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The 2D image-based virtual try-on has aroused increased interest from the multimedia and computer vi-

sion fields due to its enormous commercial value. Nevertheless, most existing image-based virtual try-on

approaches directly combine the person-identity representation and the in-shop clothing items without tak-

ing their mutual correlations into consideration. Moreover, these methods are commonly established on pure

convolutional neural networks (CNNs) architectures which are not simple to capture the long-range correla-

tions among the input pixels. As a result, it generally results in inconsistent results. To alleviate these issues,

in this article, we propose a novel two-stage cloth interactive transformer (CIT) method for the virtual try-on

task. During the first stage, we design a CIT matching block, aiming at precisely capturing the long-range cor-

relations between the cloth-agnostic person information and the in-shop cloth information. Consequently, it

makes the warped in-shop clothing items look more natural in appearance. In the second stage, we put forth

a CIT reasoning block for establishing global mutual interactive dependencies among person representation,

the warped clothing item, and the corresponding warped cloth mask. The empirical results, based on mutual

dependencies, demonstrate that the final try-on results are more realistic. Substantial empirical results on a

public fashion dataset illustrate that the suggested CIT attains competitive virtual try-on performance.
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1 INTRODUCTION

Virtual try-on (VTON), derived from fashion editing [7, 35, 60, 63], aims at transfering a desired
in-shop clothing item onto a customer’s body. If properly resolved, VTON will provide a time
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and energy-saving shopping experience in our everyday life. In practice, VTON has already been
deployed in some big-brand clothing stores or e-commerce shopping applications owing to its
convenience [17, 23, 30, 38].

However, most of the existing methods are designed based on 3D models pipelines [1, 20, 21,
29, 48] and follow the conventions of traditional computer graphics. Despite the detailed results,
these methods require considerable labor resources, a significant amount of time investment, and
complex data acquisition such as multi-view videos or 3D scans [40] that impede their widespread
application. Alternatively, conditional generative adversarial Networks (GANs) basedmethods
such as image-to-image translation or other image generation approaches [8, 12], recently made
some positive progress. However, there remain some obvious artifacts in the generated results. To
enhance the results of 2D image-based VTON methods, the classic two-stage pipeline VTON [22]
was proposed, utilizing the first stage to warp the in-shop clothing item to a desired deformation
style, and in the second stage, the warped cloth is aligned to the body shape of a given customer.
While the visual result looks better than previous methods, there is still a significant gap between
the overall visual quality and plausible generation. Many approaches following this pipeline, i.e.,
CP-VTON [55], ACGPN [59], and CP-VTON+ [37] were proposed with improved performance.
However, these methods are limited to plain texture or simple-style clothes. Their performance
suffers when dealing with complicated cases like rich textures or complex patterns. To address
this issue, Xu et al. [58] introduced an intermediate operation that takes the transformation of the
target person’s image into consideration. But the improvement in visual performance is achieved
at the cost of a more complex network architecture, which is time-consuming for training such a
model. In addition, we also noticed that most of the previous methods rarely pay enough attention
to the correlations between two crucial input information, i.e., the cloth-agnostic person informa-
tion and the in-shop cloth information. Hence, there will be some inevitable mismatch phenomena
occurring in the warped in-shop cloths, and consequently, it degrades the quality of the final try-
on results. Moreover, for VTON, it’s essential for a model to learn where to sample the pixels in
the cloth image and where to reallocate them in the human body region. Hence, modeling the
long-range dependencies is essential for achieving realistic try-on results. However, most of the
previousmethods use pure convolutional neural networks (CNNs) for modeling long-range de-
pendencies. Since the pure CNN-based methods struggle to establish the long-range dependencies
due to the design nature of the convolutional kernels, the final try-on performance is decreased.
Based on these observations, we assume that it would be advantageous to model the cloth-

agnostic person information guided by the corresponding in-shop clothing information and vice
versa. In addition, a better manner for capturing the long-range dependencies is also essential. To
this end, based on the classic two-stage pipeline like VTON’s [22], in this article, we propose a
novel Cloth Interactive Transformer (CIT) method to address the aforementioned limitations.
The overall architecture of the proposed CIT is depicted in Figure 1.

In the first stage (i.e., geometric matching stage), we design a CIT matching block that models
long-range relations between the person and clothing representations interactively. Concurrently,
a valuable correlation map is generated to boost the performance of the thin-plate spline (TPS)
transform [4]. Unlike the traditional hand-crafted shape context matching strategies [34, 36, 46],
which are only suitable for a certain feature type, the proposed CIT matching block (Block-I) has
learnable features and can model long-range correlations via the cross-attention transformer en-
coders. As a result, the warped cloth becomes more natural and can fit a wearer’s pose and shape
more accurately. In the second stage (i.e., Try-On stage), unlike previous methods [37, 55] that
treat the warped in-shop clothing item and its corresponding mask as a single input, we propose
a novel CIT reasoning block (Block-II) that takes as input three distinct information, i.e., the cloth-
agnostic person representations, the warped clothing item, and the mask of the warped clothing
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Fig. 1. The overall architecture of the proposed CIT for virtual try-on. The upper part is the GeometricMatch-

ing stage for warping the in-shop clothing items, while the bottom part is the Try-On stage for synthesizing

the final try-on image of the person.

item. Through the CIT reasoning block, a more precise correlation among these three input data
can be established, and this correlation is further utilized for strengthening the mask composition
process. In addition, such a co-relation also serves as an attention map to activate the rendered
person image, making the final results clearer and more realistic.
More specifically, in the CIT matching block, our primary objective is to improve the ability to

model the person feature by encoding the target in-shop cloth feature. Since the in-shop clothing
item is non-rigid, it is difficult to directly learn the matching relationship only from the clothing
item. Hence, we resort to the correlation between the person and the target in-shop clothing item.
With the help of this learned correlation, the person-related feature can be refined indirectly by
the in-shop clothing features and vice versa. Such an analysis is also considered in the CIT reason-
ing block among the three input data. With the CIT matching and the CIT reasoning blocks, the
correlation between both the person and in-shop cloth are updated synchronously and interact
with each other.

