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A B S T R A C T

We propose a boundary element method for the accurate solution of the cell-by-cell bidomain model of
electrophysiology. The cell-by-cell model, also called Extracellular-Membrane-Intracellular (EMI) model, is a
system of reaction–diffusion equations describing the evolution of the electric potential within each domain:
intra- and extra-cellular space and the cellular membrane. The system is parabolic but degenerate because the
time derivative is only in the membrane domain. In this work, we adopt a boundary-integral formulation for
removing the degeneracy in the system and recast it to a parabolic equation on the membrane. The formulation
is also numerically advantageous since the number of degrees of freedom is sensibly reduced compared to the
original model. Specifically, we prove that the boundary-element discretization of the EMI model is equivalent
to a system of ordinary differential equations, and we consider a time discretization based on the multirate
explicit stabilized Runge–Kutta method. We numerically show that our scheme convergences exponentially in
space for the single-cell case. We finally provide several numerical experiments of biological interest.
1. Introduction

The human heart is composed of billions of electrically-active my-
ocytes. Altogether, myocytes form a syncytium of cells that enables
electrical and mechanical synchronization of the tissue [1]. Cardiac
myocytes are excitable cells that can react and transmit electric currents
to communicate and coordinate their action. Electrical propagation
depends on the conductive properties of the cytoplasm and the ex-
tracellular matrix. Cell-to-cell conduction occurs via gap junctions,
permeable channels mostly distributed in the myocyte longitudinal
direction. Myocyte excitability is due to hundreds of thousands ion
channels embedded in the cellular membrane. The overall propagation
of the cardiac action potential emerges from a balance of diffusion and
transmembrane currents.

Mathematically, cardiac electrophysiology models are systems of
reaction–diffusion equations. The reaction term results from transmem-
brane currents, which are voltage-dependent and regulated through
a gating mechanism. Ion channel gating is typically modeled via
Hodgkin–Huxley formalism, yielding a possibly large set of ordinary
differential equations. The diffusion term captures the spatial coordi-
nation of the cardiac tissue. The state-of-the-art model is the bidomain
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system. Here, the intracellular and extracellular spaces are superim-
posed and homogenized [2]. Patient-specific organ-scale simulations
routinely employ the bidomain model and its monodomain approxi-
mation. Despite being physiologically accurate, the bidomain model
fails to capture the sub-cellular tissue organization. The cell-by-cell
bidomain model accounts for the Extracellular-Membrane-Intracellular
(EMI) tissue components as separated (yet coupled) entities [3,4].
The cell-by-cell model enables a more accurate description of tissue
heterogeneities, a key aspect in heart failure and atrial fibrillation [5].

The cell-by-cell model presents several challenges. First, it has
an unusual mathematical formulation showing time dynamics at the
boundaries, indeed it presents an ordinary differential equation (ODE)
on the transmembrane boundary and a constraint on the gap junctions.
Second, in addition to the natural stiffness introduced by the Laplacian,
the ionic model introduces stiff nonlinear multiscale dynamics. Third,
a full scale heart model would require billions of cells leading to an
incredibly large system of equations. Hence, advanced tailored methods
must be designed to solve cell-by-cell models.

In the literature, cell-by-cell models have already been solved by
means of the finite element or boundary element method. In the finite
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Fig. 1. Geometrical setup of problem Eq. (1). The cell and the extra-cellular space are
espectively denoted by 𝛺1 and 𝛺0. The cellular membrane is 𝛤0.

element community the problem has been tackled by Stinstra and col-
laborators [6–9] and more recently by Tveito and collaborators [4,10–
12] as well. In both cases the cell-by-cell model was employed to study
the effects of the cells microscopic structure on macroscopic values as
conductive velocity or effective tissue conductivity. Also, the cell-by-
cell model was employed to derive the effective parameters for the
bidomain model under different microstructural conditions [3,7,13].
Bécue, Potse and Coudière [14–16] compared different gap junctions
modelizations and studied existence of solutions in [17]. In the con-
text of the boundary element method the model was solved only for
very simple and structured geometries, for instance in [18–20] for a
longitudinal array of non-touching cells, in [21] for a two-cells model,
and more recently, from a theoretical point of view, in [22,23] it was
analyzed for the case of isolated cells.

In this paper we propose a spatial discretization of the cell-by-cell
model based on the boundary element method (BEM) and reduce it to a
single system of ODEs living only on the transmembrane boundary. The
great advantage brought by the BEM is that only boundaries need to
be discretized, leading to much smaller systems of equations compared
to more traditional methods as finite elements or volumes. We stress
that the approach presented here is easily adapted for different gap-
junction boundary conditions [4] or unbounded extracellular domains
(the ‘‘infinite bath’’ approximation). Also, any spatial discretization
method for which Dirichlet-to-Neumann maps can be computed could
be employed instead of the BEM. Compared to previous BEM ap-
proaches, our methodology is independent from the cells structure and
reduces any problem to an ODE on the transmembrane boundary.

This paper is organized as follows. In Section 2 we treat the simple
case where only one myocyte cell is present, the purpose of this section
is to introduce the needed tools and our approach in a simplified
setting. In Section 3 instead we discretize in space the full problem
with an arbitrary number of cells, possibly in contact, and reduce it
to a system of ODEs. Finally, in Section 4 we present some numerical
results.

2. The single-cell problem

The main purpose of this section is to introduce in a simplified
setting the boundary integral formulation and the boundary element
method (BEM) employed to discretize the full problem, done in Sec-
tion 3, and as well the approach used to reduce the space discrete
problem into a system of ordinary differential equations (ODE).

2.1. Problem formulation

Here we consider the EMI model for a single cell, denoted by the
bounded domain 𝛺1 ⊂ R𝑑 with 𝑑 = 2, embedded in the extracellular
pace, denoted by 𝛺0 ⊂ R𝑑 . See Fig. 1 for a schematic representation
f the single-cell problem. Specifically, we require that the intra- and
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xtra-cellular domain do not overlap, that is 𝛺0 ∩𝛺1 = ∅, and that they
hare a common boundary 𝛤0 = �̄�0 ∩ �̄�1. The boundary 𝛤0 represents
he cellular membrane. The membrane model and temporal dynamic of
he system, due to capacitative currents, is confined on 𝛤0. We finally
ssume that 𝛺0 is bounded with exterior boundary 𝛴 = 𝜕𝛺0 ⧵𝛤0. Also,
e define 𝛤1 = 𝜕𝛺1 (note that for the single-cell problem 𝛤1 = 𝛤0). The

single-cell problem reads as follows:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

−𝜎1𝛥𝑢1(𝒙, 𝑡) = 0, in 𝛺1, (a)
−𝜎0𝛥𝑢0(𝒙, 𝑡) = 0, in 𝛺0, (b)

𝜎1𝜕𝒏1𝑢1(𝒙, 𝑡) + 𝜎0𝜕𝒏0𝑢0(𝑥, 𝑡) = 0, on 𝛤0, (c)
𝜎0𝜕𝒏0𝑢0(𝒙, 𝑡) = 𝐼t(𝒙, 𝑡), on 𝛤0, (d)

𝐶m𝜕𝑡𝑉0(𝒙, 𝑡) + 𝐼ion
(

𝑉0(𝒙, 𝑡), 𝑧(𝒙, 𝑡)
)

= 𝐼t(𝒙, 𝑡), on 𝛤0, (e)
𝑢1(𝒙, 𝑡) − 𝑢0(𝒙, 𝑡) = 𝑉0(𝒙, 𝑡), on 𝛤0, (f)

𝜕𝑡𝑧(𝒙, 𝑡) = 𝑔
(

𝑉0(𝒙, 𝑡), 𝑧(𝒙, 𝑡)
)

, on 𝛤0, (g)
𝜎0𝜕𝒏0𝑢0(𝒙, 𝑡) = 0, on 𝛴, (h)

𝑢0(𝒙, 0) = 𝑢00(𝒙), on 𝛤0, (i)
𝑢1(𝒙, 0) = 𝑢01(𝒙), on 𝛤0, (j)

(1)

where the unknowns 𝑢0(𝒙, 𝑡), 𝑢1(𝒙, 𝑡), 𝑉0(𝒙, 𝑡) and 𝑧(𝒙, 𝑡) are respectively
the intra-cellular, extra-cellular, transmembrane electric potential, and
a vector of gating and concentration variables. The auxiliary current
𝐼t(𝒙, 𝑡) is defined in Eq. (1)(e) and is employed to alleviate the notation
only. Coefficients 𝜎0 > 0 and 𝜎1 > 0 are respectively the extra- and
intra-cellular electric conductivity, 𝐶m > 0 is the membrane capaci-
tance, and 𝒏𝑖, 𝑖 = 0, 1 is the outwards normal to 𝜕𝛺𝑖. The ionic model
is typically based on the Hodgkin–Huxley formalism, where 𝐼ion(𝑉0, 𝑧)
is a sum of ionic currents and the system of ODEs in Eq. (1)(g) de-
scribes the gating dynamic. Note that the initial datum is of degenerate
type, as we assign 𝑢00(𝒙) and 𝑢01(𝒙) only on 𝛤0, consistently with the
differential–algebraic structure of the model [24].

The global well-posedness of the three-dimensional version of prob-
lem (1) in Sobolev spaces has been studied by Matano and Mori [25].
The idea of the proof is similar to what we do here, in the sense that the
authors recast (1) to an ODE on the interface 𝛤0. The equation involves
a pseudo-differential operator not dissimilar to the Dirichlet-Neumann
map, as done below in the discrete settings with the operator 𝜓 . For
(1), the solution is defined up to a constant, which is typically fixed
by imposing an extra condition on the extracellular potential, e.g., its
average value on the outer boundary. This is done also in the standard
bidomain model [26]. In [25], the authors consider 𝛺1 with a smooth
boundary 𝛤0 and unbounded 𝛺0 = R3 ⧵ (𝛺1 ∪ 𝛤0). Coefficients 𝐶𝑚, 𝜎0,
and 𝜎1 are positive scalars and, due to unboundedness of 𝛺0, Eq. (1)(h)
is replaced with a vanishing condition 𝑢0(𝒙) → 0 as ‖𝒙‖ → ∞. With
continuous initial values on 𝛤0, and 𝐼ion, 𝑔 smooth functions, the local
existence and uniqueness of a solution can be proved. They also prove
global existence of solutions for the particular case of the FitzHugh–
Nagumo and Hodgkin–Huxley ionic models. The well-posedness of the
multi-cell problem has been analyzed by Colli Franzone and Savaré
[24].

2.2. Boundary integral formulation

Problem in Eq. (1) has already been tackled and carefully analyzed
by Henríquez et al. [23], where the BEM with a Galerkin approach
was employed. Here, we derive a boundary integral formulation of the
unicellular problem Eq. (1) in terms of trace operators and Poincaré–
Steklov operators. For the sake of simplicity, we henceforth drop the
explicit dependency on (𝒙, 𝑡), unless differently stated.

