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Abstract

In the field of machine learning (ML) a very commonly encountered problem is the lack
of generalizability of learnt classification functions when subjected to new samples that are
not representative of the training distribution. The discrepancy between the training (a.k.a.
source) and test (a.k.a. target) distributions are caused by several latent factors such as change in
appearance, illumination, viewpoints and so on, which is also popularly known as domain-shift.
In order to make a classifier cope with such domain-shifts, a sub-field in machine learning
called domain adaptation (DA) has emerged that jointly uses the annotated data from the source
domain together with the unlabelled data from the target domain of interest. For a classifier to
be adapted to an unlabelled target data set is of tremendous practical significance because it
has no associated labelling cost and allows for more accurate predictions in the environment
of interest. A majority of the DA methods which address the single source and single target
domain scenario are not easily extendable to many practical DA scenarios. As there has been as
increasing focus to make ML models deployable, it calls for devising improved methods that
can handle inherently complex practical DA scenarios in the real world.

In this work we build towards this goal of addressing more practical DA settings and help
realize novel methods for more real world applications: (i) We begin our work with analyzing and
addressing the single source and single target setting by proposing whitening-based embedded
normalization layers to align the marginal feature distributions between two domains. To
better utilize the unlabelled target data we propose an unsupervised regularization loss that
encourages both confident and consistent predictions. (ii) Next, we build on top of the proposed
normalization layers and use them in a generative framework to address multi-source DA by
posing it as an image translation problem. This proposed framework TriGAN allows a single
generator to be learned by using all the source domain data into a single network, leading to
better generation of target-like source data. (iii) We address multi-target DA by learning a single
classifier for all of the target domains. Our proposed framework exploits feature aggregation
with a graph convolutional network to align feature representations of similar samples across
domains. Moreover, to counteract the noisy pseudo-labels we propose to use a co-teaching
strategy with a dual classifier head. To enable smoother adaptation, we propose a domain
curriculum learning ,when the domain labels are available, that adapts to one target domain at
a time, with increasing domain gap. (iv) Finally, we address the challenging source-free DA
where the only source of supervision is a source-trained model. We propose to use Laplace



Approximation to build a probabilistic source model that can quantify the uncertainty in the
source model predictions on the target data. The uncertainty is then used as importance weights
during the target adaptation process, down-weighting target data that do not lie in the source
manifold.



Contents

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Domain Whitening Transform . . . . . . . . . . . . . . . . . . . . . . 4

1.2.2 TriGAN for Multi-source Domain Adaptation . . . . . . . . . . . . . . 5

1.2.3 Curriculum Graph Co-teaching for Multi-target Domain Adaptation . . 5

1.2.4 Uncertainty-aware Source-free Domain Adaptation . . . . . . . . . . . 6

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 Works Under Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Domain Whitening Transform 11

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.2 Domain-specific Whitening Transform . . . . . . . . . . . . . . . . . 16

2.3.2.1 Implementation Details . . . . . . . . . . . . . . . . . . . . 17

2.3.3 Min-Entropy Consensus Loss . . . . . . . . . . . . . . . . . . . . . . 18

iii



CONTENTS

2.3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4.3.1 Ablation Study . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4.3.2 Comparison with State-of-the-Art Methods . . . . . . . . . . 25

2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 TriGAN for Multi-source Domain Adaptation 29

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 Style-and-Domain based Image Translation . . . . . . . . . . . . . . . . . . . 34

3.3.1 Notation and Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3.2 TriGAN Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3.2.1 Preliminaries: Whitening & Coloring Transform . . . . . . . 36

3.3.2.2 Encoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3.2.3 Decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3.3 Network Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4.2 Implementation details . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4.3 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4.4.1 Comparison with State-of-the-Art Methods . . . . . . . . . . 46

3.4.4.2 Ablation Study . . . . . . . . . . . . . . . . . . . . . . . . . 48

iv



CONTENTS

3.4.4.3 Multi domain image-to-image translation . . . . . . . . . . . 49

3.4.4.4 Qualitative Image Translation Results . . . . . . . . . . . . . 51

3.5 Experiments for single-source UDA . . . . . . . . . . . . . . . . . . . . . . . 51

3.5.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.5.2 Comparison with generation-based state-of-the-art methods . . . . . . 53

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4 Curriculum Graph Co-teaching for Multi-target Domain Adaptation 55

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3.2 Curriculum Graph Co-Teaching . . . . . . . . . . . . . . . . . . . . . 62

4.3.3 Domain-aware Curriculum Learning . . . . . . . . . . . . . . . . . . . 65

4.3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.4.1 Dataset and Experimental Details . . . . . . . . . . . . . . . . . . . . 68

4.4.2 Ablations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.4.3 Comparison with State-of-The-Art . . . . . . . . . . . . . . . . . . . . 74

4.4.4 Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5 Uncertainty-aware Source-free Domain Adaptation 79

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

v



CONTENTS

5.3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.3.2 Uncertainty-guided Source-free DA . . . . . . . . . . . . . . . . . . . 86

5.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.4.1 Ablation Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.4.2 State-of-the-art Comparison . . . . . . . . . . . . . . . . . . . . . . . 93

5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6 Final Remarks 97

6.1 Future Research Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Bibliography 100

vi



1

Introduction

1.1 Motivation

Building intelligent systems that have the ability to solve tasks by recognizing patterns and

making predictions has been the longstanding goal of the machine learning (ML) community.

Although the pinnacle of general intelligence has not been achieved so far, the ML community

has made a steadfast progress in many challenging tasks, with the learning algorithms sometimes

attaining super-human performance [56]. This has led to the increased deployment of ML algo-

rithms in self-driving cars [50], computer-aided diagnostics [84], e-commerce websites [146],

social media content moderation [3] and so on.

In essence the goal of a typical learning algorithm (or system) is to predict a desired output

given some input. This is achieved through a process called training. In the supervised case the

training process would require a set of inputs and their corresponding outputs. For instance, in

the simplest case of image classification the input will be an image and the output consists of

one of the several categorical labels. Then the goal of the training process is to approximate

a function (commonly modelled with neural networks) that maps from the input to the output

space, by minimizing a cost function on a given finite data set. To evaluate the goodness of fit,

the learned function is often tested on unseen data points under the independent and identically

distributed (or i.i.d.) assumption [55]. If the i.i.d. assumption is not violated, or in other words

if the test points are similar to the training points, the model will make accurate predictions in

future.
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Figure 1.1: Illustrations of various kinds of domain-shift in the real world. In each of the four boxes,
the image on the left depicts an example of training distribution images and the image on the right
depicts the testing distribution images. For instance, the domain shift between CAD images and
images taken in the real world is quite high. Due to difference in the data distributions the neural
networks will exhibit a generalization gap when deployed out-of-the-box.

However, in the real world the test data is quite often not very representative of the training

data. As a consequence the learned function will fail to generalize well on such distribution. The

shift in the distributions between the training and test data is caused by a phenomenon called

domain-shift [157] (see Fig. 1.1). For example, training data collected in a particular urban

setting for an autonomous driving application might be biased with respect to other urban or

rural settings due to different layout of roads, compounded with different weather conditions. A

learning system trained on that particular urban setting will be unreliable and error prone when

deployed in a different road or weather setting. While a naive solution would be collecting data

from every possible city and weather configuration and then train specific systems where the

system would be deployed, it would be unfeasible due to expensive and laborious annotated

data collection process. Instead, the researchers have tried to answer if the information from

the annotated urban training data set could be used to adapt the learning system to work well in

rural settings?

To answer the above question a broad field of study called domain adaptation (DA) [4] has

emerged that attempts to bridge the domain gap between the training and test distributions. In

the literature the labelled data is referred to belong to the source domain and the unlabelled

2



1.2 Outline

data to the target domain, where the learning system will potentially be deployed. In most

of the DA works it is assumed that plentiful of labelled data is available from the source

domain(s) and little or no labelled data from the target domain of interest. The main goal in

DA is to mitigate the domain gap between the source and target domains such that the classifier

trained on the source data set generalizes well to the target data set. To this end plethora of

unsupervised domain adaptation (UDA) methods have been proposed that include optimizing

statistical moments [13, 14, 15, 98, 124, 152, 161], adversarial training [38, 96, 159], generative

modelling [61, 94, 136], to name a few.

In the recent times many real world DA settings have been proposed that depart from the

traditional UDA setting, which involves a single labelled source domain and a single unlabelled

target domain. In more detail, as the real world is more complex, the assumption of a single

source and target domain no longer holds true. In some cases, the labelled source data set may

become unavailable due to privacy or storage concerns and the traditional UDA approaches

fail to operate under such conditions. Thus, to address such non-conventional DA problems

new research avenues have opened up that comprise of multi-source DA [121], multi-target

DA [20], source-free DA [90] and so on. This hints at the fact that to build real-world ready and

robust learning systems more challenging and realistic DA scenarios need to be addressed and

rightfully deserves thorough investigation.

1.2 Outline

A very natural starting point for investigating DA research topic is by studying and analyzing

the closed-set single source and single target UDA (STDA), as it is the simplest UDA setting.

In Chapter 2 “Domain Whitening Transform” we address STDA by means of marginal feature

alignment between domains with the help of embedded domain adaptive blocks that are based on

the Whitening transform. In Chapter 3 titled “TriGAN for Multi-source Domain Adaptation” we

re-purpose the adaptation components of the previous chapter to address multi-source domain

adaptation (MSDA) through a generative framework. In Chapter 4 “Curriculum Graph Co-

teaching for Multi-target Domain Adaptation” we address a more challenging UDA setting when

a single model need to learned for multiple unlabelled target domains. To this end we propose

to align the feature representations across domains with a graph neural network (GNN). Finally,

in Chapter 5 we address a significantly harder UDA problem when a pre-trained source model

3



1. INTRODUCTION

Figure 1.2: An overview of the different DA scenarios that have been addressed in this dissertation.
(a) in single-source single-target DA the goal is to adapt from a single labelled source data set to a
single unlabelled target data set; (b) in multi-source DA the task is to leverage the knowledge from
several source domains in order to adapt to an unlabelled target domain; (c) in multi-target DA the
goal is to adapt a single model than can work well in various target domains; and (d) represents
source-free DA where the only source of supervision is a pre-trained model and the source data set
is discarded during target adaptation.

need to be adapted on a target data set with the source data set becoming absent. To address

source-free DA we highlight the importance of quantifying uncertainty and how to incorporate

such estimates into target adaption process. All the DA scenarios that have been addressed in

this chapter are summarized in Fig. 1.2. Since, the related literature is non-homogeneous and

differs from one DA setting to the other, we have described the related works in the respective

chapters.

1.2.1 Domain Whitening Transform

In Chapter 2 we address the STDA task where the goal is to adapt a model on a desired target

domain of interest by leveraging a related labelled source data set along with an unlabelled

target data set. In this chapter, to bridge the domain-gap we propose to align the marginal

feature distributions between the source and target domains through our proposed Domain

4



1.2 Outline

Whitening Transform (DWT) layers that are embedded inside the neural network. In details,

our DWT layers align the first and the second order moments of the features and can be

seen as a generalization of the correlation alignment and batch normalization-based alignment

layers, which are commonly used in several UDA approaches. Secondly, we propose an

unsupervised loss on the target data called Min-Entropy Consensus (MEC) loss that unifies

entropy minimization and consistency regularization losses. Specifically, the proposed MEC loss

simultaneously encourages coherent predictions between two perturbed versions of the same

target sample and exploits these predictions as pseudo-labels for training. Through extensive

experiments on several UDA benchmarks we show that our proposed components consistently

improve performance with respect to the existing state-of-the-art methods.

1.2.2 TriGAN for Multi-source Domain Adaptation

In the next Chapter 3 we address a slightly more challenging UDA setting called MSDA where

labelled source data comes from multiple source domains and the goal is to adapt a model to

work well on a single target domain. In this work we adopt a generative image translation

approach where the goal is to generate target-like source images such that they can be leveraged

to train a target-specific classifier. In details, we build our generative adversarial network

(TriGAN) inspired by the observation that the appearance of a given image depends on three

factors: the domain, the style (characterized in terms of low-level features variations) and the

content. To this end, we use the previously proposed DWT layers (and their variations) to project

the image features onto a space where only the dependence from the content is kept, and then

re-project this invariant representation onto the pixel space using the target domain and style.

With our proposed approach image translation between any pair of source and target domain

can be achieved with a single generator network, which greatly simplifies training, especially

when the number of source domains are large. We conduct thorough experiments on the MSDA

benchmarks and show that our end results are both quantitatively and qualitatively superior.

1.2.3 Curriculum Graph Co-teaching for Multi-target Domain Adaptation

In Chapter 4 we address a more real-world and practical problem of multi-target domain

adaptation (MTDA) where the goal is to adapt a single model towards multiple unlabelled target

domains using only a single labelled source data set. Since multiple domain shifts need to be

5



1. INTRODUCTION

addressed we propose to learn an unified feature space through a graph convolutional network

(GCN) that aggregates features from similar samples across the domains. As our GCN depends

on pseudo-labels to connect similar samples in the graph, which can by noisy, we develop a

co-teaching strategy with a dual classifier head that is assisted by curriculum learning to obtain

more reliable pseudo-labels. Additionally, when the domain labels are available, we propose

Domain-aware Curriculum Learning (DCL), a sequential adaptation strategy that first adapts on

the easier target domains, followed by the harder ones. Through our extensive experiments on

several MTDA benchmarks we show the beneficial impact of each of our proposed components,

attaining state-of-the-art results in this task.

1.2.4 Uncertainty-aware Source-free Domain Adaptation

Finally, in Chapter 5 we turn our attention to very emerging and challenging DA problem called

source-free domain adaptation (SFDA) where the task is to adapt a classifier to an unlabelled

target data set by only using a pre-trained source model. SFDA is challenging because the

absence of the source data and the domain shift makes the predictions of the source model on the

target data becomes unreliable. Therefore, in this chapter we propose quantifying the uncertainty

in the source model predictions and utilizing it to guide the target adaptation. We construct

a probabilistic source model by incorporating priors on the network parameters inducing a

distribution over the model predictions. Uncertainties are estimated by employing a Laplace

approximation and incorporated to identify target data points that do not lie in the source

manifold and to down-weight them when maximizing the mutual information on the target data.

We show the advantages of uncertainty-guided SFDA over traditional SFDA in the closed-set

and open-set settings and provide empirical evidence that our approach is more robust to strong

domain shifts.

1.3 Contributions

Working in the context of visual domain adaptation using deep learning techniques we have

made the following contributions:

• Domain Whitening Transform layers to align the marginal feature distributions between

the source and target domains, which are embedded inside a neural network. DWT layers

generalizes the Batch Normalization based domain alignment layers.

6
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• Min Entropy Consensus Loss, an unsupervised regularization loss, on the unlabelled target

domain images that enforces consistent predictions between two perturbed versions of a

target image and at the same time encourages peaked prediction on one of the semantic

classes.

• TriGAN an generative framework that performs image-to-image translation between

multiple source domains and one target domain in order to generate synthetic target-like

source images.

• Instance Whitening Transform, conditional Domain Whitening Transform and Adaptive

Instance Whitening Transform, which are based on the DWT, are proposed to help realize

the TriGAN generator.

• Curriculum Graph Co-teaching, a co-teaching and graph neural network based feature

aggregation framework that aligns similar samples from different domains in order to

obtain a unified feature space in MTDA.

• Domain Curriculum Learning that follows an easy to hard target domain selection strategy

in MTDA where the feature alignment process begins with the easiest target domain and

gradually progresses to the hardest one.

• Bayesian framework U-SFAN that constructs a probabilistic source model to quantify the

uncertainty in the source model predictions on the target data and utilizes it to guide the

adaptation. We show U-SFAN is more robust under strong domain shifts.

• Laplace Approximation is employed to estimate the uncertainties, which we show to entail

well for the SFDA setting as it decouples source training from target adaptation.

1.4 Publications
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2

Domain Whitening Transform

A classifier trained on a dataset seldom works on other datasets obtained under different

conditions due to domain shift. This problem is commonly addressed by domain adaptation

methods. In this chapter we introduce a novel deep learning framework which unifies different

paradigms in unsupervised domain adaptation. Specifically, we propose domain alignment

layers which implement feature whitening for the purpose of matching source and target feature

distributions. Additionally, we leverage the unlabeled target data by proposing the Min-Entropy

Consensus loss, which regularizes training while avoiding the adoption of many user-defined

hyper-parameters. We report results on publicly available datasets, considering both digit

classification and object recognition tasks. We show that, in most of our experiments, our

approach improves upon previous methods, setting new state-of-the-art performances.1

2.1 Introduction

Deep learning methods have been successfully applied to different visual recognition tasks,

demonstrating an excellent generalization ability. However, analogously to other statistical

machine learning techniques, deep neural networks also suffer from the problem of domain shift

[157], which is observed when predictors trained on a dataset do not perform well when applied

to novel domains.

Since collecting annotated training data from every possible domain is expensive and

sometimes even impossible, over the years several Domain Adaptation (DA) methods [25, 119]

1The content of this chapter is based on the CVPR 2019 paper [131]
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have been proposed. DA approaches leverage labeled data in a source domain in order to learn an

accurate prediction model for a target domain. Specifically, in the special case of Unsupervised

Domain Adaptation (UDA), no annotated target data are available at training time. Note that,

even if target-sample labels are not available, unlabeled data can and usually are exploited at

training time.

Figure 2.1: Overview of the proposed deep architecture embedding our DWT layers and trained
with the proposed MEC loss. (a) Due to domain shift the source and the target data have different
marginal feature distributions. Our DWT estimates these distributions using dedicated sample
batches and then “whitens” them projecting them into a common, spherical distribution. (b) The
proposed MEC loss univocally selects a pseudo-label z that maximizes the agreement between two
perturbed versions xt1

i and xt2
i of the same target sample.

Most UDA methods attempt to reduce the domain shift by directly aligning the source

and target marginal distributions. Notably, approaches based on the Correlation Alignment

paradigm model domain data distributions in terms of their second-order statistics. Specifically,

they match distributions by minimizing a loss function which corresponds to the difference

between the source and the target covariance matrices obtained using the network’s last-layer

activations [111, 151, 152]. Another recent and successful UDA paradigm exploits domain-

specific alignment layers, derived from Batch Normalization (BN) [66], which are directly

embedded within the deep network [13, 88, 108]. Other prominent research directions in UDA

correspond to those methods which also exploit the target data posterior distribution. For

instance, the entropy minimization paradigm adopted in [13, 51, 140], enforces the network’s

prediction probability distribution on each target sample to be peaked with respect to some

(unknown) class, thus penalizing high-entropy target predictions. On the other hand, the

consistency-enforcing paradigm [31, 143, 154] is based on specific loss functions which penalize
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inconsistent predictions over perturbed copies of the same target samples.

In this paper we propose to unify the above paradigms by introducing two main novelties.

First, we align the source and the target data distributions using covariance matrices similarly to

[111, 151, 152]. However, instead of using a loss function computed on the last-layer activations,

we use domain-specific alignment layers which compute domain-specific covariance matrices of

intermediate features. These layers “whiten” the source and the target features and project them

into a common spherical distribution (see Fig. 2.1 (a), blue box). We call this alignment strategy

Domain-specific Whitening Transform (DWT). Notably, our approach generalizes previous

BN-based DA methods [13, 88, 107] which do not consider inter-feature correlations and rely

only on feature standardization.

The second novelty we introduce is a novel loss function, the Min-Entropy Consensus

(MEC) loss, which merges both the entropy [13, 51, 140] and the consistency [31] loss function.

The motivation behind our proposal is to avoid the tuning of the many hyper-parameters which

are typically required when considering several loss terms and, specifically, the confidence-

threshold hyper-parameters [31]. Indeed, due to the mismatch between the source and the target

domain, and because of the unlabeled target-data assumption, hyper-parameters are hard to be

tuned in UDA [111]. The proposed MEC loss simultaneously encourages coherent predictions

between two perturbed versions of the same target sample and exploits these predictions as

pseudo-labels for training. (Fig. 2.1 (b), purple box).

We plug our proposed DWT and the MEC loss into different network architectures and we

empirically show a significant boost in performance. In particular, we achieve state-of-the-art

results in different UDA benchmarks: MNIST [82], USPS [32], SVHN [115], CIFAR-10, STL10

[23] and Office-Home [163].

2.2 Related Work

Unsupervised Domain Adaptation. Several previous works have addressed the problem of

DA, considering both shallow models and deep architectures. In this section we focus on only

deep learning methods for UDA, as these are the closest to our proposal.

UDA methods mostly differ in the strategy used to reduce the discrepancy between the

source and the target feature distributions and can be grouped in different categories. The first

13
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category includes methods modeling the domain distributions in terms of their first and second

order statistics. For instance, some works aim at reducing the domain shift by minimizing the

Maximum Mean Discrepancy [98, 99, 163] and describe distributions in terms of their first order

statistics. Other works consider also second-order statistics using the correlation alignment

paradigm (Sec. 2.1) [111, 152]. Instead of introducing additional loss functions, more recent

works deal with the domain-shift problem by directly embedding into a deep network domain

alignment layers which exploit BN [13, 88, 106, 108].

A second category of methods include approaches which learn domain-invariant deep

representations. For instance, in [36] a gradient reversal layer learns discriminative domain-

agnostic representations. Similarly, in [158] a domain-confusion loss is introduced, encouraging

the network to learn features robust to the domain shift. Haeusser et al. [52] present Associative

Domain Adaptation, an approach which also learns domain-invariant embeddings.

A third category includes methods based on Generative Adversarial Networks (GANs)

[9, 136, 144, 147, 153]. The main idea behind these approaches is to directly transform images

from the target domain to the source domain. While GAN-based methods are especially

successful in adaptation from synthetic to real images and in case of non-complex datasets, they

have limited capabilities for complex images.

Entropy minimization, first introduced in [47], is a common strategy in semi-supervised

learning [184]. In a nutshell, it consists in exploiting the high-confidence predictions of

unlabeled samples as pseudo-labels. Due to its effectiveness, several popular UDA methods

[13, 99, 136, 140] have adopted the entropy-loss for training deep networks.

Another popular paradigm in UDA, which we refer to as the consistency-enforcing paradigm,

is realized by perturbing the target samples and then imposing some consistency between the

predictions of two perturbed versions of the same target input. Consistency is imposed by

defining appropriate loss functions, as shown in [31, 140, 143]. The consistency loss paradigm

is effective but it becomes uninformative if the network produces uniform probability distribu-

tions for corresponding target samples. Thus, previous methods also integrate a Confidence

Thresholding (CT) technique [31], in order to discard unreliable predictions. Unfortunately, CT

introduces additional user-defined and dataset-specific hyper-parameters which are difficult to

tune in an UDA scenario [111]. Differently, as demonstrated in our experiments, our MEC loss

eliminates the need of CT and the corresponding hyper-parameters. We refer the readers to the

comprehensive domain adaptation survey [25] for further readings.

14



2.3 Methods

Feature Decorrelation. Recently, Huang et al. [63] and Siarohin et al. [150] proposed

to replace BN with feature whitening in a discriminative and generative setting, respectively.

However, none of these works consider a DA problem. We show in this paper that feature

whitening can be used to align the source and the target marginal distributions using layer-specific

covariance matrices without the need of a dedicated loss function as in previous correlation

alignment methods.

2.3 Methods

In this section we present the proposed UDA approach. Specifically, after introducing some

preliminaries, we describe our Domain-Specific Whitening Transform and, finally, the proposed

Min-Entropy Consensus loss.

2.3.1 Preliminaries

Let S = {(Isj , ysj )}ns
j=1 be the labeled source dataset, where Isj is an image and ysj ∈ Y =

{1, 2 . . . , C} its associated label, and T = {Iti}nt
i=1 be the unlabeled target dataset. The goal of

UDA is to learn a predictor for the target domain by using samples from both S and T. Learning

a predictor for the target domain is not trivial because of the issues discussed in Sec. 2.1.

A common technique to reduce domain shift is to use BN-based layers inside a network,

such as to project the source and target feature distributions to a reference distribution through

feature standarization. As mentioned in Sec. 2.1, in this work we propose to replace feature

standardization with whitening, where the whitening operation is domain-specific. Before

introducing the proposed whitening-based distribution alignment, we recap below BN. Let

B = {x1, ...,xm} be a mini-batch of m input samples to a given network layer, where each

element xi ∈ B is a d-dimensional feature vector, i.e. xi ∈ Rd. Given B, in BN each xi ∈ B is

transformed as follows:

BN(xi,k) = γk
xi,k − µB,k√
σ2B,k + ϵ

+ βk, (2.1)

where k (1 ≤ k ≤ d) indicates the k-th dimension of the data, µB,k and σB,k are, respectively,

the mean and the standard deviation computed with respect to the k-th dimension of the samples
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in B and ϵ is a constant used to prevent numerical instability. Finally, γk and βk are scaling and

shifting learnable parameters.

In the next section we present our DWT, while in Sec. 2.3.3 we present the proposed MEC

loss. It is worth noting that each proposed component can be plugged independently in a network

without having to rely on each other.

