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Abstract—Availability of multitemporal (MT) images, such as
the sentinel-2 (S2) ones, offers accurate spatial, spectral and tempo-
ral information to effectively monitor vegetation, more specifically
agriculture. Agricultural practices can benefit from temporally
dense satellite image time series (SITS) for accurate understanding
of the phenological evolution and behavior of crops. Developing
techniques that deal with high spatial correlation and high tem-
poral resolution requires a shift in the processing paradigm and
poses new challenges in terms of data processing and method-
ology. This article presents an automatic approach to large-scale
precise mapping of small agricultural fields based on the analysis
of S2-SITS at Country level. The approach deals with a flexible
and automatic processing chain for massive data and was tested
at Country level. The large-scale application requires to consider:
the management of big amount of data with particular attention
to download and pre-processing of S2-SITS; and MT fine char-
acterization of crop fields accounting for the strong variability in
size and phenological behaviors when mapping at large scale. Both
challenges are addressed in an automatic way by exploiting and/or
updating state-of-the-art methodologies. Promising results have
been obtained and validated over 2017 and 2018 agrarian years
for Italy.

Index Terms—Large-scale mapping, multitemporal (MT), pre-
cision agriculture, satellite image time series (SITS), sentinel-2 (S2).

I. INTRODUCTION

NOWADAYS the access to multitemporal (MT) remote
sensing (RS) images at high spatial and spectral reso-

lution has greatly improved (e.g., with S2 data), resulting in
a high amount of information for large-scale mapping with
high accuracy. In addition to advances in the technology for
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RS data collection, there have been important scientific and
methodological developments in processing the vast quantity
of MT RS data [1]. In this article, two issues exist: data prepara-
tion and data exploitation. The former guarantees homogeneity
and reliability of data from download to pre-processing, and
includes data quality check. As the spatial scale of analysis be-
comes larger (i.e., Country or continental level), this step should
become completely automatic and flexible [2]–[5]. The latter
deals with the generation of user dependent informative layers.
Most activities in this article have been based on supervised
machine learning that rely on training samples [6]–[9]. Training
samples collection is a critical problem which scales up as scale
becomes larger (e.g., multiple S2 tiles or Country level) [10] and
time series longer. Furthermore, supervised machine learning
methods work effectively when applied on a user-defined study
area, but they tend to fail (despite transfer learning and domain
adaptation paradigms) when applied across large space and time
scales [11]–[14]. This happens because the target classes are
highly variable and embedded in a heterogeneous and complex
natural or anthropogenic landscape, and insufficient training
samples are available to adequately represent the high and fast
spatio-temporal variability. Agricultural areas are an example
of significant variability across space and time, even over small
scales (for example inside the same Country) in terms of both
size and phenological behaviors over time.

In the era of big data, data preparation and homogeneity re-
quires methods and platforms for a better and easier management
[2], [5], [15]. In the case of United States, in March 2012, the
government proposed the “Big Data” initiative. This project
focuses on improving the ability to extract knowledge from
large and complex collections of digital data [16]. In the specific
case of RS, the Earth Observing System Data and Information
System [17] project is the one to provide end-to-end solutions
for managing NASA’s Earth science data. This program is one
of the most advanced ones at the moment, but does not offer a
high performance computing (HPC) option, letting the task of
processing to the users. For Europe, in 2013, the European Com-
mission adopted the largest research and innovation program
“Horizon2020” to support the implementation of big data related
projects. In this article, several projects have been launched in
order to guarantee availability and management of platforms
for HPC and data storage [2], [5], [15], [18], [19]. Several
other institutions and agencies have been investing in the same
direction. Such is the case of the European Space Agency (ESA)
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that through the Copernicus program makes use of the data and
automation access services (DIAS) platforms/environments [2],
in order to process all their Earth Observation data. DIAS allows
to access/process most of the Copernicus Sentinel satellites
data and services, but also has some limitations due to costs,
full availability of processed/corrected data and or corrupted
data systems. An alternative to NASA and ESA is the Google
Earth Engine platform [15], that is a planetary-scale platform
for Earth science data and analysis. It makes available most of
the open access satellite data from the global space agencies and
allows online analysis/processing/access of/to data. It has some
limitations (given its free nature) in terms of amount of data
that can be processed and downloaded and in terms of highest
processing level data availability. Such is the case of S2 L2A
level, only available since March 2017, thus limiting analysis of
older data [20]. Therefore, local strategies are required that allow
us to handle and process the data in an automatic and effective
way. Every existing service has possible limits, but any can be
used depending on user needs and possibilities.

Preprocessed and homogenized data become the input for
information extraction. In the specific case of precision agri-
culture, several efforts have been made in the literature to map
information at both small and large spatial scales. This includes
both identification and separation of single crop fields and ex-
traction of phenological information for agricultural areas map-
ping. A crop mapping method effective on different agricultural
areas in China was proposed in [21]. The algorithm applies an
adaptive Savitzky–Golay filter to smooth enhanced vegetation
index time series derived from MODIS surface reflectance data
and an iterative time moving-window to map the crop cycles.
Another study proposed a hierarchical crop mapping protocol,
which applies a decision tree to MODIS normalized difference
vegetation index (NDVI) time series for large-area crop mapping
in US [9]. However, the spatial resolution of MODIS is too
coarse for small crop fields. Other researchers have focused
on satellites with higher spatial resolution (30 m or higher)
to produce detailed cropland maps for both large and small
crop fields [22]–[29]. Yan and Roy [22], [28], proposed a web
enabled landsat data time series object-based approach to enable
a robust agricultural field segmentation together with a water-
shed algorithm to decompose connected segments belonging to
multiple fields in Texas, California and South Dakota. While
this method works at high spatial resolution, it has been applied
to large single cropping cycle fields (US scale) only. In [23],
a detailed spatial analysis is presented that is able to extract
subboundaries over already detected crop fields. To do so, the
method heavily relies on an already existing crop field map and
on high spatial resolution data from SPOT sensor (less than 5 m).
Due to SPOT data availability, it is highly limited to small scale
analysis. The Sen2Agri tool exists that is able to deal with both
Landsat and S2 data and works at large-scale [29]. Sen2Agri
generates annual cropland and crop type masks, but its accuracy
is highly dependent on in-situ data and requires to download
data locally. A first attempt to generate an automatic method
that maps small crop fields (with S2 data) in an intensively
cultivated area of Barrax in Spain has been proposed in [24],
with further details presented on [25]–[27]. While the method
removes some of the limitations from other existing methods
in literature, it has been demonstrated on small-scale test site

