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Abstract Emerging technologies, like self-driving cars, drones, and the
Internet-of-Things must not impose threats to people, neither due to
accidental failures (safety), nor due to malicious attacks (security). As
historically separated fields, safety and security are often analyzed in
isolation. They are, however, heavily intertwined: measures that increase
safety often decrease security and vice versa. Also, security vulnerab-
ilities often cause safety hazards, e.g. in autonomous cars. Therefore,
for effective decision-making, safety and security must be considered in
combination.
This paper discusses three major challenges that a successful integration
of safety and security faces: (1) The complex interaction between safety
and security (2) The lack of efficient algorithms to compute system-
level risk metrics (3) The lack of proper risk quantification methods.
We will point out several research directions to tackle these challenges,
exploiting novel combinations of mathematical game theory, stochastic
model checking, as well as the Bayesian, fuzzy, and Dempster-Schafer
frameworks for uncertainty reasoning. Finally, we report on early results
in these directions.

Keywords: safety, security, model-based, interaction, Fault Trees, At-
tack Trees, Fault Tree-Attack Tree Integration

1 Introduction

New technology comes with new risks: drones may drop on to people, self-driving
cars may get hacked, medical implants may leak in people’s body. Such risks
concern both accidental failures (safety) and malicious attacks (security). Here,
security refers to the property that allows the system to perform its mission
or critical functions despite risks posed by threats [74]. Safety, in contrast, is
the absence of risk of harm due to malfunctioning behavior of technological
systems [82].

Safety and security are heavily intertwined. Measures that increase safety
may decrease security and vice versa: the Internet-of-Things offers ample oppor-
tunities to monitor the safety of a power plant, but their many access points are
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notorious for enabling hackers to enter the system. Passwords secure patients’
medical data, but are a hindrance during emergencies. It is therefore widely ac-
knowledged, also by international risk standards [64, 103], that safety and secur-
ity must be analyzed in combination [9, 97]. The overarching challenge in safety
and security risk management is decision making: which risks are most threat-
ening, and which countermeasures are most (cost-)effective? Such decisions are
notoriously hard to take: it is well-known (e.g. from Nobel prize winner Daniel
Kahneman [71]) that people, have very poor intuitions for risks and probability.

Vision. To make effective decisions, risk management should be accountable.
1. systematic, so that no risks are overlooked;
2. transparent, so that experts can share and discuss their viewpoints;
3. objective, i.e. based on recorded facts and figures, rather than on (fallible)

intuitions.

Hurdles. Tough hurdles that have hindered the effective integration of safety
and security [3, 82] are their opposite perspectives on:

H1. User intention: safety concerns unintended mishaps, while security is about
malicious attacks.

H2. Dynamics: Whereas safety analysis is often static, developing design-time
solutions; security demands constant defence against new vulnerabilities.

H3. Risk quantification: Whereas safety analysis can fruitfully exploit historic
failure data, risk quantification for security is a major open problem. With
hackers continuously changing their targets and strategies, historic data is
of little value. Therefore, security decisions are often based on subjective
estimates.

The demanding challenge in safety-security co-analysis is to overarch these dia-
metrical viewpoints.

Challenges. To overcome these hurdles above and make decision making about
safety and security less ad hoc, and more systematic, transparent, and quantit-
ative, three challenges have to be solved.

– A systematic way to map safety and security risks, identifying how failures
and vulnerabilities propagate through the system and lead to system level
disruptions.

– Effective algorithms to compute system level risk safety and security metrics,
together with diagnostic algorithms that explain how such metrics arise, and
how one could improve these.

– Novel risk quantification methods. Reliable numbers are indispensable in de-
cision making. Since objective data is often not available, we need algorithms
that reason under uncertainty.
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The ERC project CAESAR. The ERC-funded project CAESAR picks up
the challenges above, exploring three novel directions:

1. Game-theoretic methods uniting the cooperative versus malicious user inten-
tion in safety versus security (H1). Our aim is to model the attacker versus
defender as two players in a stochastic game. We will focus on a time de-
pendent game (H2) that faithfully models the complex interaction between
safety and security aspects.

2. Stochastic model checking techniques to compute safety-security risk metrics.
Metrics are pivotal to prioritize risks and select effective countermeasures, as
they clarify how failures and attacks affect system-level performance. Since
risk is defined as a combination of likelihood and severity, metrics are sto-
chastic by nature. Apart from computing numbers, we will also elucidate
how these numbers arise.