In summary, our contributions are as follows:

—We design a novel two-stage (i.e., the geometric matching stage and the try-on stage)
CIT method for the challenging virtual try-on task. CIT can well model the long-range
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interactive relations between the cloth-agnostic person representations and the in-shop
clothing items.

—We propose a new two-modality CIT matching block in the first geometric matching stage,
making the in-shop clothing item can be better warped in the desired direction.

—We introduce a new three-modality CIT reasoning block in the second try-on stage. Based
on this block, the more precise long-range correlations among three inputs (i.e., the cloth-
agnostic person representation, the warped clothing item, and the corresponding mask of
the warped cloth) can be well considered. As a result, CIT is able to obtain more realistic
try-on image results.

2 RELATEDWORK

Virtual Try-On (VTON), as one of the most popular tasks within the fashion area, has been
widely studied by the research community due to its practical potential [2, 10, 15, 16, 18, 31]. Con-
ventionally, this task was realized by computer graphic techniques, which build 3D models and
render the output images via the precise control of geometric transformations or physical con-
straints [5, 6, 14, 20, 47, 61]. By using 3D measurements or representations, these methods can
generate promising results for VTON, but the additional requirements such as 3D scanning equip-
ment, computation resources, and heavy labor are not negligible.
Compared to 3D-based methods, 2D GANs based methods are more applicable to online shop-

ping scenarios. Jetchev and Bergmann [26] proposed a conditional GAN to swap fashion articles
with only 2D images. Another interesting GAN-based method SWAPGAN [32] solved the VITON
task in an end-to-end manner, but it utilizes 3 generators, and the balance among all generators
is hard to control. Gu et al. [19] proposed a GAN-based image transformation strategy that can
automatically learn the mapping from a combination of pose and text to a target fashion image.
However, this method didn’t consider pose variations, it also required the availability of the paired
images of both the in-shop clothes and the wearer during inference. Hence their applicability in
practical scenarios is limited. Unlike the previous 3D-based or GAN-based methods, VITON [22]
tackled this problem with a coarse-to-fine architecture, which first computed a shape context [3]
thin-plate spline (TPS) transformation [4] for warping an in-shop clothing item on the target
person and then blended the warped clothing item onto a given person. Note that the TPS trans-
formation is a commonly used method of transforming a source image into a target image. It
works by using a predefined set of constraints that define how the source image should be warped
and transformed into the target image. The constraints are based on a set of surface points on
the source image and their corresponding points on the target image. The warping algorithm then
uses these points to calculate a set of transformations that will transform the source image into the
target image. The transformations include scaling, rotation, translation, and shearing. The result
is a warped version of the source image which accurately reflects the target image. This warping
method used in the VTON task is to make the in-shop clothing item well warped toward the body
shape of a given person. However, VITON [22] utilized hand-craft shape-context features for con-
ducting the TPS transformation, which is not only time-consuming but also not robust when fac-
ing new samples. As an improvement, CP-VTON [55] and CP-VTON+ [37] adopted the learnable
TPS transformation method proposed by [43] via a convolutional geometric matcher. Although
the correlation between the person and the in-shape clothing features was established by such a
differentiable TPS transformation, and the generated try-on results are better, there are still ob-
vious artifacts when facing heavy occlusions, rich texture, or large transformations. ACGPN [59]
was proposed to tackle these issues. Compared to CP-VTON, ACGPN used a semantic generation
module to generate a semantic alignment of spatial layout. It also introduced the second-order dif-
ference constraint based on TPS. Though the performance is improved, the problem is still similar
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to previous methods [22, 37, 55] because they didn’t consider the global long-range interactive
correlations between the person representation and the in-shop clothing item. Recently, Chopra
et al. [9] proposed to solve the VTON task with a gated appearance flow. Though better results
are achieved, the need of modeling the 3D geometric priors makes the overall procedure more
complex.
To alleviate these problems, we propose a two-stage Cloth Interactive Transformer (CIT)method

for the virtual try-on task. In particular, the proposed CIT can well capture the long-range depen-
dencies in both stages. As a result, our method generates sharper and more realistic try-on images.
Long-RangeDependenceModeling.Although CNN-based structures have shown excellent rep-
resentation ability in various vision tasks such as classification, segmentation, and so on. The
long-range dependencies are still hard to be established due to the limited receptive fields of the
convolution kernels. For example, a convolutional kernel usually focuses on local neighbors (e.g.,
3 × 3 or 5 × 5), while long-range relations would require the response at a position as a weighted
sum of the features at all other positions. This limitation raises huge challenges for many applica-
tions where long-range relationships are needed.
To overcome this limitation, the attention mechanism [50, 51, 54] has been widely used in vi-

