, 1}. Then S∪{p1, . . . , pk+1} lies inT(X , KX , x+
k + 1) for a general (p1, . . . , pk+1) ∈ Xk+1.

Let us now consider the case x < g/2.

Proposition 3 Assume x < (g − 1)/2, and assume that T(X , KX , x) is non empty.
Then

dim(T(X , KX , x + 1)) ≥ 1 + dim(T(X , KX , x)).

Proof Pick S ∈ T(X , KX , x) and p general in X . Since 2x < g then by Proposition 1
we have h0(2S) ≥ 2. It follows h0(2(S ∪ {p})) ≥ h0(2S) ≥ 2.

When x + 1 < g/2, the last inequality is sufficient to conclude that S ∪ {p} sits in
T (X , KX , x +1), by Proposition 1 again, thus the inequality on the dimensions holds.

Assume x = (g − 2)/2. Since h0(2(S ∪ {p})) ≥ 2, then by Riemann–Roch

h1(2(S ∪ {p})) ≥ g − 1 − 2

(
g − 2

2
+ 1

)

+ 2 = 1.

Thus 2(S ∪ {p}) is special, hence it belongs to T (X , KX , x + 1), by Proposition 1,
and we conclude as before. �
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Corollary 1 Fix the minimal integer x such that the Terracini locus T(X , KX , x) is
non empty. Then for all y with x ≤ y ≤ g − 1 the Terracini locus T(X , KX , y) is
non-empty.

We saw in the previous section that T(X , KX , 1) is non-empty if and only if X is
hyperelliptic. The last 2 propositions of this section link the gonality k of X with the
minimal x such that T(X , KX , x) �= ∅.

Proposition 4 If T(X , KX , x) �= ∅, then X has a linear series g12x . For the converse,
if X has a linear series g1k with k < g/2, then dim(T(X , KX , k)) ≥ 1.

Proof Recall that we are assuming g ≥ 3 and X not hyperelliptic. The first assertion
is trivial if x ≥ g/2, for every X satisfies T(X , KX , x) �= ∅ and every X has a linear
series g12x . When x < g/2, the first assertion follows immediately by Proposition 1.

For the second assertion, consider the degree k map f : X → P
1 associated to the

linear series g1k . For any p ∈ P
1 let Dp := f −1(p) denote the associated degree k

divisor. Note that h0(2Dp) ≥ h0(OP1(2p)) = 3. Then, as in Proposition 1, a general
Dp belongs to T̃(X , KX , k). Since we work in characteristic 0, then a general Dp is
formed by k distinct points, hence it belongs to T(X , KX , k). �

Before we can refine the previous proposition, let us see what happens for trigonal
curves.

Example 6 Let X be a smooth trigonal curve of genus g ≥ 4, canonically embedded
in P

g−1, and let f : X → P
1 be the degree 3 morphism associated to the g13. By the

Castelnuovo’s inequality [8], f is unique if g ≥ 5. Let Σ ⊂ X denote the set of all
ramification points of the map and let Σ ′ ⊆ Σ denote the set of all p ∈ Σ which
belong to fibers of cardinality 2. The points p ∈ Σ\Σ ′ are called the total ramification
points of f , because the fiber containing p is supported at p.

Σ ′ = Σ if X is a general trigonal curve of genus g, but there are trigonal curves
in which the equality fails, and also trigonal curves with Σ ′ = ∅, e.g. the degree 3
Galois coverings of P

1.
Take p ∈ Σ ′ and consider the point qp �= p in the fiber of f through p. We claim

that S = {p, qp} belongs to T(X , KX , 2), so that T(X , KX , 2) is non-empty.
To prove the claim, consider that h0(2p + qp) = 2. Then h0(2p + 2qp) =

h0(2S) ≥ 2, which proves the claim when g > 4, by Proposition 1. For g = 4, since
h0(2S) ≥ 2, the divisor 2S is special by Riemann–Roch, and the claim follows again
by Proposition 1.

Definition 3 Given a linear series G on X which is a g1d , G is tamely ramified if there
is a non-reduced divisor D in G in which all the points appear with coefficient ≤ 2.

Proposition 5 Let X be a smooth curve of genus g ≥ 4, canonically embedded inP
g−1.

Assume that X has a base point free pencil R ∈ Pick(X) such that h1(R⊗2) > 0, and
let f : X → P

1 be the degree k morphism induced by |R|. Then T̃(X , KX , k−1) �= ∅.
Assume that the f is tamely ramified. Then T(X , KX , k − 1) �= ∅.
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Proof If k−1 ≥ g/2 the claim follows fromProposition 2. Assume k−1 < g/2. Since
g > 0 and P

1 is algebraically simply connected, there is a divisor A = m1q1 + · · · +
msqs ∈ |R| with m1 ≥ 2. Since 2A is a special divisor, A ∈ T̃(X , KX , k − 1). Now
assume that f is tamely ramified. Thus all A ∈ |R| have profiles with multiplicities 1
or 2. Since g > 0, A = 2p1 + · · · + 2pi + pi+1 + · · · + p j ∈ |R| with p1, . . . , p j

distinct points and i ≥ 1. Note that i + j = k, so that j < k. Then S = {p1, . . . , p j }
sits in T(X , KX , j). Namely j ≤ k − 1 < g/2 and h0(R) ≥ 2 implies h0(2S) ≥ 2.
Then T(X , KX , j) �= ∅, and the claim follows from Corollary 1. �

5 Embedded curves

In this section we consider reduced and locally complete intersection curves X
embedded in a projective space X ⊂ P

r .

