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Abstract
Data from the EURO-CORDEX ensemble of regional climate model simulations and the CORDEX-Adjust dataset were 
evaluated over the European Alps using multiple gridded observational datasets. Biases, which are here defined as the dif-
ference between models and observations, were assessed as a function of the elevation for different climate indices that span 
average and extreme conditions. Moreover, we assessed the impact of different observational datasets on the evaluation, 
including E-OBS, APGD, and high-resolution national datasets. Furthermore, we assessed the bi-variate dependency of 
temperature and precipitation biases, their temporal evolution, and the impact of different bias adjustment methods and bias 
adjustment reference datasets. Biases in seasonal temperature, seasonal precipitation, and wet-day frequency were found to 
increase with elevation. Differences in temporal trends between RCMs and observations caused a temporal dependency of 
biases, which could be removed by detrending both observations and RCMs. The choice of the reference observation datasets 
used for bias adjustment turned out to be more relevant than the choice of the bias adjustment method itself. Consequently, 
climate change assessments in mountain regions need to pay particular attention to the choice of observational dataset and, 
furthermore, to the elevation dependence of biases and the increasing observational uncertainty with elevation in order to 
provide robust information on future climate.

Keywords CORDEX-Adjust · Climate change · Model evaluation · Gridded observations · Complex orography · Alpine 
region

1 Introduction

Mountain areas are highly sensitive to climate change (Hock 
et al 2019). They respond faster and also more intensely to 
increasing greenhouse gas concentrations in comparison to 
the global mean and to other regions (Rangwala and Miller 
2012; Pepin et al 2015) due to an elevation-dependency of 
various physical mechanisms (Palazzi et al 2019; Pepin et al 
2022). Existing studies mostly focus on changes in tem-
perature and precipitation patterns with elevation (Kuhn 

and Olefs 2020; Tudoroiu et al 2016; Pepin et al 2022) and 
reductions of snow cover (Kotlarski et al 2022; Matiu et al 
2021). However, many other processes also depend on eleva-
tion, such as atmospheric and soil moisture, winds, biodi-
versity, aerosol species and concentration, surface albedo, 
shortwave and longwave radiation components, and surface 
heat fluxes (Napoli et al 2023). Indeed, climate change has 
significant impacts on ecosystem health and biodiversity, 
economy, and society in mountain regions (Adler et  al 
2022). Additionally, since mountains regulate streamflow 
through orographic lifting of moist airflows, natural storage 
in snowpacks, glaciers, and groundwater, they have signifi-
cant impacts on manifold larger areas downstream (Immer-
zeel et al 2020; Viviroli et al 2007).

The climate in mountain regions is driven mainly by the 
interaction between large-scale atmospheric flows and local 
topography (Sandu et al 2019). At the larger scale, elevation 
exerts the main influence on climate, followed by exposi-
tion and slope. Elevation modulates many meteorologi-
cal variables such as near-surface temperature (expressed 

 * Michael Matiu 
 michael.matiu@unitn.it

1 Department of Civil, Environmental and Mechanical 
Engineering, University of Trento, Via Mesiano n. 77, 
38123 Trento, TN, Italy

2 Center Agriculture Food Environment (C3A), Via Mach n. 1, 
38010 San Michele all’Adige, TN, Italy

3 Federal Office of Meteorology and Climatology, MeteoSwiss, 
Operation Center 1, 8058 Zurich-Airport, Switzerland

http://orcid.org/0000-0001-5289-0592
http://crossmark.crossref.org/dialog/?doi=10.1007/s00382-024-07376-y&domain=pdf


9014 M. Matiu et al.

as temperature lapse rates) and orographic precipitation 
(Daly et al 2008), while exposition and slope affect mostly 
incoming radiation and wind flows, and hence orographic 
enhancement of precipitation upstream to mountain ranges 
and shadowing downstream.

The quantitative assessment of future climate scenarios 
relies on numerical climate models (Smiatek et al 2016; 
Coppola et al 2021). In mountain regions, characterized 
by complex topography, a high spatial resolution is neces-
sary to adequately represent the relevant physical processes 
(Ban et al 2021; Pieri et al 2015; Berthou et al 2020). Con-
sequently, Regional Climate Models (RCMs) are driven 
by output from General Circulation Models (GCMs) in 
order to obtain a spatial resolution suitable for describing 
the atmospheric dynamics affected by complex terrain. In 
the European Alps, recent assessments relied on the large 
EURO-CORDEX (the European branch of the World Cli-
mate Research Programme’s Coordinated Regional Cli-
mate Downscaling Experiment) ensemble (Kotlarski et al 
2022; Jacob et al 2014, 2020), which is available over whole 
Europe. Other single model runs are also available at higher 
resolutions (Warscher et al 2019), some of them at convec-
tion-permitting scale (Ban et al 2014).

Although RCMs reproduce large-scale climate features 
well, they can be affected by significant bias at the local 
scale. For instance, in Europe average temperature biases 
are generally below 1.5 ◦ C and precipitation biases below 
40% for reanalysis driven RCMs in the period 1989–2008 
(Kotlarski et al 2014). Vautard et al (2021) evaluated GCM-
driven RCMs for the period 1981–2010 over Europe using 
E-OBS as reference, and additional high-resolution pre-
cipitation datasets for subregions, including APGD for 
the Alps. They found that RCMs in Europe were generally 
too cold and too wet, model performance depended on the 
adopted GCM-RCM combination and none was optimal 
under all aspects. For the Alps, Smiatek et al (2016) per-
formed an evaluation of a subset of the currently available 
EURO-CORDEX ensemble at 0.11◦ resolution and found 
an overall cold bias in the range of −0.8 to −1.9 ◦ C and a 
wet bias between 14.8 and 41.6%. Kilometre-scale simu-
lations have been found to generally reduce biases in all 
variables because the topography is better resolved than in 
larger scale models (Lucas-Picher et al 2021). Also, enabling 
convection almost eliminates heavy precipitation biases in 
summer (Ban et al 2021). Yet, kilometre-scale simulations 
are only available for short time ranges, usually a maximum 
of 10 years, and do not cover all emission scenarios that 
are, for instance, available in EURO-CORDEX. Moreover, 
besides biases in climatological means, RCMs also show 
some indication of diverging climate trends with respect to 
their driving GCMs for the Alpine region (Boé et al 2020; 
Schumacher et al 2023; Sørland et al 2018; Schwingshackl 
et al 2019).

