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ABSTRACT. We obtain a simple product formula for the Kazhdan-Lusztig � -polynomials,
����� ���
	�� indexed by permutations “ 
���� ” in the case that � is obtained from 
 , ap-
plying two transpositions ��������� and ��������� , for ����������� � . These results are
proved combinatorially and include the main result of [7], Sect.5, as special case.

1. INTRODUCTION

The theory of the Kazhdan-Lusztig
�

-polynomials arises from the Hecke al-
gebra associated to a Coxeter group ! (see e.g.[3], Chap.7]) and was introduced
by Kazhdan and Lusztig ([4],Sect.2]) with the aim of proving the existence of an-
other family of polynomials, the so-called Kazhdan-Lusztig polynomials. The

�
-

polynomials, as Kazhdan-Lusztig polynomials, are indexed by pairs of elements of
! and they are related to the Bruhat order of ! . Most of the importance of these
polynomials comes from their applications in different contexts, such as topology,
algebraic geometry of Schubert varieties and representation theory. Moreover the
importance of the

�
-polynomials stems mainly from the fact that they allow the

computation of the Kazhdan-Lusztig polynomials. Although the explicit calcula-
tion of the

�
-polynomials is easier than Kazhdan-Lusztig polynomials calculation,

one encounters hard problems to find closed formula for them, even when ! is
the simmetric group. In recent years purely combinatorial rules to compute the�

-polynomials have been found, (see, e.g., [2]). These rules not only make these
objects more concrete, but also allow combinatorial reasoning and techniques to
be applied to them.

Our aim in this paper is to show that
�

-polynomials which are indexed by a pair
of permutations "$#&%('*) , where ',+-#&"�./%102)3"546%875) and .:9;4<9=7>9?0 , and #&@ 4BADCE#&@ 7FA ,
factor nicely. This result includes the one proved in [7], which is the case that
7G+H4:I?J .

The organization of the paper is the following. In the next section we recall
some basic definitions, notations, and results, both of an algebraic and combi-
natorial nature that will be used afterwards. In the third section we define

�
-

polynomials and K� -polynomials of the simmetric group and recall their proper-
ties. In section 4 we exhibit a closed formula for the

�
-polynomials indexed by the

class of permutations described above.
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2. NOTATION AND PRELIMINARIES

In this section we collect some definitions, notation, and results that will be
used in the rest of the paper. We let

�������+�� J %
	�%���%�
�
�
�� , � �����+ ��� ����� , and � be

the set of integers; for ����� we let @ � A �����+��BJ�%�	*%�� %�
�
�
�%���� , where @ ��A �����+�� . Given  ,! � � ,  #" ! , we let @  % ! A + @ ! A%$ @  '& J A . We write ( +)���+* %�
�
�
3%
�-,.�0/ to mean
that ( +1���%*�%�
�
�
 %��-,.� and �%* 932�2�2 94�-, . The cardinality of a set 5 will be denoted
with 6 576 . Given a set 8 we will let ( "98 ) be the set of all bijections of 8 in itself and(;: �����+<( "(@  A$) .

If =>�?( "98 ) and 8?+���@�* %�
�
�
 %A@B,.�C/ED � then we write = +F=G*H
�
�
�=+: to mean that= "I@BJ�)�+F=+J , for .&+=J�%�
�
�
3%A . If =K�'(;: then we will also write = on disjoint cycle form
(see, e.g., [[8],p.17]) and we will not usually write the 1-cycles of = . For example,
if = +L�0MON.PCQO	*J�ROS then = +;" J�%
��%�N*%�Q %�S�)3"T	�%�MB) .

Given = %�U#�V(;: then =GU<+)=�WXU (composition of functions) so that, for exam-
ple, " J %
	 )3" J %��B)>+ " J %���%�	�) . We refer to [3] for general Coxeter group notation and
terminology. Given a Coxeter system "5! %
(�) and =��,! we denoteY "I=G) �����+��.Z[�?(]\_^�"I=`Z )D9#^�"I=G)��OaY "T=G) is called the descent set of = . An element of

Y "I=G) is also called right descent,
this is because we can consider a left-handed property and define the left-descent
set of = as Ycb "I=G) �����+��dZe��(#\.^�"fZ�=G)D9]^�"T=G)��C


We denote by g the identity of ! , and we let 8 �����+���hiZ�hkj * \HZ��V( %Ah�� !l� ,
which is called the reflection set of W.

