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A B S T R A C T

Active solids are a large class of materials, including both living soft tissues and artificial matter,
that share the ability to undergo strain even in absence of external loads. While in engineered
materials the actuation is typically designed a priori, in natural materials it is an unknown of
the problem. In such a framework, the identification of inactive regions in active materials is of
particular interest. An example of paramount relevance is cardiac mechanics and the assessment
of regions of the cardiac muscle with impaired contractility. The impossibility to measure the
local active forces directly suggests us to develop a novel methodology exploiting kinematic
data from clinical images by a variational approach to reconstruct the local contractility of
the cardiac muscle. By finding the stationary points of a suitable cost functional we recover
the contractility map of the muscle. Numerical experiments, including severe conditions with
added noise to model uncertainties, and data knowledge limited to the boundary, demonstrate
the effectiveness of our approach. Unlike other methods, we provide a spatially continuous
recovery of the contractility map without compromising the computational efficiency.

. Introduction

Soft active solids are materials able to strain and exhibit tensional fields even in absence of external loads. This class of materials
ncompasses a wide variety of samples, ranging from living soft tissues, such as muscles (Riccobelli and Ambrosi, 2019), to the
rtificial materials widely employed in soft robotics, i.e., active gels (Chung et al., 2021). While in artificial active materials the
ctuation is designed to target the desired features of the sample, in natural materials the activation is not known a priori. For natural
ctive solids it is therefore important to formulate mathematical methods to determine the intensity map of the activity, or even
egions of compromised activation. A paradigmatic example of such complexity is the cardiac muscle, where the stress generated
y the activation of the cardiomyocytes (cardiac cells) depends both on the location of the cells in the cardiac wall and on the
rientation of the fibers (Tortora and Derrickson, 2014). From the point of view of mathematical modeling, the active behavior
f active solids can be accounted for by an active stress term, which is added to the first variation of the strain energy density
haracterizing the material (the standard contribution of stress of inert matter). Alternatively, a less common approach – known
s active strain – mathematically represents the activation as a microstructural distortion, i.e. a change in the reference (relaxed)
onfiguration (Ambrosi and Pezzuto, 2012). Regardless of the choice of the approach, the active term must be constitutively stated,
t depends on the specific problem at hand and can be a function of the deformation itself. The paradigmatic example in this respect
s the Frank–Starling law of cardiac mechanics.
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Fig. 1. Sketch of the process outline. We first generate artificial in-silico data reproducing a 2D portion of the cardiac tissue presenting a scar—i.e. a region where
the active contractility is impaired. For the given contractility field we solve the force balance equation and then perturb the solution (i.e. the displacement
field) with a random noise to reproduce realistic data mimicking the output of imaging techniques. By an optimization technique, we solve the inverse problem
to reconstruct the contractility function that minimizes the discrepancy between the simulated displacements and the artificial in-silico data.

The estimation of passive and active parameters embedded in the constitutive laws of soft materials is a problem that has long
been addressed by the scientific community (Guccione et al., 1991; Mojsejenko et al., 2015; Regazzoni et al., 2022; Cicci et al., 2023).
Above all, over the past few decades, such family of problems, classified as inverse problems from the mathematical perspective,
are playing a crucial role in the field of personalized medicine where, for obvious reasons, the determination of material parameters
cannot be addressed by the usual engineering technology. A striking example confirming the importance of a correct evaluation of
the model parameters is cardiac modeling, where mathematical models have proven to be powerful diagnostic tools if combined with
clinical data assimilation, for example integrating in-vivo MRI (Sack et al., 2016) or elastography data (Lee et al., 2007; Zervantonakis
et al., 2007).

In this scenario, the most important contribution leveraging a mathematical model in the attempt of estimating the material
properties of the cardiac tissue can be traced back to the work of Guccione et al. (1991), followed many years later by Augenstein
et al. (2005) and Wang et al. (2009). To this aim, different approaches were proposed ranging from standard techniques, as the
minimization of the least-squares differences (Moulton et al., 1995), to more heuristic methods, such as genetic algorithms (Nair
et al., 2007; Mojsejenko et al., 2015). In the context of cardiac modeling, the estimation of active parameters is even more
challenging and it becomes crucial in the presence of pathologies that affect the active contraction of the tissue. An example is the
paramount importance of identifying possible infarcted regions, i.e., portions of the cardiac tissue where dead cardiomyocytes have
lost their contractile ability and do not contribute to the power stroke of the heart. In this respect, a pioneering contribution is due
to Sermesant et al. (2006), who proposed a framework to estimate local contractility of the ventricular myocardium using a cardiac
mathematical model fed by clinical MRI images and leveraging data assimilation procedures to estimate local contractility from
given displacements. Later, Sun et al. (2009) proposed a gradient-free optimization approach to facilitate the convergence towards
the global minimum of the problem. In the same vein, several other approaches have been proposed, based on data assimilation
principles, to reconstruct regional values of key biophysical parameters to feed mathematical models of the beating heart. However,
all these attempts suffer from a major limitation: the estimation is restricted to a small number of contractility parameters (Asner
et al., 2016), possibly defined on prescribed regions (Delingette et al., 2011; Chabiniok et al., 2012; Finsberg et al., 2018). This
feature is restrictive especially when high precision in defining the scar boundaries is required. An improvement in this respect was
made by Kovacheva et al. (2021), where the authors propose a method for estimating the local (nodal) active tension in a 3-D left
ventricle.

The aim of this paper is to propose a novel variational method to evaluate the activity of a contractile material and, in particular,
to identify inert regions that possibly have a sharp boundary, on the basis of some recorded displacements. The application we have
in mind is the determination of infarcted cardiac areas. Fig. 1 illustrates the main idea behind the proposed approach. In Section 2
we address the inverse problem to determine an inhomogeneous material active stress on the basis of some knowledge of the given
displacement field. On the basis of an a priori knowledge of the constitutive law of the material and of the functional form of the
active stress, we exploit a variational approach. After defining a suitable cost function, we look for the minimum of such functional
and obtain the inverse problem, where the active stress is the unknown. The numerical solution of the inverse problem is discussed
in Section 3. In Section 4, we discuss the numerical results and perform a sensitivity analysis on varying the formulation or some
parameters of the problem. Finally, in Section 5 of the paper we discuss the obtained results comparing our approaches with the
state-of-the-art methods.
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2. Mathematical statement of the problem

2.1. The forward problem

Let us consider a continuous body defined in its reference configuration by the domain 𝛺 ⊂ R𝑑 , with 𝑑 = 2, 3. We define the
deformed configuration by a smooth map

𝛺 ∋ 𝑿 ↦ 𝒙 = 𝒙(𝑿),

here 𝑿 and 𝒙 are the material and spatial coordinates, respectively. We also define the displacement field 𝒖(𝑿) = 𝒙(𝑿) −𝑿 and
he deformation gradient tensor 𝖥 = ∇𝒙 = 𝐈 + ∇𝒖.

We assume that the body exhibits a hyperelastic behavior and we constitutively provide an isotropic strain energy density per
nit of reference volume 𝑊 (𝖥). As we are here mainly interested in methodological aspects, we keep the mechanical model at the
inimum degree of complexity while retaining the essential features of inverse problems in finite elasticity. Accordingly, we assume

he isotropic part to behave as a compressible neo-Hookean material (Auricchio et al., 2013)

𝑊 (𝖥) =
𝜇
2
(

𝖥 ∶ 𝖥 − 2 log 𝐽 − 𝑑
)

, (1)

where 𝐽 = det 𝖥 and 𝜇 ≥ 0 is the shear modulus. The strain energy in Eq. (1) corresponds, in a small strain regime, to an isotropic
linear material with shear modulus 𝜇 and zero Poisson’s ratio. Volume variation are penalized logarithmically at large strains. All
the calculations that follow can be easily extended to more complex strain energies.