Moreover, limitations in the availability and accuracy of 
observational data hampers bias evaluation. This is often a 
serious drawback, especially for precipitation, where differ-
ences in the observational datasets can be in the range of the 
bias spread in an RCM ensemble (Prein and Gobiet 2017; 
Kotlarski et al 2019). In mountainous terrain, an additional 
challenge is the operation and maintenance of meteorologi-
cal stations because of harsh environmental conditions and 
lack of permanent access which hinders the setup of dense 
observational networks suitable to capture the high spatial 
variability of mountain climates. Furthermore, precipitation 
measurements in mountains suffer from high uncertainties 
because of wind-driven undercatch of precipitation (Førland 
and Hanssen-Bauer 2000), or distorted observations of solid 
precipitation in the absence of heated rain gauges.

Biases negatively impact estimates of future changes in 
heat indices (Iturbide et al 2022), which are usually defined 
on the basis of temperature thresholds (e.g., 20 ◦ C mini-
mum temperature for tropical nights), and, consequently, 
biases can significantly alter the estimated numbers. Fur-
thermore, biases also affect impact models used in hydrol-
ogy and energy simulations. These require unbiased data and 
additionally often with high spatial and temporal resolutions 
(Maraun et al 2010). Bias adjustment relies on some form 
of observational reference, for example, from in-situ sta-
tions, spatial analyses or reanalysis. Simple and frequently 
used methods consist of the application of parametric and 
non-parametric adjustments to match modeled and observed 
variables (Gudmundsson et al 2012; Gutiérrez et al 2019).

Previous assessments of biases in RCMs at the European 
scale focused on spatial patterns of several different indices, 
with elevation dependence rarely taken into consideration 
(Vautard et al 2021). Dedicated studies for the European 
Alps looked explicitly into the elevation dependency, but 
rarely considered other indices beyond the mean (Kotlarski 
et al 2022; Gobiet et al 2014; Monteiro and Morin 2023). 
Furthermore, uncertainty in the observational datasets was 
seldom considered in the analysis (Herrera et al 2020; Prein 
and Gobiet 2017; Kotlarski et al 2019).

In this study we address these gaps by analysing biases in 
the full EURO-CORDEX ensemble of RCMs as available in 
2023 over the European Alps, based on a variety of obser-
vational reference data products, and focusing on elevation 
dependence and indices that cover mean and extreme condi-
tions. In addition, we evaluate the impact of different bias 
adjustment methods and datasets available under CORDEX-
Adjust, which is the bias-adjusted EURO-CORDEX ensem-
ble available via the Earth System Grid Federation (ESGF) 
archive and described in more detail in Sect. 2.3. The spe-
cific goals of this study are:

• assessing observational uncertainty in the European Alps 
by inter-comparing a range of observational datasets;
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• understanding how climate model biases depend on ele-
vation, season, climate indices, and climate model chain 
(GCM and RCM);

• identifying how well RCMs capture temporal and spatial 
(horizontal and vertical) variability of climatic indices;

• determining the impact of parametric and non-parametric 
bias adjustment methods and of different bias adjustment 
reference datasets (as available in CORDEX-Adjust) on 
the elevation-dependent bias structure.

The paper is organized as follows. Data and methods are 
presented in Sect. 2. Results are presented and discussed in 
Sect. 3: A comparison of different observational datasets for 
the Alpine region is presented in Sect. 3.1; this is followed 
by the evaluation of RCM biases (Sect. 3.2), focusing on ele-
vation patterns and different indices; then, the impact of bias 
adjustment methods and datasets is presented (Sect. 3.3). 
Finally, conclusions are drawn in Sect. 4. In order to reduce 
the amount of figures in the main manuscript, preference was 
given to the summer and winter seasons. Results for spring 
and fall are available in the supplementary material.

2  Data and methods

In the following, we use the term bias to denote the differ-
ence between model and observation, but we acknowledge 
that the term may be inaccurate, particularly in mountain 
environments, given that it implicitly assumes that observa-
tions are error-free.

2.1  Study area

The study area is the Greater Alpine Region (GAR, Fig. 1) 
stretching approximately 1200 km from West to East across 
several countries in central-western Europe. The dominat-
ing character of this area is the presence of deeply incised 
valleys within high mountain chains with the highest peak 
above 4800 m a.s.l.. The major climatic influences are the 
west flows of moist air from the Atlantic, the European con-
tinental flows with cold air from northern Europe and the 
continental air masses from the eastern side, and the Medi-
terranean Sea, usually associated with warmer air advection 
northward (Auer et al 2007).

2.2  Raw model data

In the present study we used the ensemble of GCM-driven 
EURO-CORDEX RCMs downloaded from ESGF servers in 
January 2023. Since high resolutions are required for moun-
tain terrain, we used only the EUR-11 simulations, which 
have a horizontal spacing of 0.11◦ , equivalent to approx-
imately 12 km grid cell width. The main analysis of the 

temperature and precipitation indices was performed for the 
30-year period 1971–2000.

