
Doctoral School in Mathematics

Arbitrary high order discontinuous Galerkin methods
for the shallow water and incompressible Navier-Stokes

equations on unstructured staggered meshes

Tavelli Maurizio
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Abstract

Abstract

In this work we present a new class of well-balanced, arbitrary high order ac-
curate semi-implicit discontinuous Galerkin methods for the solution of the
shallow water and incompressible Navier-Stokes equations on staggered un-
structured curved meshes. Isoparametric finite elements are used to take into
account curved domain boundaries.

Regarding two-dimensional shallow water equations, the discrete free surface
elevation is defined on a primal triangular grid, while the discrete total height
and the discrete velocity field are defined on an edge-based staggered dual grid.

Similarly, for the two-dimensional incompressible Navier-Stokes case, the dis-
crete pressure is defined on the main triangular grid and the velocity field is
defined on the edge-based staggered grid. While staggered meshes are state
of the art in classical finite difference approximations of the incompressible
Navier-Stokes equations, their use in the context of high order DG schemes is
novel and still quite rare. High order (better than second order) in time can
be achieved by using a space-time finite element framework, where the basis
and test functions are piecewise polynomials in both space and time. Formal
substitution of the discrete momentum equation on the dual grid into the dis-
crete continuity equation on the primary grid yields a very sparse system for
the scalar pressure involving only the direct neighbor elements, so that it be-
comes a block four-point system in 2D and a block five-point system for 3D
tetrahedral meshes. The resulting linear system is conveniently solved with
a matrix-free GMRES algorithm. Note that the same space-time DG scheme
on a collocated grid would lead to ten non-zero blocks per element in 2D and
seventeen non-zero blocks in 3D, since substituting the discrete velocity into
the discrete continuity equation on a collocated mesh would involve also neigh-
bors of neighbors. From numerical experiments we find that our linear system
is well-behaved and that the GMRES method converges quickly even without
the use of any preconditioner, which is a unique feature in the context of high
order implicit DG schemes. A very simple and efficient Picard iteration is then
used in order to derive a space-time pressure correction algorithm that achieves
also high order of accuracy in time, which is in general a non-trivial task in
the context of high order discretizations for the incompressible Navier-Stokes
equations. The special case of high order in space low order in time allows us to
recover further regularity about the main linear system for the pressure, such
as the symmetry and the positive semi-definiteness in the general case. This
allows us to use a very fast linear solver such as the conjugate gradient (CG)
method. The flexibility and accuracy of high order space-time DG methods on
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Abstract

curved unstructured meshes allows to discretize even complex physical domains
with very coarse grids in both space and time.
We will further extend the previous method to three-dimensional incompress-
ible Navier-Stokes system using a tetrahedral main grid and a corresponding
face-based hexaxedral dual grid. The resulting dual mesh consists in non-
standard 5-vertex hexahedral elements that cannot be represented using tensor
products of one dimensional basis functions. Indeed a modal polynomial basis
will be used for the dual mesh.
This new family of numerical schemes is verified by solving a series of typical
numerical test problems and by comparing the obtained numerical results with
available exact analytical solutions or other numerical reference data. Further-
more, the comparison with available experimental results will be presented for
incompressible Navier-Stokes equations.
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1 Introduction

Fluid dynamics represents a vast sector of outcoming engineering and mathe-
matical research with a wide importance to real world applications. There are
several applications to free-surface flows, incompressible and compressible fluid
dynamics. Other important applications concern the evolution of magnetic flu-
ids and incorporate both fluid mechanics and Maxwell equations with a strong
interaction between the magnetic and the motion part.
If we take a look at the shallow water or the incompressible Navier-Stokes
equations we apparently have a system of governing partial differential equa-
tions that involves only a few unknown variables, such as the pressure and the
velocity field and the known bottom bathymetry in the case of the shallow
water equations. On the other hand, once we start to study the equations,
we discover a series of non-trivial behaviours and the possibility to generate
really complex solutions. This is due to the nonlinearity of the governing PDE
systems.
Several of these behaviors involving both small and large scale structures, can
be observed in experiments and, in general, we do not have an analytical solu-
tion, especially in the complete three-dimensional case.
In the great majority of cases, we have to solve the equations numerically in
order to forecast the expected behaviour of the fluid. In this sense there are
several procedures that we can use, such as the finite volume, the finite differ-
ence or the finite element method. At this point, I would briefly review the
difference between finite differences (Taylor series expansions and the discrete
solution being represented by point-values uni = u(xi, t

n)), finite volumes (in-
tegral form of the conservation law and the discrete solution being represented
by cell averages uni = 1

∆x

∫ xi+1/2

xi−1/2
u(x, tn)dx ) and finite elements with their

discrete solution represented in a function space spanned by piecewise polyno-
mial basis functions uh(x, tn) =

∑
l φl(x)ûnl ) at the example of a simple scalar

conservation law ut + fx = 0.
One of the oldest and one of the simplest possible discretizations of the equa-
tions of fluid mechanics consists in an explicit finite difference approximation.
It leads to an explicit formula for the evolution of the unknown variables, but it
imposes a rather severe time step restriction in order to get a stable scheme, the
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1 Introduction

famous CFL condition, first discovered by Courant, Friedrichs and Lewy in [59].
On the contrary, fully implicit schemes usually avoid this limitation, but they
require the solution of a linear or even nonlinear algebraic system, which might
become quite cumbersome. Indeed, there is a class of so called semi-implicit
schemes that mix both explicit and implicit contributions. An important con-
tribution to semi-implicit schemes applied to fluid mechanics and related topics
was made by Harlow and Welch [95], Patankar and Spalding [126], and by V.
Casulli [31, 32, 33, 34, 36, 37, 38, 39, 35, 40, 42, 41, 43, 44]. The introduction of
an auxiliary parameter θ ∈ [0, 1] allows us to write a generic time discretization
for ξ′ = f(ξ) such as

ξn+1 − ξn

∆t
= θf(ξn) + (1− θ)f(ξn+1),

so that for θ = 0 we get a fully explicit Euler method and for θ = 1 we have
a fully implicit one, but we can choose also intermediate values. The special
case of θ = 1

2
was studied by J.Crank and P.Nicolson in the original paper of

1947 [60] for heat-conduction type equations and is therefore called the Crank-
Nicolson scheme. In general we have an higher order accuracy in this last case
as well as unconditional stability for θ ∈ [ 1

2
, 1], see [36].

Finite element schemes are typically used to achieve high order solution and
can be divided into a class of continuous finite elements and another class of
discontinuous Galerkin (DG) finite element methods. The continuous finite
element case in general involves high order polynomials that are continuous on
each boundary interface; on the contrary, the discontinuous case allows jumps
on the element boundaries. This second case is particularly suitable when we
have discontinuous solutions, such as shocks or discontinuous boundary condi-
tions or bathymetry in the shallow water context. The price of this generality
is the requirement of more information to be represented in each element (i.e.
we need to duplicate the degrees of freedom on the element interface, so we
have more degrees of freedom for a general numerical solution).
The DG finite element method has been originally introduced by Reed and
Hill [132] for the solution of neutron transport equations and has been succes-
sively extended to general nonlinear hyperbolic conservation laws by Cockburn
and Shu in a famous series of papers [56, 55, 54, 53, 57]. Jiang and Shu [108]
were able to derive a cell entropy inequality for semi-discrete DG schemes and,
as a consequence, they were also able to prove nonlinear stability of the DG
method in L2 norm. General unstructured meshes and curved isoparametric
elements can be naturally included in the DG framework, together with hang-
ing nodes and hp-adaptivity [106, 105, 104]. This easily explains the recent
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and continuously growing success of the DG method. Indeed its intrinsically
high scalability for parallel high performance computing (HPC) as well as high
resolution make the DG methods particularly suitable for large scale simula-
tions of complex phenomena and therefore real world applications. However,
explicit DG schemes suffer from a very severe time step restriction, which is
the most severe the higher the polynomial degree of the basis and test func-
tions. High order implicit time discretizations for DG methods are possible
[128, 127, 11, 123, 61, 10, 8, 18, 96, 97], but the resulting system matrices are
denser and have a worse condition number compared to classical continuous
finite elements. Therefore, recent attempts have been made to improve either
the CFL condition of explicit DG schemes [155], or to use semi-implicit DG
schemes [63, 64, 65, 91, 151], which combine the simplicity of explicit methods
for nonlinear hyperbolic PDEs with the stability and efficiency of implicit time
discretizations.
We can finally use a single grid or a set of different overlapping grids, consisting
of a main grid and a staggered dual one where the main variables are not located
at the same points. The use of staggered grids is a very common choice in the
finite difference community and leads to a very natural discretization of the
velocity divergence operator on the main grid. On the contrary, the use of
a collocated grid needs some interpolations of the velocities at the boundary
interface, see e.g. [120]. The use of staggered grids in the context of high order
DG schemes is novel and still quite rare.
Very recently, a new class of spatially arbitrary high order accurate semi-
implicit DG schemes has been introduced in [70] using staggered grids. The use
of a staggered mesh significantly improves the sparsity pattern of the resulting
linear algebraic system to be solved. While the method introduced in [70] leads
to a simple block penta-diagonal system on a Cartesian grid in two space di-
mensions thanks to the use of mesh staggering, the semi-implicit collocated grid
approach presented in [151] requires the solution of a block 13-diagonal system
on 2D Cartesian meshes. Both approaches [70] and [151] have in common that
at the end a linear equation system is solved only for one scalar quantity of
the PDE (e.g. the water depth, or the fluid pressure), while in [63, 64, 65] a
coupled system for all unknown state variables of the PDE must be solved. To
the knowledge of the author, the first staggered DG schemes have been recently
proposed in [117, 117], [51, 52, 49, 50] and [70]. While the methods [117, 118]
use a vertex-based staggering of the mesh, the schemes [51, 52, 49, 50] and [70]
apply an edge-based grid staggering.
In this PhD thesis we want to extend the idea of staggered semi-implicit meth-
ods to high order DG schemes for the shallow water and the incompressible
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1 Introduction

Navier-Stokes equations in order to achieve, from one side, high resolution and
grid generality typical of the finite element community and, from the other
side, well conditioned and very sparse linear systems known from the finite
difference community.

1.1 Incompressible Navier-Stokes equations

The Navier-Stokes equations are the fundamental governing PDE system in the
context of fluid dynamics. In general we can describe compressible and incom-
pressible fluids and we have in both cases to satisfy a momentum conservation,
as well as a mass conservation law. The mass continuity equation is in general
given in the form

∂ρ

∂t
+∇ · (ρ~v) = 0,

where ρ is the fluid density and ~v = (u, v, w) represents the velocity vector field.
For the case of incompressible fluids where ρ = constant, the previous relation
becomes consistent with a divergence-free condition for the fluid velocity

∇ · ~v = 0.

In addition, the momentum equation, that reads for the incompressible case
such as

∂~v

∂t
+ (~v · ∇)~v +∇p = ν∆~v,

which contains a nonlinear convective term, a parabolic contribution in the
general case of ν > 0 and a pressure contribution. Here p = P/ρ is the
normalized pressure and ν = µ/ρ represents the kinematic viscosity coefficient.
Applying the divergence operator to the momentum equation we get

∇ ·
[
∂~v

∂t
+ (~v · ∇)~v

]
+∇ · ∇p = ν∇ ·∆~v,

∂

∂t
(∇ · ~v) +∇ · [(~v · ∇)~v] + ∆p = ν∇ ·∆~v.

Using ∆~v = ∇(∇ · ~v) − ∇ × ∇ × ~v, the properties of the divergence operator
and the divergence free condition ∇ · ~v = 0, we derive the continuous pressure
Poisson equation

∆p = −∇ · (~v · ∇)~v. (1.1)
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1.2 Shallow Water equations

The main difficulty in the numerical solution of the incompressible Navier-
Stokes equations lies in this pressure Poisson equation and the associated linear
equation system to be solved on the discrete level that is obtained by substitu-
tion of the velocity field given by the momentum equation into the continuity
equation. This is closely related to the elliptic nature of these equations, where
boundary conditions affect instantly the solution everywhere inside the domain.
While finite difference schemes for the incompressible Navier-Stokes equations
are well-established for several decades [95, 126, 125, 152], as well as continuous
finite element methods [146, 22, 107, 84, 153, 101, 102], the development of high
order discontinuous Galerkin (DG) finite element methods for the incompress-
ible Navier-Stokes equations is still a very active topic of ongoing research.
Several high order DG methods for the incompressible Navier-Stokes equations
have been recently presented in literature, see for example [9, 140, 83, 122, 135,
136, 62, 111], or the work of Bassi et al. [7] based on the technique of artificial
compressibility, originally introduced by Chorin in [47, 48].
In this thesis we present a new family of arbitrary high order semi-implicit
space-time DG schemes for the solution of the incompressible Navier-Stokes
equations on staggered unstructured curved meshes in two and three space
dimensions, following the philosophy of semi-implicit staggered finite difference
schemes, which have been successfully used in the past for the solution of the
incompressible Navier-Stokes equations [95, 126, 125, 152] and the free surface
shallow water and Navier-Stokes equations, see [103, 36, 37, 40, 154, 33].

1.2 Shallow Water equations

The two-dimensional shallow water equations can be derived from the mass con-
servation law and the conservation of momentum and can be obtained depth-
averaging of the three-dimensional incompressible Navier-Stokes equations with
moving free surface. As a consequence, it can be applied to problems where
the vertical dynamics can be neglected compared with the one in the x − y
plane, such as tidal waves or the propagation of tsunami waves in the ocean,
or the flooding occurring during a storm surge and in river basins. The
incompressible Navier-Stokes equations in the presence of gravity are given by

∇ · ~v = 0
∂~v

∂t
+ (~v · ∇)~v +∇p = ν∆~v + f

where f = (0, 0,−g)> and g is the gravity constant. Assuming that the free
surface and the bottom profile can be expressed as a single valued function (i.e.

5



1 Introduction

z = η(x, y, t) and z = −b(x, y)), we derive the following equations:

ηt + usηx + vsηy = ws, (1.2)

usbx + vsby + ws = 0, (1.3)

where (us, vs, ws) = ~vs = ~v(x, y, η, t) and (ub, vb, wb) = ~vb = ~v(x, y,−b, t)
represent respectively the velocity field computed at the free surface and at
the bottom; b = b(x, y) is the water depth measured from undisturbed water
surface. The first condition (1.2) is also known as the kinetic condition of the
free surface while the second one (1.3) states that no water passes through the
bottom. Integration of the continuity equation from the bottom −b to the free
surface η and the use of conditions (1.2)-(1.3) lead to the following equation:

ηt +

 η∫
−b

udz


x

+

 η∫
−b

vdz


y

= 0. (1.4)

Assuming that the vertical dynamics can be neglected compared with the one
in the x−y plane we can derive that pz = −g and hence the following expression
for the hydrostatic pressure:

p(x, y, z, t) = pa(x, y, t) + g(η(x, y, t)− z). (1.5)

Here pa represents the atmospheric pressure that is assumed constant, so that
px = gηx and py = gηy can be substituted in the momentum equation. We
finally derive the frictionless 2D vertically averaged model by setting ν = 0;
defining the averaged velocities ū(x, y, t) = 1

H

∫ η
−b udz, v̄(x, y, t) = 1

H

∫ η
−b vdz

where H(x, y, t) = b(x, y) + η(x, y, t) is the total water depth; vertical integrat-
ing the momentum equation for u and v; and using standard approximations
of the vertical velocities with their vertically average. We obtain

(Hū)t + (Hūū)x + (Hūv̄)y = −gHηx,
(Hv̄)t + (Hv̄ū)x + (Hv̄v̄)y = −gHηy,

from the momentum equation and

ηt + (Hū)x + (Hv̄)y = 0 (1.6)

from the free surface equation. In the two dimensional context we further
identify u(x, y) = ū(x, y) and v(x, y) = v̄(x, y). The previous system is then

6



1.3 Organization of the present PhD thesis

written in terms of conserved quantities U = Hu, V = Hv and in compact
vectorial form as

∂

∂t
η +∇ · ~V = 0, (1.7)

∂

∂t
~V +∇ · F + gH∇η = 0, (1.8)

where

F =
1

H

(
UU UV

V U V V

)
,

and ~V = (U, V ) = (Hu,Hv).
The unstructured semi-implicit staggered DG scheme presented here for the
solution of the two-dimensional shallow water equations can be seen as a nat-
ural high order extension of the family of staggered semi-implicit finite volume
and finite difference schemes introduced by Casulli et al. in [32, 37, 154, 40, 20]
on Cartesian and orthogonal unstructured meshes using an edge-based grid
staggering, where the dual mesh is chosen like the dual grid used in [15, 150]
and [49]. These schemes have been recently extended to handle subgrid to-
pography features and to treat wetting and drying in a rigorous nonlinear and
mass conservative way, see [34, 39]. Extensions of these efficient semi-implicit
methods to the simulation of subsurface flow in porous media and to blood flow
in systems of compliant arteries have been presented in [43, 38, 81]. A rigorous
convergence analysis of these nonlinear algorithms was provided in the work of
Brugnano et al. [24, 25] and in [44]. A momentum conservative formulation of
these semi-implicit schemes, similar to the one used here, has been introduced
by Stelling et al. in [141, 114].

1.3 Organization of the present PhD thesis

The main achievements of the PhD research activity reported here are:

• the natural extension of the method introduced by M. Dumbser and V.
Casulli in [70] to unstructured staggered meshes where the complete ve-

locity field ~V = (U, V ) is defined on a single edge-based staggered dual
grid;

• the extension of the previous method to the two-dimensional incompress-
ible Navier-Stokes equations obtaining a semi-implicit method, of high
order of accuracy in space;

7



1 Introduction

• the generalization of the previous method to arbitrary high order in space
and time, using space-time polynomial test and basis functions and a sim-
ple Picard procedure, that leads to a novel space-time pressure correction
algorithm;

• the extension of the arbitrary high order accurate space-time DG scheme
on staggered grids to three-dimensional tetrahedral-hexahedral meshes.

In this last case two treatments can be implemented for the convective-viscous
contribution: the natural extension of the two dimensional method or a mean
velocity method following the idea used in [70]. Due to higher computational
performance, the latter methodology is preferable, but some comparisons and
discussions can be found in the work presented here.
The rest of the thesis is organized as follows. In Chapter 2 we derive and
test the method for the two-dimensional shallow water equations. In Chapter
3 we extend the method to the two-dimensional incompressible Navier-Stokes
equations introducing a novel family of arbitrary high order accurate staggered
space-time DG schemes. Indeed, a discussion about the special case of low order
in time, high order in space is given in Section 3.3. Chapter 4 contains results
and discussions about the fully three-dimensional incompressible Navier-Stokes
equations. In Chapter 5 there are some concluding remarks and a short outlook
to future work. Finally, the appendix contains several technical details, as well
as a discussion about the parallel implementation using MPI for staggered
grids.

8



2 Two-dimensional shallow water equations

2.1 Overview

In this chapter we will derive a high order semi-implicit DG method for the two
dimensional shallow water equations on staggered unstructured meshes. The
presented method can be seen as the natural extension of the one proposed
in [70] for 2D Cartesian grid to unstructured curved meshes. The chapter
is organized as follows: in Section 2.2 a high order staggered semi-implicit
discontinuous Galerkin scheme is derived for the 2D shallow water equations.
in Section 2.2.7 we extend the method also to curved isoparametric elements
and finally, in Section 2.3, the method is validated against exact and numerical
reference solutions.

2.1.1 Governing equations

The frictionless two dimensional shallow water equations, written in terms of
conserved quantities, are given by

∂

∂t
η +∇ · ~V = 0, (2.1)

∂

∂t
~V +∇ · F + gH∇η = 0, (2.2)

where η = η(x, y, t) indicates the free surface elevation; H = H(x, y, t) is
the total water height, defined as H(x, y, t) = η(x, y, t) + b(x, y) where b is a

specified bottom profile; ~V = (U, V ) is the depth-averaged momentum vector
with U = Hu and V = Hv; u and v are the velocity components respectively
in the x and y directions; and ~v = (u, v) denotes the velocity vector; g = 9.81

is the gravity acceleration and F = F(~V ,H) is the flux tensor of the nonlinear
convective terms, namely:

F =
1

H

(
UU UV

V U V V

)
.

We further use the abbreviation L(~V ) = ∂
∂t
~V +∇ · F.
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2 Two-dimensional shallow water equations

2.2 DG scheme for the 2D shallow water equations

2.2.1 Unstructured grid

Let Ω ⊂ R2 denote the computational domain, which is covered with a set of
non-overlapping triangles T i with i = 1 . . . Ne, defined on a set of nodes ℵ(Ω).
By denoting with Nd the total number of edges, the j−th edge will be called
Γj . We will indicate with B(Ω) the set of indexes corresponding to boundary
edges (i.e. B(Ω) := {j ∈ [1, Nd] | Γj is a boundary edge}). Every triangle T i
has exactly three edges indexed by Si = {j ∈ [1, Nd] | Γj is an edge of T i}.
For every j ∈ [1 . . . Nd]−B(Ω) there exist two triangles i1 and i2 that share Γj .
It is possible to assign arbitrarily a left and a right triangle called `(j) and r(j),
respectively. The standard positive direction is assumed to be from the left to
the right. Let ~nj denote the standard normal vector defined on the edge j and
oriented with respect to the standard direction. For every triangular element
i and edge j ∈ Si, the triangle T i could be the right or the left element with
respect to j; ℘(i, j) will denote the neighbor triangular element of T i on the
common edge Γj .

For every j ∈ [1, Nd]−B(Ω) the quadrilateral element associated to j is called
Rj and it is defined by the two centers of gravity of `(j) and r(j) and the
two terminal nodes of Γj , see also [15, 150]. The intersection element Rj ∩ T i
for every i, j ∈ Si, is a non-empty element indicated with T i,j (see Figure
2.1). The mesh of triangular elements {T i}i∈[1,Ne] will be called main grid or
primary grid and the quadrilateral grid {Rj}j∈[1,Nd] will be called dual grid.
On the dual grid we define the same quantities as for the main grid, briefly:
Nl is the total amount of edges of Rj ; Γl indicates the l-th edge; ∀j, the set
of edges l of j is indicated with Sj ; ∀l, `jl(l) and rjl(l) are the left and the
right quadrilateral element, respectively; ∀l, ~nl is the standard normal vector
defined on l and assumed positive with respect to the standard orientation
on l (defined, as above, from the left to the right). Finally, each triangle T i
is defined starting from an arbitrary node and oriented in counter-clockwise
direction. Similarly, each quadrilateral element Rj is defined starting from
`(j) and oriented in counter-clockwise direction.

2.2.2 Basis functions

We now want to construct a polynomial basis for polynomials of degree p on
the standard reference elements needed for our staggered grid algorithm. In the
one dimensional case this could be efficiently done using the Lagrange inter-
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2.2 DG scheme for the 2D shallow water equations

i

i1

i2

i3

j1

j2

j3

n1

n2

n3

T i

Rj1

Γj1

T i,j3

Figure 2.1: Example of a triangular mesh element with its three neighbors and
the associated staggered edge-based dual control volumes, together
with the notation used throughout the chapter.

polation polynomials passing through the Gauss-Legendre quadrature points
[142], which was the nodal basis used in [70]. In this thesis we will define
the polynomial basis on the primary triangular grid using the standard nodal
approach of conforming continuous finite elements.

The standard (or reference) triangle is defined as Tstd = {(ξ, γ) ∈ R2,+ | γ ≤
1 − ξ} while the standard (or reference) square is defined as Rstd = {(ξ, γ) ∈
R2,+ | ξ ≤ 1, γ ≤ 1}. On Tstd the nodes associated with the basis functions
are defined as

~ξk = (ξk1 , γk2) =

(
k1

p
,
k2

p

)
, (2.3)

with the multi-index k = (k1, k2) and the index ranges 0 ≤ k1 ≤ p and 0 ≤

11



2 Two-dimensional shallow water equations

k2 ≤ p − k1. We can construct the standard nodal basis for Tstd by imposing
the classical Lagrange interpolation condition

φk(~ξl) = δkl, (2.4)

between the k-th basis function φk = φk(~ξl) and the l-th nodal point ~ξl in the

reference triangle. In this way Nφ = (p+1)(p+2)
2

basis functions {φk}k∈[1,Nφ]

are obtained. In (2.4) δkl denotes the classical Kronecker symbol. Similarly,
we obtain another set of nodal basis functions on the unit square Rstd that will
be indicated with {ψl}l∈[1,Nψ ] where Nψ = (p + 1)2. On Rstd the nodes are
given by the tensor products of p+1 one-dimensional Newton-Cotes quadrature
points, see [142], hence by the same formula (2.3), but with the index ranges
0 ≤ k1 ≤ p and 0 ≤ k2 ≤ p. In [70] tensor-products of one-dimensional Gauss-
Legendre quadrature points have been used on quadrilaterals. More details on
nodal DG finite element methods on collocated grids can be found for example
in [90, 99, 112, 113, 87, 100].

2.2.3 Semi-Implicit DG scheme

We define the spaces of piecewise polynomials used on the main and the dual
grid as follows:

V mh = {φ : φ|T i ∈ P
p(T i),∀i ∈ [1, Ne]},

V dh = {ψ : ψ|Rj
∈ Qp(Rj),∀j ∈ [1, Nd]− B(Ω)}, (2.5)

where Pp(T i) is the space of polynomials of degree at most p on T i, while
Qp(Rj) is the space of tensor products of one-dimensional polynomials of degree
at most p on Rj .
We define the discrete free surface elevation ηh(x, y, t) on the main grid, namely
ηh ∈ V mh and so ηh(x, y, t)|T i = ηi(x, y, t). The discrete total height Hh and

the momentum vector field ~Vh are defined on the dual grid (i.e. Hh, ~Vh ∈ V dh ),

so that Hh(x, y, t)|Rj
= Hj(x, y, t) and ~Vh(x, y, t)|Rj

= ~Vj(x, y, t) .

The numerical solution of (2.1)-(2.2) is represented by piecewise polynomials
as:

ηi(x, y, t) =

Nφ∑
l=1

φl(x, y)η̂l,i(t) =: φ(x, y)η̂i(t), (2.6)

Hj(x, y, t) =

Nψ∑
l=1

ψl(x, y)Ĥl,j(t) =: ψ(x, y)Ĥj(t), (2.7)
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2.2 DG scheme for the 2D shallow water equations

~Vj(x, y, t) =

Nψ∑
l=1

ψl(x, y) ~̂Vl,j(t) =: ψ(x, y) ~̂V j(t), (2.8)

where the vector of basis functions φ(x, y) is generated from φ(ξ, γ) on Tstd,
while ψ(x, y) is generated from the set of basis functions ψ(ξ, γ) on Rstd.

`(j)

r(j)

j

pr(j)p`(j)

i

T i,j1
T i,j2

T i,j3

Figure 2.2: Jumps of η on the main grid (top) and of ~V on the dual grid (bot-
tom) highlighted by the bold red lines.