Since we assume the material to be active, the Piola stress tensor corresponding to Eq. (1) must be complemented by the active
stress component,

𝖯𝑎 = 𝛼 𝖥𝒂⊗ 𝒂, (2)

where 𝒂 = 𝒂(𝑿) is the unit vector parallel to the fiber orientation in the reference configuration. Again, the specific form of the
active stress we introduce in (3) is driven by a sake of simplicity only: more complex functional forms could be successfully adopted
in the same methodological framework. The contractility 𝛼 = 𝛼(𝑿) modulates the amplitude of the active stress. The total Piola
eads as follows:

𝖯(𝖥, 𝛼) = 𝜕𝑊
𝜕𝖥

+ 𝖯𝑎 = 𝜇(𝖥 − 𝖥−𝑇 ) + 𝛼 𝖥𝒂⊗ 𝒂. (3)

Overall, we impose the force balance

−∇ ⋅ 𝖯 = 𝟎, (4)

that, for the sake of simplicity, we equip with homogeneous boundary conditions

𝖯𝒏||
|𝛤N

= 𝟎, 𝒖||
|𝛤D

= 𝟎, (5)

where 𝛤N and 𝛤D, with 𝛤N ∪ 𝛤D = 𝜕𝛺 and 𝛤N ∩ 𝛤D = 𝛤N ∩ 𝛤D = ∅, denote the Neumann and the Dirichlet boundary, respectively.
In summary, the forward (or primal) problem consists in finding the displacement field 𝒖(𝑿) given an active stress 𝛼(𝑿). We

emark that, under suitable regularity assumptions on the domain and parameters, the existence of a solution to the problem (4)
s ensured by the polyconvexity of the strain energy (1) and the active stress term (Schröder and Neff, 2003) supplemented by the
rowth conditions stated in Ball (1976) and Hughes and Marsden (1983).

.2. The cost functional

Let us now assume the contractility 𝛼(𝑿) to be unknown and the displacement of the body 𝒖(𝑿) to be observable in a subregion
𝑜 ⊆ 𝛺.

We thus aim at exploiting the knowledge of the observed displacements 𝒖𝑜 to reconstruct the contractility function. As so, we
efine the cost functional

 (𝒖, 𝛼) = 1
2 ∫𝛺𝑜

|𝒖 − 𝒖𝑜|2 d𝑿 + 𝜆(𝛼), (6)

where (𝛼) is a regularization term, 𝜆 is the regularization weight and (𝒖, 𝛼) is such that Eqs. (4) and (5) are satisfied. Together with
the physical requirement that 𝛼(𝑿) ≥ 0 for all 𝑿 ∈ 𝛺, we formulate the inverse problem as the following constrained optimization
problem:

min
𝒖,𝛼

 (𝒖, 𝛼), s.t.

⎧

⎪

⎪

⎨

⎪

⎪

−∇ ⋅ 𝖯 = 0, in 𝛺

𝖯𝒏 = 0, on 𝛤N,

𝒖 = 0, on 𝛤D,
(7)
3

⎩

𝛼 ≥ 0, in 𝛺.
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The regularization term is necessary to cope with the ill-posedness of the inverse problem and recover a stable solution (Lions,
971). Typically, inverse problems lead to solutions that are unstable with respect to data perturbations, for instance due to noise
n the measurements (Engl et al., 1996). In this work we analyze three common choices for regularization, namely

L2 (𝛼) =
1
2 ∫𝛺

𝛼2 d𝑿, (8a)

H1 (𝛼) = 1
2 ∫𝛺

|∇𝛼|2 d𝑿, (8b)

TV(𝛼) = ∫𝛺

√

𝜀 + |∇𝛼|2 d𝑿, (8c)

here 𝜀 ≪ 1 in (8c) is a parameter, in our case set to 10−2. The first two are Tikhonov-type regularization terms respectively
f order zero for L2 and of order one for H1 (Budd and Nichols, 2011). Eq. (8c) is an approximation of the total variation
egularization (Rudin et al., 1992; Chan et al., 2005), well-known in the computer vision and imaging community. The choice of
he regularization term is critical for imposing the desired regularity on 𝛼(𝑿), as shown in Section 4.

.3. Necessary optimality conditions

A minimizer of the constrained optimization problem (7) must satisfy a set of optimality conditions that we derive here by
ormally following the standard Lagrange method for optimal control problems (Tröltzsch, 2010; Manzoni et al.). First, we introduce
Lagrange multiplier 𝒑(𝑿) such that 𝒑(𝑿) = 0 for 𝑿 ∈ 𝛤D, we formally remove the equality constraints (the forward problem and

he boundary conditions) through the following Lagrangian functional,

(𝒖, 𝛼,𝒑) =  (𝒖, 𝛼) − ∫𝛺
(−∇ ⋅ 𝖯) ⋅ 𝒑 d𝑿 =  (𝒖, 𝛼) + ∫𝛺

𝖯 ∶ ∇𝒑 d𝑿, (9)

here we have used the Neumann boundary condition in the integration by parts. We recall that if (𝒖∗, 𝛼∗,𝒑∗) is a saddle point of
he Lagrangian in Eq. (9), then (𝒖∗, 𝛼∗) is a minimizer of Eq. (7). A necessary condition for (𝒖, 𝛼,𝒑) being a saddle point is that the
irst variation of the Lagrangian vanishes therein. Hence, we require that

𝛿(𝒖∗, 𝛼∗,𝒑∗) = 𝜕
𝜕𝒖

(𝒖∗, 𝛼∗,𝒑∗) 𝛿𝒖 + 𝜕
𝜕𝛼

(𝒖∗, 𝛼∗,𝒑∗) 𝛿𝛼 + 𝜕
𝜕𝒑

(𝒖∗, 𝛼∗,𝒑∗) 𝛿𝒑 = 0, (10)

for all admissible variations (𝛿𝒖, 𝛿𝛼, 𝛿𝒑).
To fix the ideas, in the following we consider TV regularization. The Lagrangian reads as follows:

(𝒖, 𝛼,𝒑) = 1
2 ∫𝛺𝑜

|𝒖 − 𝒖𝑜|2 d𝑿 + 𝜆∫𝛺

√

𝜀 + |∇𝛼|2 d𝑿 + ∫𝛺
𝖯 ∶ ∇𝒑 d𝑿. (11)

he first variation follows from term-by-term differentiation of the above expression. We start with

𝜕
𝜕𝒖

𝛿𝒖 = ∫𝛺𝑜

(𝒖 − 𝒖𝑜) ⋅ 𝛿𝒖 d𝑿

+ ∫𝛺

(

𝜇
(

∇𝛿𝒖 − 𝖥−𝑇 (∇𝛿𝒖)𝑇 𝖥−𝑇
)

+ 𝛼 (∇𝛿𝒖)𝒂⊗ 𝒂
)

∶ ∇𝒑 d𝑿 = 0,
(12)

or all admissible 𝛿𝒖, where we used the differentiation rule for a generic tensor 𝖠: 𝛿(𝖠−1) = −𝖠−1𝛿𝖠𝖠−1. Here ∇𝛿𝒖 = 𝛿∇𝒖 = 𝛿𝖥.
fter integration by parts of the second term at the right hand side, the arbitrariness of the independent increments 𝛿𝒖 yields the

ollowing adjoint problem:
{

−∇ ⋅ C(𝖥, 𝛼)[∇𝒑] = (𝒖𝑜 − 𝒖)𝜒𝛺𝑜
, in 𝛺,

C(𝖥, 𝛼)[∇𝒑]𝒏 = 𝟎, on 𝛤N,
(13)

where with 𝜒𝛺𝑜
we denote the indicator function of 𝛺𝑜 and  is the prologation operator from 𝛺0 to 𝛺. Moreover, we have introduced

the fourth-order Lagrangian tangent modulus

C(𝖥, 𝛼)[𝖠] = 𝜇
(

𝖠 − 𝖥−𝑇𝖠𝑇 𝖥−𝑇
)