Notation 1 We denote with NX the normal bundle of X .
For brevity, we will denote with T(X , x) the Terracini locus of X with respect to

the (non-necessarily complete) linear series of hyperplane divisors.
For all integers g ≥ 0, r ≥ 3 and d ≥ r + g, we will denote with H(d, g, r) the set

of all smooth and non-degenerate curves X ⊂ P
r of degree d and genus g such that

h1(OX (1)) = 0.
Fix X ∈ H(d, g, r). Since X is smooth, NX is a quotient of OX (1)⊕r by the Euler’s

sequence. Thus h1(NX ) = 0. Therefore H(d, g, r) is smooth, and

dim H(d, g, r) = (r + 1)d + (r − 3)(1 − g).

Since all non-special line bundles of degree d on a curve of genus g have the same
number of sections, and all smooth genus g curves are parametrized by an irreducible
variety, H(d, g, r) is irreducible. See [4].

An example of J. Harris, generalized by Ein in [4], shows that both claims on the
irreducibility and the dimension fail, for large r , if we drop the assumption on the
vanishing of h1(OX (1)). On the other hand, we will work mainly with curves in P

3,
and in this case we can drop the assumption by [3].

It is immediate, by Bezout formula, that T(X , x) is empty if x > d/2. So we
analyze the case 2x ≤ d.

Remark 2 Fix x with 2x < r and let X ⊂ P
r be a non-degenerate irreducible curve

such that T(X , x) �= ∅. Then also T(X , x + 1) �= ∅.
Indeed if S ∈ T(X , x), then the scheme (2S, X) lies in a linear system of hyper-

planes of dimension at least r − 2x + 1 ≥ 2. Thus, for p ∈ X general, the
scheme (2(S ∪ {p}), X) lies in a linear system of hyperplanes of dimension at least
r − 2x − 1 ≥ 0.

Notation 2 Take X ⊂ P
r . An arrow in P

r is a non-reduced scheme of length 2. The set
of all arrows in P

r supported at p is closed in the Hilbert scheme, and it has dimension
r − 1. Thus the set of all arrows in P

r has dimension 2r − 1.
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Note that an arrow w with support p determines a line rw through p. If p ∈ X and
X is smooth at p, then rw is tangent to X exactly when X contains the arrow w.

In the study of Terracini loci (even not on curves) the paper [2] is very useful and
we explain it in the following remark used in the proof of Proposition 7.

Remark 3 Fix an integral projective curve X in P
r , and let W be the image of the

restriction map H0(OPr (1)) → H0(OX (1)). For any zero-dimensional scheme Z ⊂
X set W (−Z) := H0(IZ (1)) ∩ W . Fix integers s > 0 and ei > 0, i = 1, . . . , s. Let
Z be a general subscheme of Xreg with s connected components of length e1, . . . , es .
Then we claim that the main result of [2] and its proof imply that:

dimW (−Z) = max{0, dimW − e1 − · · · − es}.

Namely the proof there yields that a general scheme in X (hence obviously curvilinear)
which sits in no hypersurfaces of degree d imposes independent conditions to the linear
system of hypersurfaces of degree d. Notice that the scheme Z is a Cartier divisor of
X , and the integer dimW (−Z) is the codimension of the linear space 〈Z〉 in P

r .

For rational curves we can easily show the following.

Proposition 6 Fix integers d ≥ r ≥ 3 and x with r ≤ 2x ≤ d. Then there is a smooth
and non-degenerate rational curve X ⊂ P

r such that T(X , x) �= ∅.
Proof Fix a hyperplane H ⊂ P

r . Let Z ⊂ H be a general union of x arrows and let
Z ′ be a general set of d − 2x points. By Perrin [9, Theorem 1.6] there is a smooth and
non-degenerate rational curve X ⊂ P

r such that (Z ∪ Z ′) = X ∩ H . Let S ⊂ H be
the reduction of Z . Since X is smooth and 2x ≥ r , then S ∈ T(X , x). �

Indeed, we have a characterization of rational normal curves in terms of Terracini
loci.

Proposition 7 Let r ≥ 3 be an odd integer and X ⊂ P
r a smooth, connected and non-

degenerate curve. Then X is a rational normal curve if and only ifT(X , (r +1)/2)) =
∅.
Proof Set x := (r + 1)/2.

The “ if ” part is true, because if X is a rational normal curve each zero-dimensional
scheme Z ⊂ X of degree r + 1 is linearly independent.

Now assume T(X , x) = ∅. Set d := deg(X) and fix a general S ⊂ X of cardinality
x−1, say S = {p1, . . . , px−1}. Let V be the linear span of the double scheme (2S, X).
For all positive integersa1, . . . , ax−1 setV (a1, . . . , ax−1) := 〈a1 p1+· · ·+ax−1 px−1〉.
Note that V = V (2, . . . , 2). Since S is general in X , Remark 3 applied to the curve
X gives

dim V (a1, . . . , ax−1) = min

{

r , x − 2 +
x−1∑

i=1

(ai − 1)

}

.
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Thus dim V = r − 2. Since dim V = r − 2 and dim V (a1, . . . , ax−1) = r − 1 if
there is j ∈ {1, . . . , x − 1} such that a j = 3 and ai = 2 for all i �= j , the scheme
V ∩ X contains each pi with multiplicity 2. First assume (V ∩ X)red �= S and take
o ∈ (V ∩X)red\S. Since dim〈2o∪V 〉 ≤ dim V+1, S∪{o} ∈ T(X , x), a contradiction.
Thus (V ∩ X)red = S. Since we proved that each pi appear with multiplicy 2 in the
scheme-theoretic intersection V ∩ X , we have V ∩ X = (2S, X), which has degree
2x − 2 = r − 1. Let u denote the linear projection from V to P

1. Since X is smooth,
u|X\S extends to a morphism u′ : X → P

1, and the degree of u′ is d − r + 1. The
assumption T(X , x) = ∅ implies that u′ has no ramification point, except possibly at
the points of S. Fix a ∈ S, say a = p1. The point p1 is a ramification point of u′ only if
V (4, 2, . . . , 2) is a hyperplane. This is false, because dim V (4, 2, . . . , 2) = r . Hence
u′ has no ramification points. This is possible only if d = r , hence X is a rational
normal curve. �

Since in the rest of the paper we will often argue by induction, taking the smoothing
of nodal, reducible curves, we need some preliminary results on normal bundles of
reducible curves.

