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Introduction

Identifiability of tensors is one of the most active research areas both in pure
mathematics and in applications. The core of the problem is being able to
understand if a given tensor T ∈ C

n1+1 ⊗ · · · ⊗ C
nk+1 can be decomposed in

a unique way as a sum of pure tensors:

T =
r∑

i=1

v1,i ⊗ · · · ⊗ vk,i,

with vj,i ∈ C
nj+1, for j = 1, . . . , k. Of course the minimum r realizing the

above expression is a crucial value and it is called the rank of T .
From the applied point of view, identifiability in tensor decomposi-

tion arises naturally in numerous areas, we quote as examples Phylogenet-
ics, Quantum Physics, Complexity Theory and Signal Processing (cf. e.g.
[3,19,21,25,30,38–41,44,49,51,52]).

From the pure mathematical point of view, being able to understand if
a tensor is identifiable is a very elegant problem that goes back to Kruskal
[45] and finds more modern contributions with the language of Algebraic
Geometry and Multilinear Algebra in, e.g. [4,5,11,12,18,22,23,26,31,32,34–
36,42,50]. Except for very few contributions [38,45,46] which work for certain
specific classes of given tensors, all the others regards the identifiability of
generic tensors of certain rank. From the computational point of view, as far
as we know, the unique algorithm dealing with the identifiability of any given
tensor is a numerical one developed in Bertini [14] in [20].

Dealing with tensors of given rank r brings the problem into the setting
of rth secant varieties of Segre varieties (cf. Definition 1.6) namely the closure
(either Zariski or Euclidean closures can be used for this definition if working
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over C) of the set of tensors of rank smaller or equal than r. Knowing if
a generic tensor of certain rank is identifiable gives an indication regarding
the behaviour of specific tensors of the same rank. Namely, the dimension
of the set S(Y, T ) of rank-1 tensors computing the rank of a specific tensor
T (cf. Definition 1.4) can only be bigger or equal than the dimension of
S(Y, q) where q is a generic tensor of rank equal to the rank of T (this will be
explained in Remark 3.2 for the specific case of rank-3 tensors T ∈ (C2)⊗4,
but it is a well-known general fact for which we refer [43, Cap II, Ex 3.22, part
(b)]). Since the cases in which generic tensors of fixed rank are not-identifiable
are rare (cf. e.g. [18,22,26–29,34,42,47]), the knowledge of generic tensors’
behaviour does not help in all the applied problems where the ken of a specific
tensor modeling certain precise samples is required.

In the present manuscript, we present a systematic study of the identifia-
bility of a given tensor starting with those of ranks 2 and 3. We give a complete
classification of these first cases: we describe the structures and the dimen-
sions of all the sets evincing the rank. In terms of generic tensors of rank ei-
ther 2 or 3, everything was already well-known form [1,8,27,29,34,36,37,45].
What it was missing was the complete classification for all the tensors of
those ranks.

In Proposition 2.3, we show that rank-2 tensors T are always identifiable
except if T is a 2 × 2 matrix. Our main Theorem 7.1 states that a rank-3
tensor T is identifiable except if

1. T is a 3 × 3 matrix and dim(S(Y, T )) = 6;
2. there exist v1, v2, v3 ∈ C

2 s.t. T ∈ C
2⊗v2⊗v3+v1⊗C

2⊗v3+v1⊗v2⊗C
2

and dim(S(Y, T )) ≥ 2;
3. T ∈ (C2)⊗4 and dim(S(Y, T )) ≥ 1;
4. T ∈ C

3 ⊗ C
2 ⊗ C

2 and it is constructed as in Example 3.6. In this case,
dim(S(Y, T )) = 3;

5. T ∈ C
3 ⊗ C

2 ⊗ C
2 and it is constructed as in Example 3.7. In this case,

S(Y, T ) contains two different four-dimensional families;
6. T ∈ C

m1 ⊗ C
m2 ⊗ (C2)k−2, where k ≥ 3 and m1,m2 ∈ {2, 3}. In this

case dim(S(Y, T )) ≥ 2 and T is constructed as in Proposition 3.10. If
m1 + m2 + k ≥ 6 then dim(S(Y, T )) = 2.
The paper is organized as follows. After the preliminary Sect. 1, where

we introduce the notation and the main ingredients needed for the set up,
we can immediately show the identifiability of rank-2 tensors in Sect. 2. In
Sect. 3, we explain in details the examples where the non-identifiability of
a rank-3 tensor arises. In Sects. 5 and 6, we show that the examples of the
previous section are the only possible exceptions to non-identifiability of a
rank-3 tensor. Section 7 is actually devoted to collect all the information
needed (but actually already proved at that stage) to conclude the proof of
our main Theorem 7.1.

1. Preliminaries and Notation

We will always work over an algebraically closed field K of characteristic 0.
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Definition 1.1. Let X ⊂ P
N be a non-degenerate projective variety, the X-

rank rX(q) of a point q ∈ 〈X〉 is the minimal cardinality of a finite set S ⊂ X
such that q ∈ 〈S〉.
Notation 1.2. Let A ⊂ P

N be any subset. With an abuse of notation we
denote by 〈A〉 the projective space spanned by A.

Let V1, . . . , Vk be vectors spaces of dimension n1 +1, . . . , nk +1, respec-
tively, the Segre variety is the image of the following embedding:

ν : P(V1) × · · · × P(Vk) → P(V1 ⊗ · · · ⊗ Vk)
([v1], . . . , [vk]) 	→ [v1 ⊗ · · · ⊗ vk].

Notation 1.3. We denote by Y the multiprojective space

Y : =P
n1 × · · · × P

nk

and by X the image of Y via Segre embedding, i.e. X = ν(Y ).
We denote the projection on the ith factor as

πi : Y −→ P
ni .

The space corresponding to forget the ith factor in the multiprojective space
Y is denoted by Yi:

Yi : =P
n1 × · · · × P̂ni × · · · × P

nk .

With νi : Yi −→ P
N ′

we denote the corresponding Segre embedding, in
particular Xi : =ν(Yi).

The projection on all the factors of Y but the ith one is denoted with
ηi:

ηi : Y −→ Yi.

Obviously all fibers of ηi are isomorphic to P
ni .

Definition 1.4. For any q ∈ P
N , S(Y, q) denotes the set of all subsets A ⊂ Y

such that �(A) = rX(q) and q ∈ 〈ν(A)〉 and we will say that if A ∈ S(Y, q),
then A evinces the rank of q. Moreover, we say that q ∈ 〈X〉 is identifiable if
�S(Y, q) = 1.

Notation 1.5. Sometimes we will also use the following multi-index notations:
for 1 ≤ i ≤ k, εi = (0, . . . , 0, 1, 0, . . . , 0), where the only 1 is in the ith place
and ε̂i which is a k-tuple with all one’s but the ith place, which is filled by
0, i.e. ε̂i = (1, . . . , 1, 0, 1, . . . , 1).

Definition 1.6. The rth secant variety of X is σr(X) : =
⋃

p,...,pr∈X〈p1, . . . , pr〉
where the closure is the the Zariski closure. The set of points of X-rank equal
to r is sometime denoted as σ0

r(X). If dim σr(X) < min{rn+ r −1,dim〈X〉},
the variety X is said to be r-defective, otherwise X is r-regular. If X is r-
defective, the difference δr = min{rn + r − 1,dim〈X〉} − dim σr(X) is called
the rth secant defect of X.

We will often use the so called Concision/Autarky property (cf. [48,
Prop. 3.1.3.1] [9, Lemma 2.4]) that we recall here.
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Lemma 1.7. (Concision/Autarky) For any q ∈ P(V1 ⊗ · · · ⊗ Vk), there is a
unique minimal multiprojective space Y ′ � P

n′
1 ×· · ·×P

n′
k ⊆ Y � P

n1 ×· · ·×
P

nk with n′
i ≤ ni, i = 1, . . . , k such that S(Y, q) = S(Y ′, q).

Definition 1.8. (concise Segre) Given a point q ∈ P
N , we will call concise

Segre the variety Xq : =ν(Y ′) where Y ′ ⊆ Y is the minimal multiprojective
space Y ′ ⊆ Y such that q ∈ 〈ν(Y ′)〉 as in Concision/Autarky Lemma 1.7.

Remark 1.9. The minimal Y ′ defining the concise Segre of a point q can
be obtained as follows. Fix any A ∈ S(Y, q), set Ai : =πi(A) ⊂ P

ni , i =
1, . . . , k, where the πis are the projections on the ith factor of Notation 1.3.
Each 〈Ai〉 ⊆ P

ni is a well-defined projective subspace of dimension at most
min{ni, rX(q)−1}. By Concision/Autarky we have Y ′ =

∏k
i=1〈Ai〉. In partic-

ular q does not depend on the ith factor of Y if and only if for one A ∈ S(Y, q)
the set πi(A) is a single point.

Remark 1.10. Let q ∈ P
N and consider A ∈ S(Y, q). We claim that there is

no line L ⊂ X such that �(L ∩ ν(A)) ≥ 2. Obviously if �(L ∩ ν(A)) > 2 we
would have at least 3 points that evince the rank of q on a line, which is
a contradiction with the linearly independence property that sets in S(Y, q)
have. So assume that there exists a line L ⊂ X such that �(L ∩ ν(A)) = 2;
let u, v ∈ A be the preimages of those points, i.e. u �= v and 〈ν(u), ν(v)〉 = L.
Then rX(q) > 2 because if rX(q) = 2 then we would have q ∈ L ⊂ X, so the
rank of q will be 1. Let E = A\{u, v}. Then we will have that q ∈ 〈ν(E)∪L〉,
so we can find a point o ∈ L such that q ∈ 〈ν(E) ∪ {o}〉, which would imply
rX(q) < �A.

