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Abstract: Human activity recognition (HAR) plays a central role in ubiquitous computing applications
such as health monitoring. In the real world, it is impractical to perform reliably and consistently
over time across a population of individuals due to the cross-individual variation in human behavior.
Existing transfer learning algorithms suffer the challenge of “negative transfer”. Moreover, these
strategies are entirely black-box. To tackle these issues, we propose X-WRAP (eXplain, Weight
and Rank Activity Prediction), a simple but effective approach for cross-individual HAR, which
improves the performance, transparency, and ease of control for stakeholders in HAR. X-WRAP
works by wrapping transfer learning into a meta-learning loop that identifies the approximately
optimal source individuals. The candidate source domains are ranked using a linear scoring function
based on interpretable meta-features capturing the properties of the source domains. X-WRAP is
optimized using Bayesian optimization. Experiments conducted on a publicly available dataset show
that the model can effectively improve the performance of transfer learning models consistently.
In addition, X-WRAP can provide interpretable analysis according to the meta-features, making
it possible for stakeholders to get a high-level understanding of selective transfer. In addition, an
extensive empirical analysis demonstrates the promise of the approach to outperform in data-sparse
situations.

Keywords: human activity recognition; transfer learning; meta-learning; domain adaptation

1. Introduction

Human activity recognition from wearable sensors is a key element of many human-
centric applications, such as smart personal assistants [1], healthcare assessment [2–6],
sports monitoring [7], and aging care [8]. In HAR, typically one first collects a training set
of examples of rich, multi-modal sensor observations, such as gravitational acceleration and
Global Positioning System(GPS), labeled with corresponding activity annotations, and then
uses this data to learn a machine learning classifier that predicts activities from sensor
measurements [9,10].

Many state-of-the-art approaches assume the training and testing data to be inde-
pendent and identically distributed. This assumption, however, usually does not hold in
practice: sensor data for HAR are collected from a diverse pool of individuals, and behavior
patterns are person-dependent [11] owing to biological and environmental factors, meaning
that the same activity can be performed differently by different individuals [1]. In practice,
while a certain number of participants’ data can be collected and annotated for training,
the target users are usually not available at the training time [9]. This is what defines
cross-individual (or cross-subject) HAR.
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The key challenge in cross-individual HAR is how to train a model on known users’
data and achieve good recognition performance on new-coming target individuals. A stan-
dard solution is to generalize information from well-known training individuals to the
target using techniques from transfer learning and domain adaptation [12]. For instance,
Zhao et al. [13] tackled cross-individual HAR using a transfer learning approach based
on decision trees and k-means clustering. Similarly, Wang et al. [14] explored intra-class
knowledge transfer and proposed a transfer learning model for cross-domain activity
recognition tasks, while a previous study [15] focused on the problem of cross-dataset
activity recognition using an approach that extracts both spatial and temporal features.
A previous study [16] proposed another algorithm that adapts to the characteristics and
behaviors of different individuals with reduced training data.

However, the success of domain adaptation approaches is not always guaranteed.
Existing domain adaptation approaches assume that source and target domains share
an identical label space, ignoring the fact that different behavior patterns can contribute
to differently distributed sensory data across multiple individuals. If the source and
target domains are not sufficiently similar or the source domains have low-quality labeled
data, transferring from such a weakly related source may hinder the performance of the
target, which is known as negative transfer [12,17]. The negative transfer phenomenon
indicates that the source domain data and task contribute to the reduced performance of
learning in the target domain, which happens in the real-world scenario where people
perform diversely [12]. Despite the fact that avoiding negative transfer is an important
issue, little research work has been published to analyze or predict negative transfer for
cross-individual HAR tasks. Another issue with these strategies is that they are entirely
black-box: it is difficult to extract the reasons why information from a particular source
individual was transferred to the target. This is problematic, partly because it makes it hard
to identify bugs in the transfer learning step and partly because it prevents stakeholders
from controlling and debugging the transfer process.

Motivated by these observations, we propose X-WRAP (eXplain, Weight and Rank
Activity Prediction), a novel approach for cross-individual HAR designed for achieving
high transfer performance, interpretability, and controllability and specifically tailored for
realistic settings where training data for the target individual are scarce. X-WRAP takes an
existing baseline transfer learning algorithm and learns a source selection model that iden-
tifies the (approximately) optimal source individuals for the given algorithm. The possible
sources are first ranked using a linear scoring function using interpretable meta-features.
The latter encodes properties of candidate sources as well as their relation to the target
individual, enabling the scoring function to properly disambiguate between promising
and unpromising candidates. Then, X-WRAP selects the higher-scoring candidates using a
learned threshold and applies the baseline transfer algorithm to them to obtain a predictor
for the target. The parameters of the scoring function and the threshold are specifically
learned so that they generalize across different sources and targets, enabling applications
to previously unobserved subjects about whom little is known. The learning problem itself
involves repeatedly invoking and evaluating the baseline transfer algorithm, which can be
computationally expensive. In order to cope with this, X-WRAP leverages state-of-the-art
Bayesian optimization (BO) algorithms [18]. Thus, this architecture offers several major
technical novelties. First, X-WRAP facilitates the introspection of the transfer process by
selecting candidate sources to improve the performance of cross-individual HAR tasks
and avoid the negative transfer. Second, it is completely model- and transfer-algorithm
agnostic, making it possible to use any state-of-the-art transfer learning. Finally, BO enables
X-WRAP to find high-quality parameters while keeping the number of evaluations of the
learning objective (and hence the number of calls to the costly baseline transfer algorithm)
at a minimum.

Summarizing, our contributions are as follows:
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• We propose X-WRAP, a simple but effective approach for cross-individual HAR that
optimizes source selection for transfer learning algorithms in a way that generalizes
across individuals with heterogeneous sensor data.

• We propose to use a Bayesian optimization strategy for training the meta-transfer
learning framework in an efficient and model-agnostic fashion. The training process
includes a data masking strategy implemented in the meta-learning loop.

• X-WRAP builds on an interpretable ranking step and thus enables stakeholders to
obtain a high-level understanding of the reasons behind the selective transfer and
control (or debug) of the HAR system.

• We report an extensive empirical evaluation of X-WRAP on a real-world dataset and
several baseline transfer learning algorithms. Our results indicate that X-WRAP im-
proves the post-transfer performance of cross-individual HAR. In addition, the label-
level results indicate the consistent superiority of our approach for almost all ac-
tivities. Furthermore, we set up experiments to prove that X-WRAP is explainable
and controllable.