2.3.2 Domain-specific Whitening Transform

As stated above, BN is based on a per-dimension standardization of each sample xi ∈ B. Hence,

once normalized, the batch samples may still have correlated feature values. Since our goal is to

use feature normalization in order to alleviate the domain-shift problem (see below), we argue

that plain standardization is not enough to align the source and the target marginal distributions.

For this reason we propose to use Batch Whitening (BW) instead of BN, which is defined as:

BW(xi,k; Ω) = γkx̂i,k + βk, (2.2)

x̂i =WB(xi − µB). (2.3)

In Eq. (2.3), the vector µB is the mean of the elements in B (being µB,k its k-th component)

while the matrixWB is such that: W⊤
BWB = Σ−1

B , where ΣB is the covariance matrix computed

using B. Ω = (µB,ΣB) are the batch-dependent first and second-order statistics. Eq. (2.3)

performs the whitening of xi and the resulting set of vectors B̂ = {x̂1, ..., x̂m} lie in a spherical

distribution (i.e., with a covariance matrix equal to the identity matrix).

Our network takes as input two different batches of data, randomly extracted from S and

T, respectively. Specifically, given any arbitrary layer l in the network, let Bs = {xs1, ...,xsm}
and Bt = {xt1, ...,xtm} denote the batch of intermediate output activations, from layer l, for the

source and target domain, respectively. Using Eq. (2.2)-(2.3) we can now define our Domain-

specific Whitening Transform (DWT). Let xs and xt denote the inputs to the DWT layer from

the source and the target domain, respectively. Our DWT is defined as follows (we drop the

sample index i and dimension index k for the sake of clarity):

DWT(xs; Ωs) = BW (xs,Ωs), (2.4)

DWT(xt; Ωt) = BW (xt,Ωt). (2.5)
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We estimate separate statistics (Ωs = (µsB,Σ
s
B) and Ωt = (µtB,Σ

t
B)) for Bs and Bt and

use them for whitening the corresponding activations, projecting the two batches into a common

spherical distribution (Fig. 2.1 (a)).

W s
B and W t

B are computed following the approach described in [150], which is based on

the Cholesky decomposition [28]. The latter is faster [150] than the ZCA-based whitening

[71] adopted in [63]. In the Supplementary Material we provide more details on how W s
B and

W t
B are computed. Differently from [150] we replace the “coloring” step after whitening with

simple scale and shift operations, thereby preventing the introduction of extra parameters in the

network. Also, differently from [150] we use feature grouping [63] (Sec. 2.3.2.1) in order to

make the batch-statistics estimate more robust when m is small and d is large. During training,

the DWT layers accumulate the statistics for the target domain using a moving average of the

batch statistics (Ωtavg).

In summary, the proposed DWT layers replace the correlation alignment of the last-layer

feature activations with the intermediate-layer feature whitening, performed at different levels

of abstraction. In Sec. 2.3.2.1 we show that BN-based domain alignment layers [13, 88] can be

seen as a special case of DWT layers.

2.3.2.1 Implementation Details

Given a typical block (Conv layer → BN → ReLU) of a CNN, we replace the BN layer with

our proposed DWT layer (see in Fig. 2.1), obtaining: (Conv layer → DWT → ReLU). Ideally,

in order to project the source and target feature distributions to a reference one, the DWT layers

should perform full-feature whitening using a d × d whitening matrix, where d is the number of

features. However, the computed covariance matrix ΣB can be ill-conditioned if d is large and

m is small. For this reason, unlike [150] and similar to [63] we use feature grouping, where the

features are grouped into subsets of size g. This results in better-conditioned covariance matrices

but into partially whitened features. In this way we reach a compromise between full-feature

whitening and numerical stability. Interestingly, when g = 1, the whitening matrices reduce to

diagonal matrices, thus realizing feature standardization as in [13, 88].
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2.3.3 Min-Entropy Consensus Loss

The impossibility of using the cross-entropy loss on the unlabeled target samples is commonly

circumvented using some common unsupervised loss, such as the entropy [13, 140] or the

consistency loss [31, 143]. While minimizing the entropy loss ensures that the predictor

maximally separates the target data, minimization of the consistency loss forces the predictor to

deliver consistent predictions for target samples coming from identical (yet unknown) category.

Therefore, given the importance of exploiting better the unlabeled target data and the limitations

of the above two losses (see Sec. 2.1), we propose a novel Min-Entropy Consensus (MEC) loss

within the framework of UDA. We explain below how MEC loss merges both the entropy and

the consistency loss into a single unified function.

Similar to the consistency loss, the proposed MEC loss requires input data perturbations.

Unless otherwise explicitly specified, we apply common data-perturbation techniques on both S

and T using affine transformations and Gaussian blurring operations. When we use the MEC

loss, the network is fed with three batches instead of two. Specifically, apart from Bs, we use

two different target batches (Bt
1 and Bt

2), which contain duplicate pairs of images differing only

with respect to the adopted image perturbation.

Conceptually, we can think of this pipeline as three different networks with three separate

domain-specific statistics Ωs, Ωt1 and Ωt2 but with shared network weights. However, since both

Bt
1 and Bt

2 are drawn from the same distribution, we estimate a single Ωt using both the target

batches (Bt
1

⋃
Bt

2). As an additional advantage, this makes it possible to use 2m samples for

computing ΣtB .

Let Bs = {xs1, ...,xsm}, Bt
1 = {xt11 , ...,xt1m} and Bt

2 = {xt21 , ...,xt2m} be three batches of

the last-layer activations. Since the source samples are labeled, the cross-entropy loss (Ls) can

be used in case of Bs:

Ls(Bs) = − 1

m

m∑

i=1

log p(ysi |xsi ), (2.6)

where p(ysi |xsi ) is the (soft-max-based) probability prediction assigned by the network to a

sample xsi ∈ Bs with respect to its ground-truth label ysi . However, ground-truth labels are not

available for target samples. For this reason, we propose the following MEC loss (Lt):

Lt(Bt
1, B

t
2) =

1

m

m∑

i=1

ℓt(xt1i ,x
t2
i ), (2.7)
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ℓt(xt1i ,x
t2
i ) = −1

2
max
y∈Y

(
log p(y|xt1i ) + log p(y|xt2i )

)
. (2.8)

In Eq. (2.8), xt1i ∈ Bt
1 and xt2i ∈ Bt

2 are activations of two corresponding perturbed target

samples.

The intuitive idea behind our proposal is that, similarly to consistency-based losses [31, 143],

since xt1i and xt2i correspond to the same image, the network should provide similar predictions.

However, unlike the aforementioned methods which compute the L2-norm or the binary cross-

entropy between these predictions, the proposed MEC loss finds the class z such that z =

argminy∈Y

(
log p(y|xt1i ) + log p(y|xt2i )

)
. z is the class in which the posteriors corresponding

to xt1i and xt2i maximally agree. We then use z as the pseudo-label, which can be selected without

ad-hoc confidence thresholds. In other words, instead of using high-confidence thresholds to

discard unreliable target samples [31], we use all the samples but we backpropagate the error

with respect to only z.

The dynamics of MEC loss is the following. First, similarly to the consistency losses, it

forces the network to provide coherent predictions. Second, differently from consistency losses,

which are prone to attain a near zero value with uniform posterior distributions, it enforces

peaked predictions. See the Supplementary Material for a more formal relation between the

MEC loss and both entropy and consistency loss.

The final loss L is a weighted sum of Ls and Lt: L(Bs, Bt
1, B

t
2) = Ls(Bs) + λLt(Bt

1, B
t
2).

2.3.4 Discussion

The proposed DWT generalizes the BN-based DA approaches by decorrelating the batch features.

Besides the analogy with the correlation-alignment methods mentioned in Sec. 2.1, in which

covariance matrices are used to estimate and align the source and the target distributions, a second

reason for which we believe that full-whitening is important is due to the relation between

feature normalization and the smoothness of the loss [63, 74, 83, 137, 148]. For instance,

previous works [83, 137] showed that better conditioning of the input-feature covariance matrix

leads to better conditioning of the Hessian of the loss function, making the gradient descent

weight updates closer to Newton updates. However, BN only performs standardization, which

barely improves the conditioning of the covariance matrix when the features are correlated
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[63]. Conversely, feature whitening completely decorrelates the batch samples, thus potentially

improving the smoothness of the landscape of the loss function.

The importance of a smoothed loss function is even higher when entropy-like losses on

unlabeled data are used. For instance, Shu et al. [148] showed that minimizing the entropy

forces the classifier to be confident on the unlabeled target data, thus potentially driving the

classifier’s decision boundaries away from the target data. However, without a locally-Lipschitz

constraint on the loss function (i.e. with a non smoothed loss landscape), the decision boundaries

can be placed close to the training samples even when the entropy is minimized [148]. Since

our MEC loss is related with both the entropy and the consistency loss, we employ DWT also to

improve the smoothness of our loss function in order to alleviate overfitting phenomena related

to the use of unlabeled data.

2.4 Experiments

In this section we provide details about our implementation and training protocols and we report

our experimental evaluation. We conduct experiments on both small and large-scale datasets

and we compare our method with state-of-the-art approaches. We also present an ablation study

to analyze the impact of each of our contributions on the classification accuracy.

2.4.1 Datasets

We conduct experiments on the following datasets:

MNIST ↔ USPS. The MNIST dataset [82] contains grayscale images (28 × 28 pixels)

depicting handwritten digits ranging from 0 to 9. The USPS [32] dataset is similar to MNIST,

but images have smaller resolution (16 × 16 pixels). See Fig. 2.2(a) for sample images.

MNIST ↔ SVHN. Street View House Number (SVHN) [115] images are 32 × 32 pixels

RGB images. Similarly to the MNIST dataset digits range from 0 to 9. However, in SVHN

images have variable colour intensities and depict non-centered digits. Thus, there is a significant

domain shift with respect to MNIST (Fig. 2.2(b))

CIFAR-10 ↔ STL: CIFAR-10 is a 10 class dataset of RGB images depicting generic

objects and with resolution 32 × 32 pixels. STL [23] is similar to the CIFAR-10, except
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(a) MNIST ↔ USPS

(b) SVHN ↔ MNIST

(c) CIFAR-10 ↔ STL

Figure 2.2: Small image datasets used in our experiments.

Figure 2.3: Sample images from the Office-Home dataset.

it has fewer labelled training images per class and has images of resolution 96 × 96 pixels.

The non-overlapping classes - “frog” and “monkey” are removed from CIFAR-10 and STL,

respectively. Samples are shown in Fig. 2.2.(c).

Office-Home: The Office-Home [163] dataset comprises 4 distinct domains, each corre-

sponding to 65 different categories (Fig. 2.3). There are 15,500 images in the dataset, thus this

represents large-scale benchmark for testing domain adaptation methods. The domains are:

Art(Ar), Clipart (Cl), Product (Pr) and Real World (Rw).

2.4.2 Experimental Setup

To fairly compare our method with other UDA approaches, in the digits experiments we adopt

the same base networks proposed in [38]. For the CIFAR-10↔STL experiments we use the

network described in [31]. We train the networks using the Adam optimizer [72] with a mini-

batch of cardinality m = 64 samples, an initial learning rate of 0.001 and weight decay of 5 ×
10−4. The networks are trained for a total of 120 epochs with learning rate being decreased by a

factor of 10 after 50 and 90 epochs. We use the SVHN → MNIST setting to fix the value of the
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hyperparameter λ to 0.1 and to set group size (g) equal to 4. These hyperparameters values are

used for all the datasets.

In the Office-Home dataset experiments we use a ResNet-50 [57] following [97]. In our

experiments we modify ResNet-50 by replacing the first BN layer and the BN layers in the first

residual block (with 64 features) with DWT layers. The network is initialized with weights

taken from a pre-trained model trained on the ILSVRC-2012 dataset. We discard the final

fully-connected layer and we replace it with a randomly initialized fully-connected layer with

65 output logits. During training, each domain-specific batch is limited to m = 20 samples (due

to GPU memory constraints). The SGD optimizer is used with an initial learning rate of 10−2

for the randomly initialized final layer and 10−3 for the rest of the trainable parameters of the

network. The network is trained for a total of 60 epochs where one “epoch” is the pass through

the entire data set having the lower number of training samples. The learning rates are then

decayed by a factor of 10 after 54 epochs. Differently from the small-scale datasets experiments,

where target samples have predefined train and test splits, in the Office-Home experiments, all

the target samples (without labels) are used during training and evaluation.

Figure 2.4: SVHN → MNIST experiment: accuracy at varying number of DWT layers and group
size. Different colors are used to improve readability.

To demonstrate the effect our contributions, we consider three different variants for the

proposed method. In the first variant (denoted as DWT in Sec. 2.3.2), we only consider DWT

layers without the proposed MEC loss. In practice, in the considered network architectures we

replace the BN layers which follows the convolutional layers with DWT layers. Supervised

cross-entropy loss is used for the labeled source samples and the entropy-loss as in [13] is

used for the unlabeled target samples. No data-augmentation is used here. In the second
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variant, denoted as DWT-MEC, we also exploit the proposed MEC loss (this corresponds to

our full method). In this case we need perturbations of the input data, which are obtained by

following some basic data-perturbation schemes like image translation by a factor of [0.05,

0.05], Gaussian blur (σ = 0.1) and random affine transformation as proposed in [31]. In the

third variant (DWT-MEC (MT)) we plug our proposed DWT layers and the MEC loss in the

Mean-Teacher (MT) training paradigm [154].

Method
Source
Target

MNIST
USPS

USPS
MNIST

SVHN
MNIST

SE (w/ CT) [31] 99.29 99.26 97.88
SE (w/o CT) [31] 98.71 97.63 26.80

DWT-MEC (MT) 99.30 99.15 99.14

Table 2.1: Accuracy (%) on the digits datasets. Comparison between the consistency loss in SE
method [31] (with and without CT) and our threshold-free MEC loss.

2.4.3 Results

In this section we present an extensive experimental analysis of our approach, showing both the

results of an ablation study and a comparison with state-of-the-art methods.

2.4.3.1 Ablation Study

We first conduct a thorough analysis of our method assessing, in isolation, the impact of our two

main contributions: (i) aligning source and target distributions by embedded DWT layers; and

(ii) leveraging target data through our threshold-free MEC loss.

First, we consider the SVHN→MNIST setting and we show the benefit of feature whitening

over BN. We vary the number of whitening layers from 1 to 3 and simultaneously change the

group size (g) from 1 to 8 (see Sec. 2.3.2.1). With group size equal to 1, DWT layers reduces to

DA layers as proposed in [13, 88]. Our results are shown in Fig. 2.4 and from the figure it is clear

that when g = 1 the accuracy stays consistently below 90%. This behaviour can be ascribed

to the sub-optimal alignment of source and target data distributions achieved with previous

BN-based DA layers. When the group size increases, the feature decorrelation performed by the

DWT layers comes into play and results into a significant improvement in terms of performance.

The accuracy increases monotonically as the group size grows until the value of g = 4, then it
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start to decrease. This final drop is probably due to ill-conditioned covariance matrices. Indeed,

a covariance matrix with size 8 × 8 is perhaps poorly estimated due to the lack of samples in a

batch (Sec. 2.3.2.1). Importantly, Fig. 2.4 also shows that increasing the number of DWT layers

has a positive impact on the accuracy. This is in contrast with [63], where feature decorrelation

is used only in the first layer of the network.

Methods
Source
Target

MNIST
USPS

USPS
MNIST

SVHN
MNIST

MNIST
SVHN

Source Only 78.9 57.1±1.7 60.1±1.1 20.23±1.8
w/o augmentation
CORAL [151] 81.7 - 63.1 -
MMD [158] 81.1 - 71.1 -
DANN [38] 85.1 73.0±2.0 73.9 35.7
DSN [11] 91.3 - 82.7 -
CoGAN [94] 91.2 89.1±0.8 - -
ADDA [160] 89.4±0.2 90.1±0.8 76.0±1.8 -
DRCN [41] 91.8±0.1 73.7±0.1 82.0±0.2 40.1±0.1
ATT [140] - - 86.20 52.8
ADA [51] - - 97.6 -
AutoDIAL [13] 97.96 97.51 89.12 10.78
SBADA-GAN [136] 97.6 95.0 76.1 61.1
GAM [62] 95.7±0.5 98.0±0.5 74.6±1.1 -
MECA [111] - - 95.2 -
DWT 99.09±0.09 98.79±0.05 97.75±0.10 28.92 ±1.9
Target Only 96.5 99.2 99.5 96.7
w/ augmentation
SE a [31] 88.14±0.34 92.35±8.61 93.33±5.88 33.87±4.02
SE b [31] 98.23±0.13 99.54±0.04 99.26±0.05 37.49±2.44
SE † b [31] 99.29±0.16 99.26±0.04 97.88±0.03 24.09±0.33
DWT-MECb 99.01±0.06 99.02±0.05 97.80±0.07 30.20±0.92
DWT-MEC (MT)b 99.30±0.19 99.15±0.05 99.14±0.02 31.58±2.34

Table 2.2: Accuracy (%) on the digits datasets: comparison with state of the art. a indicates minimal
usage of data augmentation and b considers augmented source and target data. † indicates our
implementation of SE [31].

In Tab. 2.1 we evaluate the effectiveness of the proposed MEC loss and we compare our

approach with the consistency based loss adopted by French et al. [31]. We use Self-Ensembling

(SE) [31] with and without confidence thresholding (CT) on the network predictions of the

teacher network. To fairly compare our approach with SE we also consider a mean-teacher

(MT) scheme in our framework. MT follows the training scheme of SE where the weights of

the teacher network is the exponential moving average of those of the student. During training,

the augmented versions of the target sample are passed through both the student and teacher

network.
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2.4 Experiments

We observe that SE have excellent performance when the CT is set to a very high value (0.936

as in [31]) but it performance drops when CT is set equal to 0, especially in the SVHN→MNIST

setting. This shows that the consistency loss in [31] may be harmful when the network is not

confident on the target samples. Conversey, the proposed MEC loss leads to results which are

on par to SE in the MNIST↔USPS settings and to higher accuracy in the SVHN→MNIST

setting. This clearly demonstrates that our proposed loss avoids the need of introducing the CT

hyper-parameter and, at the same time, yields to better performance. It is important to remark

that, in the case of UDA, tuning hyper-parameters is hard as target samples are unlabeled and

cross-validation on source data is unreliable because of the domain shift problem [111].

Method
Source
Target

Ar
Cl

Ar
Pr

Ar
Rw

Cl
Ar

Cl
Pr

Cl
Rw

Pr
Ar

Pr
Cl

Pr
Rw

Rw
Ar

Rw
Cl

Rw
Pr Avg

ResNet-50 [57] 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1
DAN [98] 43.6 57.0 67.9 45.8 56.5 60.4 44.0 43.6 67.7 63.1 51.5 74.3 56.3
DANN [38] 45.6 59.3 70.1 47.0 58.5 60.9 46.1 43.7 68.5 63.2 51.8 76.8 57.6
JAN [99] 45.9 61.2 68.9 50.4 59.7 61.0 45.8 43.4 70.3 63.9 52.4 76.8 58.3
SE [31] 48.8 61.8 72.8 54.1 63.2 65.1 50.6 49.2 72.3 66.1 55.9 78.7 61.5
CDAN-RM [97] 49.2 64.8 72.9 53.8 63.9 62.9 49.8 48.8 71.5 65.8 56.4 79.2 61.6
CDAN-M [97] 50.6 65.9 73.4 55.7 62.7 64.2 51.8 49.1 74.5 68.2 56.9 80.7 62.8
DWT-MEC 50.3 72.1 77.0 59.6 69.3 70.2 58.3 48.1 77.3 69.3 53.6 82.0 65.6

Table 2.3: Accuracy(%) on Office-Home dataset with Resnet-50 as base network and comparison
with the state-of-the-art methods.

2.4.3.2 Comparison with State-of-the-Art Methods

In this section we present our results and compare with previous UDA methods. Tab. 2.2 reports

the results obtained on the digits datasets. We compare with several baselines: Correlation

Alignment (CORAL) [151], Simultaneous Deep Transfer (MMD) [158], Domain-Adversarial

Training of Neural Networks (DANN) [38], Domain separation networks [11], Coupled gen-

erative adversarial net-works (CoGAN) [94], Adversarial discriminative domain adaptation

(ADDA) [160], Deep reconstruction-classification networks (DRCN), [41], Asymmetric tri-

training [140], Associative domain adaptation (ADA) [51], AutoDIAL [13], SBADA-GAN

[136], Domain transfer through deep activation matching (GAM) [62], Minimal-entropy cor-

relation alignment (MECA) [111] and SE [31]. Note that the Virtual Adversarial Domain

Adaptation (VADA) [148] use a different network, thus cannot be compared with the other
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2. DOMAIN WHITENING TRANSFORM

Source
Target

CIFAR-10
STL

STL
CIFAR-10

Source Only 60.35 51.88

w/o augmentation
DANN [38] 66.12 56.91
DRCN [41] 66.37 58.65
AutoDIAL [13] 79.10 70.15
DWT 79.75±0.25 71.18±0.56

Target Only 67.75 88.86

w/ augmentation
SE a [31] 77.53±0.11 71.65±0.67
SE b [31] 80.09±0.31 69.86±1.97
DWT-MECb 80.39±0.31 72.52±0.94
DWT-MEC (MT)b 81.83±0.14 71.31±0.22

Table 2.4: Accuracy (%) on the CIFAR-10↔STL: comparison with state of the art. a indicates
minimal data augmentation and b considers augmented source and target data.

methods (including ours) which are based on a different capacity network. For this reason,

[148] is not reported in Tab. 2.2. Results associated with each method are taken from the

corresponding papers. We re-implemented SE as the numbers reported in the original paper [31]

refer to different network architectures.

Tab. 2.2 is split in two sections, separating those methods that exploit data augmentation

from those which use only the original training data. Compared with no-data augmentation

methods, our DWT performs better than previous UDA methods in the three settings. Our

method is less effective in the MNIST→SVHN due to the strong domain shift between the two

domains. In this setting, GAN-based methods [136] are more effective. Looking at methods

which consider data augmentation, we compare our approach with SE [31]. To be consistent

with other methods, we plug the architectures described in [36] in SE. Comparing the proposed

approach with our re-implementation of SE (SE†b) we observe that DWT-MEC (MT) is almost

on par with SE in the MNIST↔USPS setting and better than SE in the SVHN→MNIST. For the

sake of completeness, we also report the performance of SE taken from the original paper [31],

considering SE with minimal augmentation (only gaussian blur) and SE with full augmentation.

With the rapid progress of deep DA methods, the results in the digits datasets have saturated.

This makes it difficult to gauge the merit of the proposed contributions. Therefore, we also
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consider the CIFAR10 ↔ STL setting. Our results are reported in Tab. 2.4. Similarly to the

experiments in Tab. 2.2, we separate those methods exploiting data augmentation from those

not using target-sample perturbations. Tab. 2.4 shows that our method (DWT), outperforms

all previous baselines which also do not consider augmentation. Furthermore, by exploiting

data perturbation and the proposed MEC loss our approach (with and without Mean-Teacher)

reaches higher accuracy than SE.1

Finally, we also perform experiments on the large-scale Office-Home dataset and we compare

with the baselines methods as reported by Long et al. [97]. The results reported in Tab. 2.3

show that our approach outperforms all the other methods. On average, the proposed approach

improves over Conditional Domain Adversarial Networks (CDAN) by 2.8% and it is also more

accurate than SE.

2.5 Conclusions

In this chapter we addressed UDA by proposing domain-specific feature whitening with DWT

layers and the MEC loss. On the one hand, whitening of intermediate features enables the

alignment of the source and the target distributions at intermediate feature levels and increases

the smoothness of the loss landscape. On the other hand, our MEC loss better exploits the target

data. Both these components can be easily integrated in any standard CNN. Our experiments

on standard benchmarks show state-of-the-art performance on digits categorization and object

recognition tasks. As future work, we plan to extend our method to handle multiple source and

target domains.

1In this case the accuracy values reported for SE are taken directly from the original paper as the underlying
network architecture is the same.
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3

TriGAN for Multi-source Domain
Adaptation

Most domain adaptation methods consider the problem of transferring knowledge to the target

domain from a single source dataset. However, in practical applications, we typically have access

to multiple sources. In this chapter we propose the first approach for Multi-Source Domain

Adaptation (MSDA) based on Generative Adversarial Networks. Our method is inspired by the

observation that the appearance of a given image depends on three factors: the domain, the style

(characterized in terms of low-level features variations) and the content. For this reason, we

propose to project the source image features onto a space where only the dependence from the

content is kept, and then re-project this invariant representation onto the pixel space using the

target domain and style. In this way, new labeled images can be generated which are used to

train a final target classifier. We test our approach using common MSDA benchmarks, showing

that it outperforms state-of-the-art methods. 1

3.1 Introduction

A well known problem in computer vision is the need to adapt a classifier trained on a given

source domain in order to work on a different, target domain. Since the two domains typically

1The content of this chapter is based on the MVAP 2021 paper [132]
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3. TRIGAN FOR MULTI-SOURCE DOMAIN ADAPTATION

have different marginal feature distributions, the adaptation process needs to reduce the corre-

sponding domain shift [157]. In many practical scenarios, the target data are not annotated and

Unsupervised Domain Adaptation (UDA) methods are required.