Additionally, we tested the time-dependence of biases by 
analysing 20-year moving window averages between 1971 
and 2008 for precipitation and between 1971 and 2022 for 
temperature. Note that we did not perform formal tests of 
stationarity, but rather performed a descriptive analysis of 
the time-dependence of biases. For this, the historical run of 
the RCMs, which ends in 2005, was merged with the RCP8.5 
(representative concentration pathway) scenario, which 
starts 2006. Consequently, we used the years 1971–2005 
from the historical run and 2006–2022 from RCP8.5. 
Besides raw biases, we also calculated detrended biases with 
a linear model applied to the full series by means of ordinary 
least-squares and afterwards calculating the 20-year moving 
window averages (see Sect. 2.6).

The list of RCMs used in the present study is shown in 
Table 1. We used daily data for precipitation (pr), mean 
temperature (tas), minimum temperature (tasmin), and 
maximum temperature (tasmax). The ensemble size was 
52/52/46/46 GCM-RCM combinations for pr/tas/tasmin/
tasmax, respectively.

2.3  Bias adjusted model data

In addition to the raw simulations, we analysed the impact 
of bias adjustment as available in CORDEX-Adjust (Dosio 
2016; Bartók et al 2019), which includes a subset of the 
models (Table 2). CORDEX-Adjust is mainly a search 
category (facet) on the ESGF servers. Since many users 
require or want bias-adjusted climate model output for 
impact studies, the CORDEX community decided to 
provide unified access to such data using CORDEX data 
standards (see https:// is- enes- data. github. io/, last accessed 
16 May 2024). As for CORDEX, CORDEX-Adjust was the 

Fig. 1  Elevation map of the study area. The source is the European 
Digital Elevation Model (EU-DEM), version 1.1, which has been 
aggregated to 1  km. The black rectangle is the area for which the 
regional climate model data was cropped

https://is-enes-data.github.io/
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result of a community effort, supported by various interna-
tional projects (e.g., CLIPC, IS-ENES2). It builded upon 
the long-term bias adjustment expertise that various cli-
mate modeling centers implemented with reference to mul-
tiple bias adjustment routines using different observational 
datasets as reference (gridded observations or reanalysis).

Within CORDEX-Adjust, the following datasets were 
used as reference for the bias adjustment:

• WFDEI (WATCH Forcing Data methodology applied to 
ERA-Interim) is the post-processed and bias-corrected 
ERA-Interim dataset produced using the WATCH 
(Water and Global Change) methodology (see Weedon 
et al (2014) for the WFDEI and Weedon et al (2011) 

for the original WATCH). The dataset was produced at 
a horizontal spacing of 0.44◦ over the entire globe.

• E-OBS is a spatial analysis of in-situ observations over 
the European land domain (Haylock et al 2008) with 
a horizontal spacing of 0.1◦ , managed and regularly 
updated by the Royal Netherlands Meteorological Insti-
tute (KNMI). In CORDEX-Adjust, E-OBS version 10 
was used, but here we used version 26 as reference (see 
below), available since January 2023. Note that version 
10 is not publicly available anymore. Moreover, ver-
sion updates not only extend into more recent periods, 
but the full period is re-calculated as the number of 
included stations has grown over time. Consequently, 

Table 1  Overview of regional 
climate models used in this 
study

RCMs in rows, and GCMs in columns. The cell value is the downscale realisation. An asterisk denotes 
that the GCM-RCM combination is part of the bias-adjustment sub-ensemble (see also Table 2). CNRM is 
CNRM-CM5, EC is EC-EARTH, Had is HadGEM2-ES, IPSL is IPSL-CM5A-MR, MPI is MPI-ESM-LR, 
and Nor is NorESM1-M. The GCM ensemble was always r1i1p1 except for EC-EARTH with r12i1p1

CNRM EC Had IPSL MPI Nor

ALADIN63 v2 v1 v1 v1
ALARO-0 v1
CCLM4-8-17 v1* v1* v1* v1*
COSMO-crCLIM-v1-1 v1 v1 v1 v1 v1
HIRHAM5 v2 v1* v2 v1 v1 v3
HadREM3-GA7-05 v2 v1 v1 v1 v1
RACMO22E v2 v1* v2* v1 v1 v1
RCA4 v1* v1* v1* v1* v1a* v1
REMO2009 v1*
REMO2015 v2 v1 v1
RegCM4-6 v2 v1 v1 v1 v1
WRF381P v2 v1 v1 v1 v1 v1

Table 2  Subset of regional 
climate models from Table 1 
that are available with bias 
adjustment from CORDEX-
Adjust

Abbreviations and details on bias adjustment methods (columns CDFt to QMAP) and datasets (rows in col-
umns CDFt–QMAP) are provided in the remaining of this section

RCM GCM CDFt CDFT22 CDFT22s DBS45 QMAP

CCLM4-8-17 CNRM-CM5 EOBS10 MESAN MESAN MESAN
CCLM4-8-17 EC-EARTH EOBS10 MESAN MESAN MESAN
CCLM4-8-17 HadGEM2-ES MESAN
CCLM4-8-17 MPI-ESM-LR EOBS10 MESAN MESAN MESAN
HIRHAM5 EC-EARTH EOBS10 WFDEI MESAN MESAN MESAN
RACMO22E EC-EARTH EOBS10 WFDEI MESAN MESAN MESAN
RACMO22E HadGEM2-ES WFDEI MESAN
RCA4 CNRM-CM5 EOBS10 WFDEI MESAN MESAN MESAN
RCA4 EC-EARTH EOBS10 WFDEI MESAN MESAN MESAN
RCA4 HadGEM2-ES WFDEI MESAN MESAN
RCA4 IPSL-CM5A-MR WFDEI MESAN MESAN MESAN
RCA4 MPI-ESM-LR EOBS10 WFDEI MESAN MESAN
REMO2009 MPI-ESM-LR EOBS10 WFDEI MESAN
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there can be considerable differences between versions 
(personal communication, KNMI).