Let 𝛾1𝑡 be the trace operator and 𝛾1𝑛 the conormal derivative on the
boundary 𝛤1. More specifically, we introduce the operators as follows:

𝛾1𝑡 ∶𝐻
1(𝛺1) → 𝐻1∕2(𝛤1), 𝛾1𝑡 𝑢1(𝒙) = lim

𝛺1∋𝒚→𝒙∈𝛤1
𝑢1(𝒚),

𝛾1 ∶𝐻1(𝛺1) → 𝐻−1∕2(𝛤1), 𝛾1𝑢1(𝒙) = lim ⟨∇𝑢1(𝒚),𝒏1⟩,
(2)
𝑛 𝑛 𝛺1∋𝒚→𝒙∈𝛤1
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where the limits on the right must hold for smooth enough 𝑢1. Let
𝐺(𝒙, 𝒚) be the fundamental solution of the Laplacian in R𝑑 , the Green
representation formula for 𝑢1 satisfying Eq. (1)(a) implies that

𝑢1(𝒙) = ∫𝛤1
𝛾1𝑡,𝒚𝐺(𝒙, 𝒚)𝛾

1
𝑛 𝑢1(𝒚)d𝑠𝒚 − ∫𝛤1

𝛾1𝑛,𝒚𝐺(𝒙, 𝒚)𝛾
1
𝑡 𝑢1(𝒚)d𝑠𝒚 , 𝒙 ∈ 𝛺1

(3)

where 𝒚 in 𝛾1𝑡,𝒚 , 𝛾1𝑛,𝒚 means that the operators are applied to the second
variable of 𝐺(𝒙, 𝒚). Taking the trace 𝛾1𝑡 of Eq. (3) we obtain

𝛾1𝑡 𝑢1 = 1𝛾
1
𝑛 𝑢1 − (1 −

1
2 𝐼)𝛾

1
𝑡 𝑢1, (4)

here 𝐼 is the identity operator, 1 and 1 are the single and double
ayer operators defined by

1 ∶𝐻−1∕2(𝛤1) → 𝐻1∕2(𝛤1), 1𝜌(𝒙) = ∫𝛤1
𝛾1𝑡,𝒚𝐺(𝒙, 𝒚)𝜌(𝒚)d𝑠𝒚 , 𝒙 ∈ 𝛤1,

1 ∶𝐻1∕2(𝛤1) → 𝐻1∕2(𝛤1), 1𝜌(𝒙) = ∫𝛤1
𝛾1𝑛,𝒚𝐺(𝒙, 𝒚)𝜌(𝒚)d𝑠𝒚 , 𝒙 ∈ 𝛤1,

(5)

and the term 1
2 𝐼 in Eq. (4) comes from the jump of the double layer

otential as 𝛺1 ∋ 𝒙 → 𝒚 ∈ 𝛤1. Problem Eq. (4) can be rewritten as

1𝛾
1
𝑛 𝑢1 = (1 +

1
2 𝐼)𝛾

1
𝑡 𝑢1, (6)

or employing the Poincaré–Steklov operator (Dirichlet-to-Neumann
map):

1 ∶ 𝐻1∕2(𝛤1) → 𝐻−1∕2(𝛤1), 1 ∶= −1
1 (1 +

1
2 𝐼), (7)

then Eq. (6) becomes

𝛾1𝑛 𝑢1 = 1𝛾
1
𝑡 𝑢1. (8)

he invertibility of 1 is ensured under the condition diam(𝛺1) < 1,
hich is always satisfied under a suitable scaling. The Poincaré–Steklov
perator 1 in Eq. (7) is known to be symmetric [27, Section 3.7].
ow, let 𝛾0𝑡 𝑢0, 𝛾0𝑛 𝑢0 be the trace and conormal derivative of 𝑢0 on
0 = 𝛤1, respectively. In order to derive a Dirichlet-to-Neumann map
0 ∶ 𝐻1∕2(𝛤0) → 𝐻−1∕2(𝛤0) in 𝛺0, hence

𝛾0𝑛 𝑢0 = 0𝛾
0
𝑡 𝑢0, (9)

we need to take into account the boundary condition (1)(h) on the
external boundary 𝛴 of 𝛺0. In order to alleviate the presentation we
postpone the derivation of 0 to Appendix. However, we would like to
ote that 0 remains symmetric.

Due to the Green representation formula, Eqs. (1)(a) and (1)(b) can
e dropped from Eq. (1). Also, Eq. (1)(h) is encoded into the defini-
ion of 0 (see Appendix). Finally, the boundary integral formulation
f Eq. (1) is

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜎11𝛾1𝑡 𝑢1 + 𝜎00𝛾0𝑡 𝑢0 = 0, (a)
𝛾1𝑡 𝑢1 − 𝛾

0
𝑡 𝑢0 = 𝑉0, (b)

𝜎00𝛾0𝑡 𝑢0 = 𝐼t(𝑉0, 𝑧), (c)
𝜕𝑡𝑧 = 𝑔(𝑉0, 𝑧). (d)

(10)

2.3. Spatial discretization of the unicellular problem

We adopt the collocation BEM as spatial discretization scheme.
Boundary element methods have less degrees of freedom than other
standard techniques, while the collocation approach yields lower di-
mensional boundary integrals than the variational method and hence
faster computations. For extensive presentations on the BEM we refer
to [27–29].

We place 𝑀 collocation points 𝒙𝑗 , 𝑗 = 1,… ,𝑀 , on 𝛤1 in a coun-
terclockwise order. Then we compute a smooth parametrization 𝛾𝛤1 ∶
[0, 1) → 𝛤1 satisfying

𝛾 (𝑡 ) = 𝒙 𝑗 = 1,… ,𝑀, (11)
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𝛤1 𝑗 𝑗
where {𝑡𝑗}𝑀𝑗=1 ⊂ [0, 1) is an increasing sequence. (The parametrization
𝛾𝛤1 is computed with Fourier interpolation. For the unicellular problem,
we could define 𝛾𝛤1 (𝑡) first and then set 𝒙𝑗 as in Eq. (11). However, this
is not possible for the multi-cell problems.) Finally, we represent 𝛾1𝑡 𝑢1,
𝛾1𝑛 𝑢1 as

𝛾1𝑡 𝑢1(𝛾𝛤1 (𝑡)) =
𝑀
∑

𝑗=1
𝑢𝑗1𝐿𝑗 (𝑡), 𝛾1𝑛 𝑢1(𝛾𝛤1 (𝑡)) =

𝑀
∑

𝑗=1
�̃�𝑗1𝐿𝑗 (𝑡), (12)

where 𝐿𝑗 (𝑡) are trigonometric Lagrange polynomials satisfying 𝐿𝑗 (𝑡𝑘) =
𝛿𝑗𝑘 for 𝑗, 𝑘 = 1,… ,𝑀 . Instead of Eq. (6) we solve the weaker form

1𝛾
1
𝑛 𝑢1(𝒙𝑘) = (1 +

1
2 𝐼)𝛾

1
𝑡 𝑢1(𝒙𝑘), 𝑘 = 1,… ,𝑀, (13)

with 𝒙𝑘 = 𝛾𝛤1 (𝑡𝑘), which is equivalent to

𝑀
∑

𝑗=1
�̃�𝑗11𝐿𝑗 (𝛾−1𝛤1 (𝒙𝑘)) =

𝑀
∑

𝑗=1
𝑢𝑗1(1+

1
2 𝐼)𝐿𝑗 (𝛾

−1
𝛤1

(𝒙𝑘)), 𝑘 = 1,… ,𝑀, (14)

nd hence the linear system

1�̃�1 = (𝐾1 +
1
2 𝐼)𝒖1, (15)

with 𝒖1, �̃�1 the vectors of coefficients 𝑢𝑗1, �̃�
𝑗
1, respectively, and

(𝑉1)𝑘𝑗 ∶= 1(𝐿𝑗◦𝛾−1𝛤1 )(𝒙𝑘) = ∫𝛤1
𝛾1𝑡,𝒚𝐺(𝒙𝑘, 𝒚)𝐿𝑗 (𝛾

−1
𝛤1

(𝒚))d𝑠𝒚

= ∫

1

0
𝛾1𝑡,𝒚𝐺(𝒙𝑘, 𝛾𝛤1 (𝑡))𝐿𝑗 (𝑡)‖𝛾

′
𝛤1
(𝑡)‖d𝑡,

(𝐾1)𝑘𝑗 ∶= 1(𝐿𝑗◦𝛾−1𝛤1 )(𝒙𝑘) = ∫𝛤1
𝛾1𝑛,𝒚𝐺(𝒙𝑘, 𝒚)𝐿𝑗 (𝛾

−1
𝛤1

(𝒚))d𝑠𝒚

= ∫

1

0
𝛾1𝑛,𝒚𝐺(𝒙𝑘, 𝛾𝛤1 (𝑡))𝐿𝑗 (𝑡)‖𝛾

′
𝛤1
(𝑡)‖d𝑡.

The matrix coefficients (𝑉1)𝑘𝑗 , (𝐾1)𝑘𝑗 must be computed with special
are due to the singularities in the fundamental solution 𝐺(𝒙, 𝒚) and its
erivatives as 𝛾𝛤1 (𝑡) → 𝒙𝑘, we refer to [28,30] for the details.

Note that 𝒖1 and �̃�1 are the vectors of coordinates of 𝛾1𝑡 𝑢1 and
1
𝑛 𝑢1, respectively, and that from Eq. (15) follows the discrete version
f Eq. (8)

̃1 = 𝑃1𝒖1, 𝑃1 ∶= (𝑉1)−1(𝐾1 +
1
2 𝐼), (16)

here 𝑃1 is the discrete Poincaré–Steklov operator (Dirichlet-to-
eumann map) in 𝛺1. Similarly, in Appendix we derive the discrete
ersion of Eq. (9) and obtain

̃0 = 𝑃0𝒖0, (17)

ith 𝒖0 and �̃�0 the vectors of coordinates of 𝛾0𝑡 𝑢0 and 𝛾0𝑛 𝑢0, respectively.
Finally, the space discretization of the boundary integral formula-

tion Eq. (10) is

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜎1𝑃1𝒖1 + 𝜎0𝑃0𝒖0 = 0, (a)
𝒖1 − 𝒖0 = 𝑽 0, (b)
𝜎0𝑃0𝒖0 = 𝐼t(𝑽 0, 𝒛), (c)

𝒛′ = 𝑔(𝑽 0, 𝒛), (d)

(18)

where 𝑽 0(𝑡) ∈ R𝑀 is the vector whose coefficients represent 𝑉0(𝒙𝑗 , 𝑡)
and analogously for 𝒛. The right-hand sides 𝐼t and 𝑔 are applied to
𝑽 0, 𝒛 component wise. If needed, the solution 𝑢1 satisfying Eq. (1)(a)
is approximated via the Green identity Eqs. (3) and (12), (16). We
proceed similarly for 𝑢0.

2.4. The Lagrange multipliers approach for the unicellular problem

Now we solve Eq. (18) and to do so we employ the Lagrange
multiplier method. We adopted this technique mainly for pedagogical
reasons in regard of what will be presented in Section 3, since for the

unicellular problem Eq. (1) a more direct approach could be used.
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In the remaining of this section we construct the linear map

𝜓 ∶ R𝑀 → R𝑀 , 𝜓(𝑽 0) = 𝜎0𝑃0𝒖0, (19)

here 𝒖0 satisfies Eqs. (18)(a) and (18)(b) (behind the scenes 𝒖1 is
omputed as well, but it is not needed as output of 𝜓). Inserting Eq. (19)
nd 𝐼t(𝑽 0, 𝒛) = 𝐶m𝑽 ′

0 + 𝐼ion(𝑽 0, 𝒛) in Eqs. (18)(c) and (18)(d) the
roblem reduces to the ODE
{

𝐶m𝑽 ′
0 + 𝐼ion(𝑽 0, 𝒛) = 𝜓(𝑽 0), (a)

𝒛′ = 𝑔(𝑽 0, 𝒛), (b) (20)

which can be integrated by any suitable time marching scheme.
Eq. (20) has the same structure as the one derived in [23], where a
BEM for the cell-by-cell model without gap junctions is derived.

Theorem 2.1 is the unicellular version of the more general Theo-
rem 3.1 below, which in turn takes inspiration from the work in [31].
We also remark that the Theorem is independent of the spatial dis-
cretization. For instance, a finite element discretization may be recast
to Eq. (18) by static condensation, that is by explicitly computing the
discrete Poincaré–Steklov operator.