While most previous adaptation approaches consider a single source domain, in real world

applications we may have access to multiple datasets. In this case, Multi-Source Domain

Adaptation (MSDA) methods [109, 121, 169, 175] may be adopted, in which more than one

source dataset is considered in order to make the adaptation process more robust. However,

despite more data can be used, MSDA is challenging as multiple domain-shift problems need to

be simultaneously and coherently solved.

In this chapter we deal with (unsupervised) MSDA using a data-augmentation approach

based on a Generative Adversarial Network (GAN) [45]. Specifically, we generate artificial

target samples by “translating” images from all the source domains into target-like images. Then

the synthetically generated images are used for training the target classifier. While this strategy

has been recently adopted in the single-source UDA scenario [61, 94, 113, 136, 145], we are

the first to show how it can be effectively used in a MSDA setting. In more detail, our goal is to

build and train a “universal” translator which can transform an image from an input domain to a

target domain. The translator network is “universal” because it is not specific for a given source

dataset but can transform images from multiple source domains into the target domain, given

a domain label as input (see Fig. 3.1). The proposed translator is based on an encoder, which

extracts domain-invariant intermediate features, and a decoder, which projects these features

onto the domain-specific target distribution.

To make this image translation effective, we assume that the appearance of an image depends

on three factors: the content, the domain and the style. The domain models properties that

are shared by the elements of a dataset but which may not be shared by other datasets. On

the other hand, the style factor represents properties which are shared among different local

parts of a single image and describes low-level features which concern a specific image (e.g.,

the color or the texture). The content is the semantics that we want to keep unchanged during

the translation process: typically, it is the foreground object shape which corresponds to the

image label associated with each source data sample. Our encoder obtains the intermediate

representations in a two-step process: we first generate style-invariant representations and then

we compute the domain-invariant representations. Symmetrically, the decoder transforms the

intermediate representations, first projecting these features onto a domain-specific distribution
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and then onto a style-specific distribution. In order to modify the underlying distribution of a set

of features, inspired by [131], in the encoder we use whitening layers which progressively align

the style-and-domain feature distributions. Then, in the decoder, we project the intermediate

invariant representation onto a new domain-and-style specific distribution with Whitening and

Coloring (WC) [150] batch transformations, according to the target data.

A “universal” translator similar in spirit to our proposed generator is StarGAN [22]. The

goal of StarGAN is pure image translation and it is not used for discriminative tasks (e.g., UDA

tasks). The main advantage of a universal translator with respect to train N specific source-

to-target translators (being N the number of source domains) is that the former can jointly

use all the source datasets, thus alleviating the risk of overfitting [22]. However, differently

from our proposed generator, in StarGAN the domain label is represented by a one-hot vector

concatenated with the input image. As shown in [150] this procedure is less effective than using

domain-label conditioned batch transforms. We empirically show that, when we use StarGAN

in our MSDA scenario, the synthesized images are much less effective for training the target

classifier, which confirms that our batch-based transformations of the image distribution are

more effective for our translation task.

Contributions. Our main contributions can be summarized as follows. (i) We propose the first

generative MSDA method. We call our approach TriGAN because it is based on representing

the image appearance using three different factors: the style, the domain and the content. (ii)

The proposed image translation process is based on style and domain specific statistics which

are first removed from and then added to the source images by means of modified WC layers.

Specifically, we use the following feature transformations (associated with a corresponding

layer type): Instance Whitening Transform (IWT ), Domain Whitening Transform (DWT )

[131], conditional Domain Whitening Transform (cDWT ) and Adaptive Instance Whitening

Transform (AdaIWT ). IWT and AdaIWT are novel layers introduced in this chapter. (iii)

We test our method on two MSDA datasets, Digits-Five [169] and Office-Caltech10 [44],

outperforming state-of-the-art methods.

3.2 Related Work

In this section we review the previous approaches on UDA, considering both single source and

multi-source methods. Since the proposed generator is also related to deep models used for

image-to-image translation, we also analyse related work on this topic.
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Figure 3.1: An overview of the TriGAN generator. We schematically show 3 domains {T, S1, S2}
- objects with holes, 3D objects and skewed objects, respectively. The content is represented by
the object’s shape - square, circle or triangle. The style is represented by the color: each image
input to G has a different color and each domain has its own set of styles. First, the encoder E
creates a style-invariant representation using IWT blocks. DWT blocks are then used to obtain
a domain-invariant representation. Symmetrically, the decoder D brings back domain-specific
information with cDWT blocks (for simplicity we show only a single output domain, T ). Finally,
we apply a reference style. The reference style is extracted using the style path and it is applied
using the Adaptive IWT blocks. In this figure, li and loi denote, respectively, the input and the output
domain labels.

Single-source UDA. Single-source UDA approaches assume a single labeled source domain

and can be broadly classified under three main categories, depending on the strategy adopted to

cope with the domain-shift problem. The first category uses first and second order statistics to

model the source and the target feature distributions. For instance, [98, 99, 161, 163] minimize

the Maximum Mean Discrepancy, i.e. the distance between the mean of feature distributions

between the two domains. On the other hand, [111, 124, 152] achieve domain invariance by

aligning the second-order statistics through correlation alignment. Differently, [13, 88, 108]

reduce the domain shift by domain alignment layers derived from batch normalization (BN)

[66]. This idea has been recently extended in [131], where grouped-feature whitening (DWT) is

used instead of feature standardization as in BN . In our proposed encoder we also use the DWT

layers, which we adapt to work in a generative network. In addition, we also propose other style

and domain dependent batch-based normalizations (i.e., IWT , cDWT and AdaIWT ).

The second category of methods computes domain-agnostic representations by means

of an adversarial learning based approach. For instance, discriminative domain-invariant
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representations are constructed through a gradient reversal layer in [36]. Similarly, Tzeng et al.

[159] use a domain confusion loss and a domain discriminator to align the source and the target

domain.

The third category of methods uses adversarial learning in a generative framework (i.e.,

GANs [45]) to create artificial source and/or target images and perform domain adaptation.

Notable approaches are SBADA-GAN [136], CyCADA [61], CoGAN [94], I2I Adapt [113] and

Generate To Adapt (GTA) [145]. While these generative methods have been shown to be very

successful in UDA, none of them deals with a multi-source setting. Note that trivially extending

these approaches to an MSDA scenario involves training N different generators, being N the

number of source domains. In contrast, in our universal translator, only a subset of parameters

grow linearly with the number of domains (Sec. 3.3.2.3), while the others are shared over all the

domains. Moreover, since we train our generator using (N + 1)2 translation directions, we can

largely increase the number of training sample-domain pairs effectively used (Sec. 3.3.3).

Multi-source UDA. In [175], multiple-source knowledge transfer is obtained by borrowing

knowledge from the target k nearest-neighbour sources. Similarly, a distribution weighted

combining rule is proposed in [109] to construct a target hypothesis as a weighted combination

of source hypotheses. Recently, Deep Cocktail Network (DCTN) [169] uses the distribution-

weighted combining rule in an adversarial setting. A Moment Matching Network (M3SDA)

is introduced in [121] to reduce the discrepancy between the multiple-source and the target

domains. Zhao et al. [180] investigate multi-source domain adaptation for segmentation tasks,

while Rakshit et al. [127] adversarially train an ensemble of source domain classifiers in order

to align the source domains to each other. Adversarial training is used also in [181], where

the authors propose to use the Wasserstein distance between the source samples and the target

distribution in order to select those samples which are the closest to the target domain.

Differently from these methods which operate in a discriminative setting, we propose the

first generative approach for an MSDA scenario, where the target dataset is populated with

artificial “translations” of the source images.

Image-to-image Translation. Image-to-image translation approaches, i.e. those methods which

transform an image from one domain to another, possibly keeping its semantics, are the basis

of our method. In [67] a U-Net network translates images under the assumption that paired

images in the two domains are available at training time. In contrast, CycleGAN [183] can

learn to translate images using unpaired training samples. Note that, by design, these methods
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work with two domains. ComboGAN [2] partially alleviates this issue by using N generators

for translations among N domains. Our work is also related to StarGAN [22] which handles

unpaired image translation amongst N domains (N ≥ 2) through a single generator. However,

StarGAN achieves image translation without explicitly forcing the image representations to be

domain invariant, and this may lead to a significant reduction of the network representation

power as the number of domains increases. On the other hand, our goal is to obtain an explicit,

intermediate image representation which is style-and-domain independent. We use IWT and

DWT to achieve this. We also show that this invariant representation can simplify the re-

projection process onto a desired style and target domain. This is achieved through AdaIWT

and cDWT which results into very realistic translations amongst domains. Very recently, a

whitening and colouring based image-to-image translation method was proposed in [21], where

the whitening operation is weight-based: the transformation is embedded into the network

weights. Specifically, whitening is approximated by enforcing the convariance matrix, computed

using the intermediate features, to be equal to the identity matrix. Conversely, our whitening

transformation is data dependent (i.e., it depends on the specific batch statistics, Sec. 3.3.2.1)

and uses the Cholesky decomposition [27] to compute the whitening matrices of the input

samples in a closed form, thereby eliminating the need of additional ad-hoc losses. Finally, most

related to this chapter, the work in [87] uses a whitening and coloring transform for the task

of universal style transfer. However, different from Li et al. [87], we conduct domain-specific

whitening transform, which yields improved results over when no domain assumptions are

made.

Asides from traditional neural network based image translation models, alternatively, Yang

et al. [174] proposed a light-weight image translation technique that relies on fourier transform

to transfer style between domains. Since this is a concurrent work with this current chapter, it is

outside the scope of comparison.

3.3 Style-and-Domain based Image Translation

In this section we describe the proposed approach for MSDA. We first provide an overview of

our method and we introduce the notation adopted throughout the paper (Sec. 3.3.1). Then we

describe the TriGAN architecture (Sec. 3.3.2) and our training procedure (Sec.3.3.3).
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3.3.1 Notation and Overview

In the MSDA scenario we have access to N labeled source datasets {Sj}Nj=1, where Sj =

{(xk, yk)}nj

k=1, and a target unlabeled dataset T = {xk}nt
k=1. All the datasets (target included)

share the same semantic categories, and each of them is associated to a domain Ds
1, ...,D

s
N ,D

t,

respectively. Our final goal is to build a classifier for the target domain Dt exploiting the data in

{Sj}Nj=1 ∪ T .

Our method is based on two separate training stages. We initially train a generator G which

learns how to change the appearance of a real input image in order to adhere to a desired domain

and style. G learns (N + 1)2 mappings between every possible pair of image domains, in this

way exploiting much more supervisory information with respect to a plain strategy in which N

different source-to-target generators are separately trained [22] (Sec. 3.3.3). Once G is trained,

in the second stage we use it to generate target data having the same content of the source data,

thus creating a new, labeled, target dataset, which is finally used to train a target classifier C.

However, in training G (first stage), we do not use class labels and T is treated in the same way

as the other datasets.

As mentioned in Sec. 3.1, G is composed of an encoder E and a decoder D (Fig. 3.1). The

role of E is to “whiten”, i.e., to remove, both domain-specific and style-specific aspects of the

input image features in order to obtain domain and style invariant representations. Symmetrically,

D “colors” the domain-and-style invariant features generated by E, by progressively projecting

these intermediate representations onto a domain-and-style specific space.

In the first training stage, G takes as input a batch of images B = {x1, ...,xm} with

corresponding domain labels L = {l1, ..., lm}, where xi belongs to the domain Dli and li ∈
{1, ..., N + 1}. Moreover, G takes as input a batch of output domain labels LO = {lO1 , ..., lOm},

and a batch of reference style images BO = {xO1 , ...,xOm}, such that xOi has domain label lOi .

For a given xi ∈ B, the task of G is to transform xi into x̂i such that: (1) xi and x̂i share the

same content but (2) x̂i belongs to domain DlOi
and has the same style of xOi .

3.3.2 TriGAN Architecture

The TriGAN architecture is composed of a generator network G and a discriminator network

DP. As above mentioned, G comprises an encoder E and decoder D, which we describe in
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(Sec. 3.3.2.2-3.3.2.3). The discriminator DP is based on the Projection Discriminator [110]).

Before describing the details of G, we briefly review the WC transform [150]) (Sec. 3.3.2.1)

which is used as the basic operation in our proposed batch-based feature transformations.

3.3.2.1 Preliminaries: Whitening & Coloring Transform

Let F (x) ∈ Rh×w×d be the tensor representing the activation values of the convolutional

feature maps in a given layer corresponding to the input image x, with d channels and h× w

spatial locations. We treat each spatial location as a d-dimensional vector, thus, each image

xi contains a set of vectors Xi = {v1, ...,vh×w}. With a slight abuse of the notation, we use

B =
m∪
i=1

Xi = {v1, ...,vh×w×m}, which includes all the spatial locations in all the images in

a batch. The WC transform is a multivariate extension of the per-dimension normalization

and shift-scaling transform (BN ) proposed in [66] and widely adopted in both generative and

discriminative networks. WC can be described by:

WC(vj ;B,β,Γ) = Coloring(v̄j ;β,Γ) = Γv̄j + β (3.1)

where:
v̄j =Whitening(vj ;B) = WB(vj − µB). (3.2)

In Eq. 3.2, µB is the centroid of the elements inB, while WB is such that: W⊤
BWB = Σ−1

B ,

where ΣB is the covariance matrix computed using B. The result of applying Eq. 3.2 to the

elements of B, is a set of whitened features B̄ = {v̄1, ..., v̄h×w×m}, which lie in a spherical

distribution (i.e., with a covariance matrix equal to the identity matrix). On the other hand,

Eq. 3.1 performs a coloring transform, i.e. projects the elements in B̄ onto a learned multivariate

Gaussian distribution. While µB and WB are computed using the elements in B (they are

data-dependent), Eq. 3.1 depends on the d dimensional learned parameter vector β and on the

d× d dimensional learned parameter matrix Γ. Eq. 3.1 is a linear operation and can be simply

implemented using a convolutional layer with kernel size 1× 1× d. We refer to [150] for more

details on how WC can be efficiently implemented.

In this chapter we use the WC transform in our encoder E and decoder D, in order to first

obtain a style-and-domain invariant representation for each xi ∈ B, and then transform this

representation accordingly to the desired output domain DlOi
and style image sample xOi . The

next sub-sections show the details of the proposed architecture.
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3.3.2.2 Encoder

The encoder E is composed of a sequence of standard Convolutionk×k - Normalization -

ReLU - Average Pooling blocks and some ResBlocks (more details in the Supplementary

Material), in which we replace the common BN layers [66] with our proposed normalization

modules, which are detailed below.

Obtaining Style Invariant Representations. In the first two blocks of E we whiten the

first and second-order statistics of the low-level features of each Xi ⊆ B, which are mainly

responsible for the style of an image [39]. To do so, we propose the Instance Whitening

Transform (IWT ), where the term instance is inspired by Instance Normalization (IN ) [162]

and highlights that the proposed transform is applied to a set of features extracted from a single

image xi. Specifically, for each vj ∈ Xi, IWT (vj) is defined as:

IWT (vj) =WC(vj ;Xi,β,Γ). (3.3)

Note that in Eq. 3.3 we use Xi as the batch, where Xi contains only feautures of a specific

image xi (Sec. 3.3.2.1). Moreover, each vj ∈ Xi is extracted from the first two convolutional

layers of E, thus vj has a small receptive field. This implies that whitening is performed using

an image-specific feature centroid µXi and covariance matrix ΣXi , which represent the first and

second-order statistics of the low-level features of xi. On the other hand, coloring is based on the

parameters β and Γ, which do not depend on xi or li. The coloring operation is the analogous

of the shift-scaling per-dimension transform computed in BN just after feature standardization

[66] and is necessary to avoid decreasing the network representation capacity [150].

Obtaining Domain Invariant Representations. In the subsequent blocks of E we whiten

the first and second-order statistics which are domain specific. For this operation we adopt the

Domain Whitening Transform (DWT ) proposed in [131]. Specifically, for each Xi ⊆ B, let li
be its domain label (see Sec. 3.3.1) and let Bli ⊆ B be the subset of features which have been

extracted from all those images in B which share the same domain label li. Then, for each

vj ∈ Bli :

DWT (vj) =WC(vj ;Bli ,β,Γ). (3.4)

Similarly to Eq. 3.3, Eq. 3.4 performs whitening using a subset of the current feature batch.

Specifically, all the features inB are partitioned depending on the domain label of the image they

37



3. TRIGAN FOR MULTI-SOURCE DOMAIN ADAPTATION

have been extracted from, so obtaining B1, B2, ..., etc, where all the features in Bl belong to

images of the domain Dl. Then, Bl is used to compute domain-dependent first and second order

statistics (µBl
,ΣBl

). These statistics are used to project each vj ∈ Bl onto a domain-invariant

spherical distribution. A similar idea was recently proposed in [131] in a discriminative network

for single-source UDA. However, differently from [131], we also use coloring by re-projecting

the whitened features onto a new space governed by a learned multivariate distribution. This is

done using the (layer-specific) parameters β and Γ which do not depend on li.

3.3.2.3 Decoder

Our decoder D is functionally and structurally symmetric with respect to E: it takes as input the

domain and style invariant features computed by E and projects these features onto the desired

domain DlOi
with the style extracted from the reference image xOi .

Similarly to E, D is a sequence of ResBlocks and a few Upsampling - Normalization -

ReLU - Convolutionk×k blocks (more details in the Supplementary Material). Similarly to

Sec. 3.3.2.2, in the Normalization layers we replace BN with our proposed feature normal-

ization approaches, which are detailed below.

Projecting Features onto a Domain-specific Distribution. Apart from the last two blocks

of D (see below), all the other blocks are dedicated to project the current set of features onto a

domain-specific subspace. This subspace is learned from data using domain-specific coloring

parameters (βl,Γl), where l is the label of the corresponding domain. To this purpose we

introduce the conditional Domain Whitening Transform (cDWT ), where the term “conditional”

specifies that the coloring step is conditioned on the domain label l. In more detail: Similarly to

Eq. 3.4, we first partition B into B1, B2, ..., etc. However, the membership of vj ∈ B to Bl is

decided taking into account the desired output domain label lOi for each image rather than its

original domain as in case of Eq. 3.4. Specifically, if vj ∈ Xi and the output domain label of Xi

is lOi , then vj is included in BlOi . Once B has been partitioned, we define cDWT as follows:

cDWT (vj) =WC(vj ;BlOi
,βlOi

,ΓlOi
). (3.5)

Note that, after whitening, and differently from Eq. 3.4, coloring in Eq. 3.5 is performed

using domain-specific parameters (βlOi ,ΓlOi ).
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3.3 Style-and-Domain based Image Translation

Applying a Specific Style. In order to apply a specific style to xi, we first extract the output

style from the reference image xOi associated with xi (Sec. 3.3.1). This is done using the Style

Path (see Fig. 3.1), which consists of two Convolutionk×k - IWT - ReLU - Average Pooling

blocks (which share the parameters with the first two layers of the encoder) and a MultiLayer

Perceptron (MLP) F. Following [39] we represent a style using the first and the second order

statistics µXO
i

, W−1
XO

i
, which are extracted using the IWT blocks (Sec. 3.3.2.2). Then we use

F to adapt these statistics to the domain-specific representation obtained as the output of the

previous step. In fact, in principle, for each vj ∈ XO
i , the Whitening() operation inside the

IWT transform could be “inverted” using:

Coloring(vj ;µXO
i
,W−1

XO
i
). (3.6)

Indeed, the coloring operation (Eq. 3.1) is the inverse of whitening (Eq. 3.2). However, the

elements of Xi now lie in a feature space which is different from the output space of Eq. 3.3,

thus the transformation defined by Style Path needs to be adapted. For this reason, we use a

MLP (F) which implements this adaptation:

[βi∥Γi] = F([µXO
i
∥W−1

XO
i
]). (3.7)

Note that, in Eq. 3.7, [µXO
i
∥W−1

XO
i
] is the (concatenated) input and [βi∥Γi] is the MLP

output, one input-output pair per image xOi .

Once (βi,Γi) have been generated, we use them as the coloring parameters of our Adaptive

IWT (AdaIWT ):
AdaIWT (vj) =WC(vj ;X

O
i ,βi,Γi). (3.8)

Eq. 3.8 imposes style-specific first and second order statistics to the features of the last blocks

of D in order to mimic the style of xOi .

3.3.3 Network Training

GAN Training. For the sake of clarity, in the rest of the paper we use a simplified notation

for G, in which G takes as input only one image instead of a batch. Specifically, let x̂i =

G(xi, li, l
O
i ,x

O
i ) be the generated image, starting from xi (xi ∈ Dli) and with desired output

domain lOi and style image xOi . G is trained using the combination of three different losses, with

the goal of changing the style and the domain of xi while preserving its content.
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First, we use an adversarial loss based on the Projection Discriminator [110] (DP), which

is conditioned on the input labels (i.e., domain labels, in our case) and uses a hinge loss:

LcGAN (G) = −DP(x̂i, l
O
i ) (3.9)

LcGAN (DP) = max(0, 1 +DP(x̂i, l
O
i ))

+ max(0, 1−DP(xi, li))
(3.10)

The second loss is the Identity loss proposed in [183]), which in our framework is imple-

mented as follows:
LID(G) = ||G(xi, li, li,xi)− xi||1. (3.11)

In Eq. 3.11, G computes an identity transformation, being the input and the output domain

and style the same. After that, a pixel-to-pixel L1 norm is computed.

Finally, we propose to use a third loss which is based on the rationale that the generation

process should be equivariant with respect to a set of simple transformations which preserve the

main content of the images (e.g., the foreground object shape). Specifically, we use the set of

the affine transformations {h(x;θ)} of image x which are defined by the parameter θ (θ is a

2D transformation matrix). The affine transformation is implemented by a differentiable bilinear

kernel as in [68]. The Equivariance loss is:

LEq(G) = ||G(h(xi;θi), li, lOi ,xOi )− h(x̂i;θi)||1. (3.12)

In Eq. 3.12, for a given image xi, we randomly choose a geometric parameter θi and we

apply h(·;θi) to x̂i = G(xi, li, l
O
i ,x

O
i ). Then, using the same θi, we apply h(·;θi) to xi and we

get x′
i = h(xi;θi), which is input to G in order to generate a second image. The two generated

images are finally compared using the L1 norm. This is a form of self-supervision, in which

equivariance to geometric transformations is used to extract semantics. Very recently a similar

loss has been proposed in [65], where equivariance to affine transformations is used for image

co-segmentation.

The complete loss for G is:

L(G) = LcGAN (G) + λ(LEq(G) + LID(G)). (3.13)
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Note that Eq. 3.9, 3.10 and 3.12 depend on the pair (xi, lOi ): This means that the supervisory

information we effectively use, grows with O((N + 1)2), which is quadratic with respect to a

plain strategy in which N different source-to-target generators are trained (Sec. 3.2).

Classifier Training. Once G is trained, we use it to artificially create a labeled training

dataset (TL) for the target domain. Specifically, for each Sj and each (xi, yi) ∈ Sj , we

randomly pick xt ∈ T , which is used as the reference style image, and we generate: x̂i =

G(xi, li, N + 1,xt), where N + 1 is fixed and indicates the target domain (Dt) label (see

Sec. 3.3.1). (x̂i, yi) is added to TL and the process is iterated. TL is generated on the fly during

the training of C, and, every time that a given (xi, yi) ∈ Sj is selected, we randomly select a

different reference style image xt ∈ T .

Finally, we train a classfier C on TL using the cross-entropy loss:

LCls(C) = − 1

|TL|
∑

(x̂i,yi)∈TL

log p(yi|x̂i). (3.14)

Some previous works such as CyCADA [60] and SBADA-GAN [136] propose including the

image classification loss in the unpaired translation stage, so that image content is not lost during

the translation. While it is indeed possible to couple the LCls(C) loss in the image translation

stage, making the whole process end-to-end, but we observe that our TriGAN generations do

not suffer from such issue. It can be attributed due to the geometric constraints induced by the

LEq loss and due to the well established intuition that image translation methods can solely

translate the low-level textures without modifying the semantic content.

3.4 Experiments

In this section we describe the experimental setup and then we evaluate our approach using

common MSDA datasets. We also present an ablation study in which we separately analyse

the impact of each TriGAN component. In the Supplementary Material we show additional

experiments in a single-source UDA scenario.

