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The study of moving particles (e.g. molecules, virus, vesicles, organelles, or whole cells) is 
crucial to decipher a plethora of cellular mechanisms within physiological and pathological 
conditions. Powerful live-imaging approaches enable life scientists to capture particle movements 
at different scale from cells to single molecules, that are collected in a series of frames. 
However, although these events can be captured, an accurate quantitative analysis of live-imaging 
experiments still remains a challenge. Two main approaches are currently used to study particle 
kinematics: kymographs, which are graphical representation of spatial motion over time, and 
single particle tracking (SPT) followed by linear linking. Both kymograph and SPT apply a 
space-time approximation in quantifying particle kinematics, considering the velocity constant 
either over several frames or between consecutive frames, respectively. Thus, both approaches 
intrinsically limit the analysis of complex motions with rapid changes in velocity. Therefore, we 
design, implement and validate a novel reconstruction algorithm aiming at supporting tracking 
particle trafficking analysis with mathematical foundations. Our method is based on polynomial 
reconstruction of 4D (3D+time) particle trajectories, enabling to assess particle instantaneous 
velocity and acceleration, at any time, over the entire trajectory. Here, the new algorithm is 
compared to state-of-the-art SPT followed by linear linking, demonstrating an increased accuracy 
in quantifying particle kinematics. Our approach is directly derived from the governing equations 
of motion, thus it arises from physical principles and, as such, it is a versatile and reliable 
numerical method for accurate particle kinematics analysis which can be applied to any live-

imaging experiment where the space-time coordinates can be retrieved.

1. Introduction

The use of fluorescent labels and the advance of imaging techniques over the last decades have enabled to capture several cellular 
and intracellular dynamic events in living samples. The space-time history of the position of moving particles is typically stored in 
images at different times, which are referred to as frames. Each frame is thus an image that captures particles and their surroundings, 
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at a given time. Along with the improvement of live-imaging techniques, several approaches, algorithms and analysis tools have 
been implemented to study moving particles, tracking their direction and quantifying their velocity. The current available tools for 
studying particle trafficking are kymograph and single particle tracking (SPT) followed by linear linking.

Kymographs are 2D images obtained by stacking the intensity profile along a manually defined path. The result is a graphical 
representation of spatial motion over time, where the slope of the lines represents the particle velocity along that given path. Kymo-

graphs are largely used to investigate particle velocity [1–5]. Although being a widespread technique, kymograph analysis simplifies 
the complexity of a tracking problem by approximating particle movements along a fixed spatial path, thus two disadvantages in-

trinsically arise. i) Spatial resolution reduction: by projecting a 3D trajectory onto one single direction and by approximating the 
kymograph traces with linear segments. ii) Temporal resolution reduction: the dynamics in time is described by tracks with constant 
behavior (e.g. constant segmental velocity over several acquisitions). All-in-all both space and time resolution are reduced.

Contrary to kymograph, tracking approaches aim at identifying the particle position in each acquisition of a time lapse and 
at connecting the identified particles over frames, preserving all the spatial information of the dynamics [6–11]. Indeed, most of 
the single-particle tracking (SPT) methods are based on a three-step process: i) detection of particles frame by frame (detection 
algorithms), ii) particle linking between consecutive frames [8,9] by solving an assignment problem [12,9] (linking/tracking algo-

rithms), iii) reconstruction of the particle trajectory. Detection and tracking algorithms are continuously refined in order to increase 
the performance among different scenarios (e.g. high particle density, low signal-to-noise ratio, motion heterogeneity, blinking signal, 
merging or splitting events) [13–15]. Although none of the existing SPT tools tackles all these aspects optimally [10,11], the selection 
of one approach or the other enables scientists to study a huge variety of particle dynamics in different biological contexts preserving 
all the spatial information. Nevertheless, most current tracking techniques carry out the final particle trajectory reconstruction by 
performing a linear linking of identified particles, thus assuming a constant particle velocity between frames. This approximation 
might represent a limiting step in imaging analysis, especially for particles showing rapid changes in velocity, and it precludes the 
accurate analysis of particle co-trafficking, i.e. the analysis of a possible correlation of motion among different particles at the same 
time.

Therefore we develop and validate a novel algorithm, SHOT-R (Space-time High-Order Trajectory Reconstruction), for high-order 
particle trajectory reconstruction and kinematic analysis. While SPT followed by linear linking approximates the original trajectory 
by a piecewise first degree polynomial (P1) reconstruction (i.e. connecting dots with linear segments), the SHOT-R algorithm solves 
particle kinematics equations relying on higher order polynomials. Polynomial reconstruction is a rather general approach in the 
numerical solution of hyperbolic partial differential equations, mainly focused on advection equations [16–23], which is here em-

ployed for the first time to the live-imaging context. It is unknown how particles move between one acquisition and the next, and 
any kind of trajectory is an approximation of the real particle path. Nevertheless, here we show through mathematical tests and by 
applying SHOT-R on a real biological sample, that our method improves the accuracy of the reconstruction and, consequently, the 
reliability of the kinematic analysis. Indeed, the velocities computed with our algorithm, which accounts for curvilinear trajectories, 
result to be more accurate than the current SPT strategy. Moreover, our algorithm still achieves slightly better accuracy with respect 
to curvilinear spline reconstruction. Overall, we provide an accurate analysis platform for particle trafficking, which can be applied 
to any dataset where the space-time coordinates can be retrieved, thus being extremely versatile. Moreover, thanks to the SHOT-R 
unique feature of a high order continuous trajectory, novel quantitative information can be extracted (i.e. instantaneous velocity and 
acceleration).

Tracking and trajectory reconstructions have been investigated also in different fields of application not only restricted to biology. 
In [24], a nonlinear reconstruction algorithm is applied to flight paths, where the non-linearity is treated by means of a predictor-

corrector approach in the numerical integration of the governing systems of ordinary differential equations describing the total 
aerodynamic forces, moments and angles. Local third order accurate interpolation techniques and second order finite difference 
operators have been forwarded in [25] with applications to animal flight paths, assuming that the acceleration of a particle is locally 
constant and avoiding the solution of the equations of motion. To reconstruct the experimental images related to bat flight, in [26]

fifth order interpolations have been employed for retrieving the kinematics to fill gaps with no data available. Particle reconstruction 
techniques have been also forwarded in [27] in the context of experimental particle tracking velocimetry, proposing linear linking 
algorithms with the definition of a correlation radius that determines the neighborhood of a particle to be used for computing its 
expected value at the next time level.

In all the above mentioned works, linear reconstructions in the sense of Godunov [28] were used, meaning that the reconstruction 
of discontinuous solutions is not monotone. Since experimental data are typically not regularly distributed, they can be reasonably 
considered as a discontinuous function. Therefore, to ensure monotonicity, linear linking algorithms are preferred in the literature, 
because they are compliant with the discrete maximum principle by construction. However, they are restricted to second and first 
order of accuracy for position and velocity, respectively. To circumvent Godunov theorem and ensure essentially non-oscillatory 
properties, the reconstruction procedure must be nonlinear [29,30], thus data-dependent. Here, we present an interdisciplinary work 
that connects state-of-the-art techniques of numerical analysis with cutting-edge live-imaging analysis, that is currently demanding 
more sophisticated tools to post-process the acquired data. Indeed, the high order accuracy of our method potentially matches the 
high resolution acquisition techniques that are currently used to maximize the quality of the acquisitions in live-imaging [31–33]. Our 
method will therefore be presented and validated with the aim of being appreciated from both the mathematical and the biological 
angle of attack.

We remark that the method presented in this work is concerned with the third step of the kinematics analysis aforementioned, 
that is the reconstruction of the particle trajectory. This is a completely independent process from the experimental data acquisition 
2

or the tracking techniques which permit to connect frames in a common path related to a particle. Consequently, the starting 
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Fig. 1. Space-time high order trajectory reconstruction (SHOT-R) method (A) Schematic of SHOT-R 4D input data: particle motion is described as the evolution 
of the spatial coordinates (𝑥, 𝑦, 𝑧) in time (from 𝑡0 to 𝑡𝑁𝑘

). (B) Schematic of space-time split trajectory strategy. Each direction (𝑥, 𝑦, 𝑧) is analyzed separately, thus 
a multidimensional setting can be reduced to multiple one-dimensional problems. (C,D) Schematic of trajectory reconstruction based on polynomials (SHOT-R). An 
interpolation polynomial 𝑝𝑁 (𝑡) of arbitrary degree 𝑁 is constructed for each cell 𝑖 (C) by considering the cell itself and a total number 𝑁 + 1 surrounding elements 
(i.e. the reconstruction stencil) (D). Abbreviations: 𝑃1, 𝑃2, 𝑃3, first, second, third degree polynomial.

point of our method is a set of space-time coordinates associated to different particles, which have been obtained by means of 
experimental data and a subsequent tracking algorithm. We will show that the presented method does indeed not depend on those 
previous steps, by analyzing different detection and tracking algorithms to generate the input data for our new reconstruction 
scheme. Furthermore, an application to a particle trajectory in the field of hydraulics is forwarded, demonstrating the versatility of 
the presented approach.

The rest of the paper is organized as follows. In Section 2 we introduce the governing equations of motion, while the numerical 
scheme is fully detailed in Section 3. Numerical convergence studies and a large suite of validation tests are then shown in Section 4. 
A concluding section finalizes the article where we draw some conclusions and present an outlook to future research.

2. Mathematical model

Particle kinematics is described by ordinary differential equations (ODE) governing the motion:

𝑑𝐱
𝑑𝑡

= 𝐯(𝐱, 𝑡), 𝐱(𝑡 = 𝑡0) = 𝐱0, (1)

where 𝑡 denotes the time coordinate, 𝐱 = (𝑥, 𝑦, 𝑧) is the position vector of spatial coordinates and 𝐯(𝐱, 𝑡) = (𝑣𝑥, 𝑣𝑦, 𝑣𝑧) is the velocity 
vector with components along each direction in space. The trajectory starts at the initial time 𝑡 = 𝑡0 from the position 𝐱0 (Fig. 1A) 
and then the particle moves in time according to ODE (1).

The solution of the trajectory equation (1) is a continuous function, whereas experimental data only provide a discrete set of 
known spatial coordinates 𝐱𝑘 at the corresponding time 𝑡𝑘 (Fig. 1A). Therefore, in order to study particle kinematics, a reconstruction 
of particle trajectories is needed.

3. Numerical scheme

In the sequel, we detail the derivation and implementation of the SHOT-R method. We assume that a series of frames is available, 
meaning that we can extract a sequence of points in space and time from a dataset composed of image acquisitions, independently 
of the nature of the phenomenon under consideration. Obviously, we also assume that the particle motion is always governed by the 
ODE (1). A graphical representation of the reconstruction procedure is shown in Fig. 1.

