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Abstract—Wireless technologies are increasingly adopted for
indoor localisation and tracking. Among them, radars based
on 60 GHz phased-array transceivers are becoming a viable
and low–cost solution, which delivers high accuracy with a low
computational cost while preserving people privacy. In this paper,
we propose two techniques for radar-based people tracking and
localisation that tackle important effects such as delayed and
spurious detection. We also offer a thorough and scientifically
sound experimental analysis of the performance of the proposed
techniques using an off-the-shelf phased-array device (i.e., the
System-on-Chip (SOC) TI IWR6843).

I. INTRODUCTION

The list of applications enabled by effective localisation
and tracking of humans and goods is wide and constantly
growing [1]. A variety of solutions exists depending on the
considered target accuracy and the adopted technology.

Millimeter-wave (mm-wave) RF signals can be used to
implement radars with a range of a few meters. Like surveil-
lance cameras or other types of visual sensors [2], [3], mm-
wave radars can be deployed in strategic locations of a given
environment and used to track target that are not required to
carry any device, hence they are suitable for applications on
factory floors to enforce safety and optimise humans’ routes.
However, radars have a number of recognised advantages
with respect to visual based systems, i.e. they are cheaper
and need simpler signal processing algorithms; they are more
resilient to obstructions; they preserve privacy since it is almost
impossible to reconstruct a person’s identity from a cloud of
points; and finally, they are not affected by lighting conditions.
Therefore, they can be used both indoor and outdoor in any
weather condition.

Early ideas on low-cost radars for short-range, high ac-
curacy applications date back to a few years ago [4]. The
recent evolution of solutions based on antenna arrays result-
ing from the massive research on multiple-input multiple-
output (MIMO) systems motivated by 5G communications [5],
[6] has triggered a new interest in this type of systems.
Guerra et al. [7] proposed a channel model for personal
radar applications based on mm-wave antenna arrays and use
it to construct a map of the environment. Guidi et al. [8]
analysed the influence of different design parameters on the
mapping performance of mm-wave radars. Over the last few
years, mm-wave RF signals have been used to localise and

to track a moving target in a number of ways, e.g., by
using Angle-of-Arrival measurements, by combining path loss
with Angle-of-Arrival data or through Angle Differences-of-
Arrival algorithms [9], [10]. Since mm-wave radars operate at
frequencies higher than 10 GHz [11], [12], arrays of small
and closely spaced antennas can be easily fit into a small
space and with a reduced cost. This gives us the opportu-
nity to estimate the position of the target using the Phase
Differences of Arrival (PDoA) of the backscattered signals
received by different antennas [13]. This general idea has been
implemented on low-cost commercial off-the-shelf Systems-
on-Chip (SoCs) embedding both RF circuitry and digital signal
processing algorithms for position estimation. However, the
actual performance and the limitations of these platforms are
often quite unclear, since data sheets are not very reliable. To
fill this gap, a thorough characterisation of a commercial mm-
wave radar was performed in [14]. In this paper instead, first
two different algorithms for people localisation and tracking
based phased-array radars are described. Both algorithms are
conceived to offer a good level of performance even in the case
of delayed and spurious agent detection. Then, the viability of
the proposed solutions is analysed through an experimental
setup.

The rest of the paper is organised as follows. Section II
reports some important background information on the kine-
matic and measurement models adopted. Section III describes
the two proposed localisation and tracking algorithms. Sec-
tion IV is focused on the experimental results validating such
solutions. Finally, Section V summarises our conclusions and
outlines future work directions.

II. BACKGROUND AND PROBLEM FORMULATION

Some recent results [15], [16] reveal that, despite the
kinematic flexibility of the human body, most of time people
tend to move following nonholonomic unicycle-like kinematic
model. In this section, we will rapidly review this model
and show how to set up a radar–based tracking scenario.
Hence, consider a unicycle-like agent moving according to
the dynamic model ẋẏ

θ̇

 =

v cos θ
v sin θ
ω

 , (1)
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Fig. 1. Tracking scenario based on a stationary MIMO-FMCW radar and a
moving target.

