A SIMPLE PRODUCT FORMULA FOR CERTAIN KAZHDAN-LUSZTIG
R-POLYNOMIALS

MICHELA PAGLIACCI

ABSTRACT. We obtain a simple product formula for the Kazhdan-Lusztig R-polynomials,
Ry ,+(g) indexed by permutations “u,v” in the case that v is obtained from u, ap-

plying two transpositions (4, j) and (k,1), for i < k < I < j. These results are
proved combinatorially and include the main result of [7], Sect.5, as special case.

1. INTRODUCTION

The theory of the Kazhdan-Lusztig R-polynomials arises from the Hecke al-
gebra associated to a Coxeter group W (see e.g.[3], Chap.7]) and was introduced
by Kazhdan and Lusztig ([4],Sect.2]) with the aim of proving the existence of an-
other family of polynomials, the so-called Kazhdan-Lusztig polynomials. The R-
polynomials, as Kazhdan-Lusztig polynomials, are indexed by pairs of elements of
W and they are related to the Bruhat order of W. Most of the importance of these
polynomials comes from their applications in different contexts, such as topology,
algebraic geometry of Schubert varieties and representation theory. Moreover the
importance of the R-polynomials stems mainly from the fact that they allow the
computation of the Kazhdan-Lusztig polynomials. Although the explicit calcula-
tion of the R-polynomials is easier than Kazhdan-Lusztig polynomials calculation,
one encounters hard problems to find closed formula for them, even when W is
the simmetric group. In recent years purely combinatorial rules to compute the
R-polynomials have been found, (see, e.g., [2]). These rules not only make these
objects more concrete, but also allow combinatorial reasoning and techniques to
be applied to them.

Our aim in this paper is to show that R-polynomials which are indexed by a pair
of permutations (u,v), where v = (i, j)(k,l) and i < k <1 < j, and u[k] > w[l],
factor nicely. This result includes the one proved in [7], which is the case that
I=k+1.

The organization of the paper is the following. In the next section we recall
some basic definitions, notations, and results, both of an algebraic and combi-
natorial nature that will be used afterwards. In the third section we define R-
polynomials and R-polynomials of the simmetric group and recall their proper-
ties. In section 4 we exhibit a closed formula for the R-polynomials indexed by the
class of permutations described above.
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2. NOTATION AND PRELIMINARIES

In this section we collect some definitions, notation, and results that will be
def def

used in the rest of the paper. Welet P = {1,2,3,...}, N = P U {0}, and Z be
the set of integers; for a € N we let [a] def {1,2,3,...,a}, where [0] 41 §. Given n,
m € P,n < m, welet[n,m] =[m]\ [n— 1]. We write S = {ay,...,a,}< to mean

that S = {a1,...,ar} and a1 < --- < a,. The cardinality of a set A will be denoted
with |A|. Given a set T we will let S(T') be the set of all bijections of T in itself and

def
Sn = S([n]).

Ifoe ST)and T = {t1,...,tr}< C P then we write 0 = 01 ...0, to mean that
o(t;)) =04, fori=1,...,n. If o € S, then we will also write ¢ on disjoint cycle form

(see, e.g., [[8],p-17]) and we will not usually write the 1-cycles of o. For example,
if o = 365492187 then o = (1,3,5,9,7)(2,6).

Given 0,7 € S, then 07 = ¢ o 7 (composition of functions) so that, for exam-
ple, (1,2)(1,3) = (1, 3,2). We refer to [3] for general Coxeter group notation and
terminology. Given a Coxeter system (W, S) and ¢ € W we denote

D(0) € {s € S: (os) < l(o)};

D(o) is called the descent set of . An element of D(o) is also called right descent,
this is because we can consider a left-handed property and define the left-descent
set of o as

Di(0) ¥ {s € S : (s0) < L(0)}.

We denote by e the identity of W, and we let T def {wsw™ : s € S,w € W},
which is called the reflection set of W.

