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Generating fine-grained surrogate temporal
networks
A. Longa 1,2, G. Cencetti1,3, S. Lehmann 4,5, A. Passerini 2 & B. Lepri 1✉

Temporal networks are essential for modeling and understanding time-dependent systems,

from social interactions to biological systems. However, real-world data to construct

meaningful temporal networks are expensive to collect or unshareable due to privacy con-

cerns. Generating arbitrarily large and anonymized synthetic graphs with the properties of

real-world networks, namely surrogate networks, is a potential way to bypass the problem.

However, it is not easy to build surrogate temporal networks which do not lack information

on the temporal and/or topological properties of the input network and their correlations.

Here, we propose a simple and efficient method that decomposes the input network into star-

like structures evolving in time, used in turn to generate a surrogate temporal network. The

model is compared with state-of-the-art models in terms of similarity of the generated

networks with the original ones, showing its effectiveness and its efficiency in terms of

execution time. The simplicity of the algorithm makes it interpretable, extendable and

scalable.
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In the past decade, temporal networks have driven break-
throughs in real world systems across biology, communica-
tions, social interactions, and mobility. One of the main

advantages of temporal networks resides in their ability to capture
complex dynamics such as, for instance, diffusion and
contagion1–10. Here we assume that a temporal network is
represented in discrete time with each time step corresponding to
a static graph, also referred to as a layer of the network. In order
to model realistic dynamics, it is often necessary to employ large
temporal networks, including a large number of nodes and long
time intervals, i.e. many temporal layers11–13. Many state-of-the-
art temporal datasets, however, are limited both in the number of
nodes and in the number of temporal layers6,14–17. When the
available data are insufficient – e.g. to simulate long-term effects
of epidemics – datasets are extended by simply repeating the same
temporal sequence multiple times, a procedure which is known to
result in biases15. An appealing solution to the problem of
insufficient data is to use surrogate temporal networks18. Surro-
gate temporal networks are synthetic datasets which mimic the
real-world temporal patterns relevant for a desired use-case. Real
networks are indeed known to be characterized by typical pat-
terns of interactions, different in different domains (social, bio-
logical, infrastructural, etc.), which can be often recognized and
delineated19,20 and the role of surrogate networks is to try to
reproduce them. The surrogates can be designed to involve the
desired number of nodes and number of temporal layers, where
the actual dynamics are known through smaller studies or via
available small datasets. Moreover, in the case of privacy sensitive
data, such as fine-grained records of social interactions21, surro-
gate data can be generated so as to be freely shareable. Over the
past years, a large number of successful algorithms for static
network generation have been proposed22,23; however, extending
these models to the dynamic regime has proven prohibitively
difficult, due to greatly increased complexity introduced by the
temporal dimension.

Indeed, it has become clear that temporal networks are char-
acterized by a highly non-trivial interplay between the instanta-
neous network topology at a given time (adjacency, degree
distribution, clustering, etc.) and the temporal activation of nodes
and links – how each connection changes over time (duration of
interactions, patterns by which new links appear and old ones
disappear, etc.). From the perspective of an individual node, these
two dimensions imply that models must take into account (i)
time, i.e. the history of what has occurred in the preceding
timesteps and (ii) instantaneous local topology, i.e. the current
activation of the neighboring nodes. The scientific literature is full
of studies focusing on the spatial dimension but unable to take
into account possible temporal correlations24–29, or – alter-
natively – works dedicated to model the behavior of individual
nodes in time (for example activity driven models7,30) which do
not aim to reproduce realistic network topologies31. There exist
models for link prediction that try to combine temporal and
topological dimensions by using small local temporal patterns32

or building over a backbone of significant links18. However, there
is currently a dearth of models for generating surrogate networks
from scratch that are able to take into account the two dimen-
sions simultaneously. The few works, that do this rely on tem-
poral motifs, like Dymond33 and STM (Structural Temporal
Modeling)34, or on deep learning like TagGen35. These three
models described in detail in Methods, represent the state-of-the-
art. All these models however suffer from some limitations and
some of the characteristics of the original networks are not always
well reproduced by the surrogate networks.

In this work we propose an alternative method that is parti-
cularly efficient in reproducing temporal networks characterized
by high temporal resolution and we test it with a wide range of

topological and dynamical measures, comparing it with the above
cited approaches.

The method that we propose is based on temporal motifs that
are defined with an egocentric perspective. Conceptually, we
collect the local interactions of each node for a small number of
time steps in a real network, the egocentric temporal neighbor-
hood, and we consider them as representative of that network of
interactions. We then use them as building blocks to generate a
new synthetic network.

A major advantage of the egocentric perspective (that ignores
connections among neighbors of an ego node) is that it allows us
to linearize the concept of node neighborhood sidestepping the
subgraph isomorphism problem36, that often represents a bot-
tleneck for the algorithms based on motifs. This makes the gen-
eration process fast and scalable both in terms of the number of
nodes and the number of temporal snapshots. Speed turns out to
be a fundamental feature, because the other existing methods rely
on algorithms of considerably higher complexity that prevent
those methods from scaling to even moderately-sized networks.