where [pT , θ]T is the state of the system (i.e., agent pose
with Cartesian position p = [x, y]T ), while v and ω are agent
forward and angular velocities, respectively. Assuming that the
underlying motion inputs (namely the velocities) are sampled
with a period Ts and held constant in each sampling period, we
can write v(t) = v(kTs) = vk ∀t ∈ [kTs, (k + 1)Ts). Similar
assumptions and the same notation can be used for the angular
velocity ωk = ω(kTs). Therefore, the discrete–time equivalent
model becomes

sk+1 =

xk+1

yk+1

θk+1

=

xk + Ts cos (θk) vk
yk + Ts sin (θk) vk

θk + Tsωk

=f(sk, vk, ωk). (2)

If the input velocities vk and ωk at a given time kTs are not
measured directly, but they are rather reconstructed from past
data, it follows that the estimated values vk = vk + εk and
ωk = ωk + ηk, where εk and ηk are the respective uncertainty
contributions, which are both assumed to be white, with zero
mean and covariance matrix Qk.

A. Measurement Model

The principle of operation of a 60-GHz Frequency–
Modulated Continuous-Wave (FMCW) radar platform relies
on a sequence of n linear chirp signals that are first broad-
casted and then received by a phased array after being reflected
by one or more targets [17].

Consider for instance a target that at time step kTs is located
at a distance ρk and it is moving with a relative instantaneous
velocity of uk (see Figure 1). The round-trip delay of the
signal backscattered by the target is a linear function of the
instantaneous velocity uk, of the distance ρk and of the speed
of light in vacuum. Additionally, the angle φk of the target
with respect to the radar may also affect the backscattered
radar signal [18].

In addition, the frequency evolution depends on the Doppler
frequency shift due to the relative speed uk between the target
and radar. This Doppler shift can be obtained by calculating
the spectral change of the Intermediate Frequency (IF) signal
over n consecutive chirps. To summarise, the measurements
that can be collected from the radar at time kTs are

zk =

pkvk,
ωk

 = h(sk, vk, ωk) + γk, (3)

where pk = ρk[cos(φk), sin(φk)]T and γk is the vector of
white and zero-mean measurement uncertainty contributions
with covariance matrix Rk.

III. MOTION TRACKING SOLUTIONS

In this section, we will present our method for tracking
a moving target using an FMCW-MIMO radar in cluttered
conditions. The most common solution reported in the lit-
erature relies on applying the three-dimensional Fast Fourier
Transform (3D-FFT) algorithm on the mixed transmitted and
backscattered signals followed by a sensible thresholding of
the resulting range-velocity-azimuth spectrum to extract the
corresponding parameters [19]. However, spectrum thresh-
olding will result in undesirable effects such as multiple
detections of the same target or even loss of the target [14].
To account for this data association problem, two different
approaches are proposed. The first one is based on a Track-
Oriented Multi-Hypothesis Tracking (TOMHT) method [20],
[21] combined with an Extended Kalman Filter (EKF), which
relies on the assumption that the motion model of the target is
known. In the second approach instead, an agnostic approach
for robust tracking based on Expectation Maximisation (EM)
is adopted both to estimate the model parameters and to track
the target [22], [23].

A. TOMHT-EKF

The basic idea of TOMHT is to create alternative track
hypotheses from measurement data in order to add them to
a tree structure and, finally, to update the pool of valid track
on a probabilistic basis by associating each measurement data
to one of the available hypotheses (i.e., an existing track, a
new track or an outlier). Each edge of the track tree is a
track hypothesis which may trigger several new tracks anytime
new measurement data are collected. The track tree will
be updated upon the reception of new measurements: those
hypotheses having no measurements associated in a given time
horizon will be eliminated from the tree, thus limiting the
number of global hypotheses on the trajectories of the moving
target. Notice that even in the presence of only one moving
target, multiple global hypotheses may exist due to possible
static obstacles in the environment or outliers, which may
create ghost targets as a result of reflections and interference
phenomena. The position of the various global hypotheses are
then tracked using different Extended Kalman Filters (EKFs),
whose prediction step ensures target tracking even in the case
of missing observations.



 

Fig. 2. Different uncertainty ellipsoids used in the calculation of Maha-
lanobis distance for measurement data association underlying the the Nearest-
Neighbour (NN) method.