+ 𝛼 𝖠𝒂⊗ 𝒂. (14)

Similarly, the variation in 𝒑,

𝜕
𝜕𝒑

𝛿𝒑 = ∫𝛺
𝖯 ∶ ∇𝛿𝒑 d𝑿 = 0, (15)

for all admissible 𝛿𝒑, gives the primal problem, corresponding to Eqs. (4) and (5).
The last term corresponds to the variation with respect to the control,

𝜕
𝜕𝛼

𝛿𝛼 = 𝜆∫𝛺
∇𝛼 ⋅ ∇𝛿𝛼

√

2
d𝑿 + ∫𝛺

(

𝛿𝛼 𝖥𝒂⊗ 𝒂
)

∶ ∇𝒑 d𝑿 = 0, (16)
4

𝜀 + |∇𝛼|
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for all admissible 𝛿𝛼. After integration by parts, we obtain the optimality condition,

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜆∇ ⋅

(

∇𝛼
√

𝜀 + ‖∇𝛼‖2

)

= ∇𝒑 ∶ (𝖥𝒂⊗ 𝒂), in 𝛺,

∇𝛼 ⋅ 𝒏
√

𝜀 + ‖∇𝛼‖2
= 0, on 𝜕𝛺.

(17)

The optimal control problem collects Eqs. (4), (5), (13), and (17) into a single non-linear system in the unknowns 𝒖, 𝛼, and 𝒑.

emark 1. The choice of a physically correct boundary conditions for 𝛼 is a tricky issue. From a cardiovascular point of view,
his an immaterial question: in a three dimensional cardiac muscle the active fibers are always tangent to the free boundary so
hat the active stress has no normal component. In the somehow artificial two-dimensional setting of the numerical simulations of
his work, there is no ‘‘correct’’ answer, in our opinion. Our choice of Neumann boundary conditions is the weakest one; imposing
irichlet boundary conditions would be definitely legitimate too but the choice of the boundary value is not obvious. In an active

train context this ambiguity does not apply (Ambrosi and Pezzuto, 2012).

emark 2. When data are known on some portion of the boundary only, the integral at the right hand side of Eq. (6) rewrites as
surface (line, respectively) integral to be calculated on some 𝛤𝑜 ⊆ 𝛤N:

 (𝒖, 𝛼) = 1
2 ∫𝛤𝑜

|𝒖 − 𝒖𝑜|2 d𝑆 + 𝜆(𝛼). (18)

The calculations in such a case are formally different from the ones illustrated above, but with the same rationale and we do not
report them explicitly. As a main difference, the resulting adjoint problem has the same structure of Eq. (13) but the discrepancy
rewrites in the Neumann boundary conditions, as a boundary load:

{

−∇ ⋅ C(𝖥, 𝛼)[∇𝒑] = 𝟎, in 𝛺,
C(𝖥, 𝛼)[∇𝒑]𝒏 = (𝒖𝑜 − 𝒖)𝜒𝛤𝑜 , on 𝛤N.

(19)

Remark 3. The inequality constraint 𝛼 ≥ 0 in Eq. (7) was purposely avoided in the above derivation for the sake of simplicity.
More precisely, Eq. (17) should be written in the form of inequality as follows:

𝜕
𝜕𝛼

(𝛿𝛼 − 𝛼∗) ≥ 0,

for all admissible 𝛿𝛼 ≥ 0. This aspect is covered in depth in books for optimal control theory (Tröltzsch, 2010, §2.10). From a
umerical viewpoint, the constraint is handled with a projected gradient approach (see Section 3).

.4. The reduced functional

From a numerical viewpoint, it is convenient to introduce the following unconstrained optimization problem:

min
𝛼

red(𝛼) =  (𝒖(𝛼), 𝛼), (20)

where 𝒖(𝛼) is the solution operator associated with the forward problem. The reformulation of the minimization problem this way
allows to decouple the primal, adjoint and optimality problems from a numerical point of view, giving the possibility to adopt
different numerical strategies for each of them. Effectively, the functional (20) has no equality constraints, thus it is suitable for a
larger class of methods for unconstrained optimization, such as quasi-Newton methods. Formally, first-order optimization methods
require, for a given 𝛼̄, the value of the cost functional red(𝛼̄) and its gradient. For the evaluation of red(𝛼̄), it is sufficient to first
solve the forward problem to find 𝒖̄ = 𝒖(𝛼̄), and then compute  (𝒖̄, 𝛼̄) from Eq. (6).

For the computation of the gradient, we observe that if 𝒖 and 𝒑 are respectively solution of the forward (4)–(5) and adjoint (13)
problems, then

𝛿red(𝛼) =
𝜕red
𝜕𝛼

𝛿𝛼 = 𝜆∫𝛺
∇𝛼 ⋅ ∇𝛿𝛼

√

𝜀 + ‖∇𝛼‖2
d𝑿 + ∫𝛺

(

𝛿𝛼 𝖥𝒂⊗ 𝒂
)

∶ ∇𝒑 d𝑿. (21)

t follows that the Riesz’s representative (the gradient) of 𝜕𝛼𝐽red, conveniently denoted by ∇𝐽red(𝛼̄), is the unique function such that

∫𝛺
(∇red)𝛿𝛼 d𝑿 = 𝜆∫𝛺

∇𝛼̄ ⋅ ∇𝛿𝛼
√

𝜀 + ‖∇𝛼̄‖2
d𝑿 + ∫𝛺

(

𝛿𝛼 𝖥̄𝒂⊗ 𝒂
)

∶ ∇𝒑̄ d𝑿 (22)

or all directions 𝛿𝛼, where 𝖥̄ = 𝖥(𝒖̄) and 𝒑̄ solves the adjoint problem. Eq. (22) is important in the numerical implementation because
∇ provides a descent direction for the optimization algorithm.
5
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Remark. The presented framework is not limited to the specific choices for the strain energy density function, boundary conditions,
and activation model. For a general strain energy (𝖥), we replace the elasticity tensor in Eq. (14) with the following

C(𝖥, 𝛼)[𝖠] = 𝜕2
𝜕𝖥𝜕𝖥

[𝖠] + 𝛼 𝖠𝒂⊗ 𝒂.

For strictly incompressible materials, as it often happens on soft tissue biomechanics, the primal problem must be supplemented
with the constraint 𝐽 = 1 and the Piola stress tensor in Eq. (3) modifies as follows:

𝖯(𝖥, 𝛼) = 𝜕
𝜕𝖥

− 𝑝𝐽𝖥−𝑇 + 𝛼 𝖥𝒂⊗ 𝒂, (23)

here 𝑝 is the hydrostatic pressure. The corresponding adjoint problem follows as above.

. Numerical methods

.1. Numerical discretization

For the numerical discretization of the problem we employ the Finite Element Method (FEM). The state, adjoint, and control
ariables are approximated with piecewise linear elements on a triangular mesh ℎ of the domain 𝛺ℎ, where ℎ is the average edge
ize. We denote by 𝑄ℎ the space of linear functions and by 𝑉ℎ the space of vector-valued linear functions satisfying homogeneous
irichlet conditions on 𝛤D:

𝑄ℎ =
{

𝑞ℎ ∶ 𝑞ℎ|𝐾 ∈ P1 for all 𝐾 ∈ ℎ
}

,

𝑉ℎ =
{

𝒗ℎ ∶ 𝒗ℎ|𝐾 ∈ [P1]𝑑 for all 𝐾 ∈ ℎ and 𝒗ℎ|𝛤D = 𝟎
}

.