only and under the assumption of no cloudy time series (cloudy
images have been removed manually). Accordingly, there is the
need to develop an end-to-end automatic strategy that allows to
study large-scale areas with strong variability of crop-field size
(from very large to very small ones) in an automatic way and
adjustable to local/different conditions (e.g., phenology) arising
from working at Country level.

This article aims at proposing a flexible and automatic crop
mapping method by taking into account large-scale mapping
challenges in S2 satellite image time series (SITS—high spatial
resolution) at Country level [25], [30]. To achieve this goal, two
research questions are targeted: how to handle big amount of
data with particular attention to download and pre-processing of
S2-SITS; and how to perform multitemporal fine characteriza-
tion of crop fields accounting for the strong variability in size
and phenological behaviors when mapping at large scale. The
proposed approach deals with data preparation and preprocess-
ing at large-scale from end-to-end by introducing a set of steps
that guarantee reliable data. Moreover, the approach focuses the
attention on precision agriculture of small crop fields (while
preserving the capability of state-of-the-art methods to deal
with large ones) and introduces robust strategies to handle high
amount of large-scale data. The system has been applied to entire
Italy for the 2017 and 2018 agrarian years (from November 2016
to October 2018) with S2-SITS in order to generate products for
precision agriculture at Country level.

The rest of this article is organized as follows. Section II
introduces the proposed method for precise mapping of small
agricultural fields in large-scale with S2-SITS. Section III de-
scribes the dataset as well as the validation process. Section IV
presents the general results for the entire Italy, as well as detailed
results for the different stages on three S2 tiles over Italy, used
for validation. Finally, Section V draws the conclusions and
illustrates future works.

II. PROPOSED APPROACH TO AUTOMATIC LARGE-SCALE

MAPPING AND MONITORING OF AGRICULTURAL

FIELDS WITH S2-SITS

The proposed approach addresses two main problems, be-
ing data preparation and data analysis. The former deals with
the automatic download and pre-processing of S2 SITS, at
large-scale, to guarantee reliable data. The latter deals with the
characterization of agricultural areas with S2 images at both
single/small and large crop field level accounting for strong
phenological variability. The whole process applies at Country
level in an automatic way, tile by tile, to parallelize (if processing
infrastructure allows) and thus speed up the process. The only
input from the user is a shape file of the Country and the
agrarian year to be studied. Fig. 1 shows the block scheme of
the proposed approach to precise mapping of small agricultural
fields in large-scale S2 SITS. Details of each step are provided
in the following section.

A. S2-SITS Download and Pre-Processing at Large-Scale

The first step deals with data retrieval and reliability at Coun-
try level. The task is complex and requires a high automation
level. Fig. 2 shows the block scheme of the proposed automatic
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Fig. 1. General block scheme of the proposed method.

downloading and preprocessing of the S2 SITS at large-scale.
The process has been designed to mitigate the impact of prob-
lems raising while working with large-scale data. Here, we take
advantage of the official API documentation prepared by ESA in
order to search, download and retrieve Sentinel satellite images
from the copernicus open access hub (Sci-Hub). This option
exists for any programming language (e.g., Python) [31], [32].
Taking into account the Country shape file and the agrarian
year of interest, a list of tiles falling inside the area of interest
is created and a parallel search is conducted tile by tile. The
Sci-Hub limitation to download two images at the same time
per user account (to ensure download capacity for all users [32])
creates a bottleneck on the processing chain. This is an issue
that applies to any user working outside any project or without
access to a DIAS, where data is usually already available.

Since information extraction over agricultural areas implies
the use of physical variables, L2A images are required. With
the list of tiles to download, the query starts by searching for
available L2A level images. Since the amount of data acquired by
the Sentinel sensors is huge, ESA has decided to start archiving
some of the images acquired in the past. These images are still
available under user request, and it takes around 24 h to obtain
the access. Thus, the proposed algorithm places the request
for data to download when it becomes available. As per ESA
communication, S2 images at L2A level are not available for
all the years/acquisitions, neither they will be in the near future.
Therefore, once the querying and download process ends over
available L2A images for each tile, it repeats the process for
the L1C level images. Similar to L2A level images, there are
some L1C images that have been archived, the same process
as per L2A images is followed. While L2A images are already
atmospherically corrected, L1C ones are not. The processing of
L1C to L2A level can be performed by several methods, offering
different quality levels [33]–[35]. The selection of processing
method is up to the user. In this article, it is performed by
automatically triggering the Sen2Cor v.2.5.5 (or higher) with
SRTM DEM [35] routine.

Since the huge amount of data makes the probability of data
corruption non-negligible, a step of data integrity verification
is automatically conducted (i.e., no missing bands at any spa-
tial resolution—see [36]—or no unadvertised corrupted images
from Sen2Cor). The final step checks if all requested images
from the archive have been downloaded and preprocessed. The

block scheme in Fig. 2 illustrates the procedure that mitigates
the impact of the different problematics raised by working at
large-scale. A maximum execution time and a new query of the
processes is set to guarantee that the automatic procedure does
not exceed temporal limits (e.g., running out of processing time,
missing images at the time of query, etc.).