3.4.1 Datasets

In our experiments we consider two common domain adaptation benchmarks, namely the

Digits-Five benchmark [169] and the Office-Caltech dataset [44].
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3. TRIGAN FOR MULTI-SOURCE DOMAIN ADAPTATION

Digits-Five [169] is composed of five different digit-recognition datasets: USPS [32],

MNIST [82], MNIST-M [36], SVHN [115] and the Synthetic numbers dataset [38] (SYNDIG-

ITS). SVHN [115] contains Google Street View images of real-world house numbers. Synthetic

numbers [38] includes 500K computer-generated digits with different sources of variations

(i.e. position, orientation, color, blur). USPS [32] is a dataset of digits scanned from U.S.

envelopes, MNIST [82] is a popular benchmark for digit recognition and MNIST-M [36] is its

colored counterpart. We adopt the experimental protocol described in [169]: in each domain the

train/test split is composed of a subset of 25000 images for training and 9000 images for testing.

For USPS, the entire dataset is used.

Office-Caltech [44] is a domain-adaptation benchmark, obtained selecting the subset of

those 10 categories which are shared between Office31 and Caltech256 [49]. It contains 2533

images, about half of which belonging to Caltech256. There are four different domains: Amazon

(A), DSLR (D), Webcam (W) and Caltech256 (C).

3.4.2 Implementation details

In this section we provide the architectural details of the TriGAN generator G and the discrimi-

nator DP.

Instance Whitening Transform (IWT) blocks. As shown in Fig 3.2 (a), each IWT block is a

sequence composed of: Convolutionk×k − IWT −ReLU −AvgPoolm×m, where k and m

denote the kernel sizes. There are two IWT blocks in E. In the first IWT block, we use k = 5

and m = 2, while in the second we use k = 3 and m = 2.

Adaptive Instance Whitening (AdaIWT) blocks. The AdaIWT blocks are analogous to the

IWT blocks, except from the IWT layers which are replaced with AdaIWT layers. Specifically,

the AdaIWT block is a sequence: Upsamplingm×m−Convolutionk×k−AdaIWT−ReLU ,

where m = 2 and k = 3. AdaIWT also takes as input the coloring parameters (Γ, β) (see

Sec. 3.2.3 of the main paper and Fig. 3.2 (b)). Two AdaIWT blocks are consecutively used in

D. The last AdaIWT block is followed by a Convolution5×5 layer.

Style Path. The Style Path is composed of: Convolution 5×5 − (IWT −MLP )−ReLU −
AvgPool2×2 − Convolution3×3 − (IWT −MLP ) (Fig. 3.2 (c)). The output of the Style
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ReLU

(a) IWT block
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Γ
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AvgPool
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IWT MLP

MLP
Γ1

 β1

Γ2
 β2

(c) Style Path

Figure 3.2: A schematic representation of (a) the IWT block; (b) the AdaIWT block; and (c) the
Style Path.

Path is (β1∥Γ1) and (β2∥Γ2), which are input to the second and the first AdaIWT blocks,

respectively (see Fig. 3.2 (b)). The MLP is composed of five fully-connected layers with 256,

128, 128, 256 neurons, with the last fully-connected layer having a number of neurons equal to

the cardinality of the coloring parameters (β∥Γ).

Domain Whitening Transform (DWT) blocks. The schematic representation of a DWT

block is shown in Fig. 3.3 (a). For the DWT blocks we adopt a residual-like structure [57]:

DWT−ReLU−Convolution3×3−DWT−ReLU−Convolution3×3. We also add identity

shortcuts in the DWT residual blocks to aid the training process.

Conditional Domain Whitening Transform (cDWT) blocks. The proposed cDWT blocks are

schematically shown in Fig. 3.3 (b). Similarly to a DWT block, a cDWT block contains the

following layers: cDWT −ReLU−Convolution3×3−cDWT −ReLU−Convolution3×3.

Identity shortcuts are also used in the cDWT residual blocks.

All the above blocks are assembled to construct G, as shown in Fig. 3.4. Specifically,

G contains two IWT blocks, one DWT block, one cDWT block and two AdaIWT blocks.

It also contains the Style Path and 2 Convolution5×5 (one before the first IWT block and

another after the last AdaIWT block), which is omitted in Fig. 3.4 for the sake of clarity.

{Γ1,β1,Γ2,β2} are computed using the Style Path.

For the discriminator DP, we use a Projection Discriminator architecture [110]. In DP

we use projection shortcuts instead of identity shortcuts. In Fig 3.5 we schematically show a
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Figure 3.3: A schematic representation of (a) the DWT block; and (b) the cDWT block.
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Γ2  β2 Γ1  β1

Figure 3.4: A schematic representation of the Generator G.

discriminator block. DP is composed of 2 such blocks. We use spectral normalization [110] in

DP.

3.4.3 Experimental Setup

We train TriGAN for 100 epochs using the Adam optimizer [72] with the learning rate set to

1e-4 for G and 4e-4 for DP as in [59]. The loss weighing factor λ in Eq. 3.13 is set to 10 as in

[183]. Since LEq can be seen as a replacement of the cycle loss in Zhu et al. [183], and both

being L1-loss we also use the same λ value for LEq, as used in the cycle loss.

In the Digits-Five experiments we use a mini-batch of size 256. Due to the difference in
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Figure 3.5: A schematic representation of the Discriminator DP.

image resolution and image channels, the images of all the domains are converted to 32 × 32

RGB. For a fair comparison, for the final target classifier C we use exactly the same network

architecture used in [38, 121].

In the Office-Caltech10 experiments we downsample the images to 164 × 164 to accom-

modate more samples in a mini-batch. We use a mini-batch of size 24 for training with 1 GPU.

For the back-bone target classifier C we use the ResNet101 [57] architecture used in [121].

The weights are initialized with a network pre-trained on the ILSVRC-2012 dataset [135]. In

our experiments we remove the output layer and we replace it with a randomly initialized

fully-connected layer with 10 logits, one for each class of the Office-Caltech10 dataset. C is

trained with Adam with an initial learning rate of 1e-5 for the randomly initialized last layer and

1e-6 for all other layers. In the Office-Caltech10 experiments, we also include {Sj}Nj=1 in TL

when training C.

3.4.4 Results

In this section we quantitatively analyse TriGAN (Sec. 3.4.4.1, 3.4.4.2 and 3.4.4.3) and we show

some qualitative image-translation results (Sec. 3.4.4.4).
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Protocol Models
mt, up,
sv, sy
→ mm

mm, up,
sv, sy
→ mt

mt, mm,
sv, sy
→ up

mt, up,
mm, sy
→ sv

mt, up,
sv, mm
→ sy

Avg

So
ur

ce
C

om
bi

ne Source Only 63.70±0.83 92.30±0.91 90.71±0.54 71.51±0.75 83.44±0.79 80.33±0.76

DAN[98] 67.87±0.75 97.50±0.62 93.49±0.85 67.80±0.84 86.93±0.93 82.72±0.79

DANN[36] 70.81±0.94 97.90±0.83 93.47±0.79 68.50±0.85 87.37±0.68 83.61±0.82

M
ul

ti-
So

ur
ce

Source Only 63.37±0.74 90.50±0.83 88.71±0.89 63.54±0.93 82.44±0.65 77.71±0.81

DAN[98] 63.78±0.71 96.31±0.54 94.24±0.87 62.45±0.72 85.43±0.77 80.44±0.72

CORAL[151] 62.53±0.69 97.21±0.83 93.45±0.82 64.40±0.72 82.77±0.69 80.07±0.75

DANN[36] 71.30±0.56 97.60±0.75 92.33±0.85 63.48±0.79 85.34±0.84 82.01±0.76

ADDA[160] 71.57±0.52 97.89±0.84 92.83±0.74 75.48±0.48 86.45±0.62 84.84±0.64

DCTN[169] 70.53±1.24 96.23±0.82 92.81±0.27 77.61±0.41 86.77±0.78 84.79±0.72

M3SDA[121] 72.82±1.13 98.43±0.68 96.14±0.81 81.32±0.86 89.58±0.56 87.65±0.75

StarGAN [22] 44.71±1.39 96.26±0.62 55.32±3.71 58.93±1.95 63.36±2.41 63.71±2.01

TriGAN (Ours) 83.20±0.78 97.20±0.45 94.08±0.92 85.66±0.79 90.30±0.57 90.08±0.70

Table 3.1: Classification accuracy (%) on Digits-Five. MNIST-M, MNIST, USPS, SVHN and
Synthetic Digits are abbreviated as mm, mt, up, sv and sy, respectively. Each setting is denoted as a
set of source domains (before the arrow) and a target domain (after the arrow). Following [121],
we indicate with “Source Combine” the protocol in which all the source datasets are combined in
one, hence performing a standard single-source domain adaptation task. Best values are in bold and
second best values are underlined.

3.4.4.1 Comparison with State-of-the-Art Methods

Tab. 3.1 and Tab. 3.2 show the results on the Digits-Five and the Office-Caltech10 datset,

respectively. In Tab. 3.1 and Tab. 3.2 the methods have been grouped under source-combine and

multi-source categories. As the name suggest, source-combine do not assume the knowledge

of source domain labels and combines all the source samples into a single domain. Whereas,

in multi-source the knowledge about source domain labels are exploited. In Tab. 3.1 all the

baselines have been taken from Peng et al. [121] and we report the numbers of our method

averaged over three runs.

Tab. 3.1 shows that TriGAN achieves an average accuracy of 90.08% which is higher than
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all other methods. M3SDA is better than TriGAN in the mm, up, sv, sy → mt and in the mt,

mm, sv, sy → up settings, where TriGAN is the second best. In all the other settings, TriGAN

outperforms all the other approaches. As an example, in the mt, up, sv, sy → mm setting,

TriGAN is better than the second best method, M3SDA, by a significant margin of 10.38%. In

the same table we also show the results obtained when we replace TriGAN with StarGAN [22],

which is another “universal” image translator (Sec. 3.2). Specifically, we use StarGAN to

generate synthetic target images and then we train the target classifier using the same protocol

described in Sec. 3.3.3. The corresponding results in Table 3.1 show that StarGAN, despite to

be known to work well for aligned face translation, drastically fails when used in this UDA

scenario.

Finally, we also use Office-Caltech10, which is considered to be difficult for generative-

based UDA methods because of the high-resolution images. Although the dataset is quite

saturated, TriGAN achieves a classification accuracy of 97.0%, outperforming all the other

methods and beating the previous state-of-the-art approach (M3SDA) by a margin of 0.6% on

average (see Tab. 3.2).

Protocol Models
All/W
→ W

All/D
→ D

All/C
→ C

All/A
→ A

Avg

Source
Combine

Source only 99.0 98.3 87.8 86.1 92.8
DAN [98] 99.3 98.2 89.7 94.8 95.5

Multi-
Source

Source only 99.1 98.2 85.4 88.7 92.9
DAN [98] 99.5 99.1 89.2 91.6 94.8

DCTN [169] 99.4 99.0 90.2 92.7 95.3
M3SDA [121] 99.5 99.2 92.2 94.5 96.4
StarGAN [22] 99.6 100.0 89.3 93.3 95.5

TriGAN (Ours) 99.7 100.0 93.0 95.2 97.0

Table 3.2: Classification accuracy (%) on Office-Caltech10. The target domains are indicated as
follows: Amazon (A), DSLR (D), Webcam (W) and Caltech256 (C). In each setting, the source
domains are all the remaining datasets except the target dataset.
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3.4.4.2 Ablation Study

In this section we analyse the different components of our method and study in isolation their

impact on the final accuracy. Specifically, we use the Digits-Five dataset and the following

models: i) Model A, which is our full model containing the following components: IWT, DWT,

cDWT, AdaIWT and LEq. ii) Model B, which is similar to Model A except we replace LEq with

the cycle-consistency loss LCycle of CycleGAN [183]. iii) Model C, where we replace IWT,

DWT, cDWT and AdaIWT of Model A with IN [162], BN [66], conditional Batch Normalization

(cBN) [29] and Adaptive Instance Normalization (AdaIN) [64]. This comparison highlights the

difference between feature whitening and feature standardization. iv) Model D, which ignores

the style factor. Specifically, in Model D, the blocks related to the style factor, i.e., the IWT

and the AdaIWT blocks, are replaced by DWT and cDWT blocks, respectively. v) Model E, in

which the style path differs from Model A in the way the style is applied to the domain-specific

representation. Specifically, we remove the MLP F(.) and we directly apply (µXO
i
,W−1

XO
i

).

vi) Finally, Model F represents no-domain assumption (e.g. the DWT and cDWT blocks are

replaced with standard WC blocks).

Model Description
Avg. Accuracy (%)

(Difference)

A TriGAN (full method) 90.08

B
Replace Equivariance Loss

with Cycle Loss
88.38 (-1.70)

C
Replace Whitening with
Feature Standardisation

89.39 (-0.68)

D No Style Assumption 88.32 (-1.76)

E
Applying style directly

instead of style path
88.36 (-1.71)

F No Domain Assumption 89.10 (-0.98)

StarGAN
(Baseline)

No Style Assumption,
Domain Labels concatenated

with the input image

63.71 (-26.37)

Table 3.3: An analysis of the main TriGAN components using Digits-Five.

The results, reported in Tab. 3.3, show that all the components of the proposed generator
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play a role in the accuracy reached by the full model (A). Specifically, LCycle (Model B) is

detrimental for the accuracy because G may focus on semantically meaningless details when

reconstructing-back the image. Conversely, the affine transformations used in case of LEq, force

G to focus on the shape (i.e., the content) of the images. Also Model C is outperformed by model

A, demonstrating the importance of feature whitening with respect to feature standardisation,

corroborating the findings of [131] in a pure-discriminative scenario. Moreover, the no-style

assumption in Model D hurts the classification accuracy by a margin of 1.76% when compared

with Model A. We believe this is due to the fact that, when instance-specific style information

is missing in the image translation process, then the diversity of the translations decreases,

consequently reducing the final accuracy. In fact, we remind that, when TL is created (Sec. 3.3.3),

for the same (xi, yi) ∈ Sj , we randomly select multiple, different reference style images xt ∈ T :

this diversity cannot be obtained if only domain-specific latent factors are modeled. Finally,

Model E and Model F show the importance of the proposed style path and the domain factor,

respectively.

Note that the ablation analysis in Tab. 3.3 is done by removing a single component from the

full model A, and the marginal differences with respect to Model A show that all the components

are important. On the other hand, simultaneously removing all the components makes our model

become similar to StarGAN, which we also report in Tab. 3.3 as a baseline comparison. In

fact, in StarGAN, there is no style information and the domain labels are concatenated with

the input image (Sec. 3.2). Conversely, our main contribution is the generation of intermediate

invariant features and their re-projection onto the target domain and style distribution. This

is obtained using a combination of blocks which extend WC [150] in order to first remove

and then re-introduce style and domain specific statistics. The difference between the use of

StarGAN and the use of Model A to populate of TL (-26.37%) empirically shows that the

proposed image translation approach is effective in a MSDA scenario.

3.4.4.3 Multi domain image-to-image translation

Our proposed generator can be used for a pure generative (non-UDA), multi-domain image-

to-image translation task. We conduct experiments on the Alps Seasons dataset [2] which

consists of images of Alps mountains with 4 different domains (corresponding to 4 seasons).

Fig. 3.6 shows some images generated using our generator. For this experiment, we compare

our generator with StarGAN [22] using the FID [59] metrics. FID measures the realism of the
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Spring

Summer

Winter

Autumn

Source

Style

Figure 3.6: Image translation examples generated by TriGAN across different domains (i.e., seasons)
using the Alps Seasons dataset. We show two generated images for each domain combination. The
leftmost column shows the source images, one from each domain, and the topmost row shows the
style of the target domain, two reference style images for each target domain.

generated images (the lower the better). The FID scores are computed considering all the real

samples in the target domain and generating an equivalent number of synthetic images in the

target domain. Tab. 3.4 shows that the TriGAN FID scores are significantly lower than the

StarGAN scores. This further highlights that decoupling the style and the domain and using

WC-based layers to progressively “whiten” and “color” the image statistics, yields to a more

realistic cross-domain image translation than using domain labels as input as in the case of

StarGAN.

All/Wint.
→Winter

All/Sum.
→Summer

All/Spr.
→Spring

All/Aut.
→Autumn

StarGAN [22] 148.45 180.36 175.40 145.24
TriGAN (Ours) 41.03 38.59 40.75 32.71

Table 3.4: Alps Seasons dataset, FID scores: Comparing TriGAN with StarGAN [22].
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3.4.4.4 Qualitative Image Translation Results

In Figs. 3.7 and 3.8, we show some translations examples obtained using our generator G and

different datasets, which show how both the domain and the style is used in transforming an im-

age sample. For instance, the fourth row of Fig. 3.7 shows an SVHN digit image which contains

other digits in the background (which is a common characteristic of the SVHN dataset). When

G translates this image to MNIST or MNIST-M, the background digit disappears, accordingly to

the common uniform background of the target datasets. When the reference style image is, e.g.,

the MNIST-M “three” (fifth column), G correctly applies the instance-specific style (i.e., a blue

foreground digit with a red background). A similar behaviour can be observed in Fig. 3.8.

MNIST

USPS

MNIST-M

SVHN

SYNDIGITS

MNIST USPSMNIST-M SVHN SYNDIGITS

Source
Style

Figure 3.7: Image translation examples obtained using our generator with the Digits-Five dataset.
The leftmost column shows the source images, one from each domain, and the topmost row shows
the style image from the target domain, two reference images for each target domain.

3.5 Experiments for single-source UDA

Since TriGAN has can handle N -source domain translations, we also conduct experiments

for a Single-Source UDA scenario where N = 1 and the source domain is grayscale MNIST.

Below we describe the adopted UDA settings with the Digits-Five dataset and the corresponding

results.
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Amazon

DSLR
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Webcam AmazonCaltech DSLR

Source
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Figure 3.8: Image translation examples obtained using our generator with the Office-Caltech10
dataset. The leftmost column shows the source images, one from each domain, and the topmost row
shows the style image from the target domain, two reference images for each target domain.

3.5.1 Datasets

MNIST → USPS. The MNIST dataset contains grayscale images of handwritten digits from 0

to 9. The image resolution in MNIST is 28 × 28. USPS contains similar grayscale handwritten

digits, except from the resolution which is 16 × 16. We up-sample the images of both domains

to 32 × 32 during training. For training TriGAN, 50000 MNIST and 7438 USPS samples are

used. For evaluation, we use 1860 test samples from USPS.

MNIST → MNIST-M. MNIST-M is a coloured version of the grayscale MNIST digits. MNIST-

M has RGB images with resolution 28 × 28. For the TriGAN training, all the 50000 training

samples from both MNIST and MNIST-M are used, and the dedicated 10000 MNIST-M test

samples are used for evaluation. Training images are up-sampled to 32 × 32.

MNIST → SVHN. SVHN is the short form of Street View House Number and contains real-

world images of digits, ranging from 0 to 9. The samples in SVHN are RGB images, with a

resolution of 32 × 32. SVHN has non-centered digits with varying colour intensities. One

challenging characteristic of the SVHN images is the presence of other digits, partially shown
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3.5 Experiments for single-source UDA

Methods
Source
Target

MNIST
USPS

MNIST
MNIST-M

MNIST
SVHN

Source Only 78.9 63.6 26.0
DANN [38] 85.1 77.4 35.7
CoGAN [94] 91.2 62.0 -
ADDA [159] 89.4 - -
PixelDA [10] 95.9 98.2 -
UNIT [93] 95.9 - -
SBADA-GAN [136] 97.6 99.4 61.1
GenToAdapt [145] 92.5 - 36.4
CyCADA [61] 94.8 - -
I2I Adapt [113] 92.1 - -
TriGAN (Ours) 98.0 95.7 66.3

Table 3.5: Classification Accuracy (%) of generation-based methods on the single-source UDA
scenario for digit recognition. The best value is in bold and the second best is underlined.

in the background. For the TriGAN training, 60000 MNIST and 73257 SVHN samples are used.

During the evaluation, all the 26032 SVHN test samples are utilized.

3.5.2 Comparison with generation-based state-of-the-art methods

In this section we compare our proposed TriGAN with generation-based state-of-the-art UDA

methods, either based on GANs or based reconstruction approaches. Tab. 3.5 reports the

performance of our TriGAN alongside the results obtained from the following baselines: Do-

main Adversarial Neural Network [38] (DANN), Coupled generative adversarial networks

[94] (CoGAN), Adversarial discriminative domain adaptation [159] (ADDA), Pixel-level

domain adaptation [10] (PixelDA), Unsupervised image-to-image translation networks [93]

(UNIT), Symmetric bi-directional adaptive gan [136] (SBADA-GAN), Generate to adapt [145]

(GenToAdapt), Cycle-consistent adversarial domain adaptation [61] (CyCADA) and Image

to image translation for domain adaptation [113] (I2I Adapt). Tab. 3.5 shows that TriGAN

outperforms all the other generative methods in two out of the three adaptation settings. In the

MNIST → MNIST-M setting, TriGAN is the third best. It is interesting to note that TriGAN

achieves significantly better results in the MNIST → SVHN setting, which is considered as a
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hard setting, where TriGAN is 5.2% better than the second best method SBADA-GAN.

3.6 Conclusions

In this chapter we proposed TriGAN, an MSDA framework which is based on data-generation

from multiple source domains using a single generator. The underlying principle of our approach

to to obtain intermediate, domain and style invariant representations in order to simplify the

generation process. Specifically, our generator progressively removes style and domain specific

statistics from the source images and then re-projects the intermediate features onto the desired

target domain and style. We obtained state-of-the-art results on two MSDA datasets, showing

the potentiality of our approach.
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4

Curriculum Graph Co-teaching for
Multi-target Domain Adaptation

In this chapter we address multi-target domain adaptation (MTDA), where given one labeled

source dataset and multiple unlabeled target datasets that differ in data distributions, the task is

to learn a robust predictor for all the target domains. We identify two key aspects that can help

to alleviate multiple domain-shifts in the MTDA: feature aggregation and curriculum learning.

To this end, we propose Curriculum Graph Co-Teaching (CGCT) that uses a dual classifier

head, with one of them being a graph convolutional network (GCN) which aggregates features

from similar samples across the domains. To prevent the classifiers from over-fitting on its

own noisy pseudo-labels we develop a co-teaching strategy with the dual classifier head that

is assisted by curriculum learning to obtain more reliable pseudo-labels. Furthermore, when

the domain labels are available, we propose Domain-aware Curriculum Learning (DCL), a

sequential adaptation strategy that first adapts on the easier target domains, followed by the

harder ones. We experimentally demonstrate the effectiveness of our proposed frameworks on

several benchmarks and advance the state-of-the-art in the MTDA by large margins (e.g. +5.6%

on the DomainNet w.r.t to the competitor method)1.

1The content of this chapter is based on the CVPR 2021 paper [130].
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4.1 Introduction

Deep learning models suffer from the well known drawback of failing to generalize well

when deployed in the real world. The gap in performance arises due to the difference in the

distributions of the training (a.k.a source) and the test (a.k.a target) data, which is popularly

referred to as domain-shift [157]. Since, collecting labeled data for every new operating

environment is prohibitive, a rich line of research, called Unsupervised Domain Adaptation

(UDA), has evolved to tackle the task of leveraging the source data to learn a robust predictor on

a desired target domain.

Figure 4.1: Schematic diagram of aggregating fea-
tures from similar samples across domains using a
graph convolutional network. Each color represents
a domain

In the literature, UDA methods have

predominantly been designed to adapt from

a single source domain to a single tar-

get domain (STDA). Such methods in-

clude optimizing statistical moments [13,

14, 15, 98, 124, 131, 152, 161], adversar-

ial training [38, 96, 159], generative mod-

elling [61, 94, 136], to name a few. How-

ever, given the proliferation in unlabeled

data acquisition, the need to adapt to just

a single target domain has lost traction in

the real world scenarios. As the number of

target domains grows, the number of mod-

els that need to be trained also scales lin-

early. For this reason, the research focus

has very recently been steered to address a

more practical scenario of adapting simultaneously to multiple target domains from a single

source domain. This adaptation setting is formally termed as Multi-target Domain Adaptation

(MTDA). The goal of the MTDA is to learn more compact representations with a single predic-

tor that can perform well in all the target domains. Straightforward application of the STDA

methods for the MTDA may be sub-optimal due to the presence of multiple domain-shifts,

thereby leading to negative transfer [20, 178]. Thus, the desideratum to align multiple data

distributions makes the MTDA considerably more challenging.
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Figure 4.2: Schematic diagram of co-teaching with
dual-head classifier

In this chapter we build our framework

for the MTDA pivoted around two key con-

cepts: feature aggregation and curriculum

learning. Firstly, we argue that given the

intrinsic nature of the task, learning robust

features in a unified space is a prerequisite

for attaining minimum risk across multiple

target domains. For this purpose we pro-

pose to represent the source and the target

samples as a graph and then leverage Graph

Convolutional Networks [73] (GCN) to aggregate semantic information from similar samples in

a neighbourhood across different domains (see Fig. 4.1). For the GCN to be operative, partial

relationships among the samples (nodes) in the graph must at least be known apriori in the form

of class labels. However, this information is absent for the target samples. To this end, we

design a co-teaching framework where we train two classifiers: a MLP classifier and a GCN

classifier that provide target pseudo-labels to each other (see Fig. 4.2). On the one hand, the

MLP classifier is utilized to make the GCN learn the pairwise similarity between two nodes in

the graph. While, on the other hand, the GCN classifier, due to its feature aggregation property,

provides better pseudo-labels to assist the training of the MLP classifier. Given that co-teaching

works on the assumption that different networks capture different aspects of learning [8], it

is beneficial for suppressing noisy pseudo-labels. his feature aggregation and/or co-teaching

aspects are largely missing in existing MTDA methods [20, 42, 123, 173] (see Tab. 4.1).