Remark 4 Let X ⊂ P
r be a reduced curve with only locally complete intersection

singularities. NX is a vector bundle of rank (r − 1) on X and

deg(NX ) = (r + 1) deg(X) + (r − 1)(1 − pa(X)).

There is a map φ : TP
r|X → NX which is surjective outside Sing(X). Consider the

restriction to X of the Euler’s sequence of TP
r :

0 → OX → OX (1)⊕(r+1) → TP
r|X → 0 (1)

Now assume h1(OX (1)) = 0. Since dim X = 1, then h2(OX ) = 0. Thus (1) gives
h1(TP

r|X ) = 0.
The map φ induces the following exact sequence of coherent sheaves on X :

0 → Ker(φ) → TP
r|X → Im(φ) → 0 (2)

Since dim X = 1, h2(Ker(φ)) = 0. Thus (2) gives h1(Im(φ)) = 0.
If X is smooth, then NX = Im(φ) and hence h1(NX ) = 0.
Now assume X singular. Consider the exact sequence

0 → Im(φ) → NX → NX/Im(φ) → 0 (3)

Since NX/Im(φ) is supported by the finite set Sing(X), then h1(NX/Im(φ)) = 0.
Thus (3) gives h1(NX ) = 0 even if the non-special curve is singular.

If X is smooth and rational, then h1(OX ) = 0. As above we obtain that
h1(TP

r (−1)|X ) = 0 and h1(NX (−1)) = 0.

In particular we study the case of curves in P
3.
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Lemma 1 Let C ⊂ P
3 be a reduced curve and let C ′ ⊂ P

3 be a smooth conic that
meets C at i ≤ 3 points p1, . . . , pi ∈ Creg with C ∪ C ′ nodal at each pi . Let H
be the plane spanned by C ′. If i > 1, assume also that Tp1C � H, Tp2C � H and
Tp1C ∩ Tp2C = ∅.
(1) If i = 1 then NC∪C ′|C ′ is the direct sum of two line bundles, one of degree 3 and

one of degree 4.
(2) If i = 2 then NC∪C ′|C ′ is the direct sum of two line bundles, both of degree 4.
(3) If i = 3, then NC∪C ′|C ′ is the direct sum of two line bundles, one of degree 4 and

one of degree 5. In any case h1(NC∪C ′|C ′(−1)) = 0.

Proof Note that NC ′ ∼= OC ′(2) ⊕OC ′(1), i.e. NC ′ is the direct sum of a degree 4 line
bundle and a degree 2 line bundle.

We prove (2) first. Set Y := Tp1C ∪ Tp2C ∪ C ′. By Hartshorne and Hirschowitz
[7, Corollary 3.2] the bundle NC∪C ′|C ′ is obtained from NC ′ by making two posi-
tive elementary transformations (in the sense of [7, §2]), which depend uniquely on
C ′, p1, p2, and the lines Tp1C, Tp2C . Thus NC∪C ′|C ′ � NY |C ′ . Since Y is connected
and deg(Y ) = 4, h0(OY (2)) < 10. Thus h0(IY (2)) > 0. Since Tp1C∩Tp2C = ∅, Y is
contained neither in a reducible quadric, nor in a quadric cone. Thus Y lies in a smooth
quadric Q with, say, Tp1C ∈ |OQ(1, 0)|. Then also Tp2C , which does not meet Tp1C ,
lies in |OQ(1, 0)|. Obviously C ′ ∈ |OQ(1, 1)|, and we conclude that Y ∈ |OQ(3, 1)|.
Thus NY is an extension ofOY (2) by the restriction to Y of the line bundleOQ(3, 1).
Hence NY |C ′ is an extension of two line bundles of degree 4.

(1) By Hartshorne and Hirschowitz [7, Corollary 3.2] the bundle NC∪C ′|C ′ is
obtained from NC ′ by making one general positive elementary transformation, and
as above one general positive elementary transformation of NC∪C ′|C ′ is a direct sum
of a line bundle of degree 4 and a line bundle of degree 3.

(3) Here NC∪C ′|C ′ is obtained from NC ′ by making 3 positive elementary transfor-
mations, one at p1, one at p2, and one at p3. Hence NC∪C ′|C ′ is obtained from one
positive elementary transformation on the vector bundle E on C ′ obtained by mak-
ing positive elementary transformations only at p1 and p2. By 1) E is isomorphic to
OC ′(2)⊕OC ′(2). Since any vector bundle on C ′ splits in a direct sum of line bundles,
the claim follows. �

Remark 5 We will use repeatedly a result of J. Kleppe, who proved that the functor of
deformations inside P

r of a (possibly reducible) curve T ⊂ P
r with fixed hyperplane

section H∩T has tangent space H0(T , NT (−1)) and obstruction space H1(NT (−1)).
See e.g. [9, Th. 1.5].

Remark 6 Let C and D be locally complete intersection space curves. Assume S :=
C ∩ D = Creg ∩ Dreg and that at each p ∈ S the tangent lines of C and D at p are
different. Set Y := C ∪ D. Call N+

C (resp. N+
D ) the rank 2 vector bundle on C (resp.