This step produces temporally dense SITS of S2 im-
ages acquired over the same geographical area in one agrar-
ian year [t1, tN ] with (n ∈ [1, N ]). Let us define this out-
put as SITS ={X1, X2, X3, . . . , XN}. Let us assume that
Xn(n = 1, . . . , N) in SITS has size I × J . S2 SITS can be used
for information extraction. Here we focus on a precise mapping
of small crop fields in agricultural areas.

B. Small Crop Fields Agricultural Areas Characterization

This step uses as input the pre-processed S2 SITS and an
agricultural areas map. The latter can be of any origin and might
sometime contain both agricultural areas and other vegetation
classes with a similar behavior to that of crops. For example,
it can be a cadastral map, an ad-hoc map generated for the
considered test site (by photo-interpretation), a map derived
from RS data, etc. These maps are usually built by considering
single date information, thus being inaccurate or incomplete.
Because of this, such maps are only used as an initial reference
to be tuned by following steps. Inspired by the method in
[24], here we introduce a set of implementations to work at
large-scale (see Fig. 3). The small crop fields agricultural areas
characterization at large-scale with S2 images is based on three
main steps: spatio-temporal fusion; time series reconstruction,
and crop parameter estimation. Let as assume that an agricultural
area map is available; the area is intensively cultivated; different
crop types are cultivated; and crop fields exits being small but
have an area larger than 3-4 ha (because of S2 spatial resolution).

1) Spatio-Temporal Fusion Step: In this step, an MT crop
field map is generated that contains only areas cultivated over
an agrarian year. Given the S2-SITS a fusion is performed over
space and time to detect spatio-temporal homogenous areas. In
[24], spectral and spatial information derived from the NDVI
is exploited in a cumulative way over the entire S2-SITS over
a small area. While aggregating this information in time, the
method applies two thresholds (one over the spectral variable
and another over the spatial one) that allow to separate among
crop fields by exploiting the temporal phenological behavior of
vegetation. When applying the algorithms to several tiles (even
neighboring ones), the method tends to fail both in terms of
spatial and temporal locality, due to the variability of cultivation
practices and the presence of crop fields with highly variable
sizes (large to small). This problem becomes even more critical
as the number of suitable S2 images varies abruptly from one
agrarian year to another and as the scale becomes larger. To
improve reliability and flexibility of the method over large-scale
areas and with variable number of images, we designed a spatio-
temporal fusion step as shown in Fig. 4. We use the agricultural
area map for a first separation between regions dedicated to
agriculture and those that are not. Since this map might contain
other classes than just crops, it is tuned by analyzing the NDVI
over time. Every NDVI image (XNDVIn (n ∈ [1, N ])) in a given
SITS is evaluated according to a threshold 0 < T < 1 that
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Fig. 2. Block scheme of the proposed S2 SITS download and preprocessing at large-scale.

Fig. 3. Block scheme of the S2 agricultural areas characterization [24].

separates crops (ωc) from other types of vegetation (ωov – i.e.,
forest, grasslands and/or shrubs). The value of T is expected to
remain the same along different agricultural areas. Therefore,
it is rather easy to set it up by fast trial and error [24]. An MT
cropland mask (Xcroplandmask ) is therefore defined as

Xcroplandmask =

⎧⎨
⎩ωc, if

(
n=N∑
n=1

(XNDVIn > T )

)
≥ 1

ωov, otherwise
(1)

Xcroplandmask includes only cultivated areas in the studied agrar-
ian year [24].

Let Ωf (f ∈ [1, F ]) be the set of F fields in SITS. Ωf includes
both cultivated and fallow crop fields. Let us assume that crop
fields in Xn (n ∈ [1, N ]) are cultivated with different types of
crops, that intensive crop rotation is practiced in the area and
that crop fields might be small, but not smaller than 3-4 ha (limit
by S2 spatial resolution). Once the NDVI and the MT cropland
mask (see Fig. 4) are extracted, the proposed approach proceeds
as follows.

1) Extract the ten least-clouded images in the pre-processed
S2 SITS equally distributed along the agrarian year. This
selection is made based on the cloud coverage informa-
tion offered by the scene classification map produced
by Sen2Cor during the atmospheric correction process
[35]. This step is performed only for the spatio-temporal
fusion step and results in an equal number of images per
year. This guarantees the processing of the same amount
of data across different tiles in Italy.

2) Compute a gradient product collection by means of a
Sobel operator in order to highlight crop boundaries.
Other operators such as Prewitt, Roberts, Canny, Lapla-
cian of Gaussian, Scharr and Hough can be used [24].
In our tests, the Sobel one was the one offering the best
performance.

3) Compute the following.
a) Mean pixel gradient intensity.
b) Maximum pixel gradient intensity.

This step is applied to reduce the variability across
tiles in Italy.

4) Compute an edge intensity product (E(i, j)) by
multiplying the products obtained in steps 3.a and
b;

5) Create a binary object-mask by thresholding E(i, j)
(Tedge) as

Tedge = k ×
∑I,J

i,j E(i, j)n
I × J

(2)

where k is a factor that changes in an iterative way and
E(i, j) is the edge intensity image.

6) Label the objects in the initial object-mask (Xmask1
).

7) Compute the variance (σ2) of each object over the ten S2
images obtained in step 1.
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Fig. 4. Detailed block scheme for the spatio-temporal fusion step.

8) If σ2 of a given object is higher than a pre-set tolerance
value (Tv), then increment Tedge value. This is done by
decreasing the value ofk ∈ [2.0, 1.0, 0.75, 0.50, 0.25].

9) Repeat steps 4 to 8 for all objects with σ2 > Tv;
10) Combine objects in an object mask Xmaskz

, with z = k
(k = 5 in the steps).

