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Abstract

An improved microwave procedure for detecting defects in dielectric structures is
proposed. The procedure is based on the integral equations of the inverse scattering
problem. A hybrid Genetic Algorithm is applied in order to minimize the obtained
nonlinear functional. Since in nondestructive evaluations the unperturbed object is
completely known, it is possible off-line to numerically compute the Green’s function
for the configuration without defects. Consequently, a very significant computation
saving is obtained, since the “chromosome” of the Genetic Algorithm codes only the

parameters describing the unknown defect.



1 Introduction

Nondestructive evaluation (NDE) and nondestructive testing (NDT) are fields in which
microwaves can play a further increasing role, although this frequency range has been al-
ready recognized to be very important for practical diagnostic applications [1]-[5]. Further
possibilities are offered by combining the diagnostic capabilities of microwaves with the
imaging potentialities of inverse scattering techniques [6]-|9]. At present, electromagnetic
imaging methods, based on inversion procedures, are already widely used in NDE/NDT
applications, mainly with reference to eddy-current approaches [10]. On the contrary,
further work is needed to make microwave-based inverse system to be effective, mainly
due to difficulties related to the inverse scattering problem at microwave frequencies [11].
Such a problem is nonlinear, ill-posed and local solutions may correspond to wrong diag-
noses, in most cases really unacceptable. Recently, iterative procedures have been devised,
which, starting from measured scattered data, are able to define the scattering configura-
tion corresponding to the global minimum. Stochastic minimization approaches are now
rather common in electromagnetics [12]-[15]. The genetic algorithm (GA) is one of the
widest used minimization tools of this kind [16]-[18]. The main limitations of stochastic
optimization approaches concern the rate of convergence toward the right solution, due
to the random nature of the operation involved. Consequently, they are strongly depen-
dent on an efficient parameterization of the problem. In other words, it is mandatory
to limit the search space of the approach and, contemporarily, to reduce the number of
problem unknowns. This goal can be accomplished only if the approach is able to effi-
ciently include the available a priori information into the model. A preliminary version
of this approach, called “Free-space Green’s function Approach” (FGA), was proposed in
[19]. In that paper, the defect to be detected was approximately described by few param-
eters to be determined during the minimization process, which was based on free-space

scattering concepts. However, the main limitations of that approach was the need for



considering the internal total electric field as a further problem unknown. Consequently,
the unknown array contained a parameterization of the distribution of the total electric
field inside the whole cross section. Moreover, the field distribution changes for different
illumination conditions. Then, if a multi-illumination multiview approach is used, the
field distribution must be kept as an unknown for each illumination/view. As a result,
the "chromosomes" coding the trial solutions of the GA are extremely long and mainly
contain unnecessary information. In the present paper, a different approach is considered.
In NDE/NDT applications the unperturbed geometry is a-priori known. This is a key
point which distinguish this problem to other imaging applications. The known unper-
turbed configuration can be taken into account in the forward scattering formulation.
In particular, the inverse problem can be reformulated only involving integral equations
extended to the geometric domain of the defect (estimated at each iteration). The kernel
of the integral equations is the Green’s function [20] for the unperturbed geometry, which
can be computed, analytically or numerically, off-line and once for all. Then, the problem
unknowns are reduced to the parameterization of the defect and to the electric field inside
the defect only. The result is a sharp reduction in the "chromosome" dimension and,
consequently, in the computational time, as will be shown in Sections IV and V, where

several dielectric configurations containing defects are simulated and reconstructed.