We test the method, named Egocentric Temporal Neighbor-
hood Generator (ETN-gen), on a range of different temporal
networks. In our testing we mainly use social interactions datasets
because of richness and availability of these datasets, but the
method is general and can be used to generate any kind of graph.
Our results show that the surrogate networks that we generate
reflect many of the original networks properties with a high
degree of accuracy, not just in terms of specific nodes features, as
one might anticipate from the local generating mechanism, but
with respect to general features, such as the number of interac-
tions, the number of interacting individuals in time and density of
their connections. We notice that the characteristics that are
better preserved coincide with the ones that depend on time and
describe the temporal behavior of the specific nodes, while global
features that deal with the spatial organization of the network and
which can be observed for instance when collapsing the temporal
layers (like the existence of communities) are more difficult to
reproduce with this method.

In general, this work allows us to investigate and set the spatio-
temporal scale of the minimal fundamental knowledge that is
necessary to capture many of the intrinsic characteristics that we
aim to reproduce in a temporal network. The possibility to gen-
erate surrogate networks that resemble an original one serves as a
test to demonstrate the method efficiency.

Results
We first briefly sketch the temporal graph generation process.
Then, we use our method to generate temporal graphs which
reproduce the temporal interaction patterns of a diverse set of
face-to-face interaction networks, including a hospital37, a
workplace38, and a high school39. See Methods for details on the
datasets. We evaluate the quality of the generated networks in
terms of interaction statistics, considering both static and tem-
poral network properties, highlighting the advantage of our
proposed method relative to the state-of-the-art. Finally, we show
how the approach can be used to expand existing temporal net-
works, both in time and in number of nodes, something which is
not possible using other methods for surrogate networks.

The neighborhood generation process. Figure 1 shows a gra-
phical representation of the generation process for a small tem-
poral network with three timesteps (see Methods for details). A
formalization, in terms of pseudo-code, of the generation process
is provided in Supplementary Note 1. Our generative algorithm
uses as building block the Egocentric Temporal Neighborhood40

of a node (Eft�k;¼ ;tg
i for node i), which represents the
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neighborhood of a node over a (short) temporal span k. For the
sake of compactness, we will refer to the Egocentric Temporal
Neighborhood as ETN or simply neighborhood in the rest of the
manuscript. Panel a of Fig. 1 shows the neighborhood of a specific
node, denoted as e, for a temporal span k= 2. Eft�k;¼ ;tg

e contains
e and its neighbors at each of k+ 1 consecutive timestamps,
discarding connections between the neighbors of e, and adding
(temporal) connections among instances of the same node at
different timestamps.

Having discarded links between neighbors, Eft�k;¼ ;tg
e can be

encoded as a binary string, where for each neighbor node and

timestamp 1 (resp. 0) indicates the presence (resp. absence) of a
link connecting to the node at that timestamp. Such neighbor-
hoods are extracted for all nodes and all timestamps by using a
sliding window over time. Notice that a string of 0 and 1 of length
k+ 1 is obtained for each neighbor of e but the identity of these
nodes is not stored and the final signature does not include any
identity labels, just the shape of interactions between neighbors
and e, as shown in the last step of panel A. This implies that the
same specific Eft�k;¼ ;tg

i can be found multiple times in the
network, referred to different nodes i, different neighbors, and
different t.

Fig. 1 Egocentric Temporal Neighborhood Generator (ETN-gen). Panel a shows how egocentric temporal neighborhood signatures are extracted and
computed. Panel b shows how to build the probability distribution of neighborhoods, necessary to generate a provisional layer. Panel c shows how to
generate a provisional layer, while panel d explains how to convert the provisional layer into a definitive one. Green nodes represent ego nodes, while
brown nodes depict neighboring nodes.
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Second (panel b), we build a local probability distribution
designed to enable simulation of activity in future time steps. This
distribution to extend the graph into future time steps is based on
past neighborhood activity. Specifically the local distribution
maps neighborhoods of length k− 1 (i.e. temporal neighborhoods
involving k steps, denoted as Prefix in the figure) to the set of all
possible extensions into the future (i.e. neighborhoods of
temporal depth k, involving k+ 1 steps), with associated
probabilities estimated by Maximum Likelihood over the whole
dataset. Basically frequencies of neighborhoods of temporal depth
k are first collected from the original temporal network, and then
normalized by dividing them by the sum of the frequencies of the
neighborhoods sharing the same k− 1 prefix. These are denoted
as Candidate extensions in the figure, where some examples of
possible extensions of the prefix are depicted, with their signature
and their probability.

Third (panel c), we build the surrogate network layer after
layer. Given the first k layers, we generate the subsequent one by
sampling future interactions for each node from the local
probability distribution described above, thus generating a
provisional temporal extension of each node. Notice that since
local probability distributions ignore node identities, future
interactions can only involve previously existing neighbors or
novel (still unknown) nodes (question mark in panel c). All the
interactions extracted for each node e are represented as directed
links from e to its desired neighbors (including stubs, represent-
ing links-to-be to unknown nodes). We thus obtain a provisional
directed temporal layer of the network.

Last (panel d), this provisional layer is finalized by combining
provisional temporal extensions of all nodes, resolving conflicts
and dangling links so as to preserve as much as possible each
node’s desired neighborhood. We consider a connection from
node i to node j in the provisional layer a request of i to be
connected to j. If this request is reciprocal the link is validated
and added to the new temporal layer (second step in panel d). All
remaining one-directional links are validated with probability
α= 1/2 (third step), to preserve the overall number of connec-
tions (an i− j connection can be requested by i or by j). Finally,
stubs are pairwise matched up at random (last step in panel d).
The procedure is repeated as many times as the desired length of
the final temporal graph, always considering the last k timestamps
as seeds to generate an additional one.