3. Risk quantification methods that handle data uncertainty. Effective decision
making requires insight in the most frequent failures and attacks. Since ob-
jective data is scarce, security decisions are often based on subjective estim-
ates. We will combine objective and subjective probabilities, exploiting three
prominent frameworks for data uncertainty: Bayesian reasoning, fuzzy logic
and Dempster-Schafer theory. These explicate the underlying assumptions
and (dis)agreements about risks.

Contributions. This paper outlines the first results and the approach taken in
CAESAR: we present findings of a literature survey, where we compare existing
formalisms for safety-security co-analysis and identify several gaps. An important
outcome of our survey is that most of these formalisms are based on various
combinations of the popular formalisms of attack trees for security analysis and
fault trees for safety analysis. One important instance of a research gap is that in
fault trees and attack trees OR-gates are interpreted in a different manner. This
difference in interpretation is not considered in current analysis algorithms. To
obtain a unified framework for safety and security building on these mechanisms,
we thus have to unify the interpretation of such gates. Afterwards, we outline how
CAESAR aims to solve such gaps. We discuss how recent results in attack tree
analysis provides results for tree-shaped attack trees and fault trees as well as a
formal semantics of DAG-shaped attack trees and fault trees. In these results,
we exploit methods based on binary decision diagrams. Throughout the paper,
we indicate current results as well a research gaps.

Organization of the paper. Section 1 has provided an introduction to this
paper. Section 2 provides some background on the interaction between safety and
security and on the two formalisms attack trees and fault trees. Section 3 pre-
sents an overview of formalisms of safety-security co-analysis. Section 4 provides
a comparison between attack trees and fault trees, highlighting similarities and
differences and defining metrics. Section 5 discusses analysis algorithms for at-
tack and fault trees. Section 6 concludes the paper.
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2 Background

Attack trees and fault trees. Attack trees and fault trees are popular models
in dependability analysis, representing respectively how low-level attacks and
failures propagate through the system and lead to system-level disruptions. As
shown in Fig. 1, these are tree-like structures that culminate in a top level event
(TLE), which models a system-level failure or attack. The TLE is thus refined
via intermediate events, equipped with gates: the AND-gate indicates that all
children must fail (be attacked) in order for the gate to fail (be attacked). For
the OR-gate to fail (be attacked), at least one of its children need to fail (be
attacked). The leaves in a FT are called basic events (BEs) and model atomic
failures; the leaves in ATs model atomic attack steps, called basic attack steps
(BASs). Despite their names, FTs and ATs are directed acyclic graphs, since
intermediate events can share children.

Figure 1: Fault tree (left), attack tree (center) and their combination (right).
These represent respectively safety, security, and combined risks. In the FT, for
the intermediate event "locked in during fire" to happen, both a fire and the
door being locked have to occur, modelled through an AND-gate. In the AT,
for an attacker to breach the front door he/she needs to either walk through
an unlocked door or to force a locked door, modeled as an OR. On the right, a
possible combination of ATs and FTs in the attack fault trees formalism [126].

FTs and ATs enable numerous analysis methods [77]: Cut set analysis indic-
ates which combinations of BEs or BASs lead to the TLE. The set {Fire, Locked}
is a cut set in Figure 1. Quantitative analyses compute dependability metrics,
such as the system reliability, attack probabilities and costs. For example, by
equipping the BEs and BASs with probabilities, one can compute the likelihood
of a system level failure or attack to occur.

Both FTs and ATs are part of international standards [37] and have been used
to analyse numerous case studies [135, 50, 30]. FTs and ATs also feature some
differences: FTs often focus on probabilities, whereas ATs consider several other
attributes, like cost, effort and required skills. Further, FTs have been extended
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with repairs [113], and dynamic gates [66, 43]; ATs with defenses, and sequential
AND (SAND) gates [76, 50].

Section 4 presents a more formal treatment of fault trees and attack trees,
and in particular their different quantitative interpretation of the OR-gate. Their
comparison is summarized in Table 3.
Safety-security dependencies. One of the key challenges in safety-security
co-analysis is to model their interaction. The paper [82] has identified four safety-
security dependencies:

– Conditional dependency means that fulfillment of safety requirements con-
ditions security or vice-versa.

– Mutual reinforcement means that fulfillment of safety requirements or safety
measures contributes to security, or vice-versa, thereby enabling resource
optimization and cost reduction.

– Antagonism arises when safety and security requirements or measures, con-
sidered jointly, lead to conflicting situations.