Theorem 2.1. The linear map 𝜓 from Eq. (19) satisfies 𝜓(𝑽 0) = 𝝀, with
𝝀 ∈ R𝑀 and 𝛽1 ∈ R solution to
(

𝐹 𝐺
𝐺⊤ 0

)(

𝝀
𝛽1

)

=
(

𝑽 0
0

)

. (21)

The matrices 𝐹 ∈ R𝑀×𝑀 , 𝐺 ∈ R𝑀 are defined by

𝐹 = −(𝜎−11 (𝑃+
1 )−1 + 𝜎−10 (𝑃+

0 )−1), 𝐺 = 𝒆, (22)

𝒆 ∈ R𝑀 is the vector of ones and

𝑃+
0 = 𝑃0 + 𝛼0𝒆𝒆⊤, 𝑃+

1 = 𝑃1 + 𝛼1𝒆𝒆⊤, (23)

with 𝛼0, 𝛼1 > 0. If needed, a solution 𝒖0, 𝒖1 to Eqs. (18)(a) and (18)(b) is
computed with

𝒖0 = 𝜎−10 (𝑃+
0 )−1𝝀, 𝒖1 = −𝜎−11 (𝑃+

1 )−1𝝀 + 𝛽1𝒆. (24)

All unknowns 𝝀, 𝛽1, 𝒖0, 𝒖1 are independent from 𝛼0, 𝛼1 > 0.

Hence, when solving the ODE system Eq. (20) with a time inte-
gration scheme, every time that 𝜓(𝑽 0) needs to be evaluated system
Eq. (21) is solved and 𝜓(𝑽 0) = 𝝀 is inserted in Eq. (20).

Before proving Theorem 2.1, we show the following results on the
pseudoinverses 𝑃+

0 , 𝑃
+
1 of 𝑃0, 𝑃1, respectively.

Lemma 2.2. Let 𝑃 = 𝑃0 or 𝑃 = 𝑃1 and 𝑃+ = 𝑃 + 𝛼𝒆𝒆⊤ for 𝛼 > 0. Let
𝝀 ∈ R𝑀 such that ⟨𝝀, 𝒆⟩ = 0, then

⟨(𝑃+)−1𝝀, 𝒆⟩ = 0. (25)

Moreover, for 𝛽 ∈ R, 𝜎 ∈ R∗ and

𝒖 = 𝜎−1(𝑃+)−1𝝀 + 𝛽𝒆 (26)

it holds ⟨𝒖, 𝒆⟩ = 𝛽𝑀 , 𝜎𝑃𝒖 = 𝝀 and 𝒖 is independent from 𝛼.

Proof. Since 𝑃 is positive semi-definite, with 𝑃 𝒆 = 0, then 𝑃+ is
positive definite. Let 𝒙 = (𝑃+)−1𝝀, then

𝛼⟨𝒆, 𝒆⟩⟨𝒙, 𝒆⟩ = ⟨𝛼𝒆𝒆⊤𝒙, 𝒆⟩ = ⟨(𝑃 + 𝛼𝒆𝒆⊤)𝒙, 𝒆⟩ = ⟨𝑃+𝒙, 𝒆⟩ = ⟨𝝀, 𝒆⟩ = 0 (27)

and thus ⟨𝒙, 𝒆⟩ = 0, which proves Eq. (25). From Eqs. (26) and (25), we
have

⟨𝒖, 𝒆⟩ = 𝛽⟨𝒆, 𝒆⟩ = 𝛽𝑀. (28)

Now we are in position to show that 𝜎𝑃𝒖 = 𝝀, which follows from

𝜎(𝑃 + 𝛼𝒆𝒆⊤)𝒖 = 𝝀 + 𝛽𝜎(𝑃 + 𝛼𝒆𝒆⊤)𝒆 (29)

and
⊤ ⊤
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𝜎𝛼𝒆𝒆 𝒖 = 𝜎𝛼𝛽𝒆𝑀 = 𝜎𝛼𝛽𝒆𝒆 𝒆. (30) s
It remains to show that 𝒖 is independent from 𝛼. To do so, we show
that (𝑃+)−1𝝀 = (𝑃+)−1𝝀, with 𝑃+ = 𝑃 + �̃�𝒆𝒆⊤, �̃� > 0. We compute
̃+((𝑃+)−1𝝀 − (𝑃+)−1𝝀) = 𝝀 − 𝑃+(𝑃+)−1𝝀

= 𝝀 − (𝑃+ + (�̃� − 𝛼)𝒆𝒆⊤)(𝑃+)−1𝝀

= (𝛼 − �̃�)𝒆𝒆⊤(𝑃+)−1𝝀 = 0.

(31)

he last equality follows from Eq. (25), and (𝑃+)−1𝝀 = (𝑃+)−1𝝀 from
nvertibility of 𝑃+. □

roof of Theorem 2.1. Note that if vectors 𝒖0, 𝒖1 are solutions to Eqs.
18)(a) and (18)(b), then also 𝒖0 + 𝐶𝒆, 𝒖1 + 𝐶𝒆 are solutions for all
∈ R; indeed, 𝑃0𝒆 = 𝑃1𝒆 = 𝟎. Hence, in what follows, we choose to fix

uch free constant by imposing ⟨𝒖0, 𝒆⟩ = 0.
Since 𝑃0, 𝑃1 are symmetric, 𝒖0, 𝒖1, are also solution to the con-

trained minimization problem

min
𝒖1 ,𝒖0

𝜎0
2
⟨𝑃0𝒖0, 𝒖0⟩+

𝜎1
2
⟨𝑃1𝒖1, 𝒖1⟩ with 𝒖1−𝒖0 = 𝑽 0, ⟨𝒖0, 𝒆⟩ = 0. (32)

Let

(𝒖0, 𝒖1,𝝀, 𝜇) =
𝜎0
2
⟨𝑃0𝒖0, 𝒖0⟩+

𝜎1
2
⟨𝑃1𝒖1, 𝒖1⟩+ ⟨𝒖1 − 𝒖0 − 𝑽 0,𝝀⟩+ ⟨𝒖0, 𝒆⟩𝜇

(33)

be the Lagrangian function, imposing ∇(𝒖0, 𝒖1,𝝀, 𝜇) = 𝟎 yields

𝜎0𝑃0𝒖0 − 𝝀 + 𝒆𝜇 = 𝟎, 𝜎1𝑃1𝒖1 + 𝝀 = 𝟎, (34)

𝒖1 − 𝒖0 = 𝑽 0, ⟨𝒖0, 𝒆⟩ = 0. (35)

Since 𝑃0𝒆 = 𝑃1𝒆 = 𝟎, the two equations of (34) have a solution only if

⟨𝝀 − 𝜇𝒆, 𝒆⟩ = 0, ⟨𝝀, 𝒆⟩ = 0, (36)

hence ⟨𝝀, 𝒆⟩ = 0 and 𝜇 = 0. Let 𝑃+
0 , 𝑃

+
1 as in Eq. (23), it follows from

Lemma 2.2 that if Eq. (36) holds then

𝒖0 = 𝜎−10 (𝑃+
0 )−1𝝀, 𝒖1 = −𝜎−11 (𝑃+

1 )−1𝝀 + 𝛽1𝒆, 𝛽1 ∈ R, (37)

re solution to (34) and ⟨𝒖0, 𝒆⟩ = 0. The first equation of Eq. (35) yields

0 = 𝒖1 − 𝒖0 = −(𝜎−11 (𝑃+
1 )−1 + 𝜎−10 (𝑃+

0 )−1)𝝀 + 𝛽1𝒆 = 𝐹𝝀 + 𝐺𝛽1, (38)

ith matrices 𝐹 , 𝐺 as in Eq. (22). Together with Eq. (36) it yields
ystem Eq. (21). Lemma 2.2 shows that 𝒖0, 𝒖1 are independent from
0, 𝛼1. From Eq. (25) follows ⟨(𝑃+

0 )−1𝝀, 𝒆⟩ = ⟨(𝑃+
1 )−1𝝀, 𝒆⟩ = 0 and

herefore ⟨𝐹𝝀, 𝒆⟩ = 0. Thus, from Eq. (38) we deduce ⟨𝑽 0, 𝒆⟩ =
𝐺𝛽1, 𝒆⟩ = 𝛽1⟨𝒆, 𝒆⟩, hence also 𝛽1 is independent from 𝛼0, 𝛼1. Finally,
in independent from 𝛼0, 𝛼1 since 𝝀 = 𝜎0𝑃0𝒖0. Since 𝛽1 = ⟨𝑽 0, 𝒆⟩∕⟨𝒆, 𝒆⟩

nd 𝐹 is negative definite (𝑃+
1 , 𝑃

+
0 are positive definite) then 𝝀 exists

nd is unique, hence system Eq. (21) is well posed. □

emark 2.3. Note that the content of this section is readily adapted to
problem Eq. (1) with unbounded domain 𝛺0, hence without boundary
ondition (1)(h) but a vanishing condition ‖𝒖0‖ → 0 as ‖𝒙‖ → ∞.
n that case, 𝑃0 is derived analogously to 𝑃1. However, 𝑃0 would be
on-singular, hence in Theorem 2.1 we consider Eq. (23) with 𝛼0 = 0.
ondition ⟨𝝀, 𝒆⟩ = 0 is still required for the existence of a solution to
1𝑃1𝒖1 = −𝝀, while ⟨𝒖0, 𝒆⟩ = 0 is not necessary since the free constant
s already fixed by the vanishing condition on 𝒖0.

. Discretization of the full cell-by-cell model

We introduce here the general cell-by-cell model. We consider an
xtracellular domain 𝛺0 ⊂ R𝑑 , 𝑑 = 2, an intracellular domain 𝛺I ⊂ R𝑑 ,
nd an interface domain 𝛤0 = �̄�0 ∩ �̄�I. (See Fig. 2 for a graphical
llustration of the model.) We suppose that 𝛺I and 𝛺0 are disjoint and
e denote by 𝛺 the whole tissue, 𝛺 = 𝛺I ∪ 𝛺0 ∪ 𝛤0. The domain 𝛺 is
lways assumed connected and bounded, with 𝛴 = 𝜕𝛺. For the sake of
implicity, 𝜕𝛺 ⧵𝛤 = 𝛴 and 𝜕𝛺 = 𝛤 , that is the exterior boundary of 𝛺
0 0 I 0
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Fig. 2. Illustration of problem Eq. (39).
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lways corresponds to the extracellular matrix. Next, the intracellular
pace is described by the union of disjoint cells, denoted by 𝛺𝑖, 𝑖 =
,… , 𝑁 . (Conveniently, 𝛺𝑖 for 𝑖 = 0 corresponds to the extracellular
pace.) Thus, 𝛺I =

⋃𝑁
𝑖=1𝛺𝑖. We denote 𝛤𝑖 = 𝜕𝛺𝑖, 𝑖 = 1,… , 𝑁 . The cell-

o-cell interconnections are denoted by 𝛤𝑖𝑗 = 𝛤𝑖 ∩𝛤𝑗 , 0 ≤ 𝑖, 𝑗 ≤ 𝑁 , 𝑖 ≠ 𝑗.
ote that the boundary of each cell is either in contact with another cell
r with the extracellular space. The cell-by-cell model reads as follows:

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

−𝜎𝑖𝛥𝑢𝑖 = 0, in 𝛺𝑖, 𝑖 = 0,… , 𝑁, (a)
𝑢𝑖 − 𝑢0 = 𝑉𝑖0, on 𝛤𝑖0 for 1 ≤ 𝑖 ≤ 𝑁, (b)

−𝜎𝑖𝜕𝒏𝑖𝑢𝑖 = 𝐼t(𝑉𝑖0, 𝑧𝑖, 𝑡,𝒙), on 𝛤𝑖0 for 1 ≤ 𝑖 ≤ 𝑁, (c)
−𝜎0𝜕𝒏0𝑢0 = −𝐼t(𝑉𝑖0, 𝑧𝑖, 𝑡,𝒙), on 𝛤𝑖0 for 1 ≤ 𝑖 ≤ 𝑁, (d)