sion tasks with CNN architectures though it was initially designed for natural language processing
tasks. In addition, non-local neural networks [56] were designed based on the self-attentionmecha-
nism, allowing the model to capture the long-distance dependencies in the feature maps. However,
this approach suffers from high memory and computation costs. [45] proposed an attention gate
model to increase the sensitivity of a base model. Besides, the multilayer perceptrons (MLP) are
also proposed for modeling the long-range relation, but it may heavily affect the efficiency [42, 52].
Moreover, Transformer [54] was first introduced for neural machine translation tasks because it
can model long-range dependencies in sequence-to-sequence tasks and captures the relations be-
tween arbitrary positions in the given sequence. Unlike previous CNN-based methods, Transform-
ers are built solely on self-attention operations, which are strong in modeling the global context.
After Transformers demonstrated their overwhelming power on a broad range of language tasks
(e.g., text classification, machine translation, or question answering [11, 28, 39, 41, 49]). Recently,
Transformer-based frameworks have also shown their effectiveness on various vision tasks [33].
In particular, vision Transformer (ViT) [13, 53] splits the image into patches and models the
correlation between these patches as sequences, and then the core self-attention module of ViT is
stacked for modeling the long-range dependencies.
To this end, in this article, we also utilize a vision Transformer for handling the long-range

dependencies among the cloth-agnostic person representation, the in-shop clothing item (for both
the original cloth and the warped cloth), and the corresponding mask of the warped clothing item
in a novel cross-modal manner.

3 CLOTH INTERACTIVE TRANSFORMER

In this section, we first give an overall introduction and the necessary notations of the proposed
CIT method for virtual try-on in 3.1. Then we introduce the core modules (i.e., the Interactive
Transformer I and II) of CIT in Section 3.2. Based on the interactive transformer -I and -II, we
show the details of the CIT matching block (Block-I) and the CIT reasoning block (Block-II) in
Section 3.3 and Section 3.4, respectively. Finally, the optimization objectives of the proposed CIT
for both stages are described in detail in Section 3.5.

3.1 Overview and Notations

For the 2D image-based VTON task, the target in-shop clothing item is different from the source
clothing item that is worn by a given person. Specifically, given a person image I ∈ R3×h×w and one
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in-shop clothing image c ∈ R3×h×w . Our goal is to generate the image Io ∈ R3×h×w where a person I
wears the cloth c . Hence, what we need to do first is to reduce the side effects of the source clothes,
like color, texture, or shape. Meanwhile, it’s also necessary to preserve the information about the
given person as much as possible, including the person’s face, hair, body shape, and pose. To this
end, we adopt the same pipeline as [22] for the person representation p from I . It contains three
components, the 18-channel feature maps for the human pose, the 1-channel feature map for the
body shape, and the 3-channel RGB image. Note that the RGB image contains only the reserved
regions of a person (i.e., face, hair, and lower parts of the person) for maintaining the identity of
this person.
The basic structure of the proposed CIT is in a two-stage (i.e., see the geometric matching

stage and the try-on stage in Figure 1) pipeline, which is also adopted by CP-VTON [55] and
CP-VTON+ [37]. In particular, the former takes as input the cloth-agnostic person representation
p and an in-shop clothing item c to produce a warped cloth ĉ and a warped mask ˆcm based on the
given person’s pose and shape. The latter uses the warped cloth ĉ , the corresponding warped mask
ˆcm together with the person representation p to generate the final person image with the worn
in-shop cloth. In the first geometric matching stage, we propose a CIT matching block (Block-I,
see the upper part in Figure 2 for the details), which takes the person feature Xp and the in-shop
cloth feature Xc as inputs. Then Xp and Xc are generated by two similar feature extractors from
p and c , respectively (see the first geometric matching stage in Figure 1). After that, it produces a
correlation feature Xout−I followed by a down-sample layer for regressing the parameter θ . Note
that θ is used for warping the original in-shop clothing c to the target on-body style ĉ via an in-
terpolation method named the thin-plate spline (TPS) warping module [43]. Specifically, given
two images with some corresponding control points in different positions, these control points can
be well aligned from one (i.e., in the in-shop clothing item) to another (i.e., in the corresponding
human body region) with the thin plate spline interpolation operation in a geometry estimation
manner (i.e., local descriptor extraction, descriptor matching, transformation-related parameter
estimation) [22].

In addition, the TPS operation we adopted in this article is the same as the one used in CP-
VTON [55] from [43]. It first utilizes its differentiable modules to conduct a transformation by
mimicking the geometry estimation procedure in a learnable manner from c to the ĉ . Meanwhile,
the corresponding mask ˆcm of ĉ is also produced based on θ via TPS warping operation. In the
second stage, we utilize the warped cloth ĉ and the warped mask ˆcm together with the person
representation p as inputs of the CIT reasoning block (Block-II, see the bottom part in Figure 2
for the details). And the output Xout−I I of the CIT reasoning block is used to guide the final mask
composition for generating more realistic try-on results.