D) obtained from NC (resp. ND) making a positive elementary transformation in the
direction of TpD (resp. TpC) at all p ∈ S. We have deg(N+

C ) = deg(NC ) + #S and
deg(N+

D ) = deg(ND) + #S. By Hartshorne and Hirschowitz [7, Cor. 3.2] we have
N+
C

∼= NY |D and N+
D

∼= NY |D . Thus the Mayer-Vietoris exact sequence of the vector
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bundle NY gives the following exact sequence

0 → NC∪D → N+
C ⊕ N+

D → NY |S → 0. (4)

Thus to prove that h1(NY (−1)) = 0 it is sufficient to prove that h1(N+
C (−1)) =

h1(N+
D (−1)) = 0 and that the restriction map H0(D, N+

D (−1)) → H0(NY |S) is
surjective.

A similar statement holds for the proof that h1(NC∪D) = 0.

Lemma 2 Let H ⊂ P
3 be a plane and let C ′ ⊂ H be a smooth conic. Fix 3 distinct

points p1, p2, p3 of C ′ and lines L1, L2, L3 such that H ∩ Li = {pi } for all i .
Let E (resp. F) be the vector bundle obtained from NC ′ making positive elementary
transformations at p1 and p2 (resp. p1, p2 and p3) with respect to L1 and L2 (resp.
L1, L2 and L3). Then E is a direct sum of 2 line bundles of degree 4 and F is a direct
sum of a line bundle of degree 5 and a line bundle of degree 4.

Proof Set X := C ′ ∪ L1 ∪ L2 and Y := X ∪ L3. Since H ∩ Li = {pi }, then Li is
transversal to H . Thus X and Y are nodal at p1, p2 and p3. Note that E ∼= NX |C ′ and
F ∼= NY |C ′ .

First assume L1 ∩ L2 �= ∅. Thus X is nodal with 3 nodes and arithmetic genus
1. Call M the plane containing L1 ∪ L2. To prove that E ∼= OC ′(2) ⊕ OC ′(2) it is
sufficient to prove that X is the complete intersection of M ∪ H and a quadric. This
is true, because h0(OX (2)) = 8, h0(OP3(2)) = 10 and hence h0(IX (2)) ≥ 2.

Now assume L1 ∩ L2 = ∅. In this case X is contained neither in a reducible
quadric nor in a quadric cone. Since h0(OX (2)) = 9, X is contained in a smooth
quadric, Q. Call |OQ(1, 0)| the ruling of Q containing L1, and hence also containing
L2. Since C ′ ∈ |OQ(1, 1)|, then X ∈ |OQ(3, 1)|. Since NQ ∼= OQ(2), we have an
exact sequence

0 → NX ,Q → NX → NX (2) → 0 (5)

We have NX .Q ∼= OX (3, 1) so that its restriction to C ′ has degree 4. Since (5) is an
exact sequence of vector bundles, its restriction to C ′ is an exact sequence of vector
bundles on C ′ ∼= P

1 in which the leftmost and the rightmost terms are line bundles of
degree 4. Since C ′ ∼= P

1, E is a direct sum of two line bundles of degree 4.
The bundle F is obtained from E making a positive elementary transformation,

and all rank 2 vector bundles on P
1 split. Hence F is a direct sum of a line bundle of

degree 5 and a line bundle of degree 4. �

Nowwe are ready to prove some non-emptiness results inP
3. Recall that H(d, g, 3)

denotes the set of smooth and non-degenerate curves space curves X of degree d and
genus g, such that h1(OX (1)) = 0.

Theorem 3 Fix integers g ≥ 0, d ≥ g + 3 and x such that 6 ≤ 2x ≤ d. Then there is
X ∈ H(d, g, 3) such that T(X , x) �= ∅ and h1(NX (−1)) = 0.
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Proof Fix a plane H ⊂ P
3. We will find X ∈ H(d, g, 3) such that X is tangent to H

at x points of H spanning H . We first dispose of the case x = �d/2� and d = g + 3
in steps (a) and (b), leaving the case x = �d/2� and d > g+ 3 to step (c) and the case
3 ≤ x < �d/2� to step (d).

(a) Assume d even and x = d/2.
(a1) Assume d = 6. By Proposition 7 T(C, 2) �= ∅ for each smooth curve C

of genus 1 and degree 4. Hence by a change of coordinates we find a smooth curve
C ⊂ P

3 of degree 4 and genus 1 which is tangent to H at 2 distinct points, say q1 and
q2. Since C is the complete intersection of 2 quadric surfaces, the normal bundle of C
splits as NC ∼= OC (2) ⊕ OC (2). Since C has genus 1, we get h1(NC (−1)) = 0. Fix
a general q3 ∈ H and let M ⊂ P

3 be a general plane containing q3. Since q3 and M
are general, we may assume that M is transversal to C , C ∩ M ∩ H = ∅, and C ∩ M
spans M . Fix three distinct points {p1, p2, p3} ∈ C ∩ M which span M . There is a
smooth conic C ′ containing {p1, p2, p3, q3}, tangent in q3 to the line H ∩ M but not
containing the fourth point p4 of C ∩ M . Indeed, q3 is general in H ∩ M , while there
are only at most two conics passing through p1, p2, p3, p4 and tangent to H ∩ M .
Since M is transversal to C , the curve Y := C ∪ C ′ is nodal. By Lemma 1 the vector
bundle N+

C ′(−1) is the direct sum of a line bundle of degree 2 and a line bundle of
degree 3. Since line bundles of degree 2, 3 separate any set of three points in the
smooth conic C ′, the restriction map H0(C ′, N+

C ′(−1)) → H0(N+
C ′(−1)|{p1,p2,p3}) is

surjective. Remark 6 gives h1(NY (−1)) = 0, so that Y is smoothable by [7, Theorem
4.1]. By semicontinuity, a general member X0 of a smoothing family of Y satisfies
h1(NX0(−1)) = 0. By construction T(Y , 3) �= ∅. Yet, in order to conclude, we need
more: we need to smooth Y in a family of space curves whose elements Yλ satisfies
T(Yλ, 3) �= ∅. In other words, we need:

Claim 1 There are an affine smooth and connected curve Δ, o ∈ Δ and a flat family
{Yλ}λ∈Δ of space curves such that Y0 = Y , the general element of the family is smooth,
and T(Yλ, 3) �= ∅ for all λ ∈ Δ.