Multiplying Eq. (2.1) by φ and integrating over a control volume T i one gets,
for every k = 1 . . . Nφ

∫
T i

φk
∂η

∂t
dx +

∫
T i

φk∇ · ~V dx = 0. (2.9)

Similarly, multiplication of the momentum equation (2.2) by ψ and integrating

13



2 Two-dimensional shallow water equations

over a control volume Rj one obtains, componentwise,

∫
Rj

ψk

(
∂~V

∂t
+∇ · F

)
dx + g

∫
Rj

ψkH∇η dx = 0, (2.10)

for every j = 1 . . . Nd and k = 1 . . . Nψ. Using integration by parts Eq. (2.9)
yields ∫

T i

φk
∂η

∂t
dx +

∮
∂T i

φk~V · ~ni ds−
∫
T i

∇φk · ~V dx = 0, (2.11)

where ~ni indicates the outward pointing unit normal vector. The discrete
free surface elevation ηi is defined on the triangles and, in general, presents
a discontinuity on Γj . It is useful to specify that every polynomial φ(x, y) =
φ(i)(x, y) depends on the control volume and ψ(x, y) = ψ(j)(x, y). Also the

discrete total height Hj and the velocity field ~Vj jump on the edges of Rj (see
Figure 2.2). So equations (2.10) and (2.11) have to be split, unambiguously, as

∫
T i

φ
(i)
k

∂ηi
∂t

dx +
∑
j∈Si

∫
Γj

φ
(i)
k
~Vj · ~nij ds−

∫
T i,j

∇φ(i)
k · ~Vj dx

 = 0, (2.12)

and

∫
Rj

ψ
(j)
k

(
∂ ~Vj
∂t

+∇ · Fj

)
dx

+g

∫
T `(j),j

ψ
(j)
k Hj∇η`(j)dx + g

∫
T r(j),j

ψ
(j)
k Hj∇ηr(j) dx

+g

∫
Γj

ψ
(j)
k Hj

(
ηr(j) − η`(j)

)
~nj ds = 0, (2.13)

where ~nij = ~ni|Γj . Using the ansatz (2.6), (2.7) and (2.8) we can split the
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2.2 DG scheme for the 2D shallow water equations

above equations in terms of spatial and temporal variables, namely∫
T i

φ
(i)
k φ

(i)
l dx

∂

∂t
η̂l,i

+
∑
j∈Si

∫
Γj

φ
(i)
k ψ

(j)
l ~nijds

~̂
Vl,j −

∫
T i,j

∇φ(i)
k ψ

(j)
l dx

~̂
Vl,j

 = 0, (2.14)

and, equally∫
Rj

ψ
(j)
k ψ

(j)
l dxLh

(
~̂
Vl,j
)

+ g

∫
T `(j),j

ψ
(j)
k ψ(j)

m ∇φ
(`(j))
l dx Ĥm,j η̂l,`(j)

+g

∫
T r(j),j

ψ
(j)
k ψ(j)

m ∇φ
(r(j))
l dx Ĥm,j η̂l,r(j)

+g

∫
Γj

ψ
(j)
k ψ(j)

m φ
(r(j))
l ~njds Ĥm,j η̂l,r(j)

−g
∫
Γj

ψ
(j)
k ψ(j)

m φ
(`(j))
l ~njds Ĥm,j η̂l,`(j) = 0,

(2.15)

where we have used the standard Einstein summation convention for the re-
peated indices l and m. Lh is an appropriate discretization of the operator L
and will be given later. For every i and j, Eqs. (2.14)-(2.15) are conveniently
written in a compact matrix form as

Mφ
i

∂

∂t
η̂i +

∑
j∈Si

Di,j
~̂V j = 0, (2.16)

Mψ
j Lh

(
~̂V j

)
+ g

(
RjĤj η̂r(j) −LjĤj η̂`(j)

)
= 0, (2.17)

where:

Mφ
i =

∫
T i

φ
(i)
k φ

(i)
l dx, (2.18)
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2 Two-dimensional shallow water equations

Mψ
j =

∫
Rj

ψ
(j)
k ψ

(j)
l dx, (2.19)

Di,j =

∫
Γj

φ
(i)
k ψ

(j)
l ~nijds−

∫
T i,j

∇φ(i)
k ψ

(j)
l dx, (2.20)

Rj =

∫
T r(j),j

ψ
(j)
k ψ(j)

m ∇φ
(r(j))
l dx +

∫
Γj

ψ
(j)
k ψ(j)

m φ
(r(j))
l ~njds, (2.21)

Lj =

∫
Γj

ψ
(j)
k ψ(j)

m φ
(`(j))
l ~njds−

∫
T `(j),j

ψ
(j)
k ψ(j)

m ∇φ
(`(j))
l dx. (2.22)

The notation for the vector, matrix and tensor multiplications used here be-
comes clear from (2.14)-(2.15) and follows the one introduced in [70].
Note that the tensors L and R represent the left and the right contribution to
the velocity field, respectively. The similar form of these two tensors suggests
to introduce a new operator that generalizes L and R and, at the same time,
also facilitates the notation. Let i ∈ [1, Ne] and j ∈ Si, the new tensor Qi,j is
defined as

Qi,j =

∫
T i,j

ψ
(j)
k ψ(j)

m ∇φ
(i)
l dx−

∫
Γj

ψ
(j)
k ψ(j)

m φ
(i)
l σi,j~njds, (2.23)

where σi,j is a sign function defined by

σi,j =
r(j)− 2i+ `(j)

r(j)− `(j) . (2.24)

In this way Q`(j),j = −Lj and Qr(j),j = Rj , and then Eq. (2.17) becomes in
terms of Q

Mψ
j Lh

(
~̂V j

)
+ g

(
Qr(j),jĤj η̂r(j) + Q`(j),jĤj η̂`(j)

)
= 0. (2.25)

Furthermore, Eq. (2.25) can also be equivalently rewritten for every i and
j ∈ Si, by using the contribution from element i and the neighbor element
through the edge j as follows:

Mψ
j Lh

(
~̂V j

)
+ g

(
Qi,jĤj η̂i + Q℘(i,j),jĤj η̂℘(i,j)

)
= 0. (2.26)
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2.2 DG scheme for the 2D shallow water equations

We discretize the velocity field in Eq. (2.16) semi-implicitly by using the theta
method. Also the free surface elevation in equation (2.17) is discretized semi-
implicitly. Finally, in order to avoid the nonlinearity, we discretize the total
height explicitly. The summary of the numerical discretization is shown in Eq.
(2.27) below:

Mφ
i
∂
∂t
η̂i +

∑
j∈Si

Di,j
~̂V
n+θ

j = 0,

Mψ
j Lh

(
~̂V j

)
+ g

(
Qr(j),jĤ

n
j η̂

n+θ
r(j) + Q`(j),jĤ

n
j η̂

n+θ
`(j)

)
= 0,

(2.27)

where η̂n+θ = θη̂n+1 + (1 − θ)η̂n; ~̂V
n+θ

= θ ~̂V
n+1

+ (1 − θ) ~̂V
n

; and θ is an
implicitness factor to be taken in the range θ ∈ [ 1

2
, 1], see e.g. [36]. Discretizing

Eqs. (2.27) as described above and using the notation of Eq. (2.26), we get for
every i and j ∈ Si

Mφ
i

η̂n+1
i − η̂ni

∆t
+ θ

∑
j∈Si

Di,j
~̂V
n+1

j + (1− θ)
∑
j∈Si

Di,j
~̂V
n

j = 0, (2.28)

Mψ
j

~̂V
n+1

j − F̂~v
n

j

∆t
+ gθ

(
Qi,jĤ

n
j η̂

n+1
i + Q℘(i,j),jĤ

n
j η̂

n+1
℘(i,j)

)
+g(1− θ)

(
Qi,jĤ

n
j η̂

n
i + Q℘(i,j),jĤ

n
j η̂

n
℘(i,j)

)
= 0, (2.29)

where F̂~v
n

j is an appropriate explicit discretization of the nonlinear convective
terms. In this thesis we use a classical explicit RK DG method based on the
Rusanov flux and a third order TVD Runge-Kutta scheme in time to compute

the F̂~v
n

j . The details will be presented later in Section 2.2.4. Formal substi-
tution of the momentum equation (2.29) into the free surface equation (2.28),
see also [32, 37, 70], yieldsMφ

i − gθ
2∆t2

∑
j∈Si

Di,j

(
Mψ

j

)−1

Qi,jĤ
n
j

 η̂n+1
i

−gθ2∆t2
∑
j∈Si

Di,j

(
Mψ

j

)−1

Q℘(i,j),jĤ
n
j η̂

n+1
℘(i,j) = bni , (2.30)
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2 Two-dimensional shallow water equations

where

bni = Mφ
i η̂

n
i − θ∆t

∑
j∈Si

Di,jF̂~v
n

j − (1− θ)∆t
∑
j∈Si

Di,j
~̂V
n

j

+gθ(1− θ)∆t2
∑
j∈Si

Di,j

(
Mψ

j

)−1 (
Qi,jĤ

n
j η̂

n
i + Q℘(i,j),jĤ

n
j η̂

n
℘(i,j)

)
(2.31)

groups all the known terms at time tn. One can recognize in Eq. (2.30) a
block four-point system for the new free surface elevation η̂n+1

i that can be
efficiently solved by using the GMRES algorithm [138]. Once the new free
surface elevation has been computed, the new velocity field can be readily
updated from Eq. (2.29) and the new free surface elevation as:

~̂V
n+1

j = F̂~v
n

j − gθ∆t
(
Mψ

j

)−1 (
Qi,jĤ

n
j η̂

n+1
i + Q℘(i,j),jĤ

n
j η̂

n+1
℘(i,j)

)
−g(1− θ)∆t

(
Mψ

j

)−1 (
Qi,jĤ

n
j η̂

n
i + Q℘(i,j),jĤ

n
j η̂

n
℘(i,j)

)
.

(2.32)

As implied by Eq. (2.30), the stencil of the present scheme only involves the
i−th element and its direct neighbors. Thus, since #Si = 3, the system de-
scribed by (2.30) is a block four-point one. The total height Ĥn

j can be com-
puted as the projection of the free surface elevation on the dual grid {Rj}j and
then adding the projection of the bottom profile:

Ĥn
j =

(
Mψ

j

)−1

P`(j),j η̂
n
`(j) + Pr(j),j η̂

n
r(j) +

∫
Rj

ψkb(x, y)dx

 , (2.33)

where P is an Nψ ×Nφ matrix defined by

Pi,j =

∫
T i,j

ψ
(j)
k φ

(i)
l dx. (2.34)

Note that the free surface is defined on the primary cells T i, hence for p = 0 the
computation of Ĥn

j on the dual edge-based grid, according to Eq. (2.33) cor-
responds to the use of a path-conservative method, where the non-conservative
product is defined using a straight-line segment path, see [27, 124, 29, 119,
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2.2 DG scheme for the 2D shallow water equations

28, 121, 29, 30, 69, 73] for details on high order accurate path-conservative
finite volume schemes on collocated grids. A centered path-conservative fi-
nite volume scheme on staggered grids can be found in [30]. An additional
numerical flux can be added in Eq. (2.30) in order to introduce some nu-

merical diffusion. In this case the momentum vector ~Vj in Eq. (2.12) has

to be replaced by ~̃Vj = ~Vj − 1
2
λmax,j

(
η℘(i,j) − ηi

)
for every i, j ∈ Si, where

λmax,j = max(
√
gH+|~v|) is the maximum signal speed on Γj . This corresponds

to the use of a Rusanov-type flux in the mass conservation equation.
An important remark is that all the matrices and tensors used above can be
precomputed once and forall for every mesh and polynomial degree p. Note
that the method is locally and globally mass-conservative for every p since, by
taking a constant test function, Eq. (2.14) reduces to a flux form.

2.2.4 Nonlinear convection

In problems where the convective term can be neglected we can take F̂~v
n

j = ~̂V
n

j

in Eq. (2.31). Otherwise, an explicit cell-centered RKDG method on the dual
mesh is used in this chapter for the discretization of the nonlinear convective
terms.
The semi-discrete DG scheme for the convective terms on the dual mesh reads

d

dt
~̂V j = −

(
Mψ

j

)−1

 ∫
∂Rj

ψkFh · ~nds−
∫
Rj

∇ψk · Fdx

 , (2.35)

and the Rusanov flux (see e.g. [137] and [147]) is given by

Fh · ~n =
1

2

(
F+ + F−

)
· ~n− 1

2
smax

(
~V + − ~V −

)
. (2.36)

Here, the maximum signal speed smax = 2 max(|~v− ·~n|, |~v+ ·~n|) is given by the
maximum eigenvalue of the Jacobian matrix of the purely convective transport
operator F in normal direction, see [70]. Furthermore the F+ and F− as well

as the ~V + and ~V − denote the momentum fluxes and the momentum vectors
extrapolated to the boundary of Rj from within the element Rj and from the
neighbor element, respectively. A classical TVD Runge-Kutta method is used
for time integration, see e.g. [57]. The use of a high order Runge-Kutta time
discretization scheme is necessary, since the explicit first order Euler method
used in combination with a better than first order DG scheme in space would
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2 Two-dimensional shallow water equations

lead to a linearly unstable scheme. The above method requires that the time
step size is restricted by a CFL-type restriction for DG schemes. This condition
could be rather severe where both fine grids and high order polynomials are
used. However, it is based on the local convective speed |~v| rather than on
the wave speed

√
gH. Furthermore, the time step of the global semi-implicit

scheme is not affected by the local time step used for the time integration of the
convective terms if a local time stepping / subcycling approach is employed,
see [42, 145].

2.2.5 Integration

To close the problem it remains to compute the matrices and tensors Mφ,
Mψ, D and Q. For every triangulation {T i}i and polynomial degree p, we
are interested in an explicit formulation for the matrices. In order to do this,
it is convenient to introduce some classical transformation operators that map
the physical control volumes into the reference control volumes, where the
basis functions are defined, and vice versa. In this section, we first illustrate
the procedure using a subparametric approach for the sake of simplicity and
will later extend it to the generalized isoparametric case in Section 2.2.7.
Let T i be the i-th triangle, and let (Xi

k, Y
i
k ) denote the k−th vertex of the

triangle T i, then the subparametric transformation from the reference space
(ξ, γ) to the physical space (x, y) is the linear transformation T−1

i : Tstd −→ T i
defined by the action

(ξ, γ)
T−1
i−→


x =

3∑
k=1

N T
k (ξ, γ)Xi

k = Xi
1 + ξ(Xi

2 −Xi
1) + γ(Xi

3 −Xi
1),

y =
3∑
k=1

N T
k (ξ, γ)Y ik = Y i1 + ξ(Y i2 − Y i1 ) + γ(Y i3 − Y i1 ),

(2.37)
where the functions N T

1 (ξ, γ) = 1− ξ − γ, N T
2 (ξ, γ) = ξ and N T

3 (ξ, γ) = γ are
the linear shape functions associated with the vertices of the standard reference
triangle. One can easily see that

J(T−1
i ) =

(
Xi

2 −Xi
1 Xi

3 −Xi
1

Y i2 − Y i1 Y i3 − Y i1

)
,

|J(T−1
i )| = (Xi

2 −Xi
1)(Y i3 − Y i1 ) + (Xi

3 −Xi
1)(Y i2 − Y i1 ), (2.38)

where J and |J | are the Jacobian matrix of the mapping and its determinant,
respectively. In this simple case it is possible to construct by hand also the
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2.2 DG scheme for the 2D shallow water equations

inverse transformation Ti : T i −→ Tstd as

Ti : (x, y) −→

 ξ =
x(Y i3−Y

i
1 )−y(Xi3−X

i
1)+Y i1X

i
3−X

i
1Y

i
3

|J(T−1
i )|

γ =
y(Xi2−X

i
1)−x(Y i2−Y

i
1 )+Xi1Y

i
2−Y

i
1X

i
2

|J(T−1
i )|

 . (2.39)

In a similar way, we construct the subparametric transformation on a quadri-
lateral element Rj . The transformation T−1

j : Rstd −→ Rj is defined by

x =

4∑
k=1

NR
k (ξ, γ)Xj

k =Xj
1 +(Xj

2 −X
j
1)ξ +(Xj

4 −X
j
1)γ

+(Xj
1 −X

j
2 +Xj

3 −X
j
4)ξγ,

y =

4∑
k=1

NR
k (ξ, γ)Y jk = Y j1 + (Y j2 − Y

j
1 )ξ + (Y j4 − Y

j
1 )γ

+(Y j1 − Y
j
2 + Y j3 − Y

j
4 )ξγ, (2.40)

with the bilinear shape functions NR
1 (ξ, γ) = (1−ξ)(1−γ), NR

2 (ξ, γ) = ξ(1−γ),
NR

3 (ξ, γ) = ξγ andNR
4 (ξ, γ) = (1−ξ)γ associated with the unit square. For the

direct transformation from the physical to the reference space Tj : Rj −→ Rstd
we use the Newton algorithm.

We now need to compute the matrices defined in (2.18), (2.19), (2.20) and
(2.23). For this purpose we change variables in the integrals using the maps
defined above. The mass matrices simply become for every i and j,

Mφ
i (k, l) =

∫
Tstd

φk(ξ, γ)φl(ξ, γ)|J(T−1
i )|dξdγ, (2.41)

and

Mψ
j (k, l) =

∫
Rstd

ψk(ξ, γ)ψl(ξ, γ)|J(T−1
j )|dξdγ. (2.42)

Integrals (2.41) and (2.42) can be efficiently computed using an appropriate
multidimensional Gaussian quadrature rule, see [142]. For the other matrices,
where the two maps on triangular and quadrilateral elements interact in the
same integral, the transformation has to be specified explicitly. In particular,
we are interested in computing Di,j . For this purpose we split Di,j into two
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2 Two-dimensional shallow water equations

parts, the volume and the edge contribution, such as in Eq. (2.20). For the
volume contribution, we have the following possibility to map the triangle T i,j :

T i,j
Tj−→ Rstd|Tj(T i,j)

↓ Ti
. . . ↓

Tstd|Ti(T i,j) −→ Tstd

(2.43)

The correct way to compute the integral is taking the direct transformation

T i,j
Tij−→ Tstd. The quadrature rule is taken on Tstd and then the value of

the functions are computed in the right space using the maps Tj · T−1
ij for

the functions generated by ψ and Ti · T−1
ij for the functions generated by φ,

respectively (see Figure 2.3). The line integral in the matrix Di,j is computed

using the direct transformation Γj
Tlin−→ [0, 1]. Since Qi,j is defined on the dual

grid, we have to pass though the map Tj and then use a quadrature rule on the
triangular element Tj(T i,j), the correct way to compute the previous integral

is taking the transformation T i,j
Tj−→ Rstd|Tj(T i,j)

Ttri−→ Tstd. In particular the

quadrature rule is taken on Tstd and then the value of the functions can be
evaluated in the right space (see Figure 2.4). Also in this case the line integral
is computed directly using the transformation Tlin.

2.2.6 Boundary conditions

Let us now consider the case in which we introduce some boundary conditions,
such as a prescribed velocity at the boundary. In alternative, one can also
prescribe the pressure (i.e. the free surface elevation) on the boundary, for
which the treatment is similar. In this chapter, we do not consider the case of
supercritical flow at the domain boundaries.

Observe how, for i ∈ [1, Ne] and j ∈ Si∩B(Ω), the boundary elementRj = T i,j
is a triangular element and not a quadrilateral element. The basis func-
tions to be used are the one generated on Tstd. In this way the matrices
Mψ

j ,Di,j ,Qi,j ,Pi,j defined in (2.19), (2.20), (2.23) and (2.34), have to be
modified for boundary elements.
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Ri

Rj

T ij

Tj

←−
−→

T−1
j

↑ TiT−1
i ↓

Tij

←−−→

T−1
ij

Tj(Rj)

Tj(T ij)

Ti(T i)

Ti(T ij)

Tij(T ij)

Γj
−→

Tj

↑ Ti

−→

T−1
lin

Ti(Γj)

Tj(Γj)

n1

n2

n3

i

℘(i, j)

0 1

Figure 2.3: Volume (top) and line (bottom) integration paths for Di,j .
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T i

Rj

T ij

Tj

−→←−

T−1
j

↑ TiT−1
i ↓

Tj(Rj)

Tj(T ij)

Ti(T i)

Ti(T ij)

Ttri(Tij(T ij))

↑ TtriT−1
tri ↓

Figure 2.4: Integration for Qi,j , the quadrature points (red) are transformed
using the subparametric maps T·
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2.2 DG scheme for the 2D shallow water equations

For every j ∈ Si ∩ B(Ω)

Hj =

Nφ∑
l=1

φlĤl,j ,

~Vj =

Nφ∑
l=1

φl ~̂Vl,j , (2.44)

where the φl are the basis functions generated from the reference triangle
Tstd. The matrices can be recomputed for j ∈ Si ∩ B(Ω) and will be called
D∂
i,j ,Q∂

i,j ,P∂
i,j .

We are interested in solving a problem with a given momentum flux through
the boundary of Ω, i.e. ~V |∂Ω = ~V b. We rewrite the velocity contribution in
Eq. (2.16), splitting the volume and the edge contributions as:

D∂
i,j
~̂V j = D∂,L

i,j
~̂V j −D∂,V

i,j
~̂V j

=


∫
Γj

φ
∂,(i)
k

~V bds


k

−D∂,V
i,j
~̂V j

:= (P~v) bj −D∂,V
i,j
~̂V j , (2.45)

where (P~v) bj is a known quantity defined from the above equation; D∂,L
i,j and

D∂,V
i,j are the volume and the edge contribution, respectively. In addition, if

we do not introduce any jump contribution from the free surface elevation on
Γj , j ∈ B(Ω), then the edge contribution of Q∂

i,j can be neglected and so

Q∂
i,j = Q∂,V

i,j . The resulting semi-implicit numerical scheme (2.32)-(2.30) is

~̂V
n+1

j = F̂~v
n

j − g∆t
(
Mψ

j

)−1

Q∂,V
i,j Ĥ

n
j η̂

n+θ
i , j ∈ B(Ω), (2.46)
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and Mφ
i − gθ

2∆t2
∑

j∈Si−B(Ω)

Di,j

(
Mψ

j

)−1

Qi,jĤ
n
j

+gθ2∆t2
∑

j∈Si∩B(Ω)

D∂,V
i,j

(
Mψ

j

)−1

Q∂,V
i,j Ĥ

n
j

 η̂n+1
i

−gθ2∆t2
∑

j∈Si−B(Ω)

Di,j

(
Mψ

j

)−1

Q℘(i,j),jĤ
n
j η̂

n+1
℘(i,j) = b̃ni , (2.47)

where now the vector of known terms is

b̃ni = Mφ
i η̂

n
i − θ∆t

∑
j∈Si−B(Ω)

Di,jF̂~v
n

j − (1− θ)∆t
∑

j∈Si−B(Ω)

Di,j
~̂V
n

j

+(1− θ)∆t
∑

j∈Si∩B(Ω)

D∂,V
i,j
~̂V
n

j + θ∆t
∑

j∈Si∩B(Ω)

D∂,V
i,j F̂~v

n

j

−∆t
∑

j∈Si∩B(Ω)

(P~v) bj + gθ(1− θ)∆t2
∑

j∈Si∩B(Ω)

D∂,V
i,j

(
Mψ

j

)−1

Q∂,V
i,j Ĥ

n
j η̂

n
i

+gθ(1− θ)∆t2
∑

j∈Si−B(Ω)

Di,j

(
Mψ

j

)−1 (
Qi,jĤ

n
j η̂

n
i + Q℘(i,j),jĤ

n
j η̂

n
℘(i,j)

)
.

(2.48)

The above numerical scheme allows to solve initial-boundary value problems
when the mass flux is prescribed on ∂Ω.
Finally, since the presented method is a discontinuous Galerkin scheme, hence
boundary conditions are only satisfied in a weak manner, it may happen that
if we specify the velocity vector field on the boundary this could not affect
the internal part of the boundary elements as desired. In order to overcome

this problem we can adjust the momentum vector on the boundary as ~̃V =
~V b + (~V b − ~V −), where ~V − is the boundary extrapolated momentum from
within the computational domain. In this way we add a penalty term that
forces also the interior of the element towards the prescribed boundary value.

2.2.7 Curved Elements

The scheme presented in Section 2.2.3 extends directly to a more general con-
text by the use of a complete isoparametric approach. For this purpose, the
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2.2 DG scheme for the 2D shallow water equations

shape functions N T
k and NR

k in equations (2.37) and (2.40) are simply replaced
by the usual nodal basis functions φk and ψk on the reference triangle and
on the reference square, respectively. The advantage of this approach in the
definition of the maps given in Section 2.2.5 is that the elements can be curved
and then the computational domain can be adapted to the physical one (see
Fig. 2.5). In the isoparametric approach, every element T i is characterized by

Figure 2.5: Subparametric approach (left) and Isoparametric approach (right)
for p = 2

Nφ nodes and similarly each Rj is characterized by Nψ points instead of 3 and
4, respectively. Formally, the only change is the definition of the maps, which
then become

x =

Nφ∑
k

φkX
i
k, y =

Nφ∑
k

φk Y
i
k , (2.49)

for triangles and

x =

Nψ∑
k

ψkX
j
k, y =

Nψ∑
k

ψk Y
j
k , (2.50)

for quadrilateral elements.

We then also need the Newton method for both direct maps Ti and Tj . Regard-
ing the adaptation of the elements, once the points on the edge of the elements
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2 Two-dimensional shallow water equations

have been moved according to the physical domain, we have to move in a con-
sistent way also the internal points. We recompute the position of the internal
points by solving the Laplace equation for the variations using a classical finite
element method for elliptic boundary value problems in two dimensions.

In addition, the normal vectors are no longer constant along the edges, but they
depend on the position. For curved elements, we can first find the tangential
vectors and then compute the normal vectors that have to be included into the
matrices due to the dependence on the position.

Remark that the isoparametric approach affects only the construction of the
matrices in the preprocessor stage and hence it does not affect the computa-
tional time for the simulation at run time.

2.3 Numerical tests

In this section, the accuracy and efficiency of the proposed algorithm is assessed
by comparing the numerical results against exact analytical solutions or other
reliable reference solutions.

2.3.1 Convergence test

In this test case we consider a smooth steady state problem to measure the
order of accuracy of the scheme (2.32) and (2.30). We take a flat bottom
(b ≡ 0) and a square domain Ω = [−8.0, 8.0]× [−8.0, 8.0]. As initial condition
we set

η(x, y, 0) = 1− 1

2g
e−(r2−1), (2.51)

and

u(x, y, 0) = −uα sin(α), v(x, y, 0) = uα cos(α), (2.52)

where uα(r, 0) = re−
1
2

(r2−1); tan(α) = y
x

; and r =
√
x2 + y2. The analytical

solution is an exact steady state solution, which is given by the exact bal-
ance between the centrifugal and the pressure force, as we can seen from the
momentum equation in the radial direction (see [20, 70]):

∂η

∂r
=
u2
α

gr
.

The problem is solved for successively refined meshes and increasing polynomial
degrees p = 0 . . . 6. The L2 error between the analytical and the numerical
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solution is computed as

ε(η) =

√√√√∫
Ω

(ηh − ηe)2dx,

for the free surface elevation and

ε(~v) =

√√√√∫
Ω

(~vh − ~ve)2dx,

for the velocity vector field. Here ηh is the numerical solution and ηe is the
exact analytical solution for the free surface given above; ~vh and ~ve are the
numerical and the exact solution for the velocity vector, respectively.
The time step is computed according to the CFL-type time step restriction
of RKDG schemes based on the maximum convective speed |~vmax| and the
smallest incircle diameter hmin in the computational domain as

∆t =
CFL

(2p+ 1)
· hmin

2|~vmax|
.

For the two-dimensional test problems in this chapter we always use CFL =
0.45 < 0.5, according to the stability limits of unsplit Godunov-type schemes
in multiple dimensions, as discussed in detail in [149]. The final simulation
time is set to tend = 0.1 and for this steady state problem we use θ = 1.
The results are summarized in Tab. 2.2, where also the CPU times for the
preprocessing part of the scheme and for the simulation are listed separately.
The computations are carried out on a single CPU core of an Intel Core 2 i7-
3770 CPU with 3.40Ghz clock speed and 22 GB of RAM. We can observe from
Tab. 2.2 that the order of accuracy of the method for high order polynomials
is of the order of p+ 1

2
for the free surface elevation and p for the velocity. The

new high order semi-implicit staggered DG method presented in this chapter is
furthermore compared with high order accurate cell-centered path-conservative
PNPM schemes on unstructured triangular meshes [68, 69, 75] for the smooth
vortex problem discussed in this section. The results of the comparison made
for third and sixth order schemes can be found in Table 2.3. Note that the
error norms of the semi-implicit DG schemes are comparable or even better
than the ones obtained with PNPM schemes, but the CPU times reported
for the semi-implicit staggered DG scheme are higher. This is due to two
reasons: first, the semi-implicit DG code has not been optimized concerning
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2 Two-dimensional shallow water equations

Table 2.1: Numerical convergence results for p = 0, 1, 2, 3. ”Pre.T” and
”Sim.T” indicate the wallclock time expressed in seconds that was
needed for the preprocessing stage and for the simulation, respec-
tively.

p Ne ε(η) ε(~v) σ(eta) σ(~v) Pre.T Sim.T

0 2048 1.2015E-02 0.1826 - - 0.0 0.2

0 8192 6.8991E-03 9.2810E-02 0.8 1.0 0.3 1.5

0 32768 3.7964E-03 4.6914E-02 0.9 1.0 1.5 11.8

0 131072 2.0167E-03 2.3654E-02 0.9 1.0 5.9 87.5

0 524288 1.0451E-03 1.1902E-02 0.9 1.0 22.8 719.7

1 1250 3.1775E-03 3.6781E-02 - - 0.2 0.7

1 5000 8.4026E-04 1.2463E-02 1.9 1.6 1.2 5.4

1 20000 2.2287E-04 4.5747E-03 1.9 1.4 4.5 38.45

1 45000 1.0489E-04 2.5070E-03 1.9 1.5 11.1 148.3

1 80000 6.1295E-05 1.6066E-03 1.9 1.5 17.7 299.8

2 1250 4.9209E-04 5.7017E-03 - - 2.9 2.6

2 5000 6.3462E-05 1.2992E-03 3.0 2.1 11.4 20.7

2 20000 9.2566E-06 2.7516E-04 2.8 2.2 45.3 155.7

2 45000 2.9821E-06 1.0646E-04 2.8 2.3 107.9 586.1

2 80000 1.3187E-06 5.3427E-05 2.8 2.4 182.6 1290.4

3 1250 6.2368E-05 8.8073E-04 - - 15.0 8.8

3 5000 5.2317E-06 1.0762E-04 3.6 3.0 60.3 70.2

3 20000 4.3497E-07 1.261E-05 3.6 3.1 243.6 546.2

3 45000 1.0028E-07 3.5606E-06 3.6 3.1 556.3 1841.4

3 80000 3.5759E-08 1.4248E-06 3.6 3.2 924.2 3887.0

speed, and second, the tolerance set for the GMRES algorithm used to solve the
linear algebraic system was set to machine precision (10−16), hence requiring
a significant number of iterations.
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Table 2.2: Numerical convergence results for p = 4, 5, 6. ”Pre.T” and ”Sim.T”
indicate the wallclock time expressed in seconds that was needed for
the preprocessing stage and for the simulation, respectively.

p Ne ε(η) ε(~v) σ(eta) σ(~v) Pre.T Sim.T

4 7200 1.3749E-07 3.4113E-06 - - 379.7 385.4

4 9800 6.7092E-08 1.8283E-06 4.7 4.0 504.3 608.7

4 12800 3.5231E-08 1.0667E-06 4.8 4.0 658.5 895.3

4 16200 2.0008E-08 6.6388E-07 4.8 4.0 841.6 1296.7

4 20000 1.2110E-08 4.3445E-07 4.8 4.0 1032.2 1770.2

5 200 1.6498E-04 1.3008E-03 - - 39.7 5.8

5 800 3.2247E-06 4.4656E-05 5.7 4.9 165.1 45.5

5 1800 3.4105E-07 6.2691E-06 5.5 4.8 373.2 156.9

5 3200 7.2570E-08 1.5150E-06 5.4 4.9 661.5 374.6

5 5000 2.1314E-08 5.0511E-07 5.5 4.9 1056.5 728.3

6 200 3.7045E-05 3.1150E-04 - - 132.9 15.9

6 800 4.6704E-07 6.9979E-06 6.3 5.5 549.1 124.2

6 1800 3.5657E-08 6.3733E-07 6.3 5.9 1283.3 433.2

6 3200 5.4729E-09 1.1672E-07 6.5 5.9 2320.7 1003.1

6 5000 1.2306E-09 3.1242E-08 6.7 5.9 3597.6 2149.8

2.3.2 Well-balancedness (C-property)

The spatially high order accurate semi-implicit DG scheme on staggered un-
structured triangular meshes presented here is by construction well-balanced in
the sense of the C-property of [116, 94, 92, 93, 16, 86, 23, 5], i.e. the scheme
preserves steady state solutions of the form η = const and ~v = 0 exactly. This
becomes already obvious directly from the variational formulation (2.12)-(2.13).
Next, the well-balanced property is verified numerically by using a classical test
problem proposed by LeVeque in [116], consisting in a small perturbation of
a free surface at rest over a smoothly varying bottom topography. The one-
dimensional version of this test problem has already been run successfully with
high order semi-implicit staggered DG schemes in [70] and is repeated here in
two space dimensions on unstructured staggered triangular grids. The two-
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Table 2.3: Comparison between third and sixth order staggered unstructured
semi-implicit DG schemes and explicit cell-centered unstructured
path-conservative PNPM schemes for the smooth vortex problem.
The third order simulations use a mesh with Ne = 20000 and the
sixth order simulations were done on the grid with Ne = 3200.