The discretized state and adjoint variables are denoted by 𝒖ℎ ∈ 𝑉ℎ and 𝒑ℎ ∈ 𝑉ℎ, respectively, whereas the control is 𝛼ℎ ∈ 𝑄ℎ.
herefore, the discretized problem is obtained from the variational problem of Eq. (10), that is: Find (𝒖ℎ, 𝛼ℎ,𝒑ℎ) ∈ 𝑉ℎ ×𝑄ℎ ×𝑉ℎ such
hat

𝛿(𝒖ℎ, 𝛼ℎ,𝒑ℎ) =
𝜕
𝜕𝒖ℎ

𝛿𝒖ℎ +
𝜕
𝜕𝛼ℎ

𝛿𝛼ℎ +
𝜕
𝜕𝒑ℎ

𝛿𝒑ℎ = 0, (24)

for all (𝛿𝒖ℎ, 𝛿𝛼ℎ, 𝛿𝒑ℎ) ∈ 𝑉ℎ ×𝑄ℎ × 𝑉ℎ. The resulting variational problem corresponds to Eq. (12), (16), and (15), precisely:

(state problem) ∫𝛺
𝖯ℎ ∶ ∇𝛿𝒑ℎ = 0, (25)

(adjoint problem) ∫𝛺
C(𝖥ℎ, 𝛼ℎ)[∇𝒑ℎ] ∶ ∇𝛿𝒖ℎ + ∫𝛺𝑜

(𝒖ℎ − 𝒖𝑜,ℎ) ⋅ 𝛿𝒖ℎ d𝑿 = 0, (26)

(optimality) ∫𝛺
𝜆

∇𝛼ℎ ⋅ ∇𝛿𝛼ℎ
√

𝜀 + ‖∇𝛼ℎ‖2
d𝑿 + ∫𝛺

(

𝛿𝛼ℎ 𝖥ℎ𝒂⊗ 𝒂
)

∶ ∇𝒑ℎ d𝑿 = 0, (27)

where 𝖥ℎ = 𝖨 + ∇𝒖ℎ, 𝖯ℎ = 𝖯(𝖥ℎ, 𝛼ℎ), and 𝒖𝑜,ℎ is the interpolation (or the projection) onto 𝑉ℎ of the data 𝒖𝑜. Eqs. (25)–(27) form a
sparse, non-linear system with 𝑁2

𝑉 𝑁𝑄 unknowns, where 𝑁𝑉 = dim𝑉ℎ and 𝑁𝑄 = dim𝑄ℎ.

3.2. Solution of optimization problem

The numerical solution of Eqs. (25)–(27) is challenging. A standard Newton’s method may not converge (Nocedal and Wright,
1999), unless the initial guess is already close enough to the true solution. Moreover, the resulting tangent system has a saddle-
point block structure, which means that its solution requires dedicated preconditioners. This approach notoriously leads to high
computational costs.

Here, we opt for a solution strategy based on a quasi-Newton optimization method. In other words, instead of directly solving
the non-linear system monolithically, we minimize the reduced functional (20):

min
𝛼ℎ∈𝑄ℎ

red(𝛼ℎ) = min
𝛼ℎ∈𝑄ℎ


(

𝒖ℎ(𝛼ℎ), 𝛼ℎ
)

, (28)

under the constraint that 𝛼ℎ ≥ 0 and where 𝒖ℎ(𝛼ℎ) is the solution operator of the discretized state problem in Eq. (25). Note that
the optimization problem (28) is finite dimensional, since dim𝑄ℎ = 𝑁𝑄 < ∞. For the sake of simplicity, we use the notation 𝛼ℎ also
for the vector of coefficients in R𝑁𝑄 .

A quasi-Newton method also requires the gradient of the objective function, denoted by ∇red(𝛼ℎ). Thanks to the derivation in
Section 2.4 and Eq. (27), we have the following problem for the gradient: Find ∇red(𝛼ℎ) ∈ 𝑄ℎ such that

∫𝛺
∇red𝛿𝛼ℎ d𝑿 = ∫𝛺

𝜆
∇𝛼ℎ ⋅ ∇𝛿𝛼ℎ

√

𝜀 + ‖∇𝛼ℎ‖2
d𝑿 + ∫𝛺

(

𝛿𝛼ℎ 𝖥ℎ𝒂⊗ 𝒂
)

∶ ∇𝒑ℎ d𝑿, (29)

or all 𝛿𝛼ℎ ∈ 𝑄ℎ. Note that when the optimality condition (27) is met, we are at a stationary point of the reduced functional, since
red(𝛼ℎ) = 0. In summary, given a tentative control 𝛼ℎ the computation of the gradient requires: the current state 𝒖ℎ = 𝒖ℎ(𝛼ℎ),
btained by solving the state problem (25); the adjoint variable 𝒑ℎ(𝒖ℎ, 𝛼ℎ), obtained by solving the adjoint problem (26) given 𝒖ℎ
6

nd 𝛼ℎ; the solution of the projection problem (29). See Algorithms 1 and 2 for a summary.
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Algorithm 1 Calculation of red(𝛼ℎ)
Require: 𝛼ℎ ≥ 0,

1: compute 𝒖ℎ by solving the state problem (25) with 𝛼ℎ
2: evaluate  (𝒖ℎ, 𝛼ℎ)

Algorithm 2 Calculation of ∇𝑟𝑒𝑑 (𝛼ℎ)
Require: 𝛼ℎ ≥ 0,

1: compute 𝒖ℎ by solving the state problem (25) with 𝛼ℎ
2: compute 𝒑ℎ by solving the adjoint problem (26) with (𝒖ℎ(𝛼ℎ), 𝛼ℎ)
3: compute ∇𝑟𝑒𝑑 (𝛼ℎ) from (29)

For the optimization problem we use the Limited-memory BFGS method with Bound constraints (L-BFGS-B). This method
teratively updates 𝛼ℎ starting from an initial guess 𝛼(0)ℎ as follows:

𝛼(𝑘)ℎ = 𝛼(𝑘−1)ℎ + 𝛽(𝑘−1)𝑞(𝑘−1), (30)

here 𝑞(𝑘−1) is a descent direction and 𝛽(𝑘−1) is the step length (or learning rate). The BFGS algorithm selects 𝑞(𝑘−1) and 𝛽(𝑘−1) such
hat

red(𝛼
(𝑘)
ℎ ) < red(𝛼

(𝑘−1)
ℎ ),

or all 𝑘 = 1, 2,… until a convergence criterium is met. The descent direction is computed as follows:

𝐵(𝑘)𝑞(𝑘) = −∇red(𝛼
(𝑘)
ℎ ), (31)

here 𝐵(𝑘) is a 𝑁𝑄 ×𝑁𝑄 symmetric, non-singular matrix. Note that when 𝐵(𝑘) is positive-definite, for sufficiently small 𝛽 we have
hat

red(𝛼
(𝑘)
ℎ ) = red

(

𝛼(𝑘−1)ℎ + 𝛽(𝑘−1)𝑞(𝑘−1)
)

= red
(

𝛼(𝑘−1)ℎ − 𝛽(𝑘−1)(𝐵(𝑘−1))−1∇red
)

≈ red(𝛼
(𝑘−1)
ℎ ) − 𝛽(𝑘−1)(𝐵(𝑘−1))−1∇red ⋅ ∇red < red(𝛼

(𝑘−1)
ℎ ),

thus we ensure a decrease of the objective functional. In a quasi-Newton method, the matrix 𝐵(𝑘) is an approximation of the Hessian
atrix of red(𝛼