3.1. Split trajectories

In our method, to faithfully describe particle motions, the input data are the space-time coordinates of particles retrieved by the 
raw movies (i.e. the acquired images of the experiments) using available algorithms for detection and tracking (here TrackMate [34]

is employed). Once the space-time coordinates (𝐱𝑘, 𝑡𝑘) are retrieved for each data point 𝑘 = 1, … , 𝑁𝐾 (Fig. 1A), we proceed in a 
dimension-by-dimension manner by splitting the position vector 𝐱 = (𝑥, 𝑦, 𝑧) along each spatial direction (Fig. 1B). This approach 
speeds up and simplifies the computational process by decreasing the complexity of the problem itself (i.e. from a single 4D problem 
to multiple 1D ones), and avoiding the use of a 3D mesh, which is difficult to spatially discretize. At the same time, this strategy 
3

keeps the desired temporal and spatial resolution of fully 3D procedures.
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Specifically, the issue related to a multidimensional spatial domain is tackled by considering the trajectory equations

⎧⎪⎨⎪⎩
𝑑𝑥

𝑑𝑡
= 𝑣𝑥(𝑥, 𝑡), 𝑥(𝑡 = 0) = 𝑥0,

𝑑𝑦

𝑑𝑡
= 𝑣𝑦(𝑦, 𝑡), 𝑦(𝑡 = 0) = 𝑦0,

𝑑𝑧

𝑑𝑡
= 𝑣𝑧(𝑧, 𝑡), 𝑧(𝑡 = 0) = 𝑧0,

(2)

that directly derive from the original definition (1). Let observe that all equations in (2) are mathematically the same object, therefore 
we focus on the solution of a generic one-dimensional trajectory equation satisfied by a particle along the direction 𝑠, i.e.

𝑑𝑠

𝑑𝑡
= 𝑣𝑠(𝑠, 𝑡), 𝑠(𝑡 = 0) = 𝑠0, (3)

where 𝑠 can be referred to any spatial direction among 𝐱 and the same holds true for the velocity component 𝑣𝑠 with 𝐯. This makes 
our algorithm very general and applicable to a wide range of physical and biological phenomena. We stress that the only information 
needed as input are the point coordinates 𝐱𝑘 defined along the trajectory that has to be reconstructed.

Let  represent the spatial dimensionality of the problem under consideration, i.e.  ∈ [1, 3]. Consequently, 𝐱𝑘 ∈ R, that is 
the spatial coordinates are given by real numbers in dimension . Along each spatial direction we have the set of space-time 
coordinates (𝑠𝑘, 𝑡𝑘) that are extracted from (𝐱𝑘, 𝑡𝑘). What carried out for the generic direction 𝑠 will be performed as many times as 
the dimensionality of the problem is matched, thus a genuinely multidimensional trajectory defined in dimension  is reduced to a 
total number of  one-dimensional trajectories. The full multidimensional trajectory can then be simply gathered back by collecting 
all one-dimensional contributions.

3.2. Computational mesh

The time coordinate 𝑡 is defined in the time interval 𝑇 = [𝑡1; 𝑡𝑁𝐾
], i.e. 𝑡 ∈ 𝑇 , while the space coordinate 𝑠 is bounded in Ω =

[𝑠1; 𝑠𝑁𝐾
], i.e. 𝑠 ∈ Ω. The computational domain Ω is discretized with a total number of 𝑁𝐼 = 𝑁𝐾 − 1 cells with size Δ𝑡𝑖 and 

barycenter time coordinate 𝑡𝑖 given by

Δ𝑡𝑖 = 𝑡𝑖+1∕2 − 𝑡𝑖−1∕2, 𝑡𝑖 =
𝑡𝑖+1∕2+𝑡𝑖−1∕2

2 , (4)

for 𝑖 = 1, … , 𝑁𝐼 , where the values at the interfaces are directly available from 𝑡𝑖−1∕2 = 𝑡𝑘 and 𝑡𝑖+1∕2 = 𝑡𝑘+1 (Fig. 1C). Let observe 
that index 𝑘 is used for cell interfaces 𝑖 − 1∕2 in order to obtain a compatible notation on the computational mesh, thus one has 
the equivalence 𝑘 = 𝑖 − 1∕2. Notice that we do not assume equidistant points, thus the trajectory 𝑠(𝑡) can be defined by a sequence 
of space-time coordinates (𝑠𝑘, 𝑡𝑘) that are not regularly extracted in time. This does not cause any problem in the algorithm since 
each cell is assigned its own width Δ𝑡𝑖. The resulting computational mesh is referred to as staggered mesh, because the known 
quantities are defined at the interfaces (𝑘, 𝑘 + 1) = (𝑖 − 1∕2, 𝑖 + 1∕2) of each cell 𝑖 whereas the sought unknown reconstruction 
polynomial 𝑝𝑁

𝑖
(𝑠, 𝑡) will be discretized at the cell center 𝑠𝑖. In other words, known data and unknown reconstruction polynomials 

adopt staggered definitions on the computational mesh.

3.3. Reconstruction algorithm

The aim of the reconstruction procedure is to obtain a piecewise high order polynomial approximation of the particle trajectory. 
The result is then a set of polynomials 𝑝𝑁

𝑖
(𝑠, 𝑡) of degree 𝑁 ≥ 1 that are defined within each computational cell 𝑖 ∈ [1, 𝑁𝐼 ] for each 

spatial direction 𝑠. The polynomial of arbitrary degree 𝑁 is written in terms of a normalized Taylor series expanded around the 
barycenter coordinate 𝑡𝑖, that is

𝑝𝑁
𝑖
(𝑠, 𝑡) =

𝑁∑
𝓁=0

(𝑡− 𝑡𝑖)𝓁

𝓁!Δ𝑡𝓁
𝑖

𝑠̂𝑖,𝓁 ∶= 𝜙𝓁(𝑡) 𝑠̂𝑖,𝓁 , (5)

with Δ𝑡𝓁
𝑖

being a normalizing factor necessary to avoid ill-conditioned reconstruction matrices and 𝓁! represents as usual the factorial 
of 𝓁. The unknown degrees of freedom are denoted by 𝑠̂𝑖 = {𝑠̂𝑖,𝓁}𝑁𝓁=0 which have to be determined by the reconstruction algorithm. 
Let {𝜙𝓁}𝑁𝓁=0 denote a basis for the polynomial space P𝑁 of degree 𝑁 , the polynomial (5) can also be written as a linear combination 
of basis functions 𝜙𝓁(𝑡) ∈P𝑁 belonging to the space of polynomials of degree 𝑁 , i.e. P𝑁 . Einstein summation convention is adopted 
implying summation over repeated indexes, thus the reconstruction polynomial for cell 𝑖 compactly writes 

∑
𝓁 𝜙𝓁(𝑡) ̂𝑠𝑖,𝓁 as 𝜙𝓁(𝑡) ̂𝑠𝑖,𝓁 .

To retrieve a polynomial of degree 𝑁 , a total number of 𝑁 + 1 unknowns 𝑠̂𝑖 must be uniquely determined, as follows from 
the definition (5). Depending on the chosen degree 𝑁 ≥ 1, the piecewise high order polynomial is reconstructed for each cell 𝑖 by 
considering the surrounding known points, that form the so-called reconstruction stencil 𝑘 = {...𝑖 − 3∕2, 𝑖 − 1∕2, 𝑖 + 1∕2, 𝑖 + 3∕2...}
(Fig. 1D). The stencil size depends on the polynomial degree used for the reconstruction (Fig. 1D). Specifically, the stencil size 
comprises a total number of cells which is at least equal to the number of degrees of freedom of the chosen polynomial degree. 
Therefore, the higher the polynomial degree the wider the stencil, i.e. the more information from neighboring cells is required for 
the reconstruction. The stencil counts a total number of 2(𝑁 + 1) cell interfaces for even and odd degree 𝑁 , so that the stencil is 
always symmetric with respect to the cell 𝑖 under consideration. We address with 𝑁 the polynomial degree, while (𝑁) = 𝑁 + 1
4

is the order of accuracy of the method. For instance, a polynomial 𝑃1 of degree 𝑁 = 1 is second order accurate, i.e. (1 + 1) = 2, 
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because it is exact up to degree 1 and the approximation errors arise starting from 𝑁 = 2, thus the accuracy is of second order. The 
safety factor of 2 in the total number of cells contained in the stencil leads to an overdetermined linear system for the degrees of 
freedom 𝑠̂𝑖 that allows for including linear constraints in the reconstruction polynomials. Indeed, we also want to ensure continuity 
of the reconstructed polynomials across cell interfaces located at 𝑖 ±1∕2. This would generate a continuous profile for the trajectory, 
while keeping the reconstruction algorithm local to each cell and therefore computationally efficient.

The reconstruction is designed in such a way that the trajectory coordinates 𝑠𝑘 = 𝑠𝑖±1∕2 are exactly matched by the polynomial 
𝑝𝑁
𝑖
(𝑠, 𝑡). For each cell 𝑖 the reconstruction system is constructed as follows:

𝜙𝓁(𝑡𝑘) 𝑠̂𝑖,𝓁 = 𝑠𝑘, 𝑘 ∈𝑘, (6)

with the linear constraints

𝜙𝓁(𝑡𝑖−1∕2) 𝑠̂𝑖,𝓁 = 𝑠𝑖−1∕2, 𝜙𝓁(𝑡𝑖+1∕2) 𝑠̂𝑖,𝓁 = 𝑠𝑖+1∕2. (7)

The linear reconstruction system (6)-(7) set up above can be written in a compact matrix-vector form as{
𝐌𝐒 = 𝐁
𝐂𝐒 =𝐃𝐁 , (8)

with the definitions

𝐁[×1] =

⎡⎢⎢⎢⎢⎢⎣

⋮
𝑠𝑘−1
𝑠𝑘

𝑠𝑘+1
⋮

⎤⎥⎥⎥⎥⎥⎦
, 𝐒[(𝑁+1)×1] =

⎡⎢⎢⎣
𝑠̂𝑖,1
⋮

𝑠̂𝑖,𝑁+1

⎤⎥⎥⎦ ,

𝐌[×(𝑁+1)] =

⎡⎢⎢⎢⎢⎢⎣

𝜙1(𝑡1) … 𝜙𝑁+1(𝑡1)
⋮ ⋮ ⋮

𝜙1(𝑡𝑘) … 𝜙𝑁+1(𝑡𝑘)
⋮ ⋮ ⋮

𝜙1(𝑡 ) … 𝜙𝑁+1(𝑡 )

⎤⎥⎥⎥⎥⎥⎦
. (9)

The vector of unknown coefficients is 𝐒, the right hand side which contains the known position values is 𝐁 and the reconstruction 
matrix is given by 𝐌. The constrained matrix 𝐂 in (8) is a sub-partition of 𝐌 and contains those rows which correspond to the stencil 
elements 𝑖 ± 1∕2, while the vector 𝐃 is zero everywhere apart from the two entries related to the constraints (7), where it is set to 1. 
The constrained least squares (CLSQ) method is adopted for solving system (8), therefore a functional 𝑔(𝐒) is defined and minimized 
by requiring its derivatives to vanish, thus

𝑔(𝐒) = (𝐌𝐒−𝐁)𝑇 (𝐌𝐒−𝐁) − 𝝁
𝑇 (𝐂𝐒−𝐃𝐁) , (10)

𝜕𝑔

𝜕𝐒
= 2𝐌𝐌𝐒− 2𝐌𝐁−𝐂𝝁 = 0, (11)

𝜕𝑔

𝜕𝝁
= −(𝐂𝐒−𝐃𝐁) = 0, (12)

where 𝝁 is the vector of Lagrange multipliers to enforce the linear constraints. The associated enlarged linear system of normal 
equations then reads(

2𝐌𝐌 −𝐂
𝐂 𝟎

)(
𝐒
𝝁

)
=
(
2𝐌
𝐃

)
𝐁, (13)

whose solution can be simply obtained as(
𝐒
𝝁

)
=
(
2𝐌𝐌 −𝐂
𝐂 𝟎

)−1( 2𝐌
𝐃

)
𝐁 ∶=𝐑𝐿𝐁. (14)

We are only interested in the solution of the expansion coefficients 𝐒, therefore the final reconstruction matrix 𝐑 for the trajectory in 
the 𝑠 dimension is a subset of the CLSQ matrix 𝐑𝐿, that is 𝐑 ∶=𝐑𝐿

[(𝑁+1)×𝑖]
. Once the reconstruction matrices have been computed 

for all cells, the reconstruction algorithm is efficiently carried out by one matrix-vector product, namely

𝐒 =𝐑𝐿

[(𝑁+1)×𝑖]
𝐁, (15)

which permits to obtain the sought degrees of freedom 𝑠̂𝑖,𝓁 and thus to uniquely define the reconstruction polynomial 𝑝𝑁
𝑖
(𝑠, 𝑡)
5

according to (5) within each cell 𝑖.