– Independency means that there is no interaction between safety and security
properties.

Figure 1 shows a classical example of antagonism: the door needs to be locked
in order to prevent an attacker from entering the house (security requirement),
but it has to be unlocked to allow the owner to escape during a fire (safety re-
quirement). In this scenario, mutual reinforcement can be achieved by introdu-
cing a fire door: this contributes to safety by limiting the spread of an eventual
fire and to security by increasing the robustness of the door, thus making it
harder to breach. Conditional dependency is, in our view, always present: for
the lock to ensure security, it must function properly. E.g., it must not break
when locking door. Similarly, safety solutions must be secure and not be hacked:
it must not be possible to easily force the door open.

3 Formalisms for safety-security co-analysis: an overview

3.1 The formalisms

As a first step in the CAESAR project, we carried out a literature survey [?],
comparing the most prominent formalisms for safety-security co-analysis. Via a
systematic literature search [25], which also considered earlier surveys on this
topic [82, 100, 33], we have identified 10 important formalisms for model-based
safety-security co-analysis. These are summarized in Table 1.

A first remarkable result of our survey is that the majority of safety-security
formalisms combines attack trees (ATs) and fault trees (FTs). ATs and FTs are
well established formalisms, extensively used in industry and academia. As pre-
viously mentioned, they are similar nature, and model respectively how failures
and attacks propagate through a system. In that sense, combining attack trees
and fault trees is a natural step. We further divided these approaches into two
categories (plain combinations and extended combinations). A third category
comprises architectural formalisms.
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Formalism Ref. Year #Citations
Fault Tree/Attack Tree Integration (FT/AT) [49] 2009 170
Component Fault Trees (CFTs) [126] 2013 52
Attack-Fault Trees (AFTs) [83] 2017 56

State/Event Fault Trees (SEFTs) [110] 2013 25
Boolean Driven Markov Processes (BDMPs) [81] 2014 36
Attack Tree Bow-ties (ATBTs) [15] 2017 9

STAMP [52] 2017 120
SysML [104] 2011 72
Architectural Analysis and Design Language (AADL) [41] 2020 0
Bayesian Networks (BNs) [80] 2015 46

Table 1: Overview of safety-security formalisms. Citations from Google Scholar,
April 2021.

1. Plain combinations of attack trees and fault trees. These formalisms combine
attack trees and fault trees without adding additional constructs: fault tree/at-
tack trees (FT/AT) [49], which investigate how the a basic event of a FT can
be triggered by an attacker, refining these with ATs with the event in question
as goal, component fault trees (CFTs) [126] merge attack trees and fault trees
without any restrictions, Attack-Fault Trees (AFTs) [83] merge dynamic attack
trees and dynamic fault trees.

2. Extensions of attack trees-fault tree combinations. These merge attack trees,
fault trees with additional constructs: State/Event Fault Trees (SEFTs) [110]
exploit Petri nets to refine the basic attack steps in an attack tree and the basic
component failures in a fault tree. The Petri nets can for instance model that
the attack and failure behavior is different depending whether a door is open
or closed. Boolean Driven Markov Processes (BDMPs) [81] extend attack trees
and fault trees with both Petri nets and triggers. The latter model sequential
behaviour, where one fault or attack triggers another one. Finally, Attack Tree
Bow-ties (ATBTs) [15], extend bowties [99] with attack trees, where bowties
themselves combine fault trees with event trees.

3. Architectural formalisms and bayesian networks. Apart from combinations of
attack trees and fault trees, we identified a third category, containing formalisms
that take as a starting point the system architecture: The Systems-Theoretic
Accident Model and Processes (STAMP) [52], is an accident causality model,
rooted in the observation that system risks do not come from component fail-
ures, but rather from inadequate control or enforcement of safety and security
constraints. Systems-Theoretic Process Analysis then systematically identifies
the consequences of incorrect control and feedback actions, e.g., when these
happen too early, in the wrong order, or were maliciously inserted.

SysML-sec [111] extend the SysML modeling framework with safety and se-
curity requirements, which can be checked using model checkers. In particular,
SysML-sec supports the modelling of communication channels between processes
with the encryption methods and their complexity overhead.
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The Architectural Analysis and Design Language (AADL) [41] enables safety
analysis, via the AADL error model, and security analysis via the AADL LAMP
extension. In this way the same AADL model can be separately analyzed to
investigate safety and security properties.