(𝑘)
ℎ ), which ensures a super-linear convergence rate towards the local minimum. (When 𝐵(𝑘) is the Hessian matrix

t 𝛼(𝑘)ℎ we obtain the quadratically-convergent Newton’s method, whereas for 𝐵(𝑘) = 𝐼 we have the gradient descent algorithm.)
he BFGS method constructs such approximation by rank-one updates of an initial guess 𝐵(0) (usually the identity matrix), so that
olving the linear system in Eq. (31) is simplified by the Sherman–Morrison formula. In the limited-memory variant of the BFGS
ethod (L-BFGS), the approximation is truncated to a maximum number of rank-one updates, usually around 20. The step length
(𝑘−1) is obtained by a backtracking line search method, that is, for a given direction 𝑞(𝑘−1), the algorithm finds the largest 𝛽 that
nsures a sufficient reduction of the function

𝑓 (𝛽) ∶= red
(

𝛼(𝑘−1)ℎ + 𝛽𝑞(𝑘−1)
)

.

inally, the bound 𝛼ℎ ≥ 0 is handled by a projected gradient strategy, and the iterative process stops when the norm of the projected
radient is below a fixed tolerance. A detailed and complete description of the L-BFGS-B algorithm is given in Byrd et al. (1995).

mplementation aspects. The problem has been implemented using the open-source software Firedrake (Ham et al., 2023), which
ses the PETSc library as linear algebra back-end (Balay et al., 1997, 2023). The variational formulation is computed by means of
he automatic differentiation tool UFL (Alnæs et al., 2014). We used the Firedrake adjoint module, based on the pyadjoint
ackage (Mitusch et al., 2019), for the solution of the optimization problem, which internally uses the L-BFGS-B method as
mplemented in the scipy library (Zhu et al., 1997). For the computation of the gradient, we do not consider the projection step
n Alg. 2, and instead use the co-vector corresponding to the right hand side of the problem. This is necessary because the scipy
ersion of the L-BFGS-B method cannot be informed of the metric of the problem through a re-definition of the inner product. Since
e are using uniform meshes, the impact of this choice on the performance of the method is limited. The code is available at the
ddress: https://github.com/pezzus/invscar.

. Numerical experiments

.1. Parameters settings and in-silico data generation

Our reference numerical test is the reconstruction of a circular scar region centered in a planar, unit-square domain. For
7

implicity, all quantities are dimensionless. The geometrical setup is depicted in Fig. 2. We simulate the presence of a scar by

https://github.com/pezzus/invscar
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Fig. 2. Sketch of the computational domain and of the boundary conditions (left); mesh of the reference configuration, the red spot representing the scar, i.e. the
region where 𝛼 = 0 (center); ground truth: magnitude of the displacement represented in the deformed configuration (right).

Fig. 3. Pareto front for the optimal regularization weight. L-curves in logarithmic scale for three distinct regularizing terms in the cost functional: 𝐿2 (left),
𝑇𝑉 (center) and 𝐻1 (right). Triangular markers denote the simulated data for a given value of the parameter 𝜆.

imposing 𝛼 = 0 in a circular region of radius 𝑟 = 0.2 centered in the box and we set 𝛼 = 1 elsewhere. The elastic modulus 𝜇 = 1 and
the fibers are orientated horizontally. Boundary conditions apply as follows: only tangential displacement is allowed at the bottom
and left edge, free boundary elsewhere. The finite element discretization of the mesh is uniform and counts 104 triangles.

To investigate the robustness of our approach, we first generated in-silico the reference solution 𝒖ref solving the system of Eqs. (7);
then we add a component-wise white noise 𝜼 with zero mean and variance 10−6, that is 𝒖𝑜 = 𝒖ref+𝜼. In such a way, the corresponding
Signal to Noise Ratio results

SNRdB = 10 log10
‖𝒖ref + 𝜼‖2

‖𝜼‖2
≃ 40 dB,

on average, that corresponds to a relative perturbation of 1% on the displacement field. Higher levels of noise are discussed in
Section 4.5.

The reconstruction of the contractility is obtained by minimization of the functional Eq. (6) assuming observation on the full,
that is, 𝛺𝑜 = 𝛺, except for the boundary control Section 4.7, where we use Eq. (18) with 𝛤0 = 𝛤N. The initial guess is 𝛼 = 1
everywhere. For the solution of the forward problem, we use the Newton’s method with the direct solver MUMPS for the tangent
problem (Amestoy et al., 2001) and we solve the adjoint problem with the same linear solver. The initial guess for the inner Newton’s
iteration is the previous solution of the optimization loop. Unless otherwise stated, we always consider the optimal regularization
parameter for the solution of the inverse problem.

4.2. The effect of the regularization term

Our first test is to solve the optimization problem (27) for different regularization methods and at variance of the regularization
parameter 𝜆, all the other quantities being kept fixed.

To identify the optimal value for 𝜆, we computed the Pareto curve, which plots the discrepancy versus the magnitude of the
regularization, for each approach (see plot in Fig. 3). Each point on the curve corresponds to a solution of the inverse problem.
Here, we select 11 values of 𝜆 in logarithmic scale for H1 and TV regularization, and 13 values for L2 . The obtained curves are
L-shaped where, according to the Pareto optimality principle, the optimal values correspond to the ‘‘elbow’’: that is 𝜆opt

L2 ≈ 5 × 10−5,
𝜆opt

TV ≈ 10−6, and 𝜆opt
HI ≈ 5 × 10−8.

All the regularizing strategies recover a similar pattern, as shown in Fig. 4 and the correct circular scar can be identified for
some optimal (regularization-dependent) value of 𝜆. For small values of 𝜆, we notice the presence of spurious oscillations around
the scarred area, more pronounced in L2 than H1 and TV regularizations. The noisy reconstruction for small 𝜆 is a symptom of the
ill-posedness of the inverse solution: a small perturbation in the data 𝒖 corresponds to a large perturbation in the reconstruction.
8
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Fig. 4. Contractility reconstruction. Scar profiles reconstructed with the L-BFGS method for three distinct regularizing terms in the cost functional: L2 (top
row), TV (central row) and H1 (bottom row). In each row, the relative weight 𝜆 of the regularization is increased from left to right. The thin yellow contours
represent the isolines 𝛼 = 0.4. To better highlight the discontinuous profile of the contractility function, the value of 𝛼 was rescaled to the range [0, 1].

For large values of 𝜆, the recovered contractility function 𝛼 is smoother, blurring the boundary of the scar. This is particularly
apparent with TV regularization, where for large 𝜆 the scar cannot be correctly detected.

With the optimal 𝜆, the TV reconstruction matches very closely the ground truth, whereas the H1 and L2 reconstructions exhibit
smoother boundaries. The L2 reconstruction is also more prone to spurious oscillations. We also observe that the L2 reconstruction
has a boundary layer artifact, located on the vertical free boundary (the right one) and particularly pronounced for large 𝜆. We
further investigated the presence of this artifact in Appendix, where we show that its position depends on the fiber direction and
the boundary conditions.

The sharp approximation of the TV approach could be expected, because the TV regularization promotes piecewise-constant
solutions and our choice of ground-truth solution falls in this class. In real case scenarios it might happen that the scar is surrounded
by a smooth border characterized by remodeled tissue with a partial loss of contractility, thus the TV approach might incorrectly
favor non-physiological reconstruction.

4.3. Convergence rate

In Fig. 5 we plot the convergence history obtained by different regularizing methods. In all cases, a good accuracy is achieved in
less than 50 BFGS iterations. In fact, the convergence is very fast for L2 and H1 regularizations. For the TV approach the algorithm
requires approximately 300 iterations to converge, although 20–30 iterations are already sufficient for a good reconstruction. The
slow convergence rate of the TV approach is known in the literature, and it is due to the lack of regularity in the limit 𝜀 → 0 in
Eq. (8c). Here, the norm of the projected gradient, which is used as a convergence criterion in the L-BFGS-B method, decreases very
slowly after the initial iterations.