2 Mathematical Formulation

Let us consider the cylindrical geometry shown in Fig. 1(a). S is a fixed area on a
plane orthogonal to the cylinder axis (i.e., parallel to the z axis) occupied by an host
medium characterized by known dielectric properties (dielectric permittivity, e (z,y),
and electric conductivity, oy (z,y)) and embedded in a homogeneous external medium,
(€0,00). S includes, at an unknown position (z¢, yc), the cross section D of a cylindrical

homogeneous crack whose shape and material characteristics, (¢, 0¢), are unknown. This



scenario is successively illuminated by a number of known TM-polarized incident fields,

v

E,.(p) =E!. (x,y)z,v=1,..,V, being p = 2% + yy. The working frequency is f.

mc

According to these notations, the electric field E7, (x,y), corresponding to the incident

field E}

v .(z,y), can be expressed as follows [21]:

Ey, (z,y) =E;, x,y)-i—//srs (@', y) B, (2, y) Go (kor) da'dy’ (1)
where G is the two-dimensional free-space Green’s function [20] and

er(z,y)—1— j";(m’g) if (z,y)eSp=S—-D
Ts (2, y) = arfoso (2)
- 1-J5f if (z,y) €D

On the other hand, it is possible to rewrite (1) in a more convenient form:

Egjot ( ) Ezunc (CE, y) + f fS TSp (iE,, Y ) Efot( 1) (‘,LJ’ yl) GO (mﬂ y/m,’ yl) dl”dy’

+ f fD D (xla yl) Ezjot (.Z", yl) GT (:E, y/xlﬂ yl) dm’dy’

where 75, (z,y) is the unperturbed object function given by 75, (z,y) = er(z,y) —
1—-y 27r(f0’33 (z,y) € S, Tp (z,y) is a “differential” object function such that 7p (z,y) =

Ts (2,Y) —Tsp (7,y), and Ey, ;) is the electric field related to the incident field, £, (,y),
for the crack-free scenario. Gy is the Green’s function for the unperturbed structure, which

satisfies the following integral equation

G (.’L‘, y/xl7 y,) = GO (37, y/xlu yl)+// TSp (xllv y”) G (.’L‘”, y”/xlv yl) GO ($7 y/xnv y”) dﬂ?”dy”
s

(4)

Since the sum of the first two terms at the right-hand side of the equation (3) can be seen

as the “incident” field on the crack, once G; has been computed, the scattering problem

is limited to the “differential object” occupying the defect area D.



Numerically, equation (4) can be solved by using the Richmond’s theory [22]. If the region

S is partitioned in N square sub-domains, (4) assumes the following algebraic form

GI, =GY, + Z,anl(m?ﬁk) P G [ 4, Go (@, yn/2",y") d2"dy" n,k=1,..,N (5)

withn=1,..,N,t =k+Agn, k=1,..,N—1,being A;; =0ifi < jorA;; =1ifi > j. In
Eq (5)7 G{Lt = GI (mn: yn/mtJyt)7 G?Lt = GO (mna yn/xhyt)7 and Trf;le = TSp (xmaym) being
(z,y;) the center of the j-th subdomain of area 4;. The computation of G, requires the

solution of NV systems of equations given by

[Gulg, =g, n=1.,N (6)

I

where g and gy are (N — 1) x 1 arrays whose elements are given by 1g ¢ =G
Zn Zn Znl¢ n

, and
{ @n}t = GY,, respectively. Moreover, the (N — 1)x (N — 1) elements of the square matrix
[G] are given by {[G,]}, . = p— Ja, Go (Tu, yu/2",y") da"dy" where u = m+ Ay,
m=1,...,N —1.

Fortunately, as shown in [23], if [G] is a N X N matrix from which [G,] is obtained by
deleting the n-th row and the n-th column, the matrix [G,]™" can be easily determined by

neglecting the same row and column of the matrix [F][G]™" where [F] is a rather empty

matrix whose non-vanishing elements are directly obtained from the elements of [G] as

follows
0 if m#k and k#j
1 if m=k and k#j _
{F} e = . - mkj=1.,N (7)
—W}’:}f if m#k and k=
‘ m if m=k and k=7

In order to detect the presence of an homogeneous crack in the original scatterer, the



crack is approximated by an object of rectangular shape and parameterized by length,
¢, width, w, orientation, #, and center coordinates, (z¢,yc) to be determined during the
reconstruction process. Under this hypothesis, the object function describing the defect

results
Ts — Tsp (x,y) X € [—%é] andY € [_%’%]

(8)