• MESAN (Landelius et  al 2016) is a high-resolution 
downscaling of the HIgh-Resolution Limited-Area 
Model (HIRLAM) with the MESoscale ANalysis system 
(MESAN) with horizontal spacing of 5 km.

As bias adjustment methods, the climate modelling group at 
METNO employed quantile mapping (QMAP) (Gudmunds-
son et al 2012), SMHI used distribution-based scaling (DBS) 
(Yang et al 2010), and LSCE-IPSL applied the cumulative 
distribution transform (CDFt) (Vrac et al 2016). The variants 
of CDFt (CDFt, CDFT22, CDFT22s) of CORDEX-Adjust 
apply the same bias adjustment method, even if they have 
a different name. They are based on different versions of 
the code implementing CDFt (Thomas Noël and Harilaos 
Loukus, personal communication). The influence of three 
bias adjustment reference datasets (EOBS10, WFDEI, and 
MESAN) was tested with CDFt, and the influence of three 
bias adjustment methods (CDFt, DBS45, and QMAP) with 
MESAN as bias adjustment reference dataset.

2.4  Observational data

In addition to the datasets used in the bias adjustment, we 
also considered other two gridded observational reference 
datasets covering the whole study region, namely E-OBS 
v26.0 and APGD. The former provides daily temperature 
(min, mean, max) and precipitation at 0.1◦ spatial resolution 
obtained by spatial analysis of in-situ observations (Cornes 
et al 2018), whereas a better spatial analysis of precipita-
tion is provided by the latter, which is characterized by a 
grid spacing of 5 km and was obtained from a much denser 
network of meteorological stations than E-OBS (Isotta and 
Frei 2013). For the observation intercomparison we used 
precipitation from APGD, E-OBS, MESAN, and WFDEI; 
for temperature E-OBS, MESAN, and WFDEI. Based on 
that analysis (see results), we subsequently chose APGD 
for precipitation and E-OBS for temperature as main refer-
ence to evaluate RCM biases. Monteiro and Morin (2023) 
also used these two as main observational reference. Note 
that evaluation of bias adjusted RCMs cannot be considered 
fully independent, since many stations records entered both 
the evaluation datasets (APGD, E-OBS version 26) and the 
calibration datasets (E-OBS version 10, WFDEI, MESAN).

To compare all Alpine-wide observational and reanaly-
sis datasets including the ones used in CORDEX-Adjust 
(E-OBS, APGD, MESAN, WFDEI), we further collected 
gridded national datasets. These datasets cannot be consid-
ered completely independent from the Alpine-wide ones, 
since many stations are included in all products. However, 
we assume that these national datasets are less affected by 

errors, since they are created with the highest number of 
possibly available observations and some of them also using 
spatial techniques specifically tailored for mountain terrain. 
Nonetheless, also these high-resolution national datasets suf-
fer from observational and interpolation uncertainties, with 
added complexities in mountain terrain due to, for exam-
ple, temperature inversion and wind-driven precipitation 
undercatch.

The following national datasets have been used:

• SPART ACU S (Austria): 1 km scale resolution for daily 
minima (tmin) and maxima (tmax) of air temperatures 
and daily precipitation (Hiebl and Frei 2015, 2018)

• Switzerland: 1 km daily (MeteoSwiss product names: 
TminD, TabsD, TmaxD, and RhiresD)

• SLOCLIM (1 km daily tmin, tmax, precipitation) for Slo-
venia (Škrk et al 2021)

• HYRAS (5 km daily tmin, tmean, tmax, precipitation) 
for Germany (Razafimaharo et al 2020)

• CRESPI (250 m daily tmean and precipitation) for a sub-
region in northern Italy (Crespi et al 2021)

• France: 1 km daily tmin, tmean, tmax (Besson et  al 
2019), and precipitation (Lassegues 2018; Soubeyroux 
et al 2019)

We note that other datasets exist, which could have been 
used instead or in addition. For example, SPAZM (SPAtiali-
sation en Zones de Montagne) for precipitation in France, 
which combines weather types with interpolation of in-situ 
stations (Gottardi et al 2012), or a 2 km reanalysis for Italy 
(Adinolfi et al 2023). However, we adopted the above ones 
to stay as close as possible to observations, rather than rely-
ing on reanalysis.

For the observational intercomparison the reference 
period was 1989 to 2008, which is the common period of 
all datasets.

2.5  Aggregation in time and space, climatic indices

All observational data products were remapped to the rotated 
pole EUR-11 grid from EURO-CORDEX to allow compari-
sons by grid cell. We used first-order conservative remap-
ping in CDO (climate data operators) (Schulzweida 2022), 
since the datasets have spatial resolutions varying from 1 to 
12 km. Grid cells with partial coverage were only remapped 
if the target area was at least 95% covered by the source grid. 
The only dataset with coarser resolution than the RCMs was 
WFDEI, for which we employed a bilinear interpolation, 
since the conservative method introduces unrealistic adjust-
ments at cell boundaries to ensure areal mass conservation. 
Once remapped, the national datasets were spatially united 
into a single extended dataset, denoted NAT (for NATional 
datasets) in the remaining of this work.
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The elevation analysis was also performed on the same 
EUR-11 grid, by taking the subset of grid cells that were 
common to all datasets for each variable. In the evaluation 
sections this was often approximately APGD, E-OBS, or 
NAT, which are the datasets with the smallest coverage. In 
the sections on the impact of bias adjustment, this corre-
sponds approximately to E-OBS (i.e., only land surface). 
Approximately means slight differences at the study area 
borders and land-sea boundaries.