3.2 Interactive Transformer

Having leveraged the self-attentionmechanism, Transformer is capable ofmodeling long-range de-
pendencies. Given this inherent ability of the Transformer, we propose the innovative Interactive-
Transformer for exploring the correlation between the person and the clothing item in the VTON
task. There are two types of Interactive Transformers in the proposed CIT. The first version, i.e.,
Interactive Transformer I, is employed in the first geometric matching stage. The second version,
i.e., Interactive Transformer II, is utilized in the second try-on stage. They are based on the basic
Transformer encoders and the cross-modal Transformer encoders, and their detailed description
is depicted in Figure 2.
Regarding a standard Transformer encoder, a positional embedding is initially added to the input

feature as elucidated in [54]. This is beneficial for keeping the initial spatial relation of the input.
After the position embedding, the input feature will be projected into queries Qm , keys Km , and
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Fig. 2. The key components of the proposed CIT for virtual try-on. The upper area on the left is the CIT

Matching Block (Block-I), while the bottom area on the left indicates the CIT Reasoning Block (Block-II). On
the right, the normal Transformer encoder and the proposed cross-modal Transformer encoder are shown

in detail.

values Vm by a linear layer. Subsequently, the output of the attention layer Am is derived as

Am = softmax

(
QmK

T
m√

d

)
Vm , (1)

where d is the dimension of the query, key.
The aforementioned self-attention mechanism is usually employed for only one type of input

data. However, in the two-stage VTON task, to accurately capture a more precise match between
the information of the person and the cloth information, there are several pairs of correlations
we can’t overlook. Notably, in the geometric matching stage, we need to consider the correlation
between the cloth-agnostic person representation p and the in-shop clothing item c since such
a correlation is indispensable for producing a reasonable warped cloth ĉ . In the second try-on
stage, there are three types of inputs i.e., p, ĉ , as well as ˆcm . To proficiently model the long-range
connection of each two of them (i.e., p and ĉ , p and ˆcm , as well as ĉ and ˆcm ) is also a crucial issue
since a well-captured correlation usually yields a good match between the person’s body and the
in-shop cloth.
Based on such an observation, instead of using only the self-attention layer in a Transformer

encoder for processing a single-modal input, we propose a cross-modal Transformer encoder based
on a cross-attention mechanism. Note that we treat each kind of input as a certain single-modal
input since each of them provides a specific input. For example, p is for person identity, c and ĉ
correspond to the texture, and ˆcm is related to the shape information. And the cross-attention is
computed as follows:

Am2→m1 = softmax �
�

Qm1K
T
m2√

d
�
�
Vm2, (2)
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where we adopt the first input (i.e., person representation p) as query Qm1, and the second input
(i.e., the in-shop clothing item c) as the keysKm2 and valuesVm2. Based on such a cross-interactive
manner, each kind of input keeps updating its sequence via the external information from the
multi-head cross-attention module. As a result, one modality will be transformed into a different
set of key/value pairs to interact with another modality.
Interactive Transformer I is shown in the red dash box of the upper area of Figure 2. It con-
sists of two regular Transformer encoders (depicted in gray) and two cross-modal Transformer
encoders (depicted in light blue) that are directly applied to feature maps. We use sel f Trans (·)
and crossTrans (·) to indicate the operators of these two kinds of Transformer encoders. Given
two input features Fp and Fc with dimension (C,B, S ). Note that the dimension of Fp and Fc are
reshaped from input features Xp and Xc with original dimension (B,C,H ,W ). Here B, C , H ,W
denote the batch size, the number of channels, the height, and the width of the input features Xp

and Xc , S = H ×W denotes the spatial dimension. Then each of them will go through its corre-

sponding N -layer regular Transformer encoder first. After that we get the processed features F
′
p

and F
′
c as follows:

F
′
p = sel f Trans (Fp ),

F
′
c = sel f Trans (Fc ).

(3)

Then the cross-modal Transformer encoder is used for modeling the cross-modal long-range

correlations between F
′
p and F

′
c :

X 1
cross = cat

(
crossTrans (F

′
p , F

′
c ), crossTrans (F

′
c , F

′
p )

)
, (4)

here crossTrans (X
′
p ,X

′
c ) indicates that we utilize X

′
c as the keys and values while we use X

′
p as

the queries. On the other hand, crossTrans (X
′
c ,X

′
p ) indicates that the keys and values are coming

from X
′
p and queries come from X

′
c . After concatenating the outputs from the two cross-modal

Transformer encoders, we get the outputX 1
cross of the Interactive Transformer I. It can strengthen

the correlation matching ability.
Interactive Transformer II is shown in the red dash box at the bottom area of Figure 2. Similar
to the Interactive-Transformer I, the Interactive Transformer II is also constructed by combining
regular Transformer encoders and cross-modal Transformer encoders.
The Interactive Transformer II is designed mainly for exploring the correlations between every

two inputs among three total inputs (i.e.,p, ĉ , and ˆcm ). In particular, we adopt 3 regular Transformer
encoders and 6 cross-modal Transformer encoders for constructing the Interactive Transformer II.
Note that for better illustration, we depict Xp , Xĉ , as well as X ˆcm and their corresponding informa-
tion flows in yellow, green, and blue, respectively.
Within the Interactive Transformer II, there are three input features i.e., Xp , Xĉ , and X ˆcm . Each

of them works as the Query element within its own branch while working as the Key and Value
elements in the other two branches. Specifically, we take the feature Xp (depicted in yellow in
Figure 2) that comes from person representation as the detailed introduction. Once we get Xp af-
ter the 1D convolutional layer that is out of the red dash box. There are two pathways for Xp to
pass through. The first one is to directly let it meet two cross-modal Transformer encoders (i.e.,

the green-border cross-modal Transformer encoder betweenX
′

ĉ
andXp , as well as the blue-border

cross-modal Transformer encoder between X
′

ˆcm
and Xp ). Another one is to let Xp pass through

a regular Transformer encoder for producing the updated feature X
′
p . Note that here (X