Applied Mathematics and Computation 480 (2024) 128902E. Corradi, M. Tavelli, M.-L. Baudet et al.

3.4. Nonlinear limiting with CWENO strategy

In the presence of discontinuities in the trajectory, which might be due either to the real particle motion or to the casualty of the 
acquisition process, a limiting technique must be introduced in the reconstruction procedure. The limiter is needed to avoid the gen-

eration of spurious oscillations that arise when computing a high order interpolation of the trajectory. Since high order polynomials 
are not monotone, the reconstruction polynomial 𝑝𝑁

𝑖
(𝑠, 𝑡) could describe nonphysical oscillations that we want to eliminate. To that 

aim, we rely on the Central Weighted Essentially Non-Oscillatory (CWENO) strategy firstly proposed in [35] for hyperbolic systems 
of conservation laws.

Differently from [35], here we apply the CWENO strategy in a pointwise manner, hence resorting to a kind of finite difference 
WENO scheme [36]. In the CWENO framework the polynomial 𝑝𝑁

𝑖
(𝑠, 𝑡) given by (5) is called optimal polynomial, because among all 

the possible polynomials of degree 𝑁 , it is close in the least-square sense to the point values 𝑠𝑘 in the stencil 𝑘, while satisfying 
the linear constraints (7). This reconstruction is linear in the sense of Godunov [28], thus it must be limited and stabilized via a 
nonlinear scheme. The nonlinearity of the reconstruction lies in the weights used to combine different reconstruction polynomials. 
According to [35,37], the central polynomial 𝑝𝑁

𝑖,0(𝑠, 𝑡) is evaluated as the difference between the optimal polynomial 𝑝𝑁
𝑖
(𝑠, 𝑡) and the 

linear combination of the two one-sided polynomials 𝑝1
𝑖,1(𝑠, 𝑡) (left) and 𝑝1

𝑖,2(𝑠, 𝑡) (right) of degree 𝑁 = 1 [38], that is

𝑝𝑁
𝑖,0(𝑠, 𝑡) =

1
𝜆0

(
𝑝𝑁
𝑖
(𝑠, 𝑡) − 𝜆1𝑝

1
𝑖,1(𝑠, 𝑡) − 𝜆2𝑝

1
𝑖,2(𝑠, 𝑡)

)
, (16)

where 𝜆0, 𝜆1, 𝜆2 are positive coefficients such that

𝜆0 + 𝜆1 + 𝜆2 = 1. (17)

The one-sided second order polynomials are simply computed as the linear polynomial connecting the point value 𝑠𝑘 with the direct 
left or right neighbor point, namely 𝑠𝑘−1 or 𝑠𝑘+1, respectively:

𝑝1
𝑖,1(𝑠, 𝑡) = 𝑠𝑘 +

𝑠𝑘 − 𝑠𝑘−1
𝑡𝑘 − 𝑡𝑘−1

⋅ 𝑡, 𝑝1
𝑖,2(𝑠, 𝑡) = 𝑠𝑘 +

𝑠𝑘+1 − 𝑠𝑘

𝑡𝑘+1 − 𝑡𝑘
⋅ 𝑡. (18)

Let us notice that the above relations can still be represented in terms of the expansion given by (5) by setting 𝑁 = 1. These lower 
polynomials are nothing but the equivalent of the linear linking used in SPT methods. Here, the second order reconstructions (18)

are instead used to limit the central high order reconstruction polynomial 𝑝𝑁
𝑖,0(𝑠, 𝑡). The linear weights in (17) are a normalization 

which sums up to unity and we set 𝜆0 = 200∕𝜆𝑠𝑢𝑚 for the central polynomial, while we take 𝜆1 = 𝜆2 = 1∕𝜆𝑠𝑢𝑚 for the left and right 
one-sided polynomials, hence 𝜆𝑠𝑢𝑚 = 202. The nonlinear data-dependent hybridization among the three polynomials obtained for 
each stencil is given by

𝑝̃𝑁
𝑖
(𝑠, 𝑡) = 𝜔0 𝑝

𝑁
𝑖,0(𝑠, 𝑡) +𝜔1𝑝

1,𝓁
𝑖,1 (𝑠, 𝑡) +𝜔2𝑝

1,𝓁
𝑖,2 (𝑠, 𝑡), (19)

where the nonlinear weights {𝜔𝑚}2𝑚=0 are given by

𝜔𝑚 =
𝜔̃𝑚

2∑
𝑚=0

𝜔̃𝑚

, with 𝜔̃𝑚 =
𝜆𝑚(

𝜎𝑚 + 𝜖
)𝑟 . (20)

The parameter 𝜖 = 10−14 avoids division by zero and the exponent 𝑟 = 4 is chosen according to [37]. The oscillation indicators 𝜎𝑚

are computed according to [39] as

𝜎𝑚 =
𝑁∑
𝛼=1

𝑡𝑘+1

∫
𝑡𝑘

𝜕𝛼𝜙𝓁(𝑡)
𝜕𝑡𝛼

𝑠̂𝑚,𝓁 ⋅
𝜕𝛼𝜙𝑟(𝑡)
𝜕𝑡𝛼

𝑠̂𝑚,𝑟𝑑𝑡. (21)

Eventually, the unlimited reconstruction polynomial (5) is overwritten as follows:

𝑝𝑁
𝑖
(𝑠, 𝑡) = 𝑝̃𝑁

𝑖
(𝑠, 𝑡), (22)

which results in a stable and limited high order approximation.

3.5. Computation of the length of curvilinear trajectory

The evaluation of the length 𝐿 of the particle trajectory is needed in order to compute average quantities over the entire path. 
The length is defined as the integral along the line drawn by the particle trajectory. The integral can be rewritten as the sum of the 
integrals over all computational cells 𝑁𝐼 , that is

𝐿 =

𝐱𝑁𝐾

𝑑𝑙 =
𝑁𝐼∑ 𝐱𝑖+1∕2

𝑑𝑙. (23)
6

∫
𝐱1

𝑖=1
∫

𝐱𝑖−1∕2
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The coordinates (𝐱1, 𝐱𝑁𝐾
) denote the starting and the ending point of the trajectory in the space of dimension  ∈ [1; 3]. To perform 

the integration (23) at high order of accuracy, it is not sufficient to split the trajectory into 𝑁𝐼 segments according to the number of 
cells and to sum up all the linear contributions. Indeed, this would lead to a second order accurate evaluation of 𝐿, since piecewise 
linear polynomials 𝑃1 are used and (23) reduces to the classical trapezoidal rule.

To obtain a consistent high order computation of the trajectory length, isoparametric discretizations must be adopted along the 
generic spatial direction 𝑠. To this aim, let us first define a reference coordinate system 𝜉 ∈ [0; 1] which is used to map a generic cell 
𝑖, hence

𝑠 = 𝑠𝑖−1∕2 + 𝜉
(
𝑠𝑖+1∕2 − 𝑠𝑖−1∕2

)
, (24)

so that for 𝜉 = 0 the left interface coordinate 𝑠𝑖−1∕2 of the cell is retrieved, while for 𝜉 = 1 the right interface 𝑠𝑖+1∕2 is obtained. In 
the reference system we then define a set of nodal basis functions 𝜃𝑚(𝜉) which are chosen to be the Lagrange polynomials passing 
through the set of nodes 𝜉𝑚 = 𝑚∕𝑁 with 0 ≤ 𝑚 ≤ 𝑁 . Furthermore, the standard interpolation condition 𝜃𝑞(𝜉𝑚) = 𝛿𝑞𝑚 holds for the 
basis, with 𝛿𝑞𝑚 being the usual Kronecker symbol. Up to degree 𝑁 = 3 the nodal basis functions 𝜃𝑚(𝜉) with associated nodes 𝜉𝑚
explicitly write as follows:

• 𝑁 = 1

𝜃1 = 1 − 𝜉 𝜃2 = 𝜉

𝜉1 = 0 𝜉2 = 1
(25)

• 𝑁 = 2

𝜃1 = 1 − 3𝜉 + 2𝜉2 𝜃2 = 4𝜉 − 4𝜉2 𝜃3 = −𝜉 + 2𝜉2

𝜉1 = 0 𝜉2 = 1∕2 𝜉3 = 1
(26)

• 𝑁 = 3

𝜃1 = 1 − 11
2 𝜉 + 9𝜉2 − 9

2 𝜉
3 𝜃2 = 9𝜉 − 45

2 𝜉2 + 27
2 𝜉3

𝜃3 = −9
2 𝜉 + 18𝜉2 − 27

2 𝜉3 𝜃4 = 𝜉 − 9
2 𝜉

2 + 9
2 𝜉

3

𝜉1 = 0 𝜉2 = 1∕3
𝜉3 = 2∕3 𝜉4 = 1

(27)

The integral over cell 𝑖 in (23) can be performed in the reference system at the aid of a change of variables 𝐱→ 𝜉, hence obtaining

𝐱𝑖+1∕2

∫
𝐱𝑖−1∕2

𝑑𝑙 =

1

∫
0

|𝐽𝜉 |𝑑𝜉, (28)

with the Jacobian determinant given by

|𝐽𝜉 | =
√(

𝜕𝑥

𝜕𝜉

)2
+
(

𝜕𝑦

𝜕𝜉

)2
+
(

𝜕𝑧

𝜕𝜉

)2
. (29)

The computation of the derivatives in (29) is done as usual by exploiting the expansion of the basis functions 𝜃(𝜉), thus for a generic 
spatial coordinate 𝑠 it holds

𝜕𝑠

𝜕𝜉
=

𝜕𝜃𝑚(𝜉)
𝜕𝜉

𝑠̂𝑚, (30)

where the degrees of freedom 𝑠̂𝑚 represent the value of the coordinate 𝑠 corresponding to the reference node 𝜉𝑚. To be precise, 
the values 𝑠̂𝑚 are computed according to (31), relying on the SHOT-R reconstruction polynomial. Finally, the integration in (28) is 
numerically approximated by Gaussian quadrature formulae of suitable order of accuracy [40].