The remainder of the paper is structured as follows: Section 2 positions X-WRAP with
respect to existing approaches. Section 4.3.1 defines the motivation of selective transfer
learning for cross-individual HAR. Section 3 introduces X-WRAP, the proposed explainable
meta-transfer algorithm for cross-individual HAR, and Section 4 describes and discusses
our experimental evaluation of X-WRAP on real-world data. Finally, Section 6 presents
some concluding remarks and illustrates promising directions for future work.

2. Related Work
2.1. Human Activity Recognition

A wide range of HAR (human activity recognition) approaches have been developed.
Some exploit shallow machine learning models and manually constructed features [19–22],
both statistical [23] and distribution-based [24], while others rely on deep learning and
automatically learned representations [9,10,25]. Building on this insight, models such as
DeepConvLSTM [26] and DeepSense [27] leverage a hybrid architecture that combines
CNNs and RNNs. AttenSense [28] implemented an attention-based model into a multi-
modal neural network, which is well suited for capturing both spatial and temporal
correlations. However, the attention weights are identical across individuals, which does
not work well in the real world with heterogeneous data.

The issue with “pure” HAR is that it assumes the training and test data to be inde-
pendent and identically distributed (IID), which—as we mentioned—is often not realistic.
This restricts the applicability of HAR approaches to real-world tasks involving diverse
and changing individuals [9]. X-WRAP does not make any such assumption. Rather, it
selectively transfers knowledge about known individuals to new or changed ones, which is
defined as the cross-individual activity recognition task.

2.2. Multi-Source Unsupervised Domain Adaptation

Cross-individual activity recognition is a more challenging and realistic task where a
HAR predictor has access to annotations from a whole pool of individuals and is applied to
potentially different target individuals [29,30]. Essentially, approaches for cross-individual
activity recognition use the UDA (unsupervised domain adaptation) approach, which is
an actively studied area of research in machine learning and computer vision. UDA aims
to train the model with labeled source domain data and test on unlabeled target domain
data. Traditionally, UDA methods use maximum mean discrepancy (MMD) as metrics and
minimize the distance between the source and target domains [31]. In addition, adversarial
learning [32–35] and contrastive learning [36] are also applied for domain adaptation
without knowing information from target domains.

Considering there are multiple domains in the real-world task, multi-source unsu-
pervised domain adaptation (MS-UDA) has been raised as a novel research area, which
is more practical and valuable [37]. Guo et al. [38] apply different distance-based metrics
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to measure the correlations between the source and target domain in order to choose data
samples dynamically during the training process. Recently, adversarial and GAN-based
models have been applied as trending strategies for MSDA tasks [39]. In addition, latent
space learning and domain generation have also been applied [40].

However, existing approaches on MS-UDA ignore that some of the source features
may not exist in the target domain, which may lead to negative transfer. In addition,
sometimes the target domain only shares a part of features with certain source domains.

2.3. Partial Domain Adaptation and Domain Selection

Traditional domain adaptation approaches assume that source and target domains
share an identical label space. In practice, however, source features may not exist in the
target domain, which can contribute to negative transfer. To tackle this issue, partial
domain adaptation (PDA) and domain selection approaches have been proposed. Some
previous methods employed sample selection and sample weighing techniques for domain
adaptation. Bhatt et al. [41] proposed to adapt iteratively by selecting the best sources
that learn shared representations faster. Chen et al. [42] used a hand-crafted re-weighting
vector so that the source domain label distribution is similar to the unknown target label
distribution. Mancini et al. [43] modeled the domain dependency using a graph and utilizes
auxiliary metadata for predictive domain adaptation.

Recently, partial domain adaptation (PDA) approaches have been proposed to solve
the challenge where the target domain only contains a part of the data and labels from
source domains. A previous study [44] applies a selective weighting mechanism to multiple
adversarial networks. After that, Cao et al. [45] use one adversarial network and class-level
weight to judge source samples. Zhang et al. [46] propose an auxiliary domain classifier be
utilized to derive the possibility that a source sample is contained in the target label space.

2.4. Transfer Learning for Activity Recognition

Transfer learning leverages information about a well-labeled source domain to learn
higher-quality models for a target domain with few annotations, while domain adaptation
does the same without assuming the target domain has any annotations [12,47,48]. In both
tasks, the domains may differ in terms of distribution, representation, or both. Methods
used on cross-individual HAR tasks include the following approaches: transfer component
analysis (TCA) [49], which acquires a kernel in the reproducing kernel Hilbert space
to minimize the MMD between domains; stratified transfer learning (STL) [14], which
is designed specifically for exploiting the intra-affinity of classes to perform intra-class
knowledge transfer; joint distribution adaptation (JDA) [50], which is based on minimizing
joint distribution between domains; balanced distribution adaptation (BDA) [51,52], which
extends JDA to adaptively adjust the importance of marginal distribution and conditional
distribution; and local domain adaptation (LDA) [53], which offers a balance between
domain- and class-level matching and utilizes high-level abstract clusters to organize data.

A previous study [14] explored the intra-class knowledge transfer and proposed
a transfer learning model for cross-domain activity recognition tasks. Qin et al. [15]
focused on the source domain selection problem to avoid negative transfer and proposed
an adaptive transfer learning model to extract both spatial and temporal features for the
cross-dataset activity recognition task. Garcia et al. [16] proposed a user-adaptive model in
order to adapt to each user’s characteristics and behaviors with reduced training data for
the task of human activity recognition.

The work in [54] proposed a generalizable independent latent excitation for multi-
individual HAR tasks, which can enhance the generalization ability of the cross-individual
model. In addition, deep learning models for transfer learning are also applied to domain
adaptation tasks, such as cross-individual HAR. ContrasGAN [34] tackles the domain
information transferring problem by adding contrastive learning during the adaption with
the goal to minimize the intra-class discrepancy and maximize the inter-class margin.
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Existing transfer learning methods assume that the transfer of any information from
users in the source domain to the target domain is always beneficial. However, this can
contribute to negative transfer [17] in the real-world scenario because people are diverse in
that they display different behaviors, and the distributions of features in the source and
target domains are different. Our proposed meta-transfer model is different from these
methods. It leverages pre-learned knowledge to transfer selectively from the source domain,
which helps filter out useless information that leads to negative transfer. In addition, the
previously described approaches are completely black-box and ignore the fact that source
features may not exist in the target domain. X-WRAP builds on existing transfer algorithms
by smartly predicting source individuals that are (approximately) optimal for a given target
and does so in a transparent fashion, thus facilitating the understanding and control of
opaque approaches like those listed above.