1.1. A Very Useful Lemma

Let X be a non degenerate irreducible projective variety embedded in P
N

via an ample line bundle L. Let Z ⊂ X be a zero-dimensional scheme and
let D ⊂ P

N be a fixed hyperplane, i.e. D ∈ |L|. Denote with ResD(Z) the
residual scheme of Z with respect to D, i.e. the zero-dimensional scheme
whose defining ideal sheaf is IZ : ID. The ideal sheaf ID∩Z,D ⊗ L represents
the scheme theoretic intersection of D and Z, also called the trace of Z with
respect to D. The residual exact sequence of Z with respect to D in X is the
following:

0 → IResD(Z) ⊗ L(−D) → IZ ⊗ L → ID∩Z,D ⊗ L → 0.

An extremely useful tool that will turn out to be crucial in many proofs
of this paper is [7, Lemma 5.1]. We recall here the analogous statement given
in [13, Lemma 2.4] in the setting of zero-dimensional schemes.

Lemma 1.11. (Ballico–Bernardi–Christandl–Gesmundo) Let X ⊆ P
n be an

irreducible variety embedded by the complete linear system associated with
L = OX(1). Let p ∈ P

n and let A,B be zero-dimensional schemes in X such
that p ∈ 〈A〉, p ∈ 〈B〉 and there are no A′

� A and B′
� B with p ∈ 〈A′〉 or

p ∈ 〈B′〉. Suppose h1(IB(1)) = 0. Let C ⊆ P
n be an effective Cartier divisor

such that ResC(A) ∩ ResC(B) = ∅. If h1(X, IResC(A∪B)(1)(−C)) = 0 then
A ∪ B ⊆ C.
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We rephrase it in terms of sets of points of multiprojective spaces em-
bedded via |O(1, . . . , 1)|.

Let k ≥ 2, let Y = P
n1 × · · · × P

nk such that X : =ν(Y ) ⊂ P
N , where

N =
∏

(ni +1)−1. Let q ∈ P
N be a point of X–rank r and let A,B ∈ S(Y, q)

be sets of points evincing the rank of q and write S : =A ∪ B. In this set-
ting, the irreducible variety X considered in Lemma 1.11 is the Segre vari-
ety. The residual scheme ResC(S) is therefore S\(S ∩ C). The assumption
h1(IB(1)) = 0 of [13, Lemma 2.4], in the setting of Segre varieties becomes
h1(IB(1, . . . , 1)) = 0, which means that the points of ν(B) are linearly inde-
pendent and this assumption is satisfied since both A and B are sets evincing
the rank of q.

With all this said we can state the specific version of [13, Lemma 2.4]
and [7, Lemma 5.1] which is needed in the present paper.

Notation 1.12. With an abuse of notation, when we will make cohomology
computation, if the variety for which we compute the cohomology of the ideal
sheaf is Y we will omit it. We will specify the variety only when it is not Y .

Lemma 1.13. Let k ≥ 2 and consider Y = P
n1 × · · · × P

nk , where all ni ≥ 1.
Let q ∈ P

N , A,B ∈ S(Y, q) be two different subsets evincing the rank of q
and write S = A ∪ B. Let D ∈ |OY (ε)| be an effective Cartier divisor such
that A ∩ B ⊂ D, where ε =

∑
i∈I εi for some I ⊂ {1, . . . , k} as introduced in

Notation 1.5. If h1(IS\S∩D(ε̂)) = 0 then S ⊂ D.

The above lemma gives a sufficient condition so that the whole S = A∪B
is contained in a given divisor D of the variety X. If A,B are two disjoint
distinct sets evincing the rank of a tensor q of X–rank 3 the assumption that
A ∩ B ⊂ D is always satisfied.

2. Identifiability on the 2nd Secant Variety

In this section we study and completely determine the identifiability of points
on the second secant variety of a Segre variety.

By Remark 1.9, the concise Segre of a border rank-2 tensor q is Xq =
ν

(
P
1
i

)×k. Therefore, for the rest of this section, we will focus our attention
to Segre varieties of products of P

1s.

Remark 2.1. If the concise Segre Xq of a tensor q ∈ σ2(X) is a ν(P1 × P
1),

then σ2(Xq) parameterizes the 2 × 2 matrices for which it is trivial to see
that they can be written as sum of two rank-1 matrices in an infinite number
of ways.

For the rest of this section, we will, therefore, focus on Segre varieties
of (P1)×k with k ≥ 3.

Definition 2.2. The variety τ(X) is the tangent developable of a projective
variety X, i.e. τ(X) is defined by the union of all tangent spaces to X.

Recall that a tensor q ∈ τ(X)\X has rank equal to 2 if and only if the
concise Segre Xq of q is a two-factor Segre; moreover, it is not-identifiable for
any number of factors (cf. e.g. [8, Remark 3]).



174 Page 6 of 26 E. Ballico et al. MJOM

Proposition 2.3. Let q ∈ σ0
2(X). Then |S(Y, q)| > 1 if and only if the concise

Segre Xq of q is Xq = ν(P1 × P
1).

Proof. We only need to check the case of k ≥ 4 since k = 2, 3 are classically
known. The case of matrix is obviously not-identifiable (cf. Remark 2.1),
while the identifiability in the case k = 3 is classically attributed to Segre
and it is also among the so called Kruskal range (cf. [45], [36, Thm. 4.6], [34,
Thm. 1.2]), see also [37, line 7 of page 484]. We assume, therefore, that k ≥ 4.

Since X is cut out by quadrics, then if a line L ⊂ P
N is such that

deg(L ∩ X) > 2 then L ⊂ X and the points of L have X-rank 1. Let A,B ∈
S(Y, q), either 〈A〉 = 〈B〉 or 〈A〉 ∩ 〈B〉 = {q}. In fact, in the first case A = B
since rX(q) = 2 and therefore 〈A〉 is not contained in X; moreover, X is
cut out by quadrics. In the second case A �= B. We can, therefore, assume
that A,B ∈ S(Y, q) are two disjoint sets: A = {a, a′}, B = {b, b′}, where
a = (a1, . . . , ak), a′ = (a′

1, . . . , a
′
k) and b = (b1, . . . , bk), b′ = (b′

1, . . . , b
′
k).

Since a �= a′, we may assume that at least one of their coordinates is different.
Actually we can assume that all the ai �= a′

i, otherwise, by the concision
property, one could consider one factor less. The same considerations hold
for B.

Now suppose that there exists an index i ∈ {1, . . . , k} such that {ai, a
′
i} �=

{bi, b
′
i} and let such an index be i = 1: {a1, a

′
1} �= {b1, b

′
1}.

Now we proceed by induction on k. Let ηk, νk, and Xk be as in Notation
1.3. Let q̃ = (q1, . . . , qk−1) be the projection ηk(q), then ηk(A) �= ηk(B) and
∅ �= 〈νk(ηk(A))〉 ∩ 〈νk(ηk(B))〉 ⊃ {q̃} because {q} ⊂ 〈ν(A)〉 ∩ 〈ν(B)〉. So
rXk

(q̃) = 2 and |S(Yk, q̃)| ≥ 2, which is a contradiction because Xk is a concise
Segre of k − 1 factor (where k > 3) and a point of it cannot have more than
a decomposition. Thus, for all i =, 1 . . . , k we have that {ai, a

′
i} = {bi, b

′
i}.

Without loss of generality assume that a1 = b1 and a′
1 = b′

1, moreover up
to permutation there exists an index e ∈ {1, . . . , k − 1} such that bi = ai and
consequently b′

i = a′
i for 1 ≤ i ≤ e and bi = a′

i and b′
i = ai for e + 1 ≤ i ≤ k.

Eventually by exchanging the role of the first e elements with the others, we
have that k − e ≥ 2 because by assumption k ≥ 4. Let H ∈ |OY (0, . . . , 0, 1)|
be the only element containing a′, H = P

1 × · · · × P
1 × {a′

k} ∼= (P1)×k−1;
then ResH(A∪B) = {a′, b′} and since k−e ≥ 2 we have that ηk(a′) �= ηk(b′),
i.e. h1(IResH(A∪B)(1, . . . , 1, 0)) = 0. By Lemma 1.13, we get a′ = b′ which
contradicts the fact that A ∩ B = ∅.

Corollary 2.4. Let q be any rank-2 tensor. If q is not-identifiable, then there
is a bijection between S(Y, q) and P

2\L, where L ⊂ P
2 is a projective line,

q ∈ τ(X) and L parametrizes the set of all degree 2 connected subschemes V
of Y such that q ∈ 〈ν(V )〉.
Proof. It suffices to work with a Segre variety of 2 factors only because by
Proposition 2.3 it is the only not-identifiable case in rank-2. Thus, X ⊂ P

3

is a quadric surface. Denote by Hq ⊂ P
3 the polar plane of X with respect

to q. Since q /∈ X, we have that q /∈ Hq and the intersection X ∩ Hq = {p ∈
X | TpX � q} is a smooth conic. Remark also that by definition a point
o ∈ X is such that q ∈ ToX if and only if o ∈ X ∩ Hq ⊂ τ(X).

Fix o ∈ Hq, then
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• if o /∈ X the line given by 〈o, q〉 is not tangent to X and when considering
the intersection 〈o, q〉 ∩ X, it is given by two points p1, p2 /∈ {o, q} such
that {p1, p2} ∈ S(Y, q);

• if o ∈ X, i.e. o ∈ X ∩ Hq, then the line 〈o, q〉 is tangent to X.

Consider Πq = {lines L ⊂ P
3 passing through q} ∼= P

2 and consider the
following isomorphism ϕ : Hq −→ Πq defined by p 	→ 〈p, q〉. Clearly, ϕ(X ∩
Hq) is a smooth conic C of Πq. Moreover, one can notice that Πq\ϕ(X∩Hq) ∼=
P
2\C are just the points of the first case.

3. Examples of Not-Identifiable Rank-3 Tensors

The purpose of this section is to explain in detail the phenomena behind the
not-identifiable rank-3 tensors. In the main Theorem 7.1, they will turn out
to be the unique cases of not-identifiability for a rank-3 tensor.