3.6. Computation of position, velocity and acceleration

The reconstruction polynomials 𝑝𝑁
𝑖
(𝑠, 𝑡) provide a piecewise continuous representation of the trajectory within each cell 𝑖 along 

the generic spatial direction 𝑠 as a function of time 𝑡. Thus, the kinematic description (position 𝑠, velocity 𝑣𝑠 and acceleration 𝑎𝑠) of 
the particle at any given time 𝑡 can be easily computed in two steps:

• find the computational cell containing 𝑡, i.e. 𝑖 ∈ [1, 𝑁𝐼 ] such that 𝑡𝑖−1∕2 ≤ 𝑡 ≤ 𝑡𝑖+1∕2, so that the associated reconstruction poly-
7

nomial 𝑝𝑁
𝑖
(𝑠, 𝑡) can be identified;
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• extract the kinematic quantities

𝑠(𝑡) = 𝑝𝑁
𝑖
(𝑠, 𝑡) =

𝑁∑
𝑞=0

(𝑡− 𝑡𝑖)𝑞

𝑞!Δ𝑡
𝑞

𝑖

𝑠̂𝑖, (31)

𝑣𝑠(𝑡) =
𝑑 𝑝𝑁

𝑖
(𝑠,𝑡)

𝑑𝑡
=

𝑁∑
𝑞=1

𝑞(𝑡− 𝑡𝑖)𝑞−1

𝑞!Δ𝑡
𝑞

𝑖

𝑠̂𝑖, (32)

𝑎𝑠(𝑡) =
𝑑2 𝑝𝑁

𝑖
(𝑠,𝑡)

𝑑𝑡2
=

𝑁∑
𝑞=2

𝑞(𝑞 − 1)(𝑡− 𝑡𝑖)𝑞−2

𝑞!Δ𝑡
𝑞

𝑖

𝑠̂𝑖. (33)

The above definitions are referred to as instantaneous quantities. We also need to give explicit formulation for the global average 
speed 𝑣𝐿, the displacement velocity 𝑣𝐷 and the mean of instantaneous velocities within each frame 𝑣̄𝑀 . These definitions are 
mathematically described as follows:

𝑣𝐿 = 𝐿

𝑡𝑁𝐾
− 𝑡1

, 𝐿 =

𝐱𝑁𝐾

∫
𝐱1

𝑑𝑙, (34)

𝑣𝐷 =
𝑠𝑁𝐾

− 𝑠1

𝑡𝑁𝐾
− 𝑡1

, (35)

𝑣𝑀 = 1
𝑁𝐼

𝑁𝐼∑
𝑖=1

𝑣𝑖, 𝑣𝑖 =
𝑠𝑖+1 − 𝑠𝑖

𝑡𝑖+1 − 𝑡𝑖
, (36)

with 𝑠 denoting as usual a generic spatial direction among 𝐱 = (𝑥, 𝑦, 𝑧). The length of the trajectory 𝐿 in (34) is computed as the 
integral along the curvilinear path from 𝐱1 to 𝐱𝑁𝐾

according to (23). Finally, the instantaneous velocity at a generic space-time 
coordinate (𝑠, ̃𝑡) can be simply evaluated relying on the velocity reconstruction polynomial, thus according to (32).

In order to fully exploit the piecewise continuous information provided by the high order reconstruction, the evaluation of all 
instantaneous kinematic quantities (position, velocity and acceleration) is extracted on a very fine computational mesh given by 
𝑁 + 1 Gauss points within each computational cell, hence leading to exact integration up to order 2(𝑁 + 1) − 1 (see [40]) within 
each cell.

4. Numerical results

The test suite is chosen such that we rigorously validate the accuracy of our method from the mathematical viewpoint, but we 
also propose some test cases to demonstrate the applicability of the algorithm to biological datasets.

All data are analyzed with Prism (GraphPad 6 or 7) and for all statistical tests the significance level is 𝛼 = 0.05. The exact number 
of replicates, the type of statistical tests and p-values are reported in Figure legends. We use the abbreviation SPT for referring to 
SPT followed by linear linking, while our new reconstruction algorithm is addressed with SHOT-R.

4.1. Numerical convergence studies

The order of accuracy 𝑝 > 0 of a numerical method is also defined as the largest value of 𝑝 for which the following inequality 
holds [41]:

𝜀(Δ𝑡) ≤ 𝐶 Δ𝑡𝑝, (37)

where 𝜀(Δ𝑡) is the error of the numerical solution, which depends on the mesh size Δ𝑡. The constant 𝐶> 0 depends on the problem 
but is independent of Δ𝑡, this is also written thus

𝜀 =(Δ𝑡𝑝), as Δ𝑡→ 0. (38)

In other words, the numerical error must decrease with convergence rate of (Δ𝑡𝑝) as the mesh size decreases. Given two regular 
meshes with mesh sizes Δ𝑡1 and Δ𝑡2, respectively, and the same numerical method, we have a fixed relationship between the meshes 
which writes

𝜀(Δ𝑡1) = 𝐶Δ𝑡
𝑝

1, (39)

𝜀(Δ𝑡2) = 𝐶Δ𝑡
𝑝

2. (40)

Dividing (40) by (39) we obtain(
Δ𝑡2

)𝑝
𝜀(Δ𝑡2)
8

Δ𝑡1
=

𝜀(Δ𝑡1)
, (41)
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which leads to

𝑝 =
ln
(

𝜀(Δ𝑡2)
𝜀(Δ𝑡1)

)
ln
(
Δ𝑡2
Δ𝑡1

) , (42)

that is the empirical order of accuracy. It must be 𝑝 = 𝑁 + 1, meaning that a numerical scheme with reconstructions of degree 𝑁
introduces numerical errors starting from degree 𝑁 +1, that is a polynomial of degree 𝑁 can be exactly reconstructed. In practice one 
performs numerical experiments for a sequence of refined meshes {Δ𝑡1, Δ𝑡2, … , Δ𝑡𝐾} with usually a fixed ratio between successive 
meshes of sizes Δ𝑡𝑘 and Δ𝑡𝑘+1. For example Δ𝑡𝑘+1 =

Δ𝑡𝑘

2 . A sequence of numbers {𝑝2, 𝑝3, … , 𝑝𝐾} is then retrieved which is given by

𝑝𝑘 =
ln
(

𝜀(Δ𝑡𝑘)
𝜀(Δ𝑡𝑘−1)

)
ln
(

Δ𝑡𝑘

Δ𝑡𝑘−1

) , 𝑘 = 2,… ,𝐾. (43)

To carry out the convergence studies, we consider the time interval 𝑇 = [−1; 1] and we prescribe the following analytical trajectory 
in 3D:

𝐱 = (𝑥, 𝑦, 𝑧) = (sin(𝜋𝑥) cos(2𝜋𝑥), 3cos(2𝜋𝑦) − 2 sin(𝜋𝑦), −6sin(𝜋𝑧) + 2cos(3𝜋𝑧)) . (44)

The new SHOT-R method is then employed to reconstruct the trajectory along each direction and the errors 𝜀 are measured for 
each spatial direction (𝑥, 𝑦, 𝑧) in 𝐿1, 𝐿2 and 𝐿∞ norms according to (B.1). The exact solution is explicitly computed with (44), 
while the reconstructed position is evaluated according to (31). A sequence of four successively refined meshes is used with Δ𝑡 =
{100, 200, 400, 800} and the results are reported in Table 1. The errors are measured in the error norms described in Appendix B

(Fig. 2A), and the results numerically confirm that the SHOT-R algorithm is actually high order accurate (𝑁 + 1) for an arbitrary 
polynomial degree 𝑁 .

4.2. Comparison test against the SPT linear linking approach

This test is set up aiming at comparing the SHOT-R method against the SPT linear linking technique, demonstrating an improve-

ment over state-of-the-art linear tracking approaches. In particular, in a time computational domain 𝑇 = [𝑡0; 𝑡𝑓 ] = [0; 2], we prescribe 
the particle velocity given by

𝑣𝑥(𝑡) = 1 + tanh(5(𝑡− 1)), 𝑣𝑦(𝑡) = 2𝜋 cos(2𝜋 𝑡), (45)

from which it is possible to evaluate an analytical expression for the particle trajectory by integrating (45) over time 𝑡, thus

𝑥(𝑡) = ∫
𝑡

𝑣𝑥(𝑡)𝑑𝑡 = 2𝑡−
log(tanh(5(𝑡− 1)) + 1)

5
, (46)

𝑦(𝑡) = ∫
𝑡

𝑣𝑦(𝑡)𝑑𝑡 = sin(2𝜋 𝑡). (47)

As such, we describe through known functions (45)-(47) the shape of an hypothetical complex 𝑥𝑦-trajectory: along the 𝑥-axis 
the particle stalls, then accelerates and eventually moves at a constant velocity; while along 𝑦-axis it oscillates regularly (Fig. 2B-E). 
Three different mesh refinements are considered (Δ𝑡1, Δ𝑡2 and Δ𝑡3), for a total number of 𝑁1 = 21, 𝑁2 = 41 and 𝑁3 = 81 equidistant 
points of coordinates 𝐱𝑘 = (𝑥𝑘, 𝑦𝑘), simulating increasing frequencies of acquisition (increased input points 𝐱𝑘) and thus increasing 
temporal resolution (Fig. 3C). The particle trajectory is reconstructed and the velocity computed with both the linear linking (SPT) 
and SHOT-R.

While with an intermediate mesh density (Δ𝑡2) the position is overall nicely reconstructed by both SPT and SHOT-R, the velocity 
vector is more accurate using a higher order reconstruction (Fig. 2B-E, 3A-C). Noteworthy, in the reconstruction of the 𝑣𝑥 component, 
the SPT solution is not capable of reproducing the curve accurately, specifically where the velocity drastically increases (Fig. 2E). 
As measured in 𝐿1, 𝐿2 and 𝐿∞ norms according to (B.1) (Fig. 2A), the SHOT-R reconstruction systematically achieves better results 
with errors of about two orders of magnitude smaller with respect to the linear reconstruction SPT (Fig. 3A-C). Moreover, the SHOT-

R method results to be consistent and convergent, with decreasing errors by increasing the computational mesh resolution (i.e. the 
more known points 𝐱𝑘 are given as input, the lower are the errors generated by the reconstruction procedure).

In conclusion, the convergence analysis and the mathematical test validate the accuracy and the robustness of SHOT-R, and show 
its increased accuracy compared to SPT in computing velocity.