With the basic mechanisms in place, we take a step back and
explain how to initialize the process, i.e. how to obtain the first k
layers of the graph. The graph at the first timestamp is generated
using a configuration model41,42 reproducing the degree
distribution of the first layer of the original graph. The following
layers up to k are generated by applying the procedure in Fig. 1 to
the first layer with k0 ¼ 1, to the first two layers with k0 ¼ 2 and
so on until k0 ¼ k.

Temporal networks are often characterized by an intrinsic
periodicity1. This can be captured in our generation process by
collecting multiple local probability distributions from the
original graph, associated for instance to different days of the
week or times of the day. In the experiments in this paper we use
distinct week/weekends or daily local probability distributions,
depending on the length and variability of the input network.

The recursive procedure poses no limit to the temporal
extension of the network, allowing to generate as many temporal
layers as desired, even more than those existing in the original
network. Plus, the number of nodes too can be set independently
of the original network size (the section titled Dataset expansion
and extension).

Above, we have described the simplest possible strategy for
extending a layer into the future, but note that all random choices

in the link validation process could become preferential choices in
order to optimize a specific characteristic of the final network (see
Section Topological similarity evaluation).

Model evaluation. We now evaluate the quality of the generated
networks based on interaction statistics by comparing the net-
works to empirical data as well as networks generated by a suite of
state-of-the-art temporal network generation methods described
below. We evaluate performance in terms of individual layer
topology as well as temporal behavior.

The state-of-the-art methods we consider are: Dymond33, a
model which uses the distribution of 3-nodes structures in the
original graph (triads with one, two or three connections) as
building blocks to generate a new temporal network; STM
(Structural Temporal Modeling)34, a generative model based on
the distribution of small temporal motifs; and TagGen35, based on
deep learning, which uses a generative adversarial network to
generate temporal walks that are then combined into a temporal
graph. Dymond and STM only consider local information, while
TagGen is more global. These three methods were selected based
on the capacity to generate surrogate temporal (rather than static)
networks, their performance and the implementation availability.

It is important to underscore that these network generation
methods have not necessarily been developed with the aim of
generating large temporal networks with low computational cost
(see Methods, subsection time and complexity). This means that,
for example, they require much more training data, need denser
temporal snapshots, and therefore struggle to generate high
temporal resolution networks. In particular, both Dymond and
STM require a triad motif to appear in the snapshot. This
assumption is too strong for fine-grained snapshots, (i.e. a
snapshot every minute). On the other hand, since TagGen is
based on a deep learning technique, it requires a massive amount
of data in the training phase. Differently ETN-gen, thanks to the
linearization allowed by the egocentric perspective, can scale to
arbitrarily sized temporal networks. In the rest of the paper we
report experiments only on the three smallest face-to-face
interactions datasets, collected in the hospital37, in the
workplace38, and in one of the high schools39 respectively.
Results applying ETN-gen to larger datasets are reported in
Supplementary Note 2, 3 and 4 and compared only to TagGen
due to computational complexity of the other methods.

In Supplementary Note 5, we also show the comparison with
two other alternative models which are not specifically designed
for surrogate temporal network generation, namely ADN
(Activity-driven time varying Network Model)30, a popular
method to generate temporal networks, and CTGAN (Conditional
Tabular GAN)43, a machine learning approach to generate tables.

Figure 2 reports the total number of interactions for each
temporal snapshot (left) and the average number of nodes (right)
in the original network, ETN-gen and the three state-of-the-art
methods. The first clear finding from this figure is that ETN-gen
(orange curves) results in time-series that are remarkably similar
to those appearing in the original datasets (black curves). This is
true, not just in terms of generating a number of interactions
which is of the same order of magnitude as the original data
(notice that different datasets have different scales on the y-axis),
but also in terms of temporal patterns which are preserved with
considerable accuracy, including daily and weekly periodicity.

This result should not come as a surprise, as it is a direct
consequence of our network generation procedure. The local
probabilistic models store the probability distributions of the
neighborhoods appearing in the original graph and this indirectly
contains the key information about how nodes degree evolves in
time. Further, our seed-network has the same degree distribution
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as the original graph, which allows us to statistically preserve the
overall average number of interactions of the original graph.
Moreover, we manually input periodicity via different local
probabilistic models for different times and days of the week. We
highlight, however, that while using only a single local
probabilistic model would remove our ability to model periodic
changes in graph over time, we would still be able to model the
average number of interactions, as these are automatically
reproduced by the rest of the algorithm. A detailed analysis is
reported in the Supplementary Note 6.

From the comparison with the other methods we conclude that
ETN-gen is the only method able to preserve the number of
nodes, the order of magnitude of the amount of interactions and
the periodicity of the original network. The curves for the original
network and ETN-gen are also reported in Supplementary
Figure 11 for larger datasets to which the other methods cannot
be applied due to computational constraints (see Supplementary
Note 7).