The number of iterations needed to achieve convergence is quite independent with respect to the mesh size. Testing the H1

case with a mesh resolution from 25 × 25 to 200 × 200 (quadrilateral elements), the number of iterations varied from 27 to 34.
The overall computational cost (on an Apple MacBook Pro M1 with 32 GB of memory, serial run) increased from 0.67 s to 37 s,
due to the larger size of the forward and adjoint problems.
9
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Fig. 5. Convergence history for distinct regularizing terms. (Left) decay of the objective function (continuous lines), i.e. the cost functional, and of the fidelity
term (dotted lines) over the iterations; (right) norm of the projected gradient over the iterations. In both figures, the curves where obtained by setting 𝜆 = 𝜆opt
for each of the tested regularizing terms: L2 (red), TV (blue) and H1 (orange). The curve for TV is truncated to 50 iterations, although it requires more than
300 iterations to reach the desired tolerance.

In summary, the H1 approach is the most efficient in terms of computational cost, convergence rate, and it can overcome the
accuracy issues related to the presence of oscillations and artifacts at the boundary of the domain, where the L2 approach fails. On
contrary, the TV approach is very accurate yet costly.

4.4. Sensitivity analysis: uncertainty and bias

In this section we perform a sensitivity analysis of the method assuming different amount of noise on the measured data and
uncertainty on the model parameters. We perturb parameters too because an effective inverse method should ideally weakly depend
on parameters that cannot be directly measured. As a consequence, the ground truth and solution of the state equation in the inverse
problem cannot expected to be equal, not even in the case of perfect reconstruction algorithm. However, we remark that our aim is
not much to quantify the uncertainty in the computed fields, Gander et al. (2021) and Quaglino et al. (2019), but rather to assess
the numerical stability of the algorithm due to specific modeling assumptions and to the presence of correlated noise in the input
data. Unless specified, all the reported results are obtained for the optimal value of the parameter 𝜆.

Sensitivity to fiber direction. We first test the sensitivity of the inverse method to fibers orientation by L2 regularization by three
distinct arrangements of the fibers while keeping the same boundary conditions. In Fig. 6 we show that the TV and H1

regularization can accurately reconstruct the scar position, irrespective of the fiber direction. The L2 regularization suffers from a
significant inaccuracy in the reconstruction of the contractility 𝛼(𝑥, 𝑦) close to the stress-free boundary orthogonal to fibers. This issue
is not present for the other regularization, because they can penalize sharp variations of ∇𝛼(𝑥, 𝑦). We suspect that the anomalous
ehavior associated to L2 roots is related to the observability of the system (see Appendix).

ensitivity to material parameters. As a second test we include noise in the ground truth perturbing either the elastic modulus 𝜇
r the fiber orientation 𝜃 (where 𝜃 is s.t. 𝒂 = [cos 𝜃, sin 𝜃]). The ultimate goal of this analysis is to test the robustness of the
roposed approach against observations generated by non-smooth and spatially-varying parameters. In fact, this will produce a
patially-correlated (colored noise) in the data.

We first construct a 95%-confidence interval for the reconstructed contractility by using a Monte Carlo approach and generating
he observed data 𝒖𝑜 from 𝑁 = 30 different random perturbations of the elastic modulus 𝜇. Specifically, for each Monte Carlo step,

we sample a different elastic modulus 𝜇(𝑿) from a Gaussian distribution centered in 𝜇 = 1 and variance 𝜎2 = 0.1. The results of this
test are reported in Fig. 7 (top row).

Secondly, we again adopt a Monte Carlo approach for generating a 95%-confidence interval for the reconstructed contractility
where, in this second case, the observed data 𝒖𝑜 are generated from 𝑁 different random perturbations of local fiber orientation. This
test aims at simulating the physiological disarray condition of the fibers in the heart (Finocchiaro et al., 2021). As so, we generate
different patterns of fibers by sampling the local value 𝜃(𝑿) from a normal distribution centered in 𝜃 = 0 and variance 𝜎2 = 0.1. The
results of this test are reported in Fig. 7 (bottom row).

Overall, in both experiments the average reconstruction is close to the ground truth, although the contractility function is much
smoother around the boundary of the scar. In terms of reconstruction uncertainty, we obtain narrow confidence intervals, thus
supporting the robustness of the proposed approach in reconstructing the contractility even when the observed data are generated
by non-smooth parameters.

Sensitivity to a different forward elasticity model. Next, we investigate the potential bias in the reconstruction of the scar when the
forward elastic model has biased elastic moduli or it is even different. First, we notice that we could rewrite the Piola tensor (3) as
follows:

𝖯 = 𝜇
(

𝖥 − 𝖥−𝑇 + 𝛼
𝖥𝒂⊗ 𝒂

)

,

10

𝜇



Journal of the Mechanics and Physics of Solids 192 (2024) 105793G. Pozzi et al.
Fig. 6. Sensitivity of the model to the spatial fibers orientation. Three distinct fibers orientation are tested: fibers parallel to 𝑥-axis (left) parallel to 𝑦-axis
(center) and fibers whose direction forms an angle of 45° with the 𝑥-axis (right). (Top row) Comparison among the exact profile of 𝛼(𝑥, 𝑦) and its numerical
reconstructions, along the 𝑥- and 𝑦-direction, obtained with both with L2 and TV; (bottom row) scar profiles obtained from the numerical simulations (with
L2 ) where cyan contours depicting isolines 𝛼 = 0.4. Fibers orientation is depicted in the bottom left. The values of 𝛼 were rescaled to the range [0, 1] to better
highlight the discontinuous profile of the contractility function. For each choice of the regularizing term, we set 𝜆 = 𝜆opt.

Fig. 7. Robustness of the algorithm to perturbations of the parameter 𝜇 (top row) and fiber angle 𝜃, in radians (bottom row). (Left) A realization of the perturbed
coefficient. (Middle) The reconstructed scar profile with H1 and 𝜆 = 𝜆opt

H1 . Isolines 𝛼 = 0.4 are depicted by contours. (Right) Estimated contractility for constant
parameter (black line) superimposed on the 95%-confidence interval (shaded area) for the mean contractility along the 𝑥-direction obtained from the Monte
Carlo simulation (𝑁 = 30).
11
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Fig. 8. (Left) Robustness to an incorrect choice of the forward model. The ground truth is based on various values of 𝜇, including noise. In the inverse problem,
we assume 𝜇 = 1. The profiles are plotted along the direction orthogonal to the fiber orientation. (Center) Effect of high, uncorrelated noise perturbing the
ground truth: 1% (yellow), 5% (green), 10% (blue), and 20% (purple). Isolines for 𝛼 = 0.4. (Right) Effect of subsampling the ground truth on a coarser mesh.
All the results are with full observation operator and H1 regularization.

which shows that, in absence of external loads and with constant 𝜇, we are as a matter of fact estimating the ratio between 𝛼 and
𝜇. We can even claim that the knowledge of the value of the elastic modulus is immaterial because we estimate the ratio, which
is in fact informative of the presence of a scar (lower contractility and/or higher stiffness.) This basic observation highlights that 𝜇
and 𝛼 can be estimated independently only when longitudinal data are available, e.g., the displacement field over the entire cardiac
cycle.

More generally, if 𝜇(𝑿) is non-constant and known, we can recover 𝛼 with good accuracy; otherwise, 𝛼 will implicitly compensate
the reduced stiffness. This is exemplified in Fig. 8 (left panel). Interestingly, the scar can still be detected with good accuracy.