Numerical method L2 error (η) CPU time [s]

Explicit cell-centered P0P2 2.4416E-04 8.13

Explicit cell-centered P1P2 4.1328E-05 26.53

Explicit cell-centered P2P2 8.6345E-06 45.71

Semi-implicit staggered DG (p = 2) 9.2566E-06 155.7

Explicit cell-centered P0P5 3.8115E-04 2.62

Explicit cell-centered P3P5 1.1034E-06 16.2

Explicit cell-centered P5P5 9.6951E-08 30.08

Semi-implicit staggered DG (p = 5) 7.2570E-08 374.6

dimensional computational domain used is Ω = [−2, 1] × [−0.5, 0.5] and the
initial condition for the velocity field is u = v = 0, while the initial free surface
level η is defined as

η(x, y, 0) =

{
1 + ε, if − 0.95 ≤ x ≤ −0.85,

1, else.

The initial discontinuity is smoothed such as in [70] using δ = 0.02. The bottom
topography is given by an elliptical Gaussian bump of the form

b(x, y) = 0.8e(−5(x+0.1)2−50y2).

All simulations are carried out on a very coarse triangular mesh composed of 992
triangles with characteristic mesh size h = 0.1. A fixed timestep of ∆t = 0.001
is used together with θ = 0.6; the polynomial degree of the basis and test
functions is p = 4. Recall that θ ≥ 0.5 is the factor of implicitness used in the
time discretization scheme, where θ = 0.5 corresponds to the classical Crank-
Nicholson method. Four impermeable wall boundary conditions are used, i.e.
a zero mass flux is imposed on all boundaries. The primary triangular mesh
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Table 2.4: Numerical verification of the exact C-property (well-balanced prop-
erty) of the unstructured staggered semi-implicit DG scheme (p = 4)
for different machine precisions at time t = 0.1. The L2 and L∞ er-
rors refer to the free surface elevation η.

Case L∞ error L2 error

Single precision 3.8146 10−6 1.4187 10−6

Double precision 3.1086 10−14 8.3476 10−15

Quadruple precision 2.4074 10−32 7.1047 10−33

and the dual quadrilateral grid used for this test problem are shown in Fig.
2.6.
First, the exact well-balanced property is verified using ε = 0. The results
are reported for various machine precisions in Table 2.4, confirming that the
scheme is able to maintain the water at rest solution up to machine precision.
Next, according to [116], a small perturbation is added by using ε = 0.01. The
results obtained for the free surface elevation with the high order unstructured
staggered DG method of this chapter are depicted in Fig. 2.7 and agree qual-
itatively with the results obtained in [26]. As expected, the results show no
spurious oscillations in the vicinity of the bottom bump, confirming that the
present scheme is able to simulate accurately small perturbations of a steady
state in the presence of a variable bottom topography.

2.3.3 Smooth surface wave propagation

Here the propagation of an initial smooth surface in the circular domain Ω =
{x2 + y2 ≤ 1} is considered, see [70]. The initial condition is given by

η(x, y, 0) = 1 + e−
1
2 ( rσ )2 , u(x, y, 0) = v(x, y, 0) = b(x, y) = 0,

where σ = 0.1 is the halfwidth of the initial pulse. Polynomials of degree
p = 5 are considered in the circular computational domain Ω using Ne = 1237
triangular elements on the primary mesh. For the present test we choose θ =
0.5; ∆t = 4×10−4; and tend = 0.15. Due to the radial symmetry of the problem,
the reference solution can be obtained by solving the one-dimensional shallow
water equations in radial direction with geometric reaction source terms, using

33



2 Two-dimensional shallow water equations

x

y

-1 -0.5 0 0.5
-0.5

-0.25

0

0.25

0.5

x

y

-1 -0.5 0 0.5
-0.5

-0.25

0

0.25

0.5

Figure 2.6: The thick solid lines indicate the primary triangular grid (top) and
the dual quadrilateral grid (bottom) used for the small surface per-
turbation test of Leveque. The thin solid lines denote the sub-
grid associated with the nodal degrees of freedom of the high order
isoparametric DG finite element scheme.
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Figure 2.7: Numerical solution for the free surface η at times t = 0.12, t = 0.24,
t = 0.36 and t = 0.48 for the 2D surface perturbation test problem
(ε = 10−2) of LeVeque [116]. An unstructured staggered semi-
implicit DG scheme with piecewise polynomials of degree p = 4
has been used, together with a mesh size of h = 0.1 and a time
step of ∆t = 0.001. 80 equidistant contour lines in the interval
η ∈ [0.99, 1.01] are shown.

a classical shock capturing TVD finite volume scheme with 5000 points (see e.g.
[148, 70]). The scheme used for obtaining the 1D radial reference solution was
based on the new Osher-type Riemann solver based on a numerical quadrature
of the path integral presented in [76, 77].

A three dimensional plot of the free surface elevation at several times is shown in
Fig. 2.9. The comparison between numerical results and the reference solution
is presented in Fig. 2.8. A very good agreement between the numerical and
reference solution is observed until t = 0.1. Spurious oscillations are observed
at t = 0.15 when a discontinuity is generated by the nonlinear hyperbolic
governing PDE system, since no limiters have been used in the present DG
scheme.
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Figure 2.8: Comparison between numerical and reference solution at times t =
0.05, t = 0.1 and t = 0.15 for the free surface elevation (left) and
the velocity u (right) in the x direction.
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Figure 2.9: Three-dimensional plot of the free surface elevation at times t = 0,
t = 0.05, t = 0.1 and t = 0.15
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2.3 Numerical tests

2.3.4 Dambreak over a bottom step

In the present test problem, taken from [70], the following initial condition is
considered over Ω = {(x, y) ⊂ R2 |

√
x2 + y2 ≤ 2}:

η(x, y, 0) =

{
η` r ≤ r0

ηr r > r0

b(x, y) =

{
b` r ≤ r0

br r > r0

u(x, y, 0) = v(x, y, 0) = 0

The initial discontinuity is smoothed as follows:

η(r, 0) =
1

2
(η` + ηr) +

1

2
(ηr − η`)erf

(r − r0

δ

)
b(r) =

1

2
(b` + br) +

1

2
(br − b`)erf

(r − r0

δ

)
(2.53)

For the present test we fix η` = 1; ηr = 0.5; b` = −0.2; br = 0; r0 = 1;
and δ = 0.01. As in the previous test case, the reference solution is obtained
by using a one-dimensional radial second order TVD scheme with 5000 points
([148, 77, 76]). The simulation is carried out with p = 3; θ = 1; ∆t = 6× 10−4;
and tend = 0.20; The computational domain Ω is discretized using a total
number of Ne = 8192 elements. The numerical results are compared against
the reference solution and are presented in Fig. 2.10. A good agreement is
shown, both for the free surface η and the velocity component u in x direction.
We furthermore compare the solution obtained with our new high order semi-
implicit staggered DG method with the numerical results obtained using a
fourth order accurate path-conservative ADER-WENO finite volume scheme
on unstructured triangular meshes, described in detail in [69, 74, 75]. The finite
volume results are also depicted in Fig. 2.10. To make the results comparable,
approximately the same number of degrees of freedom has been used in both
cases, i.e. the finite volume mesh contains 81916 triangular elements, while the
semi-implicit DG scheme with p = 3 on 8192 triangles leads to a total number
of 81920 degrees of freedom on the primal mesh. The results of the quantitative
comparison are summarized in Table 2.5.
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Figure 2.10: Comparison between numerical and reference solution at time
tend = 0.20: free surface elevation η and −b on the left; veloc-
ity u in the x direction on the right.

2.3.5 Low Froude number flow around a circular cylinder

In this last test problem we consider a steady low Froude number flow around
a circular cylinder. This test problem has been solved for the first time by
Bassi and Rebay with high order isoparametric DG schemes, solving the Euler
equations of compressible gas dynamics at low Mach numbers, see [13]. Bassi
and Rebay have shown that a physically correct steady state solution can be
only obtained when curved isoparametric elements are used. In the case of
subparametric straight-line elements an unphysical, unsteady and highly os-
cillatory solution is obtained. Therefore, in this section we will also present
results for both subparametric straight line elements and for isoparametric
curved elements. The computational domain is

Ω = [−3.0, 3.0]× [−3.0, 3.0]− {
√
x2 + y2 ≤ 0.5}

and is discretized using a very coarse mesh of only Ne = 308 triangles.
A sketch of the main and the dual grid is plotted in Fig. 2.11, while a detail of
the circular cylinder for the curved isoparametric and non-curved subparamet-
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Figure 2.11: Main triangular grid with nodal subgrid (top left); dual grid with
nodal subgrid (top right) and both grids (bottom) for the circular
cylinder testcase; the blue triangles define the primary mesh, the
red quadrilaterals define the dual mesh and the green triangular
elements are the boundary elements for the dual grid.
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2 Two-dimensional shallow water equations

Table 2.5: Comparison between fourth order staggered unstructured semi-
implicit DG scheme and unstructured path-conservative ADER-
WENO finite volume method for the circular dambreak problem
over a bottom step.

WENO finite volume Semi-implicit DG

Mesh type cell-centered staggered (primal & dual)

Element type triangles mixed tri and quad

Formal order 4 in space 4 in space

No. of DOF 81916 81920

Time step size 1.15 · 10−3 1.6 · 10−3

Memory usage (RAM) 1.97 GB 1.60 GB

CPU time 1496.8 s 1502.4 s
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Figure 2.12: Differences between the grid obtained with the curved isoparamet-
ric approach (left) and the non-curved approach (right).
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2.3 Numerical tests

ric case is depicted in Fig. 2.12. The analytical solution for this test problem
is known both for the velocity field and for the free surface elevation. In order
to avoid the generation of strong initial transient waves we impose as initial
condition the exact velocity field, but a flat free surface:

η(x, y, 0) = 1, b(x, y) = 0, (2.54)

and

vr(r, α, 0) = ū

(
1− R2

c

r2

)
cos(α),

vα(r, α, 0) = −ū
(

1 +
R2
c

r2

)
sin(α), (2.55)

where vr and vα describe the velocity field in polar coordinates; Rc is the radius
of the circular cylinder and ū is the initial velocity of this steady flow problem.
Bernoulli’s equation allows us to compute the exact free surface elevation from
the velocity field:

η = η∞ +
1

2g
ū

(
2
R2
c

r2
cos(2α)− R4

c

r4

)
, (2.56)

where η∞ is the asymptotic value of the free surface elevation far from the
circular cylinder. For the present test we take η∞ = 1; ū = 0.01 in order to
obtain a very small Froude number Fr = |~v|/

√
gH = 3.2 · 10−3; furthermore

Rc = 0.5; θ = 1.0; tend = 4.75; and p = 3. The time step size is taken as the
one imposed by the CFL restriction for the nonlinear convective term.
As shown by Bassi and Rebay [13], this test does not work if we use high order
straight line DG elements near the cylinder. The numerical results obtained by
using high order curved isoparametric elements are shown in Fig. 2.15 and are
compared against the exact solution of the problem. A very good agreement
can be observed for this very coarse grid. If the grid is further refined, the
numerical solution becomes indistinguishable from the exact one.
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2 Two-dimensional shallow water equations

Figure 2.13: Profile of η at time t = tend using the isoparametric staggered DG
approach.
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Figure 2.14: Streamlines and pressure contours using the isoparametric stag-
gered semi-implicit DG scheme for the circular cylinder problem
on an unstructured triangular mesh.
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Figure 2.15: Comparison of the numerical solution against the exact solution
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have plotted the profile of η, u and v
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Figure 2.16: Comparison between the velocity u for the curved approach and
the non-curved approach at r = 0.5, in this last case the convection
term is taken such as F~v = ~v.
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2 Two-dimensional shallow water equations

In Fig 2.16 we plot a comparison between the velocity u at r = 0.5 obtained
for curved isoparametric elements and for simple straight line elements. As
shown, the velocity obtained with straight line elements presents unphysical
peaks near the corners, due to the well-known corner singularity of the potential
flow. In contrast, the high order curved isoparametric elements reproduce the
physically correct smooth solution in the corners, without spurious oscillations.
It is important to underline that also for the present high order staggered DG
method the use of curved elements is crucial, which confirms the findings of
Bassi and Rebay [13] for high order DG methods on collocated grids.
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3 Two-dimensional incompressible
Navier-Stokes equations

3.1 Overview

In this chapter we want to extend the staggered DG scheme presented in the
previous Chapter 2 to the two dimensional incompressible Navier-Stokes equa-
tions. The apparently similar formal structure of the equations allows us to
derive the method in a very similar way. In particular, for an inviscid flow we
can recover the incompressible Navier-Stokes system from 2.1− 2.2 by setting
H = g ≡ 1, interpreting the free surface elevation as the pressure and neglect
the term ∂η

∂t
in the continuity equation. In this chapter we further introduce

the viscosity as well as a source term in the momentum equation. As we will
see these simple modifications in the equations lead to several important dif-
ferences in the properties of the resulting algorithm. In this chapter we further
derive a general method in order to achieve arbitrary high order in both space
and time. The direct extension of the method presented in the previous chap-
ter leads to the special case of high order only in space and can be found in
Section 3.3, while a set of numerical tests are presented in Section 3.6 for the
space and space-time version of the algorithm.

3.1.1 Governing equations

The two dimensional incompressible Navier-Stokes equations are given by

∂v

∂t
+∇ · Fc +∇p = ν∆v + S, (3.1)

∇ · v = 0, (3.2)

where p = P/ρ indicates the normalized fluid pressure; P is the physical pres-
sure and ρ is the constant fluid density; ν = µ/ρ is the kinematic viscosity
coefficient; v = (u, v) is the velocity vector; u and v are the velocity compo-
nents in the x and y direction, respectively; S = S(v, x, y, t) is a (nonlinear)
algebraic source term; Fc = v⊗v is the flux tensor of the nonlinear convective
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3 Two-dimensional incompressible Navier-Stokes equations

terms, namely:

Fc =

(
uu uv

vu vv

)
.

Following the same idea of [88, 67], the viscosity term is first written as ν∆v =
∇ · (ν∇v) and then grouped with the nonlinear convective term. In this way
the momentum Eq. (3.1) can be rewritten as

∂v

∂t
+∇ · F +∇p = S, (3.3)

where F = F(v,∇v) = Fc(v)− ν∇v is a nonlinear tensor that depends on the
velocity and its gradient, see e.g. [88, 67].

3.2 Space-time DG scheme for the 2D incompressible
Navier-Stokes equations

3.2.1 Space-time extension of the unstructured staggered grid

The spatial staggered unstructured mesh is taken such as the one described
in Section 2.2.1. In the time direction we cover the time interval [0, T ] with
a sequence of times 0 = t0 < t1 < t2 . . . < tN < tN+1 = T . We denote
the time step by ∆tn+1 = tn+1 − tn and the corresponding time interval by
Tn+1 = [tn, tn+1] for n = 0 . . . N . In order to ease notation, sometimes we will
use the abbreviation ∆t = ∆tn+1. In this way the generic space-time element
defined in the time interval [tn, tn+1] is given by T sti = T i×Tn+1 for the main
grid, and Rst

j = Rj × Tn+1 for the dual grid. Figure 3.1 shows a graphical
representation of the primary and dual space-time control volumes.

3.2.2 Space-time basis functions

We can easily extend the idea used in Section 2.2.2 and construct the time
basis functions on a reference interval [0, 1] for polynomials of degree pγ . In
this case the resulting Nγ = pγ + 1 basis functions {γk}k∈[1,Nγ ] are defined as
the Lagrange interpolation polynomials passing through the Gauss-Legendre
quadrature points for the unit interval. For every time interval [tn, tn+1], the
map between the reference interval and the physical one is simply given by
t = tn + τ∆tn+1 for every τ ∈ [0, 1]. Using the tensor product we can finally
construct the basis functions on the space-time elements T sti and Rst

j such as

φ̃(ξ, γ, τ) = φ(ξ, γ) · γ(τ) and ψ̃(ξ, γ, τ) = ψ(ξ, γ) · γ(τ). The total number of
basis functions becomes Nst

φ = Nφ ·Nγ and Nst
ψ = Nψ ·Nγ .
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T i
Rj

y

x
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tn+1

tn

T sti
Rst
j

Figure 3.1: Example of space-time elements T sti (red) and Rst
j (green) with

j ∈ Si.

3.2.3 Semi-implicit space-time DG scheme

We extend the spaces of piecewise polynomials used on the main and the dual
grid following definition (2.5), where now the space-time polynomials are taken
as the one defined in the previous chapter and extended using tensor product
of one-dimensional polynomials of degree at most pγ on Tn+1. In this way we
could have different polynomial degrees in space and time and hence we could
analyze the special case of p > 0 and pγ = 0.

The discrete pressure ph is defined on the main grid, namely ph(x, y, t)|T sti =

pi(x, y, t), while the discrete velocity vector field vh is defined on the dual grid,
namely vh(x, y, t)|Rst

j
= vj(x, y, t) .

The numerical solution of (3.1)-(3.3) is represented inside the space-time control
volumes of the primal and the dual grid during the current time interval Tn+1
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3 Two-dimensional incompressible Navier-Stokes equations

by piecewise space-time polynomials as follows:

pi(x, y, t) =

Nstφ∑
l=1

φ̃
(i)
l (x, y, t)p̂n+1

l,i =: φ̃(i)(x, y, t)p̂n+1
i , (3.4)

vj(x, y, t) =

Nstψ∑
l=1

ψ̃
(j)
l (x, y, t)v̂n+1

l,j =: ψ̃(j)(x, y, t)~̂v
n+1

j , (3.5)

where the vectors of basis functions φ̃(x, y, t) and ψ̃(x, y, t) are generated via
the mappings from φ̃(ξ, γ, τ) on Tstd × [0, 1] and ψ(ξ, γ, τ) on Rstd × [0, 1],
respectively.
A weak formulation of the continuity equation (3.1) is obtained by multiplying
it by φ̃ and integrating over a control volume T sti , for every k = 1 . . . Nst

φ . The
resulting weak formulation for the discrete velocity vh reads∫

T sti

φ̃
(i)
k ∇ · vh dxdt = 0. (3.6)

Similarly, multiplication of the momentum equation (3.3) by ψ̃ and integrating
over a control volume Rst

j yields∫
Rst
j

ψ̃
(j)
k

(
∂vh
∂t

+∇ · Fh
)
dxdt+

∫
Rst
j

ψ̃
(j)
k ∇ph dxdt =

∫
Rst
j

ψ̃
(j)
k Sh dxdt, (3.7)

for every j = 1 . . . Nd and k = 1 . . . Nst
ψ . Using integration by parts Eq. (3.6)

becomes ∮
∂T sti

φ̃
(i)
k vh · ~ni dsdt−

∫
T sti

∇φ̃(i)
k · vh dxdt = 0, (3.8)

where ~ni indicates the outward pointing unit normal vector. Since ph is al-
lowed to jump at the element boundaries of the primary triangular grid and vh
may jump at the boundaries of the dual quadrilateral elements, the integrals
appearing in equations (3.7) and (3.8) have to be split into elementwise contri-
butions. Note, however, that thanks to the use of a staggered grid we do not
need a Riemann solver here, since all the quantities are readily defined where
needed for the flux computation. In particular, the velocity is continuous across
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the boundaries of the triangles on the main grid and the pressure is continuous
across the boundaries of the dual quadrilateral grid.
If we want to integrate the second term in (3.7) directly, without forward
and backward integration by parts, the gradient of the discrete pressure ph
appearing in the weak form of the momentum equation (3.7) can be easily
interpreted in the sense of distributions, similar to a non-conservative product,
since the discrete pressure is allowed to jump at Γstj inside a dual velocity
control volume. 1 At this point we refer the reader to the extensive literature on
high order accurate path-conservative finite volume and discontinuous Galerkin
finite element schemes, where weak formulations of PDE with non-conservative
products have already been derived and discussed in great detail, see e.g. [27,
124, 119, 28, 134, 69, 73, 143].
We therefore obtain the following weak form of the continuity and the momen-
tum equation:

∑
j∈Si

∫
Γstj

φ̃
(i)
k vj · ~nij dsdt−

∫
T sti,j

∇φ̃(i)
k · vj dxdt

 = 0, (3.9)

and ∫
Rst
j

ψ̃
(j)
k

(
∂vj
∂t

+∇ · Fj
)
dxdt

+

∫
T st`(j),j

ψ̃
(j)
k ∇p`(j)dxdt+

∫
T str(j),j

ψ̃
(j)
k ∇pr(j) dxdt

+

∫
Γstj

ψ̃
(j)
k

(
pr(j) − p`(j)

)
~nj dsdt =

∫
Rst
j

ψ̃
(j)
k Sdxdt, (3.10)

where ~nij = ~ni|Γstj ; T sti,j = T i,j × Tn+1; and Γstj = Γj × Tn+1. We stress again

that the same weak form of the momentum equation (3.10) could have been
also derived by forward and backward integration by parts of (3.7), following

1Note that the term ∇ph is not a true non-conservative product, since it can be written
in a conservative divergence form as ∇ph = ∇ · (phI), with the identity matrix I.
Nevertheless, if ph contains discontinuities, the term ∇ph can be properly interpreted
as a special case within the more general framework of PDE with non-conservative
products.
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the ideas of Bassi and Rebay [12]. Using definitions (3.4) and (3.5), we
conveniently rewrite the above equations as

∑
j∈Si

∫
Γstj

φ̃
(i)
k ψ̃

(j)
l ~nijdsdt v̂

n+1
l,j −

∫
T sti,j

∇φ̃(i)
k ψ̃

(j)
l dxdt v̂n+1

l,j

 = 0, (3.11)

and ∫
Rst
j

ψ̃
(j)
k

∂vj
∂t

dxdt+

∫
Rst
j

ψ̃
(j)
k ∇ · Fdxdt

+

∫
T st`(j),j

ψ̃
(j)
k ∇φ̃

(`(j))
l dxdt p̂n+1

l,`(j) +

∫
T str(j),j

ψ̃
(j)
k ∇φ̃

(r(j))
l dxdt p̂n+1

l,r(j)

+

∫
Γstj

ψ̃
(j)
k φ̃

(r(j))
l ~njdsdt p̂

n+1
l,r(j) −

∫
Γstj

ψ̃
(j)
k φ̃

(`(j))
l ~njdsdt p̂

n+1
l,`(j) =

∫
Rst
j

ψ̃
(j)
k Sdxdt,

(3.12)

where we have used the standard summation convention for the repeated index
l. Integrating the first integral in (3.12) by parts in time and assuming the
mesh to be fixed in time (i.e. the elements do not move), we obtain

∫
Rst
j

ψ̃
(j)
k

∂vj
∂t

dxdt =

∫
Rj

ψ̃
(j)
k vjdx


t=tn+1

−

∫
Rj

ψ̃
(j)
k vjdx


t=tn

−
∫
Rst
j

∂ψ̃
(j)
k

∂t
vjdxdt (3.13)

In Eq. (3.13) we can recognize the fluxes between the current space-time ele-
ment Rj ×Tn+1, the future space-time slab and the past space-time elements,
as well as an internal space-time volume contribution that connects the lay-
ers inside the space-time element Rst

j in an asymmetric way. Note how the
asymmetry affects only the space-time volume contribution in (3.13). This is
due to the nature of the time derivative operator, which has a natural positive
direction given by the causality principle in time. Also note that the surface
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3.2 Space-time DG scheme for the 2D incompressible Navier-Stokes equations

integral over the element at the past time includes the initial condition of the
velocity in a weak sense. It can also be interpreted as using an upwind flux in
time direction. By substituting Eq. (3.13) into (3.12) we obtain the following
weak formulation of the momentum equation in space-time:


∫
Rj

ψ̃
(j)
k ψ̃

(j)
l dx


t=tn+1

−
∫
Rst
j

∂ψ̃
(j)
k

∂t
ψ̃

(j)
l dxdt

 v̂n+1
l,j

+

∫
T st`(j),j

ψ̃
(j)
k ∇φ̃

(`(j))
l dx p̂n+1

l,`(j) +

∫
T str(j),j

ψ̃
(j)
k ∇φ̃

(r(j))
l dx p̂n+1

l,r(j)

+

∫
Γstj

ψ̃
(j)
k φ̃

(r(j))
l ~njds p̂

n+1
l,r(j) −

∫
Γstj

ψ̃
(j)
k φ̃

(`(j))
l ~njds p̂

n+1
l,`(j)

=

∫
Rj

ψ̃
(j)
k ψ̃

(j)
l dx


t=tn

v̂nl,j −
∫
Rst
j

ψ̃
(j)
k ∇ · Fdx +

∫
Rst
j

ψ̃
(j)
k S dxdt,

(3.14)

For every i and j, Eqs. (3.11)-(3.14) are written in a compact matrix form as

∑
j∈Si

Di,j~̂v
n+1

j = 0, (3.15)

and

(
M+

j −M
◦
j

)
~̂v
n+1

j −M−
j ~̂v

n

j + Υj(v,∇v) + Rj p̂
n+1
r(j) −Lj p̂

n+1
`(j) = Sj , (3.16)
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respectively, where:

M+
j =

∫
Rj

ψ̃
(j)
k (x, y, tn+1)ψ̃

(j)
l (x, y, tn+1)dx, (3.17)

M−
j =

∫
Rj

ψ̃
(j)
k (x, y, tn+1)ψ̃

(j)
l (x, y, tn)dx, (3.18)

M◦
j =

∫
Rst
j

∂ψ̃
(j)
k

∂t
ψ̃

(j)
l dxdt, (3.19)

Υj =

∫
Rst
j

ψ̃
(j)
k ∇ · Fdxdt (3.20)

Di,j =

∫
Γstj

φ̃
(i)
k ψ̃

(j)
l ~nijdsdt−

∫
T sti,j

∇φ̃(i)
k ψ̃

(j)
l dxdt, (3.21)

Rj =

∫
Γstj

ψ̃
(j)
k φ̃

(r(j))
l ~njdsdt+

∫
T str(j),j

ψ̃
(j)
k ∇φ̃

(r(j))
l dxdt, (3.22)

Lj =

∫
Γstj

ψ̃
(j)
k φ̃

(`(j))
l ~njdsdt−

∫
T st`(j),j

ψ̃
(j)
k ∇φ̃

(`(j))
l dxdt, (3.23)

Sj =

∫
Rst
j

ψ̃
(j)
k Sdxdt. (3.24)

Remark how M◦
j introduces, for polynomial degrees pγ > 0, an asymmetric

contribution in time. The action of matrices L and R can be generalized by
introducing a new matrix Qi,j , defined as

Qi,j =

∫
T sti,j

ψ̃
(j)
k ∇φ̃

(i)
l dxdt−

∫
Γstj

ψ̃
(j)
k φ̃

(i)
l σi,j~njdsdt, (3.25)

where σi,j is a sign function defined by

σi,j =
r(j)− 2i+ `(j)

r(j)− `(j) . (3.26)
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In this way Q`(j),j = −Lj and Qr(j),j = Rj , and then Eq. (3.16) becomes in
terms of Q(
M+

j −M
◦
j

)
~̂v
n+1

j −M−
j ~̂v

n

j + Υj(v,∇v) + Qr(j),j p̂
n+1
r(j) + Q`(j),j p̂

n+1
`(j) = Sj ,

(3.27)
or, equivalently,(
M+

j −M
◦
j

)
~̂v
n+1

j −M−
j ~̂v

n

j + Υj(v,∇v) + Qi,j p̂
n+1
i + Q℘(i,j),j p̂

n+1
℘(i,j) = Sj .