Topological similarity evaluation. Having studied the temporal
development, we now turn to structural similarity between the
surrogate data and the original networks. We consider seventeen
metrics for structural similarity, divided between those that
depend on time, namely: number of connected components44,

density33, number of interacting individuals11, new
conversations11, hour S-metric45, hour modularity46,47, duration
of contacts11, closeness44, hour betweenness (weighted and
unweighted)44, hour clustering48,49, hour assortativity50, hour
average shortest path length1; and those that are measured on the
aggregated network (i.e. collapsing all the temporal layers in one
weighted network), which are: closeness44, betweenness (weighted
and unweighted)44, and edge strength11. All the measures are
collected as distributions, the temporal ones measured on each
singular temporal layer, and the aggregated ones as distributions
over the edges or the nodes. Among those measured on singular
temporal layers, the ones denoted with Hour are measured after
having increased the aggregation time of temporal layers to 1
hour. This was necessary to increase density and obtain measures
otherwise not meaningful. See Supplementary Note 8 for the
definition of all measures.

To compare distributions we rely, inspired by Zeno et al.33, on
the Kolmogorov–Smirnov distance51 to contrast generated and
original graphs. In the Supplementary Note 9, we also consider
alternative distance measures, namely the Jensen–Shannon
divergence52, the Kullback–Leibler divergence53, and the Earth
mover’s distance54, obtaining similar results (see Supplementary
Note 9). Distances between distributions are reported in Figs. 3
and 4, where we compare graphs obtained with ETN-gen with

Fig. 2 Number of interactions in time and number of nodes in the original and surrogate networks. Each color represents a different generation
algorithm, while the original graph is depicted in black. The insets depict the same curves with a different y-scale for visibility (the results obtained for
TagGen are only reported there). The bar plots represent the number of nodes for each generation algorithm with standard deviations in gray. Panels
a, b, and c correspond to Hospital, Workplace, and High school networks, respectively.
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those from the three alternative approaches. The networks
generated with ETN-gen (orange bars) show a high similarity to
the original networks for many of the measures and also a high
stability (small errorbars). The measures for which ETN-gen
performs best are those that, together with the number of
interactions (see Fig. 2), are preserved by construction: the
density and the number of interacting individuals in time. Here,
the similarity originates from the neighborhood probability
distributions, which ensure that from a statistical viewpoint, the
surrogate network has the same number of interactions and the
same number of individuals involved in an interaction. The same

holds for the number of times that a new link appears, as these
statistics are also stored in the neighborhood probability
distributions. Another characteristic that is well captured by the
egocentric temporal neighborhoods is the hub-like structure that
we can find in each static layer, which is measured by the
S-metric45.

Going beyond these trivial consequences of the mechanics of
the generating mechanisms, the method does well at preserving
the number of connected components. Indeed, the inset shows
how the ETN-gen networks exhibit a distribution of the number
of connected components that is similar to the original one, while

Fig. 3 Topological similarity according to time-dependent measures. Similarity of the original network with those generated by Egocentric Temporal
Neighborhood Generator (ETN-gen), Structural Temporal Modeling (STM), TagGen and DYnamic MOtif-NoDes (Dymond). Each bar reports the
Kolmogorov–Smirnov distance between the two distributions (original and generated) for a specific structural metric. The shorter is a bar the more similar
are the distributions. Standard deviations are obtained over 10 stochastic realizations of each network. In the top inset we report the distributions of the
number of connected components in real and in one instance of generated networks for the Workplace dataset. Panels a, b, and c correspond to Hospital,
Workplace, and High school networks, respectively.
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TagGen shows a rather larger distribution difference and the
other methods generate substantially fewer (Dymond) or more
(STM) connected components. This is a consequence of the fine-
grained temporal information that ETN-gen uses to generate the
networks. For the same reason, the hour modularity of ETN-gen
networks is always better or comparable with that of the other
generated networks. The distribution of durations is instead not
very well reproduced, but it is not bad with respect to the other
methods. In fact, considering a k-steps memory allows interac-
tions to have a continuity in time, differently from the case of
independent layers. We also test three different centrality
measures. Since centrality is a quantity that characterizes each
node at each time, we focus first on the temporal distributions, by
reporting for each temporal slot lasting one hour the nodes
average (see Fig. 3). Then we consider the spatial distribution,
reporting the centrality of each node computed on the time
aggregated network (see Fig. 4). We observe that when we
consider the temporal distribution we obtain a higher similarity
to the original networks, confirming the insight that ETN-gen is
more valid in reproducing fine-grained time features, while it
results more limited in reproducing the global spatial organiza-
tion of the networks.

Another property is the distribution of edge strengths in the
projected graph (see Fig. 4). Edge strength is simply the number
of times that each edge has appeared over the duration of the
graph. Here, we would not necessarily expect ETN-gen to do well
as the method will tend to create networks with quite
homogeneous distributions of strength. This is because it can
only rely on a memory of order k for edge repetitions, and does
not have a long-term memory. Hence all the heterogeneous
behaviors that we can find for instance in social datasets, where
individuals tend to establish relationships with specific nodes and
have repeated (but not necessarily consecutive) interactions with
them, are not preserved by ETN-gen. Nevertheless, we find that
for the considered datasets ETN-gen remains competitive with the
other methods.

If edge strength is partially affected by the absence of long
memory, the most important limitations of the egocentric
perspective are highlighted by clustering, degree assortativity
and average shortest path length, which are related to second-
order interactions (see Fig. 3). This is the cost we pay for having a

computationally efficient model applicable to arbitrary networks.
Notice that while this is a problem in theory, it seems not to affect
the workplace dataset, which is a substantially sparser network
with low clustering and short paths.