𝜕𝑡𝑧𝑖 = 𝑔(𝑉𝑖0, 𝑧𝑖), on 𝛤𝑖0 for 1 ≤ 𝑖 ≤ 𝑁, (e)
−𝜎𝑖𝜕𝒏𝑖𝑢𝑖 = 𝜅(𝑢𝑖 − 𝑢𝑗 ), on 𝛤𝑖𝑗 for 1 ≤ 𝑖, 𝑗 ≤ 𝑁 , 𝑖 ≠ 𝑗, (f)
−𝜎0𝜕𝒏0𝑢0 = 0, on 𝛴, (g)

(39)

ith 𝐼t(𝑉𝑖0, 𝑧𝑖, 𝑡,𝒙) = 𝐶m𝜕𝑡𝑉𝑖0 + 𝐼ion(𝑉𝑖0, 𝑧𝑖) + 𝐼stim(𝑡,𝒙). The constant
onductivities are 𝜎𝑖 > 0, 𝑖 = 0,… , 𝑁 . The gap junctions (intercellular
onnections) are represented by 𝛤𝑖𝑗 for 1 ≤ 𝑖, 𝑗 ≤ 𝑁 , 𝑖 ≠ 𝑗, with
ermeability 𝜅. The normals 𝒏𝑖 point outwards to 𝛺𝑖. The intracellular
otentials are 𝑢𝑖 for 𝑖 = 1,… , 𝑁 , the extracellular potential is 𝑢0
nd 𝑉𝑖0 is the transmembrane potential on 𝛤𝑖0. The membrane electric
apacitance is 𝐶m and 𝐼ion represents the sum of ionic currents. The
ransmembrane potential 𝑉𝑖0 is regulated by the ionic currents, which
n turn depend on ionic concentrations and their transmembrane fluxes
hrough ion channels, which are governed by gating variables. Ion
oncentrations and gating variables are represented by 𝑧𝑖 and the pair
ion, 𝑔 describe the membrane ionic model. Several ionic models exist
nd they typically consist of few to hundreds of equations. We remark
hat there is no restriction in the system (39) for having different ionic
odels on each cell. In the definition of 𝐼t, 𝐼stim(𝑡,𝒙) is an applied

timulus on the transmembrane boundary. For the sake of simplicity
nd alleviate the presentation, for the time being we set 𝐼stim(𝑡,𝒙) = 0
nd drop 𝑡,𝒙 from the notation of 𝐼t.

Model Eq. (39) is a slight simplification of a more detailed model
y [4], where the dynamics at the gap junctions is time dependent
nd nonlinear in 𝑢𝑖 − 𝑢𝑗 . The simplification adopted here follows from
inearization and an equilibrium assumption. This procedure leads to a
ess computationally intensive model. Solving the complete model and
ompare the results is subject of a future work.

In this section we adapt the techniques used in Section 2 to the
ull problem Eq. (39). First, in Section 3.1, we perform the spatial dis-
retization of the cell-by-cell model, obtaining a differential–algebraic
quation. Then, in Section 3.2, we reduce the problem to a system of
243

rdinary differential equations on the transmembrane boundary. r
We start rewriting Eq. (39) as follows. Let 𝑉𝑖𝑗 = 𝑢𝑖 − 𝑢𝑗 be the
ifference of potential defined on the gap junctions 𝛤𝑖𝑗 for 1 ≤ 𝑗 <
≤ 𝑁 . Please note that we consider 𝛤𝑖𝑗 with 𝑗 < 𝑖 only, this is to

void any confusion regarding the sign of 𝑢𝑖 and 𝑢𝑗 in the definition
of 𝑉𝑖𝑗 . Let 𝛤𝑔 = ∪1≤𝑗<𝑖≤𝑁𝛤𝑖𝑗 be the union of all gap junctions, 𝛤0 is the
transmembrane boundary and 𝛤 = 𝛤0 ∪ 𝛤𝑔 the union of all internal
boundaries. We define 𝑉 on 𝛤 by 𝑉 |𝛤𝑖𝑗 = 𝑉𝑖𝑗 . With this definition of
𝑉 , Eq. (40)(c) replaces Eq. (39)(b) and defines 𝑉 on the gap junctions.
Condition (39)(d) yields Eq. (40)(e), while summing Eqs. (39)(c) and
(39)(d) we obtain Eq. (40)(b) for 𝑗 = 0. Summing Eq. (39)(f) inverting
the roles of 𝑖, 𝑗 yields Eq. (40)(b) for 𝑗 ≥ 1, while taking the difference
gives Eq. (40)(d).

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

−𝜎𝑖𝛥𝑢𝑖 = 0, in 𝛺𝑖 for 𝑖 = 0,… , 𝑁, (a)
𝜎𝑖𝜕𝒏𝑖𝑢𝑖 + 𝜎𝑗𝜕𝒏𝑗 𝑢𝑗 = 0, on 𝛤𝑖𝑗 for 0 ≤ 𝑗 < 𝑖 ≤ 𝑁, (b)

𝑢𝑖 − 𝑢𝑗 = 𝑉 , on 𝛤𝑖𝑗 for 0 ≤ 𝑗 < 𝑖 ≤ 𝑁, (c)
𝜎𝑗𝜕𝒏𝑗 𝑢𝑗 − 𝜎𝑖𝜕𝒏𝑖𝑢𝑖 = 2𝜅𝑉 , on 𝛤𝑖𝑗 for 1 ≤ 𝑗 < 𝑖 ≤ 𝑁, (d)

𝜎0𝜕𝒏0𝑢0 = 𝐼t(𝑉 , 𝑧), on 𝛤0, (e)
𝜕𝑡𝑧 = 𝑔(𝑉 , 𝑧), on 𝛤0. (f)

𝜎0𝜕𝒏0𝑢0 = 0, on 𝛴. (g)

(40)

Model Eq. (40) is equivalent to Eq. (39), however it is written in a more
‘‘symmetric’’ form.

3.1. Spatial discretization of the cell-by-cell model

We discretize all boundary segments 𝛤𝑖𝑗 with 𝑀𝑖𝑗 collocation points
𝒙𝑘𝑖𝑗 ∈ �̊�𝑖𝑗 , for 𝑘 = 1,… ,𝑀𝑖𝑗 and 0 ≤ 𝑗 < 𝑖 ≤ 𝑁 . Let 𝑀𝑖 be the number
of discretization points lying on boundary 𝛤𝑖, 𝑖 = 0,… , 𝑁 . The total
number of collocation points on 𝛤 = ∪𝑁𝑖=0𝛤𝑖 is 𝑀 =

∑

0≤𝑗<𝑖≤𝑁 𝑀𝑖𝑗 =
1
2
∑𝑁
𝑖=0𝑀𝑖. We denote 𝒙𝑙, 𝑙 = 1,… ,𝑀 , the global collocations points

on 𝛤 and by 𝒙𝑘𝑖 , 𝑘 = 1,… ,𝑀𝑖, the local collocation points on 𝛤𝑖. Note
that every 𝒙𝑙 lies on some 𝛤𝑖𝑗 , hence there are 𝒙𝑘1𝑖𝑗 , 𝒙𝑘2𝑖 , 𝒙𝑘3𝑗 satisfying
𝒙𝑙 = 𝒙𝑘1𝑖𝑗 = 𝒙𝑘2𝑖 = 𝒙𝑘3𝑗 .

Let 𝐴𝑖 ∈ R𝑀𝑖×𝑀 be the boolean connectivity matrix mapping a
vector 𝒗 ∈ R𝑀 of global nodal values on 𝛤 to the vector 𝒗𝑖 ∈ R𝑀𝑖

of local nodal values on 𝛤𝑖. Every line of 𝐴𝑖 has exactly one non zero
lement: (𝐴𝑖)𝑘𝑙 = 1 for 𝑘, 𝑙 such that 𝒙𝑙 = 𝒙𝑘𝑖 . Note that 𝐴⊤𝑖 maps local
o global degrees of freedom. We also define 𝐵𝑖 ∈ R𝑀𝑖×𝑀 having the
ame sparsity pattern as 𝐴𝑖. Let (𝐵𝑖)𝑘𝑙 be the only non zero element in
he 𝑘th line, hence 𝒙𝑙 = 𝒙𝑘𝑖 . If 𝒙𝑙 ∈ 𝛤𝑖𝑗 with 𝑗 < 𝑖 then (𝐵𝑖)𝑘𝑙 = 1, else
𝐵𝑖)𝑘𝑙 = −1.

Let 𝑃𝑖 ∈ R𝑀𝑖×𝑀𝑖 be the discrete Poincaré–Steklov operator on each
omain 𝛺𝑖 and 𝒖𝑖 ∈ R𝑀𝑖 the vector of coordinates representing 𝛾 i

0𝑢𝑖.
he vector of coordinates 𝑽 ∈ R𝑀 represents 𝑉 and 𝑽 0 = 𝐴0𝑽

epresents 𝑉 |𝛤0 . The spatial discretization of Eqs. (40)(b) and (40)(c)
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is given by
𝑁
∑

𝑖=0
𝜎𝑖𝐴

⊤
𝑖 𝑃𝑖𝒖𝑖 = 𝟎,

𝑁
∑

𝑖=0
𝐵⊤𝑖 𝒖𝑖 = 𝑽 . (41)

Recall that 𝐴0 is the connectivity matrix mapping a global vector 𝒗 ∈
R𝑀 to a local vector 𝒗0 ∈ R𝑀0 on the transmembrane boundary 𝛤0.
Let 𝑀𝑔 = 𝑀 − 𝑀0 be the number of points on the gap junctions 𝛤𝑔
and 𝐴𝑔 ∈ R𝑀𝑔×𝑀 the matrix mapping a global vector to a local vector
𝒗𝑔 ∈ R𝑀𝑔 on 𝛤𝑔 . The spatial discretization of Eqs. (40)(d) and (40)(e)
is

𝜎0𝑃0𝒖0 = 𝐼t(𝐴0𝑽 , 𝒛),
𝑁
∑

𝑖=1
𝜎𝑖𝐴𝑔𝐵

⊤
𝑖 𝑃𝑖𝒖𝑖 = −2𝜅𝐴𝑔𝑽 . (42)

As in Section 2, conditions Eqs. (40)(a) and (40)(g) are automati-
cally satisfied by the Green representation formula (3) and the defi-
nition of the Poincaré–Steklov operator 𝑃0 on 𝛺0. Finally, the spatial
discretization of Eq. (40)(f) is

𝒛′ = 𝑔(𝐴0𝑽 , 𝒛). (43)

Hence, the spatial discretization of Eq. (40) is given by Eqs. (41)–(43).

3.2. Reduction to an ordinary differential equation

In this section we transform the space discretization Eqs. (41)–(43)
into an ordinary differential equation. First, similarly to Section 2.4, we
search for linear maps

𝜓𝑖 ∶ R𝑀 → R𝑀𝑖 , 𝜓𝑖(𝑽 ) = 𝜎𝑖𝑃𝑖𝒖𝑖, 𝑖 = 0,… , 𝑁, (44)

where the 𝒖𝑖 satisfy Eq. (41). With the help of these maps we can
dispose of Eq. (41) by inserting Eq. (44) into Eq. (42) and obtain the
system of equations

𝜓0(𝑽 ) = 𝐼t(𝐴0𝑽 , 𝒛) = 𝐶m𝐴0𝑽 ′ + 𝐼ion(𝐴0𝑽 , 𝒛),
𝑁
∑

𝑖=1
𝐴𝑔𝐵

⊤
𝑖 𝜓𝑖(𝑽 ) = −2𝜅𝐴𝑔𝑽 . (45)

However, Eq. (45) is a differential–algebraic equation (DAE), which
requires more involved time marching schemes than a simple ODE.
Therefore, departing from the definition of the maps 𝜓𝑖 given in Theo-
rem 3.1, in Theorem 3.2 we derive a new map which takes into account
also the algebraic condition (second equality in Eq. (45)). This new map
will allow us to derive an ODE instead of a DAE.