′

ĉ
→Xp )

within the green-border cross-modal Transformer encoder means we utilize Xp as Query and

X
′

ĉ
as Key and Value, while (X

′

ˆcm
→Xp ) within the blue-border cross-modal Transformer encoder
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indicates we use Xp as Query and X
′

ˆcm
as Key and Value. X

′

ĉ
and X

′

ˆcm
are the updated features

from Xĉ and X ˆcm after their corresponding regular Transformer encoders. We formulate such pro-
cedures of the first yellow branch as follows:

X cross
p = cat(crossTrans (X

′
p , X

′

ĉ ), crossTrans (X
′
p ,X

′

ˆcm
)). (5)

Similarly, we also get the output of the middle green branchX cross
ĉ

and the output of the bottom
blue branch X cross

ˆcm
. Finally, the overall output of the Interactive Transformer II is

X 2
cross = cat(X cross

p ,X cross
ĉ ,X cross

ˆcm
). (6)

3.3 CIT Matching Block

Based on our Interactive Transformer I, we propose the CIT Matching block (Block-I) to boost
the performance of the TPS transformation by strengthening the long-range correlation between
Xp ∈ RB×C×H×W and Xc ∈ RB×C×H×W . Here B, C , H , andW indicate batch size, channel number,
and the height and width of a given feature. To utilize the Transformer encoder for modeling long-
range dependencies, we first adjust the dimensions of Xp and Xc from (B,C,H ,W ) to (B,C, S ),

forming the X
′
p and X

′
c . Note that S = H ×W . Besides, a 1D convolutional layer is also adopted to

ensure that each element of each input sequence can get sufficient awareness of its neighborhood
elements. When we get Fp and Fc after the convolutional layers, the proposed Interactive Trans-
former I is applied to Fp and Fc for capturing the long-range correlation between the person-related
and the in-shop cloth-related features. As a result, we get the result (i.e., X 1

cross .) of the proposed
CIT matching block. These procedures are depicted in Figure 2 with detailed annotations.

Instead of directly adding this long-range relation to features Xp or Xc , we strengthen each of
them by a global strengthened attention Xatt operation as follows:

X
дlobal

(.)
= X (.) + X (.) × Xatt , (7)

Here × means an element-wise multiplication, (.) indicates that both features Xp and Xc follow

the same form. Note that Xatt is produced from X 1
cross by a linear projection and a sigmoid activa-

tion. Based on this operation, the element position relation of each input will be activated by the
sigmoid activation function. In particular, when it is applied to the input feature as attention, both
the position information of each element within each input and the correlation between two in-

puts can be kept in a balanced manner. Then a matrix multiplication between X
дlobal
p and X

дlobal
c

is conducted. The output Xout−I of the proposed CIT matching block is finally obtained after a
reshape operation, which represents the improved correlation between the person and clothing
features. These procedures can be defined as follows:

xout−I = Reshape((X
дlobal
c )T × Xдlobal

p ). (8)

HereX
дlobal
p andX

дlobal
c have the same dimension (B,C, S ), and the outputXout−I is in dimension

(B, S,H ,W ).

3.4 CIT Reasoning Block

Previous works (i.e., CP-VTON [55] and CP-VTON+ [37]) first concatenate the person information
p, the warped cloth information ĉ , and the warped clothing mask ˆcm together. Then the concate-
nated input is directly sent to one UNet model as a single input to generate a composition mask
Mo as well as a rendered person image IR . However, such a rough concatenate operation may lead
to coarse information matching, and consequently, it would be difficult to achieve a well-matched
final try-on result.
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To this end, we propose the CIT Reasoning block ( Block-II) depicted in Figure 2, aiming atmodel-
ing such more complicated correlations among p, ĉ , and ˆcm . Firstly, we adopt the patch embedding
operation [13] to all these three inputs. Then each of them goes through a 1D convolutional layer
to ensure the relation modeling of each element with its neighbor elements. After that, we get Xp ,
Xĉ , and X ˆcm . To well capture the complicated long-range correlations among these features, we
apply the proposed Interactive Transformer II to Xp , Xĉ , as well as X ˆcm . Then the output Xout−I I
of Interactive Transformer II is utilized to guide the final mask composition for a better generation
as follows:

I
дlobal

R
= sigmoid(Xout−I I ) × IR ,

Io = Mo × ĉ + (1 −Mo ) × IдlobalR
,

(9)

here siдmod indicates the Sigmod activation function.