11) Label the objects in Xmaskz
to obtain the MT crop field

map with Ωf = {ω1, ω2, . . . , ωF }.
Morphological steps are applied to each combination or

thresholding stage in order to remove crop fields below a min-
imum area criterion. The proposed spatio-temporal fusion step
allows for both a more robust generation of crop field map (w.r.t.
what proposed in [24]) and a reduced computational time at
tile level (ten times faster). The selection of parameters heavily
impacts on error reduction. Different tests and trials were carried
out in order to set up the steps.

2) Time Series Reconstruction Step: In this step, S2 SITS
continuous in time are generated. This is done over the entire
pre-processed S2 SITS (not over the ten least clouded images
as in the spatio-temporal fusion step). Three steps are followed
[24].

1) Definition and extraction of NDVI-SITS sets.
2) NDVI-SITS data imputation by upper-envelope and with-

drawn strategy and.
3) Adaptive nonparametric regression of augmented NDVI-

SITS based on a multilayer perceptron neural network.
Working over large-scale data means having higher data

variability. Thus we observe seasonal (winter/summer) crops,
crops with one or more cropping cycles, fallow crops, permanent
crops (e.g., vineyards) and specific agricultural practices (e.g.,
hail nets on top of the crops) that affect the NDVI response.
Not to mention the higher variability in atmospheric conditions
that result in lack of information (i.e., due to too many clouds
in a certain area). To mitigate these issues, and to render the
method robust at large-scale and at different agrarian years, two
strategies were followed:

1) Filtering out local NDVI minima from the upper-envelope
NDVI-SITS (see [24] for details on how to obtain the
upper-envelope curve). The filtering process consists on
locating and eliminating from the NDVI-SITS spectral-
index value smaller than a threshold (w.r.t. the immediate
neighbors). If the NDVI value does not follow an ascend-
ing or descending trend from one date to another, then the
spectral-index value is not informative w.r.t. the regression
mechanism and the phenological cycle of crops. Thus, it
can be removed without loss of information;

2) Using an effective non-parametric regressor like the gen-
eral regression neural network (GRNN—[37]) with an
adaptive regression strategy. The adaptive strategy con-
sists in iterating over the Gaussian kernel standard devia-
tion (σ) in GRNN until the mean square error (MSE) (w.r.t.
a linear regression) falls below a threshold value. The
initial σ is chosen to be restrictive in a range [0,[1], thus
favoring a greater NDVI-SITS smoothing factor. While the
MSE value is greater than a given threshold,σ is decreased
and the regression iterated. The initial σ can be also bigger
than 1, thus taking more time to converge to the desired
MSE. While testing the different σ values, it was found
that a smaller σ allowed the GRNN to better mimic the
linearly regressed NDVI-SITS, thus preserving more of
the high frequency components of the original signal.

These two strategies make the approach more robust while
moving from small to large scale. As for the spatio-temporal
fusion step, the computational time was reduced (w.r.t. [24])
by implementing this strategy, together with the use of the
groupby(.) function offered in the Pandas library for python [38],
that demonstrated to be more efficient than others in combining,
splitting, and conducting operations with time series and large
amount of data. Such is the case of the time series reconstruction
step, where mean NDVI values are calculated for every crop
field. Any other function or strategy can be used instead with
negligible impacts on the performance, but computational time.
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Fig. 5. Study area and corresponding S2 tiles.

3) Crop Parameter Estimation Step: In this step, phenolog-
ical parameters are extracted at single crop field level, and the-
matic/informative maps are generated that allow for the detailed
mapping and monitoring of agricultural areas. This is done
by using the methodology in [27], given that the method is
based on basic mathematical rules and the way in which the
continuous NDVI-SITS are obtained does not affect them. Let
us recall that the more precise the temporal series is (the closer
the NDVI-SITS is to real acquisitions), the more precise the
phenological parameters will be. Here, resides the relevance of
implementing this step.

III. STUDY AREA AND VALIDATION PROCESS

A. Dataset Description, Pre-Processing, and Ground Truth

The proposed approach was applied to S2-SITS acquired
over Italy in the agrarian years 2017 (from November 2016 to
October 2017) and 2018 (from November 2017 to October 2018)
(see Fig. 5). The Italy-study area comprises 60 tiles or granules
defined in the military grid reference system covering the entire
Italian peninsula. Fig. 5 shows Italy (dashed silhouette) and the
location of tiles required to cover the Italian territory with S2
images. S2 tiles are identified in the UTM projection and WGS
84 geographic coordinate system. Granule 33TTG (located over
Rome) was removed due to the strong overlapping with the
granule 32TQM (shown in light green square in Fig. 5). In
practice, images from these two granules are duplicated. Taking
into account the 60 tiles and the two agrarian years, a total of
19.660 images (data amount of about 12.97 TB—binary based
unit, i.e., 1 TB = 1024 GB) were downloaded and processed.
The time required to download and preprocess the data is highly
dependent on internet connection and machine capacities. In our
case, using a 16-cores processor with 16GB of RAM, we were
able to perform this task in approximately 15 days.

TABLE I
AVAILABLE S2 IMAGES PER TILE AND AGRARIAN YEAR

B. Validation Datasets

A total of 4 out of the 60 available tiles (32TPQ, 32TPR,
32TPS, and 33TXE, as shown in Fig. 5) were used for validating
the proposed approach. Their selection was based on maximiz-
ing agricultural areas variability (in terms of both crop-type to
crop field area) over Italy and according to availability of open
free reference information to validate. To give an idea of the
variability among tiles and among years, Table I gives the total
number of S2 images available per agrarian year and per tile
(including cloudy images). Other than variation in number of
tiles, we observe heterogeneity in terms of: number of crop
fields; size of crop fields; environmental conditions (from alps
to Padana Valley); and kind of cultivation. We further observe
large fields in flat areas, medium to large fields in humid areas
and small to medium fields in mountainous areas. Further details
regarding the four tiles reference data are provided below.