We will always assume that W is partially ordered by (strong) Bruhat order. We
recall (see, e.g., [[3], Sect 5.9]) that this means thatif u,v € W, u < wiff3t;,...,t, €
T, for r € N such that:

(1) v = Utltz. - .tr

(ii) L(uty...tiy1) = L(uty...t;) fori=0,...,r — 1.

The polynomials R, ,,(¢) defined by the next theorem are called the R-polynomials

of W:

Theorem 2.1. There is a unique family of polynomials {Ry ,(q)}z,wew C Z[g] such
that:

(i) Rw,w(Q) =0, me ﬁ wy
(i) Ryw(q) =1 ifz=w;
Resws(q), if s € D(x)
Rm w = ’ .
() Feo@) =0 (4 Z1) Ry @) + 0Rasn(a)s if s & D(a)
ife <wands € D(w).

See[[3], Sect. 7.5] for a proof.

This theorem gives an inductive procedure to compute the R-polynomials of W
because £(ws) < £(w).

From now on we assume W = S, and S = {s1,...,8,_1}, where s; def (i,i+1),
for i € [n — 1]. For this Coxeter group combinatorial descriptions of Bruhat order,
lenght function and descent set, are well known and synthetized in the following

results. For u € S, and i € [n], let {u®!, ..., ubi}o % {u(1),...,u(@)}.
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Theorem 2.2. Let u, v € Sy,. Thenu < v iff utd < v¥ forevery1 <j <i<n-—1.

A proof of this result can be found in [5], Chapter 1.

For example: if u = 14325 and v = 52341 then (u'!, u?!, u?2, u®! 432 33,
ubl ub? w3 utt) = (1,1,4,1,3,4,1,2,3,4) and (vb!, 021 022 o3t 032 ¢33
vl b2 ph3 oht) = (5,2,5,2,3,5,2,3,4,5),s0 u < v.

Proposition 2.3. Let w € Sy, and i € [n — 1]. Then

() L(w) = inv(w) € [{(,7) € [n] x [n] : 4, ,w(E) > w(j)}|; the number inv(w) is
usually known as inversions of w.
(i) s; € D(u) iffu(i) > u(i + 1).

We refer the reader to [5] for a proof. Note that the proposition implicitly
provides also a characterization of the left descents because s; € Dy (u) iff s; €
D(u™1).

For example, if u = 13524 then inv(uv) = |{(2,4),(3,4),(3,5)}| = 3, D(u) =
{(3,5)} and Dr.(u) = {(2,3)(4,5)}. In the rest of the paper a (right) descent (i,i+1)
may be written briefly as 4.

Finally we introduce a distance-function on .S, it will be used on the proof of

the main result of this paper: for u € Sy, let d(u,v) def max{i € [n] : u71(i) #
v=1(i)}, where max{0} € 0.

For example, d(18263574, 28745361) =max{1, 2, 3,4,5,6,7} = 7. For the properties
of this function we refer the reader to [1].

3. THE R-POLYNOMIALS OF THE SIMMETRIC GROUP

In this section we introduce the family of R, ,(t), which gives a combinatorial
interpretation of the R-polynomial of S, see [1]. We define these polynomials in
the next:

Theorem 3.1. Let u,v € Sy,; then there exists a unique polynomial R, ,(q) C N[q] such
that
Ru o= q(f(v)—é(u))/QRu v(q1/2 _ (]_1/2)-
This is the fundamental result in [[1], Corollary 3.8]
From Theorem 2.1 and Theorem 3.1 it follows that

Theorem 3.2. Let u,v € Sy, such that u < v.Then, for every s € D(v), we have that

7 _ J Rusus(®), if s € D(u)
Ry (t) = { Rusws(t) + Ry os(t), if s & D(u).

We note that one of the advantages of working with the polynomials R, ,(t)
is that they have positive coefficients while the R-polynomials have integer co-
efficients, and thanks to Theorem 3.1 every result on the R-polynomials can be
traslated into a result on R-polynomials. Moreover Theorem 3.2 gives an induc-
tive procedure to compute R, ,,(t) since inv(v(i,i + 1))=inv(v) — 1.