Method
Domain
labels

Feature
aggregation

Curriculum
learning

Co-
teaching

AMEAN [20] ✗ ✗ ✗ ✗

DADA [123] ✗ ✗ ✗ ✗

MTDA-ITA [42] ✓ ✗ ✗ ✗

HGAN [173] ✓ ✓ ✗ ✗

CGCT (Ours) ✗ ✓ ✓ ✓

D-CGCT (Ours) ✓ ✓ ✓ ✓

Table 4.1: Comparison with recent the state-of-the-art MTDA methods in terms of the operating
regimes.

Secondly, we make a crucial observation, very peculiar to the MTDA setting, i.e., during
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training as the network tries to adapt to multiple domain-shifts of varying degree, pseudo-labels

obtained on-the-fly from the network for the target samples are very noisy. Self-training the

network with unreliable pseudo-labeled target data further deteriorates the performance. To

further combat the impact of noisy pseudo-labels, we propose to obtain pseudo-labels in an

episodic fashion, and advocate the use of curriculum learning in the context of MTDA. In

particular, when the domain labels of the target are latent, each episode or curriculum step

consists of a fixed number of training iterations. Fairly consistent and reliable pseudo-labels

are obtained from the GCN classifier at the end of each curriculum step. We call this proposed

framework as Curriculum Graph Co-Teaching (CGCT) (see Fig. 4.4 (a)).

Figure 4.3: Schematic diagram of domain curricu-
lum learning (DCL) when the domain labels are
known. Each solid ellipse represents a domain and
dotted ones represent the adapted domain

Furthermore, when the domain labels

of the target are available, we propose an

Easy-To-Hard Domain Selection (EHDS)

strategy where the feature alignment pro-

cess begins with the target domain that is

closest to the source and then gradually

progresses towards the hardest one (see

Fig. 4.3). This makes adaptation to mul-

tiple targets smoother. In this case, each

curriculum step involves adaptation with

a single new target domain. The CGCT

when combined with this proposed Domain-

aware Curriculum Learning (DCL) (see Fig. 4.4 (b)) is referred to as D-CGCT. The Tab. 4.1

highlights the operating regimes of our frameworks versus the state-of-the-art MTDA methods.

To summarize, the contributions of this work are threefold:

• We propose Curriculum Graph Co-Teaching (CGCT) for MTDA that exploits the co-

teaching strategy with the dual classifier head, together with the curriculum learning, to

learn more robust representations across multiple target domains.

• To better utilize the domain labels, we propose a Domain-aware Curriculum Learning

(DCL) strategy to make the feature alignment process smoother.

• In the MTDA setting, we outperform the state-of-the-art for several UDA benchmarks by

significant margins (including +5.6% on the large scale DomainNet [122]).
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4.2 Related Works

Single-source single-target DA (STDA) refers to the task of adapting a classifier from a

single labeled source dataset to a single unlabeled target dataset. In the UDA literature, a

plethora of STDA methods have been proposed, which can be broadly classified into three major

categories based upon the adaptation strategy. The first category uses first (Maximum Mean

Discrepancy [98, 99, 161, 163]) or second order (correlation alignment [13, 15, 88, 108, 111,

124, 131, 133, 152]) statistics of the source and target features to align the marginal feature

distributions. The second category of STDA methods [12, 17, 38, 96, 159] adopts adversarial

training strategy to align the marginal feature distributions of the two domains. Essentially,

these methods use a gradient reversal layer [38] to make the feature extractor network agnostic

to domain specific information. The final category of STDA methods [61, 94, 136, 145]

resort to pixel-level adaptation by generating synthetic target-like source images or source-like

target images with the help of generative adversarial network (GAN) [45]. However, practical

applications go beyond the single-source and single-target setting and often involve multiple

source [132, 169, 171] or target domains.

Multi-target DA aims to transfer knowledge from a single labeled source dataset to multiple

unlabeled target datasets. While the research in STDA is quite mature, most STDA methods can

not be trivially extended to a multi-target setting. So far only a handful of methods [20, 42, 69,

95, 123, 173] for MTDA can be found in the literature. AMEAN [20] performs clustering on the

blended target domain samples to obtain sub-targets and then learns domain-invariant features

from the source and the obtained sub-targets using a STDA method [148]. The approaches

introduced in [42, 69, 123] are derived from STDA and do not exploit any peculiarity of the

MTDA setting. Conversely, our CGCT and D-CGCT are tailor-made for the multi-target setting

as we propose to use feature aggregation of similar samples across multiple domains.

Curriculum for DA involves adopting an adaptive strategy that evolves over time to better

address the adaptation across domains. Shu et. al. [149] propose a strategy based on curriculum

learning that exploits the loss of the network as weights to identify and eliminate unreliable

source samples. An Easy-to-Hard Transfer Strategy (EHTS) is proposed in PFAN [16] that

progressively selects the pseudo-labeled target samples which have higher cosine similarity

to the per-category source prototypes. Similarly, our CGCT is inspired by the EHTS strategy

except we progressively recruit the pseudo-labeled targets [6] from the robust GCN classification
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head to better train the MLP classifier, which in turn regularizes the GCN head (see Sec.4.3.2).

For the multi-source DA setting, CMSS [171] trains a separate network to weigh the most

relevant samples across several source domains for adapting to a single target domain. However,

differently from CMSS, our proposed DCL utilizes the domain information to adapt over time

from the easiest to the hardest target domain in the MTDA setting (see Sec. 4.3.3).

Graph Neural Networks (GNN) are neural network models applied on graph-structured

data that can capture the relationships between the objects (nodes) in a graph via message passing

through the edges [46, 167]. Relevant to our work are GNN-derived Graph Convolutional

Networks (GCN) [73] that have recently been applied for addressing DA [101, 102, 173]. For

instance, Luo et. al. [101] propose PGL for open-set DA to capture the relationship between

the overlapping classes in the source and the target. Notably, Yang et. al. [173] introduce

heterogeneous Graph Attention Network (HGAN) for MTDA to learn the relationship of similar

samples among multiple domains and then utilize the graph-based pseudo-labeled target samples

to align their centroids with that of the source. Unlike [101, 173], we incorporate the idea of

co-teaching [53] in a GCN framework for combating noisy pseudo-labels.

4.3 Methods

In this section we present our proposed Curriculum Graph Co-Teaching (CGCT) and thereafter

Domain Curriculum Learning (DCL) for the task of MTDA. We also discuss some preliminaries

that are used to address the task.

Problem Definition. In the MTDA scenario, we are provided with a single source dataset

S = {(xs,i, ys,i)}ns
i=1, containing ns labeled samples, and N unlabeled target datasets T =

{Tj}Nj=1, where Tj = {xtj ,k}
nj

k=1 with each containing nj unlabeled samples. As in any DA

scenario, the fundamental assumption is that the underlying data distributions of the source and

the targets are different from each other. It is also assumed that the label space of the source

and targets are the same. Under these assumptions, the goal of the MTDA is to learn a single

predictor for all the target domains by using the data in S ∪ {Tj}Nj=1.

4.3.1 Preliminaries

Baseline for Multi-target Domain Adaptation. Domain Adversarial Network (DANN) [38],

originally designed for STDA, aligns the feature distributions of the source and the target
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domains by using an adversarial training. DANN comprises of three networks: the feature

extractor, the classifier and the domain discriminator. The classifier is responsible for classifying

the features obtained from the feature extractor into nc classes. On the one hand, the domain

discriminator distinguishes the source from the target features. While on the other hand, the

feature extractor is trained to fool the discriminator and simultaneously learn good features for

semantic classification.

Formally, let Fθ : R3xwxh → Rd be the feature extractor network, parameterized by θ, that

outputs a feature f = F (x) for a given sample x. The classifier network, parameterized by ϕ, is

denoted by Gϕ : Rd → Rnc , which takes as input a feature f and outputs class logits g = G(f).

The discriminator network Dψ : Rd → R1, parameterized by ψ, takes in the same feature f and

outputs a single logit. By treating all the target domains as one combined target domain, the

overall training objective of DANN for MTDA is given by:

max
ψ

min
θ,ϕ

ℓce − λadv ℓadv, (4.1)

where ℓce = −E(xs,i,ys,i)∼S ỹs,ilogG(F (xs,i)),

and ℓadv = −Exs,i∼S logD(F (xs,i))

− Ext,j∼T log [1−D(F (xt,j))].

ỹs,i is the one-hot label for a source label ys,i. The first term, ℓce, in Eq. 4.1 is the cross-entropy

loss computed on the source domain samples and minimized w.r.t. θ, ϕ. The second term, ℓadv,

in Eq. 4.1 is the adversarial loss that is maximized w.r.t ψ but minimized w.r.t θ. λadv is the

weighing factor for ℓadv. To capture the multi-modal nature of the distributions, CDAN [96] is

proposed whereD can be additionally conditioned on the classifier predictions g. In CDAN [96],

the D takes as input h = (f ,g), the joint variable of f and g, instead of just f . In this chapter

we use CDAN for aligning the feature distributions.

Graph Convolutional Network. For the GCN [73] classifier we construct an undirected

and fully-connected graph Γ = (V,E,A) from all samples in mini-batch. In details, given a

mini-batch of images, we represent each image xi as a node vi ∈ V in the Γ. ei,j ∈ E indicates

an edge between nodes vi and vj , and ai,j is the semantic similarity score for nodes (vi, vj)

forming an affinity matrix A.
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Following [101], we compute the semantic similarity scores â(l)i,j at the l-th layer for all pairs

(vi,vj) ∈ E:

â
(l)
i,j = f

(l)
edge(v

(l−1)
i ,v

(l−1)
j ), (4.2)

where f (l)edge is a non-linear similarity function parameterized by φ, and v
(l−1)
i is features at l-1

GCN layer of a sample vi. The initial node features vi are instantiated with fi, the embedding

obtained from F . Then, we add self-connections for nodes in the graph and normalize the

obtained similarity scores as:

A(l) =M− 1
2 (Â(l) + I)M− 1

2 , (4.3)

where M is the degree matrix, I is the identity matrix, and Â is the un-normalized affinity

matrix.

Finally, given the affinity matrix A(l), we update the node features with the following

propagation rule:

v
(l)
i = f

(l)
node

(
[v

(l−1)
i ,

∑

j∈B
a
(l)
i,j · v

(l−1)
j ]

)
, (4.4)

where f (l)node is a non-linear function parameterized by φ′, B is a set of samples in the mini-

batch, and [·, ·] is the feature concatenation function. The final f (L)node layer is the output layer

with nc outputs. We slightly abuse the notations and drop the superscript l in our subsequent

formulations for the sake of clarity.

4.3.2 Curriculum Graph Co-Teaching

In this chapter we introduce the Curriculum Graph Co-Teaching (CGCT) that employs feature

aggregation with a GCN and uses curriculum learning for pseudo-labeling. In details, as shown

in Fig. 4.4(a), it is composed of: a feature extractor F , a domain discriminator D, a MLP

classifier Gmlp and a GCN classifier Ggcn. The Gmlp is a fully-connected output layer with

nc output logits. The Ggcn consists of an edge network fedge and a node classifier fnode. The

fnode aggregates the features of the samples in B by considering the learnt pairwise similarity

in the affinity matrix Â produced by the fedge. The Ggcn also outputs nc logits. Since, the

Gmlp and the Ggcn capture different aspects of learning, they are exploited to provide feedback
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Figure 4.4: The pipeline of the proposed framework: a) CGCT: Curriculum Graph Co-Teaching
and b) DCL: Domain-aware curriculum learning. (a) In the CGCT, the MLP Classifier provides
pseudo-labels (PL) (99K arrow) for the target samples to guide the Edge Network to learn the Affinity
Matrix, whereas the Node Classifier of the GCN provides PL (bold → arrow) to the MLP Classifier
at the end of each curriculum step, realizing the co-teaching. (b) In the DCL, the target domains are
selected for adaptation, one at a time per domain curriculum step tqdcl, with the “easier" domains
selected first and then the “harder" ones. After PL are obtained, the pseudo-labeled target dataset is
added to the Pseudo Source dataset, which is then used in the next adaptation step.

to each other in a co-teaching fashion. The CGCT is trained for Q curriculum steps where a

curriculum step, tqcur, is an episode in which the network is trained for K training iterations.

Each curriculum step tqcur is further decomposed into two stages: i) Adaptation stage and ii)

Pseudo-labeling stage. Each stage in a tqcur is described below. Note that, as in [20], we assume

that the domains labels of the target are latent and not observed during training.

Adaptation stage. In this stage we mainly perform the feature alignment using CDAN [96].

In details, initially at step t0cur we start with a source set Ŝ0 = {S} and a target set T. We sample

mini-batches B0 = {B0
s,B

0
t } = {B0

s,i,B
0
t,i}Bi=1 with size B such that B0

s,i ∼ Ŝ and B0
t,i ∼ T.

Each mini-batch of images is first fed to the feature extractor F to obtain F0 = {f0s,i, f0t,i}Bi=1

which are then simultaneously fed to both the Gmlp and Ggcn. When fed to the Gmlp it outputs

the logits Ĝ0 = {ĝ0
s,i, ĝ

0
t,i}Bi=1. On the other hand, F0 are input to the fedge to estimate the

pairwise similarity of the samples in B0. Specifically, the fedge outputs an affinity matrix Â

following Eq. 4.2, where the entries âi,j in Â denote the strength of similarity between samples

i and j in B0. Intuitively, higher the value of âi,j , higher is the likelihood of samples i and

j belonging to the same semantic category. Finally, following Eq. 4.4, the fnode aggregates

the features in F0 based on the estimated Â such that for each node the most similar samples

in the neighbourhood contribute more to its final representation. Subsequently, the fnode
outputs its logits as Ḡ0 = {ḡ0

s,i, ḡ
0
t,i}Bi=1. The elements in Ĝ0 and Ḡ0 are then passed through
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a softmax function to obtain the probabilities for each sample as p(ŷ = c|ĝ; c ∈ nc) and

p(ȳ = c|ḡ; c ∈ nc), where ŷ and ȳ are the predictions, respectively.

To guide the fedge to learn the pairwise similarity between the samples in B0 we propose

the concept of co-teaching where the Gmlp provides feedback to the fedge. Since, Gmlp

makes instance-level independent predictions on the samples in B0, it is not susceptible to

the accumulation of potential noise from the dissimilar neighbours. To this end, for a B0 we

construct a “target" affinity matrix Âtar and enforce the predictions of fedge to be as close as

possible to the Âtar. Each entry âtari,j in the Âtar is given by:

âtari,j =

{
1, if yi = yj = c

0, otherwise
, (4.5)

where c is the class label. While the class labels of B0
s are provided as ground truth, we do

not have access to the labels of B0
t . Therefore, a target domain sample xt,j ∈ B0

t is assigned

a definitive pseudo-label ŷt,j = c′ where c′ = argmaxc∈nc
p(ŷt,j = c|ĝt,j) if the maximum

likelihood maxc∈nc p(ŷt,j = c|ĝt,j) is greater than a threshold τ . The entries âtari,j involving

xt,j ∈ B0
t not passing the τ are not optimized during training. We train the fedge using a binary

cross-entropy loss as:

ℓedgebce = âtari,j log p(âi,j) + (1− âtari,j ) log (1− p(âi,j)). (4.6)

Finally, for training the Gmlp and the fnode in the Ggcn we compute the standard cross-

entropy loss with the samples in B0
s as:

ℓmlpce = − 1

|B0
s|

|B0
s|∑

i=1

ỹi log p(ŷs,i|ĝ0
s,i), (4.7)

ℓnodece = − 1

|B0
s|

|B0
s|∑

i=1

ỹi log p(ȳs,i|ḡ0
s,i). (4.8)

We feed the features {ĥ0
s,i, ĥ

0
t,i}Bi=1 = {(f0s,i, ĝ0

s,i), (f
0
t,i, ĝ

0
t,i)}Bi=1, corresponding to B0, to

the domain discriminator D and compute the conditional adversarial loss following Eq. 4.1.

Thus, the final objective function for the CGCT can be written as:
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max
ψ

min
θ,ϕ,φ,φ′

ℓmlpce + λedgeℓ
edge
bce

+ λnodeℓ
node
ce − λadvℓadv,

(4.9)

where λedge, λnode and λadv are the weighing factors.

Pseudo-labelling stage. Upon completion of the adaptation stage in a curriculum step

tqcur we put the network in inference mode and obtain pseudo-labels ∀xt,j ∈ T. The Ggcn is

employed for this task because, owing to its aggregating characteristics, it learns more robust

features [173] than the Gmlp. This is the curriculum aspect of our proposed co-teaching training

strategy in CGCT where the obtained pseudo-labeled target samples are then used to train the

Gmlp, besides the fnode.

At any step tqcur, the criterion for pseudo-label selection is formally written as:

∀xt,j ∈ T, wj =

{
1, if maxc∈nc p(ȳt,j = c|ḡt,j) > τ

0, otherwise
, (4.10)

where wj = 1 signifies that xt,j is selected with a pseudo-label ȳt,j = c′ where c′ =

argmaxc∈nc
p(ȳt,j = c|ḡt,j), whereas wj = 0 denotes no pseudo-label is assigned. After

the pseudo-labeling stage in a tqcur we obtain a pseudo-labeled target set Dq
t = {(xt,j , ȳt,j)}n̄t

j=1

where n̄t is the number of recruited pseudo-labeled target samples. Post pseudo-labeling we

update and prepare the source set for the succeeding step tq+1
cur as:

Ŝq+1 = S ∪ D
q
t . (4.11)

The update rule in Eq. 4.11 allows us to compute the supervised losses ℓnodece and ℓmlpce from

Eq. 4.9 for xt,j ∼ Dt. Note that we do not alter the domain labels in D
q
t and hence, the

formulation for ℓadv remains unchanged.

At the culmination of Q curriculum steps, ŜQ is obtained using Eq. 4.11 and the network is

fine-tuned with only the supervised losses in Eq. 4.9 for K ′ training iterations.

4.3.3 Domain-aware Curriculum Learning

Now we consider the case when the domain labels of the target are available, i.e. T = {Tj}Nj=1,

N being the number of target domains. In principle, when the domain labels are available,
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one can either train N domain discriminators or a (N + 1) way single domain discriminator.

Apart from over-parameterization, it also suffers from limited gradients coming from the

discriminator(s) due to single point estimates [78]. Thus, we propose Domain-aware Curriculum

Learning (DCL) as an alternate learning paradigm to better utilize the target domain labels in

the MTDA setting.

To this end we design the DCL that is based on our proposed Easy-to-Hard Domain Selection

(EHDS) strategy. Our proposal for the DCL stems from the observation that different target

domains exhibit different domain shifts from the source domain, where some domain shifts

are larger than the others. Evidently, the network will find it easier to adapt to the closest

target domain while performing sub-optimally on the domain with the largest domain shift.

When adaptation is performed with N domains at tandem then the large domain shifts of

harder domains will interfere with the feature alignment on the easier target domains, thereby

compromising the overall performance. To overcome this problem, in the EHDS strategy, as

the name suggests, the network performs feature adaptation one domain at a time, starting

from the easiest target domain and gradually moving towards the hardest. The “closeness" of a

target domain from the source is measured by the uncertainty in the target predictions with a

source-trained model. Lesser the uncertainty in predictions, closer the target from the source

domain. Therefore, measuring the entropy on a target domain can serve as a good proxy for

domain selection, and is defined as:

H(Tj) = − E
xtj ,k

∼Tj

|nc|∑

c=1

p(ŷtj ,k,c|xtj ,k)log p(ŷtj ,k,c|xtj ,k). (4.12)

Due to this step-by-step adaptation through domain traversal, the intermediate target domains

help in reducing large domain shifts by making the farthest domain shift considerably closer

than that at the start. Differently from the CGCT, in the DCL, each curriculum step, defined as

tqdcl, consist in learning over one target domain, with a total of N steps. Since, the simulation of

single-source and single-target adaptation inside the MTDA setup yields better domain-invariant

features, at the end of each tqdcl we also consider extracting pseudo-labels for the target samples

from the classifier and add them to the source set (see Fig. 4.4(b)) for computing the supervised

losses. This further reduces the domain gaps for the forthcoming harder domains. The tqdcl is

split into three stages and are described below:
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Domain selection stage. Given a source-trained model Fθ∗(Gϕ∗), where θ∗ and ϕ∗ are the

trained parameters of F and G, and initial source and target sets Ŝ0 = {S} and T̂0 = {Tj}Nj=1,

the closest target domain is selected as:

D0 = argmin
j

{Hj(Tj) | ∀Tj ∈ T̂0}, (4.13)

where D0 is the target domain selected at step t0dcl and is used for performing adaptation in the

subsequent stage.

Adaptation stage. This stage is similar to the one in tqcur, described in Sec. 4.3.2, except

the feature adaptation at any step tqdcl is performed using Ŝq ∪ TDq , rather than the entire target

set T. The model is trained using the losses described in Eq. 4.9.

Pseudo-labeling stage. The criterion for pseudo-label selection still remains the same, as

described in Eq. 4.10, with the exception of target samples being drawn only from the current

target domain Dq, yielding a pseudo-labeled target set DDq

t . Consequently, the source and target

set update changes as following:

Ŝq+1 = Ŝq ∪ DDq

t , (4.14)

T̂q+1 = T̂q \ TDq . (4.15)

These three stages are repeated until all N domains have been exhausted. Then similarly, as

in CGCT, the final model is fine-tuned with ŜQ. When CGCT is trained using the DCL strategy

we refer to the model as D-CGCT. We would like to point that the DCL can also be realized

with a single classifier model (see Sec. 4.4).

4.3.4 Discussion

Here we highlight the keys differences between the CGCT and PGL [101] as well as the dual

classifier-based methods [53, 141]. The PGL [101] exploits the graph learning framework

in an episodic fashion to obtain pseudo-labels for the unlabeled target samples, which are

then used to bootstrap the model by training on the pseudo-labeled target data. While our

proposed method is similar in spirit to the episodic training in [101], we do not solely rely on
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the GCN to obtain the pseudo-labels. We conjecture that due to the fully-connected nature of

the graph and lack of target labels, the GCN will be prone to accumulate features of dissimilar

neighbours, thereby, resulting in the erroneous label propagation. To address this peculiarity,

we propose to resort to the co-teaching paradigm, where the Gmlp is exploited to train the

fedge network. As the two classifiers will capture different aspects of training [53], it will

prevent the fedge to be trained with the same erroneous pseudo-labels as the fnode. We validate

this conjecture empirically, where a network with a single GCN classifier with pseudo-labels

performs sub-optimally compared to CGCT (see Tab. 5 row 7 of the main paper). Finally,

the dual classifier-based methods maintain two classifiers to identify and filter either harder

target samples [141] or noisy samples [53]. Contrarily, we maintain Gmlp and Ggcn to provide

feedback to each other by exploiting the key observation that each classifier learns different

patterns during training. Furthermore, given the intrinsic design of the Ggcn, we also do away

with an extra adhoc loss of keeping the weights of two networks different.

4.4 Experiments

4.4.1 Dataset and Experimental Details

Datasets. We conduct experiments on five standard UDA benchmarks: Digits-five [169], Office-

31 [138], PACS [85], Office-Home [163] and the very large scale DomainNet [122] (0.6 million

images). The statistics of the datasets are summarized in Tab. 4.2.

Digits-five [169] is composed of five domains that are drawn from the: i) grayscale hand-

written digits MNIST [82] (mt); ii) a coloured version of mt, called as MNIST-M [38] (mm);

iii) USPS [32] (up), which is a lower resolution, 16×16, of the handwritten digits mt; iv) a

real-world dataset of digits called SVHN [115] (sv); and v) a synthetically generated dataset

Synthetic Digits [38] (sy). Following the protocol of [20], we sub-sample 25,000 and 9,000

samples from the training and test sets of mt, mm, sv and sy and use as train and test sets,

respectively. For the up domain we use all the 7,348 training and 1,860 and test samples, for

our experiments. All the images are re-scaled to a 28×28 resolution.

Office31 [138] is a standard visual DA dataset comprised of three domains: Amazon, DSLR

and Webcam. The dataset consists of 31 distinct object categories with a total of 4,652 samples.
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Office-Home [163] is a relatively newer DA benchmark that is larger than Office31 and is

composed of four different visual domains: Art, Clipart, Product and Real. It consists of 65

object categories and has 15,500 images in total.