(3.28)
In order to further ease notation, we will use the abbreviation Mj = M+

j −M
◦
j

henceforth and will write Eqs. (3.15)-(3.16) as follows:∑
j∈Si

Di,j~̂v
n+1

j = 0, (3.29)

Mj~̂v
n+1

j −MjF̂~vj + Qr(j),j p̂
n+1
r(j) + Q`(j),j p̂

n+1
`(j) = 0, (3.30)

where F̂~vj is an appropriate discretization of the nonlinear convective, viscous

and source terms. The details for the computation of F̂~vj will be presented
later. Formal substitution of the discrete momentum equation (3.30) into the
discrete continuity equation (3.29), see also [37, 70, 143, 144], yields∑
j∈Si

Di,jM
−1
j Qi,j p̂

n+1
i +

∑
j∈Si

Di,jM
−1
j Q℘(i,j),j p̂

n+1
℘(i,j) =

∑
j∈Si

Di,jF̂~vj ,(3.31)

We have now to choose a time discretization for the nonlinear convective-viscous
term. The simplest choice would be to take F̂~vj explicitly, so in this case∑
j∈Si

Di,jF̂~v
n

j becomes a known term at time tn and hence Eq. (3.31) would

represent a four-point block system for the new pressure p̂n+1
i , as proposed in

[144]. Unfortunately, in problems where the convective-viscous effects cannot
be neglected, this will produce only a low order accurate method in time.
The problem in this case is that the convective-viscous contribution in the
time interval Tn+1 is based on the old information Tn and does not see the
effects of the new pressure in the time interval Tn+1. Furthermore, if we take

F̂~vj implicitly, then system (3.31) becomes nonlinear and it would be very
cumbersome to solve it. In order to overcome this problem we introduce a
simple Picard iteration to get the information of the new pressure into the
viscous and convective terms, but without introducing a nonlinearity in the
final system to be solved. This approach is inspired by the local space-time
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3 Two-dimensional incompressible Navier-Stokes equations

Galerkin predictor method proposed for the high order time discretization of
PNPM schemes in [68, 67]. Hence, for k = 1, Npic, we rewrite system (3.31) as∑

j∈Si

Di,jM
−1
j Qi,j p̂

n+1,k+1
i +

∑
j∈Si

Di,jM
−1
j Q℘(i,j),j p̂

n+1,k+1
℘(i,j)

=
∑
j∈Si

Di,jF̂~v
n+1,k+ 1

2
j , (3.32)

or, by introducing the boundary elements (see e.g. [144]), ∑
j∈Si∩B(Ω)

D∂
i,jM

−1
j Q∂

i,j −
∑

j∈Si−B(Ω)

Di,jM
−1
j Qi,j

 p̂n+1,k+1
i

−
∑

j∈Si−B(Ω)

Di,jM
−1
j Q℘(i,j),j p̂

n+1,k+1
℘(i,j) =

−
∑

j∈Si−B(Ω)

Di,jF̂~v
n+1,k+ 1

2
j +

∑
j∈Si∩B(Ω)

D∂
i,jF̂~v

n+1,k+ 1
2

j , (3.33)

where D∂
i,j and Q∂

i,j are the natural extension of D and Q on triangular dual
boundary elements, see e.g. [144]. Now the right hand side of Eq. (3.31)
can be computed by using the velocity field at the old Picard iteration k and
including the viscous effects using a fractional step type procedure. In this way,
Eq. (3.31) represents a block four-point system for the new pressure p̂n+1,k+1

i .
Once the new pressure field is known, the velocity vector field at the new Picard

iteration ~̂v
n+1,k+1

can be readily updated from the momentum equation (3.30).

3.2.4 Nonlinear convection-diffusion

To close the problem it remains to specify how to construct the nonlinear

convection-diffusion operator F̂~v
n+1,k+ 1

2
j . Following the ideas of [144], a space-

time DG scheme for the convection-diffusion terms on the dual mesh is given
by ∫

Rst
j

ψ̃k
∂

∂t
vh dxdt+

∫
∂Rst

j

ψ̃kGh · ~n dsdt

−
∫
Rst
j

∇ψ̃k · F(vh,∇vh)dxdt =

∫
Rst
j

ψ̃
(j)
k Sdxdt, (3.34)
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and the numerical flux for both the convective and the viscous contribution, is
given such as in [137, 88, 67], and reads

Gh · ~n =
1

2

(
F(v +

h ,∇v +
h ) + F(v−h ,∇v−h )

)
· ~n− 1

2
smax

(
v +
h − v−h

)
, (3.35)

with

smax = 2 max(|v−h · ~n|, |v
+
h · ~n|) +

2ν

h+ + h−
2p+ 1√

π
2

, (3.36)

which contains the maximum eigenvalue of the Jacobian matrix of the purely
convective transport operator Fc in normal direction, see [70], and the stabi-
lization term for the viscous flux, see [67, 88]. Furthermore, the v±h and ∇v±h
denote the velocity vectors and their gradients, extrapolated to the boundary
of Rj from within the element Rj and from the neighbor element, respec-
tively. h+ and h− are the maximum radii of the inscribed circle in Rj and the
neighbor element, respectively. We discretize the velocity vh explicitly but its
gradient has to be taken implicitly, in order to avoid additional restrictions on
the maximum time step given by the viscous terms. In viscosity dominated
problems, this allows us to use both high viscosity and large time steps. Af-
ter integration of the first term of (3.34) by parts in time the resulting fully
discrete formulation of (3.34) becomes

v̂
n+1,k+ 1

2
j = M−1

j M−
j ~̂v

n

j −M−1
j Υj(v

n+1,k
h ,∇v

n+1,k+ 1
2

h ) +M−1
j Sj , (3.37)

where

Υj(vh,∇vh) =

∫
Rst
j

ψ̃
(j)
k ∇ · F(vh,∇vh)dx

=

∫
∂Rst

j

ψ̃kGh · ~n ds−
∫
Rst
j

∇ψ̃k · F(vh,∇vh)dx. (3.38)

Due to the explicit treatment of the nonlinear convective terms, the above
method requires that the time step size is restricted by a CFL-type restriction
for DG schemes, namely:

∆t =
CFL

2p+ 1
· hmin

2|vmax|
, (3.39)
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where hmin is the smallest incircle diameter; CFL < 0.5; and vmax is the max-
imum convective speed. Furthermore, the time step of the global semi-implicit
scheme is not affected by the local time step used for the time integration of the
convective terms if a local time stepping / subcycling approach is employed,
see [42, 145]. Implicit discretization of the viscous contribution ∇v in (3.34)
involves two five-point block systems (one for each velocity component) that
can be efficiently solved using a matrix-free GMRES algorithm [138]. The so-
lution of this system is not necessary in problems where the viscous term is
small enough to be integrated explicitly in time. In that case, i.e. for explicit
discretizations of the viscous terms, one has to include the additional explicit
time step restriction for parabolic PDE in eq. (3.39).

Once v
n+1,k+ 1

2
j has been computed, we set F̂~v

n+1,k+ 1
2

j := v̂
n+1,k+ 1

2
j . As initial

guess v̂n+1,0
j we can take the old velocity vnh , or the extrapolation of vnh into

the interval Tn+1.

3.2.5 Pressure correction formulation and final algorithm

The preliminary algorithm described above, as formulated by Eqs. (3.37),
(3.33)and (3.30) still contains an important drawback: indeed, Eq. (3.37) does
not depend on the pressure of the previous Picard iteration and hence the
algorithm does not see the effect of the pressure in the time interval Tn+1. In
order to overcome the problem we introduce the contribution of the pressure
from the previous Picard iteration directly into Eq. (3.37). Then, we update
the velocity with the new pressure p̂n+1,k+1

i . With this modification, Eqs.
(3.37), (3.33), (3.30) and hence the final algorithm become:

v̂
n+1,k+ 1

2
j = M−1

j M−
j ~̂v

n

j −M−1
j Υj(v

n+1,k
h ,∇v

n+1,k+ 1
2

h )

−Qr(j),j p̂
n+1,k
r(j) −Q`(j),j p̂

n+1,k
`(j) +M−1

j Sj , (3.40)

∑
j∈Si

Di,jM
−1
j Qi,j

(
p̂n+1,k+1
i − p̂n+1,k

i

)
+
∑
j∈Si

Di,jM
−1
j Q℘(i,j),j

(
p̂n+1,k+1
℘(i,j) − p̂n+1,k

℘(i,j)

)
=
∑
j∈Si

Di,jF̂~v
n+1,k+ 1

2
j , (3.41)
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~̂v
n+1,k+1

j = F̂~v
n+1,k+ 1

2
j −M−1

j

[
Qr(j),j

(
p̂n+1,k+1
r(j) − p̂n+1,k

r(j)

)
−Q`(j),j

(
p̂n+1,k+1
`(j) − p̂n+1,k

`(j)

)]
. (3.42)

Note that Eqs. (3.41) and (3.42) are written in terms of the pressure correction

∆p̂n+1,k+1
i =

(
p̂n+1,k+1
i − p̂n+1,k

i

)
. Since both space and time are involved in

this algorithm and since space and time discretization are intrinsically coupled,
we call this method a coupled space-time pressure correction algorithm. The
resulting linear system for the pressure correction is very sparse thanks to the
use of the staggered grid, including only four non-zero blocks per element. Note
that the same algorithm on a collocated grid would lead to a pressure system
with 10 non-zero blocks per element, since substituting the discrete velocity
into the continuity equation on a collocated grid involves also neighbors of
neighbors. The significantly improved sparsity pattern of the linear system
is indeed a key advantage of the algorithm presented in this paper. In all
subsequent numerical examples, we were able to solve the system (3.41) using
a simple matrix-free version of the GMRES algorithm [138] without using any
preconditioner, which is a unique property in the context of high order implicit
DG schemes.

As initial guess for the pressure one can take pn+1,0
h = 0, but one could also

choose the extrapolation of pnh into Tn+1. One time step of the final algorithm
can be summarized as follows:

1. Initialize vn+1,0
h and pn+1,0

h using the known information from Tn;

2. Picard iteration over k = 0 . . . Npic:

a) compute v
n+1,k+ 1

2
h using (3.40), i.e. convective terms are discretized

explicitly and viscous terms implicitly;

then set F̂~v
n+1,k+ 1

2
j := v̂

n+1,k+ 1
2

j ,

b) compute p̂n+1,k+1 by solving the discrete pressure Poisson equation
(3.41),

c) update ~̂v
n+1,k+1

j explicitly from (3.42);

3. set ~̂v
n+1

j = ~̂v
n+1,k+1

j and p̂n+1 = p̂n+1,k+1.
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3.3 The particular case pγ = 0 using a simple Crank-Nicolson
time discretization

In the particular case of pγ = 0 the method described above reduces to a high
order in space and low order in time scheme, but we can recover several good
properties about the main system for the discrete pressure. Furthermore, in
this case we can recover some precision in time by introducing a semi-implicit
discretization using the theta method on the pressure inside the momentum

equations. First of all we remark how, for pγ = 0, ∂φ̃
∂t

= ∂ψ̃
∂t

= 0, since

φ̃(x, y, t) = φ(x, y) and ψ̃(x, y, t) = ψ(x, y) are constant in time. In addition,
we need only a Picard iteration; since the pressure pk· can be neglected for this
first Picard iteration, then the entire Picard procedure and pressure correction
algorithm can be skipped in this particular case. For simplicity we take also
S ≡ 0 in this section. The resulting weak formulation of (3.2)-(3.3) reads

∑
j∈Si

Di,j~̂v
n+1

j = 0,

Mj

(
~̂v
n+1

j − F̂~v
n

j

)
+ ∆tQr(j),j p̂

n+θ
r(j) + ∆tQ`(j),j p̂

n+θ
`(j) = 0,

(3.43)

where p̂n+θ = θp̂n+1 + (1 − θ)p̂n; and θ is an implicitness factor to be taken
in the range θ ∈ [ 1

2
, 1], see e.g. [36], and

Mj =

∫
Rj

ψ
(j)
k ψ

(j)
l dx, (3.44)

Di,j =

∫
Γj

φ
(i)
k ψ

(j)
l ~nij ds−

∫
T i,j

∇φ(i)
k ψ

(j)
l dx, (3.45)

Qi,j =

∫
T i,j

ψ
(j)
k ∇φ

(i)
l dx−

∫
Γj

ψ
(j)
k φ

(i)
l σi,j~nj ds, (3.46)

are computed from space only coordinates. It is important to emphasize that
we cannot take the velocity field ~̂v semi-implicitly in the discrete continuity
equation following the same philosophy of Chapter 2 since the divergence free
condition is a property that we require at any time step. As example, if we
start from a velocity field that is not divergence free, then a semi-implicit dis-
cretization of the velocity in the continuity equation would produce a violation
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3.3 The particular case pγ = 0 using a simple Crank-Nicolson time discretization

also at the successive time. On the contrary, the divergence free condition be-
comes satisfied from the second time step on. The resulting final system for
the pressure can be obtained by formal substitution of the velocity vector field
in the momemtum equation into the continuity one and reads:

−θ∆t
∑
j∈Si

Di,jM
−1
j Qi,j p̂

n+1
i − θ∆t

∑
j∈Si

Di,jM
−1
j Q℘(i,j),j p̂

n+1
℘(i,j) = bni ,

(3.47)
where

bni = −
∑
j∈Si

Di,jF̂~v
n

j +(1−θ)∆t
∑
j∈Si

Di,j (Mj)
−1 (Qi,j p̂

n
i + Q℘(i,j),j p̂

n
℘(i,j),j

)
,

(3.48)
groups all the known terms at time tn.

It remains to complete the system by introducing the boundary conditions.

Using the same reasoning of Section 2.2.6, equations (3.47)-(3.48) are computed
with the triangular boundary elements and reads

θ∆t

− ∑
j∈Si∩B(Ω)

D∂
i,jM

−1
j Q∂

i,j −
∑

j∈Si−B(Ω)

Di,jM
−1
j Qi,j

 p̂n+1
i

−θ∆t
∑

j∈Si−B(Ω)

Di,jM
−1
j Q℘(i,j),j p̂

n+1
℘(i,j) = b̃ni , (3.49)

where now the vector of known terms is

b̃ni = −
∑

j∈Si−B(Ω)

Di,jF̂~v
n

j +
∑

j∈Si∩B(Ω)

D∂
i,jF̂~v

n

j

+(1− θ)∆t
∑

j∈Si∩B(Ω)

D∂
i,jM

−1
j Q∂

i,j p̂
n
i

+(1− θ)∆t
∑

j∈Si−B(Ω)

Di,jM
−1
j

(
Qi,j p̂

n
i + Q℘(i,j),j p̂

n
℘(i,j)

)
.

(3.50)

As we will show later, the system is symmetric and positive definite for ap-
propriate boundary conditions, hence it can be efficiently solved by using a
matrix-free implementation of the conjugate gradient algorithm [98]. Once the
new pressure has been computed, the new velocity field can be readily updated
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for every j /∈ B(Ω):

~̂v
n+1

j = F̂~v
n

j − θ∆tM−1
j

(
Qi,j p̂

n+1
i + Q℘(i,j),j p̂

n+1
℘(i,j)

)
−(1− θ)∆tM−1

j

(
Qi,j p̂

n
i + Q℘(i,j),j p̂

n
℘(i,j)

)
. (3.51)

The above equations (3.49),(3.50) and (3.51) can be modified for j ∈ B(Ω)
according to the type of boundary conditions (velocity or pressure boundary
condition).

3.3.1 Remarks on the main system and further improvements

In this section we will show how the main system for the computation of the
pressure such as described in Section 3.3 results symmetric and, in general,
positive semi-definite. These results allow us to use very fast iterative methods
to solve the linear system, such as the conjugate gradient method [98], with
a significant gain in terms of computational time. In order to do this observe
how, from the definitions (3.45) and (3.46), we can further generalize the action
of D in terms of Q such as D = −Q> since

−Q>i,j = −

 ∫
Ωi,j

ψ
(j)
k ∇φ

(i)
l dx−

∫
Γj

ψ
(j)
k φ

(i)
l σi,j~nj ds


>

= −
∫

Ωi,j

ψ
(j)
l ∇φ

(i)
k dx +

∫
Γj

ψ
(j)
l φ

(i)
k σi,j~nj ds = Di,j (3.52)

and if i = `(j), ~nij coincides with ~nj , else, it is −~nj , ∀i, j ∈ Si. Consequently,
the main system (3.47) can be written as

A : θ∆t
∑
j∈Si

Q>i,j (Mj)
−1 Qi,j p̂

n+1
i + θ∆t

∑
j∈Si

Q>i,j (Mj)
−1 Q℘(i,j),j p̂

n+1
℘(i,j) = bni ,

that we will call in the following A. If we do not introduce any boundary
conditions, we have the following

Lemma 1 Without any boundary conditions the system A is singular.

Proof 1 Let ph ∈ V mh , in order to show that A is singular we investigate the
kernel of the linear operator A. Since detA 6= 0⇔ KerA = {0}, we would like
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to show that the kernel does not contain only the zero. A weak formulation of
∇ph over Ωj is given by Q`(j),jp`(j) + Qr(j),jpr(j), then we have the identity

Q`(j),j p̂`(j) + Qr(j),j p̂r(j) ≡ 0⇔ ∇p|Ωj = 0 (3.53)

We are looking for a ph 6= 0 such that Aph = 0. For a fixed i ∈ [1, Ne],

−θ∆t
∑
j∈Si

Di,j (Mj)
−1 Qi,j p̂

n+1
i − θ∆t

∑
j∈Si

Di,j (Mj)
−1 Q℘(i,j),j p̂

n+1
℘(i,j) = 0

−θ∆t
∑
j∈Si

Di,j (Mj)
−1
[
Qi,j p̂

n+1
i + Q℘(i,j),j p̂

n+1
℘(i,j)

]
= 0

−θ∆t
∑
j∈Si

Di,j (Mj)
−1
[
Q`(j),j p̂

n+1
`(j) + Qr(j),j p̂

n+1
r(j)

]
= 0

(3.54)

Hence, if p = constant, the left side of (3.54) vanishes and then {pi ≡ c ∀i, c ∈
R} ⊂ kerA.

This represents a natural result since the incompressible Navier-Stokes equa-
tions depend only on the gradient of the pressure and not directly on the pres-
sure. Once we have an exact solution for the pressure pe, then every solution
of the kind pe + c with c ∈ R is also a solution. If we introduce the boundary
conditions and we specify the pressure in at least one point (i.e. in at least one
degree of freedom), this is equivalent to choose the constant c and the system
becomes non-singular. The following results state that the developed system
has several important properties such as the symmetry and, in general, positive
semi-definiteness:

Lemma 2 (Symmetry) The system matrix of A is symmetric.

Proof 2 In the following we denote with (i, k) the k−th degree of freedom of the
i−th element. For the symmetry of A we have to verify that (i, k) acts on (̃i, k̃)
as (̃i, k̃) acts on (i, k). If i = ĩ, the action is described by

∑
j∈Si

Q>i,j (Mj)
−1 Qi,j

that is trivially symmetric since Mj = M>
j is symmetric. If ĩ 6∈ ℘(i, Si)

the two actions are zero so it is also trivially verified. Remains the case ĩ ∈
℘(i, Si). In this case, the actions of the right element on the left one and vice
versa are, respectively, Q>`(j),jM−1

j Qr(j),j and Q>r(j),jM−1
j Q`(j),j. A simple

computation leads to

M−1
j Qr(j),j(k, l) =

Nψ∑
ξ=1

M−1
j (k, ξ)Qr(j),j(ξ, l) ∀k = 1 . . . Nψ , l = 1 . . . Nφ

63



3 Two-dimensional incompressible Navier-Stokes equations

and then ∀k = 1 . . . Nφ , l = 1 . . . Nφ,

Q>`(j),jM−1
j Qr(j),j(k, l) =

Nψ∑
γ=1

Q>`(j),j(k, γ)
(
M−1

j Qr(j),j

)
(γ, l)

=

Nψ∑
γ=1

Q>`(j),j(k, γ)

Nψ∑
ξ=1

M−1
j (γ, ξ)Qr(j),j(ξ, l)

=

Nψ∑
γ,ξ=1

Q>`(j),j(k, γ)M−1
j (γ, ξ)Qr(j),j(ξ, l)

=

Nψ∑
γ,ξ=1

Q`(j),j(γ, k)M−1
j (γ, ξ)Q>r(j),j(l, ξ)

=

Nψ∑
γ,ξ=1

Q>r(j),j(l, ξ)M−1
j (ξ, γ)Q`(j),j(γ, k)

= Q>r(j),jM−1
j Q`(j),j(k, l) (3.55)

Lemma 3 The matrix A is positive semi-definite, i.e. x>Ax ≥ 0 ∀x ∈
RNe·Nφ .

Proof 3 We do the computation directly. x>Ax =
∑
i (x>Ax)i and

(x>Ax)i = xi
∑
j∈Si

Q>i,jM−1
j Qi,jxi + xi

∑
j∈Si

Q>i,jM−1
j Q℘(i,j),jx℘(i,j)

=
∑
j∈Si

(
M
− 1

2
j Qi,jxi

)>(
M
− 1

2
j Qi,jxi

)

+
∑
j∈Si

(
M
− 1

2
j Qi,jxi

)>(
M
− 1

2
j Q℘(i,j),jx℘(i,j)

)

where we used that Mj is symmetric and positive definite, hence M−1
j is sym-

metric and positive definite and then exists the so called square operator, namely

∃M−
1
2

j such that M−1
j =

(
M
− 1

2
j

)>(
M
− 1

2
j

)
. By defining Ti,j := M

− 1
2

j Qi,j
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3.3 The particular case pγ = 0 using a simple Crank-Nicolson time discretization

we obtain

(x>Ax)i =
∑
j∈Si

(Ti,jxi)
> (Ti,jxi) +

∑
j∈Si

(Ti,jxi)
> (T℘(i,j),jx℘(i,j)

)
(3.56)

and consequently

x>Ax =

Ne∑
i=1

∑
j∈Si

(Ti,jxi)
> (Ti,jxi) +

Ne∑
i=1

∑
j∈Si

(Ti,jxi)
> (T℘(i,j),jx℘(i,j)

)
(3.57)

Remark that the double summation
∑Ne
i=1

∑
j∈Si sum every element i and edge

j. From the edge point of view, every edge gives two contributions, one given
when i = `(j) and one when i = r(j). The double summation can be conse-
quently inverted as follows:

Ne∑
i=1

∑
j∈Si

(Ti,jxi)
> (Ti,jxi) =

Nd∑
j=1

(
T`(j),jx`(j)

)> (
T`(j),jx`(j)

)
+

Nd∑
j=1

(
Tr(j),jxr(j)

)> (
Tr(j),jxr(j)

)
Ne∑
i=1

∑
j∈Si

(Ti,jxi)
> (T℘(i,j),jx℘(i,j)

)
=

Nd∑
j=1

(
T`(j),jx`(j)

)> (
Tr(j),jxr(j)

)
+

Nd∑
j=1

(
Tr(j),jxr(j)

)> (
T`(j),jx`(j)

)
(3.58)
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3 Two-dimensional incompressible Navier-Stokes equations

and then, by recomposing everything

x>Ax =

Nd∑
j=1

[(
T`(j),jx`(j)

)> (
T`(j),jx`(j)

)
+
(
Tr(j),jxr(j)

)> (
Tr(j),jxr(j)

)
(
T`(j),jx`(j)

)> (
Tr(j),jxr(j)

)
+
(
Tr(j),jxr(j)

)> (
T`(j),jx`(j)

)]
=

Nd∑
j=1

(
T`(j),jx`(j) + Tr(j),jxr(j)

)> (
T`(j),jx`(j) + Tr(j),jxr(j)

)
=

Nd∑
j=1

[(
T`(j),j 0

0 Tr(j),j

)
·

(
x`(j)
xr(j)

)]>

·

[(
T`(j),j 0

0 Tr(j),j

)
·

(
x`(j)
xr(j)

)]

=

Nd∑
j=1

(x`(j), xr(j))

(
T`(j),j 0

0 Tr(j),j

)>

·

(
T`(j),j 0

0 Tr(j),j

)(
x`(j)
xr(j)

)

=

Nd∑
j=1

~x>j T >T ~xj (3.59)

And, since T̃ := T >T is a positive semi-definite matrix by construction, ~x>j T̃ ~xj ≥
0 and then x>Ax =

∑
j ~x
>
j T̃ ~xj ≥ 0.

We introduce now the boundary elements and, in particular,

D∂
i,j =

∫
Γj

φ
(i)
k ψ

∂(j)
l ~nij ds−

∫
T i,j

∇φ(i)
k ψ

∂(j)
l dx

and

Q∂
i,j =

∫
T i,j

ψ
∂(j)
k ∇φ(i)

l dx−
∫
Γj

ψ
∂(j)
k φ

(i)
l σi,j~nj ds.

Then it is still true that D∂
i,j = −

(
Q∂
i,j

)>
and the complete system Ã can be

written as Ã = A+ B where
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3.3 The particular case pγ = 0 using a simple Crank-Nicolson time discretization

B : θ∆t
∑

j∈Si∩B(Ω)

(
Q∂
i,j

)>
M−1

j Q∂
i,j p̂

n+1
i

Ã : θ∆t

 ∑
j∈Si−B(Ω)

Q>i,jM−1
j Qi,j

 p̂n+1
i

+θ∆t
∑

j∈Si−B(Ω)

Q>i,jM−1
j Q℘(i,j),j p̂

n+1
℘(i,j)

It is easy to check that B is symmetric and at least positive semi-definite.
We have to introduce now some types of boundary conditions in order to show
that, if the pressure is specified on the boundary, the complete system Ã is
positive definite.
Let us rewrite x>Bx by including the external contribution and in the form of
the Eq. (3.59), namely

x>Bx =

Nd∑
j=1

(
T ∂`(j),jx`(j) +

[
T ∂x

]
ext,j

)>(
T ∂`(j),jx`(j) +

[
T ∂x

]
ext,j

)

where T ∂i,j = M
− 1

2
j Q∂

i,j and
[
T ∂x

]
ext,j

is a known external contribution that

depends on the boundary conditions. In particular, if the pressure is specified
at the boundary, then T ∂ext,j = T ∂`(j),j and

[
T ∂x

]
ext,j

is a known quantity that in

general is part of the known right hand side vector. Since the external pressure
is specified, then T ∂`(j),jx`(j) +

[
T ∂x

]
ext,j

= 0 ⇔ x`(j) ≡ xext,j . We take now

x>Bx = 0 that implicitly fixes xext = 0. In this way x`(j) = 0 ∀j ∈ B(Ω).
Using the same reasoning on the matrix A we can conclude that x ≡ 0, and
hence Ã is positive definite in this case. A possible way to specify the velocity
at the boundary is to neglect the jump contribution for the pressure at the
boundary or equivalent, taken xext,j = x`(j) ∀j ∈ B(Ω). It is easy to check

that if we have only this type of boundary conditions then x>Ãx = 0 for every
x constant, and then the matrix Ã is only positive semi-definite.