We start with the theorem below, where we compute the maps 𝜓𝑖
of Eq. (44). The procedure adopted here is inspired from [31], where
a domain decomposition technique for the BEM is presented.

Theorem 3.1. The linear maps 𝜓𝑖 from Eq. (44) satisfy

𝜓𝑖(𝑽 ) = −𝐵𝑖𝝀, (46)

with 𝝀 ∈ R𝑀 and 𝜷 ∈ R𝑁 solution to
(

𝐹 𝐺
𝐺⊤ 0

)(

𝝀
𝜷

)

=
(

𝑽
𝟎

)

. (47)

The matrices 𝐹 ∈ R𝑀×𝑀 , 𝐺 ∈ R𝑀×𝑁 are defined by

𝐹 = −
𝑁
∑

𝑖=0
𝜎−1𝑖 𝐵⊤𝑖 (𝑃

+
𝑖 )

−1𝐵𝑖, 𝐺 = (𝐵⊤1 𝒆1,… , 𝐵⊤𝑁𝒆𝑁 ), (48)

𝒆𝑖 ∈ R𝑀𝑖 is the vector of ones and

𝑃+
𝑖 = 𝑃𝑖 + 𝛼𝑖𝒆𝑖𝒆⊤𝑖 , (49)

with 𝛼𝑖 > 0, 𝑖 = 0,… , 𝑁 . If needed, a solution 𝒖𝑖 for 𝑖 = 0,… , 𝑁 to Eq. (41)
is computed with

𝒖𝑖 = −𝜎−1𝑖 (𝑃+
𝑖 )

−1𝐵𝑖𝝀 + 𝛽𝑖𝒆𝑖, (50)

where 𝜷 = (𝛽1,… , 𝛽𝑁 )⊤ and 𝛽0 = 0. Furthermore, all unknowns 𝝀, 𝜷, 𝒖𝑖 for
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𝑖 = 0,… , 𝑁 are independent from 𝛼𝑖, 𝑖 = 0,… , 𝑁 .
Proof. We consider the constrained minimization problem with La-
grangian function

(𝒖0,… , 𝒖𝑁 ,𝝀, 𝜇) =
𝑁
∑

𝑖=0

𝜎𝑖
2
⟨𝑃𝑖𝒖𝑖, 𝒖𝑖⟩ +

𝑁
∑

𝑖=0
⟨𝐵⊤𝑖 𝒖𝑖,𝝀⟩ − ⟨𝑽 ,𝝀⟩ + 𝜇⟨𝒖0, 𝒆0⟩,

(51)

with 𝒆0 ∈ R𝑀0 a vector of ones, and show that a solution to
∇(𝒖0,… , 𝒖𝑁 ,𝝀, 𝜇) = 𝟎 solves Eq. (41) and defines 𝜓𝑖. Hence, we
impose

∇𝒖0(𝒖0,… , 𝒖𝑁 ,𝝀, 𝜇) = 𝜎0𝑃0𝒖0 + 𝐵0𝝀 + 𝜇𝒆0 = 𝟎, (52a)

∇𝒖𝑖(𝒖0,… , 𝒖𝑁 ,𝝀, 𝜇) = 𝜎𝑖𝑃𝑖𝒖𝑖 + 𝐵𝑖𝝀 = 𝟎, 𝑖 = 1,… , 𝑁, (52b)

∇𝝀(𝒖0,… , 𝒖𝑁 ,𝝀) =
𝑁
∑

𝑖=0
𝐵⊤𝑖 𝒖𝑖 − 𝑽 = 𝟎, (52c)

∇𝜇(𝒖0,… , 𝒖𝑁 ,𝝀, 𝜇) = ⟨𝒖0, 𝒆0⟩ = 0. (52d)

First, we notice that a solution to Eqs. (52a) and (52b) exists if and only
if

⟨𝐵0𝝀 + 𝜇𝒆0, 𝒆0⟩ = 0, ⟨𝐵𝑖𝝀, 𝒆𝑖⟩ = 0, 𝑖 = 1,… , 𝑁. (53)

Since ∑𝑁
𝑖=0 𝐵

⊤
𝑖 𝒆𝑖 = 𝟎 (for every +1 there is a −1), then ⟨𝐵0𝝀, 𝒆0⟩ =

−
∑𝑁
𝑖=1⟨𝐵𝑖𝝀, 𝒆𝑖⟩. Hence, Eq. (53) is replaced with

𝜇 = 0, ⟨𝐵𝑖𝝀, 𝒆𝑖⟩ = 0, 𝑖 = 1,… , 𝑁. (54)

Notice that Eqs. (52a) and (52b) define 𝜓𝑖(𝑽 ) = −𝐵𝑖𝝀. Also, impos-
ing ∇(𝒖0,… , 𝒖𝑁 ,𝝀, 𝜇) = 𝟎 we obtain a solution to Eq. (41). Indeed,
Eq. (52c) is equivalent to the second equality in Eq. (41). The first
equality of Eq. (41) follows from Eqs. (52a) and (52b), indeed

𝟎 =
𝑁
∑

𝑖=0
𝐴⊤𝑖 ∇𝒖𝑖(𝒖0,… , 𝒖𝑁 ,𝝀, 𝜇) =

𝑁
∑

𝑖=0
𝜎𝑖𝐴

⊤
𝑖 𝑃𝑖𝒖𝑖 + 𝐴

⊤
𝑖 𝐵𝑖𝝀 =

𝑁
∑

𝑖=0
𝜎𝑖𝐴

⊤
𝑖 𝑃𝑖𝒖𝑖,

(55)

where we used ∑𝑁
𝑖=0 𝐴

⊤
𝑖 𝐵𝑖 = 0 (for every 1 there is a −1) and 𝜇 = 0.

It remains to find a solution to Eq. (52). If Eq. (54) is satisfied, a
solution 𝒖𝑖 to Eqs. (52a), (52b) and (52d) exists and is given by

𝒖0 = −𝜎−10 (𝑃+
0 )−1𝐵0𝝀, 𝒖𝑖 = −𝜎−1𝑖 (𝑃+

𝑖 )
−1𝐵𝑖𝝀 + 𝛽𝑖𝒆𝑖, (56)

with 𝑃+
𝑖 = 𝑃𝑖 + 𝛼𝑖𝒆𝑖𝒆⊤𝑖 , 𝛼𝑖 > 0 and 𝛽𝑖 ∈ R, 𝑖 = 1,… , 𝑁 . To compute 𝝀

nd 𝜷 = (𝛽1,… , 𝛽𝑁 ), we insert Eq. (56) into Eq. (52c), yielding

=
𝑁
∑

𝑖=0
𝐵⊤𝑖 (−𝜎

−1
𝑖 (𝑃+

𝑖 )
−1𝐵𝑖𝝀+ 𝛽𝑖𝒆𝑖) = −

𝑁
∑

𝑖=0
𝜎−1𝑖 𝐵⊤𝑖 (𝑃

+
𝑖 )

−1𝐵𝑖𝝀+
𝑁
∑

𝑖=1
𝛽𝑖𝐵

⊤
𝑖 𝒆𝑖,

(57)

ith 𝛽0 = 0. From Eqs. (54) and (57) follows Eq. (47). Since all 𝒖𝑖 are
ndependent from the 𝛼𝑖, then also 𝝀 (cf. Eqs. (52a) and (52b)) and 𝜷
𝛽𝑖𝑀𝑖 = ⟨𝒖𝑖, 𝒆𝑖⟩).

To show the invertibility of Eq. (47) it is sufficient to prove that 𝐹
s negative definite and that 𝐺 has full column rank [32, Section 3.2].

Since 𝑃+
𝑖 are positive definite, then

𝝀⊤𝐹𝝀 =
𝑁
∑

𝑖=0
𝜎−1𝑖 (𝐵𝑖𝝀)⊤(𝑃+

𝑖 )
−1𝐵𝑖𝝀 ≥ 𝐶 min

𝑖=0,…,𝑁
𝜎−1𝑖

𝑁
∑

𝑖=0
‖𝐵𝑖𝝀‖2

= 2𝐶 min
𝑖=0,…,𝑁

𝜎−1𝑖 ‖𝝀‖2, (58)

ince ∑𝑁
𝑖=0 ‖𝐵𝑖𝝀‖

2 = 2‖𝝀‖2. Hence, 𝐹 is negative definite. Furthermore,

𝐺𝜷‖2 =
𝑁
∑

𝑖,𝑗=1
𝛽𝑖𝛽𝑗⟨𝐵

⊤
𝑖 𝒆𝑖, 𝐵

⊤
𝑗 𝒆𝑗⟩ =

𝑁
∑

𝑖=1
𝛽2𝑖𝑀𝑖 −

𝑁
∑

𝑖,𝑗=1,𝑖≠𝑗
𝛽𝑖𝛽𝑗𝑀𝑖𝑗 (59)

=
𝑁
∑

𝛽2𝑖

(

𝑀0𝑖 +
𝑁
∑

𝑀𝑖𝑗

)

−
𝑁
∑

𝛽𝑖𝛽𝑗𝑀𝑖𝑗

𝑖=1 𝑗=1,𝑗≠𝑖 𝑖,𝑗=1,𝑖≠𝑗
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𝒖

=
𝑁
∑

𝑖=1
𝛽2𝑖𝑀0𝑖 +

𝑁
∑

𝑖,𝑗=1,𝑖≠𝑗
(𝛽2𝑖 − 𝛽𝑖𝛽𝑗 )𝑀𝑖𝑗 (60)

=
𝑁
∑

𝑖=1
𝛽2𝑖𝑀0𝑖 +

1
2

𝑁
∑

𝑖,𝑗=1,𝑖≠𝑗
(𝛽2𝑖 + 𝛽

2
𝑗 − 2𝛽𝑖𝛽𝑗 )𝑀𝑖𝑗

=
𝑁
∑

𝑖=1
𝛽2𝑖𝑀0𝑖 +

1
2

𝑁
∑

𝑖,𝑗=1,𝑖≠𝑗
(𝛽𝑖 − 𝛽𝑗 )2𝑀𝑖𝑗 (61)

≥ min
𝑖=1,…,𝑁

𝑀0𝑖‖𝜷‖2. (62)

and thus 𝐺 has full column rank. □

Now we use the result of Theorem 3.1 and the second equality
of Eq. (45) in order to derive a standard ODE problem. We recall that
𝑽 0 = 𝐴0𝑽 .