3.5 Optimization Objectives

The first stage of CIT is trained with sample triplets (p, c, cm ), while the second stage is trained
with (p, ĉ, ˆcm ). In addition, in the first matching stage, we adopt the same optimization objectives
as CP-VTON+ [37]:

LMatchinд = L1 (ĉ, ct ) +
1

2
Lr eд , (10)

where L1 indicates the pixel-wise L1 loss between the warped result ĉ and the ground truth ct .
Lr eд indicates the grid regularization loss, and it can be formalized as follows:

Lr eд (Gx ,Gy ) =
∑

i=−1,1

∑
x

∑
y

��Gx (x + i,y) −Gx (x ,y)�� +
∑
j=−1,1

∑
x

∑
y

���Gy (x ,y + j ) −Gy (x ,y)
��� ,

(11)
where Gx and Gy indicate the grid coordinates of the generated images along the x and the y

directions.
In the second stage, the optimization objective is as follows:

LT ry−on = | |I0 − IGT | |1 + LVGG + | |Mo − ctm | |1. (12)

The first item aims at minimizing the discrepancy between the output Io and the ground truth IGT .
The second item, the VGG perceptual loss [27], is a widely used loss item in image generation tasks.
It is an alternative to pixel-wise losses and it attempts to be closer to the perceptual similarity of
human beings. The VGG loss is based on the ReLU activation layers of the pre-trained 19-layer
VGG network. It can be expressed as follows:

LVGG =
1

Wi, jHi, j

Wi, j∑
x=1

Hi, j∑
y=1

(
ϕi, j (IGT )x,y − ϕi, j (Io )x,y

)2
, (13)

whereWi, j and Hi, j describe the dimensions of the respective feature maps within the VGG net-
work. ϕi, j indicates the feature map obtained by the jth convolution before the ith max pooling
layer within the VGG19 network. The third item is used to encourage the composition mask Mo

to select the most suitable warped clothing mask ctm as much as possible.

4 EXPERIMENTS

Datasets. We conduct all the experiments on the same dataset collected by Han et al. [22] that
used in VITON [22], CP-VTON [55], and CP-VTON+ [37]. Note that due to copyright issues, we
only use the reorganized version as the previous works [37, 55] did. It contains around 19,000
front-view women and top clothing image pairs. Specifically, there are 16,253 cleaned pairs which
are split into a training set and a validation set with 14,221 and 2,032 pairs, respectively. In the
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training set, the target cloth and the cloth worn by the wearer are the same. However, in the test
stage, there are two kinds of test settings. The first one is the same as the training settings, where
the target clothing item and the clothing item worn by the wearer are the same (we refer to this
case as a retry-on setting because it is just like the wearer takes off the cloth first then retries
this cloth on, hence we have the ground truth for this case). Another setting means that the target
clothing item is different from the one worn by the wearer (we refer to this kind as the try-on

setting).
Evaluation Metrics. To evaluate the performance of our method. We firstly adopt the Jaccard
Score [25] for the retry-on case (i.e., with ground truth) in the first stage.We also follow [24, 37, 59]
to use the Structural Similarity (SSIM) [57], Learned Perceptual Image Patch Similarity

(LPIPS) [62], Peak Signal-to-Noise Ratio (PSNR), Frechet Inception Distance (FID), and
Kernel Inception Distance (KID) metrics in the second stage. Note that we adopt the original
human image with the original clothing item as the reference image for SSIM and LPIPS (the lower,
the better), and the parsed segmentation area for the current upper clothing is used as the refer-
ence for calculating the JS score. For try-on case (no ground truth), we evaluate the performance
of our method and other state-of-the-art methods by the Inception Score (IS) [44].
Implementation Details. For the geometric matching stage, we build 2 feature extractors (see
the downsample layers shown in Figure 1) with 4 2-strided downsampling convolutional layers
followed by 2 1-strided ones (filter numbers: 64, 128, 256, 512, 512) to generateXp andXc . Those two
extractors are only different in input channels. The regression networks before the TPS warping
operation contain 2 2-strided convolutional layers, 2 1-strided ones (filter numbers: 512, 256, 128,
64), and 1 FC layer with output size 50. For the try-on stage, the U-net used here consists of 6
2-strided down-sampling convolutional layers (filter numbers: 64, 128, 256, 512, 512, 512) and 6
up-sampling (filter numbers: 512, 512, 256, 128, 64, 4). Each convolutional layer is followed by one
InstanceNorm layer, and a Leaky Relu with slope is set to 0.2. Note that we stack 3 CIT encoders
in both matching and reasoning blocks.
Our training settings are similar to CP-VTON and CP-VTON+. Both stages are trained for

200K steps with batch size 4. Moreover, for Adam optimizer, β1 and β2 are set to 0.5 and 0.999,
respectively. The learning rate was firstly fixed at 0.0001 for the first 100K steps and then lin-
early decayed to zero for the rest of the steps. All input images are resized to 256 × 192, and
the output images have the same resolution. The source code and trained models are available at
https://github.com/Amazingren/CIT.

4.1 Qualitative Comparisons

To validate the performance of the proposed CIT for virtual try-on, we first present the visual-
ization results of both stages, including the warped clothing items and the final try-on person
images.
Comparison of Warping Results. We visualize the warped results of clothes for both retry-on
and try-on settings in Figure 3. Note that in this article, our visualization method is similar to CP-
VTON [55], and CP-VTON+ [37]. For ACGPN [59], we directly adopt its officially released code, and
it produced the gray-background results. Figure 3 shows that the proposed CIT generates sharper
and more realistic warped clothing items than the other methods like CP-VTON, CP-VTON+, and
ACGPN. This typically happens for texture-rich cases, such as the case with line stripes (see the
last row of the same-pair case and the second row of the different-pair case), or in the presence of
logos (see the 2nd row of the same-pair case and the third row of the different-pair case), and so
on. We marked out these obvious artifacts from other methods with red dash boxes in Figure 3.
Comparison of Try-OnResults. Figure 4 shows the try-on results. We can see that the proposed
CIT outperforms other methods. Specifically, the proposed CIT can keep the original clothing
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Fig. 3. Qualitative comparisons of the warped cloths by the proposed CIT-based geometric matching stage.

