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Abstract— Work-related musculoskeletal disorders (MSD)
are one of the major cause of injuries and absenteeism at
work. These lead to important cost in the manufacturing
industry. Human-robot collaboration can help decreasing this
issue by appropriately distributing the tasks and decreasing
the workload of the factory worker. This paper proposes a
novel generic task allocation approach based on hierarchical
finite-state machines for human-robot assembly tasks. The
developed framework decomposes first the main task into
sub-tasks modelled as state machines. Based on capabilities
considerations, workload, and performance estimations, the
task allocator assigns the sub-task to human or robot agent. The
algorithm was validated on the assembly of a crusher unit of a
smoothie machine using the collaborative Franka Emika Panda
robot and showed promising results in terms of productivity
thanks to task parallelization, with improvement of more than
30% of the total assembly time with respect to a collaborative
scenario, where the agents perform the tasks sequentially.

I. INTRODUCTION

Human-robot collaboration (HRC) is part of industry 5.0
where a central role is given the human component [1]. It
opens to new scenarios in terms of teamwork, where the
efforts to achieve a common goal can be shared among the
agents of the team. In the literature, the problem of assigning
tasks, given a single shared job, in a mixed team composed of
a arbitrary number of heterogeneous agents, such as human
workers and robotic co-workers is defined as task allocation.
Tasks can be assigned to humans or robot using different
allocation schemes and according to distinct factors, such as
capabilities, workload, execution time, performance, etc., that
should capture the difference between the agents and evaluate
the suitability of each agent to the task. A task allocation
framework is usually made of three main components. First,
a task partitioner, in charge of modeling the high-level job
in smaller tasks and sub-tasks, until an atomic action that
composes the job are reached. Second, a module is required
to compute the suitability of the agent to the task. Finally,
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the proper task allocator assigns a task to each agent in a
team according to the above-defined task/agent suitability.

Several task allocation schemes have been proposed to
exploit the benefits of the human-robot teaming [2]–[4].
[5] developed a hierarchical framework for task allocation
that assigns a full sequence of atomic tasks based on the
capabilities of each agent. Similarly, in [6], complex tasks
of a hybrid assembly cell are split into elementary sub-tasks
that are allocated to the team members depending on their
skills. The decision-making algorithms are often based on a
multi-criteria approach using a cost function, such as in [7],
[8]. Other methods incorporate the human and robot’s models
using Markov decision processes into the task allocation
framework to predict human behaviour and determine the
best execution plan [9], [10]. In [11], Bayesian inference is
used to predict the human next goal and re-plan accordingly
the robot’s action in real time. Other allocation algorithms
have been proposed to extend the task assignment scheme to
the multi-human multi-robot context [12].

To evaluate the agent/task suitability, Michalos et al. [13]
developed an algorithm that plans the tasks by evaluating
each planning scenario to a set of parameters (ergonomics,
quality and cell layout). In [7], a human-robot collaboration
framework is studied for the task allocation of collaborative
tasks in hybrid assembly cells. An intelligent decision-
making algorithm is utilised to allocate the sequential tasks
assigned to the robot or the human and to maximise the
human-robot coexistence. Ding et al. [14] proposed a method
to achieve optimal task distribution of assembly operations
based on operator’s efficiency, mutual influence, layout of
the assembly task and setting of the workstation. Lamon et
al. proposed to exploit agent capabilities, defined as task
complexity, agent dexterity and agent effort [8].

Different methods have also been proposed to achieve
task decomposition, i.e. extracting the possible set of robot
actions for a given assembly tasks. In [15], a heuristic method
is proposed that converts an assembly graph into a sequence
of tasks. Planning formalisms are also studied to create
causal assembly graphs [16]. Decision-making algorithms are
built using behavior trees [17], [18] and decision trees [19].
Behavior trees are mathematical models of plan execution,
they represent in a modular way the switching between a
finite set of tasks. Decision trees, on the other hand, are com-
posed of predicates and are a support tool to model decisions
and their possible sequences using control statements.

Aside from the classical task allocation resolution scheme,
other methods are able to plan the robot behaviour based on



human intention detection and communication means [20],
[21]. In [22], a task planner is designed for collaborative
human-robot tasks where social acceptance is taken into ac-
count. Anticipation of human activities has also been studied
using Markov decision processes from camera images [10].
In [23], a model for action preparation and decision making
in cooperative tasks is proposed that integrates contextual
cues, shared task knowledge and predicted outcome of
other’s motor behaviour.