1) Emilia–Romagna Region—32TPQ Tile: The validation
dataset for the Emilia-Romagna region is published since 2008
by ARPAE and the Assessorato Agricoltura della Regione
Emilia–Romagna [39]. They co-founded the Classificazione
delle cOLture in atto tramite Telerilevamento project as a tool to
identify and spatially quantify crops and the related water needs
for the Emilia–Romagna region. The study area covers 11.800
km2 and is focused on the agricultural area. The classification of
crop fields is performed by means of the analysis of MT images
acquired by optical satellite sensors (e.g., mainly U.K.-DMC2
and Deimos-1, Sentinel-2 and landsat 8 for areas occluded by
clouds) from November to June of the considered agrarian year.
A total of 14 crop-type classes are considered, and spatial details
are limited to parcels owned by a farmer and not necessarily to
the actual use of the field.

2) Veneto Region—32TPR Tile: The land-use data for the
Veneto Region are collected and maintained by (Agenzia VEneta
per i Pagamenti in Agricoltura, Venetian Agricultural Payments
Agency—[40]). Here, we used the database dated October 21,
2020 available in [40]. The maps are generated by photointerpre-
tation of RGB orthophotos acquired by AGEA in 2018 at a reso-
lution of 20 cm or by means of in situ measurements performed
using GPS instruments. In terms of land-use information, the
land use legend is less detailed than CLC standard, but in terms
of crop classification information, it is more detailed. It contains
171 unique classes mainly focused on the description of the
agricultural area. Yet, the spatial detail w.r.t. single parcel/crop
fields is not that high.

3) Trentino Alto Adige Region—32TPS Tile: The Trentino
Region published in 2017 a high spatial resolution vector car-
tography map representing the cadastral areas of Trentino [41].
The thematic map has been generated by visual interpretation
of a very high resolution orthophoto (20 cm), Google Maps,
Maps Street View, Google Earth, and cartographic information.
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There is no specific legend as per land cover information, but
just the boundaries for the different cadastral parcels (as a
shapefile). For the validation process, the areas corresponding
to agriculture/crops are selected by means of the CLC map of
2018 in intersection with the boundaries offered by the Trentino
region maps of 2017.

4) Basilicata Region—33TXE Tile: Geospatial data for the
Basilicata region is published online since 2011 by Regionale
dei Dati Spaziali della Regione Basilicata (RSDI) [42], [43]. The
study area covers an extensive part of the southern Apennine
mountains (9.995 km2) and it is the most mountainous region in
the South of Italy. The area consists of a large number of small
crop fields mainly sowable (especially wheat), which represent
46% of the total land. Potatoes and maize that are produced in
the mountain areas. The available data focus on a portion of ter-
ritory bounded by crop limits and elements of the land (ditches,
drains, etc.), intended for both seasonal and annual agricultural
activities. The information is provided as vector files at 1:5000
scale derived from photos. The information was integrated with
auxiliary data from field detection and corresponds to the 2015
agrarian year. Despite this article focuses the attention on 2017
and 2018 agrarian years, we expect the information provided by
the RSDI to be valid, since we expect the crop-field boundaries
to be stable in such a time span.

C. Validation Process and Metrics

Based on the four selected tiles, the validation was per-
formed at regional level: 32TPQ tile—Emilia Romagna (22.446
km2); 32TPR tile—Veneto (18.264 km2); 32TPS tile—Trentino
(13.619 km2); and 33TXE tile—Basilicata (9.995 km2). For
each region, freely available land cover maps and cadastral
maps, together with CORINE Land Cover map of 2018, were
considered for validation of the spatio-temporal fusion step from
a qualitative and quantitative perspective. However, available
maps offer information about administrative parcel boundaries,
but not about the way they are used. This results in reporting
less crop fields, as administrative parcels often show multi-
ple cultivations. Making use of the boundaries extracted from
ground truth, the data are converted to a Boolean format (where
0 represents no crop field and 1 represents a crop field) for
quantitative validation. Two metrics are considered: Jaccard
index or intersection over union [44] and BF score [45]. Both
indices range from [0, 1], where 0 indicates no agreement
between the two maps, and 1 indicates complete agreement.
Regarding the daily time series reconstruction, the MSE w.r.t.
the linear original NDVI-SITS was considered for evaluation.
Finally, the phenological parameters extraction were evaluated
from a qualitative perspective only, since such information is not
available.

IV. EXPERIMENTAL RESULTS AND VALIDATION

The proposed method was applied over the whole Italy. Be-
cause of size and amount of details we do not report the resulting
map in the article. Readers are referred to [30] to explore it. How-
ever, average results at Country level are reported and discussed.
In order to better illustrate results, we focus the attention on the
four tiles mentioned in the validation sub-section. Given the
type of reference data for each tile, and space constrains, further

TABLE II
COMPUTATIONAL TIME BASED ON 32TPQ TILE

details about the MT vegetation maps and the phenological
parameters map are shown for a portion of the Emilia-Romagna
tile only. However, the results are representative for all the tiles.
Tv was set to Tv = 5× 10−3 and the initial standard deviation
value for the Gaussian kernel in the GRNN was set to 0.1.
The generation of reliable agricultural areas map for 2017 and
2018 agrarian years was carried out based on [46]. The method
requires between 3–5 images per year (per tile) to update a
previously existing land cover map. The whole process took
about 2.5 h per tile and per year in an Intel Core i7-7700 CPU
running at 3.60 GHz with 32 GB of RAM. As the last step, S2
agricultural areas were characterized by first identifying single
crop fields (using ten images) and then extracting phenological
parameters using all the images in the S2-SITS [13]. Images with
a cloud coverage higher than 75% were filtered out. The time to
perform the agricultural areas characterization was about 1.48 h
per tile and per year with 100–200 images per year. This time is
a function of computational capacity, but also of the number of
crop fields (that varies tile by tile).