1) EKF: By using the dynamic model in (2), the state
predicted by a standard EKF is given by ŝ−k+1 = f(ŝk, vk, ωk),
and the covariance matrix of such a predicted state is approx-
imately given by

P−k+1 = AkPkAT
k + BkQkBT

k , (4)

where Ak = ∂f(sk,vk,ωk)
∂sk

and Bk = ∂f(sk,vk,ωk)
∂[vk,ωk]

are the
Jacobian matrices of function f(·, ·, ·) with respect to state
and input variables, respectively, the ·̂ symbol denotes the es-
timated quantities while superscript ·− represents the predicted
ones. It then follows that the update equations are

Kk = P−k HT
k (HkP−k HT

k + Rk)−1 = P−k HT
k Γ−1k ,

sk = s−k + Kkz̃k,

Pk = (I−KkHk)P−k ,

(5)

where, considering (3), Kk is the Kalman gain, Hk =
∂h(sk,vk,ωk)

∂sk
, and z̃k = zk − h(s−k , vk, ωk) is the innovation

term with covariance matrix Γk.
2) Data Association: Due to the presence of obstacles and

reflections, we need to associate the radar measurement data
related to a given target, accepting those that are in close
proximity, while rejecting those the distant ones. The Nearest-
Neighbour (NN) method based on the Mahalanobis distance

di,k =
√
z̃T
i,kΓ−1k z̃i,k, (6)

was used to this purpose [24]. In (6) subscripts i, k stand for
the i-th measurement at time kTs. Indeed, multiple measure-
ment data possibly associated to the same actual target, static
object or outlier may exist, as previously discussed. Notice
that the weighting matrix Γk accounts only for the impact of
P−k and Rk covariance matrices, which are not sufficient for
a robust association. This problem is shown for example in
Figure 2: the values of d2i, k = 5.55 and d2j, k = 7.78 given
by (6) result in the rejection of measurement zj, k for the
existing track sk−n+1: k, even if this measurement should be
actually associated to the target considered. To account for this

issue, we adopt Ξk = wΣk + (1−w)Γk as weighting matrix,
i.e.,

di, k =
√

z̃T
i,kΞ−1k z̃i,k (7)

where w ∈ [0, 1) is a mixing factor and Σk represents
the sample covariance matrix of a normal random vector
modelling the distribution of sk−n+1: k , i.e., the past n
samples associated to the corresponding track. The sample
population size depends on the radar sampling frequency and
how fast a target can change its direction. For a generic
pedestrian walking, we empirically found that setting n = 15
(corresponding to approximately 1.5 s of sampling window
with a sampling frequency of 10 frame per second) provides
reasonably accurate results. With reference to Figure 2 and
using (7) with w = 0.3, we have d2i, k = 5.40 and d2j, k = 1.08,
thus correctly associating zj, k+1 to the track sk−n+1: k.

3) Velocity estimation: In order to use the EKF to account
for missing measurement data, velocity estimation is needed.
If human targets have to be tracked, both the forward vk and
angular ωk velocities of the target can be estimated from
the past motion history along trajectory s0:k. To this end,
we consider at first the constant velocity model (CVM) [25],
the most simple, yet effective, target velocity predictor. In
the simplest case, the CVM velocity inputs are determined
with their expected values computed on a set of velocity
measurements. Then, the Average/Adaptive velocity model
(AVM) based on the inertia of the motion choices adopted by
human beings is adopted [26]. Since the AVM does not make
use of any filtering, it is highly sensitive to measurement noise.
Hence, a low-pass filter or a smoother is usually needed [26].
The approach followed in this paper is to use the Smoothing
Cubic Spline (SCS) interpolation based on the last m estimates
of the EKF, i.e., sk−m+1:k, using the well-known De Boor’s
approach [27] prior to computing the mean velocity values
within such a window.

The third velocity estimation model adopted in this paper
is a time series forecast model based on a Long short-
term memory (LSTM) artificial recurrent neural network [28].
LSTM predictors outperforms the conventional low-pass filters
and can further improve the AVM accuracy [26]. In particular,
the LSTM predictor exploits the AVM velocities vk−1 and
ωk−1 as inputs to synthesise vk and ωk.