PACS [85] is another visual DA benchmark that also consists of four domains: Photo (P),

Art Painting (A), Cartoon (C) and Sketch (S). This dataset is captured from 7 object categories

and has 9,991 images in total.

DomainNet [122] is the most challenging and very large scale DA benchmark, which has

six different domains: Clipart (C), Infograph (I), Painting (P), Quickdraw (Q), Real (R) and

Sketch (S). It has around 0.6 million images, including both train and test images, and has 345

different object categories. We use the official training and testing splits, as mentioned in [123],

for our experiments.

Dataset #domains #classes #images

Digits-five 5 10 ∼ 145K
PACS 4 7 9,991
Office-31 3 31 4,652
Office-Home 4 65 15,500
DomainNet 6 345 ∼ 0.6M

Table 4.2: Dataset details for multi-target domain adaptation.

Evaluation protocol. We use the classification accuracy to evaluate the performance. The

classification accuracy is computed for every possible combination of one source domain and

the rest of the target domains. The performance for a given direction, i.e., source→rest, is

given by averaging the accuracy on all the target domains, where source signifies the source

domain and rest indicates all the unlabeled domains except the source. Importantly, in all our

experiments we always report the final classification accuracy obtained with the Gmlp because

the Ggcn always requires a mini-batch at inference, an assumption which is easily violated when

deployed in the real world.

Implementation details. To be fairly comparable with the state-of-the-art methods, we

adopted comparable backbone feature extractors in the corresponding experiments and datasets.

For Digits-five, we have used a small convolutional network as the backbone feature extractor,

which is adapted from [20] and includes two conv layers and two fc layers. We trained the model

using a Stochastic Gradient Descent (SGD) optimizer with an initial learning rate of 1e-3. For

the rest of the datasets, we have adoptd ResNet [57] based feature extractors. Specifically, for
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the ablation studies on Office-Home, we have used ResNet-18 as the backbone network. For

the state-of-the-art comparisons on Office31, PACS and Office-Home we have used ResNet-50.

For the DomainNet, we have utilized ResNet-101 as used by the competitor methods. Similarly

to the Digits-five, SGD optimizer is used with an initial learning rate of 1e-3 and is decayed

exponentially. Each curriculum step consists of K = 10, 000 training iterations for all the

datasets, except the DomainNet, where K = 50, 000 due to large size of the dataset. The final

fine-tuning step is trained with K ′ = 15, 000 iterations for all datasets.

For the GCN architecture, we have implemented fnode network with 2 conv layers followed

by a Batch Normalization (BN) layer and ReLU activation, except the final layer. The first

layer takes as input image features concatenated with the context of the mini-batch, i.e., the

aggregated features of other images in a mini-batch (based on the affinity matrix estimated by

the fedge). The second conv layer outputs the logits that are equal to the number of classes nc.

We have used 1x1 convolution kernels in the fnode. Similarly, we have implemented the fedge
network with 3 conv layers and 1x1 kernels, where the first two layers are followed by the BN

layers and ReLU activations, except the last. The third conv layer has a single channel as output,

thus, representing the similarity scores between samples in a mini-batch.

Hyperparameter selection. In our final model we used only a single set of hyperparameters,

which are λedge = 1, λnode = 0.3, λadv = 1 and τ = 0.7. Following the standard protocol

in [148], we used a held-out validation set of 1000 samples for the MNIST → rest direction to

tune these hyper-parameters.

4.4.2 Ablations

In this section we discuss the design choices of our proposed contributions and report the results

of a thorough ablation study. Our ablation analysis highlights the importance of the graph

co-teaching and the curriculum learning. We run the ablation experiments on Office-Home

with ResNet-18 [57] as backbone network and on Digits-five with a network adopted from

AMEAN [20]. We adopt the CDAN as a baseline for adaptation in Tab. 4.3 and Tab. 4.4.

Graph co-teaching. The goal of this particular ablation study is to analyse why our

proposed graph co-teaching is beneficial and the manner in which it should be realised in an

adaptation framework. To this end, as shown in the Tab. 4.3, we design some baselines that can

be distinguished in the manner in which the Gmlp and the Ggcn provide pseudo-labels to the
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Pseudo-labels from
Model Co-teaching Gmlp fedge fnode Avg(%)

M1 ✗ self Gmlp Gmlp 57.4
M2 ✗ Ggcn Ggcn Ggcn 59.6

M3 ✓ self
Gmlp,
Ggcn

Gmlp 58.2

D-CGCT (Ours) ✓ Ggcn Gmlp Ggcn 60.8

Table 4.3: Ablation study of different co-teaching strategies on Office-Home. We reported the
classification accuracy averaged across all the source → rest directions.

each other (columns 3 to 5) and then compare it to our D-CGCT. In more details, the baseline

models can be described as: i) M1: a baseline where the Gmlp provides pseudo-labels to itself,

fedge and fnode after each curriculum step tqdcl; ii) M2: a baseline similar to M1, except that the

Ggcn provides the pseudo-labels; iii) M3: another baseline which is similar to M1 but with an

exception that the Ggcn also provides pseudo-labels to fedge for the current target domain in an

ongoing tqdcl step.

Unsurprisingly, M1 performs the worst of all the baselines because the pseudo-labels

computed by the Gmlp are less accurate due to Gmlp not taking into account the feature

aggregation from multiple domains. Contrarily, the baseline M2 performs better than the M1

due to the fact that M2 uses Ggcn for pseudo-labeling, which are more accurate. This highlights

the importance of feature aggregation in the MTDA setting. One other thing that separates

D-CGCT from both M1 and M2 is the co-teaching, which is absent in the latter baselines. Since,

the D-CGCT enables co-teaching, with the Gmlp and the Ggcn providing pseudo-labels to each

other, it does not overfit on the same “incorrect" pseudo-label, thereby achieving more robust

predictions. Contrarily, M3 uses co-teaching and yet it fails to achieve comparable performance.

We speculate that, since the fedge is also trained with the pseudo-labels obtained from the Ggcn
for the current target domain in a tqdcl step, it becomes susceptible to noise. Thus, in summary,

the graph co-teaching is the most effective when the Ggcn is exploited to provide pseudo-labels

only after each curriculum step.

Curriculum learning. We also study the effect of domain-aware curriculum learning in

isolation from co-teaching. For that purpose, as shown in the Tab. 4.4, we start with the baseline

model CDAN by treating all the target domains as one single domain. When the domain labels

of the target are available, the baseline improves by 1.33%, indicating that the domain labels can
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Office-Home
Model Art Clipart Product Real Avg(%)

Source train 51.45 43.93 42.41 54.50 48.07
Baseline 50.70 50.78 47.95 57.63 51.77
Base.† 52.08 53.21 48.62 58.49 53.10
Base.†+PL 54.61 56.13 50.25 61.04 55.51
Base.† + DCL 55.94 56.66 52.85 60.18 56.41
Base.†+GCN‡ 50.19 49.09 46.52 60.76 51.64
Base.†+GCN‡ + PL 54.52 57.60 53.20 65.49 57.70
CGCT 60.81 60.00 54.13 62.62 59.39
D-CGCT 61.42 60.73 57.27 63.8 60.81

Table 4.4: Ablation results of different baselines using ResNet-18 as backbone on Office-Home.
Baseline: CDAN [96] model that combines all the target domains into a single target domain. “†"
indicates the baseline models that use the domain labels of the target. GCN‡: the baseline model
with the GCN as the single classification head. PL: using pseudo-labels.

indeed improve the performance of an adaptation model. To show the benefit of the DCL without

co-teaching, we train the Base† + DCL, and it yields an average accuracy that is higher than the

Base.† + PL counterpart. The advantage of using DCL is further amplified when coupled with

the CGCT, where the D-CGCT outperforms all other baselines, including the CGCT. Due to the

gradual adaptation, the D-CGCT also leads to the better cluster formation than the CGCT, as

shown by the t-SNE visualization in the Fig. 4.5.

Source (product)
Target (art)
Target (clipart)
Target (real)

Source (product)
Target (art)
Target (clipart)
Target (real)

Figure 4.5: t-SNE plots of the feature embeddings with Product → rest in Office-Home. Left:
CGCT. Right: D-CGCT.
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To demonstrate that the order of target domains selection in the DCL indeed makes a differ-

ence, we consider a reverse-domain curriculum learning where the hardest domain is selected

first, followed by the less hard ones. To this end, we train two models: i) Baseline†+DCL; and

ii) Baseline†+Rev-DCL and compare their performances in the Fig. 4.7. In both the datasets we

observe the same phenomenon that the reverse-curriculum being detrimental. This once again

re-establishes the importance of the proposed DCL in the MTDA setting.

Additionally, to explain why the step-by-step adaptation in the proposed DCL better ad-

dresses the alleviation of the larger domain-shifts in the MTDA setting, we plot the classification

accuracy with the D-CGCT in Fig. 4.6. As can be observed from the Fig. 4.6 (a), for Photo →
rest setting in the PACS, when the adaptation first begins with the Art as target, the performance

of the model on the unseen Cartoon domain simultaneously improves in the first 10k iterations

(or the 1st curriculum step), despite the network not seeing any sample from the Cartoon domain.

This phenomenon is even vividly noticeable in the second curriculum step, where the perfor-

mance on the unseen Sketch largely increases when the Cartoon is selected for adaptation. This

in other words means that the domain-shift between the source (Photo) and the farthest target

(Sketch) has already been considerably reduced by the time the Sketch enters the adaptation

stage (from 20k iterations on wards). Thus, we empirically demonstrate the prime reason behind

the DCL achieving superior performance over other state-of-the-art MTDA methods. Similar

observations can also be noticed for the Office-Home. We depict the Product → rest setting in

the Fig. 4.6 (b).
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(a) Photo → rest in the PACS (a) Product → rest in the Office-Home
Figure 4.6: The classification accuracy line plots with the D-CGCT using ResNet-50 as the
backbone. At each indicated training iteration in the x-axis, a new target domain (shown in brackets)
is selected for adaptation.
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Digits-five

Setting Model
mt → mm,sv

,sy,up
mm → mt,sv,

sy,up
sv → mm,mt,

sy,up
sy → mm,sv,

mt,up
up → mm,sv,

sy,mt
Avg (%)

Target
Combined

Source only 26.9 56.0 67.2 73.8 36.9 52.2
ADDA [159] 43.7 55.9 40.4 66.1 34.8 48.2
DAN [98] 31.3 53.1 48.7 63.3 27.0 44.7
GTA [145] 44.6 54.5 60.3 74.5 41.3 55.0
RevGrad [38] 52.4 64.0 65.3 66.6 44.3 58.5
AMEAN [20] 56.2 65.2 67.3 71.3 47.5 61.5
CDAN [96] 53.0 76.3 65.6 81.5 56.2 66.5
CGCT 54.3 85.5 83.8 87.8 52.4 72.8

Multi-
Target

CDAN [96] 53.7 76.2 64.4 80.3 46.2 64.2
CDAN + DCL 62.0 87.8 87.8 92.3 63.2 78.6
D-CGCT 65.7 89.0 88.9 93.2 62.9 79.9

Table 4.5: Comparison with the state-of-the-art methods on the Digits-five. “Target Combined”
indicates methods are performed on one source to one combined target domain. “Multi-Target”
indicates methods are performed on one source to multi-target setting. Our proposed models are
highlighted in bold.

4.4.3 Comparison with State-of-The-Art

We compare our proposed method and its variants with several state-of-the-art methods that are

designed exclusively for the MTDA as well as the STDA methods that can be extended and

used in the MTDA setting.

In Tab. 4.6 we report the numbers for Office-31 and Office-Home for single-target, target-

combined and multi-target setting. The single-target setting denotes training single-source to

single-target models, the target-combined means treating all the target domains as one aggregated

target, while the multi-target setting comprise of training a single model for single-source to

multiple-targets. As can be observed, in all the settings our proposed CGCT and D-CGCT

outperform all the state-of-the-art methods. Specifically, for the Office-31, our CGCT without

using domain labels is already 2.4% better than the HGAN [173], which is a MTDA method

exploiting domain labels for feature aggregation with a single GCN classifier besides pseudo-

labeling. This highlights the importance of having a co-teaching strategy with two classifiers and

curriculum learning for counteracting the impact of noisy pseudo-labels in the GCN framework.

We also observed that incorporating domain information following the proposed DCL strategy

improves the performance in the Office-Home, with the D-CGCT achieving 5.5% improvement
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Office-31 Office-Home
Setting Model Amazon DSLR Webcam Avg(%) Art Clipart Product Real Avg(%)

w/o Target Source train 68.6 70.0 66.5 68.4 47.6 42.6 44.2 51.3 46.4

Single-
Target

DAN [98] 79.5 80.3 81.2 80.4 56.1 54.2 51.7 63.0 56.3
RevGrad [38] 80.8 82.5 83.2 82.2 58.3 55.4 52.8 63.9 57.6
JAN [99] 85.0 83.0 85.6 84.3 58.7 57.0 53.1 64.3 58.3
CDAN [96] 91.4 84.1 84.0 86.6 64.2 62.9 59.9 68.1 63.8
CGCT (ours) 89.6 85.5 87.6 87.6 67.9 68.7 62.3 70.7 67.4

Target-
Combined

DAN [98] 78.0 64.4 66.7 69.7 55.6 56.6 48.5 56.7 54.4
RevGrad [38] 78.2 72.2 69.8 73.4 58.4 58.1 52.9 62.1 57.9
JAN [99] 84.2 74.4 72.0 76.9 58.3 60.5 52.2 57.5 57.1
CDAN [96] 93.6 80.5 81.3 85.1 59.5 61.0 54.7 62.9 59.5
AMEAN [20] 90.1 77.0 73.4 80.2 64.3 65.5 59.5 66.7 64.0
CGCT (ours) 93.9 85.1 85.6 88.2 67.4 68.1 61.6 68.7 66.5

Multi-
Target

MT-MTDA [116] 87.9 83.7 84.0 85.2 64.6 66.4 59.2 67.1 64.3
HGAN [173] 88.0 84.4 84.9 85.8 - - - - -
CDAN+DCL (ours) 92.6 82.5 84.7 86.6 63.0 66.3 60.0 67.0 64.1
D-CGCT (ours) 93.4 86.0 87.1 88.8 70.5 71.6 66.0 71.2 69.8

Table 4.6: Comparison with state-of-the-art methods on Office-31 and Office-Home. All methods
use the ResNet-50 as the backbone. Single-Target indicates methods are performed on one source to
one target setting. Target-Combined indicates methods are performed on one source to aggregated
targets setting, while the Multi-Target indicates methods are performed on one source to multi-target
setting.

PACS
Setting Model A → S A → C A → P P → S P → C P → A Avg (%)

Target Combined

MSTN [179] 70.4 71.2 96.2 55.9 49.1 70.8 68.9
ADDA [159] 65.3 68.0 96.0 48.8 47.1 67.3 65.4
CDAN [96] 56.8 61.1 95.9 55.7 53.8 49.4 62.1
CGCT 70.5 75.4 98.3 44.6 44.3 81.7 69.1

Multi-Target

CDAN [96] 75.9 81.9 95.4 51.3 61.7 65.0 71.9
HGAN [173] 72.1 78.3 97.7 70.8 62.8 78.8 76.8
CDAN + DCL 68.7 89.0 98.8 61.2 82.9 89.8 81.7
D-CGCT 84.6 90.2 99.4 76.5 82.4 88.6 87.0

Table 4.7: Comparison with the state-of-the-art methods on the PACS. All methods use the ResNet-
50 as the backbone. “Target Combined” indicates methods are performed on one source to one
combined target domain. “Multi-Target” indicates methods are performed on one source to multi-
target setting. Our proposed models are highlighted in bold.
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DomainNet
Model Cli. Inf. Pai. Qui. Rea. Ske. Avg(%)

Source train 25.6 16.8 25.8 9.2 20.6 22.3 20.1
SE [31] 21.3 8.5 14.5 13.8 16.0 19.7 15.6
MCD [141] 25.1 19.1 27.0 10.4 20.2 22.5 20.7
DADA [123] 26.1 20.0 26.5 12.9 20.7 22.8 21.5
CDAN [96] 31.6 27.1 31.8 12.5 33.2 35.8 28.7
MCC [69] 33.6 30.0 32.4 13.5 28.0 35.3 28.8

CDAN + DCL 35.1 31.4 37.0 20.5 35.4 41.0 33.4
CGCT 36.1 33.3 35.0 10.0 39.6 39.7 32.3
D-CGCT 37.0 32.2 37.3 19.3 39.8 40.8 34.4

Table 4.8: Comparison with the state-of-the-art methods on DomainNet. All methods use the
ResNet-101 as the backbone. The classification accuracy are reported for each source→rest
direction, with each source domain being indicated in the columns. All the reported numbers are
evaluated on the multi-target setting.

over MT-MTDA [116], a MTDA method that also utilizes domain labels. Finally, as can be seen

from the Tab. 4.8, the D-CGCT advances the state-of-the-art results for the very challenging

DomainNet dataset by a non-trivial margin of 5.6%. This further verifies the effectiveness of

our proposed methods for addressing the MTDA.

In the Tab. 4.5, we report the state-of-the-art comparison on the Digits-five. For a fair

comparison, we compare with the baselines reported in [20]. In both the target combined and

multi-target settings, our proposed methods outperform all other baselines. For the PACS,

reported in the Tab. 4.7, we notice that domain labels is very vital for mitigating multiple

domain-shifts. For example, CDAN in the multi-target setting performs 9.8% better than its

target combined counterpart. Similar trend can also be observed between our CGCT and

D-CGCT, with the D-CGCT outperforming the former by a large margin.

Overcoming negative transfer. Careful inspection of the Tab. 4.6 tells us that the single-

target DA methods always outperform the same STDA method when applied in the multi-target

setting. For e.g., CDAN is 4.3% better in the single-target than in the multi-target setting.

The drop in performance for the multi-target setting clearly hints at the fact that negative

transfer [20, 123] is quite prevalent in the MTDA, despite having access to more data. Contrarily,

our proposed CGCT when applied to both the settings fares equally well for the Office-Home

and outperforms the single-target counterpart by 0.6% for the Office-31. This once again
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Figure 4.7: Comparison of the DCL with the reverse-domain curriculum model on Office-Home
and Digits-Five. In the reverse-domain curriculum model the order of selection of target domains is
exactly opposite to that of the DCL model.

shows that the design choices made in our CGCT and D-CGCT lead to learning more robust

domain-invariant features and provide resilience against negative transfer.
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(a) CDAN [96] (b) CDAN (w/ domain labels) (c) CGCT (d) D-CGCT
Figure 4.8: t-SNE plots of the feature embeddings for the Product → rest of the Office-Home. All
the models use ResNet-50 as backbone. Each colour indicates a different domain. Digital zoom is
recommended.

4.4.4 Visualization

In this section we visualize the features learned by our models and compare them with the

baseline methods. The Fig. 4.8 depicts the t-SNE plots of the feature embeddings computed

by feature extractor network (ResNet-50) for the direction Product → rest of the Office-Home.

The plots in the Fig. 4.8 (c) and (d) demonstrate that the proposed CGCT and D-CGCT result in

well clustered and discriminative features compared to CDAN baselines (see Fig. 4.8 (a) and
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(a) CDAN [96] (b) CDAN (w/ domain labels) (c) CGCT (d) D-CGCT
Figure 4.9: t-SNE plots of the feature embeddings for the Product → rest of the Office-Home
depicting only 10 randomly sampled classes. All the methods use ResNet-50 as backbone. Each
colour indicates a different class while each shape represents a different domain. Digital zoom is
recommended.

(b)). To better visualize the decision boundaries in the latent feature space, we select 10 classes,

randomly from the Office-Home, and depict the t-SNE plots of the feature embeddings in the

Fig. 4.9. It is can be seen that our models learn features that can be easily separated by a linear

classifier, much easier than the CDAN models. In particular, the CDAN when using domain

labels (see Fig. 4.9 (b)) produces more overlapping classes than our D-CGCT (see Fig. 4.9 (d)).

Thus, when the domain labels are leveraged with our DCL strategy, the model produces features

that are more discriminative, thereby leading to an improved performance in the MTDA.

4.5 Conclusions

In this chapter to address multi-target domain adaptation (MTDA), we proposed Curriculum

Graph Co-Teaching (CGCT) that uses a graph convolutional network to perform robust feature

aggregation across multiple domains, which is then trained with a co-teaching and curriculum

learning strategy. To better exploit domain labels of the target we presented a Domain-aware

curriculum (DCL) learning strategy that adapts easier target domains first and harder later,

enabling a smoother feature alignment. Through extensive experiments we demonstrate that our

proposed contributions handsomely outperform the state-of-the-art in the MTDA.
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5

Uncertainty-aware Source-free Domain
Adaptation

Source-free domain adaptation (SFDA) aims to adapt a classifier to an unlabelled target data

set by only using a pre-trained source model. However, the absence of the source data and the

domain shift makes the predictions on the target data unreliable. In this chapter we propose

quantifying the uncertainty in the source model predictions and utilizing it to guide the target

adaptation. For this, we construct a probabilistic source model by incorporating priors on

the network parameters inducing a distribution over the model predictions. Uncertainties are

estimated by employing a Laplace approximation and incorporated to identify target data

points that do not lie in the source manifold and to down-weight them when maximizing the

mutual information on the target data. Unlike recent works, our probabilistic treatment is

computationally lightweight, decouples source training and target adaptation, and requires no

specialized source training or changes of the model architecture. We show the advantages of

uncertainty-guided SFDA over traditional SFDA in the closed-set and open-set settings and

provide empirical evidence that our approach is more robust to strong domain shifts even without

tuning.1.

1The content of this chapter is based on the ECCV 2022 paper [134].
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Figure 5.1: Illustrative sketch of source-free domain adaptation (SFDA) on a labelled source domain
(�, �) and an unlabelled target domain (ï, �) potentially containing additional classes (�).
The top-row shows conventional methods which ignore model uncertainties; the bottom-row shows
our method which incorporates uncertainties about the predictive model, enabling uncertainty-guided
SFDA that is more robust to distribution shifts

5.1 Introduction

Deep neural networks have proven to be very successful in a myriad of computer vision tasks

such as categorization, detection, and retrieval. However, much of the success has come at the

price of excessive human effort put into the manual data-labelling process. Since collecting

annotated data can be prohibitive and impossible at times, domain adaptation (DA, see [24] for

an overview) methods have gained increasing attention. They enable training on unlabelled

target data by conjointly leveraging a previously labelled yet related source data set while

mitigating domain-shift [157] between the two. Such methods predominantly comprise of

minimizing statistical moments between distributions [98, 131, 152, 161], using adversarial

objectives to maximize domain confusion [38, 159], or reconstructing data with generative

methods [60].

Albeit successful, the preceding methods mandate access to the source data set during the

target adaptation phase as they require an estimate of the source distribution for the alignment.

With the emergence of regulations on data privacy and bottleneck in data transmission for large

data sets, access to the source data can not always be guaranteed. Thus, paving the way to a

relatively new and more realistic DA setting, called source-free DA (SFDA, [24]), where the

task is to adapt to the target data set when the only source of supervision is a source-trained

model. SFDA facilitates maintaining data anonymity in privacy-sensitive applications (e.g.,
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5.1 Introduction

surveillance or medical applications) and at the same time reduces data transmission and storage

overhead. Towards this goal, recently, several SFDA methods have been proposed that utilize

the hypotheses learned from the source data [77, 90, 155]. Notably, SHOT [90] – an information

maximization (IM) [43] based SFDA method – has demonstrated to work reasonably well on

DA benchmarks, sometimes outperforming traditional DA methods. While promising, these

conventional SFDA techniques do not account for the uncertainty in the predictions of the source

model on the target data. As a by-product, solely maximizing mutual information [43] on the

target data can lead to erroneous decision surfaces (see Fig. 5.1 top).

This work argues that quantification of the uncertainty in predictions is essential in SFDA.

Depending on the inductive biases of the model, the source model may predict incorrect target

pseudo-labels with high confidence, e.g. due to the extrapolation property in ReLU networks

[58] (see Fig. 5.2b left). In the literature, uncertainty-guided methods have been proposed in

the context of traditional UDA and SFDA settings, employing Monte Carlo (MC) dropout to

estimate the uncertainties in the model predictions [128, 182]. However, MC dropout requires

specialized training and specialized model architecture, suffers from manual hyperparameter

tuning [35], and is known to provide a poor approximation even for simple (e.g. linear) models

[30, 117, 118].

In this work, we propose to construct a probabilistic source model by incorporating priors

on the network parameters, inducing a distribution over the model predictions, on the last

layer of the source model. This enables us to perform an efficient local approximation to

the posterior using a Laplace approximation (LA, [104, 156]), see Fig. 5.2a. This principled

Bayesian treatment leads to more robust predictions, especially when the target data set contains

out-of-distribution (OOD) classes (see Fig. 5.1 bottom) or in case of strong domain shifts. Once

the uncertainty in predictions is estimated, we selectively guide the target model to maximize

the mutual information [43] in the target predictions. This alleviates the alignment of the

target features with the wrong source hypothesis, resulting in a domain adaptation scheme

that is robust to mild and strong domain shifts without tuning. We call our proposed method

Uncertainty-guided Source-Free AdaptatioN (U-SFAN). Our approach requires no specialized

source training or specialized architecture, opposed to exiting works (e.g. [81, 182]), introduces

little computational overhead, and decouples source training and target adaptation.

