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Abstract

In the field of machine learning (ML) a very commonly encountered problem is the lack
of generalizability of learnt classification functions when subjected to new samples that are
not representative of the training distribution. The discrepancy between the training (a.k.a.
source) and test (a.k.a. target) distributions are caused by several latent factors such as change in
appearance, illumination, viewpoints and so on, which is also popularly known as domain-shift.
In order to make a classifier cope with such domain-shifts, a sub-field in machine learning
called domain adaptation (DA) has emerged that jointly uses the annotated data from the source
domain together with the unlabelled data from the target domain of interest. For a classifier to
be adapted to an unlabelled target data set is of tremendous practical significance because it
has no associated labelling cost and allows for more accurate predictions in the environment
of interest. A majority of the DA methods which address the single source and single target
domain scenario are not easily extendable to many practical DA scenarios. As there has been as
increasing focus to make ML models deployable, it calls for devising improved methods that
can handle inherently complex practical DA scenarios in the real world.

In this work we build towards this goal of addressing more practical DA settings and help
realize novel methods for more real world applications: (i) We begin our work with analyzing and
addressing the single source and single target setting by proposing whitening-based embedded
normalization layers to align the marginal feature distributions between two domains. To
better utilize the unlabelled target data we propose an unsupervised regularization loss that
encourages both confident and consistent predictions. (ii) Next, we build on top of the proposed
normalization layers and use them in a generative framework to address multi-source DA by
posing it as an image translation problem. This proposed framework TriGAN allows a single
generator to be learned by using all the source domain data into a single network, leading to
better generation of target-like source data. (iii) We address multi-target DA by learning a single
classifier for all of the target domains. Our proposed framework exploits feature aggregation
with a graph convolutional network to align feature representations of similar samples across
domains. Moreover, to counteract the noisy pseudo-labels we propose to use a co-teaching
strategy with a dual classifier head. To enable smoother adaptation, we propose a domain
curriculum learning ,when the domain labels are available, that adapts to one target domain at
a time, with increasing domain gap. (iv) Finally, we address the challenging source-free DA
where the only source of supervision is a source-trained model. We propose to use Laplace



Approximation to build a probabilistic source model that can quantify the uncertainty in the
source model predictions on the target data. The uncertainty is then used as importance weights
during the target adaptation process, down-weighting target data that do not lie in the source
manifold.
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1

Introduction

1.1 Motivation

Building intelligent systems that have the ability to solve tasks by recognizing patterns and

making predictions has been the longstanding goal of the machine learning (ML) community.

Although the pinnacle of general intelligence has not been achieved so far, the ML community

has made a steadfast progress in many challenging tasks, with the learning algorithms sometimes

attaining super-human performance [56]. This has led to the increased deployment of ML algo-

rithms in self-driving cars [50], computer-aided diagnostics [84], e-commerce websites [146],

social media content moderation [3] and so on.

In essence the goal of a typical learning algorithm (or system) is to predict a desired output

given some input. This is achieved through a process calledtraining. In the supervised case the

training process would require a set of inputs and their corresponding outputs. For instance, in

the simplest case of image classi�cation the input will be an image and the output consists of

one of the several categorical labels. Then the goal of the training process is to approximate

a function (commonly modelled with neural networks) that maps from the input to the output

space, by minimizing a cost function on a given �nite data set. To evaluate the goodness of �t,

the learned function is often tested on unseen data points under the independent and identically

distributed (ori.i.d.) assumption [55]. If the i.i.d. assumption is not violated, or in other words

if the test points are similar to the training points, the model will make accurate predictions in

future.

1



1. INTRODUCTION

Figure 1.1: Illustrations of various kinds of domain-shift in the real world. In each of the four boxes,
the image on the left depicts an example of training distribution images and the image on the right
depicts the testing distribution images. For instance, the domain shift between CAD images and
images taken in the real world is quite high. Due to difference in the data distributions the neural
networks will exhibit a generalization gap when deployed out-of-the-box.

However, in the real world the test data is quite often not very representative of the training

data. As a consequence the learned function will fail togeneralizewell on such distribution. The

shift in the distributions between the training and test data is caused by a phenomenon called

domain-shift[157] (see Fig. 1.1). For example, training data collected in a particular urban

setting for an autonomous driving application might be biased with respect to other urban or

rural settings due to different layout of roads, compounded with different weather conditions. A

learning system trained on that particular urban setting will be unreliable and error prone when

deployed in a different road or weather setting. While a naive solution would be collecting data

from every possible city and weather con�guration and then train speci�c systems where the

system would be deployed, it would be unfeasible due to expensive and laborious annotated

data collection process. Instead, the researchers have tried to answer if the information from

the annotated urban training data set could be used to adapt the learning system to work well in

rural settings?

To answer the above question a broad �eld of study calleddomain adaptation(DA) [4] has

emerged that attempts to bridge the domain gap between the training and test distributions. In

the literature the labelled data is referred to belong to thesourcedomain and the unlabelled

2



1.2 Outline

data to thetarget domain, where the learning system will potentially be deployed. In most

of the DA works it is assumed that plentiful of labelled data is available from the source

domain(s) and little or no labelled data from the target domain of interest. The main goal in

DA is to mitigate the domain gap between the source and target domains such that the classi�er

trained on the source data set generalizes well to the target data set. To this end plethora of

unsupervised domain adaptation (UDA) methods have been proposed that include optimizing

statistical moments [13, 14, 15, 98, 124, 152, 161], adversarial training [38, 96, 159], generative

modelling [61, 94, 136], to name a few.

In the recent times many real world DA settings have been proposed that depart from the

traditional UDA setting, which involves a single labelled source domain and a single unlabelled

target domain. In more detail, as the real world is more complex, the assumption of a single

source and target domain no longer holds true. In some cases, the labelled source data set may

become unavailable due to privacy or storage concerns and the traditional UDA approaches

fail to operate under such conditions. Thus, to address such non-conventional DA problems

new research avenues have opened up that comprise of multi-source DA [121], multi-target

DA [20], source-free DA [90] and so on. This hints at the fact that to build real-world ready and

robust learning systems more challenging and realistic DA scenarios need to be addressed and

rightfully deserves thorough investigation.

1.2 Outline

A very natural starting point for investigating DA research topic is by studying and analyzing

the closed-set single source and single target UDA (STDA), as it is the simplest UDA setting.

In Chapter 2 “Domain Whitening Transform” we address STDA by means of marginal feature

alignment between domains with the help of embedded domain adaptive blocks that are based on

the Whitening transform. In Chapter 3 titled “TriGAN for Multi-source Domain Adaptation” we

re-purpose the adaptation components of the previous chapter to address multi-source domain

adaptation (MSDA) through a generative framework. In Chapter 4 “Curriculum Graph Co-

teaching for Multi-target Domain Adaptation” we address a more challenging UDA setting when

a single model need to learned for multiple unlabelled target domains. To this end we propose

to align the feature representations across domains with a graph neural network (GNN). Finally,

in Chapter 5 we address a signi�cantly harder UDA problem when a pre-trained source model

3
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