There is one more general fact on the R, ,(t) which we will use:

Proposition 3.3. Let u,v € Sy,; then

Ru,v(t) = Ru—l,v—l(t) = Rn+1—v(1)...n+1—v(n),n+1—u(1)...n+1—u(n) (t) =

Ry(n)...o(1),u(n)...u(r) (£)-
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The above result can be proved easily using properties of Hecke algebra and 3.1
[see [3],Proposition 7.6]. The left version of Theorem 3.2 follows easily from 3.3:
Let u,v € Sy, such that u < v. Then, for every s € Dr,(v), we have

= _ Rsu,sv (t)a if s € DL (u)
Ruo(t) =1 5 ~ .
Rsu,sv (t) + tRu,sv (t)7 if s Q/ DL (u)
To conclude this collection of results we give the next:
Lemma 3.4. Let 1 < k <l < n. Then
Ry, @) = (L4 ) R i1, n—kt1),(1,0—1) (B),
for every (k,1) # (2,n — 1)
This lemma has been proved in [7],lemma 5.3, for the case ! = k + 1. However
that proof carries over to give this more general result.
Finally we note that a general closed formula for the R-polynomials does not
exist; for example,
R12345,54321 (t) = (1 + 5t% + 10t* + 6t° + 1¥)
and
Rinsase.esasar (t) = t3(1+ 92 + 39t + 575 + 3613 + 1010 + £2),

and these factors are irreducibile over the field of rational numbers.

However, there are several general classes of permutations for which explicit
formulas exist. We refer the reader to [2] for a survey of the main results known in
this direction.

4. MAIN RESULT

In this section we prove our main result: it includes the formula contained in
[7], Theorem 5.4. This result is a product formula for the R-polynomials of a pair
of permutations (u, v), where v is obtained by swapping four elements of u, i.e.
v = u(i,j)(k,0) fori < k <1 < jand u(l) < u(k) with ¥ + 1 < [. The proof is
based on lemma 4.2 which permit to reduce the computation of R, , () to the one
of R(k,1),(1,m) ()

Lemma4.1. Let u € Sy, u(k) > u(l), 1 < i < k <1 < jand suppose that v =
u(i, ) (k,1). Then u < v iff u(i) < u(l) < u(k) < u(j).

The above Lemma follows from Theorem 2.2, we leave its verification to the
reader.

Now we prove the fundamental:

Lemma4.2. Let u € Sy, u(k) > u(l), 1 =i < k <1 < j = nand suppose that v =
u(1,n)(k,1). f D(u)ND(v) = 0, u(1) = Land u(n) = n, then Ry, (t) = R 1), (1,n) (1)

Proof. We assume k + 1 < [, the result being known forl = &k + 1.

Consider u = 1u(2)u(3) ... u(k—1)u(k)u(k+1) ... u(l-1)u(Du(l+1) ... u(n—1)n,
thus v = nu(2)u(3)...u(k — DuQuk + 1) ... u(l = Du(k)u(l +1)...u(n — 1)ln.
By the assumptions we have the following characterization of the sets D(u) and
D(v):
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e D(u) = {k,1—1}.
From D(u) N D(v) = 0 and u(k) > u(l) it follows that u(l) < u(k + 1) (in
factif u(k + 1) < u(l), then £ € D(u) N D(v)), and this together with the
fact that u(k + 1) < u(k +2) < --- < u(l — 1) implies that  — 1 € D(u).
Moreover from the previous considerations we can easily deduce that u(k +
1) < u(k) because u(l — 1) must be less than u(k) (the contrary will produce
the contradictions that! — 1 € D(u) N D(v)) hence k € D(u).
e {1,k—1,l,n—1} D D(v) 2D {1,n—1}
From this characterization, it follows that there are four cases to consider de-
pending on D(v).
We begin by considering the simplest case, D(v) = {1,n — 1}.
This forces that 1 < u(2) < u(3) < --- <u(k—1) <u(l) <u(k+1) <u(k+2) <
- <u(l—-1) <uk) <ul+1) <--- <uln—1) < n then u(i) = i for every
i€k—1Uk—1,1-1U[l+1,n—1],u(l) = k and u(k) = I. Therefore u = (k,1)
andv = (1,n).