Finally, albeit somewhat artificially, we also put Bayesian Networks (BNs)
for safety-security analysis in this category [80]. This model allows to represent
probabilistic dependencies between several variables via a directed acyclic graph.
BNs are used to model safety and security dependencies. The two root nodes
represent system safety and security. BNs can analyze which nodes influence
other nodes and how (conditional independence analysis) calculate reliability
metrics.

3.2 Findings

The analysis we performed highlighted some notable findings, summarized in
Table 2. For each analyzed formalism we highlight the dependencies it captures,
its modeling constructs, the analysis types it enables, case studies that were
performed deploying this formalism and possible tools.

Formalism Dependencies Modelling Analysis Application Tool

A CD MR I QL QT

FT/AT ∗ → x ATs refine FT leaves x x Chemical plant
CFTs ∗ x x x Merge ATs + FTs x x Cruise control
AFTs x x x x Merge dynamic ATs + FTs x x Pipeline, lock door UPPAAL

SEFTs x → x x FTs + Petri nets x x Tyre pressure, lock door ESSaRel
BDMPs x x x x Triggers, Petri nets x x Pipeline, lock door KB3, Figaro
ATBTs ∗ → x Bowties + FT/AT x x Pipeline, Stuxnet

STAMP x Process controller x Synchronous-islanding
SysML System components x Embedded systems TTool
AADL x System components + ports x Lock door Cheddar, Marzhin
BNs x x x x Conditional prob. x x Pipeline MSBNx

Table 2: Comparison of safety-security formalisms. A= Antagonism, CD= Con-
ditional Dependency, MR=Mutual reinforcement, I=Independence. ∗ = capable
when NOT-gate is supported. → = capable but only directional from security
to safety.

Finding #1: The majority of approaches combine attack trees and
fault trees. As stated, six out of the ten formalisms combine attack trees and
fault trees. This is not surprising, since FTs and ATs are well established model-
based formalisms, extensively used both in industry and academia.
Finding #2: No novel modeling constructs are introduced. Despite the
shown combinations and extensions, existing safety-security co-analysis do not
introduce novel modeling constructs to capture safety-security interactions. They
do merge existing safety and security formalisms, however they do not add new
operators. As such, they are suited to represent safety and security features in
one model, but do not seem to appropriately capture the interaction between
them.
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Finding #3: Safety-security interactions are still ill-understood. In
spite of the definitions provided in [82], we are convinced that safety-security
interactions can still be defined more thoroughly by adopting more rigour and
by focusing on requirements and events. In particular, it is not so clear to which
entities the safety-security interactions refer: do these concern safety-security
requirements, measures, or something else? Clarifying their definitions is a pre-
requisite for properly modeling safety-security interactions in a mathematical
formalism.
Finding #4: No novel metrics were proposed. Analyzed formalisms adopt
classic metrics, such as mean time to failure and attacker success probabilities.
However, none of them introduce new metrics to quantify safety-security de-
pendencies or to analyze trade-offs, e.g., through Pareto analysis. New metrics
and trade offs are paramount to understand the interaction between safety and
security aspects.
Finding #5: No large case studies were carried out. To the best of
our knowledge, no large case studies were carried out. The majority of analyzed
papers present small examples used to showcase the formalism in question. Some
notable exceptions are [81] and [83]: here, the medium-sized example of a pipeline
is presented. However for safety and security, when considered separately, large
case studies do exist [22].
Finding #6: Different formalisms model different safety-security inter-
actions. As shown in Table 2, only AFTs, BDMPs and BNs can unconditionally
model all four dependencies between safety and security. CFTs and SEFTs can
model them provided with extensions/with some limitations.

Research gaps.
• Realistic large-sized case studies concerning safety-security interactions are

still missing. Performing large-sized case study analysis would contribute
to further address additional gaps:

• It would clarify the nature of safety-security interactions, that are cur-
rently still ill-understood. Furthermore, it would help improve standard
definitions for safety-security interdependencies;

• From this understanding, novel metrics and novel modeling constructs for
safety-security co-analysis - that are still missing - could be developed.

4 Attack trees versus fault trees

We saw that most safety-security formalisms combine attack trees and fault trees.
This is a natural step, since attack trees and fault trees bear many similarities.
What is less known, is that they also feature a number of remarkable differences,
elaborated in [28]. In particular, the interpretation of the OR-gate is crucially
different in attack trees than in fault trees, and therefore their analysis should
not be mindlessly combined. Below, we present the most remarkable similarities
and differences, summarized in Table 3.
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4.1 Attack trees versus fault trees

It is no surprise that ATs and FTs are similar to each other, since ATs were
inspired by FTs. FTs were introduced in 1961 at Bell Labs to study a ballistic
missile [130, 117, 36]. Weiss introduced threat logic trees—the origin of ATs—
in 1991, and its “similarity. . . to fault trees suggests that graph-based security
modelling has its roots in safety modelling” [77].