7~—D (.Z', y) =
0 otherwise

where X = (z — z¢) cosf + (y — yc) sinb, Y = (xz¢c — ) sinf + (y — yc) cosh. Moreover,
the internal electric field for the flaw configuration is unknown. Consequently, the re-

construction process is aimed at searching for the unknown array ¥ = {z¢, yc, ¢, w, 6;

E}, (z,y) (x,y) € D} minimizing the following cost function:
O {V} =
~ 2
VA S S |[Eatt @ 9) = Eleaiery @9)] = [ Ip 7 (2,9) By (2, 4') Gi (2, y/a', y) da'dy’| dxdy

(0% obs
- Z 2
V& [ I, | Bleansep) ()| dedy

2
dxdy

B i I Io | Byer) @:9) = Egy (2,9) + [ [p 7o (2, 4) Eiy (21, 4) Gi (2, y/2", y) da'dy’
=1 I o | B (@, )| dzdy
9)

where E:catt(cf) (mﬁ y) = f fS TSp (xl’ yl) E;jot(cf) (xl’ yl) GO (x7 y/xlﬂ yl) da:’dy' (belng E:catt(cf) (CC, y) =
Ebyep (@y) — Efc (z,y)) and Ep, ., are known quantities. After discretization [22],
Equation (9) assumes the following expression:

®{y} =

2

+

a L X ‘[Egcatt (T Ym) — Ecas(er) (Zm, ?Jm)] — Y01 7D (Tns Yn) Efyy (X5 Yn) AnGro
MV 2 2

v=1m=1 ‘Egcatt (xma ym)‘2

‘ 2

ﬂ v % ‘Efot(cf) (xna yn) - E;fuot (.Tn, yn) + Zgjavzl 7~—D (xp: yp) Ez}ot (xpa yp) Apaflp
NV v=1n=1 ‘Ezvnc (‘Tﬂﬂ yn) |2
(10)



where o and S are two regularizing constants, ¢ = {z¢, ye, {, w, 0; Ef, (25, y,) ,p = 1, ..., P},
(zp,yp) € D C S denotes the center of the p-th discretization domain belonging to the
crack area (P being the number of discretization domains of the crack) (Fig. 1(b)), and
(Tm, Ym) indicates the m-th measurement point ((Zm,Ym) € Sops, m = 1,..., M). Ac-
cording to the adopted discretization, it is convenient to assume that ¢, w, € are discrete
variables ¢ = jA,j = 1,...,L, w = iA1= 1,. W, 0 = uAb,u = 1,...,U, being
A = /A, and A# the angular step used for the multiview process.

In order to minimize (10), a suitable GA [16] is used to define a sequence of trial
configurations, ¥, h = 1,..., H, (h being the iteration number) which converges to an

extremum of the functional.

3 Description of the GA-based Optimization Procedure

GAs [16][17] are efficient optimization techniques that mimics the genetic adaptation
occurring in natural evolution. The algorithm processes a population of candidate so-
lutions, E(h) = {qﬁéh),q =1, ...,Q} being @) the population dimension. The quality of
the solutions of the current population is evaluated according to the scalar cost function,
(I>,(1h) = {1/1(5’”}. The individuals that achieve higher fitness values (corresponding to
lower values of the cost function) are more likely to be selected as parents and generate
new solutions (called offspring) by means of crossover and mutation. Generally, crossover
promotes the exchange of genetic information among elements of the population. The off-
spring are subject to mutations, which randomly modify the genetic structures of trial
solutions in order to create new variants. The current population is replaced by the newly
generated group of offspring, E(h) = E(Hl). The evolutionary procedure terminates either
if a maximum number of generations elapses (h = H) or a fixed value of the cost function
is reached (@E)ZZ) = ming {@gh*)} < 7, n being the convergence threshold and h = h* the

iteration of convergence).