In general from the topological analysis we observe that the
features that are more preserved are the time-dependent ones (at
least those that do not depend on second-order interactions),
while the method is more limited in reproducing the time-
aggregated measures. This is valid for both local and global
features. An additional analysis on meso-scale structures is
reported in Supplementary Note 10. We observe that small static
motifs are well preserved by ETN-gen but not the network
communities (if present in the original graph). This is a common
limitation involving the other generation methods, too.

Dynamical similarity evaluation. Having tested our method
from the structural point of view, we now test the usefulness of
the surrogate networks in terms of dynamical processes unfolding
upon them. We study two dynamical models: random walk and a
spreading model.

Random walk. We simulate a temporal random walk11,55 on the
original and generated networks. We use the standard definition
of random walk extended to temporal networks: a random walker
starts from a randomly chosen node at generic time t and chooses
uniformly at random one of its neighbors, moving there. Then
the second step will take place on the following layer of
the temporal network, so the walker will randomly choose
between its neighbors at time t+ 1, and so on, assuming that
at each time corresponds one and only one jump. We compute
two metrics: coverage and mean first passage time (MFPT),
and compare distributions over different realizations between the
input and the generated temporal network using again the
Kolmogorov–Smirnov distance (see Supplementary Note 9 for
the definition of the metrics). We consider three different starting
points: t= 0, t= len(G)/2 (in the middle point of the temporal
extension of the graph), and the time corresponding to the first
peak of connections (when the number of connections reaches a
maximum).

In Fig. 5 we report the Kolmogorov–Smirnov distance for
coverage and MFPT. The horizontal dashed line shows the

Fig. 4 Topological similarity according to time-aggregated measures. Similarity of the original network with those generated by Egocentric Temporal
Neighborhood Generator (ETN-gen), Structural Temporal Modeling (STM), TagGen and DYnamic MOtif-NoDes (Dymond). Each bar reports the
Kolmogorov–Smirnov distance between the two distributions (original and generated) for a specific structural metric. The shorter is a bar the more similar
are the distributions. Standard deviations are obtained over 10 stochastic realizations of each network. Panels a, b, and c correspond to Hospital,
Workplace, and High school networks, respectively.
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stability of each measure on the original network. The black line
is obtained comparing different performances (average over
1000 simulations of random walk for coverage, and 5 times each
couple of nodes for mean first passage time) by means of the
Kolmogorov–Smirnov distance. It is worth noting that the
stability is different from zero, due to inherent variations within
the dynamic process. We observe that the dynamics on the ETN-
gen networks are similar to the ones on the original networks in
terms of mean first passage time, while in terms of coverage
performance they depend on the datasets and the starting point
but they always results competitive with the ones obtained with
the alternative methods.

In Supplementary Note 11 we also report the evolution in time
of the number of newly visited nodes. In general we can say that
the random walk process on the ETN-gen’s surrogate networks is
quite similar to the random walk on the original graph.

Spreading model. We simulate a Susceptible-Infectious-
Recovered (SIR) model56, with three possible values for the
probability of disease transmission (λ ∈ {0.25, 0.13, 0.01}), and
the recovery rate fixed at μ= 0.055. In each simulation the
infection starts at time tSTART by assigning to one random node
(selected among the connected ones at that time) the status of

infected. This initial node will infect its neighbors with prob-
ability λ and recover with probability μ. In the next time step we
consider the following temporal layer of the network and again
the infected nodes can infect their new neighbors or they can
recover. We repeat the procedure until the end of the temporal
layers or until all the infected nodes have recovered. Again, we
consider the three different starting points described above also
for the dynamics. We compute the reproduction value R0. Each
experiment was repeated 100 times and the distribution of R0

obtained on the original network is, again, compared with those
obtained on synthetic networks by means of the
Kolmogorov–Smirnov distance. Results are shown in Fig. 6,
where again a horizontal black line shows the stability of each
measure on the original network (computed averaging over
100 simulations). The evolution in time of the number of
infected nodes is reported in Supplementary Note 11. The
computation of R0 is affected by a large variability, both on ETN-
gen networks and on the other generated networks. This is
probably due to the limitations of all these methods, up to now
incapable to reproduce several meso-scale properties, like mod-
ularity, clustering, and temporal correlations (see Supplementary
Note 10 for an exploration of these features). Future works will
be devoted to fill these gaps.

Fig. 5 Dynamic similarity: random walk. Kolmogorov–Smirnov distance between original and generated distributions of coverage and mean first passage
time (MFPT) in the random walk model in each generated network for three different starting points: time 0, T/2 and on the first peak. Our method is
represented in orange, while the solid black line shows the stability (i.e. the same simulation on the original network). Panels a, b, and c correspond to
Hospital, Workplace, and High school networks, respectively.
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Dataset expansion and extension. In the previous sections we
have argued that ETN-gen creates realistic surrogate temporal
networks that mimic many aspects of real social dynamics (both
in terms of structure and in reproducing dynamical systems).