Attack trees and fault trees come in various variants and extensions. Fol-
lowing [27], we categorize these along two axes. First, we distinguish between
static and dynamic trees. Static attack and fault trees are equipped with Boolean
gates. Dynamic trees come with additional gates to model time-dependent be-
havior. Second, we distinguish between tree-shaped and DAG-shaped trees. Trees
are relatively easy to analyse via a bottom up algorithm. This algorithms works
for all quantitative attributes (cost, time, probability) as long as they constitute
an attribute domain.

Attack trees Fault trees
Syntax
Leaves Basic attack steps (BAS) Basic events (BEs)
Non-leaves Subgoals Intermediate events (IEs)
Static gates AND, OR AND, OR, VOT
Dynamic gates SAND SPARE, FDEP, PAND
Other extensions Defenses Repairs, maintenance
Analysis
Qualitative (Minimal) attack vectors/scenarios (Minimal) cut sets
Attributes probability, cost, time, skill, impact probability
Metrics Min cost, time, skill Reliability, availablity,

Max impact, probability MTTF, MTBF
Semantics
Qualitative Structure function Structure function
Stochastic
AND(a,b) pa · pb pa · pb

OR(a,b) min(pa, pa) pa + pb − pa · pb

Table 3: Differences between attack and fault trees

4.2 The static case

Syntax. The basic variants, called static or standard fault and attack trees,
have the exact same syntax: trees or dags equipped with AND and OR gates.
Fault trees often contain a (k,m) voting gate, which fails if k out of the n inputs
fail; these can however be expressed in terms of AND and OR gates. We use the
word disruption tree (DT) for either an attack tree or a fault tree.

Formally, DTs are rooted dags with typed nodes, for which we consider
types T = {LEAF, OR, AND}. For Booleans we use B = {1, 0}. The edges of a
DT are given by a function ch that assigns to each node its (possibly empty)
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sequence of children. We use set notation for sequences, e.g. e ∈ (e1, . . . , em)
means ∃i. ei = e, and we denote the empty sequence by ε.

Definition 1. A disruption tree is a tuple T = (N, t, ch) where:
– N is a finite set of nodes;
– t : N → T gives the type of each node;
– ch : N → N∗ gives the sequence of children of a node.

Moreover, T satisfies the following constraints:
– (N,E) is a connected dag, where E =

{
(v, u) ∈ N2 | u ∈ ch(v)

}
;

– T has a unique root, denoted RT : ∃!RT ∈ N. ∀v ∈ N. RT 6∈ ch(v);
– leafT nodes are the leaves of T : ∀v ∈ N. t(v) = LEAF⇔ ch(v) = ε.

4.3 Semantics

Semantics pin down the mathematical meaning for attack and fault trees. The
semantics of both fault trees and attack trees is given in terms of their structure
function, indicating which sets of leaves cause the top level events to happen.

Thus, the structure function of a disruption tree T is a function fT : Bn → B.
Technically, a status vector v = 〈v1, . . . , vn〉 indicates for each leaf i whether it
was disrupted, i.e., vi = 1 if leaf i has failed or was attacked. Then fT (v) ∈ {0, 1}
indicates whether the whole system was disrupted. This function can be defined
recursively in the nodes of T : fT (v,A) tells whether A ⊆ leaf suffices to disrupt
node v ∈ N of T , where A encodes v as usual.

Definition 2. The structure function fT : N × 2leaf → B of a disruption tree
T is given by:

fT (v, A) =


1 if t(v) = OR and ∃u ∈ ch(v). fT (u,A) = 1,
1 if t(v) = AND and ∀u ∈ ch(v). fT (u,A) = 1,
1 if t(v) = LEAF and v ∈ A,
0 otherwise.

The structure function can be used to asses suites: a disruption suite S ⊆
2leaf represents all ways in which the system can be compromised. From those,
one is interested in disruptions A ∈ S that actually represent a threat. These
correspond to (minimal) cut sets in fault trees and attack scenarios in attack
trees. To find them, we let fT (A) .= fT (RT , A) and call disruption A successful if
fT (A) = 1, i.e. it makes the top-level of T succeed (resp. be attacked or failed).
If, moreover, no proper subset of A is successful then A is a minimal disruption.