2.5. Explainability and Explanatory Debugging

Most work on explainable AI is concerned with extracting explanations from black-box
predictors [55,56], as doing so can reveal bugs and biases in the model’s logic [57]. The
explanations output by X-WRAP achieves the same effect. These works, however, do
not give any guidance as to how to debug the learned model. Our approach is inspired
by recent approaches that improve the model’s behavior by acquiring and learning from
corrective supervision on the model’s explanations [58–60]. X-WRAPbuilds on these ideas
to correct the transfer algorithm whenever it selects the wrong sources but applies them to
the transfer learning step rather than to the prediction step. To the best of our knowledge,
these approaches have never been used in HAR nor to control the behavior of a transfer
learning algorithm. Moreover, X-WRAP can make use of any predictive model and transfer
learning algorithms, making it possible to build on state-of-the-art methods.

3. Method
3.1. Problem Formulation

In the simplest case of HAR, examples annotated by some individuals are used to learn
a machine learning classifier that generalizes to unseen inputs from the same individual.
In this work, we tackle cross-individual human activity recognition, a more challenging
and realistic setting where a HAR predictor has access to annotations from a whole pool
of individuals and is applied to potentially different target individuals. Cross-individual
HAR is very common in real-world applications.

In the following, sensor measurements (such as acceleration, GPS coordinates, etc.)
are encoded as a vector x ∈ Rd and activities (e.g., “running”, “walking”, “swimming”)
as a one-hot vector y ∈ {0, 1}A, where A is the number of alternative activities and ya is
the annotation of activity a ∈ {1, . . . , A}. We assume access is given to N training sets
u = {(xu,i, yu,i) : i = 1, . . . , Mu}, one for each individual u ∈ U = {1, . . . , N}, and a target
user t ∈ U for which training data are scarce or absent. The goal is to compute a predictor
that performs well for user t by leveraging training data available for one or more of the
other users.

In cross-individual human activity recognition settings, each individual u has unique
characteristics and behaviors. Different individuals also have different priors over activities.
Formally, this means that both the prior over observations pu(y) and the conditional distri-
bution of sensor observations given priors pu(x | y) depend strongly on the individual u.

3.2. Overall Architecture of X-WRAP

Based on the above motivation mentioned in Section 4.3.1, we propose X-WRAP
(eXplain, Weight and Rank Activity Prediction), a meta-transfer learning approach for
cross-individual human activity recognition tasks, which is also specifically designed for
interpretability and control. As shown in Figure 1, our proposed model has three main
modules to selectively transfer from the multiple source domains for cross-individual
human activity recognition:
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• Firstly, a meta-training procedure is trained to get a meta-model for selecting proper
source individuals according to various statistical meta-features.

• Then, the meta-model is applied to the transfer learning model to selectively transfer
knowledge from existing individuals. A transfer learning model is applied to adapt
the model trained on selected source domains, which uses a domain classifier to
minimize the distribution distance between source and target domains.

• Based on these two procedures, we can then deploy our system to achieve selective
and explainable HAR according to the parameters of the meta-model. In addition,
the function of empowering the coordinator with control over the meta-model is de-
signed, which can provide an explainable report and tool for adjusting the parameters
in order to gain a better performance.

Multi-Source Input Data

Partial Transfer

Source Domains Target Domain
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…
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Figure 1. Schematic illustration of the overall architecture of X-WRAP.

3.3. Meta-Transfer Mechanism

Specifically, X-WRAP takes a baseline transfer learning algorithm “Transfer”, such as
CORAL [61], a set of candidate sources S ⊆ U , a target individual t ∈ U \ S , and an activity
a ∈ {1, . . . , A} and outputs a subset of sources S∗ ⊆ S that is approximately optimal for
predicting activity a with Transfer.

The core of the function Transfer is the ranking step responsible for identifying the
source individuals S∗ ⊆ S . X-WRAP sorts potential sources using a linear scoring function
Score, defined as follows:

Score(s, a, t; w(a)) = ∑
i

w(a)
i φi(s, a, t) (1)

Here, the φi’s are meta-features that capture salient information about the source s,
action a, and target t, while the wi’s are learned weights chosen specifically so as to score
more beneficial source individuals higher than the others using the training procedure
described below. Notice that the weights are shared by all sources and targets but differ
across activities a; however, the score itself does depend on all three elements because of
the meta-features.

After ranking the candidates, X-WRAP applies the Select function to choose those that
score above a certain threshold τ(a), which is also a parameter to be learned. Specifically,
our approach returns a selected subset S∗, defined as follows:

S∗ = Select(S , a, t; θ(a)) = {s ∈ S : Score(s, a, t; w(a)) ≥ τ(a)} (2)



Electronics 2023, 12, 2275 7 of 24

where θ(a) = (w(a), τ(a)) are learnable parameters, S is the set of source domains, and τ(a)

is the threshold to select proper source users for activity a. Thus, Equation (2) can select the
source domains that have scores higher than the threshold. X-WRAP then simply applies
the transfer learning model to the selected individuals, obtaining a predictor for activity a
that leverages the information of sources in S∗. The transfer learning model here is a deep
domain adaptation approach as shown in Figure 1. The transfer model contains three parts,
which is similar to the previous work [62], which can maximize the similarity between data
classes across domains. The first part is an LSTM-based feature extractor. Then, we use
a domain classifier that discriminates between the source and the target domains during
training. Finally, fully connected layers are applied for classifying activities. In addition,
the proposed meta-learning architecture is model-agnostic, which means it can also be
applied to any transfer learning approach to select proper source domains.

3.4. The Meta-Features

The meta-features φi(s, a, t) are designed for data valuation to select the best source do-
mains, which need to satisfy three desiderata. First, they should enable the ranking function
to identify source individuals that are likely to provide useful information. For instance,
candidates on which the HAR predictor performs poorly may be inadequate as sources
for the transfer. Second, they should highlight similarities and dissimilarities between
the distribution of activities and sensor measurements of the candidate source and target
individuals. This further facilitates discriminating between promising and unpromising
individuals for a given target. Third, they should be understandable to human stakehold-
ers. This is essential for enabling sufficiently expert users to understand why selected
individuals have achieved a high enough score and to provide corrective feedback on the
behavior of X-WRAP.