Suppose that D(v) = {1,k — 1,n — 1} .

Since k — 1 € D(v) then being u(k — 1) > wu(l), there are two possibilities:

(@) u(k—1) <u(k+1);

(b) u(k—1) > u(k+1).
In every case u(j) = j forevery j € [l +1,n — 1] and u(k) = 1.

We define p def maz{m € N : u(m) < u(l)} then

1 <u®@) <--<up-1 <ulp) <ul) <up+1) < -+ <ulk-1). If
(a) holds we can easily complete the above inequality chain because it must be
uk—1) <uk+1) < --- <ul-1) < u(k) = [; in other worlds we have
completely determined the permutations u and v that satisfy these hypothesis:
u=1..pp+2)..kEk+1D)k+2...0-Dp+1)(I+1)...(n - 1)n and
v=n...p(p+2)...k(p+1)k+1)(k+2)...(0-DI(I+1)...(n—1)1.
We see that p+2 is on the left of p+ 1 both in w and inw, so (p+1) € Dr(v)NDy (u).
If we apply Theorem 3.2 (left version) to this descent s = (p + 1,p + 2), we ob-
tain a pair (su, sv) which has the common left descent (p + 2,p + 3). If we go
in this way we obtain a pair (u1,v;) which has (k — 1,k) as common left de-
scent, more precisely u; = 12...(k = 2)kl(k +1)...(I—-1)(k—= 1)+ 1...nand
vp=n2...(k=2)k(k—1)(k+1)...(I—=1)I(l+1)...n; and we have done because
(k=1,k)uy = (k,I) and (k — 1, k)v; = (1,n). We illustrate the same situation look-
ing the inverse permutations:

u"l=12 p—1|1l|p+1 k—2k—-1k+1 I-1k1+1 n—1n
v?l=n2"""p-1|k|p+1 " k-2k-1k+1 "1-11141" ""n-11
The described application of Theorem 3.2 is equivalent to moving the ; column

k—1 k+1

v, and Py

between

If (b) holds, i.e. u(k — 1) > u(k + 1), we need to consider two other parameters
¢4 maz{m € [p+ 1,k —2] : u(m) < u(k+1)} and s def maz{m € [k +2,l - 1] :
u(m) < u(k — 1)}, thus we havep < u(l) < ulp+1) < --- <u(t) <ulk+1) <
u(t+1) < --- < u(s) < ulk—1) < u(s+1). Since u(k) = I, we have that
u(j) =g, foreveryje s+ 1,1 -1, u(k—1) =s,u(s) =s—Luk+2) =k+ 1



6 MICHELA PAGLIACCI

On the other side, by definition of p and ¢, we can conclude that u(l) = p + 1,
ulp+1)=p+2,... u®t) =t+1,u(k+1) =t+2,u(t+1) = t+3. This implies that
{(s—1,s),(t+1,t+2)} € Dr(u) N Dr(v) and by repeated application of Theorem
3.2, we can “eliminate” these left descents to obtain a pair of permutations of the
type contained in (a) and so then to the first case.

Obviously to conclude that if £ — 1 € D(v) then u and v have a common left
descent, it is enough to observe that in both cases, (a) and (b), (p + 1,p + 2) is a
left descent common to u and v; but we decided to be redundant to see better the
structure of these permutations at least in one case.