We summarize our contributions as follows. (i) We emphasize the need to quantify uncer-

tainty in the predictions for SFDA and propose to account for uncertainties by placing priors on
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5. UNCERTAINTY-AWARE SOURCE-FREE DOMAIN ADAPTATION

the parameters of the source model. Our approach is computationally efficient by employing a

last-layer Laplace approximation and greatly decouples the training of the source and target.

(ii) We demonstrate that our proposed CGCT successfully guides the target adaptation without

specialized loss functions or a specialised architecture. (iii) We empirical show the advantage of

our method over SHOT [90] in the closed-set and the open-set setting for several benchmarks

tasks and provide evidence for the improved robustness against mild and strong domain shifts.

5.2 Related Work
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predictions, on the last layer of the source model. This enables us to perform
an e�cient local approximation to the posterior using a Laplace approximation
(LA, [59, 41]), see Fig. 2a. This principled Bayesian treatment leads to more ro-
bust predictions, especially when the target data set contains out-of-distribution
(OOD) classes (see Fig. 1 bottom) or in case of strong domain shifts. Once the
uncertainty in predictions is estimated, we selectively guide the target model to
maximize the mutual information [18] in the target predictions. This alleviates
the alignment of the target features with the wrong source hypothesis, resulting
in a domain adaptation scheme that is robust to mild and strong domain shifts
without tuning. We call our proposed method Uncertainty-guided Source-Free
AdaptatioN (U-SFAN). Our approach requires no specialized source training or
specialized architecture, opposed to exiting works (e.g. [31, 72]), introduces little
computational overhead, and decouples source training and target adaptation.

We summarize our contributions as follows. (i) We emphasize the need to
quantify uncertainty in the predictions for SFDA and propose to account for
uncertainties by placing priors on the parameters of the source model. Our ap-
proach is computationally e�cient by employing a last-layer Laplace approx-
imation and greatly decouples the training of the source and target. (ii) We
demonstrate that our proposed U-SFAN successfully guides the target adap-
tation without specialized loss functions or a specialised architecture. (iii) We
empirical show the advantage of our method over SHOT [34] in the closed-set
and the open-set setting for several benchmarks tasks and provide evidence for
the improved robustness against mild and strong domain shifts.

2 Related Work

Closed-set Domain Adaptation, often abbreviated as UDA, refers to the
family of DA methods that aim to learn a classifier for an unlabelled target
data set while simultaneously using the labelled source data set, which di↵er

(a) Laplace approximation
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Fig. 2. (a) The Laplace approximation is mode-seeking and adapts to the local cur-
vature around the mode ✓MAP. It does not necessarily capture the (intractable) full
posterior, but gives a proxy for it, is principled, and e�cient to evaluate. (b) Example
of predictive uncertainty (un certain) captured by a ReLU network vs. a Laplace
approximation that assigns higher uncertainty to inputs ( ) of an unseen class

predictions, on the last layer of the source model. This enables us to perform
an e�cient local approximation to the posterior using a Laplace approximation
(LA, [59, 41]), see Fig. 2a. This principled Bayesian treatment leads to more ro-
bust predictions, especially when the target data set contains out-of-distribution
(OOD) classes (see Fig. 1 bottom) or in case of strong domain shifts. Once the
uncertainty in predictions is estimated, we selectively guide the target model to
maximize the mutual information [18] in the target predictions. This alleviates
the alignment of the target features with the wrong source hypothesis, resulting
in a domain adaptation scheme that is robust to mild and strong domain shifts
without tuning. We call our proposed method Uncertainty-guided Source-Free
AdaptatioN (U-SFAN). Our approach requires no specialized source training or
specialized architecture, opposed to exiting works (e.g. [31, 72]), introduces little
computational overhead, and decouples source training and target adaptation.

We summarize our contributions as follows. (i) We emphasize the need to
quantify uncertainty in the predictions for SFDA and propose to account for
uncertainties by placing priors on the parameters of the source model. Our ap-
proach is computationally e�cient by employing a last-layer Laplace approx-
imation and greatly decouples the training of the source and target. (ii) We
demonstrate that our proposed U-SFAN successfully guides the target adap-
tation without specialized loss functions or a specialised architecture. (iii) We
empirical show the advantage of our method over SHOT [34] in the closed-set
and the open-set setting for several benchmarks tasks and provide evidence for
the improved robustness against mild and strong domain shifts.

2 Related Work

Closed-set Domain Adaptation, often abbreviated as UDA, refers to the
family of DA methods that aim to learn a classifier for an unlabelled target
data set while simultaneously using the labelled source data set, which di↵er

(b) Out-of-distribution detection

Figure 5.2: (a) The Laplace approximation is mode-seeking and adapts to the local curvature around
the mode θMAP. It does not necessarily capture the (intractable) full posterior, but gives a proxy for
it, is principled, and efficient to evaluate. (b) Example of predictive uncertainty (un certain)
captured by a ReLU network vs. a Laplace approximation that assigns higher uncertainty to inputs
( ) of an unseen class

Closed-set Domain Adaptation, often abbreviated as UDA, refers to the family of DA

methods that aim to learn a classifier for an unlabelled target data set while simultaneously

using the labelled source data set, which differ in their underlying data distributions. In the

literature [164] mainly three categories of UDA methods can be found. First, discrepancy-based

UDA methods aim to diminish the domain-shift between the two domains with maximum

mean discrepancy (MMD, [98, 100, 161]), or with correlation alignment [111, 131, 152]. The

second category of UDA methods exploits the adversarial objective [45] to promote domain

confusion between the two data distributions by using domain discriminator [38, 96, 159].

Finally, the third category comprises reconstruction-based UDA methods [11, 41, 60] that

casts data reconstruction as an auxiliary objective in order to ensure invariance in the feature
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space. However, these methods can only work in the presence of the source data set during the

adaptation stage, which might be limited in practice due to data privacy or storage concerns.

Open-set Domain Adaptation (OSDA), originally proposed in [120], refers to the DA

setting where both the domains have some shared and private classes, with explicit knowledge

about the shared classes. However, such a setting was deemed impractical, and later Saito et

al. [142] proposed the open-set setting where the source labels are a subset of the target labels.

Thereon, several OSDA methods have been proposed which use image-to-image translations

[177], progressive filtering [92], ensemble of multiple classifiers [33] and one-vs-all classifiers

[139] to detect OOD samples. Similar to the UDA, the OSDA methods also require support

from the source data to detect target private classes, which make them unsuitable for source-free

DA.

Source-free Domain Adaptation (SFDA) aims to adapt a model to the unlabelled target

domain when only the source model is available and the source data set is absent during

target adaptation. Existing SFDA methods use pseudo-label refinement [1, 18, 90], latent

source feature generation using variational inference [176], or disparity among an ensemble

of classifiers [81]. Certain SFDA methods resort to ad hoc source training protocols to enable

the source model to be adapted on the target data. For instance, [81] requires an ensemble

of classifiers to be trained during source training so that the disparity among them could be

utilized for target adaptation. Similarly, USFDA [77] requires artificially generated negative

samples in the source training stage for the model to detect OOD samples. Such coupled source

and target training procedures make these SFDA methods less viable for practical applications.

On the other hand, our proposed CGCT does not require specialized source training except a

computationally lightweight approximate inference, which can be done with a single pass of the

source data during the source training phase. Moreover, unlike [1, 81], our CGCT works well

on both closed-set and open-set SFDA without any ad hoc modifications.

Uncertainty Quantification in the form of Bayesian deep learning (e.g., [70, 114]) is

concerned with formalizing prior knowledge and representing uncertainty in model predic-

tions, especially under domain-shift or out-of-distribution samples. Even though the Bayesian

methodology gives an explicit way of formalizing uncertainty, computation is often intractable.

Thus, approximate inference methods such as Monte Carlo (MC) dropout [34], deep ensembles

[80, 166], other stochastic methods (e.g., [105]), variational methods [7], or the Laplace approx-

imation [129] are typically employed in practice. Prior work on DA with semantic segmentation
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[182] and UDA [54, 79, 81, 128, 165] applied MC dropout or deep ensembles, respectively, for

uncertainty quantification if DA. However, none of those above approaches can be considered

practical for the more challenging source-free DA scenario as MC dropout, ensembles, and

other stochastic methods do not lend themselves well to the source-free case. In particular,

they either require retraining several models on the source, changing the model architecture or

requiring a tailored learning procedure on the source data. Thus we take a Laplace approach

which allows re-using the source model by linearizing around a point-estimate (see Fig. 5.2),

which is post hoc, yet grounded in classical statistics [40].

5.3 Methods

Problem Definition and Notation We are given a labelled source data set, having n[S]

instances, D[S] = {(x[S]
i ,y

[S]
i )}n[S]

i=1, where x[S] ∈ X[S] are D-dimensional inputs and y[S] ∈ Y[S]

where we assume K-dimensional one-hot encoded class labels, i.e., Y[S] = BK . Moreover, we

have n[T] unlabelled target observations D[T] = {x[T]
j }n[T]

j=1, where x[T] ∈ X[T] are D-dimensional

unlabelled inputs. As in any DA scenario, the assumption made is that the marginal distributions

of the source and the target are different, but the semantic concept represented through class

labels does not change. Formally, we assume that p(y[S] |x[S]) ≈ p(y[S] |x[T]) and p(x[S]) ̸=
p(x[T]).

In the SFDA scenario we further assume that the source data set is only available while

learning the source function f : X[S] → Y[S] and becomes unavailable while adapting on the

unlabelled data. The goal of SFDA is to adapt the source function f to the target domain solely

by using the data in D[T]. The resulting target function, denoted as f ′ : X[T] → Y[T], can then

be used to infer the class assignment for x[T] ∈ X[T]. In this chapter we have considered two

settings of the SFDA: i) vanilla closed-set SFDA where the label space of the source S and the

target T is the same, L[S] = L[T]; and ii) open-set SFDA where the label space of the S is a subset

of the T, i.e., L[S] ⊂ L[T], and L[T] \ L[S] are denoted as target private or OOD classes.

We model the source and target functions f with a neural network that is composed of

two sub-networks: feature extractor g and hypothesis function h, such that f = h ◦ g. The

feature extractor g and the hypothesis function h are parameterized by parameters β and θ,

respectively. During target adaptation, the model is initialized with parameters learned on D[S]
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and subsequently the feature extractor parameters are updated using backpropagation, i.e., the

hypothesis function is kept frozen.
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model parameters, p(✓ | D[S]). (b) At target adaptation, we keep the posterior over the
parameters fixed (�) and train g under a uncertainty-aware composite loss that weights
samples according to predictive uncertainty

comprises of maximization of mutual information [18] in the predictions for the
target inputs D[T]. However, due to the overconfidence of ReLU networks [23],
maximizing mutual information for all inputs equally, including those that are
far away from the source data, could be detrimental. To overcome this pathology,
we derive a per-sample weight using the model’s uncertainty and use it to mod-
ulate the mutual information objective in SHOT. To estimate the uncertainty in
the predictions on the target data, we perform approximate posterior inference
over the parameters of the hypothesis function, i.e., p(✓[S] | D[S]). Inspired by
recent works on approximate inference in Bayesian neural networks[40, 59, 26],
we propose to estimate the posterior predictive distribution p(y |x, D) using a
Laplace approximation, introducing little computational overhead and without
the need for specialized source training. We briefly describe the preliminaries to
our approach in the following section.

3.1 Preliminaries

Liang et al. [34] proposed SHOT (Source HypOthesis Transfer) for the task of
SFDA, where the goal is to find a parameterisation �[T] of the feature extractor
g such that the distribution of latent features z[T] = g�[T](x[T]) matches the
distribution of the latent source features. This enables that the target data can
be accurately classified by the hypothesis function parameterized by ✓[S]. To this
end, the authors address the SFDA task in two stages where the first and second
stage comprise of source model training and maximizing the mutual information
[18] between the latent representations and the classifier output, respectively.

The source model f : X [S] ! Y [T] for a K-way classification task is learned
using a label-smoothed cross-entropy objective [44], i.e.,

Lsrc = �Ep(x[S],y[S])

PK
k=1 ỹ

[S]
k log �k(f(x[S])), (1)

(a) Source Training
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Fig. 3. The pipeline for U-SFAN: (a) Initial source model training (1) and the addi-
tional step (2) of composing a Laplace approximation for assessing the posterior over
model parameters, p(✓ | D[S]). (b) At target adaptation, we keep the posterior over the
parameters fixed (�) and train g under a uncertainty-aware composite loss that weights
samples according to predictive uncertainty

comprises of maximization of mutual information [18] in the predictions for the
target inputs D[T]. However, due to the overconfidence of ReLU networks [23],
maximizing mutual information for all inputs equally, including those that are
far away from the source data, could be detrimental. To overcome this pathology,
we derive a per-sample weight using the model’s uncertainty and use it to mod-
ulate the mutual information objective in SHOT. To estimate the uncertainty in
the predictions on the target data, we perform approximate posterior inference
over the parameters of the hypothesis function, i.e., p(✓[S] | D[S]). Inspired by
recent works on approximate inference in Bayesian neural networks[40, 59, 26],
we propose to estimate the posterior predictive distribution p(y |x, D) using a
Laplace approximation, introducing little computational overhead and without
the need for specialized source training. We briefly describe the preliminaries to
our approach in the following section.

3.1 Preliminaries

Liang et al. [34] proposed SHOT (Source HypOthesis Transfer) for the task of
SFDA, where the goal is to find a parameterisation �[T] of the feature extractor
g such that the distribution of latent features z[T] = g�[T](x[T]) matches the
distribution of the latent source features. This enables that the target data can
be accurately classified by the hypothesis function parameterized by ✓[S]. To this
end, the authors address the SFDA task in two stages where the first and second
stage comprise of source model training and maximizing the mutual information
[18] between the latent representations and the classifier output, respectively.

The source model f : X [S] ! Y [T] for a K-way classification task is learned
using a label-smoothed cross-entropy objective [44], i.e.,

Lsrc = �Ep(x[S],y[S])

PK
k=1 ỹ

[S]
k log �k(f(x[S])), (1)

(b) Target Adaptation

Figure 5.3: The pipeline for U-SFAN: (a) Initial source model training (1) and the additional
step (2) of composing a Laplace approximation for assessing the posterior over model parameters,
p(θ |D[S]). (b) At target adaptation, we keep the posterior over the parameters fixed (�) and train g
under a uncertainty-aware composite loss that weights samples according to predictive uncertainty

Overall Idea Our proposed method for SFDA operates in two stages. We begin the first stage

(see Fig. 5.3a) by training a source model on the data set D[S], which gives us the maximum-

a-posteriori probability (MAP) estimate of the source network parameters ({β[S]MAP, θ
[S]
MAP}).

The second stage (see Fig. 5.3b) comprises of maximization of mutual information [43] in the

predictions for the target inputs D[T]. However, due to the overconfidence of ReLU networks

[58], maximizing mutual information for all inputs equally, including those that are far away

from the source data, could be detrimental. To overcome this pathology, we derive a per-sample

weight using the model’s uncertainty and use it to modulate the mutual information objective in

SHOT. To estimate the uncertainty in the predictions on the target data, we perform approximate

posterior inference over the parameters of the hypothesis function, i.e., p(θ[S] |D[S]). Inspired by

recent works on approximate inference in Bayesian neural networks[75, 103, 156], we propose

to estimate the posterior predictive distribution p(y |x,D) using a Laplace approximation,

introducing little computational overhead and without the need for specialized source training.

We briefly describe the preliminaries to our approach in the following section.

5.3.1 Preliminaries

Liang et al. [90] proposed SHOT (Source HypOthesis Transfer) for the task of SFDA, where

the goal is to find a parameterisation β[T] of the feature extractor g such that the distribution
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of latent features z[T] = gβ[T](x[T]) matches the distribution of the latent source features. This

enables that the target data can be accurately classified by the hypothesis function parameterized

by θ[S]. To this end, the authors address the SFDA task in two stages where the first and second

stage comprise of source model training and maximizing the mutual information [43] between

the latent representations and the classifier output, respectively.

The source model f : X[S] → Y[T] for a K-way classification task is learned using a label-

smoothed cross-entropy objective [112], i.e.,

Lsrc = −Ep(x[S],y[S])

∑K
k=1 ỹ

[S]
k log ϕk(f(x

[S])), (5.1)

where ϕk(a) = exp(ak)/
∑

j exp(aj) denotes the likelihood for the kth component of the model

output and ỹ[S]i,k = y
[S]
i,k(1− α) + α/K is the class label for the ith label smoothed datum.

After the source training, the D[S] is discarded and the target adaptation is conducted on D[T]

only. To adapt on the target domain, the target function f ′ is initialized based on the learned

source function f and learned with the information maximization (IM) loss [43]. The IM loss

ensures that the function mapping will produce one-hot predictions while at the same time

enforcing diverse assignments, i.e.,

Lent=−Ep(x[T])

∑K
k=1 ϕk(f

′(x[T])) log ϕk(f
′(x[T])), (5.2)

Ldiv=DKL(p̂ ∥K−11K)− logK, (5.3)

where 1K is a vector of all ones, and p̂k = Ep(x[T])[ϕk(f
′(x[T]))] is the expected network output

for the kth class. Intuitively, Lent is in charge of making the network output one-hot, while Ldiv

is responsible for equally partitioning the network prediction into K classes. In practice Ldiv

operates on a mini-batch level. In this chapter we start from SHOT-IM to adapt to the target

domain.

5.3.2 Uncertainty-guided Source-free DA

Distributional shift between source and target data sets causes the network outputs to differ, even

for a same underlying semantic concept [24]. In a standard UDA scenario, where the source

data is available during target adaptation, it is still possible to align the marginal distributions

by using a quantifiable discrepancy metric. The task becomes more challenging in the SFDA

scenario because it is not possible to align the target feature distribution to a reference (or source)
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distribution. Moreover, standard ReLU networks are known to yield overconfident predictions

for data points which lie far away from the training (source) data [58]. In other words, the

MAP estimates of a neural network has no notion of uncertainty over the learned weights. Thus,

blindly trusting the source model predictions for x[T] ∈ D[T] while performing information

maximization [90] or entropy minimization [48] can potentially lead to misalignment of clusters

between the source and target.

In this chapter we propose to incorporate the uncertainty of the neural network’s weights

into the predictions. This mandates a Bayesian treatment of the networks parameters (θ), which

gives a posterior distribution over the model parameters by conditioning onto observed data (D),

i.e., p(θ |D) = p(θ) p(D | θ)
p(D) ∝ p(θ) p(D | θ). The prediction of the network hθ for an observation

x is given by predictive posterior distribution, i.e.,

p(yk |x,D) =

∫

θ
ϕk(hθ(x)) p(θ |D) dθ. (5.4)

Note that the posterior p(θ |D) in Eq. 5.4 does not have an analytical solution in general and

need to be approximated. For this, we employ a local approximation to the posterior using a

Laplace approximation (LA, [156]). The LA locally approximates the true posterior using a

multivariate Gaussian distribution centred at a local maximum and with covariance matrix given

by the inverse of the Hessian H of the negative log-posterior, i.e., p(θ |D) ≈ N(θ | θMAP,
−1H)

with H := −∇2
θ log p(θ |D) | θMAP

. Note that the LA is a principled and simple, yet effective,

approach to approximate posterior inference stemming from a second-order Taylor expansion of

the true posterior around θMAP. Next we will discuss LA in the context of SFDA.

Bayesian Source Model Generation In the source training stage (see Fig. 5.3a), by optimizing

Eq. 5.1, we obtain a MAP estimate of the weights for our source model, comprising βMAP

and θMAP for g and h, respectively. Since f is often modelled by a very deep neural network

(e.g., ResNet-50), computing the Hessian can be computationally infeasible owing to the large

number of parameters. So we make another simplification by applying a Bayesian treatment

only to hypothesis function h, known as the last-layer Laplace approximation [75]. This gives

us a probabilistic source hypothesis with posterior distribution p(θ |D[S]) for the parameters.

The feature extractor g remains deterministic. Formally, let z = gβ[S](x) be the latent feature

representation from the feature extractor. Following Eq. 5.4, the predictive posterior distribution

is given as:

p(yk | z,D[S]) ≈
∫

θ
ϕk(hθ(z))N(θ | θMAP,

−1H) dθ. (5.5)
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While the last-layer LA greatly simplifies the computational overhead for large networks, the

Hessian can still be difficult to compute in the case the number of classes is large. To simplify

computations, we assume that H can be Kronecker-factored H := V ⊗U and the resulting

approximation is referred to as Kronecker-factored Laplace approximation (KFLA, [129]). Such

probabilistic treatment allows us to quantify uncertainty in the predictions for data points from

the target with little computational overhead. Also, the LA can be readily computed using a

single forward pass of the source data through the network. Next, we describe how to use the

uncertainty estimates during target adaptation.

Uncertainty-guided Information Maximization Upon completion of the source model gener-

ation stage, we exploit the probabilistic source hypothesis to guide the information maximization

in the target adaptation stage. SHOT puts equal confidence on all the target predictions and

do not make any distinction for the target feature that lies outside of the source manifold. We

emphasize that in case of strong domain-shift naively maximizing the IM loss could lead to

cluster misalignment. For that reason, we propose to weigh the entropy minimization objective

(Eq. 5.2) with a weight which is proportional to the certainty in the target predictions (see

Fig. 5.3b). To get the per-sample weight for a x[T] we need to compute the predictive posterior

distribution, as outlined in Eq. 5.5. However, exactly solving the integration is intractable in

many cases and we, therefore, resort to Monte Carlo (MC) integration. Let z[T] = gβ[T](x[T]),

the approximate predictive posterior distributions is:

p(yk | z[T],D[S]) ≈ 1

M

M∑

j=1

ϕk

(
hθj (z

[T])
)
, (5.6)

where θj ∼ N(θj | θMAP,
−1H) and M denotes the number of MC steps. To encourage low

entropy predictions we additionally scale the outputs of the hypothesis by 1/τ , where 0 < τ ≤ 1.

The final weight of each observation x
[T]
i is then computed as wi = exp(−H) where H denotes

the entropy of the predictive mean. The uncertainty-guided entropy loss is then given as:

L
ug
ent = −Ep(x[T])

K∑

k=1

w σk(f
′(x[T])) log σk(f

′(x[T])). (5.7)

The final training objective is then given as: LU-SFAN = (1− γ)Lug
ent + γ Ldiv.
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How does this differ from conventional uncertainty estimation? The importance and

advantages of adopting a Laplace approximation (LA) over Monte Carlo (MC) dropout to

estimate uncertainty in SFDA can be summarized as follows: (i) LA does not require specialized

network architecture (e.g., dropout layers), loss function, or re-training (as in MC dropout)

to estimate predictive uncertainties. This greatly decouples the source training from target

adaptation, which is essential to be applicable in SFDA; (ii) To have well-calibrated uncertainties,

MC dropout requires a grid search over the dropout probabilities [35], a prohibitive operation

in deep neural networks, especially as the future target data is not available at source training.

LA is a more principled approach that does not require a grid search, making it better suited

for SFDA. (iii) LA is computationally lightweight since it requires just a single forward pass

of the source data through the network after the source training to estimate the posterior over

the parameters of the sub-network. (iv) LA does not impact the training time during target

adaptation because, unlike MC dropout, only a single forward pass is needed to quantify the

predictive uncertainties. Because LA employs a Gaussian approximation to the posterior, MC

integration is cheap and efficient to compute. (v) As used in our work, LA estimates the full

posterior over the weights and biases, while MC dropout can only account for the uncertainties

over the weights [34] and is known to be a poor approximation to the posterior [30, 117, 118].

(vi) LA preserves the decision boundary induced by the MAP estimate, which is not the case

for MC dropout [75]. In summary, our contribution goes beyond the uncertainty re-weighting

scheme [89, 91] commonly used in UDA, while carrying many advantages over existing works.

5.4 Experiments

We conduct experiments on four standard DA benchmarks: OFFICE31 [138], OFFICE-HOME

[163], VISDA-C [125], and the large-scale DOMAINNET [122] (0.6 million images). For the

experiments in the open-set DA setting we follow the split of [90] for shared and target-private

classes.

Evaluation protocol We report the classification accuracy for every possible pair of source 7→
target directions, except for the VISDA-C where we are only concerned with the transfer from

synthetic 7→ real domain. For the open-set experiments, following the evaluation protocol in

[90], we report the OS accuracy which includes the per-class accuracy of the known and the
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unknown class and is computed as OS = 1
K+1

∑K+1
k=1 acck, where k = {1, 2, . . . ,K} denote

the shared classes and (K + 1)th is the target-private or OOD classes. This metric is preferred

over the known class accuracy, OS∗ = 1
K

∑K
k=1 acck, as it does not take into account the OOD

classes.