In order to deal with NDE/NDT problems, it is necessary to customize the GA by
defining a suitable encoding procedure and, accordingly, genetic operators. In this respect,
too, the new procedure (named “Inhomogeneous Green’s function Approach” - IGA) is
very different from the one proposed in [19]. In particular, hybrid-coded variable-length
chromosomes are used, in which each trial solution, ¥;¢c4 = {z¢, yc, L, w,0; E, (2p, Yp) , 0 = 1, ..., P},
(zp,yp) € D C S, is coded by using the concatenated multi-parameter scheme (Fig. 2(a)).
The use of a variable-length chromosome is necessary due to the variable dimension (i.e.,
different crack area in correspondence with different trial solutions) of the domain where
the unknown field is computed. On the contrary, the FGA approach considers hybrid-
coded fixed length chromosomes (being ;¢4 = {zc, yc, L, w, 0; Ep, (2p, ¥p) , 0 = 1, ..., P},
(xp,yp) € S the corresponding trial solution) due to the fixed dimension of the area where
E}, (z,,y,) is computed (i.e., the host medium area, S).

As far as the genetic operators are concerned, the mutation operators are defined
according to [19] and the crossover is modified in order to allow variable-length chromo-
somes. In more detail, Fig. 2(b) describes the crossover operation when the cross-position
lies into the binary part of the chromosome and the defect of the produced offspring oc-
cupies a number of sub-domains equal to or smaller than that occupied by one of their

parent (P{") < maz, {Pq(bh)}, a, b=1,2), being

(R) (R)
r{B(apwn) }, "+ () Blo(@nun) }

v h+1
{Etot (mpvyp) 511+ ) = 2 , b= 17 --'7Pq(1h+1) (11)
(= { Boelonin) } o +r{Etoy@pn) } o
(B () = ey o eethiy, -y )
P =M x j) and r € [0,1] is a random number. On the other hand (Fig. 2(c)), if

PMHD) > max, {P;b’l)}, a, b=1,2, then

Ga

v h v
{E}, (xp,yp)}ga“) = Etot(cf) (Tp,Yp) s P= (maxb {Pq(f)} + 1) ees Pq(ahﬂ) a, b=1,2

(12)



Moreover, Fig. 2(d) illustrates the crossover when the cross-position lies into the real
part of the chromosome. Let us assume that P > P{® q # b and let be p = p, the

crossover position. Then, the real-part of the chromosome results as follows

) h
v (h+1) { B (xp, yp)}gb) p=1..p¢
{Etot (x;ﬂ’ yp)}qb = (h) N
{Eb, (xp’yp)}qa p= (pC+1)""’P¢1(b)
{Egot (‘IP: yp)}((;:) p= 1: -y Pe (13)
v (h+1) _ v
(Bt @pvo) by, =4 {BL @)} p=(pe+1),..., PP

Efot(cf) (p, Yp) p= (Pq(bh) +1) ""’Pq(«:t)
4 Numerical Results

In this section, selected numerical results are shown in order to assess the effectiveness
of the proposed approach. For illustrating the dependence of the reconstruction quality
on the most critical experimental and numerical parameters, an exhaustive numerical
analysis has been performed, which is deeply analyzed in the following. Toward this end,

the following experimental parameters and error figures are defined:

e Signal-to-noise ratio (SNR):

2
1‘1/:1 Er]\rle |Egcatt (.’L‘m, ym)|
2MV o2

notse

SNR = 10logy, (14)

2

where o ;..

is the variance of the additive Gaussian noise (with zero mean value).

e Error on the location of the center of the crack, d¢:

(15)

dma:c

~ \2 ~ \2
S = 10[0910{\/(950 Zo)” + (Yo — o) o 100}

being (Z¢, Jc) the estimated coordinates of the crack, and d,,q, the maximum error

in defining the crack center when it belongs to the host scatterer.

10



e Error on the estimation of the crack area:

Ao — Ac

5A = 1Olog10 {‘ A
(&

X 100} (16)

where A¢ and Ac are the estimated and actual crack areas, respectively.

e Index of the convergence rate:

Poga — b7
A _ "FGA IGA 17
conv H ( )
where hj;4 and h};4 are the number of iterations required to attain the convergence

threshold with the FGA and the IGA, respectively.