Previous study [63] surveyed the principles for selecting valuable data, which con-
tain model-driven principles and data-driven principles. Model-driven principles refer
to evaluating the data by training a model and measuring the data according to the per-
formance on a validation set intuitively. Previous studies compute the metrics, such as
accuracy and negated loss functions, as the validation of the performance to evaluate
the data [64,65]. Data-driven principles indicate computing metrics, such as frequency,
diversity, and similarity, to reference distribution directly on the dataset instead of the
model. Frequency or monotonicity indicates the amount of the data and having more data
is more valuable [66]. Diversity indicates that the data points cover a larger region of the
input space. The dataset can improve the model’s predictive performance if it contains
more intra-diversity [67,68]. In transfer learning, similarity to the reference distribution is
crucial for transfer performance. Tay et al. [67] measured similarity using the translated
negative maximum mean discrepancy (MMD) between the two distributions to evaluate
the quality of the dataset.

Motivated by the previous studies, we implement two groups of meta-features to
satisfy the desideratum, which are then concatenated by X-WRAP and used together in
Equation (1). The meta-features in the first group capture information about a single
individual, while the second group of meta-features is concerned with how dissimilar the
source and target individuals are. The computations of the meta-features are shown in
Table 1. The meta-features can be categorized as follows:

• Meta-features based on predictability: By predictability (or discriminability), we
refer to the easiness of classifying a particular activity a using a supervised classifier,
1-nearest neighbor (1-NN), fit on the training set of an individual u. In order to
estimate predictability, for each candidate source u, we take 20% of the training set as
a validation set to compute multiple metrics, including accuracy and F1 score, and the
rest as the training set.

• Meta-features based on diversity: By diversity, we mean the intrinsic heterogeneity
in its activity patterns. For each individual u, we measure this by computing the
number of distinct activities that they perform and the Shannon entropy of the activity
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annotations {yi,a} available in the training set. These meta-features model the intrinsic
difficulty of predicting the behavior of an individual u and are useful for preventing
unpredictable individuals being used as sources.

• Meta-features based on frequency: We also account for the frequency of the context la-
bels by computing the number of times a certain activity occurs in the
training annotations.

• Meta-features based on dissimilarity: X-WRAP measures diversity using the maximum
mean miscrepancy (MMD), a well known statistic that estimates how “different” two
(empirical) distributions are and that has found ample application in hypothesis
testing [69] and domain adaptation [70].

Table 1. List of meta-features. In the definition column, TP refers to the number of true positive
samples; FN indicates the number of false negative samples; TN refers to the number of true negative
samples; and FP refers to number of false positive samples. Pr indicates the precision of the machine
learning model, which is formalized as TP

TP+FP and Rc indicates the recall of the machine learning
model, which is formalized as TP

TP+FN . pu,a indicates the probability of activity a. For the definition of
MMD, φ(·) is the feature map that maps the original instances into the reproducing kernel Hilbert
space (RKHS)H.

Meta-Feature Type Meta-Feature Measurement Definitions

Single individual Predictability Accuracy TP+TN
TP+FP+TN+FN

Predictability F1 score 2∗Pr∗Rc
Pr+Rc

Diversity Number of activity types #types

Diversity Shannon entropy −∑a pu,aln(pu,a)

Frequency Number of instances #yi,u

Paired individuals Dissimilarity MMD
∥∥∥∑n1

i=1 φ(xi)−∑n2
j=1 φ(yj)

∥∥∥2

H

3.5. Fitting X-WRAP Using Meta-Learning

The only remaining element is the learning objective. Recall that our aim is to acquire
the parameters θ(a) = (w(a), τ(a)) for each activity a that ensure that Select function in
Equation (2) selects source users that are maximally beneficial for the baseline transfer
learning algorithm. Moreover, and crucially, we want these parameters to work well
regardless of the choice of source and target individuals.

X-WRAPachieves this using a simple but effective meta-learning strategy. At a high
level, the idea is to directly optimize the performance of the predictor’s output by the
baseline transfer mechanism Transfer when applied to the known users U . Formally, let
La,t( f ) be a loss function that measures the quality of the output of the prediction by
a classifier f for activity a and individual t, e.g., the number of mistakes or the binary
cross-entropy. In addition, let fS ,a,t be the predictor output by running the baseline transfer
learning algorithm Transfer on sources S ⊆ U . Then, the improvement in prediction
performance due to transferring from S compared to not transferring at all is as follows:

La,t( f∅,a,t)− La,t( fS ,a,t) (3)

and the average improvement due to parameters θ(a) is given by the following:

EU [La,t( f∅,a,t)− La,t( fS ,a,t)], where S = Select(U , a, t; θ(a)). (4)

Notice that the expectation runs over all possible choices of source individuals U
and the overall best parameters are those that maximize it. In practice, however, this
expectation cannot be computed because the ground-truth distribution of U is unknown.
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X-WRAPworks around this issue by optimizing a leave-one-out estimator of the expected
benefit over the known users U , namely,

argmin
θ(a)

∑
u∈U

La,u( fS ,a,u), where S = Select(U \ {u}, a, u; θ(a)). (5)

In words, for each activity a = 1, . . . , A, X-WRAP seeks parameters θ(a) that lead to a
high post-transfer performance when applying the baseline transfer learning algorithm to
the subset S of individuals known to the system U , minus one hold-out individual u used
as the target. Naturally, both training and validation data are available for these individuals,
making it possible to compute the performance and features in an unbiased manner.

3.6. Training X-WRAP Using Bayesian Optimization

The issue with minimizing Equation (5) is that computing the loss involves invoking
the baseline transfer learning algorithm Transfer. The training and testing procedures are
shown in Figure 2. X-WRAP is a meta-learning structure and each round of the training
process involves the transfer model, which is not cheap to evaluate. Therefore, we treat
Equation (5) as an expensive global optimization problem and solve it using effective
Bayesian optimization (BO) algorithms [18,71]. This brings two advantages. First, BO
is designed for expensive-to-evaluate problems and can effectively keep the number of
evaluations of the loss function within an acceptable budget, which is 300 rounds in
this work. Second, BO does not need gradient information in order to explore the space
of the candidate parameters and therefore can also work in our model- and algorithm-
agnostic setting. In short, BO algorithms seek a global maximum of a black-box function
f by repeatedly sampling the value of the function at well-chosen inputs and learning a
surrogate that matches the corresponding outputs. The query inputs are chosen so as to
maximize the expected information about the structure of the function that they convey,
estimated using the surrogate itself. The BO loop proceeds as in the following Algorithm 1.
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Figure 2. Schematic illustration of the training (top) and evaluation (bottom) procedures of X-WRAP.