Theorem 3.2. The space discretization Eqs. (41)–(43) of Eq. (39) is
quivalent to the ordinary differential equations system
{

𝐶m𝑽 ′
0 + 𝐼ion(𝑽 0, 𝒛) = 𝜓(𝑽 0), (a)

𝒛′ = 𝑔(𝑽 0, 𝒛), (b) (63)

here 𝜓(𝑽 0) = 𝝀0 and 𝝀0 ∈ R𝑀0 , 𝝀𝑔 ∈ R𝑀𝑔 , 𝜷 ∈ R𝑁 are solutions to

⎛

⎜

⎜

⎝

𝐹00 𝐹0𝑔 𝐴0𝐺
𝐹𝑔0 𝐹𝑔𝑔 − 𝜅−1𝐼 𝐴𝑔𝐺
𝐺⊤𝐴⊤0 𝐺⊤𝐴⊤𝑔 0

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

𝝀0
𝝀𝑔
𝜷

⎞

⎟

⎟

⎠

=
⎛

⎜

⎜

⎝

𝑽 0
𝟎
𝟎

⎞

⎟

⎟

⎠

, (64)

ith

00 = 𝐴0𝐹𝐴
⊤
0 , 𝐹0𝑔 = 𝐴0𝐹𝐴

⊤
𝑔 , 𝐹𝑔0 = 𝐴𝑔𝐹𝐴

⊤
0 , 𝐹𝑔𝑔 = 𝐴𝑔𝐹𝐴

⊤
𝑔 , (65)

nd matrices 𝐹 ,𝐺 defined in Eq. (48).

roof. We denote 𝑽 g = 𝐴𝑔𝑽 , 𝑽 0 = 𝐴0𝑽 , 𝝀𝑔 = 𝐴𝑔𝝀 and 𝝀0 = 𝐴0𝝀. Also,
ote that 𝐵⊤𝑖 𝐵𝑖 = 𝐴⊤𝑖 𝐴𝑖 since 𝐵⊤𝑖 𝐵𝑖 projects a global vector forth and
ack from 𝛤𝑖 and if a sign change happens it occurs twice. Therefore
𝑁
∑

𝑖=0
𝐵⊤𝑖 𝐵𝑖

)

𝒗 =

( 𝑁
∑

𝑖=0
𝐴⊤𝑖 𝐴𝑖

)

𝒗 = 2𝒗 ∀ 𝒗 ∈ R𝑀 , (66)

ndeed every segment 𝛤𝑖𝑗 will receive the contribution from exactly two
eighboring domains. From Theorem 3.1 we have that 𝜓𝑖(𝑽 ) = −𝐵𝑖𝝀,
hich inserted into the second equality of Eq. (45) yields

𝑽 g = 𝜅𝐴𝑔𝑽 = −1
2

𝑁
∑

𝑖=1
𝐴𝑔𝐵

⊤
𝑖 𝜓𝑖(𝑽 ) = 1

2
𝐴𝑔

( 𝑁
∑

𝑖=0
𝐵⊤𝑖 𝐵𝑖

)

𝝀 = 𝐴𝑔𝝀 = 𝝀𝑔 .

(67)

ote as well that 𝐴⊤0𝐴0 + 𝐴⊤𝑔𝐴𝑔 is the identity matrix in R𝑀 , hence
ultiplying the first line 𝐹𝝀 + 𝐺𝜷 = 𝑽 of Eq. (47) with 𝐴0 yields

0 = 𝐴0𝑽 = 𝐴0𝐹 (𝐴⊤0𝐴0𝝀 + 𝐴⊤𝑔𝐴𝑔𝝀) + 𝐴0𝐺𝜷 = 𝐹00𝝀0 + 𝐹0𝑔𝝀𝑔 + 𝐴0𝐺𝜷.

(68)

imilarly, multiplication by 𝐴𝑔 yields 𝑽 g = 𝐹𝑔0𝝀0 + 𝐹𝑔𝑔𝝀𝑔 + 𝐴𝑔𝐺𝜷 and
hus

= 𝐹𝑔0𝝀0 + (𝐹𝑔𝑔 − 𝜅−1𝐼)𝝀𝑔 + 𝐴𝑔𝐺𝜷. (69)

or the second line of Eq. (47) we have

= 𝐺⊤𝝀 = 𝐺⊤𝐴⊤0 𝝀0 + 𝐺
⊤𝐴⊤𝑔 𝝀𝑔 . (70)

elations Eqs. (68) to (70) yield Eq. (64). The identity −𝐵0 = 𝐴0 and
0(𝑽 ) = −𝐵0𝝀 = 𝐴0𝝀 = 𝝀0 implies 𝜓0(𝑽 ) = 𝜓(𝑽 0) and hence Eq. (63).

Invertibility of Eq. (64) follows from the same reasoning as in
heorem 3.1 for Eq. (47). Indeed, the upper-left 2 × 2 block is a simple
ow-column permutation of 𝐹 plus −𝜅−1 on some diagonal terms.
ence, the upper-left 2 × 2 block remains negative definite, whereas
is replaced by a row permutation of itself and therefore remains full

olumn rank. □
245
From the proof of Theorem 3.2 we see that 𝑽 , 𝝀 of Theorem 3.1 are
iven by 𝑽 = 𝐴⊤0 𝑽 0 +𝐴⊤𝑔 𝑽 g, 𝝀 = 𝐴⊤0 𝝀0 +𝐴

⊤
𝑔 𝝀𝑔 , 𝜅𝑽 g = 𝝀𝑔 and moreover

is the same as in Theorem 3.1; hence, if needed, 𝒖𝑖 for 𝑖 = 0,… , 𝑁
an be computed as in Theorem 3.1. Note as well that in Eq. (64) we
ave chosen to use 𝝀𝑔 as unknown, instead of the alternative 𝑽 g. If we
sed 𝑽 g we would obtain the same matrix as in Eq. (64) but with the
econd column multiplied by 𝜅 and therefore break the symmetry.

We remark that the operator 𝜓 can be represented by a dense
atrix, just by inverting Eq. (64). This is numerically convenient

nly for relatively small problems, as those presented below. A more
fficient strategy would be to approximate the action of 𝜓 by some
reconditioned iterative scheme. Interestingly, block preconditioners
ould be related to operator splitting, which is an efficient way to solve
he EMI model with the Finite Element Method [33].

.3. Time integration

For the time integration of Eq. (63), we use the multirate explicit
tabilized method mRKC [34,35] for problems

′ = 𝑓𝐹 (𝑡, 𝒚) + 𝑓𝑆 (𝑡, 𝒚), 𝒚(0) = 𝒚0, (71)

here 𝑓𝐹 is a stiff term and 𝑓𝑆 is a mildly stiff but more expensive
erm. Instead of Eq. (71), the method solves a modified problem

′
𝜂 = 𝑓𝜂(𝒚𝜂), (72)

here 𝑓𝜂 is an averaged right-hand side. Evaluation of 𝑓𝜂(𝒚𝜂) requires
he solution to an auxiliary problem

′ = 𝑓𝐹 (𝒖) +𝑓𝑆 (𝒚𝜂), 𝑡 ∈ (0, 𝜂), 𝒖(0) = 𝒚𝜂 , 𝑓𝜂(𝒚𝜂) =
1
𝜂
(𝒖(𝜂) − 𝒚𝜂),

(73)

where 𝜂 > 0 depends on the step size 𝛥𝑡 and the stiffness of 𝑓𝐹 , 𝑓𝑆 ; in
general, 𝜂 is significantly smaller than 𝛥𝑡 [34]. Both Eqs. (72) and (73)
are solved with Runge–Kutta–Chebyshev (RKC) methods.

The mRKC scheme is first-order accurate, fully explicit and does not
have any step size restriction. Its stability properties are inherited from
the RKC methods [36], which use an increased number of stages, with
respect to classical methods, to increase stability (instead of accuracy).
Since the stability domain’s size grows quadratically with the number
of function evaluations, the methods are particularly efficient. The
advantage of mRKC with respect to a standard RKC scheme is that the
stiffness of 𝑓𝜂 is comparable to the one of the slow term 𝑓𝑆 ; hence,
Eq. (72) is cheaper to solve than Eq. (71). Moreover, the evaluations of
𝑓𝜂 or 𝑓𝐹 + 𝑓𝑆 have similar costs, since in Eq. (73) the expensive term
𝑓𝑆 is frozen and 𝜂 is in general small. Due to the auxiliary problem,
the number of function evaluations of 𝑓𝐹 , 𝑓𝑆 needed for stability is
decoupled and depends only on their own stiffness. In contrast, the
RKC method evaluates 𝑓𝐹 , 𝑓𝑆 concurrently, hence the evaluations of
the expensive term 𝑓𝑆 depend on the stiffness of 𝑓𝐹 .

For the integration of Eq. (63) with mRKC, we rewrite Eq. (63) as
Eq. (71), with

𝒚 =
(

𝑽 0
𝒛

)

, 𝑓𝐹 (𝑡, 𝒚) =
(

𝜓(𝑽 0)∕𝐶m
𝟎

)

,

𝑓𝑆 (𝑡, 𝒚) =
(

−(𝐼ion(𝑽 0, 𝒛) + 𝐼stim(𝑡))∕𝐶m
𝑔(𝑽 0, 𝒛)

)

,
(74)

where 𝐼stim(𝑡) is a vector used to apply a stimulus locally and initiate an
action potential propagation. In our simulations Eq. (64) is factorized
once, hence evaluation of 𝑓𝐹 reduces to a matrix vector multiplication
and is very cheap. In contrast, 𝑓𝑆 contains evaluation of the ionic
model, which is expensive due to the increased number of variables
and nonlinearities.
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Fig. 3. Illustration of the geometrical settings employed in Section 4.1.
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Table 1
Model’s coefficients employed in numerical experiments.
𝐶𝑚 𝜎0 𝜎1 ,… , 𝜎𝑁 𝜅

1 μF cm−2 20mS cm−1 3mS cm−1 690mS cm−2

4. Numerical experiments

In this section we perform some numerical experiments in order to
asses the accuracy of the space–time discretization of the cell-by-cell
model (39) but also investigate the regularity properties of the model
itself.

We start with two experiments, in Sections 4.1 and 4.2, where we
investigate the convergence rates of the maps 𝜓𝑖 from Theorem 3.1
and then the impact of the mesh and step size on the accuracy of the
conduction velocity (CV). These experiments are crucial to understand
which discretization parameters yield solutions within a certain error
tolerance.

In the subsequent experiments the goal is to study the model itself.
For instance, in Section 4.3 we investigate the effect of the gap junc-
tion’s permeability 𝜅 on the CV and in Section 4.4 we study how the
contact area between cells affects CV. Before presenting the results, we
resume here below our computational setting.

Computational setup. The following numerical experiments have been
performed with our C++ code [37], where for the dense linear algebra
routines we employ the Eigen library [38]. The ionic model, is taken
from CellML [39] and the relative C code is produced with the
Myokit library [40]. Concerning the model Eq. (39), the number of
cells 𝑁 and the domains 𝛺𝑖 vary from one experiment to another and
are specified later. If not stated otherwise, in the next experiments
we use the coefficients 𝐶m, 𝜎𝑖, 𝜅, given in Table 1. The values for
𝐶m, 𝜎𝑖, 𝜅 are taken from [9], where for 𝜅 we consider 𝜅 = 1∕𝑅𝑚
with 𝑅𝑚 = 0.00145 kΩ cm2. If not specified, we consider the ionic
model from Courtemanche et al. [41]. The initial values for 𝑉 for and
the ionic model’s state variables are uniform on the transmembrane
boundary and are taken from the Myokit’s code. For instance, for
the Courtemanche-Nattel-Ramiréz model the initial value for 𝑉 is 𝑉0 =
−81.18 mV.

4.1. Approximation properties of the 𝜓 operators

In this experiment we investigate the convergence rate of the 𝜓𝑖
operators defined in Theorem 3.1, hence only Eq. (41) plays a role, but
not Eqs. (42) and (43). For this purpose, we conduct four convergence
experiments, one for every geometry displayed in Fig. 3, and we display
the errors on the trace and normal derivative against the number of
degrees of freedom 𝑀 in Fig. 4.

Let us describe the geometries of Fig. 3. In Fig. 3(a) we have a model
composed of one cell (𝑁 = 1), defined by 𝛺0 = {𝒙 ∈ R2 ∶ 2 < ‖𝒙‖ < 4}
and 𝛺1 = {𝒙 ∈ R2 ∶ ‖𝒙‖ < 2}. In Fig. 3(b) we split the cell by
introducing a vertical gap junction, hence we have the same 𝛺0 but
𝛺 = {𝒙 ∈ R2 ∶ ‖𝒙‖ < 2, 𝑥 < 0} and 𝛺 = {𝒙 ∈ R2 ∶ ‖𝒙‖ < 2, 𝑥 > 0}.
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1 1 2 1
In Fig. 3(c) we keep the same cells but remove the gap junction by
introducing a horizontal gap of size 0.4 between 𝛺1 and 𝛺2. Finally, in
Fig. 3(d) we keep the separation of 𝛺1, 𝛺2 but smooth out the corners
by introducing quarter of circles of radius 0.2.