We will always assume that ! is partially ordered by (strong) Bruhat order. We
recall (see, e.g., [[3], Sect 5.9]) that this means that if #&%('m� ! , #?"�' iff n�@ * %�
�
�
3%�@ , �8 , for op��� such that:

(i) ' +?#�@ * @Bq_
�
�
 @ ,
(ii) ^�"$#r@�*s
�
�
A@BJuts* )�+4^�"$#r@�*s
�
�
A@BJ1) for . +4� %�
�
�
 %�oi& J .
The polynomials

�wv0x y "Tz�) defined by the next theorem are called the R-polynomials
of W:

Theorem 2.1. There is a unique family of polynomials � � v_x y "Iz�){� v0x yH|O} D~�>@ z�A such
that:

(i)
� v0x y "Iz�) +L� , if �]�"#h ;

(ii)
� v0x y "Iz�) +EJ , if � +4h ;

(iii)
�iv0x y "Iz�) + � � v��
x y`� "Tz�)�% if Zk� Y "9� )

"Izw& J�) � v0x y`� "Iz�)�I#z � v��
x y`� "Tz�)�% if Zc�� Y "9� )
if � 9�h and Zk� Y "Ih ) .

See[[3], Sect. 7.5] for a proof.
This theorem gives an inductive procedure to compute the

�
-polynomials of !

because ^�"9hiZ )D9#^�"9h ) .
From now on we assume ! +L(`: and ( +��dZ.* %�
�
�
 %
Z�: j *�� , where Z�J �����+ "$. %(.2I<J�) ,

for .�� @  �& J A . For this Coxeter group combinatorial descriptions of Bruhat order,
lenght function and descent set, are well known and synthetized in the following

results. For #'�'( : and .�� @  A , let � # J x * %�
�
�
 %(# J x J � / �����+�� # " J )�%�
�
�
�%8#&"�. ){� .
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Theorem 2.2. Let u, v �'(`: . Then #�"�' iff # J x � " ' J x � for every Jk" 0 "�.�"# & J .
A proof of this result can be found in [5], Chapter 1.
For example: if # +EJ�PC�C	CN and ' +FN0	_�0P J then "�# * x * %(# q x * %(# q x q %(# � x * %(# � x q %(# � x � %

# �
x * %(# � x q %(# � x � %8# � x � )�+;" J % J %AP % J�%
��%AP % J %
	*%
��%�PB) and "�' * x * %(' q x * %(' q x q %(' � x * %(' � x q %(' � x � %

' �
x * %(' � x q %(' � x � %(' � x � ) +E"fN*%�	*%
N�%
	�%���%�N*%�	*%�� %AP %
N�) , so #,9 ' .

Proposition 2.3. Let h ��(`: , and .�� @  & J A . Then

(i) ^�"9h ) + .f 6' "9h ) �����+ 6 �B"�. %�02) � @  A�� @  A \*./%10 %Ah "�. ) C h "�02){�-6 ; the number inv(w) is
usually known as inversions of w.

(ii) Z�J � Y "$#6) iff # "$. )�C�# "$.6I J ) .
We refer the reader to [5] for a proof. Note that the proposition implicitly

provides also a characterization of the left descents because Z J � Y b "$#6) iff Z J �Y "�# j * ) .
For example, if #E+ J��CN0	_P then .� 6' "$#6) + 6 �B"f	*%AP2)�%�"I��%�PB)3% "I� %
N )��-6�+ � , Y "$#6) +�2"I��%�N�){� and

Ycb "�# )�+ �B"f	*%��B)3"IP %
N )�� . In the rest of the paper a (right) descent "$. %(. I J�)
may be written briefly as . .

Finally we introduce a distance-function on (`: , it will be used on the proof of

the main result of this paper: for #��3( : , let � "$#&%('*) �����+��
	�����. �-@  Ae\ # j * "$. )��+
'�j * "$. )�� , where max �d�-� �����+<� .
For example, � " J�RO	_MC�CNCS.P %�	_ROS.PON0�_M�J )G+ max � J %
	*%
��%�P %
N�%�M %�SO� +3S . For the properties
of this function we refer the reader to [1].