From now on, we always consider q ∈ P
N such that rX(q) = 3; therefore,

by Remark 1.9, we may assume that q is an order-k tensor with at most 3
entries in each mode, i.e. the concise Segre of q is Xq = ν(Pn1 × · · · × P

nk),
with n1, . . . , nk ∈ {1, 2}.

First of all let us remark that the matrix case is highly not-identifiable
even for the rank-3 case.

Remark 3.1. In the case of two factors (i.e. k = 2), a rank-3 tensor q is a 3×3
matrix of full rank. The dimension of the concise Segre X of 3 × 3 matrices
is 4 and dim(σ3(X)) = min{dim(P8), 3 dim(X) + 2} = min{8, 14} = 8. Thus,
dim S(Y, q) = 14 − 8 = 6 for all q ∈ P

8 of rank 3.

Consider now the third secant variety of the Segre embedding of Y =
P

n1 × · · · × P
nk , where ni ∈ {1, 2}, the following Examples 3.6 and 3.7 and

Proposition 3.10 provides instances of not-identifiability that we will show to
be essentially the only classes of not-identifiable rank-3 tensors in C

n1+1 ⊗
· · · ⊗ C

nk+1 (cases (4), (5) and (6), respectively, of our main Theorem 7.1)
more than the well-known ones (matrix case, points on tangential variety of
ν((P1)×3), and elements of the defective σ3(ν((P1)×4))—items (1), (2) and
(3) respectively of Theorem 7.1).

In the following remark we explain the behaviour on σ3((P1)×4).

Remark 3.2. It has been shown in [1] (cf. also [27,29]) that the third secant
variety of a Segre variety X is never defective unless either X = ν(P1 × P

1 ×
P
1 × P

1) or X = ν(P1 × P
1 × P

a), with a ≥ 3.
The case in which q is a rank-3 tensor in 〈ν(P1 × P

1 × P
a)〉 with a ≥ 3

corresponds to a not-concise tensor (cf. Remark 1.9); therefore, it will not
play a role in our further discussion.

The case in which X = ν(P1 × P
1 × P

1 × P
1) and q ∈ 〈X〉 can also

be easily handled. The fact that dim(σ3(X)) is strictly smaller than the ex-
pected dimension proves that the generic element of σ3(X) has an infinite
number of rank-3 decompositions. By definition of dimension there is no ele-
ment of σ3(X) s.t. its tangent space has dimension equal to the expected one:
dim(Tq(σ3(X))) ≤ dim σ3(X) for all q ∈ σ3(X). This does not exclude the
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existence of certain special rank-3 tensors q such that dim(Tq(σ3(X))) =
dim(Tq′(AbSec3(X))) < 14 where AbSec3(X) : ={(p; p1, p2, p3) ∈ P

15 ×
X×3 | p ∈ 〈p1, p2, p3〉} is the 3rd abstract secant of X and q′ is the preimage
of q via the projection on the first factor. The impossibility of the existence of
such a point is guaranteed by [43, Cap II, Ex 3.22, part (b)]. This proves that
all the tensors of σ0

3(X) have an infinite number of rank-3 decompositions.

Before explaining the other not-identifiable examples, we need some
preliminary results.

Remark 3.3. Let Y be a multiprojective space with at least two factors where
at least one of them is of projective dimension 2. By relabeling, if necessary,
we can assume that the first factor is a P

2. Let q ∈ σ0
3(ν(Y )), with ν(Y ) the

concise Segre of q and let A,B ∈ S(Y, q) be two disjoint subsets evincing the
rank of q. By Autarky 〈π1(A)〉 = 〈π1(B)〉 = P

2; moreover when considering
the restrictions of the projections π1|A and π1|B to the subsets A and B, re-
spectively; they are both injective and both π1(A) and π1(B) contain linearly
independent points.

Remark 3.4. Consider Y = P
2 × P

1 × P
1 and an irreducible divisor G ∈

|OY (0, 1, 1)|. Then σ2(ν(G)) � σ3(ν(G)) = 〈ν(G)〉 = P
8. Indeed G is noth-

ing else than the Segre–Veronese variety ([16]) of P
2 × P

1 embedded in bi-
degree (1,2), i.e. G ∼= P

2 ×P
1, OY (1, 1, 1)|G ∼= OP2×P1(1, 2) and OY (1, 0, 0) ∼=

OY (1, 1, 1)(−G). The classification of the dimensions of secant varieties of
such a Segre–Veronese can be found in [10,15,17,33].

Proposition 3.5. For the Segre embedding of Y = P
2 × P

1 × P
1 fix G1 ∈

|OY (0, 1, 0)| and G2 ∈ |OY (0, 0, 1)| and define G : =G1 ∪ G2 to be their
union. We have that for {i, j} = {1, 2}, dim〈ν(Gi)〉 = 5, dim〈ν(G)〉 = 8,
σ2(ν(Gi)) = 〈ν(Gi)〉 and 〈ν(G)〉 is the join of σ2(ν(Gi)) and ν(Gj).

Proof. First of all remark that, for i = 1, 2, Gi
∼= P

2 × P
1, OY (1, 1, 1)|Gi

∼=
OP2×P1(1, 1) and G is a reducible element of |OY (0, 1, 1)|. With an analogous
computation of the one in Remark 3.4 one sees that dim〈ν(G)〉 = 8 and
σ2(ν(Gi)) = 〈ν(Gi)〉. It remains to show that 〈ν(G)〉 = J , where J denotes
the join of σ2(ν(Gi)) and ν(Gj) with {i, j} = {1, 2}. We remark that since
σ2(ν(G)) = P

5, then J = Join(P3, ν(G1), ν(G2)). To show that J = P
8 it is

sufficient to see that dim(σ2(ν(Gi)∩ν(Gj))) = 1 and this is a straightforward
computation since the elements of ν(G1) are tensors with a second factor
fixed, while the elements of ν(G2) have the third factor fixed, and to have
the equality between an element of σ2(ν(G1)) and an element of ν(G2) it is
sufficient to impose two linear independent conditions and, therefore, since
dim(ν(G2)) = 3 we have that the intersection has dimension 1.

Example 3.6. Take Y = P
2 × P

1 × P
1, consider the Segre embedding on the

last two factors and take a hyperplane section which intersects ν(P1 × P
1) in

a conic C, then take a point q ∈ 〈ν(P2×C)〉. Such a construction is equivalent
to consider an irreducible divisor G ∈ |OY (0, 1, 1)|, so G ∼= P

2×P
1 embedded

via O(1, 2), then dimσ2(ν(G)) = 7, thus σ2(ν(G)) � 〈ν(G)〉 � P
8. As a direct

consequence we get that a general point q ∈ 〈ν(G)〉 has ν(G)-rank 3 and it
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is not-identifiable because of the not-identifiability of the points on 〈C〉 and
by [43, Cap II, Ex 3.22, part (b)]. Thus, dim(S(G, q)) = 3.

The following example is in the same setting of the previous one, but
in this case we deal with a reducible conic and in such a case we get a 4-
dimensional family of solutions.

Example 3.7. Fix Y = P
2 × P

1 × P
1. Consider G1 ∈ |OY (0, 0, 1)|, G2 ∈

|OY (0, 1, 0)| and call G = G1∪G2 which is a reducible element of |OY (0, 1, 1)|.
By Proposition 3.5, dim〈ν(G)〉 = 8; moreover, by a dimension count, we have
〈ν(Gi)〉 = σ2(Gi), for i = 1, 2, both having dimension 5. By Proposition 3.5,
we also have that 〈ν(G)〉 = J1 = J2, where J1 = Join(σ2(ν(G1)), ν(G2)) and
J2 = Join(σ2(ν(G2)), ν(G1)). A general q ∈ 〈ν(G)〉 has rank 3 and for the
subsets evincing its rank we have a 4-dimensional family of sets A such that
�(A) = 3, �(A ∩ G1) = 2, �(A ∩ G2) = 1, A ∩ G1 ∩ G2 = ∅ and q ∈ 〈ν(A)〉.
Such a family has dimension 4 since G1 is a non defective threefold in P

5;
therefore, there exists a 2-dimensional family of sets of cardinality 2 in G1

spanning a general point of P
5; moreover, q sits in a 2-dimensional family of

lines joining points of G1 and G2. Analogously, by looking at q as an element
of J2, we get the existence of a 4-dimensional family of sets B such that
�(B) = 3, �(B ∩ G2) = 2, �(B ∩ G1) = 1, A ∩ G1 ∩ G2 = ∅ and q ∈ 〈ν(B)〉. So
we proved that S(G, q) contains at least two dimensional families of solution.
Thus, dim S(G, q) ≥ 4.

Proposition 3.8. Let q ∈ σ0
3(ν(P2 × P

1 × P
1)) and suppose that there exist

A,B ∈ S(Y, q) s.t. �(A∪B) = 6. Then there exists a unique G ∈ |OY (0, 1, 1)|
containing S = A ∪ B. For such a G we have that S(Y, q) = S(G, q).

Proof. Call S : =A ∪ B, by Remark 3.3, both π1|A and π1|B are injective
and both π1(A) and π1(B) are sets containing linearly independent points.
So h1(IA(1, 0, 0)) = h1(IB(1, 0, 0)) = 0. Now h0(OY (0, 1, 1)) = 4, so there
exists G ∈ |OY (0, 1, 1)| containing B. Moreover, S\S ∩ G ⊆ A but since
h1(IA(1, 0, 0)) = 0 we have that S ⊂ G. This holds for any G ∈ |IB(0, 1, 1)|,
so 〈ν1(η1(A))〉 ⊂ 〈ν1(η1(B))〉. The same holds exchanging the roles of A and
B; thus, 〈ν1(η1(A))〉 = 〈ν1(η1(B))〉.