4.5. Robustness to noise and subsampling

In the previous examples we considered a noise level of about 1%, which is low for real applications but is reasonable for testing
the numerical stability of the inverse problem. In Fig. 8 (middle panel) we repeated the experiment with a level of uncorrelated
noise applied to the ground truth solution up to 20%. For each simulation, to set the optimal regularization weight 𝜆opt, the L-curve
has been recalculated. We notice that the reconstruction is still accurate for a noise level below 10%, while for a 20% noise the scar
is detected in the right position but with a smaller size.

Furthermore, we tested the effect of using a coarser resolution for the ground truth, while maintaining a higher resolution for
the solution of the inverse problem. Specifically, we generated the ground truth at high resolution, and then we subsampled it on
either a 17 × 17 or 33 × 33 uniform grid. Additionally, we included a 1% or 10% noise in the simulations. The ground truth profile
for the scar was the same as in Fig. 11, described later. Results, collected in Fig. 8 (right panel), show a good accuracy in detecting
the size of the scar and the presence of channels, except for the 17 × 17 case with 10% noise, where the channels are asymmetric
and of smaller size.

4.6. Incompressibility

In this part, we test the effect of the incompressibility assumption in the forward model. We use the formulation reported in
Eq. (23). The incompressibility constraint is enforced for both the ground truth model and the inverse problem. Concerning the
discretization, we solved the system of equations for the mixed formulation of the forward model with P2 − P1 by Taylor-Hood
finite elements (piecewise quadratic elements for the displacement, linear for the pressure). The adjoint model also resulted in a
(linear) elasticity problem with a linearized incompressibility constraint, and it was solved with the same Taylor-Hood elements of
the forward model.

Results are shown in Fig. 9. The incompressibility partially reduces the observability issue related to the choice of L2 in the
contractility estimation; however, it overestimates 𝛼(𝑥, 𝑦) on the free boundary orthogonal to the fiber direction. Conversely, the
reconstruction obtained with the incompressible model fully matches the ground truth, when choosing TV as regularization. In
this case, we also observe a complete agreement between the compressible and the incompressible material model, which can be
interpreted as a symptom of over-regularization. For H1 , the compressible model performs better than the incompressible model
with reference to the ground truth since, as for the L2 , the latter tends to overestimate the contractility at the free boundary.

4.7. Boundary observation

In many practical cases, the knowledge of the data fidelity term is restricted to the boundary of the domain. In such a case the cost
functional rewrites as in (18) and the resulting adjoint problem is reported in (19). The numerical method can be straightforwardly
generalized to the case of boundary control. The results are illustrated in Fig. 10, where the ground truth is as before and perturbed
with noise. As expected, in all the three cases the scar profile (yellow contours) is captured with a significantly lower level of
accuracy with respect to the case where the observation operator is extended to the whole domain (blue contours). In particular,
12
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Fig. 9. Effect of the incompressibility hypothesis on contractility reconstruction. Comparison between the exact profile of 𝛼(𝑥, 𝑦) (red) and the estimated
contractility profiles for the fully incompressible material model (green) and the compressible material model (cyan) along the direction parallel to the fiber
orientation. For each chosen regularization we set 𝜆 = 𝜆opt.

Fig. 10. Effect of restricting observations to the boundary. Scar profiles obtained from the minimization of the cost functional (18) with the boundary observation
operator for all the possible regularizing terms: L2 (left), TV (center), and H1 (right). Isolines 𝛼 = 0.4 for the boundary observation (yellow), for the full
domain observation (blue) and for the ground truth (red) are superimposed to the contractility pattern. In each case we set 𝜆 = 𝜆opt. The value of 𝛼 was rescaled
to the range [0, 1] for visual clarity.

while the L2 and H1 regularizations lead to an underestimation of the scar area, the choice of TV results in an opposite behavior.
Overall, the scar position is properly identified. However, the shape appears excessively elongated in the direction of the fibers, see
Fig. 10 (L2 and H1 ).

4.8. Robustness to scar shape variations

The numerical results obtained by varying the scar shape are shown in Fig. 11. Motivated by clinical observations, the ground
truth scar geometry is here provided by two rectangles separated by a narrow strip of healthy (contractile) tissue. The first evidence
is that the accuracy of the reconstructed contractility 𝛼(𝑥, 𝑦) decreases as the distance between the two scars diminishes. Overall,
an observation restricted to the boundary of the domain dramatically affects the quality of the model prediction in all the proposed
test cases. A comparison among methods shows that the performance of the algorithm is significantly improved (except in the most
extreme case, see Fig. 11, bottom row), by using the full domain observation combined with TV regularization. Only this combination
yields an accurate identification of the area of impaired contractility.

5. Discussion and conclusions

The determination of the contractility of the cardiac tissue from displacement measurements is an important topic in cardiac
modeling and patient-specific applications (Asner et al., 2016; Finsberg et al., 2018; Kovacheva et al., 2021). As other mechanical
and electrical parameters, the local contractility cannot be directly measured in vivo, and must be deduced indirectly. Scarred and
ischemic regions, where contractility is low or absent, can be delineated from low-voltage regions or from late enhancement MRI, for
13
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Fig. 11. Sensitivity to the scar shape. The accuracy of the algorithm in reconstructing the contractility profile has been tested for three different scar
conformations, obtained by progressively reducing the distance between two rectangular scars (Left: from top to bottom row). The test was carried out both by
adopting the observation operator extended to the whole domain (center) and the one restricted to the boundary (right). Isolines 𝛼(𝑥, 𝑦) = 0.4 for the ground
truth (red), the H1 regularization (yellow) and the TV regularization (blue). The ground truth is shown in the background. For each chosen regularization we
set 𝜆 = 𝜆opt.

instance. Here, similar to quasi-static elastography (Doyley, 2012), we have focused on kinematic information. Myocardial motion
and strain can be non-invasively acquired by standard imaging techniques such as cardiac MRI or echo, or in an invasive manner
with electroanatomical mapping systems (Maffessanti et al., 2020). Importantly, cardiac motion can be modeled by a balance of
forces that includes active stress, offering the opportunity for the determination of contractility through an inverse problem solution.

In this work, after stating a suitable cost functional designed to minimize the discrepancy between the observed displacement
and the one predicted by the model, we have straightforwardly derived the adjoint equation, the state equation, and the optimality
condition for the reconstruction of the contractility function. Given the ill-posedness of the inverse problem, a regularization term
has been introduced. We have then tackled the solution of the problem from the numerical perspective as an optimization problem,
thus adopting the L-BFGS-B algorithm to minimize the cost functional subjected to the force balance equation and its boundary
conditions. We have numerically tested our approach in a synthetic case with a region of impaired contractility sharply separated
from the active one, and with 1% of noise superimposed to the observed displacements. Within this framework, we have explored
the stability of our approach in the presence of model perturbations, such as an imperfect knowledge of the forward problem or the
ground truth. We also tested three different regularizing terms discussing the pros and cons of each of them.

The numerical results show that the proposed approach is very effective while a universal superiority of some method cannot
be stated a priori. The H1 regularization is a good compromise both in terms of accuracy and efficiency: it overcomes both the
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limitation related to the slow convergence of the approximated TV regularization and the observability issues associated to the
L2 regularization. The apparent superior ability of the TV regularization in capturing sharp boundaries (see Fig. 9) should not be
overemphasized: while we have purposely designed challenging numerical tests for the inversion method, in practical applications
infarcted regions typically exhibit a smooth transition from healthy to dead cells. Conversely, if the pattern of inactive region is
fragmented like in Fig. 11, the increased computational cost of TV is well justified by the improved accuracy in detecting a thin
active region.