As far as the reference scenario is concerned, let us consider a square homogeneous cylinder

[ = é/\ in side characterized by an object function 75, = 1 and probed by V = 4
plane-wave incident fields given by EY,, (z,y) = e Jkolecos¢”+usind®) heing ¢v = (v — 1) 27,
v = 1,...,V. The values of the scattered electric field have been collected at M = 81
equally spaced measurement points located on a circular observation domain (r = %)\
being the radius). In order to simulate noisy data for assessing the sensitivity of the
method to the noise, a white Gaussian noise has been added to noiseless data (numerically
computed by solving the direct problem) with decreasing values of the SNR from 30 dB
to 2.5dB.

According to the guidelines suggested in [14|[18], the following parameters of the GA
have been assumed: @ = 80, P, = 0.7 (crossover probability), P, = 0.12 (mutation

probability), and Py, = 0.01 (“bit” mutation probability), H = 600, and n = 107°.

11



4.1 Impact of the Crack Dimensions on the Reconstruction

The first computational test is aimed at evaluating the reconstruction accuracy for dif-
ferent dimensions of the crack. Toward this end, a void crack (rp = 0.0) is centered
at point zc = yc = %. The area of the flaw changes from Ac = 25 x 107*A? to
Ac = 25 x 1072X%. Such a configuration has been earlier treated in [19]. In Figure
3, a color-level representation of the error figures related to the crack reconstruction of
the IGA and FGA methods are shown. As far as the crack location is concerned (Figs.
3(a) and 3(b)), the performances of the IGA method turn out to be similar to that
achieved with the FGA approach as confirmed from the average values of the localiza-
tion error (av{dc};qq = 7-55dB and av{dc}ps4 = 8.0dB). However, the proposed

method considerably overcomes our previous technique [19] in estimating the crack area

(av{0a};qa = 12.0dB versus av {04} oy = 17.0dB).

4.2 TImpact of the Crack Position on the Reconstruction

Another test of the IGA concerns the reconstruction capabilities of the approach for
different positions of the defect inside the host medium. In this example, the crack (being
Ac = 25.6 x 1073\?) is moved along the diagonal of the host medium from the center to
a distance equal to d = 0.49). Figure 4 shows the reached results in term of error figures.
As for the FGA method (Fig. 4(b) and 4(d)), the errors in the reconstruction do not
depend on the crack position. For the IGA, too, the impact of the location of the crack
inside the host medium can be reasonably neglected and the resolution of the algorithm
is strongly related to the signal-to-noise ratio. However, starting from SNR = 15dB,
the IGA procedure guarantees a significant improvement resulting in a localization error

lower than 6 dB (being av {dc};o4 = 13.6dB) and {d4},;,4 < 10dB.

12



4.3 Impact of the Host-medium Conductivity on the Reconstruc-
tion

The final example concerns a more complex scenario in which the defect lies into a lossy
host medium with constant complex contrast. The crack, 0.2\-sided, is centered at the
point zc = yo = 0.1\ inside an host medium whose conductivity is varied from o; = 0.1 %
to oy = 1.0 % The improvement of the quality of the reconstructions by using the new
method is clearly pointed out in Figure 5 where the error figures yielded by the two
methods are shown. The enhancement in the reconstruction accuracy is evident for both
the location (Figs. 5(a)-5(b)) and the estimation of area of the crack (Figs. 5(c¢)-5(d)).
In more detail, the capabilities of the proposed approach can be highlighted by observing
that 12dB > {0¢};54 = —50dB (24dB > {6¢} ;54 > 12dB) and av {04}, = 12.24dB
(av{0a}pgs = 18.22dB).

5 Computational Issues

A key point in developing an inverse scattering technique for NDE is the computational
load. Generally speaking, the main drawback of numerical methods based on evolutionary
codes lies in the large computational time. Such a time should be strongly decreased in
order to considerably reduce the overall turnaround time for diagnostic work. In this
framework, the IGA method significantly improves the results achieved with the FGA
approach [19] not only in term of the resolution of the imaging procedure but also from
the point of view of the computational effectiveness. The computational effort required
by the IGA approach is substantially lower, so that a reliable solution can be achieved in
about é of the time necessary for the FGA. Such a result has been achieved with a strong
reduction of the time needed to complete each iteration and by increasing the convergence

rate of the procedure. Table I gives an idea of the computational saving allowed by the

13



IGA. It results that each iteration took on an average approximately 1.35 sec and 3.36 sec
for the IGA and FGA methods on a PC computer (Intel Celeron Mobile 600 M H z - 64 Mb
RAM), respectively.