Suppose that D(v) = {1,l,n — 1}.
Under this hypothesis it mustbe 1 < 4(2) < --- < u(k —1) <u(l) <u(k+1) <
- < u(l — 1), so that u(l) = k, and u(j) = j for every j € [2,k — 1]. Being
u(k) > u(l + 1), we need to define h & maz{m € [l + 1,n — 1] : u(m) < u(k)},
then u(j) = j for every j € [h 4+ 1,n — 1], u(k) = h. There are the next possibilities
to consider:
(@ u(l—1) <u(l+1);
(b) ul —1) >u(l+1).
If (a) holds, then u(l — 1) < w(l + 1) < - -+ < u(h) < u(k) < u(h + 1) thus

wu=12 k—1[h]lk+1 I1-1k1l h—1h+1 n—-1n

v=n2""k=1k k+1 " 1=1[hJ1" " h=1h+1"""n-11
Observe that (h — 1,h) € Dy (v) N Dy (u) and we apply theorem 3.2 as illustrated
before.

If (b) holds, we define s ef maz{m € [k + 1,1 —2] : u(m) < u(l + 1)}, (note that

if this set is empty then u(l) < u(l + 1) < u(k + 1) that impliesu(l + 1) = k+ 1)
andt & max{m € [I+1,h—1]: u(m) <u(l+1)}, hence k—1 < u(l) <u(k+1) <
ce<uls—) <uls) <ull+l)<u(s+l)<---<ult) <ull —1) <wu(t+1) <
- <u(h) < u(k) < u(h+1). This means that for j € [k]U [h+ 1,n], v and v are as
in (a), while from &k + 1 to h the two permutations are as follow

[h]k+1 s—1ss+2 t—1k s+1 t-2t h—1h+1

kk+1 "s—1ss+2 " t—1[n]ls+1 "t=2¢t h—1h+1
Suppose that D(v) = {1,k — 1,l,n — 1} . We know thatif k — 1 € D(v) or
I € D(v) then D (u) N Dg(v) # 0 so by our assumption we reduce again to the

first case.
O

We now prove the main result of this paper.

Theorem 4.3. Let u € Sy, u(k) > u(l), 1 <i < k <l < j < n and suppose that
v =wu(i,5)(k,1). Then

Ru v(t) — t4(1 + t2)(inv(v)—inv(u)—4)/2
Proof. We can assume that¢ = 1, j = n and u(1) = 1, u(n) = n (this follows from

Lemma 4.1 and Proposition 3.3). First we consider the case that k = 2and ! = n—1,
u=(2,n—1)and v = (1,n). In this situation inv(u) = 2n — 7 while inv(v) = 2n—3
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soinv(v) —inv(u) = 4, and it is easy calcutation that R(Q,n_l)i(l,n) (t) =t

Now we consider (k,1) # (2,n — 1).

We proceed by induction on d = d(u,v) = maz{i € [n] : u=(i) # v~'()}, and
we observe that by definition of u and v we have d = n; moreover the case d=4 is
trivially true.

It follows from Theorem 3.2 that we can suppose D (u)ND(v) = §§, soby Lemma 4.2
we have to compute only R(M),(l,n) (t) By lemma 3.4 we have that R(M),(l,n) () =
1+ Rin—i41,n—k+1),(1,n—1)- Observe thatinv((n—1+1,n—k+1)) = 2(I—k)—2 =
inv(k,l)—1and inv(1,n—1) = inv(1,n)—1. We can apply the inductive hypothesis
on R(n7l+1,nfk+1),(1,nfl) being d = n — 1, thus R(k,l),(l,n)(t) =1+ tz)t4(1 +
t2)(inv(l,n)717inv(k,l)7174)/2) — t4(1 + t2)(inv(l,n)finv(k,l)f4)/2l so the thesis. O

Corollary 44. Let u € S, u(k) > u(l), 1 <i < k <1 < j < nand suppose that
0= (i, ) (k1) Then Raa(a) = (g = 1)} (g? = g + 1)) =072

REMARK : Theorem 4.3 can be deduced from lemma 4.2 and from [6], Corollary
4.2, but for the readers convenience we prefered to give a self-contained proof.
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