Assume G is irreducible, then B contains three linearly independent
points on G, so the points of B are uniquely determined by G.

Assume G is reducible, i.e. G = G1 ∪ G2, with G1 ∈ |OY (0, 1, 0)| and
G2 ∈ |OY (0, 0, 1)|. Remark that, by Autarky, it does not exist any E ∈ S(Y, q)
which is all contained in Gi, for i = 1, 2, because G is a multiprojective
subspace of Y .

Without loss of generality, we may assume that two points of E lies in
G1; then the three points of E are uniquely determined by a reducible conic,
i.e. by the reducible element G = G1 ∪ G2 that contains them.

Corollary 3.9. If q ∈ σ0
3(ν(P2 ×P

1 ×P
1)) is such that there exist two disjoint

sets A,B ∈ S(Y, q), then q can be either as in Example 3.6 and dim(S(Y, q)) =
3 or as in Example 3.7 and dim(S(Y, q)) = 4.
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Proof. This is a direct consequence of the uniqueness of the G ∈ |OY (0, 1, 1)|
s.t. S(Y, q) = S(G, q) in Proposition 3.8.

Proposition 3.10. Let Y ′ : =P
1 × P

1 × {u3} × · · · × {uk} be a proper subset
of Y = P

n1 × · · · × P
nk , k ≥ 2. Take q′ ∈ 〈ν(Y ′)〉\ν(Y ′), A ∈ S(Y ′, q′) and

p ∈ Y \Y ′. Assume that Y is the minimal multiprojective space containing
A ∪ {p} and take q ∈ 〈{q′, ν(p)}〉\{q′, ν(p)}.

1.
∑k

i=1 ni ≥ 3, n1, n2 ≤ 2, n3, . . . , nk ≤ 1 and if k ≥ 3 then rν(Y )(q) > 1;
2. If k ≥ 3 and

∑k
i=1 ni ≥ 4 then rν(Y )(q) = 3 and S(Y, q) = {{p} ∪

A}A∈S(Y ′,q′).
3. ν(Y ) is the concise Segre of q.

Proof. First of all, remark that rν(Y )(q) > 1, otherwise there exists o ∈ Y
s.t. q = ν(o) and q′ ∈ 〈ν({o, p})〉. Since rν(Y )(q′) = 2, we would have {o, p} ∈
S(Y, q′) and by Autarky we get {o, p} ⊂ Y ′, contradicting the assumption
p /∈ Y ′.

The fact that n1 + · · · + nk ≥ 3 is obvious from the fact that p /∈ Y ′ so
Y �= Y ′.

Since q′ is a 2 × 2 matrix of rank 2, dimS(Y ′, q′) = 2 and Y ′ is the
minimal multiprojective subspace of Y containing A, the minimal multipro-
jective subspace containing Y ′ ∪ {p} is Y . So since P

ni = 〈πi(Y ′ ∪ {p})〉, we
get 1 ≤ ni ≤ 2 for i = 1, 2 and ni = 1 for all i > 2. This ends item 1.

Item 3 will be a consequence of item 2, in fact if the structure of the
elements on S(Y, q) is of type A ∪ {p} with A ∈ S(Y ′, q′), then Autarky and
the fact that Y is the minimal multiprojective space containing A ∪ {p} will
imply that ν(Y ) is the concise Segre of q. So let us prove item 2.

The proof is by induction on the number of factors. Step (A) is the
basis of induction for the case in which Y has at least one factor of projective
dimension 2 (k = 3), Step (B) is the basis of induction for the case in which
all the factors of Y have projective dimension 1 (k = 4), Steps (C) and (D)
are the induction processes of Step (B) and Step (A), respectively.

Let E ∈ S(Y, q), if we will show that E ⊃ {p} and that there exists
B ∈ S(Y ′, q′), such that E = B ∪ {p}, we will be done. Assume that there
is no B ∈ S(Y ′, q′) such that E = B ∪ {p}. Fix any A ∈ S(Y ′, q′) and set
S : =A ∪ {p} ∪ E.
(A) [Case k = 3, n1 = 2, n2 = n3 = 1] First assume p ∈ E and set E′ :

=E\{p} and F = A ∪ E′. Since ∩B∈S(Y,q′)η3(B) = ∅, taking another
A ∈ S(Y, q′) if necessary we may assume η3(A) ∩ η3(E′) = ∅. Set
{D} : =|Ip(0, 0, 1)|. By Lemma 1.13, we have h1(IS\S∩D(1, 1, 0)) > 0
and hence (since �F ≤ 4) h0(IS\S∩D(1, 1, 0)) ≥ 3. This must be true
for all A ∈ S(Y ′, q′) and hence we have h0(Y3, Iη3(Y ′)∪η3(E′)(1, 1)) ≥ 3.
Since η3(Y ′) ∈ |OY3(1, 1)| we have h0(Y3, Iη3(Y ′)(1, 1)) = 1, contradict-
ing the previous inequality.
From now on suppose p /∈ E. As above we may assume η3(A)∩η3(E) =
∅.
Fix o ∈ E. Since h0(OY (1, 1, 0)) = 6 and �A ∪ {p} ∪ {o} = 4 there
is G ∈ |OY (1, 1, 0)| containing A ∪ {p} ∪ {o}. Assume for the moment
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S � G, i.e. E � G. We have h1(IS\S∩G(0, 0, 1)) > 0; thus, �E ≥ 3. Since
�E ≤ 3, we get �E = 3 (and hence q has rank 3 and ν(Y ) is the concise
Segre containing q), S\S ∩ G = E\{o} and �π3(E\{o}) = 1. Taking a
different o ∈ E we get �π3(E) = 1, i.e. ν(Y ) is not the concise Segre of
q, a contradiction.
Now assume S ⊂ G. Since this must be true for all G ∈ |IA∪{p,o}(1, 1, 0)|,
we get |IA∪{p,o}(1, 1, 0)| ⊇ |I{p}∪E(1, 1, 0)| �= ∅. Note that η3(Y ′) ∈
|OY3(1, 1)| and hence h0(Y3, Iη3(Y ′)(1, 1)) = 1. Since n1 = 2 and Y
is the minimal multiprojective space containing q, we have η3(p) /∈
η3(Y ′). Thus, h0(Y3, Iη3(Y ′)∪{η3(p)}(1, 1)) = 0, a contradiction since
|IA∪{p,o}(1, 1, 0)| �= ∅.

(B) [Case k = 4, n1 = n2 = n3 = n4 = 1] Fix G ∈ |OY (0, 0, 1, 1)| contain-
ing E. Assume S � G. Since S\E = A ∪ {p}, by Lemma 1.13, we
have h1(IA∪{p}(1, 1, 0, 0)) > 0. Call p′ the projection of p via Y → Y ′.
Since OP1×P1(1, 1) is very ample we get that either p′ ∈ A or that
�(πi(A ∪ {p′})) = 1 for some i ∈ {1, 2}. The second possibility is
excluded, because �(π1(A)) = �(π2(A)) = 2 for any A ∈ S(Y ′, q′).
The first possibility is excluded taking instead of A another general
A1 ∈ S(Y ′, q′). Now assume S ⊂ G. We get A ⊂ G. This is ruled
out taking another A ∈ S(Y ′, q′) since a general a ∈ Y ′ is contained
in some B ∈ S(Y ′, q′). Thus, we would have that Y ′ ⊂ G which is a
contradiction.

(C) [Case k ≥ 5, ni = 1 for all is] We exclude this case by induction on k,
the base case k = 4 being excluded in (B). Fix o ∈ P

1\{pk, uk}, set
M : =π−1

k (o), i.e. M = (P1)×k−1 ×{o} and call Λ : =〈ν(M)〉. Note that
(Y ′ ∪ {p}) ∩ M = ∅. Denote by r = 2k − 1 and define r′ : = dim Λ =
2k−1 − 1.
Consider the following linear projection form Λ:

� : P
r\Λ → P

r′
. (3.1)

Note that ν(Y )∩Λ = ν(Yk)×{o} and that �|ν(Y )\M = νk(ηk(Y \M)). We
identify P

r′
with the target projective space of Yk. Since (Y ′∪{p})∩M =

∅, � is well defined on Y ′ ∪ {p} and it acts as the composition of ηk and
the Segre embedding.
By the inductive assumption S(Yk, �(q)) = {B∪ηk(p)}B∈S(ηk(Y ′),ηk(q′)).
Thus, for any E ∈ S(Y, q) there is B ∈ S(Y ′, q′) such that ηk(E) =
ηk(B ∪ {p}). Since ηk|E is injective by Remark 1.10 and S(Y, q) ⊇ {B ∪
{p}}B∈S(Y ′,q′), we get S(Y, q) = {B ∪ {p}}B∈S(Y ′,q′).

(D) [Case k ≥ 3, n1 = 2, n1 + · · · + nk ≥ 5] If only one of the factors is a
P
2 we use Step (A) as base of the induction and then we construct a

projection similar to (3.1). Indeed Y = P
2 × (P1)k−1, where k ≥ 4. Fix

o ∈ P
1\{pk, uk}, set M : =π−1

k (o) and define Λ : =〈ν(M)〉. Denote by
r = 3 · 2k−1 − 1 and by r′ = dim Λ : =3 · 2k−2 − 1. We consider the
linear projection � : P

r\Λ → P
r′

which acts as the composition of ηk and
the Segre embedding. By the inductive assumption S(Yk, �(q)) = {B ∪
ηk(p)}B∈S(ηk(Y ′),ηk(q′)). Thus, for any E ∈ S(Y, q) there is B ∈ S(Y ′, q′)
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such that ηk(E) = ηk(B ∪ {p}). Since ηk|E is injective by Remark 1.10
and S(Y, q) ⊇ {B∪{p}}B∈S(Y ′,q′), we get S(Y, q) = {B∪{p}}B∈S(Y ′,q′).
Now assume also n2 = 2, so that we must have k ≥ 3. Let Y = P

2 ×
P
2×(P1)k−2 and fix o ∈ P

2\π2(Y ′). Set M : =π−1
2 (o), and Λ : =〈ν(M)〉.