Proof of Claim 1 Set Z ′ := (2q1,C) ∪ (2q2,C), Z ′′ := (2q3,C ′) and Z := Z ′ ∪ Z ′′.
Note that Z ∩ C = Z ′ and Z ∩ C ′ = Z ′′. Since q1, q2 and q3 are smooth points of Y ,
Z is a degree 6 Cartier divisor of Y . Thus NY (−Z) is a rank 2 vector bundle on Y with
deg(NY (−Z)) = deg(NY ) − 12. The vector space H0(NY (−Z)) is the tangent space
to the functor of deformations of Y inside P

3 in families of curves containing Z , while
H1(NY (−Z)) is an obstruction space of this functor [9, Th. 1.5]. To prove Claim 1 it
is sufficient to find a smoothing family {Yλ}λ∈Δ of Y = Yo such that Z ⊂ Yλ for all
λ ∈ Δ. Note that NC ′(−Z) = NC ′(−Z ′′) is a direct sum of degree 2 line bundles on
C ′ ∼= P

1. Thus h1(NC ′(−Z − pi )) = 0 for all i . In particular (with the terminology
of [7]) h1(NC (−Z)−) = 0. Since NC ∼= OC (2) ⊕ OC (2), and deg(Z ∩ C) = 4,
h1(NC (−Z − p1 − p2 − p3)) = 0. Thus h1(F) = 0 for every vector bundle F on
C obtained from NC (−Z − p1 − p2 − p3) making finitely many positive elementary
transformations. Consider the Mayer–Vietoris exact sequence

0 → NY (−Z) → NY (−Z)|C ⊕ NY (−Z)|C ′ → NY (−Z)|{p1,p2,p3} → 0 (6)
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Since NY (−Z)|C (−p1 − p2 − p3) is obtained from NC (−Z − p1 − p2 − p3) by
making positive elementary transformations, h1(NY (−Z)|C (−p1 − p2 − p3)) = 0
(here we consider p1, p2, p3 as points of the smooth curve C). The sequence

0 → NY (−Z)|C (−p1 − p2 − p3) → NY (−Z)|C → NY (−Z)|{p1,p2,p3} → 0

shows that the map φ : H0(NY (−Z)|C ) → H0(NY (−Z)|{p1,p2,p3}) is surjective, and
h1(NY (−Z)|C ) = 0. We also know that NY (−Z)|C ′ is a direct sum of 2 line bundles
of non-negative degree on the smooth conic C ′, so that h1(NY (−Z)|C ′) = 0. Hence
the surjectivity of φ gives a fortiori, in sequence (6), that h1(NY (−Z)) = 0. Thus we
may apply the proof of [7, Th.4.1] since the deformation functor of Y which maintains
Z fixed is unobstructed. We obtain a family {Yλ}λ∈Δ as in the statement, in which the
general element contains Z , hence it is tangent to H at three points. �

(a2) Assume d ≥ 8 and that the theorem is true for the triples (d ′, g′, x ′)
such that x = d ′/2, d ′ = g′ + 3 and d ′ ≤ d − 2. Take a solution C for
(d ′, g′, x ′) = (d − 2, g − 2, x − 1) and use the proof of step (a1) with this C
instead of an elliptic curve, as follows. By induction, there is a plane H which
contains a set Z ′ of x − 1 arrows in C . Then take a general plane M and three
points o1, o2, o3 of M ∩ C . Fix a conic C ′ ⊂ M passing through o1, o2, o3 and
tangent to H at a point p. Since the base locus of the family of conics in M passing
through o1, o2, o3 and tangent to H is exactly given by o1, o2, o3, we may assume that
C ′ misses any other point ofM∩C . Set Y = C∪C ′, Z ′′ = (2p,C ′), and Z = Z ′∪Z ′′.

Claim 2: h1(NY (−Z)) = 0.

Proof of Claim 2 The bundle N+
C ′(−Z ′′−o1−o2−o3) is a direct sum of a line bundle of

degree 0 and a line bundle of degree−1. Thus h1(C ′, NY |C ′(−Z −o1−o2−o3)) = 0.
As inClaim1, justworking onC ′ instead ofC andwith o1, o2, o3 instead of p1, p2, p3,
this implies that the restriction map H0(NY (−Z)|C ′) → H0(NY (−Z)|{o1,o2,o3}) is
surjective. Then the analogue of (6) gives h1(NY (−Z)) = 0. �

So, we can continue the induction by taking a general element X in a family
{Yλ}λ∈Δ giving a smoothing of Y and fixing Z . Notice that at any step X satisfies
h1(NX (−Z)) = 0 by semicontinuity, since h1(NY (−Z)) = 0.