3.3.2 Remarks on the stability

In this section we discuss the stability of the proposed method. In particular
we will show that if the discretization of the nonlinear convective-viscous term
is stable, then the discrete solution of the velocity is L2 stable. Let v:

h =
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3 Two-dimensional incompressible Navier-Stokes equations

(uh, vh) ∈ (V dh )2 and ph ∈ V mh be the numerical solution for velocity and
pressure. Then the L2 stability property for the velocity reads

d

dt

∫
Ω

1

2

(
u2
h + v2

h

)
dx ≤ 0. (3.60)

By construction, the numerical solution satisfies the weak formulation of the
continuity and momentum equation, namely:

∫
Rj

ψ
(j)
k

∂

∂t
vh dx +

∫
∂Rj

ψ
(j)
k Gh · ~n ds−

∫
Rj

∇ψ(j)
k · F(vh,∇vh) dx

+

∫
T `(j),j

ψ
(j)
k ∇ph,`(j) dx +

∫
T r(j),j

ψ
(j)
k ∇ph,r(j) dx

+

∫
Γj

ψ
(j)
k

(
ph,r(j) − ph,`(j)

)
~nstd ds = 0

(3.61)

and

∑
j∈Si

∫
Γj

φ
(i)
k vh · ~ne,j ds−

∫
T i,j

∇φ(i)
k · vh dx

 = 0 (3.62)

for every i = 1 . . . Ne and j = 1 . . . Nd. Since {φ(i)
k }k forms a basis for the

polynomial space V mh |T i , we can take ph as a test function in (3.62). Denot-
ing with ph,i the discrete solution of the pressure inside element number i we
directly obtain from (3.62)

∑
j∈Si

∫
Γj

ph,i vh · ~ne,j ds−
∫
T i,j

∇ph,i · vh dx

 = 0 (3.63)
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3.3 The particular case pγ = 0 using a simple Crank-Nicolson time discretization

We can now sum over i = 1 . . . Ne in Eq. (3.63) and find

Ne∑
i=1

∑
j∈Si

∫
Γj

ph,ivh · ~ne,j ds−
∫
T i,j

∇ph,i · vh

 dx = 0

Nd∑
j=1

 ∫
T `(j),j

∇ph,`(j) · vh dx +

∫
T r(j),j

∇ph,r(j) · vh dx

+

∫
Γj

(
ph,r(j) − ph,`(j)

)
vh · ~nstd ds

 = 0

(3.64)

Using the same reasoning we can take as test function ψk = uh ∈ V dh in the first
component of Eq. (3.61) and ψk = vh ∈ V dh in the second one. By summing
the resulting two expressions we thus obtain

∫
Rj

vh ·
∂

∂t
vh dx +

∫
∂Rj

vh · (Gh · ~n) ds−
∫
Rj

∇vh : F(vh,∇vh) dx

+

∫
T `(j),j

vh · ∇ph,`(j) dx +

∫
T r(j),j

vh · ∇ph,r(j) dx

+

∫
Γj

(
ph,r(j) − ph,`(j)

)
vh · ~nstd ds = 0,

(3.65)

where c = A : B denotes the tensor operator c = AijBij , written at the aid of
the Einstein summation convention. Using equation (3.65) we get:

d

dt

∫
Ω

1

2

(
u2
h + v2

h

)
dx =

∫
Ω

(
vh ·

∂

∂t
vh

)
dx =

Nd∑
j=1

∫
Rj

(
vh ·

∂

∂t
vh

)
dx
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3 Two-dimensional incompressible Navier-Stokes equations

=

Nd∑
j=1

− ∫
∂Rj

vh · (Gh · ~n) ds+

∫
Rj

∇vh : F(vh,∇vh) dx



−
Nd∑
j=1

 ∫
T `(j),j

vh · ∇ph,`(j) dx +

∫
T r(j),j

vh · ∇ph,r(j) dx

+

∫
Γj

(
ph,r(j) − ph,`(j)

)
vh · ~nstd ds


(3.66)

where the first sum on the right hand side contains the contribution of the
nonlinear convective and viscous terms and the second sum, which contains
the contribution of the pressure, vanishes thanks to (3.64). As a final result,
we therefore obtain:

d

dt

∫
Ω

1

2

(
u2
h + v2

h

)
dx = −

Nd∑
j=1

 ∫
∂Rj

vh · (Gh · ~n) ds

−
∫
Rj

∇vh : F(vh,∇vh) dx

 . (3.67)

As a consequence of Eq. (3.67), the stability of our staggered DG method is
determined by the stability of the discretization used for the nonlinear convec-
tive and the viscous term. We note that on the right hand side of Eq. (3.67) we
have a standard DG discretization of these terms on the dual mesh, for which
the standard DG stability results apply. In the literature there are stability re-
sults that prove that if the numerical flux Gh is an entropy flux, then the right
hand side is actually less or equal zero for the convective part. More details on
the stability of high order DG schemes for convective problems can be found
in [108] for the scalar case and in [6] for first order systems. Furthermore, if
we have no convective-viscous contributions, Eq. (3.67) states that the total
kinetic energy of the system is exactly conserved.
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3.4 Splitting of the space-time matrices into a spatial and
temporal part

Due to the tensor product construction of the space-time basis functions, we can
split the main integrals (3.17)-(3.21) and (3.25) into a spatial and a temporal
part. Briefly, the space-time matrices are generated from the spatial matrices
of [144], componentwise, as:

M+
j (k, l) = γ`2(k)(t

n+1)γ`2(k)(t
n+1)Ms

j (`1(k), `1(l)), (3.68)

M−
j (k, l) = γ`2(k)(t

n+1)γ`2(k)(t
n)Ms

j (`1(k), `1(l)), (3.69)

M◦
j (k, l) = Ms

j (`1(k), `1(l))Dt(`2(k), `2(l)), (3.70)

Di,j(k, l) = ∆tn+1Ds
i,j(`1(k), `1(l))M t(`2(k), `2(l)), (3.71)

Qi,j(k, l) = ∆tn+1Qs
i,j(`1(k), `1(l))M t(`2(k), `2(l)), (3.72)

where the apex s means that the matrix is the spacial one constructed in [144];
Dt and M t are two time matrices defined as

Dt
(
k̃, l̃
)

=

1∫
0

dγk̃(ξ)

dξ
γl̃(ξ)dξ, (3.73)

M t
(
k̃, l̃
)

=

1∫
0

γk̃(ξ)γl̃(ξ)dξ, (3.74)

and `1, `2 are two appropriate sorting functions defined according to the number
of space and time basis functions.
Remark how the action of the matrix Dt defined in (3.73) is symmetric only if
pγ = 0.

3.5 Stability analysis of the space-time DG method

In this section we present a proof regarding the stability in the space-time DG
framework. In the particular case of pγ = 0, the stability follows directly from
the stability proof given in [144] and reported in Section 3.3.2. In the general
case of pγ > 0 we can derive the following result:

Theorem 1 The proposed staggered space-time DG method (3.8) and (3.14)
is L2 stable if the discretization of the nonlinear convective and viscous terms
is L2 stable.

71



3 Two-dimensional incompressible Navier-Stokes equations

Proof 4 By construction, the numerical solution satisfies the weak formulation
of the continuity and momentum equation, namely:

∑
j∈Si

∫
Γstj

φ̃
(i)
k vh · ~nij ds dt−

∫
T sti,j

∇φ̃(i)
k · vh dx dt

 = 0, (3.75)

and

∫
Rj

ψ̃
(j)
k vh dx


t=tn+1

−

∫
Rj

ψ̃
(j)
k vh dx


t=tn

−
∫
Rst
j

∂ψ̃
(j)
k

∂t
vh dx dt

+

∫
T st`(j),j

ψ̃
(j)
k ∇p`(j) dx dt+

∫
T str(j),j

ψ̃
(j)
k ∇pr(j) dx dt

+

∫
Γstj

ψ̃
(j)
k

(
pr(j) − p`(j)

)
~nj ds dt+

∫
∂Rst

j

ψ̃
(j)
k Gh · n ds dt

−
∫
Rst
j

∇ψ̃(j)
k · Fh dx dt =

∫
Rst
j

ψ̃
(j)
k Sh dx dt. (3.76)

In equation (3.75) we proceed as in [144] and take ph as test function. Passing
to the sum over each element T stj and exchanging the two summations we obtain
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∑
j∈Si

∫
Γstj

ph,ivh · ~nij ds dt−
∫
T sti,j

∇ph,i · vh dx dt

 = 0,

⇓

Ne∑
i=1

∑
j∈Si

∫
Γstj

ph,ivh · ~nij ds dt−
∫
T sti,j

∇ph,i · vh dx dt

 = 0,

m

Nd∑
j=1

 ∫
T st`(j),j

∇ph,`(j) · vh dx dt+

∫
T str(j),j

∇ph,r(j) · vh dx dt

+

∫
Γstj

(
ph,r(j) − ph,`(j)

)
vh · ~nstd ds dt

 = 0.

(3.77)

We now take vh as test function in (3.76) and sum up both components of the
momentum equation. Furthermore, we sum up over all dual elements. Then,
one obtains, thanks to (3.77), that all the pressure contributions add up to zero,
as in [144]. Note that this property is also satisfied for the pressure at each
Picard iteration, if the initial guess is taken according to (3.77), i.e. p0

h = 0.
We can further suppose that S = 0 and ν = 0 so that Fh(vh,∇vh) = Fh(vh)
since the source term could increase naturally the total kinetic energy of the
system and we want a stability result that is independent from the source term
or the physical viscosity. From (3.76) and (3.77) and taking into account the
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upwinding in time direction, we get

Nd∑
j=1


∫
Rj

v−h · v
−
h dx


t=tn+1

−

∫
Rj

v+
h · v

−
h dx


t=tn

−
∫
Rst
j

∂vh
∂t
· vh dx dt

+

∫
∂Rst

j

vh · (Gh · n) ds dt−
∫
Rst
j

∇vh : Fh dx dt

 = 0,

(3.78)

where v−h |t=t̄ and v+
h |t=t̄ are the left and the right value of vh at the interface

according to the time normal vector ~nt, respectively. We can now write the
third integral in (3.78) as∫
Rst
j

∂vh
∂t
· vh dx dt =

1

2

∫
Rst
j

∂

∂t
v2
h dx dt

=
1

2

∫
Rj

v−h · v
−
h dx


t=tn+1

− 1

2

∫
Rj

v+
h · v

+
h dx


t=tn

.

(3.79)

In this way, equation (3.78) becomes

Nd∑
j=1


∫
Rj

v−h v−h dx


t=tn+1

−

∫
Rj

v+
h · v

−
h dx


t=tn

−1

2

∫
Rj

v−h · v
−
h dx


t=tn+1

+
1

2

∫
Rj

v+
h · v

+
h dx


t=tn

+

∫
∂Rst

j

vh · (Gh · n) ds dt−
∫
Rst
j

∇vh : Fh dx dt

 = 0. (3.80)
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Following [72] we rearrange Eq. (3.80) by adding and subtracting the quantity
1
2

∫
v−h v−h dx

∣∣
t=tn

and thus obtain

Nd∑
j=1

1

2

∫
Rj

v−h v−h dx


t=tn+1

− 1

2

∫
Rj

v−h v−h dx


t=tn

+
1

2

∫
Rj

v−h v−h dx


t=tn

+
1

2

∫
Rj

v+
h v+

h dx


t=tn

−

∫
Rj

v+
h v−h dx


t=tn

+

∫
∂Rst

j

vh · (Gh · n) ds dt−
∫
Rst
j

∇vh : Fh dx dt

 = 0.

(3.81)

We can recognize that

+
1

2

∫
Rj

v−h v−h dx


t=tn

+
1

2

∫
Rj

v+
h v+

h dx


t=tn

−

∫
Rj

v+
h v−h dx


t=tn

=
1

2

∫
Rj

(
v+
h − v−h

)2
dx


t=tn

≥ 0 (3.82)

and hence

Nd∑
j=1

1

2

∫
Rj

v−h v−h dx


t=tn+1

− 1

2

∫
Rj

v−h v−h dx


t=tn

+

∫
∂Rst

j

vh · (Gh · n) ds dt−
∫
Rst
j

∇vh : Fh dx dt

 ≤ 0. (3.83)

One can observe how in (3.83) the difference of the kinetic energy is computed
at the end of two time slices. As for the method proposed in [144], the stability
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of the scheme is therefore determined by the stability of the discretization used
for the nonlinear convective term, which is assured according to [108, 6] when
appropriate monotone entropy fluxes are used. One thus obtains the result:

1

2

∫
Ω

v−h v−h dx


t=tn+1

− 1

2

∫
Ω

v−h v−h dx


t=tn

≤ 0. (3.84)

Finally, note that even for Gh = Fh ≡ 0 the high order space-time DG scheme
in general dissipates the total kinetic energy, since the solution is allowed to
jump at the two sides of a time slice and hence, in general, v−h |tn 6= v+

h |tn .
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3.6 Numerical test problems

We present here some classical test problems for the two-dimensional incom-
pressible Navier-Stokes equations. In general we can consider some steady or
almost steady test cases that can be solved using a low order in time method,
eventually extended using the Crank-Nicolson procedure. In the other cases
where we have an high unsteady solution or the chosen time step ∆t is too
large to resolve well the time evolution, we need to use an high order method
also in time. The section is organized as follows: in the first part we present
some test cases for the special case pγ = 0, such as presented in Section 3.3,
then we will test the complete space-time method described in Sections 3.2 and
3.5.

3.6.1 Numerical test for the space only high order method

3.6.1.1 Convergence test

We consider a smooth steady state problem in order to measure the spacial
order of accuracy of the proposed method. For this purpose, the Navier-Stokes
equations are first rewritten in cylindrical coordinates (r and ϕ), with r2 =
x2 +y2, tanϕ = x/y, the radial velocity component ur and the angular velocity
component uϕ. In order to derive an analytical solution we suppose a steady
vortex-type flow with angular symmetry, i.e. ∂/∂t = 0, ∂/∂ϕ = 0 and ur = 0.
With these assumptions, the continuity equation is automatically satisfied and
the system of incompressible Navier-Stokes equations reduces to{

∂p
∂r

=
u2
ϕ

r
,

r
∂2uϕ
∂r2

+
∂uϕ
∂r
− uϕ

r
= 0.

(3.85)

One can now recognize in the second equation of (3.85) a classical second order
Cauchy Euler equation and so obtain two solutions for uϕ, namely:

uϕ = c1r, (3.86)

uϕ =
c1
r
, (3.87)

for every c1 ∈ R. The corresponding pressures read

p =
c21r

2

2
+ c2, (3.88)
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p = −2
c21
r2

+ c2. (3.89)

respectively. In this section we set the boundary conditions in order to obtain
the non-trivial solution (3.87)-(3.89). Due to the singularity of uϕ for r = 0,
let Ω = C(5) − C(1) where C(r) = {(x, y) ∈ R2 |

√
x2 + y2 ≤ r}. As initial

condition we impose Eqs. (3.87)-(3.89) with c1 = uϕ(1) = 2 and c2 = 0. The
exact velocity is imposed at the internal boundary while the exact pressure is
specified at the external circle. The proposed algorithm is validated for several
polynomial degrees p using successively refined grids. The chosen parameters
for the numerical simulations are tend = 0.75; θ = 1; ν = 10−5; the time step
∆t is taken according to the CFL time restriction for the explicit discretization
of the nonlinear convective term (3.39). The L2 error between the analytical
and the numerical solution is computed as

ε(p) =

√√√√∫
Ω

(ph − pe)2 dx, ε(~v) =

√√√√∫
Ω

(vh − ve)2 dx, (3.90)

for the pressure and for the velocity vector field, respectively, where the sub-
script h indicates the numerical solution and e denotes the exact solution.
Tables 3.1 and 3.2 show the L2 convergence rates for successive refinements of
the grid, where O(p) and O(v) represent the order of accuracy achieved for
the pressure and the velocity field, respectively. The optimal convergence is
reached up to p = 2 while for p = 3 the observable order of accuracy for the
velocity vector field is closer to p+ 1

2
rather then p+ 1.

3.6.1.2 Blasius boundary layer

Another classical test problem concerns the Blasius boundary layer. For the
particular case of laminar stationary flow over a flat plate, a solution of Prandtl’s
boundary layer equations was found by Blasius in [19] and is determined by
the solution of a third-order non-linear ODE, namely:{

f ′′′ + ff ′′ = 0,

f(0) = 0, f ′(0) = 0, limξ→∞ f
′(ξ) = 1,

(3.91)

where ξ = y
√

u∞
2νx

is the Blasius coordinate; f ′ = u
u∞

; and u∞ is the farfield
velocity. The reference solution is computed here using a tenth-order DG ODE
solver, see e.g. [67], together with a classical shooting method. In order to
obtain the Blasius velocity profile in our simulations we consider a steady flow
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Table 3.1: Numerical convergence results for p = 0 and p = 1.

Ne p = 0

ε(p) ε(v) O(p) O(v)

124 7.902E-01 1.095E-00 - -

496 5.026E-01 7.086E-01 0.7 0.6

1984 2.982E-01 4.502E-01 0.8 0.7

7936 1.659E-01 2.797E-01 0.8 0.7

31744 8.797E-02 1.714E-01 0.9 0.7

Ne p = 1

ε(p) ε(v) O(p) O(v)

124 3.944E-01 4.311E-01 - -

496 8.830E-02 1.221E-01 2.2 1.8

1984 2.325E-02 3.299E-02 1.9 1.9

7936 6.207E-03 8.725E-03 1.9 1.9

31744 1.615E-03 2.318E-03 1.9 1.9

over a a wedge-shaped object. As a result of the viscosity, a boundary layer
appears along the obstacle. For the present test, we consider Ω = [0, 1] ×
[−0.25, 0.25] and a wedge shape object with upper edge corresponding to the
segment x = [0, 1]. An initially uniform flow u(x, y, 0) = u∞ = 1 , v(x, y, 0) = 0
and p(x, y, 0) = 1 is imposed as initial condition, while an inflow boundary
is imposed on the left and outflow boundary conditions are imposed on the
other edges of the external box. Finally, no-slip wall boundary conditions are
considered over the wedge shape object. We cover Ω with a total amount of
Ne = 278 triangles and use θ = 1 and p = 3. The resulting Blasius velocity
profile is shown in Figure 3.2, while the profile with respect to the Blasius
coordinate ξ is shown in Figure 3.3 in order to verify whether the obtained
solution is self-similar with respect to ξ. A comparison between the numerical
results presented here and the reference solution is depicted in Figure 3.4 for
x = 0.4 and x = 0.6. A good agreement between the reference solution and
the numerical results obtained with the staggered semi-implicit DG scheme is
obtained, despite the use of a very coarse grid. Note that the solution in terms
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Table 3.2: Numerical convergence results for p = 2 and p = 3.

Ne p = 2

ε(p) ε(v) O(p) O(v)

124 9.366E-02 1.990E-01 - -

496 1.054E-02 3.069E-02 3.2 2.7

1984 1.193E-03 3.686E-03 3.1 3.1

7936 1.438E-04 4.425E-04 3.1 3.1

Ne p = 3

ε(p) ε(v) O(p) O(v)

124 4.346E-02 9.317E-02 - -

496 2.966E-03 8.027E-03 3.9 3.5

1984 1.783E-04 7.153E-04 4.1 3.5

7936 1.313E-05 5.997E-05 3.8 3.6

x

y

0 0.5 1

-0.2

0

0.2

Figure 3.2: Computational domain used for the simulation of the Blasius
boundary layer. The colors represent the horizontal velocity u.

of the Blasius coordinate ξ is independent from x. The numerical solution is
also verified to maintain the self-similar Blasius profile in the (x, ξ) plane, see
fig. 3.3.
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Figure 3.3: Velocity profile with respect to the Blasius coordinate ξ.
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Figure 3.4: Numerical and reference solution for the Blasius boundary layer at
x = 0.4 and x = 0.6.
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3.6.1.3 Lid-driven cavity flow

We consider here another classical benchmark problem for the incompressible
Navier-Stokes equations, namely the lid-driven cavity problem. This test prob-
lem is solved numerically with the new staggered DG scheme on very coarse
grids using a polynomial degree of p = 3. Let Ω = [−0.5, 0.5] × [−0.5, 0.5],
set velocity boundary conditions u = 1 and v = 0 on the top boundary (i.e.
y = 0.5) and impose no-slip wall boundary conditions on the other edges. As
initial condition we take u(x, y, 0) = v(x, y, 0) = 0. We use a grid with Ne = 73
triangles for Re = 100, 400, 1000 and Ne = 359 triangles for Re = 3200. A
sketch of the main and dual grid is shown in fig. 3.5.

x

y

-0.4 -0.2 0 0.2 0.4

-0.4

-0.2

0

0.2

0.4

Figure 3.5: Main and dual grid used for the lid-driven cavity problem for Re =
100, 400, 1000.

For the present test θ = 1; ∆t is taken according to condition (3.39); and tend =
150. According to [110, 89], primary and corner vortices appear from Re = 100
to Re = 3200, a comparison of the velocities against the data presented in [89],
as well as the streamline plots are shown in Figure 3.6 and 3.7. A very good
agreement is obtained in all cases, even if a very coarse grid has been used.
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Figure 3.6: Velocity profiles (left) and streamlines (right) at Re = 100 and
Re = 400 for the lid-driven cavity problem.

3.6.1.4 Backward-facing step.

In this section, the numerical solution for the fluid flow over a backward-facing
step is considered. For this test problem, both experimental and numerical
results are available at several Reynolds numbers (see e.g. [3, 79]). The com-
putational domain Ω and the main notation are reported in Figure 3.8. The
fluid flow is driven by a pressure gradient imposed at the left and the right
ends of the computational domain. On all the other boundaries, no-slip wall
boundary conditions are imposed. According to [3], we take Re = DU

ν
where

D = 2hin; U is the mean inlet velocity; ν is the kinematic viscosity. The
computational domain is covered with a total number of Ne = 260 triangles
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Figure 3.7: Velocity profiles (left) and streamlines (right) at Re = 1000 and
Re = 3200 for the lid-driven cavity problem.

with characteristic size h = 0.2 for x ≤ 5 and h = 0.48 for x > 5 (see Figure
3.8). Finally we use p = 3; θ = 1 and ∆t is the one given by the CFL condition
for the nonlinear convective term; tend = 80s. Figures 3.10 and 3.11 show the
vortices generated at different Reynolds numbers, while in Figure 3.9 the main
recirculation point X1 is compared with experimental data given by Armaly in
[3], and the explicit second-order upwind finite difference scheme introduced in
[17]. A good agreement with the experimental data is shown up to Re = 316
but, according to [3], the experiment becomes three dimensional for Re > 400,
so the comparison can be done only up to Re = 400. Indeed, one can see in fig.
3.11 how the secondary vortex occurs for Re = 426, while in the experiments
it appears at higher Reynolds numbers (see e.g. [3]).
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Figure 3.8: Grid and main notation used for the backward-facing step problem.

Re

X
1

0 100 200 300 400 500 600 700
0

2

4

6

8

10

12

14 Experimental data
Staggered semi-implicit DG scheme (p=3)
SOU Numerical solution

Figure 3.9: Comparison of the experimental data of Armaly et al. [3] with the
numerical results obtained with the present semi-implicit staggered
DG scheme and the numerical solution obtained in [79] for the
reattachment point X1 in the backward-facing step problem.
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Figure 3.10: Streamlines at Reynolds numbers Re = 44, 113 and 250 from top
to bottom.

3.6.1.5 Rotational flow past a circular half-cylinder

Here we consider a rotational flow past a circular half-cylinder. A comparison
between numerical and exact analytical solution is possible for incompressible
and inviscid fluid, i.e. here we set ν = 0. We use the computational setup of
Feistauer and Kucera [82], hence Ω = [−5, 5] × [0, 5] − {

√
x2 + y2 ≤ 0.5}; as

boundary conditions we impose the velocity at the left boundary; homogeneous
Neumann boundary conditions on the top and right boundaries and inviscid
wall at the bottom and the surface of the half-cylinder. The farfield velocity
field is given by u = y and v = 0. The exact analytical solution to this problem
was found by Fraenkel in [85]. For the present test we choose p = 3; ∆t is
set according to (3.39) and we cover Ω with Ne = 800 triangles, using only
6 triangles to describe the half-cylinder. Curved isoparametric elements are
considered in order to represent the geometry of the half-cylinder properly. As
initial conditions we impose p(x, y, 0) = 1; u(x, y, 0) = y and v(x, y, 0) = 0.
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Figure 3.11: Streamlines at Reynolds numbers Re = 316, 426 and 633 from top
to bottom.

Two vortices appear near the half-cylinder (see fig. 3.12 left), while a com-
parison between analytical and numerical velocity magnitude on the cylinder
surface (i.e. r = 0.5) is shown on the right of fig. 3.12. A good agreement
between analytical and numerical results is obtained also with a very coarse
grid. An important remark is that for this test problem the use of isopara-
metric elements is crucial, as previously shown for inviscid flow past a circular
cylinder by Bassi and Rebay in [12].

3.6.1.6 Flow over a circular cylinder

In this section we consider the flow over a circular cylinder. Also in this case,
the use of the isoparametric approach is mandatory to represent the geometry
of the cylinder wall, see [12, 143]. In particular, two cases are considered: first,
an inviscid flow around the cylinder is assumed in order to obtain a steady
potential flow; finally, the complete viscous case is considered in order to get
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Figure 3.12: Rotational inviscid flow past a circular half-cylinder. Left:
Streamlines. Right: Analytical and numerical results for r = 0.5.
The vertical lines show the dimension of the six curved elements
that cover the half-cylinder.

the unsteady von Karman vortex street. For the first case a sufficiently large
domain Ω = [−8, 8]× [−8, 8]−{

√
x2 + y2 ≤ 1} is employed. The exact solution

for this case is known and reads:

ur(r, ϕ) = ū

(
1− R2

c

r2

)
cos(ϕ), uϕ(r, ϕ) = −ū

(
1 +

R2
c

r2

)
sin(ϕ),

p =
1

2
ū2

(
2R2

c

r2
cos(2ϕ)− R4

c

r4

)
, (3.92)

where ū is the inflow velocity; Rc is the cylinder radius; ur and uϕ are the
radial and angular components of the velocity, respectively. An initial condition
v(x, y, 0) = (ū, 0) is used, while the exact velocity distribution is taken as the
external boundary condition. An inviscid wall boundary condition is imposed
on the cylinder. For the present test ū = 0.01; Rc = 1; ν = 0; p = 3; θ = 0.6; ∆t
is the one taken according to the CFL restriction (3.39); tend = 10. The domain
Ω is covered with a total number of Ne = 1464 triangles and an isoparametric
approach is considered to represent the cylinder wall properly. Figure 3.13
shows the streamlines and the pressure contours obtained at t = 10 as well as
the comparison between exact and numerical solution at several radii. A very
good agreement between exact and numerical solution is observed. We consider
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Figure 3.13: Steady flow of an inviscid incompressible fluid around a circular
cylinder. On the top left: streamlines and pressure contours at
tend = 10; Numerical and exact solution at r = 1.0, r = 1.5 and
r = 2.0 for the velocity components u, v and pressure p from top
right to the bottom right, respectively.

now the fully viscous case in order to show the formation of the von Karman
vortex street. Two domains are considered here: Ω1 = [−20, 80] × [−20, 20]
covered with a Ne = 1702 triangles; and Ω2 = [−5, 30] × [−10, 10] covered
with a Ne = 1706 triangles. As initial condition we set v(x, y, 0) = (ū, 0);
θ = 0.6; and ū = 0.5. Different viscosity coefficients are used in order to
obtain different Reynolds numbers. For the present test we use ∆t according
to (3.39); and p = 3. The velocity (ū, 0) is prescribed at the left boundary while
homogeneous Neumann boundary conditions are imposed on the other external
edges of the domain. Finally viscous wall boundary condition is imposed on
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the cylinder surface. Figure 3.14 shows the obtained relationship between the
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Figure 3.14: Strouhal-Reynolds number relationship for the present method,
the method of Qu et al. [131] and experimental data of Williamson
and Brown [157].

Strouhal number, computed as St = 2rf
u∞

, the numerical results given by Qu
et al (see [131]) and the experimental law given in [157]. The simulations are
performed on the domain Ω1. The numerical results fit well the experimental
data and the numerical reference solution up to Re = 150. Better results
can be obtained by further enlarging the computational domain. The velocity
field and the vorticity show different structures when low and high Reynolds
numbers are considered. The vorticity contours are shown in Figure 3.15 for
Re = 50 and Re = 125 at time t = 500. In the case of Re = 125 the von
Karman vortex street is fully developed while, for Re = 50, the two initial
vortices remain present behind the cylinder for a longer time. This is due to
the low value of the Reynolds number, taken close to the limit of Re = 40 for
the generation of the vortex street.
The time evolution of the generation of the von Karman vortex street is pre-
sented at several times for Re = 200 on Ω2 in Figure 3.16.
Finally, in Figure 3.17 we report a comparison between the computational time
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Figure 3.15: Dual mesh and vorticity contours of the von Karman vortex street
generated at time t = 500 for Re = 50 (top) and Re = 125 (bot-
tom).
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Figure 3.16: Temporal evolution of the vorticity profile for t = 15, t = 30,
t = 50, t = 75 from top left to bottom right at Re = 200.
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Figure 3.17: Left: comparison between the CPU time for the GMRES method
and the CG method. Right: total number of iterations for the
GMRES against the number of iterations for the CG method.

needed per time step for the main parts of the algorithm presented in this paper
up to the time t = 10s using Re = 100 on Ω1 if we employ a GMRES method or
the cheaper CG method for the solution of the linear system. Note that since
our particular semi-implicit DG discretization of the incompressible Navier-
Stokes equations on staggered grids leads to a symmetric and positive-definite
linear system, we can employ the CG method. This is not always the case for
DG schemes applied to the incompressible Navier-Stokes equations since some
formulations may also lead to non-symmetric linear systems.

The time required to compute the convective-viscous term represents, in the
second case, the main computational effort. Using the GMRES algorithm the
computational time needed to solve the linear system increases a lot compared
to the CG method and becomes the main cost of the algorithm. In particular,
the mean time to solve the system using the GMRES algorithm is, for this test,
6.2s while using the CG method is only about 1.0s. For all tests, the tolerance
for solving the linear system was set to tol = 10−12. We underline that for
a fair comparison of the two methods, no preconditioners have been used and
that faster convergence can be obtained by using a proper preconditioner for
each iterative solver.
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3.6.2 Numerical tests for the space-time DG method

3.6.2.1 Convergence test using a manufactured solution

In order to study the accuracy of the proposed space-time DG method, we
need an exact unsteady solution of (3.1)-(3.3). For that purpose, we propose a
so-called manufactured solution in this section, which also makes use of a linear
source term of the type S(x, y, t). The exact analytical solution for the velocity
and the pressure is constructed so that

ve = v0 sin [k(x− y)− ωt] , pe = p0 sin [k(x− y)− ωt] , (3.93)

with the amplitudes v0 = (u0, v0) and p0. Using the manufactured solution
(ve, pe) we can compute all terms in (3.1) exactly and hence obtain a source
term S(x, y, t) that balances the momentum equation. Remark that the velocity
field must be divergence-free (∇ · v = 0), hence u0 = v0. In the present test
case, we take u0 = v0 = 1; p0 = 1; ω = 2π; k = 10/2π; tend = 0.5; ∆t according
to condition (3.39); and ν = 0.01. The temporal accuracy is chosen equal to the
spatial one, the total number of Picard iterations is taken as Npic = p+ 1 and
pn+1,0 ≡ 0 for the present test. The computational domain is Ω = [−0.5, 0.5]2;
the exact velocity field and pressure are taken as initial conditions and the
exact pressure is also specified on ∂Ω as boundary condition. The L2 error
between the analytical and the numerical solution is computed as

ε(p) =

√∫
Ω

(ph − pe)2dx , ε(v) =

√∫
Ω

(vh − ve)2dx

where the subscript h refers to the numerical solution obtained at the final time
t = tend. The resulting rate of convergence is shown in Table (3.3). We observe
that the optimal order of convergence is obtained up to p = 4 for the present
unsteady test.