Algorithm 1 X-WRAP’s training procedure: u is the training set of user u; t and a are the
target user and activity, respectively; I is the max iteration budget; and Θ is the space of
possible parameters.

1: function EvalTransferLoss({1, . . . , N}, a, θ)
2: for t = 1, 2, . . . , N do
3: rank candidate sources s ∈ [N] \ {t} according to Score (Equation 1)
4: S ′ ← select τ highest scoring candidates
5: f ← Transfer(S ′, a, t)
6: L← L + l( f , i)
7: return L

8: function LearnToTransfer({1, . . . , N}, a, I, Θ)
9: # Initialize parameter-loss data

10: sample θ0 = (w0, τ0) at random from Θ
11: L0 ← EvalTransferLoss({1, . . . , N}, a, θ0)
12: H ← {(θ0, L0)}
13: # Optimize θ using Bayesian optimization
14: for i = 1, 2, . . . , I do
15: fit surrogate g : Θ→ R on observationsH
16: θi ← argmaxθ∈Θ acq(g, θ)
17: Li ← EvalTransferLoss({1, . . . , N}, a, θi)
18: H ← H∪ {(θi, Li)}
19: # Return best parameters found
20: i∗ ← argmini=1,...,I Li
21: return θi∗

X-WRAP follows the meta-learning manner, which means that the parameters are
fitted with all training users and then evaluated on a distinct set of test users. The training
set only participates in the training procedure and is used to train the meta-model, as in
the procedure in Figure 2 (top figure). Specifically, in the training procedure, we split the
training users into source users and target users with the leave-one-user-out setting. As for
the testing procedure, all of the testing users are used for target users, and the selected best
source users are chosen according to the trained parameters from training users (who work
as source users), as shown in Figure 2 (bottom figure). Considering that the computations of
the meta-features do not need labels from target users, the proposed model is unsupervised.
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In this way, only the sensory data of testing users are used in the test procedure but the
labels are not used.

3.7. Model Interpretation

Compared to traditional transfer learning, which is completely black-box, in X-WRAPit
is straightforward to extract the reasons why a particular individual is selected (or not)
from the scoring function. This follows from two aspects. First, like other interpretable ap-
proaches [72] and explainability techniques [73], X-WRAP relies on a linear model scoring
function Score from which the relative contribution of each meta-feature is easy to read off
from the associated weight. Second, the meta-features are themselves easy to interpret for
sufficiently expert stakeholders. Indeed, prediction accuracy and entropy are easy to assign
intuitive meaning to for trained statisticians, while cross-individual diversity (modeled
by MMD) can be specifically broken down along different and intuitive axes, such as geo-
graphical similarity. This is precisely what we do in our last experiment. This formulation
ignores information overlap between sources, which is not a huge deal if Transfer performs
learning afterward. This could be solved by making use of submodular scoring functions
or techniques from deep active learning, but this is not entirely straightforward.

4. Result
4.1. Dataset and Data Processing

We ran a set of experiments on the ExtraSensory [74] dataset, a well known context
recognition dataset collected via a mobile application in the open world. The ExtraSensory
dataset contains over 300,000 multi-labeled instances (with classes such as “outside”, “at a
restaurant”, and “with friends” from a total of 51 labels) from 60 users. Each example asso-
ciates readings from multiple sensors to ground-truth context annotations describing the
activity, location, and social context (e.g., “walking”, “with friends”, “at home”). The sen-
sors include motion-reactive sensors (e.g., accelerometer, watch accelerometer, gyroscope,
magnetometer), location services (GPS), audio, watch compass, phone state indicators (e.g.,
WIFI), and low-frequency sensors (e.g., air pressure, humidity, temperature). As for the
labels, a flexible user interface is provided for participants to self-report their context in
terms of what they were doing, who they were with, where they were, where their phone
was, and so on.

The dataset contains 60 subjects (34 female and 26 male users) with heterogenous
sensory data. Specifically, 34 of the subjects are iPhone users (iPhone 4 to iPhone 6;
iOS versions 7, 8, and 9), while 26 subjects use android phones, with various devices
(Samsung, Nexus, Motorola, Sony, HTC, Amazon Fire-Phone, and PlusOne). In addition,
The participants have different nationalities and are from diverse ethnic backgrounds,
including Chinese, Mexican, Indian, Caucasian, African-American, and more. A total of
93% of the subjects are right-handed and wear the smartwatch on their left wrist, and almost
all were students or research assistants. Table 2 presents additional subject characteristics.
As pointed out in the previous study [74], the ExtraSensory dataset with high heterogeneity
needs to be considered with the domain adaptation for new users. The potential bias in the
dataset can contribute to poor performance for context and activity recognition models and
personalized models are required to recognize the activity for unique individuals [1,75].
These settings are applied to research question 2 to research question 5. Research question 1
applied the same dataset but has different settings and detailed settings will be introduced
in Section 4.3.1.

In the following experiments (research question 2 to research question 5), we follow
the settings of meta-learning. Specifically, X-WRAP is meta-trained on a set of training
users, which means that the parameters are fitted with all training users and then evaluated
on a distinct set of test users. We selected 30 users at random as the training set and the
remaining 30 distinct users as the testing set. The training set only participates in the
training procedure and is used to train the meta-model, as in the procedure discussed in
Section 3.5, while the testing users instead play the role of target users and are only used
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to test the generalization ability of the learned models. In the training procedure, we split
the training users into source users and target users with the leave-one-user-out setting.
Specifically, we take every single user from the 30 training users as the target user and
the remaining 29 users as source users. As for the testing procedure, all of the 30 testing
users are used for target users, and one or multiple selected best source users are chosen
according to the trained parameters from 30 training users (who work as source users).
Considering that the computations of the meta-features do not need labels from target
users, the proposed model is unsupervised. In this way, only the sensory data of testing
users are used in the test procedure but the labels are not used.