A. Average Results, Computational Time and Parameters
Sensitivity for Italy

To assess the performance at Country level, we analyzed the
number of crop fields per tile, MSE for the time series recon-
struction step, computational time and parameters sensitivity
over Italy. Fig. 6 shows the number of crop fields and MSE
for the 60 tiles for 2017 and 2018 agrarian years. The number
of crop fields varies across the tiles but tends to remain stable
from one agrarian year to the other. Yet, the MSE is low for all
the tiles and the two agrarian years, proving the robustness of
the proposed method. For the computational time, we took as
reference the 32TPQ tile being the one with the largest number of
crop fields over Italy. Table II gives the computational times per
each stage (excluding the download and preprocessing step that
took about 15 days for all the data) at 32TPQ tile level and uses
it to estimate an upper bound over the 60 tiles per agrarian year.
The data management/loading step refers to the insertion of data
inside python to be processed. The most computationally heavy
steps were those of the agricultural areas map generation and the
time series reconstruction. Yet, these times can be considered
small compared to the amount of data. To process the Italian
Country, in a single machine (see Section III-A for details), it
took ∼11.25 days.

To further understand the correlation between parameters of
the proposed approach and the average variance for all the crop
fields, parameter sensitivity analysis was carried out. The most
important parameters, tolerance value (Tv) and k factor, were
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Fig. 6. Number of crop fields (thousands) and average MSE (10−3) for time series reconstruction step per tile and agrarian year.

Fig. 7. Sensitivity analysis of Tv and k parameters with respect to average
variance.

positively increased according to the magnitude in the range
[10%, 50%] in steps of 10%, and the increment of average
variance was observed [47]. Results are reported in terms of
average over the 60 Italian tiles (see Fig. 7). It is clear that the
average variance remains relatively stable as the Tv and k values
increase, showing a high robustness of the proposed method.

A. Emilia-Romagna Region—32TPQ Tile

In order to prove the robustness of the proposed approach to
MT crop field map in 2017 and 2018, Fig. 8 shows an example
of a portion of the 32TPQ, where the evaluation is carried
out by considering the variance inside each crop field. Under
the assumption that the crop field is homogeneous, a correct
detection implies small variance. The lower the variance, the
better the detection of the crop field. According to Fig. 8, the
variance ranges from [0, 0.05] and proves a reliable separation
of crop fields in a robust way at both spatial and temporal levels.

TABLE III
MEAN VARIANCE, JACCARD INDEX, AND BF SCORE FOR ALL THE CROP FIELDS

FOUND IN 32TPQ TILE FOR 2017

In order to further prove the results, the variance, Jaccard
index and BF score were calculated for all the crop fields in
32TPQ tile for both the proposed approach and the reference data
(see Table III). One can see that the proposed approach behaves
in a better way from the variance perspective. The number of
crop fields detected by the proposed approach is more than
three times the one reported by the reference map. As mentioned
before, these results should be related to the way in which the
reference map is built. The level of agreement between both
maps is high, as per Jaccard index and BF score.

Once a reliable MT crop field map is obtained, a daily NDVI-
SITS can be reconstructed for each crop field. Here, we compare
the results obtained with the linear and upper-envelope methods.
The reader is referred to [24] for further comparisons. Fig. 9
shows the NDVI-SITS reconstruction examples for two crop
fields in the 32TPQ tile in 2017. On the bottom part of the plot,
the MSE for the proposed approach along the year is also shown.
The average MSE for 2017 over the entire tile is 0.8× 10−3,
which is satisfactory. It should be noted that most of the errors
correspond to those areas where the original NDVI trend is lower
than the expected one. In other words, areas where atmospheric
conditions alter the NDVI average trend. For some crop fields,
these lower peaks are even larger, increasing the mean MSE.
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Fig. 8. Spatio-temporal fusion step results for a small portion (1000 × 1000 pixels) of Emilia Romagna region (tile 32TPQ) for year (b) 2017 and (e) 2018
agrarian years with evaluation of variance for each crop field (c) and (f), respectively.

Fig. 9. NDVI-SITS reconstruction for three different methods in a crop field located in (a) Santa Vittoria and (b) Castellucchio for 2017.

However, looking at the whole result, it is clear that the proposed
approach properly follows the NDVI-SITS over time.

Crop-type information from the reference map is used in order
to validate the reliability of phenological parameters extraction
(e.g., beginning, middle, and end of season). We expect to have
a similar behavior (in time) for crop fields belonging to the
same type of crop. This is the case in Fig. 10, where crop
fields corresponding to vineyard in the reference map have been
masked and three phenological parameters have been extracted.
Color coding varies from blue to red as the year progresses and
refers to the week/month in which events (e.g., the beginning of
season) happened.

B. Veneto Region—32TPR Tile

Similar to the Emilia-Romagna region, the variance, Jaccard
index and BF score for all the crop fields in the 32TPR tile were
calculated. Results can be seen in Table IV, where the variances
for reference data and the proposed approach are quite similar.
As expected, the number of crop fields is nearly seven times
more than reference data. The level of agreement between both
maps is high, as per Jaccard index and BF score.

In order to further prove the correctness of the proposed
approach, a small portion of the entire tile (located in Negora–
Veneto) was selected. Fig. 11 shows the RGB, reference map and
MT crop field map from the proposed approach. Comparing the
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Fig. 10. Phenological parameter maps for vineyards in tile 32TPQ (Emilia Romagna region) during 2017 agrarian year. (a) Beginning of season. (b) Middle of
season. (c) End of season (black color corresponds to non-agricultural areas).