It is well known that attack trees and fault trees are coherent [12], meaning
that adding attack steps/basic events preserves success: if A is causes the TLE
to happen, then so is A ∪ {a} for any a ∈ leaf. Thus, the suite of successful
disruptions of an DT is characterised by its minimal disruptions.

Definition 3. The semantics of a static DT T is its suite of minimal disrup-
tions: JT K =

{
A ⊆ 2leaf | fT (A) ∧ A is minimal

}
.
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4.4 Metrics for attack and fault trees

Dependability metrics quantify key performance indicators (kpis), that quantify
several dependability characteristics of a system. Such metrics serve several pur-
poses, e.g. allowing to compare different design alternatives w.r.t. the desired de-
pendability features; computing the effectiveness of measures; verifying whether
a solution meets its dependability requirements; etc.

Metrics for attack trees focus on a wide variety of attributes, such as the
cost of an attack, its time and, success probability. These can be conveniently
summarized via an attribute domain [93]. Metrics for fault trees focus on prob-
abilistic aspects, such as the system reliability (ie the probability that a system
fails within its mission time T ), the availability (i.e., the average percentage of
time that the system is up), mean time to failure, etc.
Attribute metrics. We define dependability metrics for DTs in three steps:
first an attribution α enrich the leaves with attributes, assigning a value to each
a ∈ leaf, then a dependability metric α̂ assigns a value to each disruption
scenario A; and finally the metric qα assigns a value to each disruption suite.

Example 1. Consider the AT in Figure 1b. The metric we study is the time re-
quired to execute a successful attack. Thus, the attribution α equips each AT leaf
with its attack time, setting e.g. α(Attacker forces door) = 5, α(Door unlocked) =
0 and α(Attacker tries door) = 2. If all attack steps are executed sequentially,
then the the time needed to execute an attack A = {a1, . . . an} is sum of the
attack times of the BASs:

α̂(a1, . . . an) =
n∑

i=1
α(ai)

Both for attackers and defenders of the system, it is relevant to consider the
shortest attack in an attack suite S:

qα({A1, . . . An}) = min{α̂(A1), . . . α̂(An)}

Other metrics give rise to other attribute definitions. For example, the success
probability of an attack is the product of the success probabilities of the BAS.
The probability of attack suite S is is the probability of the most successful
attack in S. The cost of an attack is the sum of the cost of the BASs, and the
cost of an attack suite is the minimum cost of its attacks. A formal definition is
as follows.

Definition 4. Given a DT and a set V of values:

1. an attribution α : leaf→ V assigns an attribute value α(a), or shortly an
attribute, to each leaf a;

2. a dependability metric over disruptions is a function α̂ : AT → V that as-
signs a value c to each disruption A;

3. a dependability metric over disruption suites is a function and to a function
qα : ST → V that assigns a value qα(S) to each disruption suite S.
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We write qα(T ) for qα(JT K), setting the metric of a DT to the metric of its minimal
disruption suites.

Remark 1. We choose the notation α̂ for metrics over disruptions, since ˆ re-
sembles M, and α̂(A) corresponds to the interpretation of the AND gate. Simil-
arly, qα resembles O, and corresponds to the OR gate, since qα(S) often chooses
the best disruption set among all A ∈ S.

Different metric interpretation of the OR-gate. It is important to realize
that the quantitative interpretation of the OR-gate is different in attack trees
than in fault trees. Fault trees assume that all components work in parallel.
Thus, component i fails with probability pi, the fault tree OR(C1, C2) fails with
probability p1 + p2 − p1 · p2. In attack trees, the OR-gate works in parallel. The
interpretation of the attack tree OR(C1, C2) is that the attacker executes either
C1 or C2. Since the attacker maximizes their success probability, the probability
on a successful attack in the tree OR(C1, C2) equals max(p1, p2).

This distinction is completely ignored in the analysis methods for all six
attack-fault combinations/extensions [49, 126, 83, 110, 81, 15]. In particular, the
analysis methods for computing probabilities may not account for the different
interpretation of the OR-gates related to safety or security events. This could
further lead to incorrect computations of dependability metrics e.g., probability
values.

5 Analysis algorithms for attack and fault trees

Numerous analysis methods for quantitative analysis of attack trees and fault
trees exist [5, 18, 38, 69, 78, 108, 118]. In this section, we give an overview of
two common algorithms for fault trees and attack trees.