Table 2. Statistics for the 60 users in the ExtraSensory.

Range Mean (Standard Deviation)

Age (years) 18–42 24.7 (5.6)
Height (cm) 145–188 171 (9)
Weight (kg) 50–93 66 (11)

Body mass index (kg/m2) 18–32 23 (3)
Participation duration (days) 2.9–28.1 7.6 (3.2)

4.2. Baseline Models and Transfer Mechanisms

In order to probe the effect of the transfer mechanisms, we apply X-WRAP to two
diverse sets of well-known baseline transfer learning approaches used in cross-domain
HAR. The baseline deep learning models are as follows:

• The domain adversarial neural network (DANN) [62] is a deep domain adaptation
approach, which uses a domain classifier that discriminates between the source and
the target domains during training.

• The distribution-embedded deep neural network (DDNN) [76] is a state-of-the-art
network featuring learning approaches for activity recognition.

• Triple-DARE [77] is a neural network method that combines three unique loss func-
tions to enhance intra-class compactness and inter-class separation within the embed-
ding space of multi-labeled datasets. In this experiment, we slightly modify the model
from lab-to-field transfer to cross-individual transfer to make the settings the same as
the proposed model.

• HDCNN [78] is a cross-domain transfer learning model that uses KL divergence loss
on the acquired feature vectors.

• The convolutional deep domain adaptation model for time series data (CoDATS) [54]
is the latest domain adaptation model for time series data.

Notice that HDCNN and Triple-DARE are applied on the ExtraSensory dataset
and handle a lab-to-field transfer. For a fair comparison, we change them slightly to
cross-individual transfer tasks. In addition, we compare some existing shallow transfer
learning models:

• Transfer component analysis (TCA) [49] is a feature extraction approach for domain
adaptation. It aims to learn a feature subspace shared by different individuals that
minimizes the discrepancy in distribution, measured using MMD. The transfer is then
achieved by projecting inputs onto this shared subspace.

• Correlation alignment (CORAL) [61] is another unsupervised approach for domain
adaptation in HAR. It works by minimizing cross-domain differences by aligning the
second-order statistics of source and target distributions.

• Balanced distribution adaptation (BDA) [51] tackles domain adaptation by mini-
mizing the marginal and conditional distribution discrepancy between domains. It
leverages marginal and conditional distributions between domains and re-weights
the importance of those two distributions.

• Manifold embedded distribution alignment (MEDA) [79] performs dynamic
marginal and conditional distribution alignment for unsupervised domain adap-
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tation. It learns a domain-invariant classifier in Grassmann manifold with structural
risk minimization and performs dynamic distribution alignment to account for the
importance of marginal and conditional distributions.

• Easy transfer learning (EasyTL) [80] learns both non-parametric transfer features and
classifiers by learning intra-domain structures for unsupervised domain adaptation.

Note that all the approaches are fully unsupervised and therefore do not require anno-
tations for the target individual to be available at any time. As for the underlying predictor
of shallow transfer learning models, we follow other work on transfer learning for HAR and
other tasks [14,15,51,79,80] and use 1-nearest neighbor (1-NN) as the underlying classifier.

4.3. Experimental Results

We answer empirically the following research questions:

• RQ1: Is the selective meta-transfer mechanism in X-WRAP needed for cross-individual
HAR?

• RQ2: Does X-WRAP improve the performance of cross-individual HAR?
• RQ3: Does X-WRAP perform better when data for the target user are sparse?
• RQ4: Does X-WRAP enable experts to control the system whenever sensors go awry?
• RQ5: Does X-WRAP provides a reliable explanation for the partial transfer?

To this end, we apply X-WRAP to a well-known context recognition dataset and
study the conditions under which cross-individual transfer across users is beneficial, fo-
cusing on the characteristic of the users, activities, and prediction tasks. All methods
were implemented in Python 3 using scikit-learn and the Hyperopt Bayesian optimization
package [81].

4.3.1. Motivation for Selective Meta-Transfer

In this experiment, an empirical experiment is conducted to prove that heterogeneous
sensory data decrease the performance of the HAR models. Specifically, we assess whether
there is a correlation between distribution discrepancy and the change in performance after
transferring the model. For this experiment, we use 30 training users and for each pair of
users consider one the source user and the other the target user. Then, the data of each
source user is split into training data and testing data with a ratio of 8:2. For each pair of
users and activity, a binary KNN (1-NN) classifier is trained on the training data (80%) of
source users and tested on both the testing data (20%) of the source user and 20% of the
data of the target user for fairness. We then compute the difference in the performance of
the testing on the source user themself and the other target user. Then, for each activity
and each pair of users, the dissimilarity (MMD) is computed according to Section 3.4.
Finally, the correlations between dissimilarity (MMD) and the difference in performance
are visualized and computed to study the impact of heterogeneity existing in sensory data
for cross-individual HAR.

As shown in Figure 3, the results visualize the correlations between similarity and
change in performance after transfer. Specifically, each point in this figure indicates one
activities of one pair of users. Generally speaking, from this figure, a positive correlation
between similarity and change in performance between the source domain and target
domain can be seen, such as the activity. Among these subplots, the activity “At home” and
“Indoors” show strong positive correlations between the MMD and change in performance,
where the performance of the model will drop after transferring information between
two dissimilar users. Interestingly, there is another kind of distribution in the subplots
of “Eating”, “Standing”, “Walking”, and “Phone in hand”. When the value of MMD
is close to zero, the change in performance is small. Along with the increase in MMD,
the performances of some pairs start to decrease while the performances of other pairs start
to increase. Therefore, we would infer that a large distance between two sub-datasets of
users indicates notable changes in performance after transferring the information in the
task of activity recognition.
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Figure 3. Correlation between MMD and change in performance for different activities.

To take one step further, we inspected the correlations between similarity and change
in performance quantitatively by computing the correlation coefficient. We randomly
selected activities with more than 100 examples to filter out the rare activities from 20 users.
The correlation results are presented in Table 3. Generally speaking, most of the activities
show positive correlations. We find strong correlations for activities with complex and
diverse behavior patterns, such as “Phone in hand” and “Surf the Internet”. Thus, the dis-
crepancy of sensor readings can contribute to negative transfer. In contrast, the activities
with a constant pattern such as “Phone on table” show weak correlation since the sensor
features are similar across individuals. The consistent positive correlations among all
activities suggest that the similarity between the features of the source and target users
should be considered in the meta-transfer procedure.
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Table 3. Spearman correlations between MMD and change in performance.