We computed annual and seasonal averages, denoted with 
’mean’, and percentiles, which are denoted with Xpct, where 
X is the percentile value between 0 and 100. Specifically, we 
calculated the 5th, 50th, and 95th percentile for temperature 
and the 95th percentile for precipitation. Additionally we 
calculated a subset of the ETCCDI climatic indices (Zhang 
et al 2011), see Table 3. This selection of indicators includes 
the ones with the main weather-climate impacts in the natu-
ral and socio-economic environment (Crespi et al 2020).

2.6  Statistical analysis

In Sect. 3.2.1, the bi-variate relationship between tempera-
ture and precipitation biases is assessed. For this we cal-
culated average winter and summer temperature and pre-
cipitation biases by elevation band for each GCM-RCM 
combination. We then grouped the resulting averages by 
RCMs, such that each RCM had multiple runs by different 
GCMs. Note that in each group, depending on RCM, the 
number of GCMs was different, ranging between three and 
six. For all these groups (one RCM, multiple GCMs, one 
elevation band, one season), we calculated linear regression 
slopes (y: precipitation bias, x: temperature bias) to ease the 
comparison. However, these are considered as approximate 
estimates given the low number of GCMs (from three to 
six) used to compute the group statistics. For REMO2009, 
which was driven by only one GCM, no regression slope 
was estimated.

In Sect. 3.2.2, the evolution of biases over time is ana-
lysed. For that, we employed a detrending of time series 

using ordinary least squares. This was done individually for 
each grid cell.

3  Results and discussion

3.1  Intercomparison of observational datasets

The general patterns of the Alpine climate over 1989–2008 
were similarly described in all the studied observational 
datasets for both precipitation (Figure S1) and tempera-
ture (Figure S1). As expected, temperatures decreased with 
increasing elevation and increasing latitude (Figure S1). 
Mean winter precipitation was higher North of the main 
ridge, and precipitation intensity (SDII) was higher south of 
the main ridge, with precipitation peaks around the Ligurian 
and Adriatic Sea (Fig. 2).

But while the general pattern agreed across datasets, 
considerable differences were found in local precipitation 
values. For instance, a common characteristic of all data-
sets was the increase in precipitation until 1500 m, fol-
lowed by a decline at higher elevations (Fig. 3a). But when 
looking more in detail differences emerged: in E-OBS the 
mean summer precipitation at 1500 m was 4.0 mm/d, close 
to the value of 4.1 mm/d observed in WFDEI, but differ-
ent from 4.6 mm/d in APGD, and 4.9 mm/d in MESAN. 
Differences between datasets were stronger for extremes, 
as the 95th percentile of summer precipitation at 1500 m 
varied from 16.4 mm/d (WFDEI) to 21.8 mm/d (APGD). 
Precipitation intensity (SDII) peaked in all datasets at about 
1000 m and was lower above and below. But again in abso-
lute terms, maximum SDII differed considerably among 
datasets: the maximum elevation-averaged SDII of WFDEI 
was 8.1 mm/d, and increased to 9.4 mm/d for MESAN, 
10.1 mm/d for E-OBS, and 10.9 mm/d for APGD. The ele-
vation-averaged number of wet days (RR1) increased up to 
500 m and then remained approximately constant, ranging 
between 122 and 166 d, depending on the dataset.

Differences between datasets over the 1989–2008 clima-
tology were less pronounced for temperature (Fig. 3c). All 

Table 3  Overview of the 
calculated climatic indices 
(ETCCDI) at the annual scale

Index Description Calculation

RR1 Wet days Sum of all days with pr ≥ 1 mm
SDII Simple daily intensity index Mean pr only over wet days
CDD Maximum dry spell Maximum number of consecutive dry days
R95pTOT Precipitation fraction due to very 

wet days
Fraction of pr only for days with pr above the 

95th percentile relative to total pr
FD Frost days Days with minimum temperatures below 0 ◦C
ID Ice days Days with maximum temperatures below 0 ◦C
SU Summer days Days with maximum temperatures above 25 ◦C
TR Tropical nights Days with minimum temperatures above 20 ◦C
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datasets showed the expected negative relationship between 
temperature and elevation. Below 2000  m differences 
between datasets were negligible and the mean difference of 
the elevation-averaged temperature climatology among the 
datasets amounted to 0.7 ◦ C. Above 2000 m, MESAN was 
colder than E-OBS, and WFDEI was warmer than E-OBS. 
Unexpectedly, above 2000 m, temperatures of WFDEI did 
not decrease with elevation.

Assuming the national datasets as reference, APGD 
was most accurate for precipitation (Fig. 3b) and E-OBS 
for temperature (Fig. 3d). Differences between APGD 
and national datasets were mainly unbiased with values 
between −11.4% and 3.5% across all precipitation indi-
ces and elevation bands, while the other datasets had dif-
ferences between −38.5 and 56.8% depending on index, 

elevation, and dataset (Fig. 3b): E-OBS, MESAN, and 
WFDEI showed over- and underestimation of winter pre-
cipitation depending on elevation with respect to NAT, 
consistent underestimation of mean summer precipitation, 
increasing underestimation of extreme summer precipita-
tion with elevation, underestimation of intensity (SDII), 
and overestimation of wet-day frequency (RR1). For tem-
perature, E-OBS was unbiased below 2000 m across all 
indices, while at higher elevations it showed a slight warm 
bias (Fig. 3d). MESAN showed a warm bias in summer at 
elevations between 1000 and approximately 2500 m, while 
in winter it exhibited a cold bias above 2000 m. WFDEI 
showed little bias for average winter temperatures (50pct) 
below 2000 m, but strong warm biases above 1500–2000 m 
and mixed biases at lower elevations.