3.6.2.2 The Womersley problem

Here we consider an unsteady, viscosity-dominated test problem for which the
incompressible Navier-Stokes equations have a nontrivial exact solution, namely
the fluid flow inside a rigid planar pipe that is driven by a sinusoidal pressure
gradient of the type

pout(t)− pin(t)

L
= <

(
P̃

ρ
eiωt

)
. (3.94)
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Table 3.3: Numerical convergence results for the manufactured solution test
problem with polynomial degrees p = 1 to p = 4 in space and time.

Ne ε(p) ε(v) σ(p) σ(v)

p = pγ = 1

40 1.217E-01 9.572E-02 - -

160 2.678E-02 2.362E-02 2.2 2.0

640 6.050E-03 5.527E-03 2.1 2.1

2560 1.758E-03 1.497E-03 1.8 1.9

p = pγ = 2

40 8.740E-03 1.052E-02 - -

160 8.833E-04 1.065E-03 3.3 3.3

640 1.050E-04 9.103E-05 3.1 3.5

2560 1.347E-05 7.820E-06 3.0 3.5

p = pγ = 3

40 7.703E-04 1.425E-03 - -

160 3.864E-05 4.999E-05 4.3 4.8

640 2.425E-06 1.974E-06 4.0 4.7

2560 1.789E-07 1.288E-07 3.8 3.9

p = pγ = 4

40 5.315E-05 7.135E-05 - -

160 1.143E-06 1.418E-06 5.5 5.7

640 3.102E-08 2.945E-08 5.2 5.6

In this test L denotes the tube length; P̃ is the amplitude of the pressure os-
cillation; ρ is the density of the fluid; ω is the frequency of the oscillation; pin
and pout indicate the inlet and the outlet pressure, respectively; < is the real
part operator. By imposing Eq. (3.94) at the tube ends, the exact analytical
solution for the three dimensional, axially symmetric case was found by Wom-
ersley in [158]. It can be derived also for the two dimensional planar case. The
resulting axial velocity is uniform in the x−direction and is given by

u(x, y, t) = <
[
i
P̃

ρ
ω

(
1− cos[λ(yc − 1)]

cos(λ)

)]
, (3.95)
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where λ =
√
−iα2; α = R

√
ω
ν

; yc = y−yb
R

; and yb is the y value of the bottom.

For the present test Ω = [−0.5, 0.5] × [−0.2, 0.2]; and P̃
ρ

= 1. We take a set
of successively refined grids in order to show the convergence behaviour to the
exact solution with respect to the order p in space and pγ in time. According
to [158] the nonlinear convection effect is neglected for the present test. Thus,
the stability of our scheme is not restricted by the CFL condition on the fluid
velocity. Since we use very large time steps and a high viscosity coefficient
in this test, the implicit treatment of the viscous terms is necessary to allow
large time steps. In particular we choose ν = 5 · 10−2 and tend = 1.5. On the
coarsest grid we use ∆t = tend/6, then the time step is reduced proportional
to the spatial grid size. No-slip boundary conditions are imposed on the top
and the bottom boundary, while the pressure (3.94) is imposed at the inlet and
the outlet boundary on the left and on the right, respectively. The number of
Picard iterations is given by Np = p+ 1 for all simulations.
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Figure 3.18: Time series for the axial velocity u and the pressure p computed
at (x, y) = (−0.5, 0) for the coarsest grid Ne = 46 and Nt = 6.

The resulting convergence results, using the L2−norm as in the previous exam-
ple, are shown in Table 3.4. Observe how a non-optimal order of convergence p
is achieved for the velocity for odd order schemes (even polynomial degree p),
while the optimal convergence rate p+1 is achieved for the pressure for all poly-
nomial degrees. Note that when using the semi-implicit staggered DG method

95



3 Two-dimensional incompressible Navier-Stokes equations

u

y

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2 DG (p3p3) x=-0.2
DG (p3p3) x=0.3
Exact Solution

Figure 3.19: Radial velocity profiles for x = −0.2 and x = 0.3 at times, from
left to right, t = [0.75, 0.5, 0.875, 1.0, 0.125]. Comparison between
exact and numerical solution.

introduced in [143], only a second order of convergence could be achieved for
this unsteady test problem, while full high order convergence in space and time
is obtained with the new scheme presented in this paper. In Figure 3.18 we
show the time series of the axial velocity and the pressure in a given point
for the coarsest grid configuration (Ne, Nt) = (46, 6). While piecewise linear
space-time polynomials are not able to reproduce the sinusoidal signal well with
only six time steps, the piecewise quadratic and higher order approximations
in space and time yield an almost perfect match with the exact solution even
on this extremely coarse space-time grid.

In Figure 3.19 we compare the resulting numerical velocity profiles u(y) against
the exact solution at several times for the case (p, pγ) = (3, 3) and Ne = 736.
Two different locations, x = −0.2 and x = 0.3, are plotted in order to show
that the profile is constant in the x-direction. One observes that there is no
visible difference between numerical and exact solution.
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Table 3.4: Numerical convergence results for the planar Womersley problem.

p pγ Ne Nt ε(p) ε(v) σ(p) σ(v)

1 1 46 6 5.7880182E-02 1.8848423E-03 - -

1 1 184 12 1.7635947E-02 5.5901107E-04 1.7 1.8

1 1 736 24 4.6206559E-03 1.4587701E-04 1.9 1.9

1 1 2944 48 1.1683966E-03 3.7404869E-05 2.0 2.0

2 2 46 6 7.0716231E-03 2.6412698E-04 - -

2 2 184 12 4.8160864E-04 3.8846170E-05 3.9 2.8

2 2 736 24 3.0677533E-05 7.2036760E-06 4.0 2.4

2 2 2944 48 1.9295385E-06 1.6070616E-06 4.0 2.2

3 3 46 6 9.8372146E-04 1.2793693E-05 - -

3 3 184 12 7.7144497E-05 7.8462176E-07 3.7 4.0

3 3 736 24 5.0814347E-06 4.8795894E-08 3.9 4.0

3 3 2944 48 3.2173776E-07 3.0326872E-09 4.0 4.0

4 4 46 6 7.3692980E-05 5.1193160E-07 - -

4 4 184 12 1.2539784E-06 2.1649081E-08 5.9 4.6

4 4 736 24 2.1930727E-08 1.1576584E-09 5.8 4.2

4 4 2944 48 1.0258845E-09 7.0131498E-11 4.4 4.0

3.6.2.3 Taylor-Green vortex

Another widely used testcase for the verification of numerical methods for the
incompressible Navier-Stokes equations is the Taylor-Green vortex problem.
The analytical unsteady solution is given by

u(x, y, t) = sin(x) cos(y)e−2νt, (3.96)

v(x, y, t) = − cos(x) sin(y)e−2νt, (3.97)

p(x, y, t) =
1

4
(cos(2x) + cos(2y))e−4νt. (3.98)

The computational domain is Ω = [0, 2π]2 and is extended using periodic
boundary conditions on all the boundaries.
As implied by Eqs. (3.96)-(3.98), the resulting velocity field initially appears as
depicted in Figure 3.20 and then starts to lose energy according to the friction
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Figure 3.20: Velocity field of the Taylor-Green vortex on the coarse grid Ne =
40 with p = 4. The edge-based dual grid is shown.

effects. For the present test we consider several grid refinements; tend = 0.1;
ν = 0.1; and ∆t is chosen according to the CFL time restriction for the non-
linear convective terms. The numerical convergence results are shown in Table
3.5. We find that the optimal convergence rate is achieved for this important
nontrivial test problem with periodic boundary conditions.

3.6.2.4 Double shear layer

The numerical scheme is applied here to a test case studied in [14], which
contains a high initial velocity gradient. We take Ω = [−1, 1]2 and, as initial
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Table 3.5: Numerical convergence results for the velocity vector field of the
Taylor-Green vortex.

Ne p = pγ = 1 p = pγ = 2 p = pγ = 3 p = pγ = 4
ε(v) σ ε(v) σ ε(v) σ ε(v) σ

40 3.088E-01 – 5.588E-02 – 5.895E-03 – 1.669E-03 –
160 8.868E-02 1.8 5.765E-03 3.3 4.730E-04 3.6 3.109E-05 5.7
640 2.267E-02 2.0 7.052E-04 3.0 2.387E-05 4.3 6.233E-07 5.6
2560 5.476E-03 2.0 8.452E-05 3.1 1.312E-06 4.2 1.297E-08 5.6

condition, we consider a perturbed double shear layer profile:

u0 =

{
tanh [ρ̃(yn − 0.25)] , if yn ≤ 0.5,

tanh [ρ̃(0.75− yn)] , if yn > 0.5,
(3.99)

v0 = δ sin(2πxn), (3.100)

p0 = 1, (3.101)

where yn = y+1
2

and xn = x+1
2

are the normalized vertical and horizontal
coordinates, respectively; ρ̃ is a parameter that determines the slope of the
shear layer; and δ is the amplitude of the initial perturbation. For the present
test we set δ = 0.05; ρ̃ = 30; ν = 2 · 10−4; p = 4 and pγ = 3. The time step
is chosen according to the CFL condition for the nonlinear convective terms
and four Picard iterations have been used in this simulation. The domain Ω is
covered with a total number of only Ne = 640 triangles and periodic boundary
conditions are imposed everywhere. The resulting vorticity pattern is reported
at several times in Figure 3.21. The two thin shear layers evolve into several
vortices, as observed in [14], and overall the small flow structures seem to be
relatively well resolved also at the final time t = 1.8, even if a very coarse grid
has been used in space and time.

3.6.2.5 Flow over a circular cylinder

In this section we repeat the test done in Section 3.6.1.6 using the space-time
high order version of the algorithm. As previously discussed, the use of an
isoparametric finite element approach is mandatory to represent the curved

99



3 Two-dimensional incompressible Navier-Stokes equations

0

2

4

6

8

1

0

2

4

6

8

1

0

2

4

6

8

1

0

2

4

6

8

1

Figure 3.21: Vorticity pattern for the double shear layer test at times, from top
left to bottom right, t = 0.4;t = 0.8;t = 1.2;t = 1.8.

geometry of the cylinder wall, see [12, 143]. We consider here directly the
viscous case in order to show the formation of the von Karman vortex street.
We take a sufficiently large domain Ω = [−20, 80] × [−20, 20] − {

√
x2 + y2 ≤

1} and we cover it with only Ne = 1702 triangles. Note that the chosen
grid is extremely coarse compared to the dimension of the domain Ω. The
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characteristic average size of the mesh is h = 1.295 and the smallest element
size is about hmin = 0.347. As initial condition we set v(x, y, 0) = (ū, 0), where
ū is the inlet velocity, taking ū = 0.5 in our case. For the present test we use
∆t according to (3.39); p = 3; pγ = 2. The velocity (ū, 0) is prescribed at
the left boundary while transmissive boundary conditions are imposed on the
other external edges of the domain. Finally a no-slip wall boundary condition is
imposed on the cylinder surface. A plot of the streamlines is reported in Figure
3.22 at several output times. The resulting profiles for the vorticity and the
horizontal velocity u are plotted in Figure 3.23, as well as the dual grid elements
for Re = 100. As shown in Figure 3.22, two vortices are initially generated at
the circular cylinder and then, several vortices leave the cylinder and generate
the Von Karman street as we can see in Figure 3.23. The resulting Strouhal
number for the present test is St = fd

ū
= 0.1647 that is in good agreement with

St = 0.1649 obtained by Qu et al. in [131].
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Figure 3.22: Streamlines along the circular cylinder at times, from top left to
bottom right, t = 25, 50, 100 and t = 200.

102



3.6 Numerical test problems

x

y

-5 0 5 10 15 20 25 30 35 40 45
-10

-5

0

5

10

x

y

-5 0 5 10 15 20 25 30 35 40 45
-10

-5

0

5

10

Figure 3.23: Laminar viscous flow past a circular cylinder. Profile for the vor-
ticity and horizontal velocity u at time t = 300.
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4 Three-dimensional incompressible
Navier-Stokes equations

4.1 Overview

In this chapter we are going to extend the method presented in the previous
Chapter 3 to three space dimensions. The method presented here can formally
be derived in the same way such as described in Section 3.2.3. On the contrary,
we have to change some details about basis functions or higher order geometry
in order to solve the equations, such as will be discussed in Section 4.2.2 and
in the appendix section A.4, respectively. In addition we present also an alter-
native computation of the nonlinear convective-viscous term that follows the
same idea of the structured case [70]. A description about this new procedure
for the convective-viscous contribution is presented in Section 4.2.4.1 while a
numerical comparison between the natural extension and the one presented in
this chapter is reported in Section 4.4. Several classical numerical tests for
three-dimensional incompressible flows are reported in Section 4.3.
Furthermore, a parallel MPI implementation can be performed for this version
of the code. The method developed using the new approach for the convective-
viscous contribution, such as will be described in Section 4.2.4.1, would lead
to a classical MPI implementation. On the contrary, if we use the natural
extension of the convective-viscous term, then the MPI parallelization contains
several issues given by the use of staggered grids, that lead to several special
communications needed at the dual level between different MPI regions. The
problematics in this case are similar to the ones obtained in the two dimensional
case and are discussed in the appendix section A.2.

4.1.1 Governing equations

The three-dimensional incompressible Navier-Stokes equations are given by

∂~v

∂t
+∇ · F +∇p = S, (4.1)

∇ · ~v = 0, (4.2)
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that is formally the same such as in the section 3.1.1 but it contains an ad-
ditional velocity component. Indeed in this case ~v = (u, v, w) is the velocity
vector; u, v and w are the velocity components in the x, y and z direction,
respectively; F = F(~v,∇~v) = Fc(~v) − ν∇~v is a nonlinear tensor that depends
on the velocity and its gradient, where Fc = ~v ⊗ ~v is the flux tensor of the
nonlinear convective terms, which in three-dimensions reads

Fc =

 uu uv uw

vu vv vw

wu wv ww

 .

4.2 DG scheme for the 3D incompressible Navier-Stokes
equations

4.2.1 Unstructured staggered space-time grid

We directly extend the mesh and hence the notation used in chapter 3 to three
dimensional main tetrahedral and dual hexahedral meshes.
Figures 4.1 and 4.2 summarize the used notation, the main tetrahedral and the
dual hexahedral meshes.
In the time direction we do exactly the same procedure such as described
in Section 3.2.2 and hence derive the final main space-time tetrahedral mesh
{T sti }i∈[1,Ne] and the dual hexahedral one {Rst

j }j∈[1,Nd].

4.2.2 Space-Time basis functions

We construct first the space basis functions and then we extend them using the
tensor product to space-time basis functions. We develop the basis functions on
a generic tetrahedron through the basis functions on the standard tetrahedron
defined such as Tref = {(ξ, γ, δ) ∈ R3,+ | ξ + γ + δ ≤ 1}. We write a generic
basis function such as

φk(ξ, γ, δ) =

p∑
r3=0

p−r3∑
r2=0

p−r3−r2∑
r1=0

αr1,r2,r3ξ
r1γr2δr3 (4.3)

for some coefficients αr1,r2,r3 . We set now Nφ = (p+1)(p+2)(p+3)
6

nodal points
{(ξk, γk, δk)}k using the standard procedure for classical continuous conforming
finite elements and we impose the condition φk(ξk, γk, δk) = 1, φk(ξl, γl, δl) = 0
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Figure 4.1: On the left: main tetrahedral mesh with Si = {j1, j2, j3, j4}. On
the right: standard orientation used through this chapter.

for all l 6= k ∈ [1, Nφ]. This leads to a linear system for the coefficients α
that we can solve analytically for every polynomial degree p on the reference
tetrahedron. In this way we obtain Nφ basis functions on Tref , {φk}k∈[1,Nφ].
The connection between reference and physical space is performed by the map
T (·,T i) = Ti : T i −→ Tref for every i = 1 . . . Ne and its inverse, called
T−1(·,T i) = T−1

i : T i ←− Tref . The maps from the physical coordinates
to the reference one can be constructed following a classical sub-parametric
or a complete iso-parametric approach and in general we will write, for all
i = 1 . . . Ne, φ

(i)
k (x, y, z) = φk(Ti(x, y, z)).

Unfortunately it is not so easy to construct the basis functions on the dual
mesh since the additional degrees of freedom do not allow us to construct a
bijective map between a reference square-based pyramid and the physical ele-
ment. This problem can be skipped by introducing directly the basis functions
in the physical space. The generic basis function will consequently depend on
the element j ∈ [1, Nd].
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Figure 4.2: An example of dual hexahedral element based on the side Γj .

The natural extension to the three-dimensional case of the nodal approach
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would read

ψ
(j)
k (x, y, z) =

p∑
r3=0

p−r3∑
r2=0

p−r3∑
r1=0

α(j)
r1,r2,r3

(
x− x(j)

0

)r1 (
y − y(j)

0

)r2 (
z − z(j)

0

)r3
hr1+r2+r3
j

,

(4.4)

where (x, y, z)
(j)
0 are some appropriate initial points and hj is the characteristic

length of Rj . Starting from Nψ = (p+1)(p+2)(2p+3)
6

points defined such as

(ξ, γ, δ)k(r1,r2,r3) =

(
r1

p
,
r2

p
,
r3

p

)
where k(r1, r2, r3) = r1 +(p−r3 +1)r2 +(p−r3 +1)2r3 is a reordering function,
we derive the position of the physical degrees of freedom (DoF) using the maps
T on the standard tetrahedron as follows:

(x, y, z)k =

{
T−1(ξk, γk, δk,T `(j),j) if ξk + γk + δk ≤ 1

T−1(1− γk − δk, 1− ξk − δk, δk,T r(j),j) otherwise

(4.5)
Imposing

ψ
(j)
k (xl, yl, zl) = δkl ∀k, l ∈ [1, Nψ] (4.6)

we obtain a linear system for every j that we can solve and so get Nψ basis

functions {ψ(j)
k }k∈[1,Nψ ]. The main advantages to use a nodal approach is that

in the computation of the nonlinear convective term we can use F̂ (~v) = ~̂v ⊗ ~̂v.
Unfortunately, the dual face-based hexahedral elements are non-standard, since
they have six faces but only five nodes, so they are naturally represented by
a generalization of a square based pyramid. The definition of Lagrange basis
functions on this kind of elements is problematic and usually we have to pass to
rational functions of polynomials instead of using polynomial functions (see e.g.
[45]); for instance, the system defined in (4.6) becomes singular for some choices
of {~xl}l and hence we are not able to construct a polynomial basis function such
as expressed in (4.4) for a generic element Rj . An alternative basis function
that we can develop is based on the optimal number of polynomial functions
Nφ used to construct the polynomial basis on Tstd and project them in the
physical hexahedral element, that contains a sufficient number of basis function
to represent the polynomial space of degree p. With this choice we get in general
only a modal base at the dual hexaxedral level, i.e. if the convective term is
computed on the dual mesh according to the natural extension of the one

109



4 Three-dimensional incompressible Navier-Stokes equations

proposed in [144], then it has to be computed according to a modal approach,
see Section 4.2.4.
Finally, the time basis functions are constructed on a reference interval [0, 1]
for polynomial of degree pγ . In this case the resulting Nγ = pγ + 1 basis
functions {γk}k∈[1,Nγ ] are defined as the Lagrange interpolation polynomials
passing through the Gauss-Legendre quadrature points for the unit interval.
For every time interval [tn, tn+1], the map between the reference interval and
the physical one is simply given by t = tn + τ∆tn+1 for every τ ∈ [0, 1].
Using the tensor product we can finally construct the basis functions on the
space-time elements T sti and Rst

j such as φ̃(ξ, γ, δ, τ) = φ(ξ, γ, δ) · γ(τ) and

ψ̃(j)(x, y, z, t) = ψ(j)(x, y, z) · γ(τ(t)). The total number of basis functions
becomes Nst

φ = Nφ ·Nγ and Nst
ψ = Nψ ·Nγ .

4.2.3 Semi-Implicit DG scheme

The derivation of the three-dimensional equivalent of the method described in
Chapter 3 can be done, thanks to the used structure and the vectorial formal-
ism, exactly such as the one previously discussed in Section 3.2.3.
As a final result, the weak formulation of the system (4.1)-(4.2) reads∑

j∈Si

Di,j~̂v
n+1

j = 0, (4.7)

Mj~̂v
n+1

j −MjF̂~vj + Qr(j),j p̂
n+1
r(j) + Q`(j),j p̂

n+1
`(j) = 0. (4.8)

Formal substitution of the velocity vector field of the discrete momentum equa-
tion (4.8) into the continuity equation (4.7), as well as a Picard procedure in
order to avoid nonlinearity, leads to a linear system for the scalar pressure as
the only unknown. It reads ∑

j∈Si

Di,jM
−1
j Qi,j p̂

n+1,k+1
i

+
∑
j∈Si

Di,jM
−1
j Q℘(i,j),j p̂

n+1,k+1
℘(i,j) =

∑
j∈Si

Di,jF̂~v
n+1,k+ 1

2
j . (4.9)

4.2.4 Nonlinear convection-diffusion

It remains to specify how to construct the nonlinear convective-diffusion oper-

ator F̂~v
n+ 1

2
j . At this point one can try to extend the procedure used in Section
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3.2.4 to three space dimensions. In this case there are some issues that have to
be taken into account. In particular, since we are using a modal base on the
staggered dual hexahedral mesh, then we cannot use the simple nodal approxi-
mation for the nonlinear convective term F̂c(~v) = Fc(~̂v) that consists in a trivial
point-wise evaluation of the nonlinear operator Fc. Furthermore if we also try
to use a nodal polynomial base in the cases where this is possible (i.e. the
system for the computation of the coefficients is not singular for each element),
then this is still not a good approximation. Indeed observe how Fc(~vh) lives in
Vh(2p). We can then locally project Fc(~vh) to a higher order polynomial space
and then use the L2 projection on the subspace Vh(p) in order to reconstruct
F̂c. In this way the coefficients of F̂c become optimal in the sense that they
represent, by definition, the best Vh(p) approximation of Fc(~vh). In particular,
after some computations, we get

F̂c = M
−1
j Tj~̂vj ⊗ ~̂vj , (4.10)

where

M j =

∫
Rst
j

ψ̃
(j)
k ψ̃

(j)
l dx dt, Tj =

∫
Rst
j

ψ̃
(j)
k ψ̃

(j)
l ψ̃(j)

m dx dt. (4.11)

From a computational point of view, this will require a lot of effort as well
as a lot of memory usage in order to store the tensor Tj for all j ∈ [1, Nd].
On the other hand it represents the natural way to discretize the nonlinear
convective-viscous contribution since the velocity vector field lives on the dual
mesh. Furthermore, in problems where we have discontinuities on the velocity
at the boundary, we obtain by construction a discontinuity in the dual grid.
This aspect will be clarified in Section 4.4. Following the same idea of [70]
and inspired by the good properties achieved by the use of staggered grid,
we propose a new procedure for the computation of the nonlinear convective-
viscous term.

4.2.4.1 An alternative implementation for the viscous contribution

In this section we want to introduce an alternative treatment for the nonlinear
convective and viscous contribution based on the high order projection of the
velocity field on the main grid. This procedure was necessary in the formulation
[70] since the velocity was splitted in a couple of staggered grids and here
can be used as an alternative treatment of the nonlinear convective-viscous
contribution.

111



4 Three-dimensional incompressible Navier-Stokes equations

An implicit discretization of the viscous terms based on the dual grid leads to a
linear system for each velocity component that is a seven-point non symmetric
block system but, however, is well conditioned since it can be written as a ν
perturbation of the identity matrix, see e.g. Section 3.2.4. Here, we will develop
a system for the viscous term that is a five-point one and, more important, is
symmetric and at least positive definite for ν > 0 and pγ = 0 but is still better
conditioned also in the case pγ > 0.

In addition, the resulting computation of the nonlinear convective term on the
main grid does not require to use the higher order projection as specified in
Eq. (4.10). Hence, a faster computation can be performed using this strategy.

Given a discrete velocity field vh on the dual grid in the time interval [tn, tn+1],
we can project the velocity field from the dual mesh to the main grid (denoted
by v̄) via standard L2 projection,

v̄n+1
i = M−1

i

∑
j∈Si

Mi,j v̂
n+1
j , ∀i ∈ [1, Ne], (4.12)

where v̄n+1
i denote the degrees of freedom of the velocity on the main grid and

Mi =

∫
T sti

φ̃
(i)
k φ̃

(i)
l dxdt, Mi,j =

∫
T sti,j

φ̃
(i)
k ψ̃

(j)
l dxdt. (4.13)

The projection back onto the dual grid is given by

v̂n+1
j = M

−1
j

(
M>

`(j),jv
n+1
`(j) +M>

r(j),jv
n+1
r(j)

)
. (4.14)

We can rewrite the nonlinear convective and viscous part of the momentum
equation by introducing the viscous stress tensor σ = −ν∇v as auxiliary vari-
able. The convective and viscous subsystem of the momentum equation then
reads

∂v

∂t
+∇ · Fc +∇ · σ = 0,

σ = −ν∇v. (4.15)

With the averaged velocity v̄n+1
i = φ̃

(i)
l v̄n+1

l,i defined on the main grid and the

viscous stress tensor σn+1
j = ψ̃

(j)
l σ

n+1
l,j defined on the dual grid, we obtain the
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following weak formulation of (4.15):∫
T i

φ̃
(i)
k (x, tn+1)v̄n+1

i dx−
∫
T i

φ̃
(i)
k (x, tn)v̄ni dx−

∫
T sti

∂φ̃
(i)
k

∂t
v̄n+1
i dxdt

+

∫
∂T sti

φ̃
(i)
k FRS

c

(
v̄−, v̄+) · ~ni dSdt− ∫

T sti

∇φ̃(i)
k · Fc(v̄

n+1
i ) dxdt

+
∑
j∈Si

∫
Γstj

φ̃
(i)
k σ

n+1
j · ~nij dSdt−

∫
T sti,j

∇φ̃(i)
k · σ

n+1
j dxdt

 = 0,

∫
Rst
j

ψ̃
(j)
k (x, tn+1)σn+1

j dx = −ν

 ∫
T st`(j),j

ψ̃
(j)
k ∇v̄n+1

`(j) dxdt

+

∫
T str(j),j

ψ̃
(j)
k ∇v̄n+1

r(j) dxdt+

∫
Γstj

ψ̃
(j)
k

(
v̄n+1
r(j) − v̄n+1

`(j)

)
⊗ ~nj dSdt

 . (4.16)

In a more compact matrix notation, (4.16) can be written as:(
M

+
i −M

o
i

)
~v
n+1
i −M −

i ~v
n
i +

∑
j∈Si

Di,jσ
n+1
j + Υ

c
i = 0,

M jσ
n+1
j = −ν

(
Q`(j),j~v

n+1
`(j) + Qr(j),j~v

n+1
r(j)

)
, (4.17)

where

M
+
i =

∫
T i

φ̃
(i)
k (x, t(1))φ̃

(i)
l (x, t(1))dx, (4.18)

M
−
i =

∫
T i

φ̃
(i)
k (x, t(0))φ̃

(i)
l (x, t(1))dx, (4.19)

M
o
i =

∫
T sti

∂φ̃
(i)
k

∂t
φ̃

(i)
l dxdt. (4.20)

(4.21)
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In (4.17) we have defined the operator Υ
c
i (v̄), which is a standard DG dis-

cretization of the nonlinear convective terms on the tetrahedral elements of the
main grid,

Υ
c
i (v̄) =

∫
∂T sti

φ̃
(i)
k FRS

c

(
v̄−, v̄+) · ~ni dSdt− ∫

T sti

∇φ̃(i)
k · Fc(v̄) dxdt, (4.22)

with the the boundary extrapolated values v− and v+ from within the cell and
from the neighbors, respectively. Here, the approximate Riemann solver FRS

c

used at the element boundaries is given by the simple Rusanov flux [137]

FRS
c

(
v̄−, v̄+) · ~ni =

1

2

(
Fc(v̄

+) + Fc(v̄
−)
)
· ~ni −

1

2
smax

(
v̄+ − v̄−

)
, (4.23)

where smax = 2 max
(
|v̄+|, |v̄−|

)
is the maximum eigenvalue of the convective

operator Fc. The final system for the variable ~v can be found by formal sub-
stitution of σ given in the second equation of (4.17) into the first one:M i − ν

∑
j∈Si

Di,jM
−1
j Qi,j

~vn+1
i

−ν
∑
j∈Si

Di,jM
−1
j Q℘(i,j),j~v

n+1
℘(i,j)

= M
−
i ~v

n
i −Υ

c
i (v̄

n+1), (4.24)

where we use the abbreviation M i = M
+
i −M

o
i . What we obtain is a dis-

cretization of the nonlinear convective and viscous terms on the main grid,
where the stress tensor σ has been computed on the face-based dual mesh. In
order to avoid the solution of a nonlinear system due to the nonlinear opera-
tor Υ

c
i (v̄

n+1), we introduce a fractional step scheme combined with an outer
Picard iteration. Using the notation introduced in Section 3.2.3, we getM i − ν

∑
j∈Si

Di,jM
−1
j Qi,j

~vn+1,k+ 1
2

i

−ν
∑
j∈Si

Di,jM
−1
j Q℘(i,j),j~v

n+1,k+ 1
2

℘(i,j)

= M
−
i ~v

n
i −Υ

c
i

(
~v
n+1,k

)
. (4.25)
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4.2.5 Extension to a pressure correction formulation

As already discussed in Section 3.2.5, the computation of the nonlinear con-
vective and viscous terms presented in Eq. (4.25) does not depend explicitly
on the pressure of the previous Picard iteration, and hence it does not see the
effect of the pressure in the time interval Tn+1, which is, however, needed to
get a high order accurate scheme also in time. In order to overcome the prob-
lem we introduce directly in Eq. (4.25) the contribution of the pressure at the
previous Picard iteration. Then, we update the velocity with the new pressure
p̂n+1,k+1
i . The equations (4.25), (4.9), (4.8) become:

M i − ν
∑
j∈Si

Di,jM
−1
j Qi,j

~vn+1,k+ 1
2

i

−ν
∑
j∈Si

Di,jM
−1
j Q℘(i,j),j~v

n+1,k+ 1
2

℘(i,j)

= M i~v
n
i −Υ

c
j

(
~v
n+1,k

)
−M iΛ(p̂n+1,k),

(4.26)

Λ(p̂n+1,k) = M−1
i

∑
j∈Si

Mi,j

(
M−1

j

(
Qr(j),j p̂

n+1,k
r(j) + Q`(j),j p̂

n+1,k
`(j)

))
,

(4.27)

∑
j∈Si

Di,jM
−1
j Qi,j

(
p̂n+1,k+1
i − p̂n+1,k+1

i

)
+
∑
j∈Si

Di,jM
−1
j Q℘(i,j),j

(
p̂n+1,k+1
℘(i,j) − p̂n+1,k+1

℘(i,j)

)
=
∑
j∈Si

Di,jF̂~v
n+1,k+ 1

2
j ,

(4.28)

~̂v
n+1,k+1

j = F̂~v
n+1,k+ 1

2
j

−M−1
j

[
Qr(j),j

(
p̂n+1,k+1
r(j) − p̂n+1,k

r(j)

)
+Q`(j),j

(
p̂n+1,k+1
l(j) − p̂n+1,k

`(j)

)]
, (4.29)
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where Λ(p̂n+1,k) represents the same additional contribution subtracted in
(4.28) that lives on the dual mesh passed through the mean maps from the
dual to the main grid.