Activity Corr. p-Value Activity Corr. p-Value

Surfing the Internet 0.658 <10−9 Standing 0.488 <10−27

Phone in Hand 0.570 <10−14 Walking 0.451 <10−18

Phone in Pocket 0.561 <10−8 Talking 0.424 <10−13

Watching Tv 0.556 <10−10 Drive 0.381 0.003
With Friends 0.532 <10−10 Outside 0.341 0.001
At School 0.525 <10−18 Phone on Table 0.315 <10−9

Eating 0.498 <10−20 Computer Work 0.293 <10−8

Indoors 0.493 <10−39 Home 0.290 <10−10

4.3.2. X-WRAP Helps Improve Transfer Performance

For starters, we evaluate the impact of meta-transfer learning on transfer performance
by applying X-WRAP to each of the above transfer mechanisms. For each approach, we
evaluated X-WRAP using the following procedure. For each activity c in the activity
hierarchy and for each user t in the dataset, we selected the other users as candidate sources
and then recorded the performance achieved by applying the transfer mechanism by itself
and that obtained by combining it together with X-WRAP. The performances averaged over
all activities are shown in Tables 4 and 5. Generally, X-WRAP works effectively on all of the
candidate transfer algorithms by selecting proper source users. Note that selective transfer
using CoDATS outperforms slightly transferring from all domains. We assume the reason is
CoDATS is considered a multi-source domain transfer itself. In addition, applying X-WRAP
to the DANN can achieve the highest performance. Thus, in the following experiments, we
apply the DANN as the transfer learning module.

To take one step further, the performances of all activities averaged over 30 test
users are reported in Table 6. Generally, X-WRAP outperforms transfers from all users
consistently for most of the activities with an average margin of 2.63%. X-WRAP works
extremely well on activities such as “With Friends”, “At Workplace”, and “Computer Work”
compared to “Transfer from All” and “Transfer at Random”. We infer that these activities
have large distances of sensory features across different individuals, and those source users
who are dissimilar to the target user can contribute to negative transfer. Therefore, X-WRAP
can improve the performance by filtering out useless users.

Table 4. Comparison between random transfer and transfer with and without X-WRAP on shallow
transfer learning.

TCA BDA EasyTL MEDA Coral

Transfer from all 81.24±0.16 89.12±0.35 81.08±0.23 85.98±0.11 89.87±0.06
Transfer at random 81.97±1.27 89.68±4.21 82.37±2.98 86.10±1.19 90.60±0.83

x-wrap 83.01 *±0.41 90.83 *±0.19 84.29 *±0.25 88.78 *±0.61 92.50 *±0.13

* indicates significance based on Student t-test (p < 0.05).

Table 5. Comparison between random transfer and transfer with and without X-WRAP on deep
transfer learning.

DANN DDNN HDCNN Triple-DARE CoDATS

Transfer from all 88.92±0.82 89.20±0.97 87.23±2.01 89.15±1.29 92.23±1.62
Transfer at random 88.97±3.81 89.01±3.74 84.01±9.06 89.26±4.29 90.22±2.10

x-wrap 92.62 *±0.59 91.48 *±0.67 88.23±4.27 91.27±0.83 92.25 *±1.02

* indicates significance based on Student t-test (p < 0.05).
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Table 6. Comparison of F1 scores achieved using DANN as baseline transfer learning algorithm for
each activity label.

Activity Transfer from All Transfer at Random X-WRAP

Bathing Shower 98.07±1.18 98.94±2.91 (+0.87) 98.99±1.18 (+0.92)
Bicycling 96.65±0.38 97.47±1.82 (+0.82) 97.51 *±0.42 (+0.86)
Cleaning 96.45±1.32 97.17±3.57 (+0.72) 97.59 *±0.85 (+1.15)
Computer Work 80.24±0.41 80.51±0.93 (+0.26) 87.48 *±0.61 (+7.23)
Cooking 96.56±0.82 96.37±1.82 (−0.19) 98.19±4.12 (+1.63)
Doing Laundry 98.82±2.01 99.34±3.86 (+0.52) 99.35±1.82 (+0.53)
Dressing 99.08±2.60 99.17±2.81 (+0.09) 98.56±1.92 (−0.51)
Grooming 97.66±1.82 98.17±3.18 (+0.51) 98.64±1.92 (+0.98)
Eating 91.52±0.31 92.69±0.98 (+1.17) 96.23 *±0.21 (+4.72)
In a Car 96.36±0.71 97.44±0.98 (+1.08) 97.65 *±0.52 (+1.3)
In a Meeting 96.10±0.91 95.29±1.62 (−0.81) 97.72 *±0.65 (+1.63)
In Class 96.39±0.31 95.52±0.84 (−0.87) 98.7 *±0.59 (+2.31)
At Home 60.75±0.46 61.59±0.90 (+0.84) 64.48 *±0.36 (+3.73)
At Main Workplace 81.98±0.68 81.14±1.83 (−0.83) 90.63 *±0.51 (+8.65)
Lying Down 76.90±0.27 76.8±0.49 (−0.1) 78.28 *±0.31 (+1.38)
On A Bus 98.20±0.81 98.87±1.64 (+0.67) 98.94 *±0.71 (+0.74)
Exercise 95.86±0.93 95.69±1.72 (−0.17) 97.17 *±0.84 (+1.31)
Indoor 56.89±0.62 57.44±0.85 (+0.55) 62.9 *±0.39 (+6.01)
Outside 93.79±1.09 95.01±2.90 (+1.22) 95.99 *±0.62 (+2.21)
Standing 84.59±0.82 86.43±0.90 (+1.84) 90.44 *±0.41 (+5.85)
Running 98.97±0.27 99.24±0.36 (+0.26) 99.58 *±0.18 (+0.61)
Shopping 97.75±0.42 98.39±0.26 (+0.65) 98.41 *±0.93 (+0.66)
Sleeping 79.89±0.31 79.49±0.61 (−0.4) 80.63 *±0.03 (+0.73)
Stairs Going Down 98.84±0.50 99.04±0.36 (+0.2) 99.84 *±0.17 (+1.0)
Stairs Going Up 99.20±0.12 99.37±0.63 (+0.17) 99.82 *±0.08 (+0.62)
Surfing the Internet 83.10±0.81 88.43±2.33 (+5.33) 89.11 *±1.03 (+6.01)
Talking 81.62±1.03 79.96±0.92 (−1.67) 88.75 *±0.61 (+7.12)
Toilet 97.04±0.89 98.63±1.58 (+1.58) 98.76 *±0.73 (+1.72)
Walking 90.16±0.51 90.99±0.42 (+0.83) 91.84 *±0.48 (+1.69)
Washing Dishes 97.90±2.01 98.29±3.61 (+0.38) 98.93±2.83 (+1.02)
Watching TV 89.19±1.23 92.42±1.97 (+3.23) 90.67 *±1.32 (+1.48)