The left is for the retry-on setting (i.e., in the same cloth) while the right is for the try-on setting (i.e., in

different clothing items).

Table 1. User Study Comparison

on Two Questions

Method Q1 Q2

CP-VTON [55] 19.5 14.6

CP-VTON+ [37] 24.8 25.2

ACGPN [59] 23.6 24.8

CIT (Ours) 32.1 35.4

Q1 denotes ‘Which image is the

most photo-realistic?’, and Q2

denotes ‘Which image preserves the

details of the in-shop clothing item

the most?’ in the user study.

texture and its pattern as much as possible, and the final results are more realistic and natural.
Compared to our method, other approaches display many artifacts, for example, the irregular logo
pattern (the 1st row), the over-warped cloth texture (the 3rd row), and the ridiculous results for
unique or complicated-style cloth (the last row). We also marked out these artifacts in red dash
boxes in Figure 4. In addition, more qualitative try-on results of the proposed method can be found
in Figure 5.
User Study.We also evaluate the proposed CIT and other methods via a user study. We randomly
select 120 sets of reference and target clothing images from the test dataset. Given the reference
images and the target in-shop clothing items, 30 users are asked to choose the best outputs of
our model and baselines (i.e., CP-VTON, CP-VTON+, and ACGPN) according to the two questions:
(Q1) Which image is the most photo-realistic? (Q2) Which image preserves better the details of
the target clothing? As shown in Table 1, we can see that the proposed CIT achieves significantly
better results than the other methods, which further demonstrates that our model generates more
realistic images. And CIT also preserves the details of the clothing items compared to the other
methods.
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Fig. 4. Qualitative comparisons of different state-of-the-art methods.

4.2 Quantitative Evaluation

To further evaluate the performance of our CIT, we adopt five evaluation metrics, i.e., JS, SSIM,
LPIPS, PSNR, IS, FID, and KID for numerical comparison. JS is to evaluate the quality of the warped
mask in the first geometric matching stage with same-pair test samples, which is equivalent to the
IoU metric used in CP-VTON+ but is more convenient for implementation. Note that we take cloth
masks of the person as a reference image. Other metrics are designed to evaluate the performance
of the second try-on stage.
The results of JS are shown in Table 2. Though our CIT doesn’t achieve the best JS score, our

visual results presented in Figure 3 are the most reasonable ones. We think with the help of the
proposed Interactive Transformer I in the CIT matching block, our method can learn more reason-
able texture transformation patterns. This learned strong texture-focused transformation pattern
might affect the shape alignment. This may come from the reason that the JS score only focuses
on the shape alignment aspect between the ground truth mask and the warped clothing mask.
Consequently, it can not well reveal the overall quality of the final generated human images. For
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Fig. 5. More qualitative results of the proposed method.

instance, though Table 2 shows that CP-VTON+ has the best JS score of 0.812, which is higher
than ours (0.800), the qualitative results show that our method is superior to CP-VTON+. So the
shape-only related evaluation metrics i.e., JS or IoU, are not always indicating a better overall vi-
sual result. We also conducted ablation experiments in the following to support this conclusion
(see the comparison results in Table 3 between B3 and B4). In addition, in terms of the realism of
the generated images, the proposed CIT can also achieve the best KID and the second-best results,
which confirm the effectiveness of our method.
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Table 2. Quantitative Comparison in Terms of JS, SSIM, LPIPS, PSNR, IS, FID,

and KID Evaluation Metrics

Method JS ↑ SSIM↑ LPIPS↓ PSNR↑ IS↑ FID↓ KID↓
CP-VTON [55] 0.759 0.800 0.126 14.544 2.832 35.16 2.245

CP-VTON+ [37] 0.812 0.817 0.117 21.789 3.074 25.19 1.586

ACGPN [59] - 0.846 0.121 23.080 2.924 13.79 0.818

CIT (Ours) 0.800 0.827 0.115 23.464 3.060 13.97 0.761

For JS, SSIM, PSNR, and IS, the higher, the better, while for LPIPS, FID, and KID, the lower,

the better. What’s more, IS, FID, and KID are used to evaluate the unpaired try-on setting

while the rest are all for paired retry-on setting. Note that the optimum results are

bolded while the second-best results are underlined.

Table 3. Ablation Studies of the Proposed CIT for Virtual Try-on

Method JS↑ SSIM↑ LPIPS↓ IS↑ FID↓ KID↓ Q1 Q2

B0 [37] 0.812 0.817 0.117 3.074 25.19 1.586 – –

B1 (CIT Matching only) 0.800 0.808 0.123 3.020 14.76 0.779 – –

B2 (CIT Reasoning only) 0.812 0.821 0.125 3.105 14.87 0.784 – –

B3 (Full: B1+B2) 0.800 0.827 0.115 3.060 13.97 0.761 70.8 69.5

B4 (Full + L1 mask loss) 0.813 0.829 0.110 3.005 14.32 0.788 29.2 30.5

For the retry-on setting, we adopt SSIM, PSNR, and LPIPS to evaluate the performance. The
numerical results are shown in Table 2. It can be seen that the proposed CIT achieves the best
numerical evaluation results on SSIM and LPIPS compared to others. For the try-on setting, we use
IS for evaluation. The results in Table 2 show that our CIT achieves just a slightly lower IS score of
3.060 compared to 3.074 of CP-VTON+. We think the most possible reason for this phenomenon is
that IS is an objective metric that usually was used to measure the quality of the generated images
at the feature level based on image diversity and clarity. Hence, it may ignore some pixel-level
properties.
Overall, though we do not obtain the best quantitative scores on JS and IS metrics, our proposed

CIT can generate sharper and more realistic try-on images compared to others. For ACGPN, we
also test the performance based on the corresponding official checkpoints. However, because the
test set of ACGPN is different from others, so we only present its visual results in Figure 3 and
Figure 4.