Fig. 2  Seasonal (winter and summer) mean (pr_mean) and extreme 
(95th percentile; pr_95pct) precipitation and annual precipitation 
indices (SDII: simple daily intensity index, RR1: number of wet days) 
from different data sources. NAT is the union of national datasets, for 

the other abbreviations refer to Sect. 2.4 and for definition of climatic 
indices to Sect. 2.5. For temperature, see Figure S1. Values are based 
on climatological averages over 1989–2008
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Fig. 3  Elevation dependency of precipitation and temperature cli-
matology (1989–2008) across observational datasets. Grey back-
ground in each panel indicates the relative distribution of elevation 
in the analyzed domain, which is different between (a+ c) and (b+ d) 
because the national datasets (NAT) have only a partial coverage (no 
scale provided for the grey background, as this is only meant to con-

textualize data availability by elevation). a Precipitation indices (sea-
sonal mean and 95th percentile, SDII simple daily intensity index, 
RR1 number of wet days). b Difference in precipitation indices with 
respect to NAT. c Seasonal percentiles of temperature. d Difference 
in seasonal temperatures with respect to NAT
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This intercomparison showed that the choice of spatial 
reference dataset is crucial for precipitation, particularly 
when the area of interest spans a wide range of elevations 
and a strong orographic diversity. The differences are lower 
for temperature. This confirms previous findings that uncer-
tainty between precipitation datasets can be of the same 
order as climate model biases (Prein and Gobiet 2017) and 
that observational uncertainty is less an issue for tempera-
ture (Herrera et al 2020). Concerning the precipitation, the 
higher station density in APGD makes it superior to E-OBS, 
when compared to national datasets. The impact of station 
density on accuracy has been already noted (Isotta et al 
2014). In the Alps, the differences in station density between 
E-OBS and APGD are negligible for Germany and Slove-
nia, small for Austria, Croatia, France, and Switzerland, but 
strong for Italy (Bandhauer et al 2022).

A sensitivity analysis performed on different subregions 
confirms the above findings. All datasets capture the main 
climatological features regarding north–south and east–west 
gradients of temperature and precipitation (Figure S2). But 
again, from a quantitative point of view differences are 
observed with over- and underestimations of temperature 
and precipitation indices between datasets, similar to the 
previous findings for the whole study area. Alternatively, 
splitting the analysis by national dataset does not contradict 
the previous findings, except for SLOCLIM (the Slovenian 
dataset), which did not use a climatology-based interpola-
tion scheme for precipitation compared to the other datasets 
(Figure S4).

Still results at higher elevations should be taken more 
cautiously than at lower elevations. The assumption of the 
national datasets as best estimate is reasonable, but still suf-
fers from inaccuracies, such as undercatch of winter precipi-
tation (Kochendorfer et al 2022). Additionally, the accuracy 
of each spatial analysis depends on the station density, espe-
cially in complex terrain such as the Alps. In our case, the 
grid spacing is often smaller than the inter-station distance. 
Additionally, observations at high elevations are scarcer than 
in lowlands.

Finally, we did not assess the impact of horizontal scales, 
which goes beyond the scope of this study. The comparison 
was made at 0.11◦ and the higher-resolution datasets were 
upscaled. WFDEI is the only one with a coarser resolution, 
which has been interpolated to the higher one of 0.11◦ . As 
such, WFDEI is expected to underestimate localized large 
values because an areal integral of precipitation will always 
smooth out local precipitation peaks.

3.2  Temperature and precipitation biases in raw 
RCMs

Based on results from the previous section, we used APGD 
as reference for precipitation and E-OBS for temperature for 

evaluating raw RCMs over the entire Alpine domain. Over-
all, for the period 1971–2000, RCMs showed a wet (Figs. 4, 
5b) and cold (Figures S5 and 5c) bias. The driving GCM is 
the dominant factor for the large-scale bias, while local and 
elevational patterns are more influenced by RCMs (Figs. 4 
and  S5). In addition, biases showed a strong dependence on 
elevation (Fig. 5).

The elevation dependence of biases in precipitation 
indices is shown in Fig. 5b. Precipitation intensity on wet 
days (SDII) was captured well by the models, albeit with 
increasing uncertainty at higher elevation. The average bias 
in SDII was −4% . On the other hand, the wet day frequency 
(RR1) was consistently overestimated by all models and the 
bias increased with elevation, from 15% at 100 m to 51% 
at 3000 m (model-ensemble-means). Summer precipitation 
means and extremes were also well captured across eleva-
tion, again with increasing model uncertainty at higher ele-
vations. Model-ensemble-means of biases were between −7 
and 27% for means and between −21 and 14% for extremes 
(5th and 95th percentiles), respectively. Winter precipitation 
was consistently higher in RCMs than in APGD, and differ-
ences in mean winter precipitation increased with elevation 
from +8% to over +100% (model-ensemble-means).

Biases in temperature indices with respect to elevation are 
shown in Fig. 5c. The cold bias intensified with decreasing 
temperatures, comparing summer versus winter and across 
elevation. Negligible biases were found below 1000 m for 
average summer and winter temperatures: model-ensemble-
means of elevation-averaged biases were between 0 and 
−1◦ C. However, cold biases intensified with elevation up to 
−3.8 and −5.4 ◦ C in summer and winter, respectively. Cold 
winter extremes (5th percentile) were most prone to biases 
and reached up to −20 ◦C.

As supplemental analysis, precipitation and temperature 
biases for spring and fall are shown in Figure S6. The pat-
terns with elevation and magnitude of precipitation biases 
in spring are more similar to winter, and in fall more similar 
to summer. On the other hand temperature biases in spring 
and fall reflect more a transition period and lie between win-
ter and summer biases. Finally, temperature indices based 
on minimum and maximum temperatures are shown in Fig-
ure S7. Indices based on maximum temperatures (frost days 
and summer days) are less biased than those based on mini-
mum temperatures (ice days and tropical nights). Regard-
ing frost days (FD), the model ensemble mean is largely 
unbiased below 1000 m, but shows an overestimation (cold 
bias) above 1000 m. On the other hand, biases in ice days 
(ID) increase consistently with elevation above 500 m.