TABLE IV
MEAN VARIANCE, JACCARD INDEX AND BF SCORE FOR ALL THE CROP

FIELDS FOUND IN 32TPR TILE FOR 2017

Fig. 11. MT crop field map for (a) reference map and (b) proposed approach,
together with (c) an RGB composition for an area located in Negora–Veneto.

maps to the RGB image, it is clear how the proposed approach
correctly detects and separates the different crop fields, w.r.t. the
reference map. In Fig. 11, only a rather small area of the entire
tile is shown, which allows to understand why there is such a
big difference in the number of detected crop fields and that
this number is more coherent with the true color composition in
Fig. 11(c) rather than reference map in Fig. 11(a).

Analyzing the variance of the big light blue area in Fig. 11(a)
over time, it is also possible to see that the reference map has
incorrectly mapped the crop fields. Fig. 12 shows the evolution
of the variance (for the original acquisition dates) for a crop
field over the 2017 agrarian year for both the reference and the
proposed approach maps. It appears how the variance remains
stable along the year for the proposed approach, whereas it shows
a large variation for the reference map, implying that the field
includes contributions from non-homogeneous crops.

Fig. 12. Variance temporal plot for a single crop field in an area located in
Negore-Veneto for 2017 agrarian year.

Fig. 13. NDVI-SITS reconstruction for three different methods in a crop field
located in Negora for 2017.

Regarding the NDVI-SITS, the proposed approach is com-
pared to the linear reconstruction. Fig. 13 compares results for
one area in the Veneto region, as well as the MSE error for the
proposed approach. The mean MSE for all the crop fields in the
entire tile is 0.7× 10−3. This value is low and similar to that of
the Emilia–Romagna region, showing how the reconstruction
is correlated to the good crop field detection/separation. The
results for the phenological parameters are similar to those of
the Emilia-Romagna region, and thus not reported.
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Fig. 14. Area histogram for all the crop fields in the entire 32TPS tile.

TABLE V
MEAN VARIANCE, JACCARD INDEX, AND BF SCORE FOR ALL THE CROP

FIELDS FOUND IN 32TPS TILE FOR 2017

Fig. 15. MT crop field map for (b) Reference map and (c) proposed approach,
together with an (a) RGB composition for an area located in Mollaro–Trentino.

C. Trentino Alto Adige Region—32TPS Tile

Trentino is a region with a remarkable number of permanent
vineyards and apple trees, and small crop fields. Indeed, most of
the crop fields are smaller than 1ha, as shown in the histogram
in Fig. 14. Only around 4000 crop fields (out of 228411) are
bigger than that. Therefore, this is a challenging area to test the
robustness of the proposed approach, since three out of four
assumptions are not satisfied.

As done for the 32TPQ and 32TPR tiles, the variance, Jaccard
index and BF score were calculated for every crop field along
the 2017 agrarian year, both for the reference map and the
proposed approach. Results can be seen in Table V. Although
the conditions for the proposed approach to properly work are
not satisfied, both the reference map and the proposed approach
show comparable variance values. The level of agreement
between both maps is further corroborated by Jaccard index
and BF score. The number of crop fields found by the proposed
approach is 6 times less than the reference map. In Figs. 15
and 16, we picked a small area for qualitative comparison.

Fig. 16. Variance temporal plot for a single crop field in an area located in
Mollaro–Trentino for 2017 agrarian year.

Fig. 17. NDVI-SITS reconstruction for three different methods in a crop field
located in Valtina–Walten for 2017.

While the MT crop field map groups several individual crop
fields [see Fig. 15(a) versus Fig. 15(c)], the variance temporal
plot for a single crop shown in Fig. 16 demonstrates the
reliability of the proposed approach. In fact, the variance along
time for the proposed approach varies less than the one of the
reference map. This is because adjacent fields are managed in
the same way.

Regarding the NDVI-SITS, the proposed approach is com-
pared to the original linear reconstruction. Fig. 17 shows the
comparison for one area located inside the Trentino Alto Adige
region, as well as the MSE for the proposed approach. The crop
fields mean MSE is 0.6× 10−3. This value is low, and similar
to that of the other tiles, proving the reliability of MT crop field
separation. Fig. 17 shows how around day 50, there is a rather low
peak of the standard NDVI trend. Such value is usually confused
by any method as an actual peak, but the proposed time series
reconstruction method is able to better deal with it, showing a
smoother NDVI-SITS trend. The results for the phenological
parameters cannot be compared to any land cover map of the
area, since the reference map does not provide information on
the crop types. Nevertheless, they can be considered reliable
based on the phenological evolution of the type of crops that
are traditionally cultivated in the area (i.e., vineyards and apples
mostly).

D. Basilicata Region—33TXE Tile

Similar to the Trentino region, Basilicata contains a large
amount of small crop fields, but given climate differences they
show different crop types and thus phenological behaviors. As
shown in the histogram in Fig. 18, a huge amount of crop fields
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Fig. 18. Area histogram for all the crop fields in the entire 33TXE tile.

TABLE VI
MEAN VARIANCE, JACCARD INDEX, AND BF SCORE FOR ALL THE CROP

FIELDS FOUND IN 33TXE TILE FOR 2017

Fig. 19. MT crop field map for (b) reference map and (c) proposed approach,
together with an (a) RGB composition for an area located in Ponte Masone -
Basilicata.

has an area smaller than 1 ha and about 89% equal or smaller
than 3 ha, making the analysis challenging (according to the
method working conditions).

Similar to the other validation tiles, we calculated the variance
for every single field along the whole 2017 agrarian year, both
for the ground truth and the proposed approach. Table VI gives
that the proposed approach has a reliable performance compared
to the ground truth in terms of variance parameters.