Then r = 9 · 2k−2 − 1, dim Λ = 9 · 2k−3 − 1. Let r′ := 9 · 2k−3 − 1 and
consider the linear projection � : P

r\Λ → P
r′

from Λ which acts on
ν(Y ) as the composition of the Segre embedding and the map P

2 ×
P
2 × (P1)k−2\P

2 × {o} × (P1)k−2 → P
2 × (P1)k−1, which is the linear

projection P
2\{o} → P

1 on the second factor and the identity on any
other factor. Since (Y ′ ∪{p})∩M = ∅, �(q) is well defined. We conclude
since we already proved the statement in the case where only one of the
factors is a P

2.

4. Lemmas

In this section, we collect the basic lemmas that we will need all along the
proof of the main theorem of the present paper, Theorem 7.1.

The following two lemmas describe two very basic properties that two
different sets A and B evincing the rank of the same rank-3 point q have to
satisfy.

Lemma 4.1. Let q be a not-identifiable tensor and let A and B two distinct
sets evincing the rank of q. Define S := A∪B. If �(S) ≥ 5 and dim〈ν(S)〉 = 2,
then the rank of q cannot be 3.

Proof. Assume the existence of such a rank-3 tensor q with 2 distinct de-
compositions A and B s.t. �(A ∪ B) ≥ 5. The plane 〈ν(S)〉 contains at least
five not-collinear points. Note that 〈ν(S)〉 �⊆ X, otherwise also q ∈ X which
contradicts rX(q) = 3. So 〈ν(S)〉∩X contains a conic C. Either if it is reduced
or not, the two secant variety of C fills 〈ν(S)〉 = P

2. So rX(q) ≤ 2, which is
an absurd.

Lemma 4.2. Let q be a not-identifiable rank-3 tensor and let A,B ∈ S(Y, q)
be distinct. Then �(A ∩ B) ≤ 1.

Proof. Suppose, by contradiction, that A and B have 2 distinct points in
common and call the set of these two points E. Let A = E ∪ {u} and B =
E ∪ {v}. Since the rank of q is 3, q /∈ 〈ν(E)〉, but since by definition q ∈
〈ν(A)〉 ∩ 〈ν(B)〉 we have that 〈ν(E)〉 � 〈ν(A)〉 ∩ 〈ν(B)〉. Clearly 〈ν(E)〉 is
a line; therefore, dim〈ν(A)〉 ∩ 〈ν(B)〉 > 1, but 〈ν(A)〉 and 〈ν(B)〉 are both
planes, so 〈ν(A)〉 = 〈ν(B)〉. In the plane 〈ν(A)〉, we have two different lines:
ν(E) and 〈ν(u), ν(v)〉, which mutually intersect in at most a point q′. Remark
that q′ /∈ X because otherwise the line 〈ν(E)〉 would have at least 3 points
of rank 1 and so we would have 〈ν(E)〉 ⊂ X, contradicting Remark 1.10.
So rX(q′) = 2 and �S(Y, q′) ≥ 2, by Proposition 2.1 we get that actually
q′ ∈ 〈ν(Y ′)〉, where Y ′ = P

1 × P
1. But also E, {u, v} ⊂ Y ′, so q ∈ 〈ν(Y ′)〉,

which contradicts the fact that q has rank 3.

An immediate corollary of Lemma 4.2 is the following.
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Corollary 4.3. If q is a rank-3 tensor and A and B are two distinct sets
evincing its rank, then the cardinality of A ∪ B can only be either 5 or 6.

This corollary turns out to be extremely useful for the proof of our main
result, Theorem 7.1. We will be allowed to focus only on the structure of not-
identifiable points of rank-3 with at least two decompositions A and B as
in Corollary 4.3. This is the reason why we will study separately the case
�A ∪ B = 5 in Sect. 5 from the case �A ∪ B = 6 in Sect. 6.

Another very useful behaviour that needs to be understood to study
the identifiability of rank-3 tensors, is the structure of the not-independent
sets of at most 3 rank-1 tensors. This is what is described by the following
lemma.

Lemma 4.4. A set of points E ⊂ Y � P
n1 × · · · × P

nk of cardinality at
most 3 does not impose independent conditions to multilinear forms over
Yi � P

n1 ×· · ·× P̂ni ×· · ·×P
nk , i = 1, . . . , k (i.e. h1(IE(ε̂i)) > 0) if and only

if one of the following cases occurs:
1. �(E) = 3 and there is j ∈ {1, . . . , k}\{i} such that �(πh(E)) = 1 for all

h /∈ {i, j};
2. there are u, v ∈ E such that u �= v and ηi(u) = ηi(v).

Proof. The fact that both items 1. and 2. imply that h1(IE(ε̂i)) > 0 is
obvious. Let us describe the other implication.

By definition H0(OY (ε̂i)) ∼= H0(OYi
(1, . . . , 1), and OY (ε̂i) is not a very

ample line bundle. So we cannot be sure about the injectivity of the restriction
ηi|E of ηi to the finite set E.

If ηi|E is not injective one immediately gets that h1(IE(ε̂i)) > 0. More-
over, if ηi|E is not injective it means that there are 2 distinct points of E, say
u and v which are mapped by ηi onto the same point, i.e. we are in item 2.
of this lemma.

Now assume that ηi|E is injective (i.e. we are not in item 2.). This
implies that �E = �ηi(E). We have by hypothesis that h1(IE(ε̂i)) > 0. Since
by definition h1(IE(ε̂i)) = h1(Yi, Iηi(E)(1, . . . , 1)) we have that ηi(E) does
not impose independent conditions to the multilinear forms over Yi; therefore,
�(ηi(E)) ≥ 3 which clearly implies that �(ηi(E)) = 3 since by hypothesis the
cardinality of E is at most 3. Now ηi(E) is a set of 3 distinct points on Yi

which does not impose independent conditions to the multilinear forms over
Yi, and OYi

(1, . . . , 1) is very ample, therefore the 3 points of ηi(E) must be
mapped to collinear points by the Segre embedding νi of Yi. Hence, by the
structure of the Segre variety νi(Yi), we get that 〈νi(ηi(E))〉 ⊆ νi(Yi) and
there is j ∈ {1, . . . , k}\{i} such that �(πh(ηi(E))) = 1 for all h /∈ {i, j}. Since
h �= i, we have πh(ηi(E)) = πh(E).

5. Two Different Solutions with One Common Point

We have seen in Corollary 4.3 that if a rank-3 tensor q is not-identifiable and
A, B are two sets of points on the Segre variety computing its rank, then
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�A ∪ B can only be either 5 or 6. This section is fully devoted to the case in
which �A ∪ B = 5, i.e. A and B share only one point and call it p:

S := A ∪ B, �S = 5, A ∩ B = {p} and A′ = A\{p}, B′ = B\{p}. (5.1)

The matrix case is well known, therefore we will always assume that q

is an order-k ≥ 3 tensor, i.e. q ∈ 〈ν(Y )〉 with Y =
∏k

i=1 P
ni and k ≥ 3.

We will study separately the cases in which:
• Y contains at least one factor of projective dimension 2 and all the

others of dimension either 1 or 2 (Proposition 5.1);
• Y is a product of P

1s only (see Proposition 5.2).

This will completely cover the cases of not-identifiable rank-3 tensors with
the condition (5.1) since, by Remark 1.9, the concise Segre of a rank-3 point
q is Xq = ν(Pn1 × · · · × P

nk), with n1, . . . , nk ∈ {1, 2}.

Proposition 5.1. Let Y be the multiprojective space with at least 3 factors and
at least one them of projective dimension 2, i.e. Y = P

2 × P
n2 × · · · × P

nk

with ni ∈ {1, 2} for i = 1, . . . , k and k ≥ 3. Let q ∈ σ0
3(ν(Y )), with ν(Y ) the

concise Segre of q. If there exist two sets A,B ∈ S(Y, q) evincing the rank of
q such that �A ∩ B = 1 then q is as in Proposition 3.10.

Proof. Consider a divisor M ∈ |OY (ε1)| containing A′ = A\{p}. By Conci-
sion/Autharky S � M , so, by Lemma 1.13, either h1(IS\S∩M (ε̂1)) > 0 or
p /∈ M and A′ ∪ B′ ⊂ M . We study separately the two cases.

1. First assume h1(IS\S∩M (ε̂1)) > 0.
The divisor M contains A′ by definition so �(S\S ∩ M) ≤ 3; moreover,
if we define Y1 := P

n2 × · · · × P
nk with ni = 1, 2 for i = 2, . . . , k, we

have that OY1(1, . . . , 1) is very ample; therefore, we can apply Lemma
4.4 and say that one of the following occurs:

(i) �(S\S∩M) = 3 and there exists a projection πi, with i ∈ {2, . . . , k}
such that �(πi(S\S ∩ M)) = 1;

(ii) There exist u, v ∈ (S\S ∩ M) such that u �= v and η1(u) = η1(v).
We remark that case (ii) implies that πi(u) = πi(v) for all i > 1. Since
M contains A′, we have that S\S ∩ M = {u, v} ⊆ B, we can exclude
case (ii) thanks to Remark 1.10.
So only case (i) is possible. Since �(S\S ∩ M) = 3 we have that S\S ∩
M = B and there exist an index i ∈ {2, . . . , k} such that �πi(S\S∩M) =
1. The fact that there is i ∈ {2, . . . , k} such that �(πi(B)) = 1, means
that B only depends by k − 1 factors, contradicting Autarky.