3. THE
�

-POLYNOMIALS OF THE SIMMETRIC GROUP

In this section we introduce the family of K��
 x � "I@() , which gives a combinatorial
interpretation of the

�
-polynomial of ( : , see [1]. We define these polynomials in

the next:

Theorem 3.1. Let #&%('m�'(`: ; then there exists a unique polynomial K� 
 x � "Iz�) D�� @ z�A such
that � 
 x � +Lz ����� ��� j ��� 
 ����� q K� 
 x � "Tz * � q & z j * � q ) 


This is the fundamental result in [[1], Corollary 3.8]
From Theorem 2.1 and Theorem 3.1 it follows that

Theorem 3.2. Let #&%(' �?( : such that #'" ' .Then, for every Zk� Y "$'*) , we have that

K� 
 x � "I@() + � K� 
 �
x � � "I@()�% if Zk� Y "$#6)
K��
 �
x � � "I@()�I]@ K��
 x � � "I@()�% if Zc�� Y "$#6){


We note that one of the advantages of working with the polynomials K� 
 x � "9@()
is that they have positive coefficients while the R-polynomials have integer co-
efficients, and thanks to Theorem 3.1 every result on the K� -polynomials can be
traslated into a result on

�
-polynomials. Moreover Theorem 3.2 gives an induc-

tive procedure to compute K��
 x � "9@() since inv( ' "�. %(. I?J�) )=inv "$'*) & J .
There is one more general fact on the K� 
 x � "9@() which we will use:

Proposition 3.3. Let # %8'm��( : ; then

K��
 x � "I@() + K� 
�� * x � � * "9@()�+ K� :0ts* j � � * ������� :_ts* j � � : � x :_ts* j 
 � * ������� :_ts* j 
 � : � "I@()�+
K� � � : ������� � � * ��x 
 � : ������� 
 � * � "I@(){
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The above result can be proved easily using properties of Hecke algebra and 3.1
[see [3],Proposition 7.6]. The left version of Theorem 3.2 follows easily from 3.3:
Let # %8'm��(`: such that #'" ' . Then, for every Zk� Y b "$'*) , we have

K� 
 x � "9@()�+ � K� � 
 x � � "I@()�% if Zk� Y b "�# )
K� � 
 x � � "I@()�IE@ K��
 x � � "9@()3% if Zc�� Y b "�# ) 


To conclude this collection of results we give the next:

Lemma 3.4. Let J:9 4 9 7 9  . Then

K� � � x � ��x � * x : � "I@()�+="(J IE@ q ) K� � : j � ts* x : j � tH* ��x � * x : j * � "9@()�%
for every "�4 %87�)i�+="f	*%� & J�)

This lemma has been proved in [7],lemma 5.3, for the case 7&+=4 IHJ . However
that proof carries over to give this more general result.

Finally we note that a general closed formula for the
�

-polynomials does not
exist; for example,

K� * q � ��� x � � � q *�"9@() +4@ q "(J I N_@ q I J��_@ � I M_@ � I]@ � )
and

K� * q � ��� � x � ��� � q * "9@() +V@ � " J I Q_@ q I �0Q_@ � I#NCS.@ � I]�CM_@ � I?J��_@ *�� I]@ * q )�%
and these factors are irreducibile over the field of rational numbers.

However, there are several general classes of permutations for which explicit
formulas exist. We refer the reader to [2] for a survey of the main results known in
this direction.

4. MAIN RESULT

In this section we prove our main result: it includes the formula contained in
[7], Theorem 5.4. This result is a product formula for the

�
-polynomials of a pair

of permutations "�# %8'2) , where v is obtained by swapping four elements of # , i.e.
' + # "$. %10B) "54 %/75) for . 9 4 9 7 9=0 and # "�7�) 9 #&"�4�) with 4 I J?" 7 . The proof is
based on lemma 4.2 which permit to reduce the computation of K��
 x � "9@() to the one
of K� � � x � ��x � * x : � "I@() .
Lemma 4.1. Let # �l(`: , #&"�4�) C # "�7�) , J " . 9 4E9 7 " 0 and suppose that ' +
# "$. %�02) "54 %/75) . Then #'" ' iff # "$. )�9�# "�7�)�9 # "54�)�9 #&"
02) .

The above Lemma follows from Theorem 2.2, we leave its verification to the
reader.