This paper presents a novel task allocation algorithm using
hierarchical finite-state machines (HFSM) that is based on a
more human-centred approach with the goal of improving
the working conditions of the worker by taking into account
the human and the robot capabilities as well as workload
estimates of the user during collaborative tasks. The proposed
method improves the task assignment paradigm based on
user workload (as in a previous work of the authors [24]) by
providing a more comprehensive approach and integrating
performance considerations to enhance the productivity of
the human-robot assembly task. The developed framework is
composed of four main modules that contain different sub-
modules to perform the main operations of the task allocation
procedure, namely the task selection, the agent capability
assessment, the workload estimation, the task execution and
communication of instructions to the human. The main
contributions of the method are the following:

• The formulation of an online role allocation framework
based on HFSM. With HFSM, the method earns in
terms of generality (it is possible to model generic
human-robot actions) and in easy-to-use (HFSM can be
easily programmed by non-experts).

• The combination of a multi-criterion approach to the
task allocation problem. Availability, capability, work-
load and performance are combined to obtain the de-
sired allocation.

The method is evaluated with an industrial task, the assembly
of a crusher unit of a smoothie machine, allocated to a human
worker and to the collaborative Franka Emika Panda robot.

II. HIERARCHICAL FINITE STATE
MACHINE-BASED TASK ALLOCATION

In this paper, we assume that each assembly can be de-
composed into tasks, that represent the higher level goals that
have to be assigned to an agent. Tasks could be further split
recursively in sub-tasks until elementary tasks are reached.
For example, the assembly of an electric motor (job) requires
the ”pick and place” of different objects (tasks). Each pick
and place task can be decomposed into 2 sub-tasks: ”pick
object” and ”place object”. In turn, pick object is composed
of ”move to object” and ”grasp object”, while place is made
of ”move to target location” and ”release object”.

HFSM are one of the most used methods to model
autonomous agent behaviours. HFSM are essentially finite
state machines (FSM) whose states can be other basic FSM
or HFSM. A basic FSM M is defined as following:

M = {Q, q0, F,Σ, E} (1)

Fig. 1: Task allocation algorithm based on hierarchical finite-
state machines. The framework is composed of four main
modules (task selector, communication instructions, task
allocator and task executor).

where Q is a finite set of states, q0 is an initial (or entry)
state, F is a set of final (or exit states), Σ is a finite input
alphabet, and E a set of transitions, E ⊆ Q×Σ×Q. Further
details on HFSM can be found in [25].

The framework is composed of four modules that represent
the states of the higher level of the HFSM, namely the task
selector, the task allocator, the communication instructor, and
the task executor. Figure 1 shows the state diagram with the
structure of the proposed task allocation algorithm with the
4 aforementioned states.

When started the HFSM, the start signal triggers the
launching of the assembly task and activates the task se-
lection among the assembly operations. Once a new task is
found (new task), the task allocator module is enabled to
find the suitable agent based on the task requirements and
agent information. If the sub-task is assigned to the human,
instructions are provided in textual form in the communi-
cation instructor. Otherwise, the task executor controls the
robot to perform the required operations. Once the task is
performed, task finished is sent back to the task selector to
find the next available sub-task. The assembly finishes when
no more tasks (no more task) are found. The operation of
the 4 main modules will be analysed more in detail.

A. Task Selection

The task selector module is triggered by either the
start signal or the task finished signals. Every task is
composed of state machines that represent the sub-tasks.
This representation feature allows to model the assembly
operations in a comprehensive way with respect to FSM.
This enables the grouping of sub-tasks into relevant assembly
tasks such as the “shaft assembly” or “motor assembly” tasks
shown in Figure 2. Every task outputs a finished task
signal based on the states of its composing sub-tasks. Each
state can be connected to other states in series or in parallel.
The states of parallel tasks are combined using vertical forks.
The output of the module is a sequence made of actions and
sub-actions that presents the assembly operations in a simple
and intuitive way. Once all the tasks have been completed,
the task selector module will output the no more task
signal. An example of this module applied to a crusher unit
assembly (see section III) is shown in Figure 2.



Fig. 2: Task selector finite-state machine, applied to the crusher unit assembly (see Section III). The module is triggered by
the start signal or the task finished signals. Assembly sub-tasks are modelled as finite-state machines.

TABLE I: Example of in-
formation about agents1 .

Agent Info unit
Payload [kg]
Precision [mm]
Reach [mm]
Speed [mm/s]
Force range [N]
Gripper type [-]
Gripping force [N]

TABLE II: Example of infor-
mation about objects.