Moreover, the reduction of the search space with the use of the Green’s function for the
unperturbed configuration yielded an increase of the convergence rate of the optimization
procedure. In order to highlight this key point, the average number of iterations required
to achieve a solution is reported in Table II. As expected, it can be observed that the
ratio £* = % results greater than 2.5 ranging from 2.71 to 3.37. For completeness,

Figure 6 shows the index of the convergence rate for all the test previously described.

6 Conclusions and Future Developments

An improved inversion technique for electromagnetic evaluation and testing has been
proposed. The approach combines the capabilities of a customized hybrid-coded genetic
algorithm in finding the global minimum of a functional with the effectiveness of the use of
the Green’s function for the unperturbed configuration. The results of several numerical
simulations have been presented in order to evaluate the location accuracy of void cracks
even in presence of significant noise levels in the input data as well as in dissipative host
media. The new approach allows a significant computational saving by including, in an
efficient way, the a-priori knowledge available on the unperturbed configuration.

As far as the future developments of the proposed method are concerned, the arising
reduction of the overall computational burden (in term of memory saving and increasing of
the convergence rate) seems to indicate a possible extension from the two-dimensional case
to the three-dimensional situation making 3D NDE/NDT problems “reachable” by means
of electromagnetic-based techniques. However, it will be possible to furtherly investigate
this possibility when suitable test-cases (or complete benchmarks) will be available and

a further improvement of the measurement techniques (and experimental apparatus) will

14



be achieved in order to prevent measurement errors and to reduce the effects of the

measurement noise.
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FIGURE CAPTIONS

e Figure 1.

Problem Geometry. (a) Two-dimensional scenario and (b) cell numbering.

e Figure 2.
Example of (a) a hybrid-coded variable-length chromosome (P = ix j). Single-point
crossover when the crossover point belongs to the binary part of the chromosome

and (b) P"+D < mas, {Pq(bh)}, a,b=1,.2 or (¢) PV > maxz, {Pq(;’)}, b=1,2.
Single-point crossover when the crossover point belongs to the real part of the chro-

mosome (d).

e Figure 3.
Reconstruction errors for different areas of the crack and for different values of
the signal-to-noise ratio. (a)(b) dc, and (¢)(d) da. (a)(c) IGA and (b)(d) FGA

procedures.

o Figure 4.
Reconstruction errors for different positions of the crack and for different values of
the signal-to-noise ratio. (a)(b) dc, and (¢)(d) 4. (a)(c) IGA and (b)(d) FGA

procedures.

e Figure 5.
Reconstruction errors for different values of the electric conductivity of the host

medium and for different values of the signal-to-noise ratio. (a)(b) d¢, and (¢)(d)

da. (a)(c) IGA and (b)(d) FGA procedures.

e Figure 6.
Convergence rate estimation: (a) Acony = Acony (A, SNR), (b) Acons = Acony (%’ SNR),
(C) Aconv - Aconv (UI, SNR)
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TABLE CAPTIONS

e Table I.

Times required for each iteration of the minimization procedure.

e Table II.
Number of iterations necessary to achieve the convergence of the iterative procedure.

(a) Test case 1, (b) Test case 2, (c) Test case 3.
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Tmin Tmax Tav

FGA 2.0 3.88 3.36

IGA 0.4 1.70 1.35

Tab. I - S. Caorsi et al., “Improved Microwave Imaging Procedure ...”
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Test Casel | Test Case2 | Test Case3
av{hhca}t 329 322 439
av {hic ) 121 110 130
¢ 2.71 2.92 3.37

Tab. II - S. Caorsi et al., “Improved Microwave Imaging Procedure ...”
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