Now we prove the fundamental:

Lemma 4.2. Let ##�#(`: , # "54�) CE#&"575) , J +-.:9=4 9=7 9 0,+l and suppose that ' +
# " J %A �)3"�4 %87�) . If

Y "$#6)	� Y "�'2)�+F� , # " J )�+EJ and # "9 �)�+L , then K��
 x � "I@()�+ K� � � x � ��x � * x : � "9@() .
Proof. We assume 4 I J 9 7 , the result being known for 7�+ 4 I J .

Consider # +=J # "T	�) #&"T� )G
�
�
 # "54G& J�) # "54 ) # "54 I J )G
�
�
1#&"57B& J ) # "�75) #&"57�I J )G
�
�
1#&"I & J�)B ,
thus ',+1 6# "T	 ) # "I�B)G
�
�
 #&"�4 & J ) # "�75) #&"�4 IHJ )G
�
�
(# "�7`& J�) # "54 ) # "�7 I J�)G
�
�
 # "9 ?& J )�J� .
By the assumptions we have the following characterization of the sets

Y "$#6) andY "�'2) :
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� Y "$#6)�+ � 4 %/7�& J_� .
From

Y "$#6) � Y "$'*) +<� and # "54�) C #&"575) it follows that #&"575) 9 # "54�I=J�) (in
fact if # "54�I;J�) 9 # "�75) , then 4 � Y "�# ) � Y "$'*) ), and this together with the
fact that # "54�I;J�) 9 #&"�4�I3	�) 9~2�2�2 9 #&"57 &HJ ) implies that 7 & J � Y "�# ) .
Moreover from the previous considerations we can easily deduce that # "54 I
J�) 9 # "54 ) because # "�7G& J�) must be less than # "54�) (the contrary will produce
the contradictions that 7G& Jk� Y "�# ) � Y "�'2) ) hence 4 � Y "$#6) .� � J %/4 & J %87 %� & J_� � Y "$'*) � �BJ�%� & J_�

From this characterization, it follows that there are four cases to consider de-
pending on

Y "$'*) .
We begin by considering the simplest case, �������
	���
�������
�� .
This forces that J 9?# "T	 ) 9 # "I�B) 9 2�2�2 9 # "54c& J ) 9?# "�7�) 9?# "54 IHJ ) 9 # "54 I#	 ) 92�2�2 9 # "�7H& J�) 9 # "54 ) 9 #&"57GIEJ ) 9<2�2�2 9 # "9 �& J�)�9) then # "$. ) + . for every
. � @ 4e& J3A � @ 4p& J�%87�&�J A � @ 7�I J %A & J3A , #&"575) +H4 and # "54�)�+ 7 . Therefore # +="�4 %87�)
and ' +;" J %A �) .

Suppose that ��������	���
�������
�������
�� .
Since 4 & Jk� Y "$'*) then being # "54p& J )�C # "�7�) , there are two possibilities:

(a) #&"�4 & J�)�9 # "54 I J ) ;
(b) #&"�4p& J )�C # "54 I?J�) .

In every case # "�02)�+�0 for every 0 �<@ 7 I?J�%� & J3A and # "54�)�+?7 .
We define � �����+ ! �C� � ! ����\�#&" ! )�9 # "�75){� then

J 9 # "T	�) 9 2�2�2 9 # " � &=J )<9 #&"!� )<9 # "�7�)<9 #&"!� I J�)<9 2�2�2 9 # "54�&=J�) . If
(a) holds we can easily complete the above inequality chain because it must be
# "54?&;J�) 9 #&"�4 I J�) 9 2�2�2 9 #&"57�&-J�)<9 # "54 ) + 7 ; in other worlds we have
completely determined the permutations # and ' that satisfy these hypothesis:
# + J 
�
�
"� " �<I)	�)G
�
�
84*78"54 I J )3"54 I)	�)G
�
�
 "57 & J�) " �<I J )3"57 I J�)G
�
�
 "I 4& J�)B and
' +L c
�
�
#� "!� I 	 )G
�
�
/46"!� I J )3"54 I?J�) "54 I#	�)G
�
�
 "57G& J ) 7("57�I?J )G
�
�
 "9 & J�)�J .
We see that � I 	 is on the left of � I,J both in # and in ' , so " � I,J�)�� Y b "$'*) � Ycb "�# ) .
If we apply Theorem 3.2 (left version) to this descent Z,+ " � I=J�%$� IF	 ) , we ob-
tain a pair "fZ # %�Z '*) which has the common left descent " �,I�	*%"� I�� ) . If we go
in this way we obtain a pair "$# *�%8'C*3) which has "�4K&-J %/4�) as common left de-
scent, more precisely # * + J�	 
�
�
3"�4 &V	 )(4*78"54 IEJ )G
�
�
 "57 &HJ )3"54 & J�)(7�IEJ 
�
�
B and
'C* +L 	 
�
�
 "54k&'	 )(46"�4[& J�) "54>I�J )G
�
�
 "�7+&<J�) 78"�7 I J )G
�
�
B ; and we have done because
"�4w& J %/4�) # * +="54 %/75) and "�4[&<J�% 4�) ' * +=" J %A �) . We illustrate the same situation look-
ing the inverse permutations:

# j J
' j J ++ J 		 
�
�
 � & J

� & J 74 � I?J
� I?J 
�
�
 47&E	47&E	 4p& J4p& J 4 I?J4 I?J 
�
�
 7�& J7�& J 4 7 7 I?J7 I?J 
�
�
  & J & J  J

The described application of Theorem 3.2 is equivalent to moving the
�
� column

between
� j *� j * and

� ts*� ts* .
If (b) holds, i.e. # "547& J�) C # "54 I J�) , we need to consider two other parameters@ �����+ ! �O� � ! � @ � I J�%/47&]	�A \2# " ! ) 9?# "54 I J )�� and Z �����+ ! �O� � ! � @ 4 I#	�%87;& J AH\

# " ! ) 9E# "54 &?J )�� , thus we have � 9E# "�75) 9=# " ��I J�) 9 2�2�2 9E#&"I@() 9E#&"�4 I J ) 9
# "9@�I J�)<9 2�2�2 9 # "TZ ) 9 # "54?&;J )<9 #&"fZ I J ) . Since #&"�4�) + 7 , we have that
# "�02) +?0 , for every 0�� @ Z I J�%/7;& J3A , #&"�4c& J�) + Z , # "TZ ) +1Zi& J , # "54 I�	�) +=4 IHJ .
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On the other side, by definition of � and @ , we can conclude that # "�7�) + � I-J ,
# " � I J�) + � I'	 , 
�
�
 , # "9@()�+L@BI J , #&"�4 I J ) +L@BI'	 , # "9@2I J�) +L@BI�� . This implies that�2"TZ &<J %
Z )�%�"9@ I J %A@ I>	�)��e� Ycb "$#6) � Ycb "�'2) and by repeated application of Theorem
3.2, we can “eliminate” these left descents to obtain a pair of permutations of the
type contained in (a) and so then to the first case.

Obviously to conclude that if 4 &HJ?� Y "$'*) then # and ' have a common left
descent, it is enough to observe that in both cases, (a) and (b), "!� I J %"� IF	 ) is a
left descent common to # and ' ; but we decided to be redundant to see better the
structure of these permutations at least in one case.

Suppose that ��������	���
�� � ������
�� .
Under this hypothesis it must be J�9 #&"f	�) 9)2�2�2�9 #&"�4 & J ):9 #&"575):9 # "54 I J ):92�2�2 9 # "�7�&=J ) , so that # "�75) + 4 , and # "�02),+ 0 for every 0 � @ 	�%/4�&;J3A . Being

# "54�) C=# "�76I J ) , we need to define � �����+ ! �O� � ! � @ 7GI J�%� ?& J A \ # " ! ) 9=#&"�4�)�� ,
then #&"
02) +�0 for every 0 � @ � I J�%A & J3A , #&"�4�)�+�� . There are the next possibilities
to consider:

(a) #&"57G& J )�9�# "�7 I?J�) ;
(b) #&"57G& J )�C�# "�7 I?J�) .
If (a) holds, then # "�7r& J�)�9 #&"57*I J ) 932�2�2�9 #&"�� )�9 #&"�4�)�9 # "�� I J ) thus

#
'
+
+
J 		 
�
�
 4p& J4p& J �

4
4:I?J
4:I?J 
�
�
 7G& J7G& J 4� 7

7 
�
�
 �c& J�c& J � I J� I J 
�
�
  & J & J  J 

Observe that "�� & J�%�� )i� Y b "$'*) � Y b "�# ) and we apply theorem 3.2 as illustrated
before.