The above results are consistent with previous assess-
ments of RCMs in Europe and in the European Alps by Smi-
atek et al (2016), Vautard et al (2021), and Kotlarski et al 
(2014), which also found a predominant cold and wet bias. 
In terms of bias magnitude (Tables S1 and  S2), we find 
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biases for domain averages similar to Kotlarski et al (2014), 
in the range of 1 ◦ C for seasonal temperature and between 0 
and 20% for precipitation. Only winter precipitation biases 
are higher, with a model ensemble average of 35% compared 
to approximately 20% in Kotlarski et al (2014). Compared to 
Smiatek et al (2016), we find consistently lower biases in all 
seasonal temperatures and precipitations, with differences in 

the order of 0.5 ◦ C and 5–15%, respectively. When interpret-
ing differences between this and previous studies, it should 
be taken into account that the model ensemble and evalua-
tion reference datasets are different. In particular, Kotlarski 
et al (2014) evaluated the reanalysis-driven EURO-COR-
DEX while in the present work we employ the GCM-driven 
ensemble.

Fig. 4  Differences in summer mean precipitation for 1971–2000 between a GCM-RCM combination and APGD. Values above 200% are dis-
played as 200%, too
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Furthermore, since biases often increased with eleva-
tion, domain averaged biases can sometimes be misleading. 
Compared to spatial averages, local biases are often smaller 
at low elevations and larger at high elevations (Tables S1 
and S2). Finally, wintertime precipitation biases should be 
treated with caution, since gauge undercatch can be sig-
nificant: correction factors, such as those used in northern 
Europe, can be up to 85% (Førland and Hanssen-Bauer 
2000).

3.2.1  Bi‑variate dependency

Next, we assessed the relationship between temperature and 
precipitation biases over 1971–2000 by studying the depend-
ency between seasonal mean precipitation and temperature 
biases across elevation for all RCMs selected in the present 
study (Fig. 6). The RCM ensemble exhibited a dependency 
between temperature and precipitation biases. The relation-
ship was mostly positive in winter and negative in summer. 

For all RCMs that had multiple runs driven by different 
GCMs, we evaluated the slope of the linear relationship, 
expressed in percentage points (pp) precipitation bias per 
degree Celsius temperature bias. The median slope over all 
RCMs in winter was 15 pp/◦ C (IQR, inter-quartile-range, 
over all models and elevation bins: 7, 22). In summer, the 
median slope was −10(−17,−4) pp/◦ C. The only exception 
was WFR381P, for which the relationship in winter was 
negative.

The strength of the relationship varied by RCM and inten-
sified with elevation in nearly all cases, especially in winter 
(blue lines in Fig. 6): the median slope increased from 7 
(3, 11) pp/◦ C for the lowest elevation bin (0–500 m) to 21 
(14, 28) pp/◦ C for the highest elevation bin ( > 2500 m). The 
positive relationship found in winter implies that warmer and 
wetter conditions are associated with each other, but since 
most RCMs have simultaneously a cold and wet bias, this 
relationship reduces one bias at the cost of the other (e.g., 
less cold bias implies more positive precipitation bias). For 

Fig. 5  a Precipitation indices in APGD and GCM-RCMs. b Differences between each GCM-RCM and APGD. c Differences in temperature 
indices between each GCM-RCM combination and E-OBS. Each line is one model combination. Values refer to the 1971–2000 climatology
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summer, the opposite is true, since the relationship is nega-
tive (warmer associated to drier) and thus cold-wet biases 
are reduced simultaneously.

3.2.2  Time evolution of biases

Besides the bi-variate dependency, we further assessed 
the temporal evolution of biases for temperature over 
1971–2022 (Fig. 7) and precipitation over 1971–2008 (Fig-
ure S8). Biases increased with time for summer temperatures 
and winter precipitation because of a mismatch in trends 
between observations and models. In the case of summer 
temperature, observations showed a stronger increase than 
RCMs over the past 50 years, which led to a widening dis-
crepancy with time (Fig. 7a, b). This warming discrepancy 
has been attributed to stationary aerosol forcing in the RCMs 
(Schumacher et al 2023). After trends were linearly removed 
for each grid cell, the remaining biases were constant in time 
(Fig. 7c). For winter precipitation, observations showed a 
decrease of precipitation, while RCMs showed no change, 
thus again leading to a widening discrepancy with time. 
Similarly, after removing the linear trends, also precipita-
tion biases were constant (Figure S8).

The resulting temporal stability of biases after trend 
removal is an important property of the modified time series, 
given that most bias adjustment and downscaling algorithms 

assume stationarity. For a period of 50 years in the Alps, we 
can confirm this stability for temperature, and for a period 
of 38 years also for precipitation. However, the temporal sta-
bility of biases is obtained only after removing trends from 
both observations and models. Consequently, trend removal 
is a crucial step in statistical bias adjustment techniques, 
since otherwise, temporal variability might be wrongly 
matched between observations and models (Lange 2019).

This confirmation of bias stationarity is nonetheless only 
a rough estimation, since the spatial observation datasets 
are not fully suited for trend analysis due to their changing 
network over time. Further confirmation could be obtained 
by using homogenized spatial datasets (Isotta et al 2019; 
Spinoni et al 2015). A more detailed assessment of bias sta-
tionarity is beyond the scope of this study, but worthwhile 
for future analyses.

3.3  Impact of bias adjustment

This section deals with the impact of different bias adjust-
ment methods and datasets as available from CORDEX-
Adjust. In general, bias adjustment reduced biases over 
1971–2000 as expected, but in our case the impact of the ref-
erence dataset used for bias adjustment (Fig. 9) was stronger 
than that of the method used (Fig. 8).