2. Now assume A′ ∪ B′ ⊂ M .
Let Y ′′ be the minimal multiprojective space contained in M and con-
taining A′ ∪B′. Since q ∈ 〈〈ν(Y ′′)〉∪{p})〉 and p /∈ Y ′′, there is a unique
o ∈ 〈ν(Y ′′)〉 such that q ∈ 〈{ν(p), o}〉. Since 〈ν(A)〉 (resp. 〈ν(B)〉) is
a plane containing ν(p) and q, there is a unique o1 ∈ 〈ν(A′)〉 (resp.
o2 ∈ 〈ν(B′)〉) such that q ∈ 〈{ν(p), o1}〉 (resp. q ∈ 〈{ν(p), o2}〉). The
uniqueness of o gives o = o1 = o2. Since o1 = o2, we get a tensor of rank
2 with A′ and B′ as solutions. Thus, q is as described in Proposition
3.10.



MJOM Identifiability of Rank-3 Tensors Page 15 of 26 174

Proposition 5.2. Let Y = (P1)×k with k ≥ 3 and let q ∈ σ0
3(ν(Y )) be such that

there exist two different sets A,B ∈ S(Y, q) with the property �(A ∪ B) = 5,
where ν(Y ) is the concise Segre of q. Then k can only be either 3 or 4. If
k = 3 then q belongs to a tangent space of ν((P1)×3) and dim(S(Y, q)) ≥ 2.
If k = 4 then dim(S(Y, q)) ≥ 1.

Proof. If k = 3 then the only rank-3 tensors in 〈ν(P1)×3)〉 are those belong-
ing to the the tangential variety of the Segre variety (cf. [9,24]) for which
dim(S(Y, q)) ≥ 2 (cf. [1,8,27,28]).

The case k = 4 is covered by Remark 3.2.
Assume k > 4 and write Y =

∏k
i=1 P

1
i . Let S = A ∪ B as in (5.1).

We build a recursive set of divisors to being able to cover the whole set
S as follows. Let oi ∈ P

1
i , i = 2, 3, 4 be such that:

1st divisor π−1
4 (o4) ∩ S �= ∅ and call M4 := π−1

4 (o4);
2nd divisor π−1

3 (o3) ∩ (S\(S ∩ M4)) �= ∅ and call M3 := π−1
3 (o3).

3rd divisor If M3 ∪ M4 already covers the whole S (i.e. S ⊂ M3 ∪ M4), set
M2 to be any divisor M2 ∈ |OY (ε̂2)|.

4th divisor Otherwise, if S � M3 ∪M4, choose o2 ∈ P
1
2 such that π−1

2 (o2)∩
(S\S ∩ (M3 ∪ M4)) �= ∅ and set M2 := π−1

2 (o2).

Now it may happen that either S ⊂ M2 ∪ M3 ∪ M4 or not. We study
those two cases in (a) and (b), respectively.

(a) Here we assume that S ⊂ M2∪M3∪M4. Since �(S) = 5 there is at least
one of the Mis containing at least two points of S, and there are two
of the Mis whose union contains at least 4 points of S: wlog we may
assume that �(S ∩ (M3 ∪ M4)) ≥ 4.

• Assume �(S ∩ (M3 ∪ M4)) = 4. Since OY (1, 1, 0, 0, . . . ) is globally
generated, we have that h1(IS\S∩(M3∪M4)(1, 1, 0, 0, 1, 1, . . . )) = 0,
contradicting Lemma 1.13.

• Assume S ⊂ M3∪M4. Therefore, there is one of the Mis containing
at least 3 points of S, let �(M4 ∩ S) ≥ 3. Since S � M4, we get
h1(IS\S∩M4(ε̂4)) > 0 (by Lemma 1.13); hence, �(S\S ∩ M4) = 2
and

S\S ∩ M4 = {u, v} with πi(u) = πi(v), ∀i �= 4. (5.2)

Since h1(IS\S∩M3(ε̂3)) > 0 (again by Lemma 1.13, we get that
either there are w, z ∈ S\S ∩ M3 such that w �= z, πi(w) = πi(z)
for all i �= 3 or ν4(η4(S ∩ M4)) (remind Notation 1.3) is made by
3 collinear points, say with a line corresponding to the ith factor.
The latter case cannot arise because S does not depend only on
the third, fourth and ith factor of Y . Thus, there exist

w, z ∈ S\S ∩ M3 such that w �= z, πi(w) = πi(z) ∀i �= 3. (5.3)

In (5.2) and (5.3), we have 4 distinct points u, v, w, z such that
�(π5({u, v, w, z})) = 1. Take M5 ∈ |OY (ε5)| containing {u, v, w, z}.
Since h1(IS\S∩M5(ε̂5)) = 0, Autarky and Lemma 1.13 give a con-
tradiction.
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(b) Assume S � M2∪M3∪M4. By Lemma 1.13, we get h1(IS\S∩(M2∪M3∪M4)

(1, 0, 0, 0, 1, 1, . . . )) > 0. Thus, �(S\(M2 ∪ M3 ∪ M4)) = 2, say S\(M2 ∪
M3 ∪ M4) = {u, v} and πi(u) = πi(v) for all i �= 2, 3, 4. But in this
case it is sufficient to change the original choice of o4 and take as o4
the point π4(u) and the the new divisor M4 will contain 2 points of S,
i.e. u, v therefore we are able to get new divisors M2, M3 with the same
construction as above leading to the case S ⊂ M2 ∪ M3 ∪ M4 excluded
in step (a).

6. Two Disjoint Solutions

We have seen in Corollary 4.3 that if a rank-3 tensor q is not-identifiable and
A, B are two sets of points on the Segre variety computing its rank, then
�A ∪ B can only be either 5 or 6. This section is fully devoted to the case in
which �A ∪ B = 6, i.e. A and B are disjoint:

S := A ∪ B, �S = 6, A := {a1, a2, a3}, B := {b1, b2, b3} A ∩ B = ∅. (6.1)

First of all, let us show that if q is a rank-3 tensor whose concise Segre
ν(Y ) has at least two factors of projective dimension 2, it never happens that
in S(Y, q) there are two disjoint sets.

Remark 6.1. Let Y = (P2)×k1 ×(P1)×k2 and S ⊂ Y a set of 6 distinct points.
Consider I ⊆ {k1 + 1, . . . , k1 + k2} and ε :=

∑
i∈I εi. Suppose there exists a

divisor M ∈ |OY (ε)| intersecting S in 4 points. Call {u, v} := S\(S ∩ M). In
this setting one can apply Lemma 1.13 and get that h1(I{u,v}(ε̂)) > 0 (where
ε̂ is a (k1 + k2)-tuple with 0s in position of the indices appearing in ε of I
and 1s everywhere else) and πh(u) = πh(v) for any h ∈ {1, . . . , k1 + k2}\I.

Proposition 6.2. Let Y be a multiprojective space with at least three factors
and at least two of them of projective dimension 2, i.e. Y = P

2 × P
2 × P

n3 ×
· · · × P

nk with ni ∈ {1, 2} for i = 1, . . . , k and k ≥ 3. Let q ∈ σ0
3(ν(Y )), with

ν(Y ) the concise Segre of q. If A,B ∈ S(Y, q) evince the rank of q, then A
and B cannot be disjoint.

Proof. The proof is by absurd: assume that there exist A,B ∈ S(Y, q) with
A ∩ B = ∅. By Remark 3.3, we have that 〈πi(A)〉 = 〈πi(B)〉 = P

2 for
i = 1, 2. Fix W ∈ |IB(ε2 + ε3)| (it exists, because h0(OY (ε2 + ε3)) =
h0(P2 × P

n3 ,OP2×Pn3 (1, 1)) = 3(n3 + 1) > 4). Since π1|A is injective, we
have h1(IA(ε1)) = 0. Thus, S ⊂ W by Lemma 1.13. In this way, we have
shown that

any divisor D ∈ |OY (ε2 + ε3)| containing B contains also A. (∗)

Claim 6.2.1 π3(ai) = π3(bi) where ai, bi are as in (6.1), for i = 1, 2, 3.
The proof of this claim can be repeated verbatim for all the other projec-

tions with only one caution that we will highlight in the sequel. Therefore, by
repeating the argument for all the projections, we will get that πj(ai) = πj(bi)
for i = 1, 2, 3 and for j = 1, . . . , k which is a contradiction with A and B being
distinct. This will conclude the proof.
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Proof of the Claim 6.2.1. Take a general hyperplane J3 ⊂ P
n3 containing

π3(bi), (where the bis are as in (6.1), i = 1, 2, 3) by genericity we may assume
that if n3 = 2 then J3 is a line which does not contain any other point of
that projection. Set M3 := π−1

3 (J3). Take a line

L2 ⊂ P
2 containing {π2(bj), π2(bk)} with j, k �= i and set M2 := π−1

2 (L2).
(∗∗)

We have B ⊂ M2 ∪M3 ∈ |OY (ε2 + ε3)|. Thus, from (∗), we get that M2 ∪M3

contains also A. Since A � M2 by Autarky, there is a ∈ A ∩ M3, i.e. there is
a ∈ A such that

π3(a) = π3(bi) (6.2)
(in fact if n3 = 1 it is trivial, if n3 = 2 then we have already remarked that
π3(bi) is the only point of J3 belonging to π3(Y )). Since πi|A is injective for
i = 1, 2 (cf. Remark 3.3), the points of A projecting on π3(bi) are different
for different is except if there are bi �= bj such that π3(bi) = π3(bj). Suppose
that this is the case. By Lemma 4.4 we get that �(S\S ∩ M3) = 2. Thus,
if for i �= j π3(bi) = π3(bj) there are 2 points of A and 2 points of B in
M3, i.e. �(S ∩ M3) = 4. Suppose that S ∩ M3 = {a3, b3, a2, b2}. By [13,
Lemmas 2.4 and 2.5] (also [7, Lemma 5.1, item (b)]) h1(IS\S∩M3(ε̂3)) > 0,
i.e. πi(a1) = πi(b1) for all i �= 3. This is a contradiction since we already
know that π3(a2) = π3(b2) and we would have a2 = b2, which contradicts the
assumption that A ∩ B = ∅.