4.3. Velocity reconstruction and backward trajectory integration on biological datasets

As expected, SHOT-R exhibits higher resolution in the reconstruction of the velocity on a mathematical test case (Fig. 2E, 3A-C), 
thus finally we investigate whether our numerical model applied to a biological dataset will produce similar results. In particular, 
9

the novel method is tested on a recent study of pre-miR-181a-1 trafficking along axons [5]. Previously, pre-miR-181a-1 kinematics 
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n 𝐿1, 𝐿2 and 𝐿∞ norms are reported for all position components 

zontal position 𝑧

(𝐿1) 𝜀𝐿2
(𝐿2) 𝜀𝐿∞

(𝐿∞)

e-3 - 6.24e-3 - 7.62e-3 -

e-3 2.00 1.56e-3 2.00 1.91e-3 2.00

e-4 2.00 3.90e-4 2.00 4.77e-4 2.00

e-4 2.00 9.75e-5 2.00 1.19e-4 2.00

zontal position 𝑧

(𝐿1) 𝜀𝐿2
(𝐿2) 𝜀𝐿∞

(𝐿∞)

e-3 - 9.49e-4 - 1.38e-3 -

e-4 3.04 1.16e-4 3.03 1.72e-4 3.00

e-5 3.01 1.45e-5 3.01 2.15e-5 3.00

e-6 3.00 1.81e-6 3.00 2.69e-6 3.00

zontal position 𝑧

(𝐿1) 𝜀𝐿2
(𝐿2) 𝜀𝐿∞

(𝐿∞)

e-4 - 2.69e-4 - 6.88e-4 -

e-5 3.99 1.68e-5 4.00 4.94e-5 3.80

e-6 4.01 1.03e-6 4.03 3.19e-6 3.95

e-8 4.01 6.34e-8 4.02 2.01e-7 3.99

zontal position 𝑧

(𝐿1) 𝜀𝐿2
(𝐿2) 𝜀𝐿∞

(𝐿∞)

e-5 - 4.89e-5 - 1.88e-4 -

e-6 5.17 1.23e-6 5.32 3.31e-6 5.83

e-8 5.06 3.66e-8 5.07 5.48e-8 5.92

e-9 5.01 1.14e-9 5.01 1.57e-9 5.12

zontal position 𝑧

(𝐿1) 𝜀𝐿2
(𝐿2) 𝜀𝐿∞

(𝐿∞)

e-5 - 1.29e-5 - 4.73e-5 -

e-7 5.91 2.20e-7 5.87 1.19e-6 5.31

e-9 6.02 3.26e-9 6.07 2.07e-8 5.85

e-11 6.02 4.85e-11 6.07 3.31e-10 5.97
Table 1

Convergence table Numerical convergence rates obtained with high order accurate reconstruction of the velocity field given in Section B of the article. Errors i
(𝑥, 𝑦, 𝑧) with associated order of accuracy  on a sequence of refined mesh with characteristic size Δ𝑡.

𝐍 = 𝟏

horizontal position 𝑥 horizontal position 𝑦 hori

Δ𝑡 𝜀𝐿1
(𝐿1) 𝜀𝐿2

(𝐿2) 𝜀𝐿∞
(𝐿∞) 𝜀𝐿1

(𝐿1) 𝜀𝐿2
(𝐿2) 𝜀𝐿∞

(𝐿∞) 𝜀𝐿1

1.00e-2 1.89e-3 - 1.49e-3 - 1.64e-3 - 5.06e-3 - 4.00e-3 - 4.60e-3 - 7.74

5.00e-3 4.73e-4 2.00 3.72e-4 2.00 4.11e-4 2.00 1.27e-3 2.00 1.00e-3 2.00 1.15e-3 2.00 1.94

2.50e-3 1.18e-4 2.00 9.31e-5 2.00 1.03e-4 2.00 3.16e-4 2.00 2.50e-4 2.00 2.88e-4 2.00 4.84

1.25e-3 2.95e-5 2.00 2.33e-5 2.00 2.57e-5 2.00 7.91e-5 2.00 6.25e-5 2.00 7.20e-5 2.00 1.21

𝐍 = 𝟐

horizontal position 𝑥 horizontal position 𝑦 hori

Δ𝑡 𝜀𝐿1
(𝐿1) 𝜀𝐿2

(𝐿2) 𝜀𝐿∞
(𝐿∞) 𝜀𝐿1

(𝐿1) 𝜀𝐿2
(𝐿2) 𝜀𝐿∞

(𝐿∞) 𝜀𝐿1

1.00e-2 2.80e-4 - 2.49e-4 - 6.16e-4 - 4.86e-4 - 4.14e-4 - 5.91e-4 - 1.11

5.00e-3 3.43e-5 3.03 3.02e-5 3.04 8.16e-5 2.92 5.96e-5 3.03 5.13e-5 3.01 7.39e-5 3.00 1.35

2.50e-3 4.23e-6 3.02 3.69e-6 3.03 1.03e-5 2.98 7.42e-6 3.01 6.41e-6 3.00 9.24e-6 3.00 1.68

1.25e-3 5.25e-7 3.01 4.55e-7 3.02 1.30e-6 2.99 9.27e-7 3.00 8.01e-7 3.00 1.15e-6 3.00 2.09

𝐍 = 𝟑

horizontal position 𝑥 horizontal position 𝑦 hori

Δ𝑡 𝜀𝐿1
(𝐿1) 𝜀𝐿2

(𝐿2) 𝜀𝐿∞
(𝐿∞) 𝜀𝐿1

(𝐿1) 𝜀𝐿2
(𝐿2) 𝜀𝐿∞

(𝐿∞) 𝜀𝐿1

1.00e-2 7.66e-5 - 6.60e-5 - 1.04e-4 - 9.05e-5 - 8.24e-5 - 2.27e-4 - 2.99

5.00e-3 4.68e-6 4.03 4.01e-6 4.04 4.94e-6 4.39 5.61e-6 4.01 5.00e-6 4.04 1.50e-5 3.92 1.88

2.50e-3 2.90e-7 4.01 2.50e-7 4.00 3.10e-7 3.99 3.47e-7 4.01 3.05e-7 4.04 9.51e-7 3.98 1.17

1.25e-3 1.81e-8 4.00 1.56e-8 4.00 1.94e-8 4.00 2.16e-8 4.01 1.88e-8 4.02 5.96e-8 4.00 7.29

𝐍 = 𝟒

horizontal position 𝑥 horizontal position 𝑦 hori

Δ𝑡 𝜀𝐿1
(𝐿1) 𝜀𝐿2

(𝐿2) 𝜀𝐿∞
(𝐿∞) 𝜀𝐿1

(𝐿1) 𝜀𝐿2
(𝐿2) 𝜀𝐿∞

(𝐿∞) 𝜀𝐿1

1.00e-2 1.18e-5 - 1.17e-5 - 4.77e-5 - 9.72e-6 - 8.65e-6 - 2.74e-5 - 5.11

5.00e-3 3.68e-7 5.01 3.67e-7 4.99 1.98e-6 4.59 2.76e-7 5.14 2.36e-7 5.20 4.66e-7 5.88 1.42

2.50e-3 1.11e-8 5.05 1.06e-8 5.12 6.60e-8 4.91 8.40e-9 5.04 7.21e-9 5.03 9.98e-9 5.55 4.27

1.25e-3 3.38e-10 5.04 3.09e-10 5.10 2.09e-9 4.98 2.61e-10 5.01 2.25e-10 5.00 3.12e-10 5.00 1.32

𝐍 = 𝟓

horizontal position 𝑥 horizontal position 𝑦 hori

Δ𝑡 𝜀𝐿1
(𝐿1) 𝜀𝐿2

(𝐿2) 𝜀𝐿∞
(𝐿∞) 𝜀𝐿1

(𝐿1) 𝜀𝐿2
(𝐿2) 𝜀𝐿∞

(𝐿∞) 𝜀𝐿1

1.00e-2 3.90e-6 - 3.91e-6 - 1.71e-5 - 1.92e-6 - 1.98e-6 - 9.03e-6 - 1.35

5.00e-3 5.63e-8 6.12 4.93e-8 6.31 1.57e-7 6.77 2.99e-8 6.01 2.99e-8 6.05 1.70e-7 5.73 2.24

2.50e-3 8.54e-10 6.04 7.33e-10 6.07 1.27e-9 6.94 4.58e-10 6.03 4.32e-10 6.11 2.77e-9 5.94 3.47

1.25e-3 1.32e-11 6.01 1.14e-11 6.01 1.49e-11 6.42 7.05e-12 6.02 6.39e-12 6.08 4.39e-11 5.98 5.36
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Fig. 2. Comparison test against SPT linear linking. (A) Schematic representation of error norms calculation Eq. (B.1). (B,C) XY-reference trajectory mimicking 
particle movement (B) and different mesh refinements simulating timelapse experiments at different acquisition frequency (C). Parameters used in the new mathe-

matical test: Eq. (45) and Eq. (47) x- and y-trajectory and velocity in a time computational domain 𝑇 = [𝑡0; 𝑡𝑓 ] = [0; 2]. (D,E) Qualitative comparison between SPT and 
SHOT-R in trajectory reconstruction (D) and in computing velocity (E) on given equations (45) and (47). (D,E) Δ𝑡2 mesh refinement. Abbreviations: 𝑃1, 𝑃2, 𝑃3, first, 
second, third degree polynomial; Δ𝑡, time intervals (mesh refinement); SHOT-R, Spatiotemporal High-Order Trajectory Reconstruction; SPT, single particle tracking.

was studied by kymograph analysis [5], while here we retrieve particle coordinates with TrackMate [34] and apply SHOT-R method. 
SHOT-R trajectory reconstruction is compared with the already existing SPT followed by linear linking methods (Fig. 4A,B). As 
observed for the comparison test (Fig. 2E, 3A-C), biological particle trajectories do not change depending on the polynomial recon-

struction (Fig. 4A, Fig. 5A,B). Indeed, the mean values of norm distribution were close to zero (i.e. 𝐿1, 0.08 μm; 𝐿2 and 𝐿∞, 0.03 μm) 
(Fig. 4A), suggesting a perfect overlap of the SPT and SHOT-R reconstructed trajectories (Fig. 5A,B). On the contrary, the computed 
velocities differ with mean errors greater than zero (𝐿1, 0.65 μm/s; 𝐿2, 0.24 μm/s; 𝐿∞, 0.26 μm/s) (Fig. 4B, Fig. 5C,D). Axonal 
particles moving faster than 0.5 μm/s are considered fast-moving puncta [5,42,43], hence such an average difference between the 
two approaches might interfere with the final data interpretation.

Investigating which method better approximates the real particle trajectory, and which one is more reliable in studying the 
particle kinematics remains a major challenge. Indeed, any experimental dataset is always a list of space-time coordinates without 
a continuous information of particle position during time. As such, it does not exist a reference solution, a known real kinematic 
behavior of a particle, and thus so far, there has not been a strategy to determine which analysis approach is more accurate over 
another one on a real experimental dataset. Here, to overcome the problem of the lack of an exact reference solution, we imple-

ment a test to check whether our model is significantly more accurate in computing velocities than available strategies (Fig. 6A). 
We underline that this approach can be applied to any method for particle kinematic analysis and any kind of experimental 
dataset.

First, 𝑥𝑦 trajectories of all particles are reconstructed with first and third polynomial degree (i.e. SPT and SHOT-R trajectories) 
based on the 𝐱𝑘 coordinates of all tracked particles (Fig. 6A, 1©). Second, velocity in 𝑥𝑦 is derived from SPT and SHOT-R trajectories 
(Fig. 6A, 2©). Third, the particle trajectories are then retrieved from the computed velocity by backward time integration of the ODE 
(1) through Runge-Kutta (RK) methods [41] obtaining the “RK-trajectories” (Fig. 6A 3©, Fig. 6B). Lastly, the reconstructed trajectories 
11

based on velocities for SPT and SHOT-R (i.e. RK-SPT and RK-SHOT-R trajectories) are compared to the real trajectory given by the 
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Fig. 3. Quantitative comparison test against SPT linear linking. (A-C) Quantitative comparison between SPT and SHOT-R in trajectory reconstruction (A,C) and 
in computing velocity (B,C) on given equations Eq. (45) and Eq. (47). Abbreviations: Δ𝑡, time intervals (mesh refinement); SPT, single particle tracking.