Object Info unit
Weight [kg]
Position [mm]
Dimension [mm]
Grasping status [-]

B. Task Allocation

This module is in charge of allocating the task input to
the most suitable agent. The structure is shown in Figure 3.
First, the available agents are determined. If some agents are
available, then, based on the task requirements and agent
information, capability of these agents is evaluated. Only
the subset of capable agents will be then used to compute
the allocation. Finally, the task is assigned considering the
current human workload and the agents performance.

1) Availability evaluation: Availability is an important
parameter to consider during the task allocation procedure.
One of the agent might be busy, e.g. currently performing a
task. The module determines the availability state of every
agent based on their current task completion. The user
informs the system that his/her task is achieved by pressing
a button.

2) Capability evaluation: Using the requirements for ev-
ery elementary task and the agents’ and objects’ character-
istics (Table I and Table II), this module determines the ca-
pabilities for the manipulation tasks. Agents’ characteristics
include information such as payload, speed, reach, equipped
gripper type, and gripping force. Basic objects’ characteris-
tics include weight, dimension, position, and current grasping
status (1 = grasped, 0 = not grasped).

The capability of agent i for a task composed of l sub-

0The griping force represents the maximum holding force of the gripper
in Newtons.

1The griping force represents the maximum holding force of the gripper
in Newtons.

TABLE III: Example of capability table for a pick and
place operation with 0 = non-capable and 1 = capable. The
final capability values are determined based on equation (2)
according on their capabilities on elementary tasks.

Capability Agent 1 Agent 2

Pick object (c1) 0 1
Move to object (c1,1) 0 1
Grasp object (c1,2) 1 1

Place object (c2) 1 1
Move to target location (c2,1) 1 1
Release object (c2,2) 1 1

Pick and place object (C) 0 1

tasks, each composed of mj elementary tasks, is defined as:

Ci =

l∏
j

cj (2)

where the capability of task j, cj , given the capability of the
elementary task k of the sub-task j, cj,k, reads as:

cj =

mj∏
k

cj,k (3)

From the above equation, one can observe that an agent
becomes non-capable of realising a task if any of its sub-tasks
cannot be executed. For example, ”Pick object” is composed
of two sub-tasks: ”Move to object”, c1,1 and ”Grasp object”,
c1,2. Its capability results as c1 = c1,1c1,2 (Equation (3)).
See Table III for a complete ”pick and place” operation.

3) Workload: In order to determine an approximation
of the user workload during human-robot collaboration, a
dynamic workload model was established based on virtual
spring systems from our previous work [26]. As shown in
Figure 4, the human skeleton is modelled by kinematics
chains with virtual mechanical elements, creating corre-
sponding joint torques. Torsional springs are attached to the
body joints as depicted in Figure 4. The developed model
considers the upper body part of the human. The joint tor-
sional springs free position is set to the joint angle that leads
to the most ergonomic posture. In this case, these values have
been selected based on the Rapid Entire Body Assessment



Fig. 3: Task allocation finite-state machine. The module is triggered by the new task signal. After the checking of agent
availabilities, capabilities are determined. The situation where both the human and the robot are capable is handled by the
workload state machine that determines if the workload limit is reached. If this is not exceeded, the best agent will be
selected based on the estimated task duration determined by task performance machine.

method (REBA), a standard human ergonomics assessment
method [27]. The figure also shows the locking of the user’s
hand using linear springs in the case of extra constraints from
the manipulated objects. In this work, however, the stiffness
is considered as equal to zero as the hand is allowed to freely
move in space.

Fig. 4: Human body model using virtual torsional springs
attached to the joints: k1, k2, k3, k4, k5 and k6 are the joint’s
spring stiffness [26].

The workload is calculated using the sum of the elastic
energy of the springs [26] that reads as follows:

E =
∑
i

1

2
ki(θi − θ∗i )

2 (4)

where θi and θ∗i are respectively the angle and free position
of joint i. ki denotes the stiffness of joint i. The cumulative
energy at t=T (cumulative workload) is:

W =
1

T

∫ T

0

(E(t)− EL) dt (5)

Where EL represents the workload limit. The latter allows
to set a threshold to avoid non-ergonomic situations that
might involve risks to the worker’s health. In case the human
workload exceeds the limit, the task will be assigned to the
robot.

4) Performance: The performance of every task is evalu-
ated using an estimate of the task duration. This is measured
during fully manual assembly in the case of the human agent
and during the collaborative assembly for the robot. In case

Fig. 5: Experimental setup. The assembly task is per-
formed jointly by the Emika Panda robot and human
wearing the Xsens sensors. Link: https://youtu.be/
EQXSCXVDQkI

the human and the robot are both available and capable, and
the human workload does not exceed the limit, the agent
with the lowest expected task duration will be assigned the
sub-task.