If (b) holds, we define Z �����+ ! �O�`� ! � @ 4:I J�%/7+&>	�A \�# " ! )�9�# "�7*I J )�� , (note that
if this set is empty then #&"575):9 # "�7 I J�):9 #&"�4 IHJ ) that implies # "�7 IHJ )>+ 4 I J )
and @ �����+ ! �O�`� ! �<@ 7�I J�%��k& J A�\�# " ! )�9�# "�7�I J�){� , hence 4 & J:9 # "�7�) 9 # "54DI J ) 92�2�269 # "TZi& J )>9H#&"fZ ) 9 # "�7 IHJ )>9H#&"fZ IHJ�) 9 2�2�2G9H#&"I@()>9H#&"57`& J�) 9H#&"I@ IHJ�) 92�2�2�9 #&"�� )�9 #&"�4�)�9�# "��:I�J�) . This means that for 0m� @ 4BA � @ �:I J�%� A , # and ' are as
in (a), while from 4 I J to � the two permutations are as follow

�
4
4 I J
4 I J 
�
�
 Z & JZ & J ZZ ZDI 	ZDI 	 
�
�
 @ & J@ & J 4� ZDI?JZDI?J 
�
�
 @s&E	@s&E	 @@ 
�
�
 �c& J�c& J � I?J

� I?J 

Suppose that ������� 	 ��
�� � � 
�� � � � � 
�� . We know that if 4 & JK� Y "$'*) or
7w� Y "$'*) then

Ycb "$#6) � Ycb "$'*) �+ � so by our assumption we reduce again to the
first case.

We now prove the main result of this paper.

Theorem 4.3. Let #�� (`: , # "54�) C # "�75) , JK" . 9 4?9 7 9 0�"  and suppose that
' +?# "$. %�02)3"�4 %87�) . Then

K��
 x � "9@() +4@ � "(J IE@ q ) � Ju: � � ��� j J : � � 
 � j � ��� q
Proof. We can assume that . + J , 0 +  and #&"(J�) + J , # "9 �) +  (this follows from
Lemma 4.1 and Proposition 3.3). First we consider the case that 4 + 	 and 7�+4 & J ,
# +;"T	�%A [& J�) and ' +;" J %A �) . In this situation .� 6' "�# )�+F	. [& S while .� 6' "�'2) +L	. [& �
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so .� 6' "$'*) & .f 6' "$#6)�+VP , and it is easy calcutation that K� � q x : j * ��x � * x : � "9@()�+L@ � .
Now we consider "�4 %87�)i�+="f	*%A & J�) .

We proceed by induction on � + � "$#&%('*) + ! �O�`��. �E@  Ai\�#Hj * "�. )��+ '+j * "$. ){� , and
we observe that by definition of # and ' we have ��+  ; moreover the case d=4 is
trivially true.
It follows from Theorem 3.2 that we can suppose

Y "$#6) � Y "$'*) +F� , so by Lemma 4.2
we have to compute only K� � � x � ��x � * x : � "9@() By lemma 3.4 we have that K� � � x � ��x � * x : � "I@() +
"(J2Ip@ q ) K� � : j � tH* x : j � ts* ��x � * x : j * � . Observe that .� 6' "("9 & 7 I J�%� & 4�I J�)8) +F	�"57 & 4�)_& 	:+
.� 6' "54 %/75)�& J and .� 6' " J�%� �& J�) +?.f 6' " J %A �)�& J . We can apply the inductive hypothesis
on K� � : j � ts* x : j � ts* � x � * x : j * � being �E+  &;J , thus K� � � x � ��x � * x : � "I@() + " J I�@ q ) @ � " J I@ q ) � Ju: � � * x : � j * j J : � � � x � � j * j � ��� q � +4@ � " J I]@ q ) � J : � � * x : � j Ju: � � � x � � j � ��� q , so the thesis.

Corollary 4.4. Let # � (`: , # "54�)�C # "�7�) , J?" . 9 4 9 7 9;0#"  and suppose that
' +?# "$. %�02)3"�4 %87�) . Then

� 
 x � "Iz�) +="Izw& J�) � "Iz q & z I J ) � Ju: � � ��� j Ju: � � 
 � j � ��� q
REMARK : Theorem 4.3 can be deduced from lemma 4.2 and from [6], Corollary

4.2, but for the readers convenience we prefered to give a self-contained proof.
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