Now we ask the question: How can this tool be useful in
practice? A relevant application is represented by the possibility
of enlarging a given temporal dataset, both in time and in size. It
is indeed common that a specific analysis, in order to yield
reliable results, requires a larger population or a longer time than
those characterizing collected real data. In those cases we deal
with the long-standing problem of data augmentation, for which
we now argue that ETN-gen represents a promising solution. In
the following we show how our method can be used for
augmenting a temporal dataset, by adding temporal layers
(temporal extension), but also by increasing the size of the
network in terms of number of nodes (size expansion).

Temporal extension. The procedure, as explained in the previous
sections, implies calculating the neighborhood probability distribu-
tions, which somehow summarizes the interaction patterns in the
original graph. Each layer of the surrogate networks is built extracting
possible interactions for each node from these distributions, a process
that only depends on the last k layers. The temporal extension of a

dataset is therefore straightforward: the procedure of temporal layer
addition can be repeated possibly an infinite number of times, and we
stop when the desired number of time steps is reached. At the top of
Fig. 7 we show an example of temporal extension of the workplace
network. We have selected this dataset to highlight the ability of
ETN-gen to differentiate between week days and weekends. To
evaluate the quality of the extension, we assume to only know the
first week of the original two-week dataset (from the beginning to the
vertical line) and from this we estimate the neighborhood probability
distributions. We then use it to generate an ensemble of 10 surrogate
networks with a length of two weeks. The mean and standard
deviation of the number of interactions in the generated graph are
reported in orange. The number of interactions of the real graph are
reported in black dashed curves for the first week, and in black solid
curves for the following week. In other words, the method is trained
on the first week of the real dataset, several two-week networks are
generated, and they are eventually tested comparing them with the
two-weeks-long real dataset. Results show how the generated net-
works accurately recreate the original behavior beyond the timespan
that was used to estimate the local probability distributions.

Size expansion. Here we explore the fidelity of surrogate networks
with an increased number of nodes. As discussed above, it is

Fig. 6 Dynamic similarity: spreading model. Kolmogorov–Smirnov distance between original and generated distributions of R0 values on a Susceptible-
Infected-Recovered (SIR) model simulation in each generated network for three different starting points: time 0, T/2 and on the first peak. Our method is
represented in orange, while the solid black line shows the stability (i.e. the same simulation on the original network). Panels a, b, and c correspond to
Hospital, Workplace, and High school networks, respectively.
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possible to increase the size beyond that of the original network
within the ETN-gen framework because the number of nodes is
simply a parameter to set for the method. That said, however, the
concept of size expansion requires more attention than time
extension. Because, as we change the number of nodes in a net-
work we should also consider how the density of the graph and
the mean degree should change accordingly.

In the following we describe an experiment of data
augmentation, assuming that we only have access to incomplete
data. Incomplete data are obtained by randomly removing part
of the nodes from the original network. We use the high school
dataset which, with its 126 nodes, is the largest among our
datasets, and we consider two reduced versions, with 30% and
70% of the nodes respectively. When removing part of the
nodes from a network, we naturally remove also part of the
links (all those which were before connecting the eliminated
nodes to the remaining ones), we hence reduce the mean
degree. We should consider that an incomplete dataset has in
general a reduced mean degree with respect to the real-world
network, and that when we try to reconstruct the original
network via data augmentation we should increase the mean
degree too. See Methods for a quantification of the needed
increase.

Anyway, once the desired connectivity has been chosen, ETN-
gen allows us to generate a surrogate network with the desired
number of nodes and the desired degree, while maintaining the
pattern of egocentric interactions of the original dataset.

The results of the experiment on the high school dataset are shown
in panel a of Fig. 7. For each of the two reduced temporal networks
we generate a temporal network with 126 nodes to try to reconstruct

the original graph. We generate the initial snapshot using the
configuration model based on the degree distribution of the first
snapshot of the original (not reduced) graph. Then we build local
probability distributions only using information from the reduced
networks and use these local probability distributions to generate
surrogate expanded networks from them. The expanded networks
have the same number of nodes of the original one (126), enabling
direct comparison. The expedient that we use to augment the mean
degree from the reduced seed graph is to increase the parameter α of
the generation process, which is the probability to confirm the uni-
directional directed links in each provisional layer (set to 1/2 by
default). See Methods for the details on how to compute the correct
value of α given the original number of links and the desired density
of the generated graph.

Panel b of Fig. 7 the black solid curve represents the number of
interactions in the original network, the black dashed curve those
in the train network with 30% of the nodes and the black dotted
curve those in the one with 70% of the nodes. The corresponding
values for the generated networks with their standard deviations
are reported in orange and brown respectively. Again, we observe
the ability of our method to correctly replicate the pattern of
interaction in the original network, even if fed with a small
percentage of nodes from the original graph as seed.

Temporal extension and size expansion. We can also combine the
two techniques above to simultaneously increase the number of
nodes and the temporal snapshots. The results are shown in panel c
of Fig. 7 for the high school network, where the synthetic graph has
been obtained by only using 50% of the nodes and the first two days
of the original dataset (from the beginning to the vertical line), see the

Fig. 7 Temporal extension and node expansion. Panel a displays the temporal extension within the Workplace network. Panel b illustrates the size
expansion in the High school network. Panel c shows both the temporal extension and size expansion in the High school network. The mean and standard
deviation of our method are shown in orange (and brown). Black dashed (and dotted) lines show the original data used to train our model, while black solid
lines show the original data used to evaluate the quality of the generated network. In experiments involving temporal expansion, a vertical bar separates the
temporal range used to collect training data from the one where expansion is performed.
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black dashed curve. Also in this case, our method can expand an
input graph in both temporal and node size dimensions.