Fig. 4. Comparison of SPT and SHOT-R trajectories and computed velocities on a biological dataset. (A,B) Difference between SPT and SHOT-R reconstructed 
trajectory (A) or computed velocity (B) measured as error norms (𝐿1 , 𝐿2 , 𝐿∞) with (B.1). Abbreviations: SHOT-R, Space-time High-Order Trajectory Reconstruction; 
SPT, single particle tracking. Data information: each data point corresponds to a particle. Total number of analyzed particles: 372.

known data points 𝐱𝑘 (Fig. 6A 4©, Fig. 6B). The difference between the reference trajectory and the RK-SHOT-R trajectory, measured 
as error norm, is significantly reduced compared to the difference between the reference trajectory and the RK-SPT (Fig. 6C-E), both 
considering globally the curve (Fig. 6C,D), as well as the maximal difference in position obtained for each trajectory (Fig. 6E). This 
means that the velocities computed by SHOT-R are more accurate than those obtained by SPT, indeed the trajectories retrieved 
by backward time integration of SHOT-R velocities are more accurate than those retrieved with SPT (Fig. 6C,E). The Runge-Kutta 
schemes used for carrying out the time stepping are reported in Appendix C.

In summary, we have shown that, likewise for the mathematical test, SHOT-R method increases the accuracy in velocity recon-
12

struction on this real biological dataset.
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Fig. 5. Velocity reconstruction on a biological dataset. (A-D) Representative comparison of SPT and SHOT-R in 𝑥𝑦 trajectory reconstruction (A,B) and in computing 
velocity (C,D).

4.4. Investigation of SHOT-R dependency on SNR and different detection algorithm

Any dataset can be affected by noise due to the experimental conditions and to the setup used for data acquisition. In turn, 
noisy data affect the performance of detection and tracking algorithms [11], leading to shorter or fragmented tracks due to missed 
detection, and they are prone to errors in case of false positive detected particles. All-in-all noisy data lead to different space-time 
coordinates of the particles under consideration. Detection and tracking steps are independent of the chosen trajectory reconstruction 
technique, because they are ultimately responsible to only provide the input space-time coordinates upon which the trajectory is 
reconstructed. Therefore, the lower the quality of input data, either because of a high background noise or because of a less accurate 
detection and tracking procedure, the lower the quality of the reconstructed trajectory. The opposite holds true as well, making it 
clear that the trajectory reconstruction is an independent step.

Nevertheless, in this section we compare different algorithms of particle detection and of trajectory reconstruction on data with 
an increased background noise. The aim is to investigate how a variation in the input data impacts the different reconstruction 
methods. The background noise is measured by the signal-to-noise ratio (SNR) which is computed as

SNR = 10 log
(
𝜎𝑆∕𝜎𝑁

)
, (48)

where 𝜎𝑆 and 𝜎𝑁 denote the variance of the signal and the noise, respectively. The variance is evaluated as usual as the square of 
the standard deviation. The software TrackMate v5.2.0 [34] is then used to perform detection and tracking. Finally, the obtained 
13

space-time coordinates undergo a reconstruction algorithm with linear linking (SPT), SHOT-R and cubic spline. Cubic splines are 
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Fig. 6. Backward trajectory integration on a biological dataset. (A) Schematic of the pipeline to test SPT and SHOT-R accuracy in calculating velocity. Color 
code matches panel B. (B) Representative comparison of RK-SPT and RK-SHOT-R trajectory obtained by backward integration of the reconstructed velocity of a 
retrograde moving particle. (C-E) Difference between RK-SPT and RK-SHOT-R measured as error norms 𝐿1 (C), 𝐿2 (D), 𝐿∞ (E) of the reconstructed trajectory based 
on velocity trace. Abbreviations: SHOT-R, Spatiotemporal High-Order Trajectory Reconstruction; SPT, single particle tracking; RK, Runge-Kutta method for backward 
time integration. Data information: **** P < 0.0001. Values are median with interquartile range. Data are not normally distributed (Shapiro-Wilk test), two-tailed 
Wilcoxon matched pairs test. Each data point corresponds to a particle. Total number of analyzed particles: 372 (C-E).

widely employed in the reconstruction of particle trajectories [44,45], and they are based on a global reconstruction enforcing global 
continuity of the first derivative, thus making the obtained polynomial 1-differentiable.

To generate images having different signal to noise ratio (SNR), a random noise is applied to a representative timelapse of three 
moving particles (Fig. 7A). The standard deviation is assessed using the ImageJ “Measure” tool on a manually traced rounded region 
of interest (ROI) corresponding to each particle, and to the background. The SNR for the whole image is then obtained by averaging 
the SNR values of all the single particles contained in the field of view. To gradually decrease the SNR of the image from 16 to 8, 4 or 
2, a Gaussian-distributed random noise is added to the entire image using the “Add specific noise” option in ImageJ. This is achieved 
by increasing the standard deviation of the Gaussian-distributed noise. The intensity profiles of the three particles further illustrate 
how the random noise decreases the SNR of all of them (Fig. 7B). The intensity of the particles (i.e. gray levels in the plot profiles, 
Fig. 7B) is not homogeneous in the field of view and depending on the quality of the starting signal the decreased SNR differently 
affects particles detection and tracking (Fig. 7B). As expected, particles with low SNR values are difficult to be detected, giving rise 
to shorter or fragmented tracks (Table 2), as analyzed in [10].

Next, the obtained timelapse at different SNR is used as input for TrackMate. Particle coordinates are then obtained in TrackMate 
employing three different detection algorithms named DoG (differences of Gaussian), Hassian, and LoG (Laplacian of Gaussian). A 
different quality threshold is applied depending on the SNR of the tested images. The estimated diameter is set to 0.6 μm, median filter 
and sub-pixel localization options are selected in the detection step. The tracking settings are the same for all particles (detailed in 
Appendix A). In all the images, independently of the used detection technique, a Simple Linear Assignment Problem (LAP) algorithm 
performs the tracking. The obtained particle coordinates are used as input for the reconstruction algorithms: linear linking (SPT), 
SHOT-R and cubic spline.

We perform the test case described in Section 4.3, thus the reconstruction polynomial is employed to evaluate the velocity field in 
order to perform a background time integration of the trajectory for each particle under consideration with a time step of 𝑑𝜏 = 0.7. 
For linear linking (SPT) we use the second order Runge-Kutta scheme, while for SHOT-R and cubic spline we rely on the fourth order 
time integrator, see Appendix C. Errors are measure in 𝐿1, 𝐿2 and 𝐿∞ norms, see Appendix B. Being the reconstruction algorithms 
not designed for particle detection and tracking, we evaluate the impact of SNR variation in the reconstruction of the trajectories. 
Clearly, the missed detections due to low SNR (Table 2) are not recovered by applying any trajectory reconstruction algorithm. 
However, independently of the detection algorithm used to retrieve the particle spatio-temporal coordinates, the SHOT-R algorithm 
14

shows a more accurate trajectory reconstruction over both the linear linking (SPT) and the cubic spline (Fig. 7 C, Table 3).
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Fig. 7. Investigation of SHOT-R dependency on SNR and different detection algorithms. (A) Selected representative timelapse of three moving particles (1,2,3) 
at progressively altered SNR (a, b, c). SNR values are the average of the SNR of the three particles. SNR of each single particle is reported in Table 2. Dashed 
lines represent the boundary of the axon containing the moving particles. Scalebar: 5 μm. (B) Intensity plot profiles of particle 1, 2 and 3 reported in panel A, 
upon decreasing of the SNR (a, b, c). (C) Difference among SPT, cubic spline and SHOT-R measured as error norms 𝐿1 , 𝐿2 , 𝐿∞ of the reconstructed trajectory 
based on velocity trace. Abbreviations: SNR, signal-to-noise ratio; SHOT-R, Spatiotemporal High-Order Trajectory Reconstruction; SPT, single particle tracking. Data 
information: **** P < 0.0001. Values are mean with SEM of all the errors measured for all particles starting from different algorithms. Single values are reported in 
Table 3.

Table 2

Frames detected per particle depending on SNR. SNR, signal-to-noise ratio; Average SNR, average of the 
SNR of the single three particles rounded to the nearest integer, Algorithm 1, DoG detector + LAP tracker; 
Algorithm 2, Hessian detector + LAP tracker; Algorithm 3, LoG detector + LAP tracker. The SNR=16 
corresponds to the original dataset prior to noise application, and the Algorithm 1 is what was used for the 
tracking in the method validation presented in the previous sections. Therefore, row SNR=16 and column 
Algorithm 1 is the reference.

Average SNR Particle# SNR Particle Algorithm 1 Algorithm 2 Algorithm 3

16

Particle 1 14.01 67 28+28 66

Particle 2 14.73 300 107 + 34 300

Particle 3 20.51 300 300 300

8

Particle 1 4.75 67 58 67

Particle 2 7.20 297 102+35 298

Particle 3 11.49 300 300 300

4

Particle 1 1.65 44 31 64

Particle 2 4.62 110 52 133

Particle 3 4.93 298 278 + 23 300

2

Particle 1 -0.68 7 X (not detected at all) 8

Particle 2 3.05 48 11 47

Particle 3 4.62 242+7 143+152 255+15
15
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Table 3

Difference among SPT, cubic spline and SHOT-R measured as error norms 𝐿1 , 𝐿2, 𝐿∞ of the reconstructed trajectory based on velocity 
trace. Avg SNR, average signal-to-noise of the three particles in the field of view; P#, number of the particle; Alg, algorithms used for the detec-

tion and tracker: 1, DoG detector + LAP tracker; 2, Hessian detector + LAP tracker; Algorithm 3, LoG detector + LAP tracker. Abbreviations: 
SNR, signal-to-noise ratio; SHOT-R, Spatiotemporal High-Order Trajectory Reconstruction; SPT, single particle tracking.

Avg Par Alg L1 L2 L∞ L1 L2 L∞ L1 L2 L∞
SNR # SPT SPT SPT Spline Spline Spline SHOT-R SHOT-R SHOT-R