4.3 Ablation Study and Discussion

To validate the effectiveness of each part of the proposed CIT, we conduct four ablation experi-
ments (i.e., B1, B2, B3, and B4 in Table 3). CP-VTON+ [37] is adopted as the baseline (B0) of this
article. B1 means that we only use the proposed CIT matching block in the first geometric match-
ing stage but keep the second stage the same as B0; B2 means that we only use the proposed
CIT reasoning block in the second try-on stage while keeping the first stage the same as B0; B3
is the final version adopted in this article, which contains both the proposed CIT matching and
reasoning blocks; B4 is built based on B3, but with an extra L1 loss item for providing more stricter
constraints between the generated warped clothing mask ˆcm and the ground truth cloth mask ctm
of the given person (depicted with red dash lines in Figure 1). The setting of this experiment is
designed to support the conclusion that a higher JS (or IoU) score doesn’t indicate more enjoy-
able visual results since it ignores the texture or pattern aspect of the overall quality. The overall
matching loss of B4 can be summarized as follows:

LMatchinд = L1 (ĉ, ct ) + L1 ( ˆcm , ctm ) +
1

2
· Lr eд , (14)
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Fig. 6. Qualitative comparisons of ablation studies between B3 and B4.

From the comparison between B0 [37] and B1 in Table 3, though CP-VTON+ achieves a better JS
score, the qualitative results presented in Figure 3 indicate that B1 can generate more reasonable
and natural warped clothes (for both the retry-on and try-on settings). In otherwords, the proposed
CIT Matching block can well capture more texture-related latent patterns with the help of the
proposed Interactive Transformer I. The comparison between B0 and B2 shows that the numerical
results, i.e., SSIM, and IS, are improved when we apply the proposed CIT reasoning block to the
warped results from B0. This demonstrates that the proposed CIT reasoning block is more effective
in generating the try-on results. B3, the combination of B1 and B2, is the final version of the
proposed CIT. It produces not only the more natural warped clothing items but also achieves the
more realistic try-on result. Hence, we think that for the two-stage 2D image-based VTON task, the
JS or IoU metric focuses on only one aspect (i.e., shape) of the overall quality. Hence, the final try-
on results are not always better when JS or IoU scores are higher. To support the above conclusion,
we design B4 as a supplementary experiment based on B3. In Table 3, B4 obtains nearly all the best
numerical results except the IS score. However, the visual comparison in Figure 6 shows that its
virtual try-on results are far from satisfactory compared to B3. In addition, we asked 15 users for
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Fig. 7. Several failure cases of the proposed CIT, CP-VTON, and CP-VTON+.

the user study according to the same questions asked in Table 1 with randomly selected 50 image
sets: (Q1) Which image is the most photo-realistic? (Q2) Which image preserves better the details
of the target clothing? And the results shown in Table 3 shows that B3 can generate more realistic
images and preserves more details of the clothing items compared to B4. We also marked out the
obvious artifacts region in Figure 6.

4.4 Failure Cases and Analysis

Though impressive person try-on images can be generated by our CIT, there are still three kinds
of inevitable common failure cases. We visualize them in Figure 7 with a comparison to both CP-
VTON and CP-VTON+.

The first case (See the 1st row of Figure 7) is that the difference between the clothing item
in the reference image and the in-shop cloth is too large. Consequently, the mask of the person
cannot well match the target in-shop clothing item. The second failure case comes from the self-
occlusion problem, which leads to blurry ambiguity-prone generated images (See the 2nd row of
Figure 7). The third failure case (See the 3rd row of Figure 7) derives from the drastic difference
between the pose of the person and the sides of the in-shop cloth. This also leads to ambiguous
results. In the first two cases, the main reason may be that the input data lack information in
terms of whether the region of a human body should be covered with cloth or not. We propose
to give further organization to the input data to remedy this issue, such as using more accurate
segmentation maps or adopting more fine-grained human annotations. For the last case, the 2D
image-based method cannot completely capture such a complicated relationship between a person
and a clothing item. We think that taking the 3D input data, such as body mesh, and 3D clothing
items, into consideration may alleviate such a problem.

5 CONCLUSION

In this article, we propose a novel two-stage CIT method for the 2D image-based virtual try-on
task. In the first stage, we introduce an interactive Transformer matching block, which is able
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to accurately model the global long-range correlations when warping a cloth through the thin-
plate spline transformation. Consequently, the quality of the warped clothing item can be more
realistic in terms of texture. We also present a transformer-based reasoning block in the second
stage for modeling the mutual interactive relations, which can be utilized to further improve the
rendering process, resulting in more realistic try-on results. Extensive experiments in terms of
quantitative and qualitative comparisons validate that the proposed CIT achieves new competitive
performance.
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