As initial guess for the pressure we take p̂n+1,0 = 0 so that we obtain the classi-
cal first order method such as in [144] for the first Picard iteration. Eventually,
we can take the Lagrange extrapolation of p̂n on Tn+1 in order to reduce the
number of Picard iterations.

Note how, if we use the natural extension of the algorithm presented in Section
3.2.4 to compute the nonlinear convective-viscous term, then we recover the
stability property as a corollary of Theorem 1 presented in Section 3.5. Oth-
erwise a stability proof has to take into account the high L2-projections (4.12)
and (4.14) that in general do not act as the identity, for instance

ξi 6= M−1
i

∑
j∈Si

Mi,jM
−1
j

[
M>

`(j),jξ`(j) +M>
r(j),jξr(j)

]
for ξ defined on the main grid and vice versa. We can still recover a stability
result in the case of a projection that acts as the identity since we are sure
that the additional pressure term introduced at Picard itaration k does not
change using the forward and backward mean. Indeed it does not introduce
any additional kinetic energy.

4.2.6 Remarks on the special case of piecewise constant polynomials
in time (pγ = 0)

The method presented in the previous sections can be seen, for pγ = 0, as the
extension of the one presented in Section 3.3 to three space dimensions. This
particular case is, in general, only first order accurate in time but high order
accurate in space. In this case, we can recover several good properties for the
main system for the pressure and for the linear systems that need to be solved
for the implicit discretization of the viscous terms.

4.2.6.1 Pressure system

For pγ = 0 we have M◦
j = 0 then Mj = M+

j = M−
j is symmetric for all

j ∈ 1 . . . Nd. Consequently, the system (4.7)-(4.8) formally becomes the same
method as in Section 3.3. The following results can therefore be readily ob-
tained as corollaries of the theorems given in Section 3.3 regarding the system
matrix A of the main system for the pressure (4.9):
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Corollary 1 (Symmetry) Let pγ = 0, the system matrix A of the main sys-
tem for the pressure is symmetric.

Corollary 2 (Positive semi-definiteness) Let pγ = 0, the system matrix A
of the main system for the pressure is in general positive semi-definite.

This means that in this particular case we can use faster iterative linear solvers,
like the conjugate gradient (CG) method [98] to solve the main system for the
pressure (4.9). This advantage makes the case pγ = 0 particularly suitable for
steady or almost steady problems. In order to recover some precision in time
we can extend the algorithm by introducing a semi-implicit discretization, as
suggested in Section 3.3. In this case, system (4.7)-(4.8) has to be discretized
as ∑

j∈Si

Di,j~̂v
n+1

j = 0, (4.30)

Mj~̂v
n+1

j −MjF̂~v
n

j + ∆tQr(j),j p̂
n+θ
r(j) + ∆tQ`(j),j p̂

n+θ
`(j) = 0, (4.31)

where p̂n+θ = θp̂n+1 + (1 − θ)p̂n and θ is an implicitness factor to be taken
in the range θ ∈ [ 1

2
, 1], see e.g. [36]. For θ = 1

2
, the Crank-Nicolson method is

recovered. In this way we gain some extra precision in time without affecting
the computational effort and using the same advantages given by Corollary 1
and 2 that can be easily extended for this case.

4.2.6.2 Viscous system

In the special case of piecewise constant polynomials in time (pγ = 0), we get
M i = Mi and M j = Mj , so that the following results about the viscous
system (4.25) can be derived:

Corollary 3 (Symmetry) If pγ = 0 then the system (4.25) is symmetric.

Proof 5 We can write the system matrix of system (4.25) as (M +νA), where
M is a block diagonal matrix with {Mi}i=1...Ne on the diagonal and A is the
matrix of the pressure system (4.9). Thanks to the results obtained in Corollary
1, A is symmetric and also M is symmetric, since Mi = M>

i , see (4.13).

Corollary 4 (Positive definiteness) If pγ = 0 then the system (4.25) is
positive definite.
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Proof 6 As used in Corollary 3, we can write the system such as M +νA and
we know, thanks to Corollary 2, that A is in general positive semi-definite. A
simple computation leads to

x(M + νA)x> = xMx> + νxAx> > 0 (4.32)

since νxAx> ≥ 0 and xMx> > 0 we have that the complete system is also
positive definite.

In the general case of pγ > 0 it is not true that we recover the pressure system,
since M · 6= M·. In this case, we can observe how the non symmetric contri-
bution affects only M i. This allows us to write the previous system as T + νH
where T is a block diagonal non symmetric matrix and H is symmetric and
positive semi-definite.

4.2.7 Extension to curved elements

The method described in the previous sections can readily be generalized by
introducing also curved elements inside the computational domain. This gener-
alization will affect only the pre-processing step. The extension is quite similar
to the one introduced in Section 2.2.7 for the two dimensional case, but there
are some differences due to the three dimensionality of the problem.

First of all, in the two dimensional case one could eventually consider curved
only the main elements that touch the boundary, as well as all the dual elements
such that j ∈ B(Ω). In the 3D case this usually leads to a nonconforming mesh,
so we have to generalize and move accordingly also the internal elements (see for
example Fig.4.3). Each tetrahedral main and dual element is then characterized
by Nφ nodes {(X,Y )·k}k=1,Nφ while for internal hexahedral elements we have

to split it into a left and a right tetrahedral, i.e. Riso
j = T iso`(j),j ∪ T isor(j),j

and the points that lie on Γisoj are physically joined. In this way we have a
fully characterization of the left and the right tetrahedral, needed to compute
properly the integral contributions in the algorithm.

In order to move the entire grid we mount a tetrahelization that involves all
the DoFs inside the domain and we solve the Laplace equation for the displace-
ment using a classical P1 continuous finite element method and imposing the
projection on the physical domain as boundary conditions. This procedure give
us an elastic movement of each DoF inside the domain.

As shown in [144], the possibility to curve the grid is crucial when we try to
represent complex domains with a very coarse grid. In any case, we emphasize
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Figure 4.3: Isoparametric dual element example for p = 3. On the left a dual
element with a 2D face on the curved boundary; On the right, an
internal dual element, but with a 1D edge on the curved boundary.

that this generalization does not affect the computational cost during the run-
time since it interests only the construction of the main matrices that can be
done in a preprocessing step. For a more detailed discussion see appendix
section A.3.

4.3 Numerical test problems

4.3.1 Three-dimensional lid driven cavity

We present in this section some results regarding the three-dimensional lid-
driven cavity. For the two dimensional case there are a lot of well known results
and reference solutions (see e.g. Ghia et al. and Erturk et al. [89, 80]) as well
as for the three-dimensional case (see e.g. [2, 115, 1]). We take here a classical
cubic cavity Ω = [−0.5, 0.5]3 and we cover it with a very coarse tetrahedral
mesh with characteristic size h = 0.2. We set as initial conditions p = 1;
u = v = w = 0. As boundary conditions we impose velocity (u, v, w) = (1, 0, 0)
at y = 0.5 while no-slip boundary conditions are used on the other boundaries.
Since we are interested in steady state solutions, we take for the current test
p = 4; pγ = 0; θ = 1.0 and several kinematic viscosity in order to obtain several
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Reynolds numbers.
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Figure 4.4: From top left to bottom right: Comparison between our numerical
results, the one obtained by Albensoeder et al in [2], and the two di-
mensional data from Ghia et al [89] for Re = 400; three-dimensional
plot of the two secondary slices and grid space; streamlines and
magnitude of u on slices x− y, x− z and y − z.

In Figure 4.4 are shown the results at time tend = 30s for Re = 400. In Figure
4.5 the same plots are given for tend = 40s and Re = 1000. In the top left plot
are reported our numerical results against the one obtained in [2] for the fully
three-dimensional case and the data given by Ghia et al for the two dimensional
cavity at the same Reynolds number. A good agreement is achieved also if a
very coarse grid has been used. The data show that the presence of the third
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Figure 4.5: From top left to bottom right: Comparison between our numeri-
cal results, the one obtained by Albensoeder et al in [2], and the
two dimensional data from Ghia et al [89] for Re = 1000; three-
dimensional plot of the two secondary slices and grid space; stream-
lines and magnitude of u on slices x− y, x− z and y − z.

axis significantly modifies the velocity profiles. Furthermore, several Taylor-
Görtler like vortexes appear in the secondary planes in a very similar way such
as observed in other numerical and experimental investigations of this problem
(see e.g. [115, 1]).
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4.3.2 Convergence test

In this test we will investigate the Arnold-Beltrami-Childress flow that was
originally introduced by Arnold in [4] and Childress in [46] as an interesting
class of Beltrami flows and successively studied in a series of papers, see e.g.
[66, 130, 129, 78]. In particular we consider:

u(x, y, z, t) = [sin(z) + cos(y)] e−νt,

v(x, y, z, t) = [sin(x) + cos(z)] e−νt,

w(x, y, z, t) = [sin(y) + cos(x)] e−νt,

p(x, y, z, t) = − [cos(x) sin(y) + sin(x) cos(z) + sin(z) cos(y)] e−2νt + c

(4.33)

where c ∈ R. One can check that this is an exact solution for the complete three
dimensional incompressible Navier-Stokes equations in a periodic domain, so
this smooth configuration is suitable for several convergence tests. In particular
if ν = 0 we can check the accuracy of the spatial part of the algorithm, i.e.
pγ = 0, since the solution is a steady one. We take as computational domain
Ω = [−π, π]3 and we extend it using periodic boundary conditions everywhere.
Furthermore we take increasing values of p and refinement factors from a start-
ing regular mesh and up to tend = 0.1. The chosen dt is taken into account
with the maximum one allowed by the CFL time restriction for the nonlinear
convection. Since we have periodic boundary condition everywhere, we have a
set of solutions for the pressure given by (4.33) up to a constant. In order to
verify that also the pressure field is correct, we choose c in (4.33) a posteriori
according to the mean value of the resulting numerical pressure.
The resulting vorticity, pressure and streamlines are plotted in Figure 4.6 while
in Table 4.1 are reported the resulting L2 norm of the error for the steady case
ν = 0. We observe how the optimal order of convergence is obtained for this
steady problem for the pressure, while a p order of convergence can be observed
for the velocity field.
In the second test case we turn on the viscosity in order to make the problem
unsteady. For this kind of problem we use the space-time DG implementation
of the algorithm and we set the number of Picard iterations to Npic = pγ + 1.
Unfortunately, as soon as we use an high order polynomial in time, the resulting
main system looses the symmetry property and hence we have to use a slower
linear solver such as the GMRES method. Since the viscosity contribution is
discretized implicitly, we can take very large values for the kinematic viscosity
and maintain the same CFL time restriction for the simulation. The chosen
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Table 4.1: Numerical convergence results.

p pγ Ne ε(p) ε(v) σ(p) σ(v)

1 0 7986 7.4349E-01 3.7768E-01 - -

1 0 10368 6.2638E-01 3.1662E-01 2.0 2.0

1 0 13182 5.3318E-01 2.7046E-01 2.0 2.0

1 0 16464 4.6155E-01 2.3309E-01 2.0 2.0

2 0 7986 8.6472E-02 5.0920E-02 3.0 2.4

2 0 10368 6.7178E-02 4.1417E-02 2.9 2.4

2 0 13182 5.2651E-02 3.4271E-02 3.0 2.4

2 0 16464 4.2520E-02 2.8499E-02 2.9 2.5

3 0 7986 6.6133E-03 3.5899E-03 3.9 3.4

3 0 10368 4.7069E-03 2.6619E-03 3.9 3.4

3 0 13182 3.4219E-03 2.0294E-03 4.0 3.4

3 0 16464 2.5604E-03 1.5727E-03 3.9 3.4

4 0 6000 8.4806E-04 6.7156E-04 4.9 4.1

4 0 7986 5.3156E-04 4.5361E-04 4.9 4.1

4 0 10368 3.4667E-04 3.1585E-04 4.9 4.2

4 0 13182 2.3307E-04 2.2733E-04 5.0 4.1

5 0 4374 1.5777E-04 1.6300E-04 5.9 5.1

5 0 6000 8.4744E-05 9.4463E-05 5.9 5.2

5 0 7986 4.8228E-05 5.7433E-05 5.9 5.2

5 0 10368 2.8868E-05 3.6318E-05 5.9 5.2

viscosity for this test is ν = 1 and we test it for p = pγ = 1 . . . 4 and successively
refined grids. The resulting convergence rates, as well as the L2 errors, are
shown in Table 4.2. In this case a order of p + 1

2
is achieved for the pressure,

while order p+ 1 can be observed for the velocity.
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Table 4.2: Numerical convergence results.

p pγ Ne ε(p) ε(v) σ(p) σ(v)

1 1 10368 1.1713E+00 2.4695E-01 1.6 2.0

1 1 13182 1.0388E+00 2.1017E-01 1.5 2.0

1 1 16464 9.2718E-01 1.8075E-01 1.5 2.0

1 1 20250 8.3860E-01 1.5730E-01 1.5 2.0

2 2 10368 1.7339E-01 1.4475E-02 2.8 3.1

2 2 13182 1.4060E-01 1.1291E-02 2.6 3.1

2 2 16464 1.1470E-01 8.9676E-03 2.8 3.1

2 2 20250 9.5780E-02 7.2516E-03 2.6 3.1

3 3 6000 1.6219E-02 1.5469E-03 3.8 4.1

3 3 7986 1.1454E-02 1.0494E-03 3.7 4.1

3 3 10368 8.2191E-03 7.3591E-04 3.8 4.1

3 3 13182 6.1399E-03 5.3142E-04 3.6 4.1

4 4 750 4.5578E-02 3.2574E-03 4.7 4.8

4 4 1296 1.9664E-02 1.2957E-03 4.6 5.1

4 4 2058 9.3757E-03 5.9049E-04 4.8 5.1

4 4 3072 5.0553E-03 2.9738E-04 4.6 5.1
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Figure 4.6: From top left to bottom right: Vorticity isolines for vort =
[0.8, 1.2, 2.0]; pressure at p = [−0.8, 0.0, 0.8] and streamlines in or-
der to show the three-dimensionality of the considered problem.
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4.3.3 Taylor Green Vortex

We investigate in this section another classical benchmark such as the Taylor
Green vortex. In this test case a very simple initial analytical solution degen-
erates quickly to a turbulent flow with a very complex structure. We take the
initial condition as given in [58]:

u(x, y, z, t) = sin(x) cos(y) cos(z),

v(x, y, z, t) = − cos(x) sin(y) cos(z),

w(x, y, z, t) = 0,

p(x, y, z, t) = p0 +
1

16
(cos(2x) + cos(2y)) (cos(2z) + 2)) , (4.34)

in Ω = [π, π]3 and periodic boundary conditions everywhere. As numerical
parameters we take (p, pγ) = (4, 0); Ni = 494592 tetrahedra; θ = 0.51; dt
according to the CFL time restriction; tend = 10; and several values of ν so that
the Reynolds numbers are Re = 400, Re = 800 and Re = 1600, respectively.
A plot of the time evolution of the pressure field, the velocity magnitude and the
vorticity pattern is shown in Figure 4.7 for several times, as well as time series of
the total kinematic dissipation rates compared with available DNS data given
by Brachet et al in [21] in Figure 4.9. A good agreement between reference
data and our numerical results can be observed. In Figure 4.7 the vorticity
pattern shows a really complex behavior that appears after few seconds.
As shown in Figure 4.8 the vorticity pattern becomes very complex close to
t = 9s. Some details of this pattern for several slice positions are shown
in Figures 4.10 and 4.11 and underlining several vortical structures that are
difficult to be seen from the three-dimensional plot. I underline how in this
particular test, it is important to resolve well the small scales that, close to
t = 9s, constitute the main contribution to the total kinetic energy dissipation.
The typical number of iterations needed to solve the main linear system for the
pressure at Re = 1600 and tol = 10−8 is Imean = 290.7. In general we observe
a number of iterations in the range I ∈ [93, 2516].
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Figure 4.7: From the top to the bottom: Pressure isolines, velocity magnitude
and vorticity isolines from left to right at times t = [0.5, 1.0] and
for Re = 800.
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Figure 4.8: From the top to the bottom: Pressure isolines, velocity magnitude
and vorticity isolines from left to right at times t = [2.1, 4.8, 9.0]
and for Re = 800.
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Figure 4.9: Time evolution of the kinetic energy dissipation rate −dk/dt com-
pared with DNS available data of Brachet et al [21] for Re =
400, 800 and Re = 1600.
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Figure 4.10: Vorticity pattern in the plane x = 0, π
8
, π

4
, π

2
from top left to bot-

tom right for Re = 800, t = 9s.
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Figure 4.11: Vorticity pattern in the plane z = 0, π
8
, π

4
, π

2
from top left to bot-

tom right for Re = 800, t = 9s.
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4.3.4 Womersley Profile

In this section the proposed algorithm is verified against the exact solution for
an oscillating flow in a rigid tube with circular cross section of length L. The
unsteady flow is driven by a sinusoidal pressure gradient on the inlet and outlet
boundaries

pout(t)− pinlet(t)
L

=
p̃

ρ
eiωt, (4.35)

where p̃ is the amplitude of the pressure gradient; ρ is the fluid density; ω is the
frequency of the oscillation; i indicates the imaginary unit; pinlet and pout are
the inlet and outlet pressures, respectively. The analytical solution was derived
by Womersley in [158]. According to [158, 81] no convective contribution is
considered. By imposing Eq. (4.35) at the tube ends, the resulting unsteady
velocity field is uniform in the axial direction and is given by

ue(x, y, t) =
p̃

ρ

1

iω

1−
J0

(
αζi

3
2

)
J0

(
αi

3
2

)
 eiωt ; ve(x, y, t) = 0, (4.36)

where ζ = 2y/D is the dimensionless radial coordinate; D is the diameter of
the tube; α = D

2

√
ω
ν

is a constant; and J0 is the zero-th order Bessel function
of the first kind. For the present test we take Ω as a cylinder of length 4 and
radius 1; p̃ = 1000; ρ = 1000; ω = 2π; and ν = 0.04. The computational
domain Ω is covered with a total number of Ne = 1185 tetrahedra and the
time step size is chosen as dt = 0.3 that is 30% of the entire period. For this
test we take (p, pγ) = (4, 3) in order to produce a good solution also with the
chosen dt.
Due to the curved geometry of the problem we use a fully isoparametric ap-
proach to fit the cylinder. A plot of the isoparametric grid that has been
used here is reported in Figure 4.14 on the left. We test our numerical solu-
tion in the cutting slice Γ = {x = 2} and successively on the line given by
(x, z) = (2, 0) ∈ Γ. Figure 4.12 shows the evolution of the velocity profile u
on Γ solved in a single time cell Γst(t, ~x) = Γ(~x) × [0.3, 0.6] evaluated at sev-
eral intermediate times. A comparison between numerical and exact solution
is reported in Figure 4.13 as well as the plot of Γ, in order to show the ra-
dial symmetry of the solution, that is not trivial for the chosen discretization.
Finally, a plot of the time series of the velocity u computed in ~x = (1, 0, 0)
and ~x = (1, 0, 0.9) and compared with the exact one is reported in Fig. 4.14
right. It is clear from Figures 4.13 and 4.14 that this test with the chosen time
step can reproduce good results only if we use high order polynomials also in
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Figure 4.12: Plot of u at the middle of the tube in one single time control
volume T = [0.3, 0.6], from top left to bottom right are plotted at
intermediate time levels t = [0.3, 0.375, 0.45, 0.525, 0.6].

time; indeed, the solution for a first order method in time would look piecewise
constant within each time step.
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Figure 4.13: Velocity profile at the plane x = 2 (left column) and velocity
against exact solution at x = 2 and z = 0 (right column) at times,
from top to bottom, t = [0.15, 0.45, 0.75].
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Figure 4.14: Left: Three dimensional view of the isoparametric grid used in the
test case; Right: Time series of u in the plane x = 1, (y, z) = (0, 0)
and (y, z) = (0, 0.9). The time subdivisions represent the time step
size dt = 0.3.
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4.3.5 Blasius boundary layer

We consider here a classical benchmark for incompressible fluids that is the
Blasius boundary layer. The framework of this numerical test is the same as
in the test 3.6.1.2 but it is done here in three space dimensions. In order to
obtain the Blasius velocity profile in our simulations we consider a steady flow
over a flat plate. As a result of the viscosity, a boundary layer appears along
the no-slip wall. For the current test, we consider Ω = [−0.2, 0.8]× [−0.2, 0.2]2.
An initially uniform flow u(x, y, z, 0) = u∞ = 1 , v(x, y, z, 0) = w(x, y, z, 0) = 0
and p(x, y, 0) = 1 is imposed as initial condition, while an inflow boundary
is imposed on the left boundary; no slip boundary condition is considered in
the flat plane Γ = {(x, y, z)| x ≥ 0 y = ymin}; slip boundary conditions are
imposed at z = zmin and z = zmax; and transmissive boundary conditions
are imposed at the upper face y = ymax . We consider here an extreme case
where we cover our domain Ω with a set of only Ne = 1522 tetrahedra whose
characteristic length is h = 0.07. The chosen polynomial degree is (p, pγ) =
(4, 0); tend = 10; ν = 3 · 10−4.

Figure 4.15: 3D plot of the domain Ω and sketch of the mesh on the boundary;
The plotted iso-surfaces are corresponding to u = 0.2, 0.4, 0.8

The resulting Blasius velocity profile is shown in Figure 4.15 where also a sketch
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Figure 4.16: 2D plot on the symmetry plane z = 0 where the velocity u in the
x− ξ plane is plotted.
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Figure 4.17: Left: 2D plot on the symmetry plane z = 0 where the velocity
u in the x − y plane is plotted and the extraction line for the
comparison. Right: Numerical and reference solution taken on
the line (x, y, z) = (0.4, y, 0).

of the grid is reported. The profile with respect to the Blasius coordinate ξ is
shown on the left of Figure 4.16 in order to verify whether the obtained solution
is self-similar with respect to ξ. A comparison between the numerical results
presented here and the reference solution is depicted on the right of Figure
4.16 for (x, z) = (0.7, 0.0). A good agreement between numerical and reference
solution can be observed. This is a very good result if we take into account the
mesh size and considering that the major part of the boundary layer seems to
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be relatively well solved in only one control volume.

4.3.6 Backward-facing step.

In this section, the three-dimensional numerical solution for the fluid flow over
a backward-facing step is considered. For this test problem, both experimen-
tal and numerical results are available at several Reynolds numbers (see e.g.
[3, 79]). In particular, it is known that two dimensional simulations are in
good agreement with experimental evidence only up to Re = 400. Beyond this
critical value, two dimensional simulations present a large secondary recircula-
tion zone that reduces the main recirculation zone, see test in Section 3.6.1.4.
On the contrary, experimental results show that this secondary vortex appears
only at higher Reynolds number due to three-dimensional effects (see e.g. [3]).
The used step size is of S = 0.49 and the ratio between the total height H and
the inlet height hin is of H/hin = 1.9423. We consider here a smaller domain
with respect to the experimental setup of Armaly in [3], but sufficient to see
the three-dimensional effects. In particular x

S
∈ [−10, 20], y ∈ [−0.49, 0.51]

and z
S
∈ [0, 12]. The domain is covered using Ne = 19872 tetrahedra and we

take (p, pγ) = (4, 0) and Re = 600. We impose the exact Poiseuille profile in
the y-direction at the tube inlet, transmissive boundary conditions at the tube
outlet and no-slip boundary conditions otherwise. For the current test dt is
taken according to the CFL time restriction and tend = 80.

A plot of the velocity profile at several values of x/S is shown in Figure 4.18

Figure 4.18: Value of u in the (y, z)-plane at x = [0, 3.75, 7.5, 11.25, 15].
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The resulting recirculation zones in the symmetry plane and close to the side
wall zmax

S
are shown in Figure 4.19, as well as the equivalent in the plane

( x
S
, z
S

) close to the bottom and the top wall in Figure 4.20. As we can see,
no important secondary recirculation zones appear in the symmetric plane,
while a couple of recirculations appear close to the side walls. The presence
of these secondary recirculations seems to reduce the reattachment point for
the main recirculation close to the side walls (see Figure 4.20 top). On the
contrary, a larger recirculation zone can be seen in the middle of the channel.
The resulting reattachment point in the symmetry plane is x1

S
= 11.2, that is

really close to the one obtained in the experimental case, whose extrapolated
value is x1

S
= 11.24. Remark how the two dimensional numerical simulation,

such as presented in Section 3.6.1.4, leads to a reattachment point of x1
S

= 9.4
that completely underestimates the experimental one.

Figure 4.19: Recirculation zones in the plane ( x
S
, y) in the symmetry plane (top)

and close to the side wall at z
S

= 12 (bottom).
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Figure 4.20: Recirculation zones in the plane ( x
S
, z
S

) close to the bottom and
close to the top wall.
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4.3.7 Flow around a sphere

In this section we consider the flow around a sphere. In particular we take as
computational domain Ω = S10∪C10,15−S0.5, where Sr is a generic sphere with
center ~0 and radius r; Cr,H is a cylinder with circular basis on the yz-plane,
radius r and height H. We use a very coarse grid that is composed by a total
number of Ne = 14403 tetrahedra whose characteristic length is h = 0.2 close
to the sphere, while it is only h = 0.8 away from the sphere. A sketch of the
grid is shown in Figure 4.21.

Figure 4.21: Cut view of the computational domain with Ne = 14403.

We start from an initial steady flow of magnitude ~v0 = (u∞, 0, 0) with u∞ = 0.5
and we impose u∞ on S10∩{x ≤ 0} as boundary condition; transmissive bound-
ary condition on C10,15 and no-slip condition on S0.5. We use a polynomial de-
gree (p, pγ) = (3, 0) and θ = 0.51 using the method explained in Section 4.2.6;
Re = 300; tend = 300 and dt is taken according to the CFL time restriction for
the convective term.

A plot of spanwise velocity contour for v is reported in Figure 4.22 at t = 300
and shows a very complex and three-dimensional behavior of the numerical
solution. The mean number of iterations needed to update the pressure p with
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a tolerance of tol = 10−8 is Imean = 201.8. The maximum number of iterations
Imax = 2552 is observed at the beginning of the simulation, when the constant
velocity initial condition has to be adjusted. Instead, the minimum Imin = 62
is observed when the Von Karman street is completely developed.

Figure 4.22: Contour isosurfaces for the spanwise velocity v in the (x, y), (y, z)
and 3D plot.

A side and upper view of the particle tracker is reported in Figure 4.23 at
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t = tend = 300 and looks very similar to the experimental one obtained by
H.Sakamoto et al in in [139].

Figure 4.23: Side view and upper view of the particle path at t = 300.