16

1 1 1.56E-01 3.71E-01 1.27E-00 2.06E-01 5.33E-01 2.05E-00 1.04E-01 2.99E-01 1.33E-00

2 1 9.62E-02 2.47E-01 1.15E-00 1.33E-01 3.13E-01 1.08E-00 1.10E-01 2.68E-01 9.09E-01

3 1 2.61E-01 6.33E-01 2.35E-00 1.33E-01 3.07E-01 1.05E-00 7.78E-02 1.87E-01 7.58E-01

8

1 1 1.79E-01 4.39E-01 1.72E-00 1.87E-01 4.29E-01 1.31E-00 1.38E-01 3.26E-01 1.06E-00

2 1 4.58E-01 1.44E-00 7.89E-00 2.21E-01 5.36E-01 2.42E-00 1.82E-01 4.47E-01 2.06E-00

3 1 1.41E-01 3.70E-01 1.21E-00 1.24E-01 2.66E-01 7.10E-01 7.07E-02 1.55E-01 4.43E-01

4

1 1 2.40E-01 5.93E-01 2.16E-00 3.70E-01 8.63E-01 2.80E-00 3.00E-01 6.93E-01 2.18E-00

2 1 2.56E-01 6.02E-01 1.96E-00 3.29E-01 7.40E-01 2.45E-00 2.14E-01 4.86E-01 1.68E-00

3 1 3.60E-01 8.86E-01 3.34E-00 1.79E-01 4.07E-01 1.30E-00 2.12E-01 4.94E-01 1.55E-00

2
2 1 3.99E-01 9.20E-01 2.90E-00 2.54E-01 6.00E-01 2.51E-00 1.74E-01 4.16E-01 1.74E-00

3 1 1.90E-01 4.42E-01 1.42E-00 1.53E-01 3.71E-01 1.47E-00 1.22E-01 2.61E-01 8.99E-01

16

1 2 1.51E-01 3.59E-01 1.19E-00 1.80E-01 4.62E-01 1.82E-00 9.38E-02 2.72E-01 1.34E-00

1 2 1.53E-01 3.48E-01 1.26E-00 1.53E-01 3.44E-01 1.14E-00 1.17E-01 2.59E-01 7.29E-01

2 2 7.09E-02 1.50E-01 3.86E-01 1.11E-01 2.42E-01 6.59E-01 9.99E-02 2.18E-01 5.80E-01

2 2 6.49E-02 1.60E-01 5.88E-01 9.79E-02 2.21E-01 6.70E-01 1.29E-01 3.02E-01 9.75E-01

3 2 8.12E-02 2.26E-01 8.15E-01 1.14E-01 2.54E-01 7.04E-01 1.32E-01 3.09E-01 8.87E-01

8

1 2 1.88E-01 4.50E-01 1.77E-00 1.32E-01 3.52E-01 1.68E-00 9.92E-02 2.36E-01 1.05E-00

2 2 8.18E-02 1.98E-01 8.92E-01 1.11E-01 2.53E-01 8.87E-01 1.05E-01 2.36E-01 7.00E-01

2 2 1.13E-01 2.67E-01 1.06E-00 1.50E-01 3.49E-01 1.08E-00 1.06E-01 2.35E-01 7.96E-01

3 2 3.37E-01 8.25E-01 2.38E-00 3.65E-01 8.24E-01 2.24E-00 2.74E-01 6.28E-01 1.76E-00

4

1 2 2.67E-01 6.23E-01 1.90E-00 3.36E-01 7.66E-01 2.23E-00 3.10E-01 7.05E-01 2.08E-00

2 2 1.19E-01 3.01E-01 1.09E-00 7.79E-02 1.85E-01 7.47E-01 4.20E-02 1.02E-01 3.46E-01

3 2 2.77E-01 5.88E-01 1.57E-00 3.63E-01 7.63E-01 1.93E-00 1.84E-01 3.90E-01 1.09E-00

3 2 1.44E-01 3.22E-01 8.72E-01 1.37E-01 2.97E-01 7.38E-01 8.51E-02 1.86E-01 5.45E-01

2
3 2 3.72E-01 8.87E-01 3.11E-00 1.40E-01 3.47E-01 1.68E-00 1.31E-01 3.28E-01 1.52E-00

3 2 2.68E-01 6.34E-01 2.62E-00 2.23E-01 5.34E-01 2.53E-00 1.40E-01 3.34E-01 1.45E-00

16

1 3 2.65E-01 6.43E-01 2.32E-00 1.14E-01 2.64E-01 1.00E-00 8.41E-02 1.96E-01 7.59E-01

2 3 1.54E-01 3.66E-01 1.20E-00 2.22E-01 5.65E-01 2.14E-00 1.09E-01 3.12E-01 1.37E-00

3 3 4.57E-02 1.25E-01 4.25E-01 7.13E-02 1.55E-01 4.59E-01 6.63E-02 1.51E-01 4.47E-01

8

1 3 1.80E-01 4.40E-01 1.73E-00 1.94E-01 4.43E-01 1.32E-00 1.44E-01 3.39E-01 1.12E-00

2 3 4.34E-01 1.35E-00 7.49E-00 2.10E-01 5.15E-01 2.21E-00 1.78E-01 4.37E-01 2.14E-00

3 3 7.86E-02 1.85E-01 5.24E-01 9.44E-02 2.03E-01 6.11E-01 7.78E-02 1.65E-01 4.20E-01

4

1 3 2.68E-01 6.36E-01 2.19E-00 3.74E-01 8.78E-01 2.93E-00 2.96E-01 6.91E-01 2.20E-00

2 3 1.13E-01 2.82E-01 9.85E-01 1.46E-01 3.41E-01 1.17E-00 1.27E-01 3.03E-01 1.05E-00

3 3 3.15E-01 7.71E-01 2.96E-00 3.26E-01 7.42E-01 2.54E-00 1.87E-01 4.26E-01 1.49E-00

2
2 3 4.28E-01 1.01E-00 3.44E-00 2.34E-01 5.59E-01 2.28E-00 1.60E-01 4.03E-01 1.77E-00

3 3 1.03E-01 2.56E-01 1.09E-00 2.44E-01 5.34E-01 1.61E-00 1.57E-01 3.48E-01 1.13E-00

Comparison with cubic splines Finally, to statistically compare the errors generated by the SHOT-R and the cubic spline algorithms, 
we perform the same test illustrated in Section 4.3 considering SHOT-R and cubic spline reconstructions over the entire dataset. 
The new SHOT-R algorithm always provides lower errors in all norms, thus proving higher accuracy in the tested biological dataset 
(Fig. 8).

We also measure the computational cost of the SHOT-R algorithm compared against the SPT scheme and the cubic spline. All 
three methods are run 10 times on the entire biological dataset used in Section 4.3 and 4.4, and the computational time is measured 
in seconds. The results are reported in Table 4. For SHOT-R, we separately monitor the cost of three different parts of the algorithm: 
i) central (unlimited) reconstruction, which corresponds to the solution of system (14); ii) one-sided linear polynomials evaluated 
with (18); iii) nonlinear WENO weights given by (20)-(21). As expected, the SPT reconstruction is the less expensive method, though 
the less accurate, since it does not even need any form of nonlinear limiting, being intrinsically compliant with the discrete maximum 
principle on the interpolated quantity. On the other hand, the unlimited central reconstruction of SHOT-R is always less expensive 
than the cubic spline, because no global linear system on the entire computational mesh has to be solved in the SHOT-R scheme. 
If the reconstructed trajectory is smooth enough, one could only use this part of the algorithm to interpolate the desired quantity 
over the computational domain, hence using the most efficient scheme among the three. However, if discontinuous profiles are 
present, the nonlinear CWENO reconstruction generates an additional computational cost for the evaluation of the one-sided linear 
16

polynomials and the final nonlinear weights. This leads to higher computational efforts compared to cubic splines, which however 
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Table 4

Computational cost of three different reconstruction algorithms run 10 times on the entire dataset used in 
Section 4.3 and 4.4. The schemes are as follows: SPT followed by linear linking, SHOT-R with P3, cubic splines. 
For SHOT-R we distinguish three parts of the algorithm: central reconstruction, one-sided reconstruction, 
computation of the nonlinear weights for the CWENO limiter. The computational time is given in seconds [s], 
and the average computational times are provided in the last line of the table.

# Run SPT SHOT-R Cubic Spline

Central Rec. One-sided Rec. CWENO weights Total time

1 0.3437 0.4675 0.2812 0.1562 0.9049 0.5781
2 0.2500 0.3594 0.1875 0.1719 0.7188 0.7656
3 0.2031 0.4062 0.2500 0.0781 0.7343 0.6406
4 0.1406 0.2656 0.1875 0.0780 0.5311 0.6719
5 0.1875 0.2344 0.2031 0.1094 0.5469 0.6406
6 0.0937 0.5469 0.2344 0.1719 0.9532 0.6875
7 0.1562 0.5312 0.2187 0.1718 0.9217 0.5625
8 0.1719 0.3906 0.2812 0.1562 0.8280 0.6719
9 0.1719 0.4219 0.2500 0.1562 0.8281 0.5781
10 0.1719 0.4219 0.2188 0.2812 0.9219 0.5469

Avg 0.1890 0.7889 0.6344

Fig. 8. Comparison SHOT-R and spline reconstruction based on backward trajectory integration on a biological dataset. Difference between SHOT-R and cubic 
Spline measured as error norms 𝐿1, 𝐿2 , 𝐿∞ of the reconstructed trajectory based on velocity trace. Abbreviations: SHOT-R, Spatiotemporal High-Order Trajectory 
Reconstruction. Data information: **** P < 0.0001. Values are median with interquartile range. Data are not normally distributed (Shapiro-Wilk test), two-tailed 
Wilcoxon matched pairs test. Each data point corresponds to a particle. Total number of analyzed particles: 372.

remain unbounded and possibly prone to oscillations. Despite a larger computational effort, SHOT-R exhibits higher accuracy as 
evident from Table 3 at a computational cost that is 25% larger than the cubic spline.

4.5. An example of application to hydraulics

In order to show the versatility of the SHOT-R method, we consider a completely different application in hydraulics: water 
hammering. This phenomenon is generated by a high pressure wave traveling in a pressurized pipe, commonly used for instance in 
water supply systems. The normal operational setting of the pipeline is given by a constant flow, hence leading to a linear pressure 
drop and a constant velocity in the pipe. If the flow is suddenly forced to stop because of the closure of a valve at the end of the 
pipeline, a strong pressure wave arises which may yield severe problems like vibrations or even the rupture of the pipe. This huge 
pressure jump travels backward and forward along the pipe, and it is also called water hammer or hydraulic shock in hydraulics, see 
[46].

For this test, we trace a particle that travels in a pipe of length 1 𝑘𝑚 with an equilibrium radius of 𝑅0 = 0.15 𝑚. The water 
demand at the end of the pipe is of 50 liters per seconds, and the pressure prescribed at the beginning of the tube is 0.59 𝐺𝑃𝑎 that is 
equivalent to a water column of 50 𝑚. The viscous flow is modeled by the Darcy-Weisbach relation, and an elastic pipe with rigidity 
coefficient of 𝛽 = 1.7𝑒11 is considered for the solid material. The reference trajectory of the particle is computed numerically by 
means of a one-dimensional semi-implicit algorithm, similar to the one presented in [47]. The fluid initially accelerates up to the 
steady velocity of 0.7074 𝑚∕𝑠. At 𝑡 = 50.5 𝑠, the water demand is stopped by a very fast operation of 0.1 𝑠, mimicking the sudden 
closure of a valve in the pipeline. The particle is initially placed at 𝑥 = 500 𝑚 and is tracked during the operation. The resulting 
position is shown in the top left panel of Fig. 9 where the effect of the hydraulic shock leads to a fast change of the particle velocity 
17

in the pipeline.
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Fig. 9. Water hammering example. Top: reference particle trajectory (left) and errors in 𝐿1, 𝐿2 and 𝐿∞ norm of the backward integrated trajectory using SPT, SHOT-R 
and spline reconstructions for the head and the tail of the pipe (time interval [0; 49] for the head and [50; 60] for the tail). Bottom: comparison of the reconstructed 
trajectory for SPT and SHOT-R against the reference solution with a zoom on the head (left) and on the tail (right) of the pipe.

This dataset is then used to perform a high order trajectory reconstruction with the new SHOT-R method. Both position and 
velocity of the particle are reconstructed, and the same test presented in Section 4.3 is carried out. Therefore, the trajectory of the 
particle is integrated backward in time using the reconstructed velocity till the initial time of the reference trajectory is achieved. 
The same trajectory integration is carried out also employing a second order accurate SPT algorithm as well as a cubic spline 
reconstruction. In Fig. 9 we plot the comparison of SPT and SHOT-R reconstructed trajectories against the reference solution, where 
one can clearly notice the better approximation achieved by the SHOT-R method. The improvement is particularly evident at the 
end of the time series, where the pressure wave causes severe oscillations in the particle trajectory. On the other hand, if the 
trajectory is almost linear, as before the pipe closure, even a simple SPT method provides very good results since it is capable of 
exactly reproducing second order trajectories. On the right panel of Fig. 9, a table reports the errors obtained with SPT, SHOT-R 
and spline reconstruction algorithms, confirming that the SHOT-R method systematically achieves a lower error. In fact, the errors 
are measured both for the head and the tail of the trajectory by separately analyzing the time intervals [0; 49] 𝑠 and [50; 60] 𝑠, 
respectively. The results obtained with the spline reconstruction are comparable with the ones of SHOT-R in terms of error norms, 
while both outperform the SPT linear approach over the entire trajectory.