B. EM Robust Tracking

A major known hurdle for all multi–hypotheses tracking
algorithms is related to the fact that not all the observations
drawn from an estimated distribution are associated to the
global hypothesis during the tracking phase. This may lead to
the impossibility to estimate the actual covariance matrix of the
measurement data associated to the tracked hypotheses. Simi-
larly, the assumption on the target motion, i.e., the parameters
of the dynamic model (2), can be inconsistent with the actual
target motion (especially if a human target is considered),
thus reducing the effectiveness of the EKF. Therefore, we first
restrict the model to Cartesian coordinates pk = [xk, yk]T only
and present a solution for the simultaneous online estimate



of all the parameters X = {A,H,R,Q, p0,P0}, where
p0 and P0 are the initial state and the covariance matrix,
respectively, needed for EKF initialisation and based only on
radar measurements. Notice that P0 refers only to p0, while
the full state sk and the associated covariance matrix P0 are
needed for the EKF. It is important to emphasise that, the target
orientation θk and its variance can always be reconstructed
from pk, pk+1, Pk and Pk+1 [29]. We re-state the adopted
model using a position-based Linear time-invariant Dynamic
System (LDS) excited by white random noises as follows:

pk+1 = Apk + νk,

zk = Hpk + δk.
(8)

In order to identify the parameters of set X , the EM algorithm
can be used [22], [23]. First, a preliminary estimate p̂k, its
covariance P̂k and the Jacobian Jk can be obtained by using
a Rauch-Tung-Striebel (RTS) smoother as follows [30]:

p̂k = pk + Jk

(
p̂k+1 −Apk

)
,

P̂k = Pk + Jk

(
P̂k+1 −P

−
k

)
JT
k ,

Jk = PkAT (P
−
k )−1,

(9)

where P
−
k is the covariance matrix (resulting from a first-

order approximation) of the predicted state, while pk and Pk

are are updated state estimate and the respective covariance
matrix resulting from the the Kalman filter associated to the
RTS. Then, in the E-step of the EM algorithm, the following
expected values are computed, i.e.,

ek = E {pk} = p̂k,

ek−1k = E
{
pkp

T
k−1
}

= Jk−1P̂k + p̂kp̂
T
k−1,

ekk = E
{
pkp

T
k

}
= P̂k + p̂kp̂

T
k ,

ekk−1 = E
{
pk−1p

T
k

}
= JkP̂k−1 + p̂k−1p̂

T
k .

(10)

Finally, in the M-step the following matrices are updated by
using a maximum likelihood estimator processing the last k ≥
2 measurement data, i.e.

A+ =

k∑
i=2

ei−1i

(
k∑

i=2

ei−1i−1

)−1
,

Q+ =
1

k − 1

k∑
i=2

eki −A+eii−1−ei−1i A++A+ei−1i−1A
+T
,

H+ =

k∑
i=1

zie
T
i

(
k∑

i=1

ei

)−1
,

R+ =
1

k

k∑
i=1

ziz
T
i −H+eiz

T
i − zie

T
i H+ + H+eiiH

+.

(11)
Notice that the elements of zi refer just to the measured target
position in (3), namely the coordinates of p̄k.

The EM algorithm is quite sensitive to the initial conditions
and the initial choices of the corresponding process and
measurement covariance matrices [31], which may lead to

   

(a) (b) (c)
Fig. 3. Radar measurement analysis. (a, b) Measurement quantiles versus the
theoretical standard Gaussian distribution for target range and angle of arrival
(AoA), respectively. (c) Robust covariance estimation.

convergence problems. To account for this problem, we use
the subspace approach for parameters initialisation: given a set
of vectors of measurement z1, . . . ,zk, the following Hankel
matrix is built, i.e.,

H =


z1, x z2, x . . . zK−1, x
z1, y z2, y . . . zK−1, y
z2, x z3, x . . . zK, x

z2, y z3, y . . . zK, y

 , (12)

where zi, x and zi, y refer to the x and y components of the
i-th measured point z. If U , S an V are the matrices resulting
from the singular value decomposition (SVD) of H, the initial
value of H is set equal to H0 = U1:2, 1:2 (the notation U1:2, 1:2

denotes the first two rows and two columns of the matrix U ).
As far as matrix A is concerned, we first need to calculate the
extended observability matrix W = S1:2, 1:2V

T
1:2, 1:2, and then

A0 = W1:2, 2:KW†
1:2, 1:K−1, (13)

where the † symbol denotes the pseudo-inverse. Hence, the
EM algorithm starts with the initial vector of parameters
X = {A0,R0,H0,Q0, p0,P0}, where R0, Q0 and P0 are
set equal to the identity matrix, while p0 = W1:2, 1 is the
first column of the extended observability matrix. Technically
speaking, the convergence of the EM algorithm is evaluated
at each iteration in the E-step using a log-likelihood function
condition, i.e.∣∣(log(f(zk))− log(f(zk−1))

∣∣ < τ ×
∣∣ log(f(zk−1))

∣∣, (14)

that, when satisfied, stops the EM algorithm. The measurement
likelihood function is given by

f(zk) = N (zk|H+pk,H
+PkH+T

+ R+)

where τ is a convergence parameter threshold.