(b) Assume d odd and x = (d − 1)/2. Since x ≥ 3, d ≥ 7. By Proposition 7
each C ∈ H(5, 2, 3) has T(C, 2) �= ∅. To adapt the proof of step (a) we first find
C ∈ H(5, 2, 3) with h1(NC (−1)) = 0. Let Y ′ ⊂ P

3 be a smooth rational cubic. Take
a plane M ⊂ P

3 transversal to Y ′ and let C ′ ⊂ M be a smooth conic containing
Y ′ ∩ M . Set T := Y ′ ∪ C ′. Lemma 1 gives h1(NT (−1)) = 0. By Hartshorne and
Hirschowitz [7, Theorem 4.1] and Lemma 1, T is smoothable in a family preserving
the scheme-theoretic intersection (Y ′ ∪ C ′) ∩ H as in step (a1). By semicontinuity, a
general element C of the family has h1(NC (−1)) = 0. Next we proceed by induction
as in step (a), adding suitable conics C ′, constructed as in step (a), to curves C which
are solutions for the triple (d ′, g′, x ′) = (d − 2, g − 2, x − 1), and taking a general
smoothing X of C ∪ C ′. To see that we get h1(NX (−1)) = 0 we apply Lemma 2 to
C ′.
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(c) Assume d > g + 3. If d − g − 3 is even, start with a curve of genus g and
degree d ′ = g + 3, constructed as in step (a2) when d ′ is even, or constructed as in
step (b) if d ′ is odd. Continue for (d − g − 3)/2 steps, by adding to the previously
constructed curve C a smooth conic C ′, tangent to H , with #(C ′ ∩C) = 1 and C ′ ∪C
nodal. By Lemma 1 we always get h1(NC∪C ′(−1)) = 0. After (d − g − 3)/2 steps
we get the claimed curve.

Assume that d − g − 3 is odd. When g = 0, start with a rational quartic, by using
Proposition 7. When g ≥ 1, start with a curveC of genus g−1 and degree d ′ = g+2,
constructed as in step (a2) when d ′ is even, or constructed as in step (b) if d ′ is odd.
In the first step add to C a smooth conic C ′, tangent to H , which meets the curve C at
two points whose tangent lines t1, t2 to C are disjoint and different from the tangent
lines to C ′. We may take such a conic C ′ in a plane which does not contain t1, t2. Then
continue for (d − g − 4)/2 steps, by adding to the previously constructed curve C a
smooth conic C ′, tangent to H , which intersects C at a unique point and with C ∪ C ′
nodal. In any case, the assumptions of Lemma 1 hold for C ∪ C ′. Thus by Lemma 1
we always get h1(NC∪C ′(−1)) = 0, and we can continue the induction, by taking a
smoothing of C ∪ C ′ which preserves the intersection with H .

(d) Assume 3 ≤ x ≤ �d/2�. We start with some curve Y such that T(Y , 2) �= ∅
and h1(NY (−1)) = 0. We take Y of genus 1 and degree 4 if d is even or genus 2 and
degree 5 if g is odd. Then we continue as in steps (a), (b) and (c) above, except that in
�d/2� − x steps we add a smooth conic C ′ not tangent to H . �

For space curves X ⊂ P
3 with h1(OX (1)) �= 0 we prove the following result.

Theorem 4 Fix integers x ≥ 3, g ≥ 0 and d such that g ≥ 2x + 2. Write g =
2x + 1 + 5s − q, 0 ≤ q ≤ 4, and assume d ≥ 2x + 4 + 3s. Then there is a smooth
and connected curve X ⊂ P

3 such that deg(X) = d, pa(X) = g, h1(NX ) = 0,
h1(OX (2)) = 0 and T(X , x) �= ∅.
Remark 7 In Theorem 4, for each fixed x we find g0 such that for all g ≥ g0 and all
d ≥ 3

4g+3 there is a smooth curve X ⊂ P
3 of genus g and degree d withT(X , x) �= ∅.

The same is true for a slowing increasing function x(g) of g.
Note that for a fixed x and for g � x these curves X cover a range of degrees and

genera larger that the Brill-Noether range d ≥ 3
4g + 3.

For the proof of Theorem 4, we need a series of preliminary lemmas.

Lemma 5 Fix an integer e ∈ {1, 2, 3, 4}. Let C ⊂ P
3 be an integral and non-

degenerate curve of degree d. If e = 4 assume d ≥ 4. Take a union Y ⊂ P
3 of

finitely many curves such that C � Y . Then there is a smooth conic C ′ such that
#(C ∩ C ′) = e, C ∪ C ′ is nodal at each point of C ∩ C ′, and C ′ ∩ Y = ∅.
Proof Take a general plane M ⊂ P

3. The plane M is transversal to C , Y ∩ M is finite
and Y ∩ C ∩ M = ∅. By the trisecant lemma no 3 of the d points of C ∩ M are
collinear. Fix S ⊆ C ∩ M such #S = e. Since no 3 of the points of S are collinear, S
is the scheme-theoretic base locus of the (5 − e)-dimensional linear space |IS(2)|. A
general element of |IS(2)| is smooth. Thus there is a smooth C ′ ∈ |IS(2)| such that
C ′ ∩ Y = ∅ and C ′ ∩ C = S. Since M is transversal to C and C ′ ⊂ M , then C ∪ C ′
is nodal at each point of S. �
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Lemma 6 Let C ⊂ P
3 be an integral and non-degenerate curve of degree 4. For

a general S ⊂ C of length 6 there is a rational normal curve TS ⊂ P
3 such that

S = C ∩ TS and TS ∪ C is nodal.
Moreover, if pa(C) = 1 then TS1 ∩ TS2 = ∅ for a general S1 × S2 ⊂ C × C such

that both S1 and S2 have length 6.