For the setting of Figs. 3(a) and 3(b) an exact solution to Eqs. (40)(a)
to (40)(d), with 𝑉 defined by Eq. (40)(c), is given by

𝑢0(𝒙) =
𝜎1
𝜎0

16 + ‖𝒙‖2

6‖𝒙‖2
𝑥2, 𝑢1(𝒙) = 𝑢2(𝒙) = −1

2
𝑥2. (75)

Therefore, for different values of 𝑀 (i.e. number of collocation points),
we can compute the vector of coefficients 𝒖𝑖, define 𝑽 as in Eq. (41),
solve Eq. (47) and compute the errors

𝑒1 = max
𝑖=0,…,𝑁

‖𝜓𝑖(𝑽 ) − 𝜎𝑖𝜕𝒏𝑖𝑢𝑖‖𝐿2(𝛤𝑖), 𝑒0 = max
𝑖=0,…,𝑁

‖�̃�𝑖(𝑽 ) − 𝑢𝑖‖𝐿2(𝛤𝑖)∕R,

(76)

where �̃�𝑖(𝑽 ) = −𝜎−1𝑖 (𝑃+
𝑖 )

−1𝐵𝑖𝝀 + 𝛽𝑖𝒆𝑖 approximates 𝑢𝑖 (cf. Eq. (50)), up
o a constant.

For the geometries of Figs. 3(c) and 3(d) we do not possess an exact
olution. Hence, we set 𝑉 (𝒙) = cos(𝜋𝑥1) sin(𝜋𝑥2) and errors 𝑒1, 𝑒0 are
ow computed as

1 = max
𝑖=0,…,𝑁

‖𝜓𝑖(𝑽 ) − 𝜓𝑖(𝑽 ∗)‖𝐿2(𝛤𝑖), 𝑒0 = max
𝑖=0,…,𝑁

‖�̃�𝑖(𝑽 ) − �̃�𝑖(𝑽 ∗)‖𝐿2(𝛤𝑖)∕R,

(77)

where 𝜓𝑖(𝑽 ∗), �̃�𝑖(𝑽 ∗) are reference solutions calculated on a finer mesh.
We display the errors 𝑒0, 𝑒1 with respect to 𝑀 , for the geometries

of Fig. 3, in Fig. 4. Due to the smoothness of the solutions and
the boundaries, we remark in Fig. 4a that for the first problem we
obtain exponential convergence thanks to the trigonometric Lagrange
basis functions; with very few degrees of freedom machine precision
is achieved. This result is in line with the theory and experiments
performed in [22]. In the second problem, the boundary is Lipschitz
continuous only, which prevents exponential convergence. Indeed, in
Fig. 4b the convergence rates for the trace and normal derivative are
1.5 and 0.5, respectively.

In Fig. 4a,b we see how the convergence rates decrease dramatically
when the circle is divided into two half-circles. The purpose of two last
experiments is to demonstrate numerically that this phenomenon is due
to the non smooth boundaries, rather than the introduction of a gap
junction. Indeed, in Fig. 4c we observe the same convergence rates as
in Fig. 4b, while in Fig. 4d we obtain higher convergence rates.

4.2. Impact of discretization parameters on conduction velocity

It is already known that discretization methods, mesh size and step
size affect conduction velocity (CV) in the monodomain and bidomain
models for cardiac electrophysiology [42–44]. In this experiment we
investigate how mesh and step size affect the CV for the cell-by-cell
model discretized with the BEM in space and the mRKC method [34]
in time. In order to be able to employ relatively uniform mesh sizes in

this experiment we consider rectangular cells.
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Fig. 4. Convergence rates of the 𝜓 operator defined in Theorem 3.1 for the problems depicted in Fig. 3.
Fig. 5. Simulation of an array of 2 × 10 cells stimulated on the two leftmost cells. We show the inner potentials 𝑢𝑖, 𝑖 = 1,… , 20 at 𝑡 = 1 ms. To increase the gap between cells,
and only for visualization purposes, we set 𝜅 = 0.1mS cm−2.
To measure the CV we design the following experiment. We consider
an array of 2 × 30 connected rectangular cells of width 𝑐𝑤 = 20 μm
and length 𝑐𝑙 = 100 μm, cells are positioned so that their bottom left
vertex has coordinates (𝑖 ⋅ 𝑐𝑙 , 𝑗 ⋅ 𝑐𝑤) for 𝑖 = 0,… , 29, 𝑗 = 0, 1; yielding
a block of cells of width 2 ⋅ 𝑐𝑤 = 40 μm and length 30 ⋅ 𝑐𝑙 = 3000 μm.
The outer domain is a rectangle of size 440 μm × 5000 μm centered on
the array of cells. To initiate an action potential traversing the cell’s
array a stimulus of 300 μA cm−2 is applied for a duration of 1ms at the
transmembrane boundary of the two leftmost cells. To do so, in this
part of the domain and during the first 1ms of simulation, 𝐼ion(𝑽 0, 𝒛)
is replaced with 𝐼ion(𝑽 0, 𝒛) + 300. CV is computed as the average over
𝐶𝑉𝑘 = ‖𝒑𝑘−𝒒𝑘‖∕(𝑡𝒑𝑘 − 𝑡𝒒𝑘 ) for 𝑘 = 1,… , 5, where: 𝒑𝑘 = ((7.5+𝑘) ⋅ 𝑐𝑙) μm,
𝒒𝑘 = ((17.5 + 𝑘) ⋅ 𝑐𝑙 , 0) μm and 𝑡𝒑𝑘 , 𝑡𝒒𝑘 are the time instants in which
𝑉 exceeds the threshold of 𝑉th = −20mV in 𝒑𝑘, 𝒒𝑘, respectively. The
choice of 𝒑𝑘, 𝒒𝑘 is such that measures are taken sufficiently far from
the stimulated point and to avoid boundary effects as well. See Fig. 5
for an illustration of a typical solution of the cell-by-cell model. There,
we simulate a shorter array of 2 × 10 cells, stimulated on the left as
described above, and with decreased permeability 𝜅 = 0.1mS cm−2. We
decreased the number of cells and 𝜅 only for visualization purposes:
number of cells to fit the page and 𝜅 to increase the gap between cells.

We solve Eq. (63) with different step sizes 𝛥𝑡 ≤ 100 μs and mesh
size 𝛥𝑥 ≤ 20 μm. However, even for large 𝛥𝑥 we place at least two
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collocation points inside each segment. Hence, on the short side of
the cell the local mesh size satisfies 𝛥𝑥 ≤ 𝑐𝑤∕3 ≈ 6.6 μm. For every
choice of 𝛥𝑡, 𝛥𝑥, we compute the signed relative error on CV: 𝐸CV =
(CV − CV∗)∕CV∗, with CV∗ a reference solution. We display 𝐸CV as
function of 𝛥𝑡, 𝛥𝑥 in Fig. 6. The reference value of CV is CV∗ ≈ 1.27153.

First, we notice that for coarse space grids the true CV∗ tends to
be overestimated, whereas for large time steps it is underestimated.
Then, we remark that even with relatively large mesh sizes 𝛥𝑥 = 20 μm
the estimated CV remains within a 2% error. Fig. 6 (middle and right
panels) also shows the same results, but for the unsigned relative error
|𝐸CV| and fixing either 𝛥𝑥 or 𝛥𝑡. We observe that the local minimal
appearing in the curves is due to the cancellation of the positive spatial
discretization error with the negative time discretization error.

Based on the results of this section, in the forthcoming experiments
we consider 𝛥𝑡 ≤ 0.02ms and 𝛥𝑥 ≤ 10 μm, which, for this experiment,
yield a relative error of less than 5%.

4.3. Dependence of conduction velocity on gap junctions’ permeability and
cells inner conductivity

In this experiment we study how CV depends on the gap junctions’
permeability 𝜅 and the inner conductivity 𝜎𝑖, 𝑖 = 1,… , 𝑁 . For that
purpose, we consider again an array of 2 × 30 cells and cells of size
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Fig. 6. Conduction velocity accuracy with respect to timestep 𝛥𝑡 and mesh size 𝛥𝑥.
Fig. 7. Dependence of CV (in m∕s) on permeability 𝜅 and intracellular conductivity 𝜎𝑖 (red: reference value).
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𝑐

𝑐𝑤 × 𝑐𝑙, with fixed 𝑐𝑤 = 10 μm and either 𝑐𝑙 = 100 μm or 𝑐𝑙 = 50 μm.
First, we measure CV for varying 𝜅 but keeping the other coefficients
fixed. We initiate action potential propagation applying a stimulus of
200 μA cm−2 to the transmembrane boundary of the two leftmost cells
for the duration of 1ms, similarly to Section 4.2. Results for 𝑐𝑙 = 100 μm
and 𝑐𝑙 = 50 μm are displayed in Fig. 7a. We observe as CV decreases
with 𝜅 and also that the physiological value 𝜅 = 690 is in the range
where CV is maximal. We note that for values of 𝜅 ≤ 2 ⋅ 10−4 the action
potential does not propagate. Then, we measure CV for varying 𝜎𝑖,
𝑖 = 1,… , 𝑁 , and fixed 𝜅, results are displayed in Fig. 7b for 𝑐𝑙 = 100 μm
and 𝑐𝑙 = 50 μm. Conduction velocity increases with 𝜎𝑖, specially for the
horter cells.

.4. Dependence of conduction velocity on gap junctions’ surface area

In general, gap junctions perpendicular to the fiber direction are
ot flat surfaces and are better modeled by intercalated discs [19].
odeling gap junctions is not trivial, and many factor can affect the
V [45,46]. Here, we model these gap junctions with a sinus wave (see
ig. 8(a) for an illustration) of amplitude 𝑎 and frequency 𝑘. For this
xperiment we use a mesh size of 𝛥𝑥 = 1.5 μm on the long side of
he cells, while on the sinusoidal wave we employ a local mesh size
𝑥 = min(1.5,𝓁∕32∕𝑘) μm, where 𝓁 is the length of the sinusoidal wave.

In this experiment we consider and array of 2 × 30 cells of size
0 μm× 100 μm and measure CV as in Section 4.2. In Fig. 8(b) we show
he conductive velocity as a function of the frequency 𝑘 for a fixed
mplitude of 𝑎 = 0.5 μm. We note that for moderate frequency 𝑘 the
V increases due to an increase of contact surface area. However, for

arger frequencies CV decreases, probably because of a flux saturation
t the narrower junctions. In Fig. 8(c) we show the conductive velocity
s a function of the amplitude 𝑎 for a fixed frequency of 𝑘 = 3. Again,
or larger amplitude 𝑎 the conduction velocity decreases.
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.5. Dependence of conduction velocity on cells size and aspect ratio

Finally, we investigate how the cell’s size and aspect ratio impact
he conduction velocity. We consider an array of 2 × 30 cells of size
𝑤 × 𝑐𝑙. First, we fix 𝑐𝑤 = 10 μm and vary 𝑐𝑙, results are reported in

Fig. 9b. We observe as CV decreases as 𝑐𝑙 increases. In Fig. 9a we
display the results for fixed 𝑐𝑙 = 100 μm and varying 𝑐𝑤, here CV
increases with 𝑐𝑤. In the last figure Fig. 9c we vary both 𝑐𝑙 and 𝑐𝑤
while keeping a constant aspect ratio 𝑐𝑙 = 10 ⋅ 𝑐𝑤, more precisely they
vary from (𝑐𝑤, 𝑐𝑙) = (2.5 μm, 25 μm) to (𝑐𝑤, 𝑐𝑙) = (14 μm, 140 μm). We see
as CV increases with the cells area 𝐴 = 𝑐𝑙 ⋅𝑐𝑤. A more in-depth study on
the effect of cell size and geometry has been presented by Jæger et al.
[47], where also an inhomogeneous membrane distribution of sodium
channels is considered [48].