Average 89.87 90.60 (+0.73) 92.50 (+2.63)
1. The results (mean and standard deviation) are averaged over 30 individuals, on different activities (unit: %),
and each activity is run 10 times to compute the mean and standard deviation. Transfer from all uses S = U ,
while transfer at random transfers from a randomly chosen subset of individuals S (of the same size as the set
used by X-WRAP, for fairness). 2. Bold indicates the best-in-row, the numbers in parentheses indicate relative
change compared to transfer from all, red highlights negative transfer, and blue highlights positive transfer larger
than 1%. 3. * indicates significance based on Student t-test (p < 0.05).

4.3.3. X-WRAPWorks Well for Data-Scarce Individuals

Considering that collecting labeled data for the target user is expensive in the real-
world scenario, in this experiment, we evaluate the performance of X-WRAP applied to
Coral when data for the target user are sparse. Specifically, we subsample the training data
for testing users and set the rate of training data from 1% to 80%. As shown in Figure 4,
X-WRAP can not only work well with large datasets but also on few data, especially on the
activity in Figure 4.
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Figure 4. Performance of X-WRAP for increasing sample rate for the target individual (from 1%
to 80%).

4.3.4. X-WRAPEnables Control in HAR System

In this final experiment, we study the possibility of empowering the system expert to
control X-WRAP. We simulate the situation when certain sensors (i.e., GPS, accelerometer,
watch accelerometer, and phone-state sensors) go awry by masking the data columns
collected by these sensors. Then, we reduce the weights of similarity to simulate the opera-
tion of manipulating the parameter of X-WRAP. As shown in Figure 5, the performance
of most activities can be improved after reducing the weight of similarity. On average,
the improvement in performance ranges from 0.6% to 1.2%. In addition, there is a no-
table improvement in some activities. For instance, the activity “With Co-worker” can be
improved more than 8% after changing the weights when the GPS sensor goes awry. In
addition, “exercise” can be improved by around 3% after manipulating the weights when
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the GPS sensor breaks. Thus, X-WRAP can empower the HAR system expert to obtain
control when sensors go awry.
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Figure 5. Performance of X-WRAP for reducing the weight of similarity when various sensors
are removed.

4.3.5. X-WRAPProvides a Reliable Explanation for the Partial Transfer

In this subsection, we inspect the differences of meta-features on an activity level
by visualizing the weights of meta-features in order to enhance the explainability of X-
WRAP. In Figure 6, we visualize the weights of meta-features for each activity. For better
visualization and comparison, we show four subplots, and the activities of each subplot
are sorted according to the weights of certain meta-features. By exploring activity-specific
weights of meta-features, some interesting insights into how the prediction of health was
delivered in different individuals can be analyzed. It can be observed that predictability
has the most positive contribution to source user selection, while similarity is the second
most useful meta-feature and frequency contributes the least.
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Figure 6. Weights of meta-features visualization.

In addition, we visualize the best parameter τ learned by X-WRAP, which indicates the
number of selected source individuals. In Figure 7, the best numbers of source individuals
for each activity are sorted. Generally, to achieve the best performance, the recognition of
most activities needs to transfer only 1 or 2 source individuals out of 30. This indicates that
there is sensory feature discrepancy between individuals for most of the activities and the
individuals who have large differences with the target user would contribute to negative
transfer. It can also be observed that those activities with simple and similar behavior
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patterns require more source individuals. For instance, the activity “Lying Down” needs to
transfer 18 users to achieve the best performance, and the recognition of “Sleeping” requires
13 individuals. Contrastingly, the activities that can be performed diversely require only
one similar user to transfer, such as “AT School” and “Outsides”.
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Figure 7. Parameter evaluation.

5. Discussion

X-WRAPis specifically designed to optimize the performance of a baseline transfer
algorithm so as to generalize across individuals. X-WRAP builds on an interpretable
linear function to rank the source domains and thus it enables stakeholders to understand
and control (i.e., debug) the HAR system. However, there are some limitations in this
work. Firstly, the importance of a feature is relative to the set of features that the model
can use and may not reflect the actual importance of that feature according to the data-
generating distribution. This is an intrinsic limitation of all statistical and causal explanation
techniques [55]. Secondly, it may be tempting to use non-linear scoring functions (e.g.,
a multi-layer perceptron with one hidden layer); however, doing so can substantially hinder
interpretability. Thirdly, training the X-WRAP with the DANN as the transfer module is
expensive because of the deep learning structure. Thus, it is necessary to propose a more
efficient way of training the model. As for the limitations caused by the dataset, using a
larger dataset with more diverse characteristics can avoid the bias caused by the dataset.
Finally, we point out that the interpretability could be further improved by encouraging
X-WRAP to acquire sparse weights using, e.g., a sparsifying prior [72,82], but we leave this
interesting direction to future work.

6. Conclusions

We introduced X-WRAP, a transfer learning approach for HAR that combines favorable
accuracy with explainability and controllability. X-WRAP leverages meta-learning to
acquire an interpretable source selection strategy that is (approximately) optimal for any
given baseline transfer learning algorithm. Our experiments show that X-WRAP often
improves the performance of the baseline while enabling human control.

Our approach can be extended in several directions. First and foremost, extending
X-WRAP to sequential prediction would bring performance gains and only require minimal
changes to the meta-learning procedure. Moreover, in many settings activities are organized
hierarchically, implying that distinct activities may be statistically and logically related
to each other. X-WRAP could be easily generalized to this setting, and the relations
between activities could be leveraged to design more fine-grained meta-features. Finally,
an interactive version of X-WRAP tailored for wearable personal assistants would also be
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useful, as it would enable the machine to acquire supervision from the target individual
that is most informative in terms of transfer learning.
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