Therefore, the points a ∈ A of (6.2) are all different for different choices
of is. So we may assume that π3(ai) = π3(bi) for i = 1, 2, 3 and the π3(bi) �=
π3(bj) for i �= j.

The argument of the proof of Claim 6.2.1 can be repeated verbatim for
all the others πjs with the only caution that when we do the case j = 2 we
have to use a line L1 ⊂ P

2 containing {π1(bj), π1(bk)} with j, k �= i and set
M1 := π−1

1 (L1) instead of M2 and L2 in (∗∗). Moreover, (∗) clearly holds if
we replace the ε2 with ε1 and ε3 with εj for any j = 3, . . . , k. As already
highlighted this concludes the proves since πj(ai) = πj(bi) for i = 1, 2, 3 and
for j = 1, . . . , k which is a contradiction with A and B being distinct.

This shows that under the assumption (6.1), we can exclude the case
where the Segre variety has at least two factors of projective dimension 2.

Let us focus on the four-factor case.

Proposition 6.3. Let Y = P
2 × P

1 × P
1 × P

1. Let q ∈ σ0
3(ν(Y )), with ν(Y )

the concise Segre of q. There do not exist two disjoint sets A,B ∈ S(Y, q)
evincing the rank of q.

Proof. Assume by contradiction that there exist two disjoint sets A,B ∈
S(Y, q) evincing the rank of q and, moreover, assume that no ηi|S is injective,
for i = 2, 3, 4.

By Remark 1.10, for each i = 2, 3, 4 there exists a ∈ A, b ∈ B such that
ηi(a) = ηi(b). Fix H := π−1

1 (L), where L ⊂ P
2 is a line containing π1(a1)

and π1(a2), where a1, a2 ∈ A. Since we assumed that no ηi|S is injective,
then there exist b1, b2 ∈ B such that π1(ai) = π1(bi), for i = 1, 2. Thus,
H ⊃ {a1, a2, b1, b2} and by Autarky S �⊂ H, so there is at least an element of S
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out of H, e.g. a3 ∈ S\{a1, a2, b1, b2}. Thus, we have h1(IS\S∩H(0, 1, 1, 1)) = 0
contradicting Lemma 1.13. So there exists at least one integer h ∈ {2, . . . , 4}
such that ηh|S is injective.

First, define recursively the integers such that the preimages of points
o ∈ P

1 intersect maximally the set S:

α4 := max{�(π−1
i (o) ∩ S)}o∈P1;i=2,...,4. (6.3)

By rearranging if necessary, we can assume that the index i = 2, . . . , 4 real-
izing α4, is i = 4. Call K4 := π−1

4 (o). Then define

α3 := max{�(π−1
i (o) ∩ (S\(S ∩ K4)))}o∈P1;i=2,3. (6.4)

By rearranging if necessary, we can assume that the index i = 2, 3 realizing
α3, is i = 3. Call K3 := π−1

3 (o). Finally define

α2 := max{�(π−1
2 (o) ∩ (S\(S ∩ K4 ∪ K3)))}o∈P1 . (6.5)

So if we denote by oj ∈ P
1, j = 2, 3, 4 the points realizing α2, α3, α4, respec-

tively, then we call
Kj := π−1

j (oj) for j = 2, 3. (6.6)

Remark that by Autarky assumption 1 ≤ α3 ≤ α4 ≤ 5.

It is easy to see that α4 cannot be 5. In fact if α4 = 5, then �(S\S ∩ K4) = 1
which implies that h1(IS\S∩K4(1, 1, 1, 0)) = 0, which is a contradiction with
Lemma 1.13.

So the possibilities for α3 and α4 are 1 ≤ α3 ≤ α4 ≤ 4.

Let us show that
α2 �= 1 (†)

Assume that (α2, α3, α4) = (1, 1, 1). In such a case, the divisor K2 ∪
K3 ∪ K4 ∈ |OY (ε̂1)| would contain exactly 3 points of S. Moreover, if h1

(IS\(S∩K2∪K3∪K4)(ε1)) > 0 then by Lemma 4.4 we would have a contradiction
with (α3, α4) = (1, 1). Therefore, if (α2, α3, α4) = (1, 1, 1), we must have
h1(IS\(S∩K2∪K3∪K4)(ε1)) = 0, but this is a contradiction with Lemma 1.13.
Thus, if α2 = 1 then K3∪K4 should contain at least 3 points of S, i.e. α3 ≥ 1
and α4 ≥ 2.

Now assume that (α2, α3) = (1, 1). Then π3|S is injective. The idea is to
build a divisor F ∈ |OY (ε)| with ε =

∑
i∈I εi, for some finite I ∈ {1, . . . , k},

such that �(S\F ∩ S) = 2 and apply Remark 6.1 to F : the existence of such
an F will contradict the injectivity of π3|S . Let Hi ∈ |OY (εi)| such that Hi ∩
(S\S ∩ K4) �= ∅ for i = 2, 3. The divisor F is either F = K4, or F = K4 ∪ H3

or K4 ∪ H2 ∪ H3 if α4 = 4, 3, 2, respectively. The case (α2, α3, α4) = (1, 2, 2)
can be easily excluded since �(S\S ∩ K2 ∪ K3 ∪ K4) = 1 and by Lemma
1.13, we would have h1(IS\S∩(K2∪K3∪K4)(ε1)) > 0, which is absurd. For the
same reason, (α2, α3, α4) = (1, 2, 3) is also impossible because then �(S∩(K3∪
K4)) = 5 and by Lemma 1.13 we would have h1(IS\S∩(K3∪K4)(1, 1, 0, 0)) > 0,
which is a contradiction. This shows α2 �= 1.

We are, therefore, left with α2 �= 1 < α3 ≤ α4 = 2, 3, 4.
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Suppose that α3 = α4 = 2. With these assumption one also gets α2 = 2.
Indeed on the one hand, we just showed that we may always take H ∈
|OY (ε2)| such that �(S\S ∩ (K3 ∪ K4)) ∩ H) �= 0, so such a H intersects S
non-trivially and K2 is among those Hs. On the other hand, α2 �= 1 by (†).
So �(S ∩ K2) = 2. By the construction of the Kis in (6.6) for i = 2, 3, 4, it is
easy to show that

S =
∐4

i=2
S ∩ Ki.

So, since S =
∐4

i=2S ∩ Ki and �(S ∩ Ki) = 2 for i = 2, 3, 4, we can apply
Remark 6.1 separately to the divisors Ki ∪ Kj with i �= j and get that
h1(IS∩Ki

(ε1 + εi)) > 0 for i = 2, 3, 4 and so π1(S ∩ Ki) = 1 for i = 2, 3, 4. To
get a contradiction it is sufficient to apply again Remark 6.1 to π−1

1 (〈π1(S ∩
K3), π1(S ∩ K2)〉). This shows that �(πi(S ∩ K4)) = 1 for i = 2, 3, 4. Now
since also �(π1(S ∩ K4)) = 1, then �(S ∩ K4) = 1, which is a contradiction
with the assumption α3 = 2.

This proves that 1 < α2 ≤ α3, and 2 < α4 = 3, 4.
The case (α3, α4) = (2, 4) can be excluded using the same argument of

the case (α2, α3, α4) = (2, 2, 2) above applying Remark 6.1 since if (α3, α4) =
(2, 4) we have that K4 plays the role of M in the remark.

We are, therefore, left with the unique possibility of (α3, α4) =
(3, 3).

Claim 6.3.1 �(π2(S ∩ K4)) = 1.

Proof of Claim 6.3.1:. Since we are in the hypothesis α4 = 3, the projection
of S ∩ K4 onto the first two factors of Y is made by at most 3 points.

Suppose that such a projection is made by exactly 3 points. Call Z the
image of the projection of S ∩ K4 onto the first two factors. Since h1(P2 ×
P
1, IZ(1, 1)) > 0 those points must lie on a line L when applying the Segre

embedding. Moreover, from Remark 3.3 we know that π1(A) and π1(B) are
sets of linearly independent points and since linear subspaces of the Segre
variety are all contained in a factor, we get that L ⊂ P

2. Thus, �(π2(S∩K4)) =
1 proving the claim in this case.

If the projection of S∩K4 onto the first two factors is made by less than
3 points, there exist at least two points, u, v ∈ S∩K4 such that they share the
same image under the projection. Remark that if we consider E ⊂ S ∩ K4

such that �E = 2 and take T ∈ |IE(1, 1, 0, 0)|, then T ⊃ S ∩ K4. Indeed
if S ∩ K4 �⊂ T then we have that T ∪ K3 contains exactly five points of
S, which leads to a contradiction because by Lemma 1.13 we would have
h1(IS\S∩T∪K3(ε̂3)) > 0. Therefore, also the third point of S ∩ K4 share the
same image of u and v and we are done.

Using the third factor instead of the second one, one gets �(π3(K4∩S)) =
1 and since we assumed that α4 is reached on the fourth factor we also have
�(π4(K4 ∩S)) = 1. The same argument can be applied to S ∩K3 which leads
to �(π2(K3∩S)) = �(π4(K3∩S)) = 1. Thus, �(πi(K4∩S)) = �(πi(K3∩S)) = 1
for all i > 1 which contradicts Autarky. �
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Since the identifiability of rank-3 tensors in 〈ν((P1)×4)〉 is already fully
described by Remark 3.2, we are therefore done with the order-4 tensors and
we can focus on tensors of order bigger or equal than 5. So we will deal with
Y = P

n1 × (P1)l, with n1 = 1, 2 and l ≥ 4.

Lemma 6.4. Let q be a rank-3 tensor of order at least 5 and let ν(Y ) be its
concise Segre. If there exist two disjoint sets A,B ∈ S(Y, q) as in (6.1),
then there exists at least an index i ∈ {1, . . . , k} such that ηi|S and πi|S are
injective.