Proof Let U denote the set of all A ⊂ P
3 such that #A = 6 and A is in linear general

position. For every A ∈ U there is a unique rational normal curve TA containing A.
Set U(C) := {S ∈ U | S ⊂ C}. Since C is integral and non-degenerate, U(C) is
an integral quasi-projective variety of dimension 6. The set S is a general element of
U(C). Since deg(C) �= 3, then C �= TS . We need to prove that S is equal to C ∩ TS
(set-theoretically), that T ∪ C is nodal, and the last assertion, concerning a general
S1 × S2 ⊂ C × C , when pa(C) = 1.

If pa(C) = 1, the curve C is the complete intersection of 2 quadrics and (since
it has at most one singular point and with embedding dimension 2) it is contained in
a smooth quadric Q, say C ∈ |OQ(2, 2)|. Fix a general S ⊂ C of length 6. By the
generality of S, since h0(OQ(1, 2)) = h0(OQ(2, 1)) = 6, we get h0(IS,Q(2, 1)) =
h0(IS,Q(1, 2)) = 0. Thus TS � Q. Bezout theorem gives S = TS ∩ Q as schemes.
Thus TS∩C = S and TS∪C is nodal. If pa(C) = 0 then h0(IC (2)) = 1 and the unique
quadric surface Q containing C is smooth [6, Ex. V.2.9], with either C ∈ |OQ(1, 3)|
or C ∈ |OQ(3, 1)|. We conclude as in the case pa(C) = 1.

Now we prove the last claim, for pa(C) = 1. It is sufficient to find S1, S2 ∈ U(C)

such that TS1 ∩ TS2 = ∅. The pencil |IC (2)| has only finitely many (i.e. 4) singular
elements. Take smooth quadrics Q1, Q2 ∈ |IS(2)| such that Q1 �= Q2. Note that
C ∈ |OQi (2, 2)|, i = 1, 2. Take a general Ti ∈ |OQi (2, 1)|. Each Ti is a rational
normal curve and deg(Ti ∩ C) = 6. Bertini Theorem gives that Si := Ti ∩ C has
cardinality 6. Since Si ⊂ Ti and Ti is a rational normal curve, Si is in linear general
position. Thus Ti = TSi . Since TSi �= C , we have TS1 � Q2 and TS2 � Q1. Since
Ti ⊂ Qi , i = 1, 2, we get TS1 ∩ Q2 = TS1 ∩ Q1 ∩ Q2 = TS1 ∩ C = S1. Since
TS2 ⊂ Q2, then TS1 ∩ TS2 ⊆ TS1 ∩ Q2 = S1. Since S1 ∩ S2 = ∅ and TS2 ∩ C = S2,
we get TS1 ∩ TS2 = ∅. �
Lemma 7 For q = 0, . . . , 4 and x ≥ 2 the space H(2x + 4, 2x + 1 − q, 3) contains
smooth curves X0 which satisfy the following conditions.

1. T(X0, x) is non-empty, and there exists a plane H which contains a union of x
arrows Z ⊂ X0 with h1(NX0(−Z)) = 0.

2. For a general choice of s subsets S1, . . . , Ss ⊂ X0 of cardinality 6, there are
disjoint rational normal curves T1, . . . , Ts such that for all i the union X0 ∪ Ti is
nodal, and Ti meets X0 exactly at Si .

Proof We make induction on x ≥ 2.
To deal with the case x = 2 (i.e. d = 8 and g = 5 − q) we start with a smooth

elliptic quartic curve C . We know that H1(NC (−1)) = 0 and T(C, 2) is non-empty.
Since T(C, 2) �= ∅, there is a subset Z ⊂ C of cardinality 2 such that the tangent lines
to C at the points of Z lie in a plane H . By Lemma 6, for a general choice of s subsets
S1, . . . , Ss ⊂ C of cardinality 6 we find disjoint rational normal curves T1, . . . , Ts

123



Terracini loci of curves 463

such that C ∪ Ti is nodal and Ti ∩ C = Si for all i . Take a general plane H ′ ⊂ P
3.

Thus H ′ is transversal to C and Z ∩ H ′ = ∅. Fix e ∈ {0, 1, 2, 3} and W ⊂ H ′ ∩ C
such that #W = 4 − e. Take a general smooth conic C ′ ⊂ H ′ containing W . Since
#W ≤ 4 and C ′ is general, Ti ∩C ′ = ∅ for all i . Set Y := C ∪C ′. The normal bundle
NY (−Z)|C is obtained from NC (−Z) bymaking positive elementary transformations,
so that h1(NY (−Z)|C ) = 0. Recall that 1 ≤ #W ≤ 4. For each o ∈ W the tangent
line ToC of C at o is transversal to H ′. If #W = 4 Lemma 2 shows that the restriction
map ρ : H0(NY (−Z)|C ′) → H0(NY (−Z)|W ) surjects, so that the exact sequence

0 → NY (−Z) → NY (−Z)|C ⊕ NY (−Z)|C ′ → NY (−Z)|W → 0 (7)

proves that h1(NY (−Z)) = 0. If #W ≤ 3, then the surjectivity of ρ only use that NC ′
is a direct sum of 2 line bundles of degree ≥ 2 and that NY (−Z)|C ′ is obtained from
NC ′ making positive elementary transformations. By semicontinuity, we can find a
smoothing D of C ∪ C ′ which preserves Z . Thus we get curves D in H(6, g, 3), for
g = #W ∈ {1, 2, 3, 4}, such that T(D, 2) �= ∅, h1(ND(−Z)) = 0, and such that
for general subsets S1, . . . , Ss ⊂ X0 of cardinality 6 we have the disjoint rational
normal curves T1, . . . , Ts , as in the statement. Then consider a conic C ′′ which meets
D in one or in two general points. As above, in both cases Y ′ = C ′′ ∪ D satisfies
h1(NY ′(−Z)) = 0, and we can find a general smoothing X0 of Y ′ which preserves Z .
X0 has degree 8, and for its genus gwecan obtain any number between 1 and 5, because
#W is any integer between 1 and 4. Moreover, h1(NX0(−Z)) = 0, T(X0, 2) �= ∅, and
by semicontinuity X0 satisfies condition 2 of the statement. This concludes the case
x = 2.