Discussion
In this manuscript we have proposed a model to generate sur-
rogate temporal networks, i.e. synthetic networks that realistically
capture many properties of real-world datasets, only making use
of the information contained in egocentric temporal neighbor-
hoods. Specifically, we generate temporal networks which accu-
rately reproduce structural characteristics like density, number of
interacting individuals, number of connected components, and
the possible presence of hubs. We observe that in both topological
and dynamical tests, the networks generated by this model are
generally closer to the original graph than those generated by
different literature models.

Moreover, this approach is able to generate temporal networks
that have different sizes than the original one. This property can
be used to increase the number of nodes and extend the network
in time, providing a powerful tool for data augmentation. These
results suggest that egocentric temporal neighborhoods, that we
use as building blocks, contain fundamental information about
the real networks they are extracted from.

By using ETN-gen surrogate networks it is possible to over-
come privacy issues, too. We did not explicitly prove that such
surrogate networks are impossible to de-anonymize, but we are
rather confident in the privacy-preserving properties of the
method. In fact, the interactions of one node in the surrogate are
designed based on the probability distribution of ETN pro-
longation, that is in its turn constructed based on the interactions
of all the nodes in the original graph (remembering that the
identity of nodes are not stored). Therefore there is not a match
node-to-node between surrogate and original graph. More pre-
cisely, the set of interactions of one node in the original graph is
distributed among multiple nodes in the surrogate graph. We
hence find it unlikely that real nodes can be reconstructed and
identified observing the surrogate network. However, this will be
matter of future investigations.

The other side of the coin is that this simplicity does not
capture certain topological features. This is the main limitation of
the model. For instance, disregarding second-order interactions
translates to a reduced ability to preserving clustering, degree
correlations and average shortest path length. This is the price to
pay to achieve scalability, sidestepping the graph isomorphism
problem in mining egocentric temporal neighborhoods. Just
getting rid of this simplifying assumption would imply a sub-
stantial blow-up in computational complexity (as suggested by
the runtime comparisons with alternative approaches reported in
Supplementary Table S1) and, as a consequence, a significant
reduction in the timespan of the temporal neighborhood that
could be dealt with. Trading second order interactions for longer
temporal neighborhoods allows us to reproduce most of the
relevant features of temporal networks while maintaining com-
putational efficiency. Nevertheless, further research is needed to
explore alternative trade-offs in the expressivity-efficiency scale.
Another limitation of the proposed approach is the absence of
long-term memory, which implies that the model cannot capture
long-term patterns of interaction (like e.g. daily or weekly
recurrences). These features are instead well captured by more
theoretical models of network generation that include aging57,58,
edge reinforcement59,60, or in general some mechanism for
memory such that contact duration and inter-event times are
heterogeneous and depend on the past interactions61,62. Memory
could also be used to generate a synthetic temporal network that
is organized in communities63,64. This is a characteristic often
occurring in social networks (particularly evident in schools), and

it cannot be captured by small local subnetworks like egocentric
temporal neighborhoods. However, long-term memory appears
in literature only in theoretical models for temporal network
generation, for which the goal is to obtain realistic networks by
recovering some particular characteristics of the observed
dynamics in real networks, but usually do not aim at recon-
structing specific real networks or environments. Indeed, the
alternative methods we evaluated in this manuscript also fail to
account for long-term memory. A model which instead is built to
obtain surrogate networks with an alternative approach is the one
proposed by Presigny et al.18. This model does not generate a new
network from scratch, it instead individuates a backbone of a real
temporal network, defined as the global subnetwork composed of
the most significant edges, and then reconstructs the missing
links. This is based on a conceptually different idea, assuming that
the important information concerns the global structure of the
network, while the method that we are proposing focuses on how
nodes behave given their interactions in last time steps. This is
indeed evident from Figs. 3 and 4: if ETN-gen is highly effective in
reproducing the evolution in time of singular node neighbor-
hoods, it fails in reproducing global network features that are not
reproducible by only using ego-node information. By recalling
two different long-standing traditions in network science, a socio-
centric versus an ego-centric perspective49, we can assert that if
the first one is covered, for what concerns surrogate temporal
networks, by the model of Presigny et al.18, our model places itself
in the remaining gap, filling the unexplored case of the ego-
centric perspective.

The insertion of memory or second order mechanisms,
implying the possibility to reconstruct an organization in groups
of nodes, and also to make the set of nodes change in time,
inserting new nodes or excluding old ones, are demanded to
future work, aiming at improving the current method for a fur-
ther advance in realistic reconstruction.

Methods
Data description and processing. The three temporal networks
studied in the main body of this work represent face-to-face
human interactions collected by the SocioPatterns project:

● Hospital37. The dataset has been collected in the geriatric
ward of a university hospital65 in Lyon, France, over four
days in December 2010. It contains interactions among
medical doctors, paramedical staff, administrative staff and
patients. Number of edges: 1139, number of nodes: 75.

● Workplace38. The dataset has been collected in 2013 at the
Institut National de Veille Sanitaire, a health research
institute near Paris, over two weeks. It contains interactions
among individuals from five departments. Number of
edges: 755, number of nodes: 92.