IV. EXPERIMENTAL RESULTS

The efficiency of the proposed tracking methodology was
analysed on the field by using an FMCW radar platform based
on a System-on-Chip (SOC) TI IWR6843. The environment
used for testing was a 12× 8 m2 arena monitored by an Op-
tiTrack system equipped with 14 calibrated cameras tracking
one or more targets at 125 Hz with accuracy in the order
of a few mm. Hence, the data collected by the OptiTrack
was regarded as ground truth. The radar platform returns
measurements at a maximum rate of 10 frames per second. In



TABLE I
FINAL ESTIMATED LDS PARAMETERS USING EM.

Trajectory A H

eight-shaped
[

0.99 16 · 10−4

−12 · 10−4 0.99

] [
0.030 −0.41
0.40 0.031

]

random
[

0.99 −18 · 10−3

5 · 10−4 0.99

] [
0.019 −0.41
0.40 0.037

]

diagonal
[

0.99 74 · 10−4

−13 · 10−4 0.99

] [
0.075 −0.40
0.40 0.081

]

the experiments, we used the EM algorithm with a maximum
number of iterations set to 2000 and with the convergence
threshold τ = 10−4 in (14).

We first analysed the performance of the TOMHT-EKF
based on the RTS smoother applied to the raw FMCW radar
measurement data. Then, the impact of the LDS parameter es-
timation on tracking accuracy improvement was estimated. For
the first scenario (i.e., standard TOMHT without parameters
prediction), the corresponding measurement covariance matrix
R was estimated by using 357 FMCW radar measurements
data which were collected in 8 different locations with known
coordinates. The QQ plots in Figure 3(a)-(b) shows the dataset
quantiles versus the theoretical quantile of a standard gaussian
distribution. As can be seen from the figure, neither target
angle nor its range follow a normal distribution. Nonetheless,
since the radar measurement data are affected by outliers, the
robust covariance estimation method was employed to estimate
the measurement covariance matrix [32]. In this way, we found
that

R =

[
0.063 0.0003
0.0003 0.0565

]
The above covariance matrix was employed in the EKF for
the TOMHT algorithm. The DD plot in Figure 3(a) shows the
standard Mahalanobis distance of the data versus the robust
mahalanobis distance, thus identifying the portion of the data
used for covariance matrix estimation.

In the second scenario (i.e. EM Robust tracking), the
experimental results verify that estimating the underlying LDS
parameters always yield better performance. Figure 4 and Fig-
ure 5 show the tracking results of three sample experimental
trajectories in terms of the qualitative trajectory estimation and
the percentile of average absolute error for the target position
along the trajectory. As can be seen, in all cases the EM al-
gorithm provides more accurate estimation while still remains
robust to the wrong hypothesis estimated by the TOMHT-EKF.
The final estimated LDS and measurement covariance matrix
are reported in Table I and Table II, respectively.

V. CONCLUSIONS

We have presented two different techniques to implement
a human localisation and tracking solution based on the data

  

(a) (b)
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(e) (f)
Fig. 4. Tracking performance for an eight-shaped trajectory with (a) RTS-
Smoother (b) EM, and for a random shaped trajectory with (c) RTS-Smoother
(d) EM. Mean absolute error (MAE) of the target position for the eight-shaped
trajectory (e) and for the random trajectory (f).

collected by a low-cost phased-array FMCW radar platform.
A critical problem was data association, i.e., how to associate
the radar measurement data to a specific target while rejecting
artefacts and bad data. We proposed two techniques. The first
one is based on the combination of Track–Oriented Multi–
Hypothesis Tracking (TOMHT) with an Extended Kalman Fil-
ter. The second one is based instead on Expectation Maximi-
sation (EM). Both techniques were validated experimentally.

In future works we plan first to perform an in-depth perfor-
mance comparison between the proposed solutions in different
scenarios, and then to use the radar platform for mobile robot
applications, too.
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