5. Conclusion

In this paper we solve the cell-by-cell or EMI model for cardiac elec-
trophysiology via the boundary element method, with no geometrical
restrictions. The cell-by-cell model consists in Laplace equations inside
and outside the cellular domains coupled with an ordinary differential
equation on the transmembrane boundary and an algebraic condition
on the gap junctions. Due to the boundary integral formulation, Laplace
equations are cleared away, yielding a differential–algebraic equation
living on the cell’s boundaries only. Since it is not necessary to have
degrees of freedom inside each domain, our method has a lower mem-
ory footprint for storing the solution. This can be advantageous for
problems where the extracellular space is large or even unbounded. In
a subsequent step, the differential–algebraic equation is reduced to an
ordinary differential equation lying on the transmembrane boundary

only. Finally, we provide numerical results where: first, we study the
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Fig. 8. Effect of gap junctions surface area on CV (in m/s).
Fig. 9. Impact of cell length 𝑐𝑙 , cell width 𝑐𝑤, and cell area with fixed aspect ratio on the CV (in m∕s).
accuracy of the numerical method and then we investigate the model
properties and sensibility with respect to its parameters.

The convergence rate shows that the solution of the general problem
is non-smooth, due to the presence of multiple cell contact (or 2
cells and the extracellular domain.) The single cell problem is instead
smooth. To the best of our knowledge, there are no regularity results for
the single cell problem, except for those provided in [25] on asymptotic
solutions. For the one-cell problem (1) with smooth interface, but
𝜎1 ≠ 𝜎0, the solution is probably regular. Intuitively, the interface
roblem with piecewise smooth coefficients and fixed transmembrane
otential (that is, at the equilibrium) can be recast, via lifting [49],
o a more classical interface problem already studied by Babuška [50]
nd Kellogg [51], who showed that the solution is at least 𝐻2 on each
ubdomain.

Well-posedness results for the general EMI problem are found
n [17,24], however we are not aware of regularity results for the
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general EMI problem (39). For two or more cells in contact, subdo-
mains must be polygonal, which limits the regularity. The singularities
introduced by the contact have been analyzed by Nicaise and Sändig
[52]. These results should be taken in consideration in the develop-
ment of higher order numerical schemes for the solution of the EMI
problem.

We also show that the discretization parameters are not too restric-
tive, when compared to the more standard (homogenized) bidomain or
monodomain model. A typical time step is 0.02ms or lower for IMEX
solvers [53]. In space, we observed here that a mesh resolution for the
membrane of 10 μm is sufficiently accurate for the cell-by-cell model.
On the other hand, for the standard bidomain the mesh size depends
on the front thickness, in turn depending on tissue excitability and
conductivity. An accepted value is 100 μm to 200 μm [43]. However,
this is only true in the fiber direction and for healthy tissue, since
in fibrotic tissue or in the cross-fiber direction the front thickness is
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generally lower [44,54]. Finally, we observed here that propagation
failure can occur in the EMI model, in contrast to the bidomain model.
This aspect is very important in the study of pathological situations. It is
important to remark that our formulation requires constant coefficients
within each cell, but not on the membrane. The inclusion of more
subdomains, e.g., different cell types or intracellular components, can
be used to model heterogeneities. This approach is different from the
standard (homogenized) bidomain system, where the effective con-
ductivity coefficients must be non-constant in order to account for
structural microscale heterogeneities.

This work paves the way in two directions. First, for designing
another method where a more realistic cell-by-cell model is solved,
i.e., where the linear algebraic condition on the gap junctions is re-
placed by a stiff nonlinear ordinary differential equation. Second, it
provides the mathematical framework for solving the EMI model in
three dimensions with a boundary integral formulation.
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Appendix. Poincaré–Steklov map on 𝜴𝟎

Here we briefly describe how to derive the Poincaré–Steklov oper-
tors 0, 𝑃0 on 𝛺0 used in Eqs. (9) and (17), respectively.

Let 𝛷 ∈ {𝛤0, 𝛴}, we introduce the restricted trace operators

𝛾0
𝑡,𝛷 ∶𝐻1(𝛺0) → 𝐻1∕2(𝛷), 𝛾0

𝑡,𝛷𝑢0(𝒙) = lim
𝛺0∋𝒚→𝒙∈𝛷

𝑢0(𝒚),

0
𝑛,𝛷 ∶𝐻1(𝛺0) → 𝐻−1∕2(𝛷), 𝛾0

𝑛,𝛷𝑢0(𝒙) = lim
𝛺0∋𝒚→𝒙∈𝛷

⟨∇𝑢0(𝒚),𝒏0⟩.
(A.1)

rom the Green’s representation formula we have

0(𝒙) = ∫𝛤0
𝛾0
𝑡,𝒚𝐺(𝒙, 𝒚)𝛾

0
𝑛,𝛤0

𝑢0(𝒚)d𝑠𝒚 + ∫𝛴
𝛾0
𝑡,𝒚𝐺(𝒙, 𝒚)𝛾

0
𝑛,𝛴𝑢0(𝒚)d𝑠𝒚

− ∫𝛤0
𝛾0
𝑛,𝒚𝐺(𝒙, 𝒚)𝛾

0
𝑡,𝛤0
𝑢0(𝒚)d𝑠𝒚 − ∫𝛴

𝛾0
𝑛,𝒚𝐺(𝒙, 𝒚)𝛾

0
𝑡,𝛴𝑢0(𝒚)d𝑠𝒚 , 𝒙 ∈ 𝛺0.

(A.2)

or 𝛷,𝛹 ∈ {𝛤0, 𝛴}, we define

𝛹,𝛷
0 ∶𝐻−1∕2(𝛷) → 𝐻1∕2(𝛹 ), 𝛹,𝛷

0 𝜌(𝒙) = ∫𝛷
𝛾0
0,𝒚𝐺(𝒙, 𝒚)𝜌(𝒚)d𝑠𝒚 , 𝒙 ∈ 𝛹,

𝛹,𝛷
0 ∶𝐻1∕2(𝛷) → 𝐻1∕2(𝛹 ), 𝛹,𝛷

0 𝜌(𝒙) = ∫𝛷
𝛾0
1,𝒚𝐺(𝒙, 𝒚)𝜌(𝒚)d𝑠𝒚 , 𝒙 ∈ 𝛹,

(A.3)

pplying the trace operators 𝛾0
𝑡,𝛤0

and 𝛾0
𝑛,𝛴 to Eq. (A.2) yields

0
𝑡,𝛤0
𝑢0 = 𝛤0 ,𝛤00 𝛾0

𝑛,𝛤0
𝑢0 + 𝛤0 ,𝛴0 𝛾0

𝑛,𝛴𝑢0 − (𝛤0 ,𝛤0
0 − 1

2 𝐼)𝛾
0
𝑡,𝛤0
𝑢0 −𝛤0 ,𝛴

0 𝛾0
𝑡,𝛴𝑢0,

𝛾0
𝑡,𝛴𝑢0 = 𝛴,𝛤00 𝛾0

𝑛,𝛤0
𝑢0 + 𝛴,𝛴0 𝛾0

𝑛,𝛴𝑢0 −𝛴,𝛤0
0 𝛾0

𝑡,𝛤0
𝑢0 − (𝛴,𝛴

0 − 1
2 𝐼)𝛾

0
𝑡,𝛴𝑢0,

(A.4)
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which, after manipulation and setting 𝛾0
𝑛,𝛴𝑢0 = 0 (cf. Eq. (39)(g)), result

in

(𝛤0 ,𝛤0
0 + 1

2 𝐼)𝛾
0
𝑡,𝛤0
𝑢0 = 𝛤0 ,𝛤00 𝛾0

𝑛,𝛤0
𝑢0 −𝛤0 ,𝛴

0 𝛾0
𝑡,𝛴𝑢0,

(𝛴,𝛴
0 + 1

2 𝐼)𝛾
0
𝑡,𝛴𝑢0 = 𝛴,𝛤00 𝛾0

𝑛,𝛤0
𝑢0 −𝛴,𝛤0

0 𝛾0
𝑡,𝛤0
𝑢0.

(A.5)

Solving for 𝛾𝑛,𝛤0𝑢0, 𝛾𝑡,𝛴𝑢0 with respect to 𝛾𝑡,𝛤0𝑢0 yields the linear relation
Eq. (9) (dropping 𝛤0 from the notation).

We discretize 𝛤0 = 𝛤1 as in Section 2.2 (same collocation points) and
place 𝑀 collocation points 𝒙𝑗 on 𝛴. We compute a smooth parametriza-
tion 𝛾𝛴 ∶ [0, 1) → R𝑑 of 𝛴, 𝛾𝛴 (𝑠𝑗 ) = 𝒙𝑗 , by Fourier interpolation (as for
𝛤0) and represent

𝛾0
𝑡,𝛤0
𝑢0(𝛾𝛤0 (𝑡)) =

𝑀
∑

𝑗=1
𝑢𝑗0,𝛤0𝐿𝑗 (𝑡), 𝛾0

𝑛,𝛤0
𝑢0(𝛾𝛤0 (𝑡)) =

𝑀
∑

𝑗=1
�̃�𝑗0,𝛤0𝐿𝑗 (𝑡),

𝛾0
𝑡,𝛴𝑢0(𝛾𝛴 (𝑡)) =

𝑀
∑

𝑗=1
𝑢𝑗0,𝛴𝐿𝑗 (𝑡),

(A.6)

ith 𝐿𝑗 (𝑠) the trigonometric Lagrange basis functions satisfying 𝐿𝑗 (𝑠𝑖) =
𝛿𝑖𝑗 , 𝑖, 𝑗 = 1,… ,𝑀 . Inserting Eq. (A.6) into Eq. (A.5) yields

𝐾𝛤0 ,𝛤0
0 + 1

2 𝐼)𝒖0,𝛤0 = 𝑉 𝛤0 ,𝛤0
0 �̃�0,𝛤0 −𝐾

𝛤0 ,𝛴
0 𝒖0,𝛴 ,

(𝐾𝛴,𝛴
0 + 1

2 𝐼)𝒖0,𝛴 = 𝑉 𝛴,𝛤0
0 �̃�0,𝛤0 −𝐾

𝛴,𝛤0
0 𝒖0,𝛤0 ,

(A.7)

with (𝒖0,𝛤0 )𝑗 = 𝑢𝑗0,𝛤0 , (�̃�0,𝛤0 )𝑗 = �̃�𝑗0,𝛤0 , (𝒖0,𝛴 )𝑗 = 𝑢𝑗0,𝛴 and

(𝐾𝛤0 ,𝛤0
0 )𝑘𝑗 = 𝛤0 ,𝛤0

0 (𝐿𝑗◦𝛾−1𝛤0 )(𝒙𝑘), (𝐾𝛴,𝛤0
0 )𝑘𝑗 = 𝛴,𝛤0

0 (𝐿𝑗◦𝛾−1𝛤0 )(𝒙𝑘), (A.8)

(𝐾𝛴,𝛴
0 )𝑘𝑗 = 𝛴,𝛴

0 (𝐿𝑗◦𝛾−1𝛴 )(𝒙𝑘), (𝐾𝛤0 ,𝛴
0 )𝑘𝑗 = 𝛤0 ,𝛴

0 (𝐿𝑗◦𝛾−1𝛴 )(𝒙𝑘), (A.9)

and similarly for 𝑉 𝛴,𝛤0
0 , 𝑉 𝛤0 ,𝛤0

0 . Solving for �̃�0,𝛤0 , 𝒖0,𝛴 with respect to
𝒖0,𝛤0 yields

�̃�0,𝛤0 = 𝑃0𝒖0,𝛤0 , (A.10)

which is employed in Eqs. (17) and (18) (dropping 𝛤0 from the nota-
tion).
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