Overall, the predicted local contractility is in good agreement with the ground truth, showing robustness of the results with
espect to random noise both on the data and on the local value of the elastic modulus 𝜇 and the fibers direction 𝜃. Moreover, when

the TV and H1 regularizations are adopted, the proposed method appears to be able to predict with a good level of accuracy the
local contractility even when the observed data are restricted to the boundary. The inverse problem with boundary observation is
conceptually similar to the Calderón problem in electrical impedance tomography (Cheney et al., 1999), which aims to delineate
the organs from sharp transitions in the electrical impedance of the body, reconstructed from boundary measurements. This result is
of particular interest with the perspective to tackle three dimensional cardiac data when the displacement is measured on (part of)
the cardiac surface only. According to our numerical results, the reconstruction method fails only in the extreme case of fragmented
inactive area with boundary observation; we suspect that in this case the observed information is intrinsically too poor to reproduce
the correct pattern, whatever the inverse method.

Our work frames in a vivid literature on the subject. Some approaches proposed in the past allow for the estimation of contractility
assumed to be a region-wise constant function (Chabiniok et al., 2012; Finsberg et al., 2018; Gjerald et al., 2015). The left ventricular
wall is divided into 17 areas, known as AHA segments, and a constant contractility value is assigned to each of these segments by
solving a discrete inverse problem, which exploits as datum the displacement acquired by means of imaging techniques of one or
more points belonging to each AHA segment. Being low-dimensional, region-wise approaches are computationally attractive and
deemed to surrogate modeling. However, these methods do not scale well with the number of parameters, thus they cannot clearly
delineate the scar with higher resolution. Conversely, our adjoint-based approach enables an estimation of the local contractility as a
continuous function across the entire domain, thus accurately identifying the scar profile without compromising the computational
costs.

More recently, Kovacheva et al. (2021) addressed the problem of estimating the contractility and scarred tissue in 3D real
geometries over an entire cardiac cycle. Their method is based on an inverse problem where the tangent map from the contractility
to the displacement is estimated via finite differences. At numerical level, this matrix is dense and possibly large, thus the method
may suffer of scalability issues. The adjoint approach proposed in this work overcomes this problem, because we can compute the
action of the tangent map as the solution of a linear problem. Secondly, we are able to recover the contractility pattern in a large
strain regime and for general hyperelastic materials. Interestingly, we did not observe a large sensitivity to fiber orientation for the
detection of the scar, but this aspect should be further investigated in more a complex geometrical setup.

The method proposed in this paper suffers of course from some limitations. First, from a methodological point of view, the
algorithm might converge towards a local minimum of the cost functional, while the convergence to the global minimum is not
guaranteed. In the same vein, for large strain the forward problem might have multiple equilibria; however these ranges would be
very exotic in the case in the context of cardiac mechanics (Ambrosi and Pezzuto, 2012). Second, we have tested our approach only
with synthetic data only and simplified modeling assumption; in particular, we have adopted a simple strain energy that cannot
be naively applied to cardiac modeling. In this respect, our methodology can be straightforwardly modified to incorporate more
appropriate material laws (Guccione et al., 1991; Holzapfel and Ogden, 2009). Our preliminary experiments in this direction are
encouraging, since we observed no degradation of performance when we employed the incompressible Holzapfel–Ogden constitutive
law (Holzapfel and Ogden, 2009). In view of the incorporation of clinical data, we plan to further develop this work to 3D
geometries. In the same vein, this methodology could be easily reformulated to determine the orientation of the myocardial fibers
on the basis of kinematic data in an healthy heart (Lubrecht et al., 2021; Ruiz-Herrera et al., 2022).

In conclusion, our method provides an effective framework for the identification of mechanical parameters of cardiac models
from non-invasive clinical data, and it can significantly improve the definition of patient-specific models for precision cardiology.
Finally, we remark that the validity of the proposed approach is not limited to cardiac electromechanics but the proposed method
can be used for estimating the local contractility in a generic active material, whether natural or artificial. Our work might even
be recast in a control framework; for very large strain it might be seen as an approach to produce target shapes on the basis of
activation or material rearrangement.

CRediT authorship contribution statement

G. Pozzi:Writing – review & editing, Writing – original draft, Software, Methodology, Formal analysis, Conceptualization. D. Am-
brosi: Writing – review & editing, Writing – original draft, Methodology, Funding acquisition, Formal analysis, Conceptualization. S.
Pezzuto: Writing – review & editing, Writing – original draft, Methodology, Funding acquisition, Formal analysis, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared
15

to influence the work reported in this paper.



Journal of the Mechanics and Physics of Solids 192 (2024) 105793G. Pozzi et al.
Data availability

The code is available at the address: https://github.com/pezzus/invscar.

Acknowledgments

DA and GP were supported by the PRIN Research Project 2020F3NCPX. DA and GP acknowledges the support of INDAM-GNFM,
Italy. GP was partially supported by INDAM-GNFM, Italy ‘‘Fondo Progetto Giovani 2023’’. SP was supported by the SNSF project
‘‘CardioTwin’’, Switzerland (no. 214817), the CSCS grant no. s1074, and the PRIN-PNRR project no. P2022N5ZNP. SP acknowledges
the support of INDAM-GNCS, Italy.

Appendix. Boundary conditions and system observability

As shown in Section 4.4, the use of the regularizing term L2 rises the issue on how the system observability may be affected
by the choice of the boundary conditions. Here, we provide arguments in support of the hypothesis that the poor reconstruction of
contractility, that we obtain with L2 and a stress-free condition on the boundary perpendicular to the fibers direction, is imputable
to a not fully observable system. To this end, we show how the displacement field can be modified by the presence of a rectangular
scar located at the stress-free boundary, both for fibers arranged perpendicularly and parallel to that boundary, see Fig. A.12 (Left)
(B) and (C) respectively. We notice that when the scar is located in a region close to the boundary parallel to the fiber orientation
(𝐶), the displacement field is more affected, both in terms of magnitude and spatial localization, than the one obtained when the
scar is located in a region perpendicular (𝐵) to the fiber orientation. Accordingly, 𝛥𝑖 = ‖𝒖−𝒖𝑖𝑠‖∕‖𝒖‖ is significantly larger in the latter
case (i.e. 𝛥∥∕𝛥⟂ ≃ 10). Here with 𝒖𝑖𝑠 we denote the displacement field for the configuration presenting the scar either perpendicular
(𝑖 =⟂) or parallel (𝑖 =∥) to the fiber orientation and with 𝒖 the displacement field of the configuration without the scar. Therefore, a
scar positioned on the stress-free boundary orthogonal to the fibers does not introduce appreciable modification in the displacement
field with respect to the solution obtained in case of healthy tissue (𝐴). In other terms, Fig. A.12 (center) demonstrates that different
contractility functions can result in nearly identical displacement fields. We notice that this pathological condition does not emerge
when the scar is located at a stress-free border parallel to the fibers direction. In the former case, the choice of the regularizing
term plays a fundamental role in restricting the field of admissible 𝛼(𝑥, 𝑦) for a given observation 𝒖𝑜, by penalizing non-physical
features of the control variable. As so, the choice of L2 results inappropriate for the above described problem setting and generates
inaccurate reconstructions of the contractility as shown in Fig. 6.

Fig. A.12. Effect of a scar located at the free-boundary on the displacement field. (Left) Sketch of the three different scenarios (A)–(C) reproduced in the tests,
with healthy tissue in black and scar in gray. Fibers direction is indicated in the lower left corner. (Middle) Difference in magnitude between the displacement
field of the case (A) and the case (B). The discrepancy is only limited to the scarred region. (Right) Difference in magnitude between the displacement field of
the case (A) and the case (C). The discrepancy is larger and more distributed.
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