Fig. 6  Dependency between seasonal mean precipitation and temper-
ature biases across elevation (columns) and season (rows, DJF: win-
ter, JJA: summer) over the period 1971–2000. Colours denote differ-
ent RCMs, where multiple points imply different GCMs (GCMs are 

not further distinguished). Lines are linear regression estimates and 
only intended to guide the visualization of correlation and strength of 
relationship
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Fig. 7  a Domain average trends of seasonal temperatures in models 
and observations over 1971–2022. Lines are linear regression fits 
(grey: single GCM-RCM, black: model ensemble, red: E-OBS) b 

Time evolution of 20-year biases. c Time evolution of 20-year biases, 
but time series were linearly detrended prior to calculating 20-year 
biases. See Figure S8 for precipitation
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The three analyzed bias adjustment methods (QMAP, 
DBS, and CDFt) produced similar results for both tempera-
ture and precipitation indices across all elevations (Fig. 8). 
DBS and CDFt produced nearly identical results in all cases, 
while after QMAP some biases remained, especially for sea-
sonal mean and extreme precipitation (indices: pr_mean and 
pr_95pct) and for warm temperature extremes (tas_95pct) in 
winter. For precipitation intensity (SDII) and wet-day fre-
quency (RR1) and the other temperature indices (tas_5pct, 
tas_50pct), QMAP was nearly identical to DBS and CDFt. 
Note that the remaining bias for QMAP was still much below 
initial model biases.

The reference dataset used in the bias adjustment had 
stronger impacts and the differences and uncertainty 
increased with elevation (Fig. 9). The remaining biases 
(compared to references APGD and E-OBSv26) diverged 
above 1500 m for winter precipitation and above 1000 m 
for temperature indices. This divergence was caused by the 
differences between observational datasets used in the bias 
adjusment (see also Sect. 3.1). For precipitation, in particu-
lar, the difference between the RCMs bias adjusted with 
MESAN and APGD is basically identical to the difference 

between the two observational datasets (i.e., APGD and 
MESAN, Figure S9), and thus it is not dependent on the 
particular RCM. We hypothesize the same would apply for 
models adjusted with E-OBS10 and WFDEI, however, we 
cannot test it comprehensively, because E-OBS10 is not 
available anymore, and for WFDEI the bias adjustment 
procedure involved spatial and temporal moving windows, 
which cannot be reproduced without knowledge of the exact 
spatial interpolation schemes and grid specifications.

These results highlight the importance of the reference 
dataset used for bias adjustment. Inaccuracies in the refer-
ence datasets will be inherited by the bias adjustment meth-
ods, and in the case of the European Alps, we found large 
discrepancies between observational datasets (Sect. 3.1) and, 
consequently, also large differences after bias adjustment 
(Figs. 8, 9). This inheritance of inaccuracies can in some 
cases lead to larger biases after applying the bias adjustment 
procedure, especially if initial model biases were already 
small (Figures S10 to S13).

The presented analysis did not assess the impact of bias 
adjustment on future trends. Some methods, like QMAP, 
have been shown to modify trends (Maraun 2013). However, 

Fig. 8  Impact of different bias adjustment methods on a precipita-
tion indices and b temperature indices over 1971–2000. Each line is 
a GCM-RCM combination. Grey dashed lines are raw (uncorrected) 

models, while solid colored lines are bias adjusted using different 
methods (see legend)
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this is especially true when a simultaneous downscaling is 
performed by using QMAP. Within the CORDEX-Adjust 
framework, the spatial scale is the same, and thus QMAP has 
only been used for bias adjustment and not for downscaling. 
In this respect, we envision a future study that may assess 
possible impacts of bias adjustment on future trends.

4  Conclusions

Biases in the large GCM-driven EURO-CORDEX ensem-
ble have been assessed for the European Alps as a function 
of elevation. This evaluation adds novel results to previous 
studies, which focused on spatial averages. We found that 
biases of GCM-driven RCMs over 1971-2000 in tempera-
ture, seasonal precipitation, and wet-day frequency gener-
ally increased with elevation. Biases in annual precipita-
tion intensity were constant across elevation. Consequently, 
spatial averages of biases in the Alps are overestimated for 
lower elevation and underestimated for higher elevations 

(Tables S1 and S2). It remains to be seen, if the same applies 
also to other mountain regions in Europe and beyond.

Besides the elevation dependency, the temperature 
biases were also more negative in winter than in summer 
(Table S1), and spring/fall biases lay in-between winter and 
summer (Figure S6). Altogether this implies a form of inten-
sity-dependent bias, where negative biases increase both in 
colder seasons and with elevation. One consequence of this 
is that climate change signals could benefit from trend modi-
fication for intensity-dependent errors by bias adjustment 
techniques such as quantile mapping, as shown in Gobiet 
et al (2015). Even so, whether statistical bias adjustment 
methods should or should not modify trends in climate 
change signals remains controversial.

Furthermore, we found a dependency between tem-
perature and precipitation biases that differed by season 
and a temporal dependency of biases, as short-term trends 
(38 years for precipitation and 50 years for temperature) 
diverged between observations and models. This stresses 
the importance of detrending the time series prior to any 

Fig. 9  Impact of different bias adjustment datasets on a precipita-
tion indices and b temperature indices over 1971–2000. Each line is 
a GCM-RCM combination. Grey dashed lines are raw (uncorrected) 

models, while solid colored lines are bias adjusted using different 
observational datasets (see legend)
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bias adjustment in order to avoid a mismatch in temporal 
variability, which is driven by temporal trends.

Impact models often require unbiased data, which leads 
to applying some form of bias adjustment of climate models. 
A fundamental choice for bias adjustment is the selection 
of a suitable reference observational dataset. Results from 
the observation intercomparison (Sect. 3.1) and CORDEX-
Adjust evaluation (Sect. 3.3) highlighted that this is a crucial 
step and more important than the choice of bias adjustment 
method.
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