Assumewe constructed the required curve X ∈ H(2(x−1)+4, 2(x−1)+1−q, 3).
There exists a subscheme Z ⊂ X formed by x−1 arrows which is contained in a plane
H , and moreover h1(NX (−Z)) = 0. Take a general plane M which is transversal to
both H and X , and misses Z . As in the proof of (a1) of Theorem 3, for p1, p2, p3 ∈
M ∩ X there exists a smooth conic C ′ passing through p1, p2, p3, tangent to H at
p4 /∈ X , which misses the remaining points of M ∩ X . Take Y = X ∪ C ′, and define
Z0 as the union of Z and the arrow at p4 tangent to C ′. Notice that Z0 lies in H . As
in the proof of Claim 1, the vanishing of H1(NX (−Z)) implies the surjectivity of the
map H0(NY (−Z0)|X ) → H0(NY (−Z0)|{p1,p2,p3}), and the analogue of sequence (6)
shows that h1(NY (−Z0)) = 0. Thus there exists a smoothing X0 ∈ H(2x + 4, 2x +
1− q, 3) of Y which preserves Z0. The existence of Z0 ⊂ X0 implies T(X0, x) �= ∅.
By semicontinuity h1(NX0(−Z0)) = 0, and X0 satisfies condition 2 of the statement.

�

We notice that, in the previous lemma, the condition h1(NX0(−Z)) = 0 implies
h1(NX0) = 0.

Lemma 8 Take a reduced curve C ⊂ P
3 such that h1(OC (2)) = 0. Let T ⊂ P

3 be a
smooth rational curve which is not an irreducible component of C. Set f := deg(T )

and e := deg(C ∩ T ). If e ≤ 2 f + 1, then h1(OC∪T (2)) = 0.
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Proof Consider the Mayer–Vietoris exact sequence

0 → OC∪T (2) → OC (2) ⊕ OT (2) → OT∩C (2) → 0 (8)

By assumption h1(OC (2)) = 0. Obviously, h1(OT (2)) = 0. Since e ≤ 2 f + 1,
T ∼= P

1 and deg(OT (2)) = 2 f , the restriction map H0(OT (2)) → H0(OC∩T (2)) is
surjective. Hence (8) gives h1(OC∪T (2)) = 0. �
Lemma 9 Let C ⊂ P

3 be an integral locally complete intersection curve and Z ⊂ Creg
a zero-dimensional scheme. Assume h1(NC (−Z)) = 0. Take S ⊂ Creg such that
#S = 6, S ∩ Z = ∅, S is in linearly general position and the only rational normal
curve T containing S meets C only at S and with C ∪ T nodal at each point of S. Set
Y := C ∪ T . Then h1(NY (−Z)) = 0.

Proof By assumption S is the scheme-theoretic intersection ofC and T . Thus we have
the following Mayer–Vietoris exact sequence

0 → NY (−Z) → NY (−Z)|C ⊕ NY (−Z)|T → NY (−Z)|S → 0 (9)

Since Z ∩ T = ∅, NY (−Z)|T ∼= NY |T . Since NY (−Z)|C is obtained from NC (−Z)

making positive elementary transformations and h1(NC (−Z)) = 0, h1(NY (−Z)|C ) =
0. Since NT is a direct sum of 2 line bundles of degree 5, #S = 6 and NY (−Z)|T is
obtained from NT making positive elementary transformations, h1(NY (−Z)|T ) = 0
and the restriction map H0(NY (−Z)|T ) → NY (−Z)|S is surjective. Thus (9) gives
h1(NY (−Z)) = 0. �

Now we are ready for the proof of Theorem 4.

Proof of Theorem 4 Recall that g = 2x + 1 + 5s − q, where q ∈ {0, . . . , 4}. By
assumption d ≥ 2x + 4 + 3s.

We first dispose of the case d = 2x + 4 + 3s. The case s = 0 is covered by
Lemma 7. Consider a curve X0 ∈ H(4x + 2, 2x + 1, 3) as in the statement of Lemma
7. Since T(X0, x) is non-empty, we can take a set Z of x coplanar arrows in X0
supported at x points, with h1(NX0(−Z)) = 0. Moreover, for a choice of s general
subsets S1, . . . , Ss ⊂ X0 of cardinality 6 there are disjoint rational normal curves
T1, . . . , Ts such that for all i the union X0 ∪ Ti is nodal, and Ti meets X0 exactly
at Si . Define Y = X0 ∪ T1 · · · ∪ Ts . Then h1(NY (−Z)) = 0. Arguing by induction
on s one finds a smoothing Xs of Y which preserves Z . The curve Xs belongs to
H(2x + 4+ 3s, 1+ 2x + 5s − q, 3). The existence of Z provides that T(Xs, x) �= ∅.
By semicontinuity we also know that h1(NXs (−Z)) = 0.

Finally assume d = (2x + 4 + 3s) + t , for some t > 0. Then we obtain the
required curve in H(d, g, 3) by induction on t . We start with Xs,0 = Xs . Then we
construct Xs,t+1 from Xs,t by adding a line �which meets Xs,t at one general point, so
that Xs,t ∪ � is nodal, and taking a smooth deformation which fixes Z . The condition
h1(OX (2)) = 0 follows by applying several times Lemma 8 applied to smooth rational
curves of degree ≤ 3. �
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