5. Conclusions

In live-imaging, a series of frames capturing particle position over time is acquired. Retrieving trajectories from these images 
means approximating the entire particle path. Any linear linking algorithm describes a particle path by joining the known spatial 
coordinates with straight lines. Here, we reconstruct particle trajectories using polynomials of higher accuracy than second order 
(i.e. simple straight lines) to better simulate the original trajectory under study.

The reconstruction process is based on the construction of local high order polynomials within each time interval, that are 
expressed in terms of an expansion with modal Taylor basis functions. To control the spurious oscillations that may arise from the 
interpolation of discontinuous datasets, we rely on a CWENO limiting strategy. Differently from spline interpolations, that require 
the solution of a global system on the entire computational grid, we solve local overdetermined linear systems with constraints that 
18

ensure the resulting polynomial to be continuous at cell boundaries.
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We face two different challenges: i) the reconstruction of 3D curvilinear trajectories in time (i.e. solving a 4D computational 
reconstruction), ii) the demonstration of more accurate results using SHOT-R over SPT and linear linking considering the lack of 
a reference solution in real live-imaging experiment. In our method, we solve these two problems, making them two strengths of 
SHOT-R itself. First, to overcome the computational challenge of solving a 4D problem, SHOT-R reconstructs particle trajectories 
starting from the raw space-time coordinates and splitting the trajectories along each spatial direction (𝑥, 𝑦, 𝑧), then it reassembles 
the 4D information by gathering the reconstruction along each axis in 1D without sacrificing the spatial or temporal resolution. The 
second challenge is approached by measuring the difference between the initial reconstructed trajectory and the one retrieved from 
the velocities by backward time integration (Fig. 6). The more accurate the velocity the smaller the difference between the two 
trajectories. We consider this as an important test to quantify how much our method gains in accuracy compared to SPT in any tested 
dataset. Indeed, when the particles under study do not move or move at a constant velocity, SHOT-R is not expected to bring more 
information than what the classical SPT and linear linking do (Fig. 2). On the other hand, when the moving object (e.g. molecules, 
virus, vesicles, organelles, or whole cells) shows changes in direction and/or velocity, SHOT-R improves the accuracy in the analysis.

Beside checking the accuracy of SHOT-R over SPT current strategies, it is crucial to understand which are the new information that 
can be extracted using the novel algorithm. Specifically, SHOT-R is based on high order and piecewise continuous trajectory recon-

structions, hence broadening the range of information that can be unraveled on particle kinematics. Indeed, a higher order method 
improves the accuracy in computing particle velocities and would allow to investigate novel kinematics features (i.e. acceleration). 
Moreover, the SHOT-R continuum trajectory reconstruction would enable i) to assess instantaneous velocity and acceleration at any 
space-time point, ii) to define phenomena based on time independently of the frequency in acquisition (e.g. pausing defined for 
a temporal threshold in seconds and not in frames), iii) to study co-trafficking events by automatically identify particles moving 
together, defining a common reference trajectory thus enabling to uncover the kinematics of co-trafficking.

Our numerical scheme is extremely versatile: it could be applied to any live-imaging experiment where the space-time coordinates 
can be retrieved. An application to hydraulics has also been shown to further demonstrate the flexibility of the proposed approach 
which is independent of the tracked physical phenomenon. In order to address different biological questions, SHOT-R could provide 
an overview on particle dynamics based on the entire trajectory or portions of trajectory, from average to instantaneous behavior, 
accounting for complex bidirectional motions interspersed with pauses. Moreover, it would enable to study particle directionality 
along different reference vectors depending on the biological questions, and to investigate the kinematics of co-trafficked particles.

Future research will concern the inclusion of uncertainty quantification that is linked to the acquisition process. To allow for a 
non-intrusive analysis, one might employ collocation methods to account for the uncertainty in the spatial coordinates, as recently 
proposed in the context of epidemic data [48].
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Appendix A. Particle coordinates

In our biological applications, pre-miRNAs particle 𝑥𝑦 coordinates are extracted from published movies [5] with TrackMate v5.2.0 
[34]. Raw movies are cropped the axonal portion to analyze. The leading tip of the axon, the growth cone, is kept on the right side of 
each crop, which is not included in the analysis since the high density in particle signal does not allow to recognize single pre-miRNA 
puncta. Occasionally, background correction with rolling ball pixel size 10 is applied to increase signal to noise ratio in ImageJ. 
Difference of Gaussian particle detection (DoG) is used as detector in TrackMate. The estimated diameter is set to 0.6 μm and the 
threshold in the TrackMate detection step is fixed from 10 to 400 depending on the signal to noise ratio of each movie. Median 
filter, reducing the generation of spurious spots in case of salt and pepper noise, and sub-pixel localization options are selected. The 
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tracking settings are: link max distance “1”; gap closing max distance “2” and gap closing max frame gap “4” (for movies with single 
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channel acquisition); link max distance “5”; gap closing max distance “2” and gap closing max frame gap “1” (for movies with both 
green and red channel). Splitting or merging events are not expected, hence Simple Linear Assignment Problem (LAP) Tracker is 
used. No filters are applied to the track step. The automatically tracked lines are manually checked and minor adjustments applied 
(i.e. remove signal coming from other axons present in the same field; link tracks belonging to the same particle, only when the 
particle is visible but not detected due to the applied threshold). Prior to analysis a filter on number of consecutive frames per track 
is applied in order to clear spurious links done by the automatic tracking. For movies on pre-miRNA endogenous trafficking the 
minimal number of frames is set at 20, for co-trafficking movies at 5.

Appendix B. Computing error norms

To quantitatively appreciate the accuracy of the results, the errors between the reconstructed and a reference solution for both 
position and velocity are measured in 𝐿1, 𝐿2 and 𝐿∞ norms, that for a generic spatial direction 𝑠 are

𝐿1 = ∫
Ω

‖‖𝑠𝑒(𝑡) − 𝑠ℎ(𝑡)‖‖𝑑𝑡,
𝐿2 =

√√√√∫
Ω

‖‖𝑠𝑒(𝑡) − 𝑠ℎ(𝑡)‖‖2 𝑑𝑡,
𝐿∞ =max

Ω
‖‖𝑠𝑒(𝑡) − 𝑠ℎ(𝑡)‖‖ . (B.1)

The reference solution 𝑠𝑒 depends on the specific application. In particular, it is given by (47) and (45) for position and velocity 
(Fig. 3, 4) or the 𝑃3 polynomial (Fig. 6). Then, 𝑠ℎ(𝑡) denotes the numerical solution computed with SHOT-R (or the linear recon-

struction in Fig. 3, 4). The integrals appearing in (B.1) are evaluated using Gaussian quadrature formulae of suitable accuracy (see 
[40]).

Appendix C. Backward integration of particle trajectory

The results shown in Fig. 6C-E have been obtained by integrating backward in time the trajectory of the particle using the SHOT-R 
strategy. From the mathematical viewpoint, this corresponds to the solution of the ODE

𝑑𝐱
𝑑𝑡

= −𝐯(𝐱, 𝑡), 𝐱0 = 𝐱𝑁𝐾
, 𝑡 ∈ [0; 𝑡𝑁𝐾

− 𝑡1], (C.1)

with  = 2 and therefore 𝐱 = (𝑥, 𝑦) and 𝐯 = (𝑣𝑥, 𝑣𝑦). The initial condition 𝐱0 of the ODE is given by the 𝑥𝑦 position of the particle at 
the end of the trajectory, which coincides with the last input point 𝑁𝐾 . We proceed as follows. Firstly, SHOT-R method is employed 
for reconstructing the particle trajectory, i.e. for obtaining 𝑝𝑁

𝑖
(𝐱, 𝑡) for all cells 𝑖. Secondly, the velocity vector 𝐯𝑖 is computed with 

(32), hence obtaining a high order velocity field defined within each computational cell. Finally, (C.1) is solved up to the final time 
𝑡𝑓 = 𝑡𝑁𝐾

− 𝑡1 in such a way that the position of the particle at the beginning of the trajectory is retrieved. Obviously, due to numerical 
approximation, this will never coincide with the input coordinates of the first point 𝐱1. However, we have shown that higher order 
reconstructions provide a more accurate results, that is the final reconstructed coordinates which arise from the solution of the ODE 
(C.1) are closer to the original first point of the trajectory taken as input for the trajectory reconstruction.

In order to solve (C.1) any classical ODE integrator can be used, provided that it satisfies at least the same accuracy property of 
the polynomial reconstruction. Here, we rely on a very popular numerical technique, namely the class of Runge-Kutta (RK) schemes 
[41]. For 𝑃1 reconstruction (SPT) we use a second order RK method, while for 𝑃3 (SHOT-R) the fourth order version is adopted. 
Runge-Kutta schemes explicitly write, for every intermediate step, as follows:

• second order Runge-Kutta (RK2)

𝐱𝑛+1 = 𝐱𝑛 +
𝑑𝜏

2
(
𝐤1 + 𝐤2

)
, (C.2)

𝐤1 = −𝐯(𝜏𝑛,𝐱𝑛),

𝐤2 = −𝐯
(
𝐱𝑛 +

𝑑𝜏

2
𝐤1, 𝜏𝑛 +

𝑑𝜏

2

)
;

• fourth order Runge-Kutta (RK4)

𝐱𝑛+1 = 𝐱𝑛 +
𝑑𝜏

6
(
𝐤1 + 2𝐤2 + 2𝐤3 + 𝐤4

)
, (C.3)

𝐤1 = −𝐯(𝜏𝑛,𝐱𝑛),

𝐤2 = −𝐯
(
𝐱𝑛 +

𝑑𝜏

2
𝐤1, 𝜏𝑛 +

𝑑𝜏

2

)
,

𝐤3 = −𝐯
(
𝐱𝑛 +

𝑑𝜏

2
𝐤2, 𝜏𝑛 +

𝑑𝜏

2

)
,( )
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𝐤4 = −𝐯 𝐱𝑛 + 𝑑𝜏𝐤3, 𝜏𝑛 + 𝑑𝜏 .
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The time step 𝑑𝜏 is used to integrate the ODE (C.1) within the time interval [0; 𝑡𝑁𝐾
− 𝑡1] and the superscript 𝑛 denotes the numerical 

solution at a given time step. 𝜏 ∈ [0; 𝑡𝑁𝐾
− 𝑡1] represents the local time coordinate which advances the solution in time. We choose 

𝑑𝜏 = 0.5 which corresponds to approximately 3.5 times the time frame of acquisition of the biological dataset used as proof of concept 
(i.e. 0.144 𝑠𝑒𝑐). This has been deliberately chosen in order to highlight even more the benefit of a high order reconstruction, because 
it contains much more information and thus can produce very good results even with large time steps which cover more than three 
consecutive frames, i.e. more than three adjacent computational cells. If classical linear tracking is used, i.e. 𝑃1 reconstruction is 
applied, the results suffer from lack of resolution (Fig. 6) and the accuracy is drastically reduced.
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