5.1 Algorithms for tree-shaped DTs

We first provide the algorithms for tree-structured DTs, where every node in the
graph has a single parent. These can be analyzed via a bottom-up algorithm,
propagating the values from the bottom to the root of the tree. In order for this
procedure to work for all metrics, we combine the inputs of the AND-gate using
an operator M, and the inputs of the or gate via O. Then this procedure works
whenever the algebraic structure (V ,M,O) constitutes a semiring [93].

Next, we treat the computationally more complex DAG-structured DTs.
These can be analyzed by converting the DT to a binary decision diagram
(BDD). Again, this works if (V ,M,O) is a semiring [29].
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Input: Tree-structured DT T ,
node v from T ,
attribution α : BAST → V ,
semiring attribute domain
D = (V,O,M).

Output: Metric value α̌(T ) ∈ V
from node v downwards.

1 if t(v) = OR then
2 return

`
u∈ch(v) BU(T, u, α,D)

3 else if t(v) = AND then
4 return

a
u∈ch(v) BU(T, u, α,D)

5 else // t(v) = BAS
6 return α(v)

Algorithm 1: BU for tree DTs

Input: BDD BT from static DT T ,
node w from BT ,
attribution α : BAST → V ,
semiring attribute domain
D∗ = (V,O,M, 1O, 1M).

Output: Metric value α̌(T ) ∈ V from
node w downwards.

1 if Lab(w) = 0 then
2 return 1O
3 else if Lab(w) = 1 then
4 return 1M
5 else // non-terminal Lab(w) = v ∈ BAST

6 return BDD(BT ,Low(w), α,D∗) O(
BDD(BT ,High(w), α,D∗) M α(v)

)
Algorithm 2: BDD for static DAG DTs

Figure 2: Algo. 1 for
min. attack time.

Example 2. We illustrate the (straightforward) bot-
tom up algorithm via the attack tree in Figure 2. We
compute the time required to reach the top event,
with the same attribute values as before: Abbreviat-
ing f = Attacker forces door, u = Door unlocked and
t = Attacker tries door, we have α(f) = 5, α(u) = 0
and α(t) = 2. The bottom up computation first com-
putes the time required to achieve the subgoal "At-
tacker walks through door", abbreviated as w. Since
the attack time metric interprets the AND-gate as the
sum, we take M = + and obtain the value for w as
the sum of the metric values of its children "Attacker
forces door" and "Door unlocked", abbreviated u and
f respectively.

qα(w) = qα(f) M qα(u) = α(f) M α(u) = 0 + 2 = 2.

Similarly, we compute the time required for the TLA "Attacker breaches
door", abbreviated as b. Since the attack time metric interprets the OR-gate as
the minimum, we take O = min and obtain the value for b as the minimum of
the metric values of its children f and w:

qα(b) = qα(f) O qα(u) = min(α(f), α(u)) = min(5, 2) = 2.

The above procedure, formalized in Algo. 1, works whenever the structure
(V ,O,M) constitute an attribute domain. Note that this algorithm is linear in
the number of DT nodes.

Definition 5. Let V be a set:
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1. an attribute domain over V is a tuple D = (V ,O,M), whose disjunctive
operator O : V 2 → V , and conjunctive operator M : V 2 → V , are associative
and commutative;

2. the attribute domain is a semiring † if M distributes over O, i.e. ∀x, y, z ∈
V . x M (y O z) = (x M y) O (x M z);

3. let T be a static DT and α an attribution on V . The metric for T associated
to α and D is given by:

qα(T ) =
h

A∈JTK︸ ︷︷ ︸
qα

i

a∈A︸ ︷︷ ︸
α̂

α(a).

5.2 Algorithms for DAG-shaped DTs

Figure 3: DAG-shaped AT (left) and
its BDD (right).

DTs with shared subtrees cannot be ana-
lysed via a bottom-up procedure on their
DAG structure. This is a classical result
from fault tree analysis [?]. Intuitively, the
problem is that a visit to node v in any
bottom-up procedure that operates on the
DT structure can only aggregate inform-
ation on its descendants.

This is illustrated by the DAG-shaped
AT in Figure 3: We assign attack time to
the leaves: α(a) = 3, α(b) = 2 and α(c) =
4. Then the bottom up algorithm yields
the following results: for the OR-gates, we
take the minimum value between the chil-
dren, which both equal 2, and for the AND-gate we sum the values of the chil-
dren, resulting in 4. However, this computation does not take the sharing of b
into account. In fact, the shortest attack is to take the BAS b, which takes time
2.