Proof. [Injectivity of ηi|S .]
Assume that no ηi|S is injective, then by Remark 1.10 for any i =

1, . . . , k there exist an element a ∈ A and an element b ∈ B such that
πh(a) = πh(b) for any h �= i. It is easy to check that this condition, applied
to two disjoint sets of 3 points each, and at least five ηis, imposes either that
A∩B �= ∅ (contradiction) or that one of the two sets (either A or B) depends
only on 4 factors (contradicting Autarky).

[Injectivity of πi|S .]
Assume that ηi|S is injective and that πi|S is not injective. If i = 1 and

the first factor of Y is P
2 take H ∈ |OY (εi)| as the preimage of a general

line that contains exactly one point of S; otherwise take H ∈ |OY (εi)| as
the preimage of a point of S. We remark that in both cases we get that
�(πi(S ∩ H)) = 1. Since by Autarky S �⊂ H, by Lemma 1.13, we have that

h1(IS\S∩H(ε̂i)) > 0.

We distinguish different cases depending on �(S\S ∩ H).
1. Assume �(S\S∩H) = 4 and call S′ := ηi(S\S∩H); let A′ ⊂ S′ such that

�A′ = 2 and call B′ := S′\A′, so �B′ = 2. Since ηi|S is injective we have
that h1(Yi, IS′(ε̂i)) = h1(IS\S∩H(ε̂i)) > 0. So 〈νi(A′)〉 ∩ 〈νi(B′)〉 �= ∅,
which means that we have at least a point q′ ∈ 〈ν5(Yi)〉 of rank 2
for which A′ and B′ are different subsets evincing its rank. Thus, by
Proposition 2.3, since �S(Yi, q

′) > 1, the points in A′ and B′ only depend
on two factors, i.e. �(πj(S′)) = 1 for at least two indices j ∈ {1, . . . , k}.
Without loss of generality assume it happens for j = 1, 2. If the first
factor of Y is P

2, let M1 ∈ |Iπ1(S′)(ε1)| be the preimage of a general line
containing π1(S′) and let {M2} := |Iπ2(S′)(ε2)|. Otherwise let {Mj} :=
|Iπj(S′)(εj)|, for j = 1, 2; in both cases then h1(IS\S∩Mj

(ε̂j)) > 0. So
S\S ∩ Mj = S ∩ H and �(ηj(S ∩ H)) = 1, for j = 1, 2. If we call
S ∩ H = {u, v}, it follows that η1(u) = η1(v) and η2(u) = η2(v), so in
particular we get that πj(u) = πj(v) for any j, which is a contradiction.

2. Assume �(S\S ∩H) = 3. By Proposition 4.4 there exists j �= i such that
�(πh(S\S ∩ H)) = 1 for all h �= i, j. For all h > 1 with h �= j, i, since
h0(OY (εh)) = 2 we get h0(IS\S∩H(εh)) = 1. Set {Mh} := |IS\S∩H(εh)|,
if h = 1 and the first factor is P

2 take Mh ∈ |IS\S∩H(εh)| as the preim-
age of a general line, otherwise call {Mh} := |IS\S∩H(εh)|. Since we
took H such that �πi(S ∩ H) = 1, there exists at least an index t �= i
such that �πt(S ∩ H) ≥ 2. Thus, we can find D ∈ |OY (εt)| containing
exactly one point of S ∩ H.
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For all s �= t, set Ws := Ms ∪ D, so �(S\S ∩ Ws) = 2; we remark that
Wj ∩ S = Ws ∩ S for any j, s thus we may call E := S\S ∩ Ws.
By Lemma 1.13, we have that h1(IE((1, . . . , 1) − εs − εt)) > 0, so
�πj(E) = 1 for all j �= s, t. Since E ⊂ H, we have that πi(E) = 1;
moreover, taking s = 1, 2, 3, if t �= j, we get that �E = 1; thus, a
contradiction. It remains to study what happens when t = j, i.e. if
�(πj(S∩H)) ≥ 2. In such a case, when we let s varies in {1, . . . , k}\{i, j},
we get �πs(S ∩ H) = 1. Thus, ηj(S ∩ H) = 1, i.e. the three points of
S ∩H actually lies on a line, which is a contradiction with Remark 1.10,
because two of them are points of A or B.

3. Assume �(S\S ∩H) ≤ 2. Since h1(IS\S∩H(ε̂i)) > 0, we get that �(S\S ∩
H) = 2 and that �ηi(S\S ∩ H) = 1, which is a contradiction.

With these two lemmas we can conclude the case of two disjoint sets
A,B ∈ S(Y, q) with q of rank-3.

Proposition 6.5. Let q ∈ σ0
3(ν(Y )) be a tensor of order k ≥ 5 and let ν(Y ) be

its concise Segre. Then S(Y, q) does not contain two disjoint sets.

Proof. By Lemma 6.4 there exists at least an index i ∈ {1, . . . , k} such that
ηi|S is injective, from which follows that the corresponding πi|S is also in-
jective. Now if ηj|S is not injective for some j �= i then πi|S is not injective,
which is a contradiction with the assumption that ηi|S is injective. Therefore,
thus ηj|S and πj|S have to be injective for all j = 1, . . . , k.

Write A := {a1, a2, a3} and B := {a4, a5, a6}. If the first factor is a P
2

take L1 ∈ P
2 as a general line containing π1(a1) and define H1 ∈ |Ia1(ε1)|

as H1 := π−1
1 L1. For i = 2, . . . , 5 take {Hi} := |Iai

(εi)| (this is possible
since by hypothesis k ≥ 5). Otherwise, for all i = 1, . . . , k take {Hi} :=
|Iai

(εi)|. In both cases, since every πi|S is injective we get that H1 ∪ · · · ∪
H5 contains exactly 5 points of S. Thus, from Lemma 1.13, we get that
h1(IS\(S∩H1∪···∪H5)(0, 0, 0, 0, 0, 1, . . . , 1)) > 0 which is a contradiction since
�(S\(S ∩ H1 ∪ · · · ∪ H5)) = 1.

7. Identifiability of Rank-3 Tensors

The following theorem completely characterizes the identifiability of any
rank-3 tensor and it is the main theorem of the present paper.

Theorem 7.1. Let Y = P
n1 × · · · × P

nk be the multiprojective space of the
concise Segre of a rank-3 tensor q. Denote with S(Y, q), the set of all subsets
of Y computing the rank of q. The rank-3 tensor q is identifiable except in
the following cases:

1. q is a rank-3 matrix, in this case dim(S(Y, q)) = 6;
2. q belongs to a tangent space of the Segre embedding of Y = P

1×P
1×P

1,
in this case dim(S(Y, q)) ≥ 2;

3. q is an order-4 tensor of σ0
3(Y ) with Y = P

1 ×P
1 ×P

1 ×P
1, in this case

dim(S(Y, q)) ≥ 1;
4. q is as in Example 3.6, where Y = P

2×P
1×P

1, in this case dim(S(Y, q)) =
3;
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5. q is as in Example 3.7, where Y = P
2 × P

1 × P
1, in this case S(Y, q)

contains two different four-dimensional families;
6. q is as in Proposition 3.10, where Y = P

n1 × · · · × P
nk is such that

k ≥ 3, ni ∈ {1, 2} for i = 1, 2, ni = 1 for i > 2 and
∑k

i=1 ni ≥ 4. In this
case, dim(S(Y, q)) ≥ 2 and if n1 + n2 + k ≥ 6 then dim(S(Y, q)) = 2.

Proof. In case 1. the point q is a rank-3 matrix; therefore, it is highly not-
identifiable. See Remark 3.1 for the computation of the dimension of S(Y, q).

Case 2. is also well known: see [8, Remark 3].
Case 3. corresponds to the defective 3rd secant variety of the Segre

embedding of Y = (P1)×4 and the fact that all the elements of σ0
3(ν(Y ))

are not-identifiable is shown in Remark 3.2. The fact that dim(S(Y, q)) = 1
for the generic rank-3 tensor depends on the fact that the 3rd defect δ3 of
ν((P1)×4) is exactly 1 (cf. [1]). Moreover, by [43, Cap II, Ex 3.22, part (b)],
we get that for any rank 3 tensor q, the dimension dim(S(Y, q)) ≥ 1.

Cases 4., 5. and 6. are treated in Examples 3.6 and 3.7 and in Proposition
3.10, respectively.

All the above considerations prove that the list of cases enumerated
in the statement corresponds to non-identifiable rank-3 tensors. We need to
show that such a list is exhaustive. Since the matrix case is already fully
covered by case 1, we only need to care about tensors of order at least 3.

First of all recall that by Remark 1.9, the concise Segre of a rank-3 tensor
q is ν(Pn1 × · · · × P

nk), with n1, . . . , nk ∈ {1, 2}. Then consider two distinct
sets A,B ∈ S(Y, q). By Corollary 4.3, it can only happen that �(A∪B) = 5, 6.

If �(A ∪ B) = 5, the fact that our list of not-identifiable rank-3 tensors
is exhaustive is proved in Propositions 5.1 and 5.2.

If �(A ∪ B) = 6, we can first use Proposition 6.2 to exclude the all
the cases in which Y has at least two factors of dimension 2. Then we start
arguing by the number of factors of Y .

If Y has 3 factors and it is the product of P
1s only, then the unique

tensors of rank-3 are those of the tangential variety to the Segre variety and
this is case 2 of our theorem. The case of Y = P

2 × P
1 × P

1 is completely
covered by Proposition 3.8 together with Examples 3.6 and 3.7 (cf. Corollary
3.9).

If Y has 4 factors and one of them is a P
2, there is Proposition 6.3

assuring that S(Y, q) does not contain two disjoint sets. If Y is a product of
four P

1s, we are in case 3 of our theorem.
The fact that if Y has at least 5 factors then S(Y, q) does not contain

two disjoint sets is done in Proposition 6.5.
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