● High school39. The dataset has been collected in 2011 in
Lycée Thiers, Marseilles, France, over four days (Tuesday to
Friday). It contains interactions among 118 students and 8
teachers in three different high school classes. Number of
edges: 1709, number of nodes: 126.

As stated by the researchers involved in the aforementioned
studies, each study participant and staff member was asked to
sign an informed consent and each study received the approval by
the French national body responsible for ethics and privacy,
namely the “Commission Nationale de l’Informatique et des
Libertés” (CNIL, http://www.cnil.fr). More details can be found in
the publications describing the studies and the collected data37–39.

Kolmogorov–Smirnov distance. The (two-sample)
Kolmogorov–Smirnov test51 is a non-parametric test used to test
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how likely it is that two sets of samples come from the same
(unknown) distribution. The test uses the following statistic:

DKS ¼ max
x

jF1ðxÞ � F2ðxÞj

Where F1(x) and F2(x) are the empirical cumulative distributions
of the two sets.While originally conceived for hypothesis testing,
the KS statistic has often been used to measure the distance
between empirical cumulative distributions33,66–70. We follow
this common practise in this manuscript.

Neighborhood generation process: parameters. The gap
between two consecutive temporal snapshots has been set to
5 minutes for face-to-face interaction networks and 10 minutes
for SMS and phone call networks (in Supplementary Note 2 and
3). The time horizon k defining the egocentric temporal neigh-
borhood has been set to k= 2 in all experiments, which is the
minimal horizon that preserves some temporal correlation. In
Supplementary Note 12 we motivate our decision in using k= 2
and we also show the results for k= 3 in Supplementary Note 13.
Local probability models have a granularity of 1 hour and a
periodicity of 1 day (i.e. between 8 and 9 am in each day we use
the same probability model, and the same holds for all 1 hour
slots in the day), for all networks but the ones including week-
ends, namely Workplace and High school 2, for which the peri-
odicity is set to 1 week.

Space and time complexity. The time complexity required by our
method is Oðn �mÞ, where n is the number of nodes in the
temporal graph and m is the number of timestamps. The space
complexity is constant with respect to both network size and
number of timestamps. See Supplementary Note 14.

Size expansion: preserving interaction density. The seed graphs
for the size expansion experiment are generated by artificially
reducing the original dataset (so that the original graph can be
used as ground-truth). In this reduction process, whenever a node
is dropped all its connections are dropped too. As a consequence,
the resulting seed graph has a reduced mean degree with respect
to the original one, and the expanded graph generated from it
would inherit this reduced mean degree. This problem can be
avoided by adjusting the α parameter of the generation process
(the probability to confirm the unidirectional links in each pro-
visional layer, set to 1/2 by default). In particular, we would need
to set α ¼ 1� 1

2
L̂
L, where L̂ is the average number of links in the

seed graph and L the desired number of links in the generated
graph. However, L is unknown and needs to be estimated.
Something that we know, and that we want in this case to pre-
serve, is the density, defined as d ¼ L̂

N̂�ðN̂�1Þ=2 i.e. the fraction

between the number of links in the seed graph and all possible
links (N̂ is the number of nodes in the seed graph). If we assume a
linear growth with respect to the number of all possible edges in
the network, we also have: d ¼ L

N�ðN�1Þ=2, with N as the number of
nodes of the generated graph (that we can choose). Combining
these two equations we obtain an estimate for L, from which we

obtain: α ¼ 1� ^N�ðN̂�1Þ
N�ðN�1Þ � 12. Hence, when we consider a seed with

only 30% of the nodes of the high school dataset (so N= 126 and
N̂ ¼ 38) we should use α= 0.96 to reproduce the same density.
While if we start with 50% and 70% of the nodes (i.e. N̂ ¼ 63 and
N̂ ¼ 88) in the seed we should use respectively α= 0.88 and 0.76.

Alternatives approaches for generating networks. Dymond33

builds a temporal network considering (i) the dynamics of

temporal motifs in the graph and (ii) the roles nodes play in
motifs (e.g. in a wedge – two links connecting three nodes – one
node plays the hub, while the remaining two act as spokes). The
method has no parameters to be set. STM34 extracts counts for a
predefined library of (non-egocentric) temporal motifs from the
original network, and turns them into generation probabilities
from which to create the temporal network. In particular, we use
the parameterized version of STM and we set the parameter
α= 0.6 as recommended by34. TagGen35 is a neural-network
based approach that extracts temporal random walks from the
original graph and feeds them to an assembling module for
generating temporal networks. TagGen has been trained with the
parameters used in the original paper, namely 30 epochs with a
batch size of 64 and stochastic gradient descent with a learning
rate of 0.001.

Data availability
The data used to support this study are publicly available at the following links. • The
SocioPatterns data37–39 at http://www.sociopatterns.org • The CNS data17 at https://doi.
org/10.6084/m9.figshare.7267433 • The Friends and Family data16 at http://
realitycommons.media.mit.edu/friendsdataset.html.

Code availability
The codes used for the generation of temporal network are publicly available at the
following links. • ETN-gen: https://github.com/AntonioLonga/ETNgen • STM: https://
github.com/temporal-graphs/STM • TagGen: https://github.com/davidchouzdw/TagGen
• Dymond: https://github.com/zeno129/DYMOND.
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