As a matter of fact, computing metrics in a DAG-structured DT T is an
NP-complete problem. Various methods to analyse DAG-structured DTs have
been proposed: contributions over the last 15 years include [5, 18, 38, 69, 78].
We now detail our recent work on binary decision diagrams (BDDs) [29].
BDD algorithms. BDDs offer a very compact representation of Boolean func-
tions, and can therefore represent the structure function of a DT T : Each BDD
node v is labeled with a leaf a of T , and has two children: its left node vL (reached
via a dashed line) represents the structure function of T in case a has the value
0; its right child vR (reached via a solid line) represents the structure function
of T in case a evaluates to 1. The key insight in [29] is that the values of an
†Since we require M to be commutative, D is in fact a commutative semiring. Further,
rings often include a neutral element for disjunction and an absorbing element for
conjunction, but these are not needed in Def. 5.
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attribute domain can be computed recursively over this BDD, thereby avoiding
duplication of values as in Figure 3. The idea is as follows. The value for the BDD
terminal node labeled with 0 is set to the constant 1O ∈ V ; the BDD terminal
node labeled with 1 is set to 1M ∈ V . For an internal node v with children vL

and vR, we proceed as follows: When choosing vR, i.e. the basic event a occurs,
we extend the value computed at vR with the attribute value of a. We do so via
the M operator, since taking the right child corresponds to executing both a and
all leaves needed in α(vR). If a is not executed, then we do not incur the value
of α(a), and only take qα(vL). Now, the best disruption (i.e. attack or cut set) is
obtained by choosing the best option, by deploying the O operator: either one
does not execute a, incurring qα(vL), or executes a and incurs α(a)M qα(vR). This
yields the value qα(v) = qα(vL) O (α(a) M qα(vR)). This is illustrated in (Fig. 3,
in blue). As we can see, the TLE can fail either by the failure of b in 2 time
units or by the failure of a and c but not of b, in 7 time units. Algo. 2 shows the
pseudocode of this algorithm. The algorithm is linear in the size of the BDD,
but that the BDD size can be exponential in the size of the DT. In particular,
the BDD size heavily depends on the order for the variables. In practice good
heuristics are available, making BDD-computations efficient in practice.

5.3 Research gaps

Research gaps.
• An overarching formalism is still missing. Since attack trees and fault

trees interpret the OR-gate in a different manner, proper combinations
must feature two variants of the OR-gate: one that coincides with the AT-
interpretation and for the FT-variant.

• Another research gap concerns proper analysis of OR-gates. Analysis al-
gorithms must handle both the aforementioned variants of OR-gates. Sec-
tion 5 partially solves this problem for the case of tree-structured attack-
fault trees. Efficient analysis of DAG-structured attack-fault tree combin-
ations remains an open problem.

6 Conclusions

Conclusion. Safety and security interactions have been identified as important
topics in complex systems, and multiple modeling methods have been developed
in an attempt to account for their interactions. Our preliminary results show that
most of these methods are based on extending and/or combining existing safety
and security modeling methods. No specific metrics or novel modeling constructs
are introduced. The majority of considered formalisms combine/extend attack
trees and fault trees. As a consequential next step, we performed a thorough
analysis of similarities and differences between ATs and FTs. Their static variants
- SATs and SFTs - share the same syntax: we group them under the label of
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disruption trees (DTs), for which we provide shared semantics. Furthermore,
we show how to compute dependability metrics on DTs highlighting differences
between ATs and FTs when needed, e.g., the different interpretation of the OR-
gate. Finally, we propose analysis algorithms for ATs and FTs both for their
tree-shaped and DAG-shaped variants.

Future work. While addressing some of the research gaps, this work also high-
lights future challenges. With the growing need for safety-security co-analysis,
the urge of a better understanding of safety-security interactions arises:

Open problems.
• To foster this understanding, realistic large-sized case study analysis con-

cerning safety-security interactions should be performed.
• This would clarify the nature of safety-security interactions - that are still

ill-understood - and help improve standard definitions for safety-security
interdependencies.

• As mentioned, novel metrics and novel modeling constructs for safety-
security co-analysis - that are still missing - could then be developed,
alongisde an overarching formalism.

• This overarching formalism would need to account for two different OR-
gates: one that coincides with the AT-variant and one for the FT-variant.

• Furthermore, proper analysis of OR-gates has to be performed, as analysis
algorithms must handle both the aforementioned variants of OR-gates.
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