Implementation details We adopted the network architectures used in the SFDA literature,

which are ResNet-50 or ResNet-101 [57]. Following [90], we added a bottleneck layer contain-

ing 256 neurons which is then followed by a batch normalization layer. The network finally

ends with a weight normalized linear classifier that is kept frozen during the target adaptation.

For computing the KFLA we use the PyTorch package of Dangel et al. [26]. Upon acceptance,

the code for U-SFAN will be made available on GitHub.

Hyperparameter selection We re-use the hyperparameters from the baseline of [90], e.g., the

standard optimization technique for training such as SGD with an initial learning rate of 10−2

and 10−3 for ResNet-50 and ResNet-101, respectively. The learning rate is decayed by power

decay [37]. We used the a batch size of 64 and we set α = 0.1 and γ = 0.5. Exclusive to our

method, we set the prior precision in LA equal to the weight decay, i.e. 5 · 10−4, and set the

temperature τ = 0.4 for all our experiments.

5.4.1 Ablation Studies

In this section we experimentally and visually show the issues with minimizing the IM under

different varieties of domain-shift. We also show how these can be overcome by incorporating

uncertainty during target adaptation.

Limitations of IM loss. As discussed in Sec. 5.3.2, conventional SFDA methods that rely on

optimizing the IM loss on the unlabelled target data, e.g. SHOT, are prone to misalignment of

the target data with the source hypothesis under strong domain shift. To visually demonstrate

this phenomenon, we design an experiment of a 3-way classification task on toy data (see Fig.

5.4). We choose a 2D toy data for this demonstration since it is not feasible to plot higher

dimensional data without dimensionality reduction techniques. Given a set of source data points,

belonging to three classes, we simulate two kinds of domain-shift: mild shift (Fig. 5.4a) and

strong shift (Fig. 5.4b). In the case of mild shift, the target data points stay very close to the
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Fig. 4. Comparison of conventional IM (MAP) with our uncertainty-guided IM on
target data under mild and strong domain-shift. The solid vs. hollow circles represent
the source and the target data, respectively. Each class is colour coded and the decision
boundaries are shaded with the corresponding colours. Under strong domain-shift, IM,
when used with a MAP estimate, finds a completely flipped decision boundary. U-
SFAN finds the decision boundary by down-weighting the far away target data

colours depicting the decision surface in Fig. 4), robustifying the adaptation on
the target data in case of domain shift.

Given such a set-up, we optimize the IM loss (i.e. SHOT-IM) for both the
conventional and the uncertainty-guided source models. In the case of mild shift,
both can reliably partition the target data points under the right decision sur-
faces (see Fig. 4a (right)). This is intuitive because the decision boundary of the
target model already passes through the low-density regions. Hence, the opti-
mization of the IM loss leads to correct target classification with both methods.
However, when the domain shift is more substantial, the conventional approach
results in completely flipped decision boundaries. This happens because most
blue target points fall under the red decision surface, and thus, the IM loss
assigns them to class ‘red’. On the contrary, our uncertainty-guided approach
down-weights the blue points, and safely optimizes the IM loss as the model is
uncertain about the class assignment for those points (Fig. 4b (right)). This pro-
tects from major changes in the decision boundaries and allows the optimization
to find the correct decision boundaries for the target data. Therefore, highlight-
ing the importance of having a notion of uncertainty in the model predictions
during adaptation. We will see Subsequently, we show that this intuition also
holds well for real-world data sets where our U-SFAN o↵ers more robustness
when the data set becomes challenging.

To gain further insights, we visualize the entropy density plots of the source
model predictions before and after adaptation with conventional (MAP estimate)
and uncertainty-guided models on an image data set (CIFAR [27] as source data
set and STL [7] as target), see Fig. 5. As seen in Fig. 5a, the MAP estimate
has lower entropy predictions for both the correct and incorrect predictions,
when compared to our uncertainty-guided model. Reduced over-confidence for
our approach is expected before the adaptation phase, however, it is non-trivial
that this behavior also bears in the post-adaptation phase. The reduced over-

Figure 5.4: Comparison of conventional IM (MAP) with our uncertainty-guided IM on target data
under mild and strong domain-shift. The solid vs. hollow circles represent the source and the
target data, respectively. Each class is colour coded and the decision boundaries are shaded with the
corresponding colours. Under strong domain-shift, IM, when used with a MAP estimate, finds a
completely flipped decision boundary. U-SFAN finds the decision boundary by down-weighting
the far away target data

source manifold, and the conventional approach (only using the MAP estimate) can classify a

majority of target data points without the need of adaptation. Whereas, in the case of strong

shift, the target data points for the blue class, in particular, shift drastically away from the source

points. The source model based on the MAP estimate missclassifies most of the target data

points with high confidence. On the other hand, our uncertainty-guided source model remains

certain only for those target points which lie within the source support and assigns low certainty

otherwise (proportional to the strength of colours depicting the decision surface in Fig. 5.4),

robustifying the adaptation on the target data in case of domain shift.

Given such a set-up, we optimize the IM loss (i.e. SHOT-IM) for both the conventional

and the uncertainty-guided source models. In the case of mild shift, both can reliably partition

the target data points under the right decision surfaces (see Fig. 5.4 (right)). This is intuitive

because the decision boundary of the target model already passes through the low-density

regions. Hence, the optimization of the IM loss leads to correct target classification with both

methods. However, when the domain shift is more substantial, the conventional approach results

in completely flipped decision boundaries. This happens because most blue target points fall

under the red decision surface, and thus, the IM loss assigns them to class ‘red’. On the contrary,

our uncertainty-guided approach down-weights the blue points, and safely optimizes the IM loss
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as the model is uncertain about the class assignment for those points Fig. (5.4b (right)). This

protects from major changes in the decision boundaries and allows the optimization to find the

correct decision boundaries for the target data. Therefore, highlighting the importance of having

a notion of uncertainty in the model predictions during adaptation. We will see Subsequently,

we show that this intuition also holds well for real-world data sets where our U-SFAN offers

more robustness when the data set becomes challenging.
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Fig. 5. Entropy density plots for CIFAR9! STL9 in the closed-set SFDA setting using
the MAP estimate ( correct, incorrect) or our approach ( correct, in-
correct). Our uncertainty-guided SFDA approach places less mass on low-entropy in-
correct samples before and after adaptation

Table 1. Comparison of model performance using entropy weighting during target
adaptation on the Office-Home data set. The weights computed using the LA is
more beneficial than the weights computed with a MAP network

Method Source-Only SHOT-IM [34] SHOT-IM + Ent. weighting U-SFAN (ours)

Avg. Acc. 60.3 70.5 71.2 71.8

confident allows our U-SFAN to down-weight the incorrect predictions during
target adaptation, resulting in improved target accuracy over SHOT-IM (77.04%
for U-SFAN vs 75.69% for SHOT-IM). This e↵ect can be noticed in Fig. 5b where
U-SFAN has overall higher entropy incorrect predictions, which is desirable in
SFDA.

To further understand the contribution of our uncertainty-guided re-weighting,
we run an ablation where the approximate posterior distribution of our method
(Eq. (7)) is replaced by a weight computed from a point estimate from a MAP
source model. This model is denoted as SHOT-IM + ENT. WEIGHTING in Ta-
ble 1. We observe that such weighting scheme indeed improves the performance
over SHOT-IM. However, it still lacks behind our proposed U-SFAN which uses
weights computed from the uncertainty-guided model. This clearly shows that
the improvement in performance with U-SFAN is not simply caused by the re-
weighting but also due to better identification of target samples that are not
well explained under the source model.

4.2 State-of-the-art Comparison

We compare our U-SFAN with UDA and SFDA methods on multiple data sets for
closed-set and open-set settings. First, we compare U-SFAN with the baselines on
the most common benchmark of office-home for both closed-set and open-set
settings. As can be seen from Table 2 and Table 3 we improve the performance
over majority of the baselines. Especially, we consistently improve over SHOT-IM

(a) Before adaption

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

ECCV

#6976
ECCV

#6976

12 ECCV-22 submission ID 6976

0 1 2

0
1

2

Entropy

D
e
n
si

ty
(a

rb
it

ra
ry

u
n
it

s)

(a) Before adaption

0 1 2

0
1

2

Entropy

(b) After adaption

Fig. 5. Entropy density plots for CIFAR9! STL9 in the closed-set SFDA setting using
the MAP estimate ( correct, incorrect) or our approach ( correct, in-
correct). Our uncertainty-guided SFDA approach places less mass on low-entropy in-
correct samples before and after adaptation

Table 1. Comparison of model performance using entropy weighting during target
adaptation on the Office-Home data set. The weights computed using the LA is
more beneficial than the weights computed with a MAP network

Method Source-Only SHOT-IM [34] SHOT-IM + Ent. weighting U-SFAN (ours)

Avg. Acc. 60.3 70.5 71.2 71.8

confident allows our U-SFAN to down-weight the incorrect predictions during
target adaptation, resulting in improved target accuracy over SHOT-IM (77.04%
for U-SFAN vs 75.69% for SHOT-IM). This e↵ect can be noticed in Fig. 5b where
U-SFAN has overall higher entropy incorrect predictions, which is desirable in
SFDA.

To further understand the contribution of our uncertainty-guided re-weighting,
we run an ablation where the approximate posterior distribution of our method
(Eq. (7)) is replaced by a weight computed from a point estimate from a MAP
source model. This model is denoted as SHOT-IM + ENT. WEIGHTING in Ta-
ble 1. We observe that such weighting scheme indeed improves the performance
over SHOT-IM. However, it still lacks behind our proposed U-SFAN which uses
weights computed from the uncertainty-guided model. This clearly shows that
the improvement in performance with U-SFAN is not simply caused by the re-
weighting but also due to better identification of target samples that are not
well explained under the source model.

4.2 State-of-the-art Comparison

We compare our U-SFAN with UDA and SFDA methods on multiple data sets for
closed-set and open-set settings. First, we compare U-SFAN with the baselines on
the most common benchmark of office-home for both closed-set and open-set
settings. As can be seen from Table 2 and Table 3 we improve the performance
over majority of the baselines. Especially, we consistently improve over SHOT-IM

(b) After adaption

Figure 5.5: Entropy density plots for CIFAR9 → STL9 in the closed-set SFDA setting using
the MAP estimate ( correct, incorrect) or our approach ( correct, incorrect). Our
uncertainty-guided SFDA approach places less mass on low-entropy incorrect samples before and
after adaptation

Importance of probabilistic outputs. To gain further insights, we visualize the entropy density

plots of the source model predictions before and after adaptation with conventional (MAP

estimate) and uncertainty-guided models on an image data set (CIFAR [76] as source data set

and STL [23] as target), see Fig. 5.5. As seen in Fig. 5.5a, the MAP estimate has lower entropy

predictions for both the correct and incorrect predictions, when compared to our uncertainty-

guided model. Reduced over-confidence for our approach is expected before the adaptation

phase, however, it is non-trivial that this behavior also bears in the post-adaptation phase. The

reduced over-confident allows our U-SFAN to down-weight the incorrect predictions during

target adaptation, resulting in improved target accuracy over SHOT-IM (77.04% for U-SFAN

vs 75.69% for SHOT-IM). This effect can be noticed in Fig. 5.5b where U-SFAN has overall

higher entropy incorrect predictions, which is desirable in SFDA.

To further understand the contribution of our uncertainty-guided re-weighting, we run an

ablation where the approximate posterior distribution of our method (Eq. 5.7) is replaced by a

92



5.4 Experiments

METHOD SOURCE-ONLY SHOT-IM [90] SHOT-IM + ENT. WEIGHTING U-SFAN (OURS)

AVG. ACC. 60.3 70.5 71.2 71.8

Table 5.1: Comparison of model performance using entropy weighting during target adaptation
on the OFFICE-HOME data set. The weights computed using the LA is more beneficial than the
weights computed with a MAP network

METHOD A→C A→P A→R C→A C→P C→R P→A P→C P→R R→A R→C R→P AVG.

ResNet-50 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1
DANN [38] 45.6 59.3 70.1 47.0 58.5 60.9 46.1 43.7 68.5 63.2 51.8 76.8 57.6
DWT [131] 50.3 72.1 77.0 59.6 69.3 70.2 58.3 48.1 77.3 69.3 53.6 82.0 65.6
CDAN [96] 50.7 70.6 76.0 57.6 70.0 70.0 57.4 50.9 77.3 70.9 56.7 81.6 65.8
SAFN [170] 52.0 71.7 76.3 64.2 69.9 71.9 63.7 51.4 77.1 70.9 57.1 81.5 67.3
SHOT-IM [90] 55.4 76.6 80.4 66.9 74.3 75.4 65.6 54.8 80.7 73.7 58.4 83.4 70.5
LSC [172] 57.9 78.6 81.0 66.7 77.2 77.2 65.6 56.0 82.2 72.0 57.8 83.4 71.3
U-SFAN (Ours) 58.5 78.6 81.1 66.6 75.2 77.9 66.3 57.9 80.6 73.6 61.4 84.1 71.8
A2Net[168] 58.4 79.0 82.4 67.5 79.3 78.9 68.0 56.2 82.9 74.1 60.5 85.0 72.8
SHOT [90] 57.1 78.1 81.5 68.0 78.2 78.1 67.4 54.9 82.2 73.3 58.8 84.3 71.8
U-SFAN+ (Ours) 57.8 77.8 81.6 67.9 77.3 79.2 67.2 54.7 81.2 73.3 60.3 83.9 71.9

Table 5.2: Comparison of the classification accuracy on the OFFICE-HOME for the closed-set setting
using ResNet-50. High overall performance signifies milder distributional shift between domains.
The improvement of U-SFAN upon SHOT is moderate, but competitive with respect to A2Net[168],
which requires a complex training objective

weight computed from a point estimate from a MAP source model. This model is denoted as

SHOT-IM + ENT. WEIGHTING in Tab. 5.1. We observe that such weighting scheme indeed

improves the performance over SHOT-IM. However, it still lacks behind our proposed U-SFAN

which uses weights computed from the uncertainty-guided model. This clearly shows that the

improvement in performance with U-SFAN is not simply caused by the re-weighting but also

due to better identification of target samples that are not well explained under the source model.

5.4.2 State-of-the-art Comparison

Closed-set experiments. We compare our U-SFAN with UDA and SFDA methods on multiple

data sets for the closed-set setting. As can be seen from Tab. 5.2 and Tab. 5.4 we improve the

performance over majority of the baselines. Especially, we consistently improve over SHOT-IM

with our method. We also combine the nearest centroid pseudo-labelling, used in SHOT [90],

with U-SFAN (indicated as U-SFAN+ in Tab. 5.2 and Tab. 5.3), and we find that it further helps

improving the performance. Notably, the recently proposed A2Net [168] (which just addresses
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METHOD ACC.

ResNet-101 52.4
CDAN+BSP [19] 75.9
SAFN [170] 76.1

SHOT-IM† [90] 80.3
U-SFAN (Ours) 81.2
3C-GAN [86] 81.6
A2Net[168] 84.3
SHOT† [90] 82.4
U-SFAN+ (Ours) 82.7

Table 5.3: Comparison of the classification accuracy on the VISDA-C for the closed-set DA,
pertaining to the Synthetic → Real direction, using ResNet-101. † indicates the numbers of [90]
that are obtained using the official code from the authors. Note that several SFDA methods perform
equally well for VISDA-C, hinting at saturating performance

METHOD A→D A→W D→A D→W W→A W→D AVG.

ResNet-50 68.9 68.4 62.5 96.7 60.7 99.3 76.1
DANN [38] 79.7 82.0 68.2 96.9 67.4 99.1 82.2
DAN [98] 78.6 80.5 63.6 97.1 62.8 99.6 80.4
SAFN [170] 90.7 90.1 73.0 98.6 70.2 99.8 87.1
CDAN [96] 92.9 94.1 71.0 98.6 69.3 100. 87.7
SHOT-IM [90] 90.6 91.2 72.5 98.3 71.4 99.9 87.3
U-SFAN (Ours) 91.8 92.3 75.8 97.7 74.4 99.8 88.6
SHOT [90] 94.0 90.1 74.7 98.4 74.3 99.9 88.6
U-SFAN+ (Ours) 94.2 92.8 74.6 98.0 74.4 99.0 88.8

Table 5.4: Comparison of the classification accuracy on the OFFICE31 for the closed-set SFDA
using ResNet-50. Results on the small-scale OFFICE31 are known to be saturated. The visual
appearance between the domains do not vary much, thus making the domain shift milder

closed-set SFDA) outperforms our U-SFAN in a couple of data sets, but uses a combination

of several loss functions. Interplay of multiple losses can be hard to tune in practice. On the

other hand, our method is simpler, more versatile and works for both the SFDA settings. Given

the performance of the SFDA baseline methods in OFFICE-HOME and VISDA-C are relatively

high and closer to each other, the domain shift can be considered milder with respect to more

challenging data set like DOMAIN-NET.
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SOURCE SHOT-IM [90] U-SFAN

CLIPART 25.04 30.88
INFOGRAPH 21.58 26.44
PAINTING 23.89 29.91
QUICKDRAW 10.76 10.44
REAL 21.74 29.32
SKETCH 28.87 29.99

AVG. 21.98 26.13

Table 5.5: Comparison of the average accuracy on the DOMAINNET for the closed-set SFDA using
ResNet-50. The SOURCE column indicates the domain where the source model has been trained.
The data set being challenging (exhibiting strong domain-shift), the improvement with our U-SFAN
over [90] is substantial

METHOD A→C A→P A→R C→A C→P C→R P→A P→C P→R R→A R→C R→P AVG.

ResNet-50 53.4 52.7 51.9 69.3 61.8 74.1 61.4 64.0 70.0 78.7 71.0 74.9 65.3
ATI-λ[120] 55.2 52.6 53.5 69.1 63.5 74.1 61.7 64.5 70.7 79.2 72.9 75.8 66.1
OpenMax [5] 56.5 52.9 53.7 69.1 64.8 74.5 64.1 64.0 71.2 80.3 73.0 76.9 66.7
STA [92] 58.1 53.1 54.4 71.6 69.3 81.9 63.4 65.2 74.9 85.0 75.8 80.8 69.5
SHOT-IM [90] 62.5 77.8 83.9 60.9 73.4 79.4 64.7 58.7 83.1 69.1 62.0 82.1 71.5
SHOT [90] 64.5 80.4 84.7 63.1 75.4 81.2 65.3 59.3 83.3 69.6 64.6 82.3 72.8
U-SFAN (Ours) 62.9 77.9 84.0 67.9 74.6 79.6 68.8 61.3 83.3 76.0 63.9 82.3 73.5

Table 5.6: Comparison of the OS classification accuracy on the OFFICE-HOME for the open-set
setting using ResNet-50. U-SFAN improves over SHOT without the need for nearest-centroid
pseudo-labelling in the case of open-set SFDA

When we compare U-SFAN with SHOT-IM on the challenging SFDA benchmark DOMAIN-

NET the advantage of our U-SFAN over SHOT-IM becomes imminent, see Tab. 5.5, which is in

line with the ablation study in Sec. 5.4.1. Different from the previous data sets, the difficulty

in mitigating domain-shift for DOMAIN-NET is evident from the low overall performance of

both SHOT-IM and U-SFAN. This data set can be considered as an instance where strong

domain-shift may manifest in the real world. The substantial improvement in the performance of

U-SFAN over SHOT-IM for DOMAIN-NET demonstrates that incorporating the uncertainty in the

model’s predictions plays a crucial role in SFDA. The conventional approach may overfit to noisy

model predictions for challenging data sets, leading to poor performance. Whereas, U-SFAN

can capture the uncertainty in predictions and down-weight the impact of noisy predictions by

attending less to such samples during target adaptation.
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Open-set experiments. Following the work SHOT [90] we also conduct experiments on

OFFICE-HOME dataset in the open-set setting. We report the OS classification accuracy metric

in the Tab. 5.6, which includes the unknown class (see the beginning of Sec. 5.4). While

some previous works on open-set adaptation adopt the H-score as a metric to evaluate open-set

methods, it has been discussed in OVANet [139] that the H-score metric can put more weight

on the open-set classes when the number of such samples are much lower compared to the

closed-set classes. For this reason we report the OS score which weighs equally all the classes

in the target domain. It can observed that our U-SFAN outperforms SHOT by a clear margin,

showing the effectiveness in finding out-of-distribution samples.

5.5 Conclusions

In this chapter, we demonstrated the need for uncertainty quantification in SFDA and proposed

U-SFAN that leveraging it during target adaptation. Our uncertainty-guided SFDA approach

employs a Laplace approximation to the posterior, does not require specialized source training,

and allows for efficient computation of predictive uncertainties. Our experiments showed that

down-weighting distant target data points in our novel uncertainty-weighted IM loss alleviates

the misalignment of target data with the source hypothesis. We ran experiments on closed

and open-set SFDA settings and show that U-SFAN consistently improves upon the existing

methods. Moreover, U-SFAN has shown to be robust under mild distribution shifts and shows

promising results even under severe distribution shifts without additional tuning.

While we mainly focused on the popular IM-based SFDA methods, our proposed uncertainty-

guided adaptation is also applicable to other SFDA frameworks, e.g., neighbourhood clustering

[172] or extensions to the multi-source SFDA problem. Moreover, the principles we build

upon are general, interpretable, and have strong backing in classical statistics. We believe that

uncertainty-guided SFDA will become a backbone tool for future methods in DA that generalize

over different problem domains, are less sensitive to the training setup, and will provide good

results without extensive ad hoc tuning to each problem.
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6

Final Remarks

In this doctoral thesis we presented and discussed several methods for domain adaptation

under different settings, mainly aimed at image classification, using deep learning techniques.

Domain adaptation allows to bridge the domain gap between training and testing distributions

and hence holds the key in making deep learning models generalizable and deployable in real

world applications.

We started our analysis with the simplest case of closed-set unsupervised domain adaptation

by proposing Domain Whitening Transform layers to align the marginal feature distributions

between the source and target domains. To better leverage the unlabelled target data we also

presented the Min Entropy Consensus loss to encourage the network to minimize entropy and

make consistent predictions on two perturbed versions of a single target image. We showed

that our proposed contributions can subsume several well known paradigms of approaches

commonly followed in UDA.

Next we presented a generative approach for tackling multi-source domain adaptation by

proposing the TriGAN framework that synthesizes target-like source images for training a target

classifier. The main idea behind this framework is to use a universal generator that projects

the image features onto a space where only the dependence from the content is kept, and then

re-project this invariant representation onto the pixel space using the target domain and style.

Having a universal generator for all the source and target domain pairs circumvents training

multiple generators and also allows to use all of the source domains to train the single network.

We also addressed a more realistic DA setting of multi-target domain adaptation where

we proposed the Curriculum Graph Co-teaching framework to learn an unified feature space
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through a graph convolutional network, which is trained in a co-teaching fashion to curb noisy

pseudo-labels. When the domain labels of the target domains are available we proposed the

Domain Curriculum Learning strategy that first adapts on the easier target domains and then the

harder ones. We empirically showed that the order of adaptation is important to obtain better

pseudo-labels and prevents negative transfer while learning with multiple target domains.

Finally, we addressed a even more challenging UDA setting called source-free domain

adaptation where only a pre-trained source model is available while adapting on a desired target

domain. Due to domain shift and lack of source data the source model predictions on target data

can be unreliable. Hence, we constructed a probabilistic framework U-SFAN that is equipped

with a notion of uncertainty. This uncertainty is estimated using Laplace Approximation that

is then used to re-weight the target data while optimizing the information maximization loss.

Through extensive experiments we showed that uncertainty-aware models are more robust to

stronger domain shift.

6.1 Future Research Directions

This final section includes a short overview of the main challenges for domain adaptation and

depicts future research directions that could come out from this work. The DA sub-field has

overseen a plethora of works from the academic world and have shown to work well in several

benchmarks. But when it comes to real world the simplified training assumptions, which are

commonly followed in the academic setting, do not hold anymore. For instance, the target data

in the real world comes in continuous streams and can not always be stored due to memory

limitations. Under such cases, the traditional DA learning techniques may fail or may not

be as effective as compared to offline methods. This calls for methods that can learn from

unsupervised streams of target data. Another noticeable peculiarity in a vast majority of DA

methods is the assumption of the knowledge about the network architecture. In many cases

pre-trained models can be proprietary and can come as black box models. It would then require

rethinking the adaptation strategy. Also, with the privacy guidelines becoming more rigorous,

collecting target data from various end users may hit a brick wall for the practitioners. Thus

adaptation needs to be performed in a decentralized fashion, which our proposed CGCT is

unable to do. Finally, the DA methods have not exploited the large corpus of paired image-text

data sets to build stronger source models to be used in adaptation. Such foundation models such

as CLIP [126] have shown remarkable performance in various downstream tasks and offers
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promise to the DA community. Using stronger pre-trained models trained with captions can

help reduce the domain gap which is otherwise not possible with traditional learning techniques.
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