C. Task execution and instructions

Depending on the task assignment, i.e. human or robot
agent, the task executor or the communication instructor is
enabled. The former sends commands to the robot to execute
the desired actions based on the received task data such as
trajectories, gripper openings, torque/force profiles. In order
to assist and guide the user during his/her task, instructions
are displayed to the screen in textual format.

III. COLLABORATIVE ASSEMBLY

The assembly task is realized with the collaborative robot
Panda from Franka Emika as shown in Figure 5. The
dismounted parts of the assembly are laid down on a table
along with the screws and the screwdrivers. The human and
the robot jointly assemble the crusher unit. The sub-tasks are
assigned to one of the agents by taking into account their
capability and availability. Since the robot is not equipped,
in this case, with a screwdriver, the robot is considered as
not capable of performing the screwing task.

The robot is position-controlled at a frequency of 1 kHz
and runs under the Robot Operating System (ROS). The
master node runs on Matlab and receives the online joint

https://youtu.be/EQXSCXVDQkI
https://youtu.be/EQXSCXVDQkI


Fig. 6: The dismounted parts of the crusher unit are placed
on the table at predetermined positions (A). Kitting trays are
used to facilitate the assembly and the manipulation of the
pieces by the robot such as the shaft (B) and motor (C) sub-
assemblies.

angles from the Xsens sensors through a ROS layer. A fixed-
position approach is used where the objects have a deter-
mined position on the table. The locations are saved for every
part. During human interventions, instructions are given via
textual information to the operator. The mapping from the
3D coordinates to the robot joint angles is performed with
the MoveIt planning framework2.

The assembly task consists in assembling the crusher unit
of a smoothie machine by both the human and the robot. The
latter is composed of several parts: blades, spacers, couplers,
etc, as shown in Figure 6. Kitting trays are utilised to set the
position of the objects on table and to orient some parts so
that they can be grasped by the robot (as it can be seen in
Figure 6).

IV. EXPERIMENTAL VALIDATION

The crusher unit assembly consists of 28 tasks, as de-
scribed in Table IV. The related task sequence, from which
it is possible to devise the task selector structure, diagram
is depicted in Figure 7. Sub-tasks are grouped in the form
of “pick and place” operations to avoid the unreal situations
where the pick tasks and concurrent place tasks could be
performed by two different agents.

The cooperative assembly is executed with two different
workload limits. 0.4 and 0.25, respectively. Figure 8 give
the task allocation results of the crusher unit assembly in
these two settings. One can notice that some tasks cannot be
performed by the robot such as the screwing (T16, T17) or
the manipulation of sub-assemblies (T26, T27). In the case
where the workload limit equal to 0.25, the task T20 (pick
and place motor attachment), is performed by the robot since
the workload threshold is exceeded (Figure 9). Thanks to the
hierarchical state machine, it is possible to run parallel tasks
where both the robot and the human perform the required
operations. Thanks to the performance module, the total
assembly time is improved by 31% (workload limit = 0.4)
and 34% (workload limit = 0.25), i.e. compared to a solution
allocated to the same two agents where no parallel tasks are
implemented.

2https://moveit.ros.org/

Figure 9 show the workload throughout the assembly
process with workload limits set to 0.25 and 0.4. This is
computed from the joint angles measured by the Xsens
sensors and determined by the human spring model. One can
observe that the workload limit of 0.25 is rapidly exceeded
in Figure 9a. The robotic intervention during task T20 at
t = 20 s allows to decrease the workload below the latter
value. One can also notice that the workload value at the end
of the assembly is smaller in the lower workload limit case
(0.8 vs 0.9). It should be noted that the performance has
been favoured over the workload. Therefore, to minimise
inefficient waiting times, every time an agent is allocated
once an agent becomes available, a task will be assigned to
him.

V. CONCLUSIONS AND FUTURE WORK
The working condition of the operator is an important

factor during human-robot collaboration, especially in the
context of human-centered approach of industry 5.0. By
assisting the user with the robot, it is possible to reduce
the risk of MSDs and physical fatigue.

This work presented a novel framework that takes into
account multiple aspects of human-robot teams such as
capabilities, availabilities, workload and performances. Hi-
erarchical finite-state machines are used to manage the logic
of the task allocation processes to assign the assembly sub-
tasks to either the human or the robot.

As shown by the collaborative assembly of the smoothie
machine’s crusher unit, the proposed framework is able to
adapt the level of the human assistance during the tasks by
setting the workload limit to the desired level.

Current limitation of the method lies in the use of work-
load and task duration estimations of the user intervention.
Possible improvements include the learning of the task
parameters to better predict and adapt the task allocation to
the human behavior.
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