On the one side, the crop field map generated by the proposed
method can properly define the borders for large crop fields
(more than 1 ha—Fig. 19). On the other side, let us observe a
portion of the reference map where crop fields are small. In red
box [see Fig. 19(a)] the reference map shows four crop fields,
whereas the proposed approach detects a single crop field. As
can be seen from the true color composite image, this area shows
to be homogeneous. In order to prove the correctness of the
proposed approach outcome, the average variance for the four
crop fields is compared to that of each parcel in the reference
map (see Fig. 20). Fig. 20 shows that the variance of the four
parcel and the one of the field by the proposed method are very
close to each other over the entire agrarian year. Accordingly,

Fig. 20. Variance temporal plot for a single crop field in an area located in
Ponte Masone–Basilicata for 2017 agrarian year.

Fig. 21. NDVI-SITS reconstruction for three different methods in a crop field
located in Ponte Masone–Basilicata for 2017.

the four parcels are likely to be cultivated in the same way and
the method detects them as one single crop field.

Regarding the NDVI-SITS, the proposed approach is com-
pared to the linear reconstruction. Fig. 21 compares results for
one area in the Basilicata region, as well as the MSE error for
the proposed approach. The mean MSE for all the crop fields
in the entire tile is 0.4× 10−3. This value is low, and similar
to that of the other tiles, proving the reliability of MT crop
field separation. Fig. 21 shows how around day 230, there is
a low peak of the standard NDVI trend that the proposed time
series reconstruction method is able to better deal with. The
results for the phenological parameters are similar to those of
the Emilia–Romagna region, and thus not reported.

V. DISCUSSION

This article aimed to give answer to two research questions:
how to handle big amount of data with particular attention to
download and preprocessing of S2-SITS; and how to perform
multi-temporal fine characterization of crop fields accounting for
the strong variability in size and phenological behaviors when
mapping at large scale.

In order to handle big amounts of data, the proposed approach
guides users from the beginning to the end in the process of auto-
matically downloading, preprocessing and analyzing data, while
accounting for possible critical issues arising while handling big
data. Some of them are related to download failures, restrictions
parallel data download, lack of fully preprocessed data and
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errors in the preprocessing steps resulting in incomplete final
products. It also considers computational burden. When dealing
with Italian Country, 12.97 TB of data have been downloaded
and pre-processed in about 15 days. Given the amount of data
the time can be considered short. However, it might strongly
vary according to parameters (like internet connection speed or
stability) being out of the user control. In Table II, computational
times for the most complex tile (32TPQ) are detailed showing
that the proposed approach can work in real time by completing
the analysis of a single tile in 4.5 h.

A detailed approach to perform multitemporal characteriza-
tion of crop fields has also been presented that further proves
the reliability of the entire framework. Results are presented for
four tiles being representative of and distributed across Italy (see
Fig. 5). Tables III–VI prove the capability of the spatio-temporal
fusion step to properly identify and separate fields that have been
cultivated at least once over the agrarian year. The statistical
analysis of mean variance and the Jaccard index prove the level
of agreement between results and reference maps. In this, it is
important to recall that reference maps were built by different
entities across Italy for different tiles, paying attention to parcel
level information rather than subparcel level usage. Because of
this, it was expected that the proposed approach would identify a
larger number of crop fields per tile. This is not to be understood
as something that penalizes the proposed approach. In fact,
Figs. 6, 8, 11, 15, and 19 clearly show how the proposed approach
better follows the situation on the ground provided by the RGB
images. The method demonstrated to be effective even for the
trentino alto adige (32TPS) and Basilicata (33TXE) tiles, where
the crop field areas are so small that not all the working hypoth-
esis of the proposed approach are satisfied. Yet, the proposed
approach is able to detect the crop fields and map them in a
reliable way (according to the mean variance). A further confir-
mation of effectiveness comes from the analysis of phenological
parameters of crop fields with the same cultivation. Fig. 10 shows
an example for three vineyards phenological parameters. As
can be observed, they behave similarly along time for all the
vineyards. The homogeneity confirms the accurate mapping of
fields. Similar results were obtained over Italy and for the two
considered years. The S2-SITS reconstruction step performance
was compared to the linear and upper-envelope methods follow-
ing the approach in [24]. Figs. 9, 13, 17, and 21 show the com-
parisons for different crop fields in the corresponding validation
tiles. It is clear from the plots and the MSE (with a factor of 10−3)
that the proposed approach properly models the phenological
behavior of the crops, while keeping a low error in the process.

VI. CONCLUSION

In this article, an automatic approach to precise mapping and
monitoring of small agricultural fields at large-scale based on
S2 SITS has been presented. The proposed approach has been
tailored to the specific properties of S2 images. It has been de-
veloped to exploit high spatial resolution multitemporal images
of S2-SITS and to deal with the download and preprocessing of
data. In this article, the state of the art was analyzed in order
to identify important and strategic approaches and challenges
and ways to effectively address them. The proposed approach:
effectively handles big amount of data with particular attention

to download and preprocessing of S2-SITS in an automatic way;
characterizes agricultural areas by exploiting MT information
to effectively separate small crop fields from each other in an
unsupervised way at large-scale; deals with irregularities in the
data due to high variability while working at large-scale and;
and is robust to space and time variance (across the Country
and the years). Crop fields separation relies on an effective
spatio-temporal fusion that considers phenological behavior
of the vegetation in space and time. Moreover, to deal with
irregular data, an ad-hoc nonparametric and adaptive regression
model was tuned that automatically reconstructs daily temporal
signatures at crop field level.

Results have been obtained on real S2 data of Italy for 2017
and 2018 agrarian years. Specific examples of precise mapping
have been shown for different test sites, i.e., 32TPQ, 32TPR,
32TPS, and 33TXE tiles, representative of different land covers
in Italy. The qualitative and quantitative validation analysis
demonstrated the effectiveness and robustness of the proposed
approach while working at large-scale and dealing with high
temporal, spatial, and spectral variability, as well as with small
crop fields. Future developments deal with the tuning on other
Countries by considering additional variables like for example
climate regions. Data are available at [30].
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