The resulting Strouhal number for this simulation is St = 0.145 that is close to
the experimental range obtained by H. Sakamoto in [139] of St = 0.15− 0.18.
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Figure 4.24: Time evolution of the particle path at times, from top left to bot-
tom right, t = [262.8, 265.5, 267.8, 270.2].
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Figure 4.25: Velocity magnitude at t = tend in the (x, y) and (x, z)-plane.
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4.3.8 Flow past a circular cylinder

In this last test case we want to treat another classical problem for the in-
compressible Navier-Stokes equations that is the flow around a circular cylin-
der. For this test, some numerical and experimental cases are available for
a large range of Reynolds numbers. In particular several papers focus the
attention on the formation of two instability modes characterized from large
and small-scale streamwise vortex structure (see e.g. [156]) and act on the
Reynold-Strouhal number relationship. We consider here the problem of the
flow past a circular cylinder in a confined channel and for a Reynolds num-
ber large enough to have three-dimensional effects and small-scale streamwise
vortex structures. We define the blockage ratio β = d/H where d indicates
the cylinder diameter and H is the distance separating the two walls. Re-
himi did an experimental investigation for a blockage ratio of β = 1/3 and
found the Re − St · Re relation up to Re = 277 in [133]. Other numerical
studies of Kanaris et al in [109] give us a numerical analysis in the case of
lower blockage ratio of β = 1/5, finding a similar relation with respect to
the unconfined experimental case of Williamson in [156]. We consider here
two domains that are Ω1 = [−10, 30] × [−2.5, 2.5] × [−12, 12] − C0.5,24 and
Ω2 = [−10, 30]× [−1.5, 1.5]× [−12, 12]−C0.5,24 where Cr,z represents the cylin-
der of of radius r and height z centered in 0 and corresponding to a blockage
ratio of β = 1/5 and β = 1/3, respectively. The first domain Ω1 is covered with
a total number of Ne = 50761 tetrahedra and Ω2 is covered with Ne = 32527
elements. A sketch of the grid used in both the cases is shown in Figure 4.26
As numerical parameters we use (p, pγ) = (3, 0), θ = 0.51 and tend = 200. As
initial condition we take a fully developed laminar Poiseuille profile and we
impose velocity boundary condition on the inlet, transmissive boundary con-
ditions on the outlet and no slip boundary conditions otherwise. Finally we
impose for the two tests ν1 = 1.66667 · 10−3 and ν2 = 1.80505 · 10−3 corre-
sponding to Re1 = 300 and Re2 = 277. Furthermore, isoparametric elements
are considered for both the cases in order to fit better the curved cylinder.
The resulting velocity profile at tend is reported in Figure 4.27, where we can
observe the generation of the Von-Karman street past the cylinder as well as
the three-dimensional mixing effect given by the spanwise velocity w.

In Figure 4.28 the isosurfaces are reported for of the three-dimensional pattern
of the spanwise velocity v and w at t = tend. The resulting Strouhal number
for the first case is St = 0.198 which is in good agreement with the numerical
one St = 0.1989 of Kanaris in [109] and the experimental one of Williamson in
[156]. In the second case the obtained Strouhal number is St = 0.2414 which
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Figure 4.26: Half grid plot of Ω1 and Ω2, respectively from left to right.

corresponds to a value of St ·Re = 66.877 that is in line with the experimental
one of Rehimi et al in [133], whose extrapolated value is St ·Re = 66.929. This
confirms the suggestion given in [133] that the Strouhal number increases with
increasing blockage.
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Figure 4.27: Velocity profile u, v and w from top to bottom past the circular
cylinder in the sub-domain Ω = [−5, 20] × [− r

β
, r
β

] × [−7, 7] for

(Re, β) = (300, 1
5
) and (Re, β) = (277, 1

3
) in the left and right

column, respectively.
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Figure 4.28: Isosurfaces of spanwise velocity v = [±0.1,±0.03] and w = ±0.03
from top to bottom for the case (Re, β) = (300, 1

5
) (left column)

and (Re, β) = (277, 1
3
) (right column).
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4.4 A discussion about the dual convective-viscous
computation

In this section we want to investigate the effects of using the natural extension of
the convective-viscous term on the dual grid against the procedure on the main
grid explained in Section 4.2.4.1. In particular we will see some comparisons
regarding the three dimensional lid-driven cavity such as reported in example
4.3.1.

First of all we redo the computation using the natural extension of the nonlinear
convective-viscous term on the dual grid. The obtained results are reported in
Figures 4.29 for Re = 400 and 4.30 for Re = 1000; a really good agreement
between our numerical solution and the reference one of [2] is achieved also in
this case.

We have chosen this test due to the presence, on the upper frame, of a strong
discontinuity directly on the boundary conditions, i.e. ~v = (1, 0, 0) on the up-
per face and ~v = ~0 on the other boundaries. For any coverage of Ω, the dual
hexahedral mesh contains intrinsically a discontinuity between different faces
by construction. This means that if we compute the convective-viscous term
on the dual grid, it contains, close to the critical frame, a natural discontinu-
ity also at the discrete level. In particular, for those tetrahedra for which an
edge lies on the upper boundary where ~v = (1, 0, 0) and the others lies on the
no slip boundary, we can take advantage from the presence of a discontinuity
fixed also in the numerical solution. On the contrary, performing the alter-
native procedure such as described in 4.2.4.1 means that the systems for the
convective-viscous contribution are solved at the main grid level. Indeed DoFs
are connected in a continuous way inside boundary elements of this kind. As
a consequence, if we use a coarse grid such as the considered one as well as a
relatively small value of p, then the numerical solution inside these elements
tends to generate a small recircularion region due to the Gibbs phenomenon.
In order to achieve the natural discontinuity close to the upper frame we force
tetrahedra on the line {y = 0.5 and x = ±0.5} to have only faces with one sin-
gle kind of boundary condition. The grid so constructed will be called corrected
while the standard one will be called non corrected. A detail of the velocity
on the symmetry plane {z = 0} close to the critical point (x, y) = (0.5, 0.5) is
reported in figure 4.31.

We can see how, in the non corrected case, there is an additional recirculation
region close to the critical point. This acts as a buffer zone and hence reduces
the vertical velocity close to the right face of the cavity (see Fig. 4.31). Con-
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Figure 4.29: Comparison between our numerical results, the one obtained by
Albensoeder et al in [2], and the two dimensional data from Ghia
et al [89] for Re = 400; three-dimensional plot of the two secondary
slices and computational grid; streamlines and magnitude of u on
slices x− y, x− z and y − z.

sequently, the resulting numerical solution does not fit the reference close to
the right face, see comparison in Figure 4.32. Since the computation of the
convective-viscous term on the dual grid by construction does not have this
problem, we achieve a good solution also in the case of non corrected grids
(Fig. 4.32). This means that once we have a discontinuity at the boundary
level we have to ensure it also at the discrete level in order to take advantages
of a DG scheme. We do it when we generate the grid and then use this grid
without any further modification of the code. In terms of computational ef-
fort, the resulting typical CPU time for a single update in time to compute the
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Figure 4.30: Comparison between our numerical results, the one obtained by
Albensoeder et al in [2], and the two dimensional data from Ghia et
al [89] for Re = 1000; three-dimensional plot of the two secondary
slices and computational grid; streamlines and magnitude of u on
slices x− y, x− z and y − z.

convective-viscous contribution for the current test on the corrected primary
grid is tMain

CPU = 0.65sec instead of tDualCPU = 3.09sec using 4 cores of an i7− 3770
3.40GHz so that the reduction factor for this test case is 4.75. This underlines
how the use of this new procedure significantly reduces the computational effort
of the nonlinear convective-viscous term.
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Figure 4.31: Detail of u (first two figures) and v (last two) close to the point
~x = (0.5, 0.5, 0) in the corrected case (left) and non corrected one
(right).
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cases.
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5 Conclusions and Outlook

In this thesis, a new family of arbitrary high order space-time discontinuous
Galerkin (DG) schemes on unstructured staggered grids for the numerical so-
lution of the incompressible Navier-Stokes and shallow water equations has
been developed. The proposed schemes have been validated against several
classical benchmarks, exact solutions and available experimental results. We
have first developed the method for the simple two-dimensional shallow water
equations and then extended it for the numerical solution of two and three-
dimensional incompressible Navier-Stokes equations. In the last two cases the
method is derived in such a fashion that we can always recover the low order
in time method as a particular case for which we recover the symmetry and
in general the semi-positive definiteness properties of the main matrix for the
pressure. Furthermore, we have implemented a classical semi-implicit represen-
tation that maintains the symmetry of the matrix and involves also the Crank-
Nicolson procedure in order to recover some extra precision in time compared
to the simple backward Euler scheme. The possible use of general unstructured
meshes and the ability to curve the elements allow to adapt the mesh easily to
the real geometry of the problem. Thanks to the use of staggered grids, each
main element involves only its direct neighbors and consequently the resulting
main matrices for the pressure (respectively free surface) become a four-point
block system for the two dimensional cases and a five-point block system in
three space dimensions. This allows to solve the system very efficiently even
if no preconditioning has been used, which is a very interesting feature of our
staggered space-time DG scheme compared to other implicit and semi-implicit
DG schemes that exist in the literature. In addition, all the matrices and ten-
sors used in the algorithm can be precomputed and stored in a preprocessing
step. In this way also the extension to high order isoparametric geometry does
not affect the run time part since they are used to compute only the matrices
and tensors.

In the incompressible Navier-Stokes case it was shown that the stability of the
scheme is given by the stability of the nonlinear convective contribution. For the
convective contribution we have used a classical explicit upwind discretization
for DG schemes that is affected by a CFL stability restriction based on the flow
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velocity. We have also discussed about a different procedure to compute the
nonlinear convective-viscous contribution for three dimensional flows. In this
case a better conditioned matrix that results symmetric and positive definite
in the case pγ = 0 is obtained for the computation of the viscous contribution.
This leads to a significant saving in terms of computational effort.
We have finally discussed about some technical issues concerning isoparametric
and parallel MPI implementation.
Future developments will concern the extension of the presented methods to
the compressible Navier-Stokes equations as well as to the ideal and viscous and
resistive MHD equations, where the divergence free condition of the magnetic
field can be naturally incorporated at the staggered level. Furthermore, since
the CFL condition affecting the nonlinear convective terms is based on the
local convective speed rather than wave velocity speed, it allowed us to use
large time steps for the low Froude number, shallow water case. Similarly, a
semi-implicit discretization should provide significant advantages for low Mach
number compressible flows, such as they appear in computational meteorology.
In this framework, the method developed in this thesis is a good candidate for
the high order extension of the semi-implicit finite volume method presented
very recently by Dumbser and Casulli in [71] for the simulation of all Mach
number compressible flows. Further work will consider the application of the
present method to large scale simulations of realistic geophysical flows.
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A.1 Further notes about 2D shallow water

A.1.1 Compute the nonlinear convection term

In this section we give some datails about the computation of the nonlinear
convective contribution. A weak formulation of Eq. (2.35) reads, for each
component of the velocity, as

∫
Rj

ψkψldx

 ˆFU
n

l,j − Ûn
l,j

∆t
=

∫
Rj

∇ψkψldx

 F̂ xl,j − ∮
∂Rj

ψk
(
~F x · ~ne,j

)
ds,

∫
Rj

ψkψldx

 ˆFV
n

l,j − V̂ n
l,j

∆t
=

∫
Rj

∇ψkψldx

 F̂ yl,j − ∮
∂Rj

ψk
(
~F y · ~ne,j

)
ds,

(A.1)

where ~F x = 1
H

(U2, UV ); ~F y = 1
H

(UV,U2); and F̂~v = ( ˆFU , ˆFV ). Defining

VCF j(k, l) =

∫
Rj

∇ψkψldx =

(
VCF

1
j

VCF
2
j

)
, (A.2)

we obtain directly the volume contribution to the nonlinear part, explicitly
given by VCF j · F̂ ·j . For the edge contribution in Eqs. (A.1) we use a Rusanov
numerical flux defined such as

~F x · ~ne,j =
1

2

[(
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(
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+
(
~F y
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· ~ne,j −
1

2
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[
(V )+ − (V )−

]
,

(A.3)
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and then, the edge contribution is given, for the first equation as

∮
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Also in this case it is convenient to denote the matrices of the contribution for
a quadrilateral element j and edge l ∈ Sj such as

ECF
c
j,l(k, r) =

∮
Γl

ψ
(j)
k ψ(j)

r ds,

ECF
o
j,l(k, r) =

∮
Γl

ψ
(j)
k ψ(℘(j,l))

r ds, (A.5)

where the indexes c and o are used to distinguish the contribution from the
current quadrilateral element and from the other quadrilateral element with
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respect to the edge l. Eq. (A.4) is then rewritten in a compact form as∮
∂Rj

ψk
(
~F x · ~ne,j,l

)
ds =
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(A.6)

and in the same way for the other component ~F y. The maximum convection
speed smax is given by the maximum local normal velocity, computed on the
edge l. Substituting of Eq. (A.1) into (A.6) one obtains an explicit formulation
for the convective terms in the ~x and ~y direction:
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j,lÛ℘(j,l) − ECF

c
j,lÛj
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and
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In order to get stability, a TVD Runge Kutta of the third order is used for the
operators S·. The convective nonlinear term is then computed first by setting:
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(A.9)
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and finally

ˆFU
n

j = Ûn
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1

6
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ˆFV
n

j = V̂ n
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1

6
(ky1 + ky2 + 4ky3 ) . (A.10)

A.2 High Performance Computing

In this part of the thesis we want to introduce some technical issues about
high performance computing (HPC) using a message passing interface (MPI).
Contrary to what happens using OpenMP, where we have a unique memory and
several threads, in MPI programming we have several processors with their own
memory. The passage of information about computational domains handled by
different CPUs has to pass through direct communications or messages between
processors. This philosophy allows to distribute the running on a huge amount
of processors that can be also physically separated, as it is typical in the major
supercomputer structures. In particular, the fact that each processor has its
own memory means that each processor sees only a part of the computational
domain and so we have all the quantities defined in Section 2.2.1 that have to
be computed locally. Furthermore, the communications have to be handled in
a proper way. In this section we will focus our attention on some particular
aspects regarding MPI implementation using staggered unstructured meshes.
Furthermore we will discuss these issues in a two dimensional framework since
it is easier to visualize, but the same reasoning applies readily to the complete
three-dimensional case.

A.2.1 Some details about MPI parallel implementation

We report here some technical details regarding the high performance com-
puting performed using MPI. In particular, we will see some details about the
treatment of the staggered grid on the MPI boundary (MPIb). In this direction,
the simplest solution is to duplicate the dual elements on the MPI boundary.
This solution leads to an overhead of information since the boundary dual ele-
ments will be computed twice; on the other hand, we would guarantee a direct
and natural assignment between edges and the dual elements in the local con-
nectivity system. This means that in problems where the MPI boundary is an
important part (i.e. three dimensional problems), this overhead reduces the
maximum efficiency of the parallelized code. Taking into account this, we will
assign the MPI boundary dual element to one of the two neighbor processors,
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for instance the left processor. In this way we have solved the overhead prob-
lem, but we have introduced an additional issue: let us consider in figure A.1

j1

j2

j3

j4

j5

CPU0

CPU1

Figure A.1: MPI boundary dual mesh issue.

the boundary element j1 assigned to CPU1. In a local connectivity system
processor 1 will assign:

CPU1 : j1 → j1
1 , j2 → j1

2 , j3 → j1
3

while processor 0 will assign

CPU0 : j1 → j0
1 , j4 → j0

2 , j5 → j0
3

The difference in this case is that processor 1 can associate each edge in the local
connectivity system to a dual element, while processor 0 has the information
about the edge, since it composes a triangle in the region of CPU 0, but it
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cannot associate a corresponding dual element. In addition if we take a look
on the halo zone, we get that for the main grid the halo zone is composed by
the direct neighbor of each main element on the MPIb, while for the dual grid
it is necessary, in general, to consider the neighbor of the neighbor (see e.g.
Figure A.2). Of course this information is needed only to reconstruct the main

j1

j2

j3

j4

j5

CPU0

CPU1

j1

j2

j3

j4

j5

CPU0

CPU1

Figure A.2: Information needed to reconstruct the communicated informations.

matrices. Once we have computed all the contributions we can readily use
the halo information sent from the neighbor CPUs. We will call this extended
stencil for the MPI boundary shadow zone since, in general it is different from
the halo zone. Through this work we will use the convention of negative indexes
on the shadow and halo elements. This means that shadow or halo triangles,
edges and dual elements will be negative while internal elements for the main
and dual grid will have a positive numbering. As explained above, we have
a potential problem in the local connectivity system for the dual grid. We
cannot guarantee that the numbering used for the edges is the same used for
the dual grid, but we can construct the shadow zone in such a fashion that
there exists a bijection between the edges and the dual grid. In this way we
can renumber the edges according to the dual grid. This is simply done by
considering only the direct neighbor if the corresponding dual element on the
MPI boundary is associated to the neighbor CPU and considering the extended
shadow (involving also the neighbor of the neighbor) if the dual element is an
element of the current CPU. In addition we will store only the edges that has a
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left and a right element as well as the real boundary elements (i.e. j ∈ B(Ω)).
Let take for example the figure A.1. If the original numbering is taken to be
{ji}i=1...5 = 1 . . . 5 then the local connectivity for the edges (jglob → jedges)
becomes

CPU0 : 1→ 1 , 4→ 2 , 5→ 3

CPU1 : 1→ 1 , 2→ 2 , 3→ 3 , 4→ −1 , 5→ −2

while the assignation between the edges and the dual elements becomes

CPU0 : 1→ 1 , 2→ 2 , 3→ −1

CPU1 : 1→ 1 , 2→ 2 , 3→ 3 , −1→ −1 , −2→ −2

We can remark for example how, for CPU 0, the physical edge 3 is associated to
a shadow dual element −1, while for CPU 1 all the physical edges are associated
to physical dual elements as well as shadow edges are associated to shadow dual
elements.
In this way we can renumber the edges and so obtain again a bijective map
between the edges and the dual elements in this local index system.

A.2.2 Periodic boundary conditions using MPI

In this part of the section about HPC we want to introduce a way to implement
the periodic boundary conditions with MPI. In a classical framework of DG
schemes on non-staggered grids this represents a really trivial issue since it is
sufficient to geometrically connect the edges where there is a periodic boundary
(PB). Similarly, the use of a discretization of the nonlinear convective-viscous
contribution on the main grid such as described in Section 4.2.4.1 moves the
MPI communications from the dual to the main grid and so a classical imple-
mentation of MPI code can be done.
On the contrary, as soon as we use staggered grids we have to consider also
the staggered elements that lie on the periodic boundary. In order to compute
the main matrices, these elements can be taken into account by duplicating
one single node (i.e. the external vertex) for each element. This node can
be reconstructed using a rigid body translation of the physical node placed
in the opposite PB. In addition, we have to choose an element that will be
the final physical element. We have chosen to keep the elements that lead on
the left boundary in the direction where the PB is applied (with respect to
the element couple). For each jp ∈ B(Ω) that is a periodic edge, we have a
couple of associated elements PBE`r(jp) = {jl, jr} ∈ B(Ω)2 so that jl = jr
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once the geometry will be connected. On the staggered level we have the two
associated dual elements Ωjl = {l(jl),Γjl} and Ωjr = {l(jr),Γjr} that are some
triangle elements because of {jl, jr} ∈ B(Ω)2. We can easily develop the final
elements that will be Ωjl = {`(jl), pl,Γjl} and Ωjr = {`(jr), pr,Γjr}, where
~xpl = U(~x`(jl)) is a new virtual point that is given by a proper rigid translation
of the point `(jl) and same reasons for jr. At the end of the connection only jl
will be a physical element and in this context we can call jr a virtual element.
Furthermore, since we are considering also high order, we have to compute in
a pre-processing step some flux matrices for each j ∈ Si, l ∈ Sj and j a PBE.
In order to do this it is convenient to keep also the virtual elements in order
to compute the fluxes (two fluxes from one side and two from the other) on
each l ∈ Sj . After having done this we can connect the correct fluxes and
discard the virtual elements. This procedure results convenient if we simply
consider a serial code. In the case of a parallel MPI program, we have also a
halo zone as well as a shadow zone and, in general, the virtual one may or may
not be contained in the shadow one. In addition we have to be careful about
the communication order.
For example let us take a periodic square where each processor has a corner,
so that CPU0 will have the top left corner, CPU1 will have the top right and
so on (see fig. A.3). About halo communication on the main grid we have
no special issues since, if we take in the worst case a corner element of CPU1,
then it communicates with CPU0 through the right edge and CPU3 through the
top edge. From a staggered point of view, the same element communicates also
with CPU2. Using the same example but with only two processors where CPU0
takes the left area and CPU1 takes the right one, if we consider the main grid
and the same corner element we do not need apparently any communication
since the neighbor element lies on the same CPU, but for the dual staggered
equivalent we need a communication between the two processors. This means
that in this case, for this element, we do not have a main halo zone but we
need to take into account a corresponding shadow element.

A.2.3 Some 2D examples

In this section we want to show some examples of applicability of the MPI
implementation in two space dimensions. As a first example we take the double
shear layer test such as in section 3.6.2.4 but we use 40 CPUs and a finest grid
whose characteristic size is h = 0.05. A sketch of the grid and local indexes for
each CPU is shown in figure A.4.
We perform the computation such as in 3.6.2.4 but with a ν = 5 · 10−5 corre-
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Figure A.3: Periodic Boundary conditions and MPI shadow issue.
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Figure A.4: Dual grid plot and MPI decomposition of the computational do-
main.

sponding to Re = 20.000, (p, pγ) = (4, 0) and θ = 0.51. The resulting vorticity
profile is reported in figure A.5 for several times and showing the formation of
several thin vorticity layers that are well solved also at time t = 1.8s.
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Figure A.5: Vorticity pattern for the double shear layer test at times, from top
left to bottom right, t = 0.4; t = 0.8; t = 1.2; t = 1.8.

A second 2D application of the MPI algorithm is the cavity flow presented in
Section 3.6.1.3 but at Re = 10.000. We use the same grid such as shown in
Figure A.4 but without periodic boundary. In Figure A.6 is reported the time
evolution of the vorticity. Remark how small structures can be observed as well
as Kelvin Helmholtz instability appearing close to the internal corners.
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Figure A.6: Vorticity pattern for the cavity at times from t = 1 and taken each
2sec from top left to bottom right.

A.2.4 A three dimensional test

It remains to check what is the efficiency of the parallel implementation. In
general, we have a code that runs in parallel and a certain time that is given
by some communication and synchronization procedures. In our simulations
we can always measure the total CPU time, which in general can be written as

T = T par + T sync

where T sync is the total synchronization time computed as the maximum wait-
ing time over all the processors; T par is the time to compute the parallel code
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with no communications. Observe how T sync contains the effective time of
communications as well as bad balancing problems that intrinsically increase
the synchronization time. The efficiency is in general defined as

s =
T1

nTn
.

We can assume that, for an optimal parallel code where no communications
appear (or the communication time is zero), the efficiency is of 100%, so that

α =
T1

nT parn

with α = 1. Remark also that T sync1 = 0 since there is only one processor.
This means that T1 = T par1 . This is a really strong assumption since, in
applications, we have several memory issues that tend to change the value of
α. As example, a memory buffer saturation would reduce the value of α while
a cache phenomenon would increase this value. We can in any case manipulate
the previous formula and so obtain:

α =
T1

nT parn
=

T1

nTn − nT sync
=

T1

nTn

1

1− Tsync

Tn

= s
1

1− Tsync

Tn

, (A.11)

and finally

s = α

(
1− T sync

Tn

)
, (A.12)

so the efficiency is directly a function of the percentage of synchronization time
with respect to the total time. This means that we can estimate, neglecting all
the memory issues, the efficiency simply measuring the total time needed for
the communications/synchronization procedures. A more practical test that,
on the contrary, requires more effort to be done, is a classical estimation of
the efficiency, using different number of CPUs and measuring the entire CPU
time. For the strong scaling test we fix the total number of tetrahedra and
we increase the number of CPUs. In this sense we have done a simple three-
dimensional Taylor-Green vortex at Re = 400 such as described in Section 4.3.3
using Ne = 331338 tetrahedra up to t = 1s. The resulting computational time
and efficiency is reported in Table A.1 where the local efficiency is reported and
compared between two successively simulations. For this test we have used the
fat nodes of SuperMUC system of LRZ. In particular, each node consists in
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Table A.1: Strong scaling efficiency test for the Taylor-Green vortex on Super-
MUC.

NNodes Submit Class NCPU Comp. Time Loc. Eff

40 General 1120 2750.39 -

80 General 2240 1386.42 99.2%

100 General 2800 1178.88 94.1%

120 General 3360 1058.52 92.8%

four Intel Xeon E7-4870, 2.40Ghz with 40 cores per node and 6.4GB of RAM
memory per core.
Figure A.7 shows the details about computational time of different part of the
program. In particular are reported the CPU time for the nonlinear convective-
viscous part, the solution of the main system and the total time for each time
update.
We perform now a weak scaling test. In this case we maintain constant the
load for CPU to Ne = 138 tetrahedra with p = 4. Furthermore we use a fixed
dt = 10−3 for all the simulations. For this test we use the new Phase 2 Haswell
nodes on SuperMUC. Each node consists in two Intel Xeon E5-2697 v3 with
2.60Ghz, 28 cores per node and 2.3GB of RAM memory per core.

Table A.2: Weak scaling efficiency test for the Taylor-Green vortex on Super-
MUC.

NNodes Submit Class NCPU Ne Comp. Time Loc. Eff

2 Micro 56 7728 709.70 -

16 Micro 448 61824 1007.74 70.4%

54 General 1512 208656 1260.88 79.9%

128 General 3584 494592 1649.90 76.4%

250 General 7000 966000 2509.50 65.7%

The resulting efficiency is reported in Table A.2 where a worse efficiency can
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Figure A.7: Computational time plot, from left to right, for nonlinear
convective-viscous term, main linear system and total time.

be observed with respect to the strong scaling. However, since we are using
iterative linear solvers, the total number of iterations usually increases with the
system dimension. Consequently, the computational effort of each processor
cannot be considered constant in this case.
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A.3 Solving the Laplace equation for 3D isoparametric
elements

When we use isoparametric elements we have to be careful since it is extremely
easy to generate nonconforming meshes when relatively coarse grids are used
to represent complex domains. Let us consider first a simple convex domain.
In this case it would be sufficient to project the elements that share at least a
one-dimensional boundary element on the physical boundary. In order to avoid
confusion we introduce some definitions regarding boundary and near-boundary
elements:

Definition 1 Let d the dimension of the problem. We say that an element
T is a boundary element if it contains an element of dimension (d − 1) that
is on the boundary. It is said to be a near-boundary element if it is not a
boundary element and contains an element of dimension (d− 2) that is on the
computational boundary.

For the two dimensional case and convex domains we have eventually to mod-
ify only the boundary elements since the near-boundary triangles have only
points that lie on the boundary and hence do not need to be modified. For the
three dimensional case if the domain is convex we can modify only boundary
and near-boundary elements. Remark how since the NB elements have lines
that lie on the boundary, they have to be modified according to the physical
domain. In the general case of non-convex domains it is not possible to project
locally since it is very easy to generate intersections or leave some DoF out of
the physical domain. In addition it is still not sufficient, in general, to modify
in an elastic way the internal DoF of boundary and near-boundary elements
since the curvature can completely invalidate some boundary elements. So we
have to move the entire grid. In order to do this we mount a tetrahelization
that involves all the DoFs and we solve an elastic Laplace equation for the dis-
placement with a classical continuous finite element methods using P1 elements
and imposing the projection on the physical domain as boundary conditions.
A sketch of the displacement is shown in figure A.8 for the flow past sphere test
case where, on the left, is reported the grid before the elastic transformation
as well as the displacement of all DoFs in several planes. On the right is plot-
ted the same grid after the elastic transformation. Remark how the original
mesh is too coarse to represent the sphere using subparametric elements and
to move only boundary and near-boundary elements. On the contrary we have
now that the entire grid is curved also for internal elements. Fortunately since
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the isoparametric approach involves only the geometry, it does not affect the
computational effort during the runtime but only the preprocessing step.
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Figure A.8: Really coarse grid with p = 4, (Left) before elastic transformation,
(Right) after elastic transformation. From top to bottom: xy, xz,
yz plane.
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A.4 Isoparametric Hexahedral characterization

From the previous section we have now our generalized isoparametric elements
{Ωisoi }i.
It is convenient, in order to compute the integrals, to represent each hexaedral
such as the union of two tetrahedra, namely Ωj = Ω`(j),j∪Ωr(j),j . The purpose
of this section is to generate, starting from a given main mesh {Ωisoi }i and
j ∈ [1, Nd] a consistent dual element Ωisoj . This reduces to found an element
Ωisoi,j for each i, j ∈ Si. The trick here is to use the same isoparametric mapping
used on the main grid. We will first recognize the correct sub-tetrahedron in
a first step reference space and then we will recunstruct the final nodes from
a second step reference space. Let {p1, p2, p3} be the three nodal point of a
standard triangle (i.e. p1 = (0, 0),p2 = (0, 1),p3 = (1, 0)). The three points
that characterize in a subparametric mean the edge j are given by

pph· = T−1,3D
tri

(
p·|Γisoj

)
and the corresponding characteristic points in the first step reference space are

pr· = T iso
(
pph· |Ω

)
= T iso

(
T−1,3D
tri

(
p·

∣∣∣Γisoj )
|Ω
)

Now we can add the internal mean point in the reference space that is given by
mr = (0.25, 0.25, 0.25) and use the resulting four points T dualref = {mr, pr1, p

r
2, p

r
3}

to develop the final second step reference space. In this way we can use a set of
characterization points {~xk = (x, y, z)k}k=1...Nφ on the standard tetrahedron.
The resulting characterization points in the physical space will be given by the
composition of the first and second step reference maps such as:

~xphk = T−1,iso
(
T−1

(
~xk|T dualref

)
|Ω
)

A diagram of the used maps is given in figure A.9.
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↓ ↑↓

←−
−→

T−1,3D
tri

T isoΩ

T−1,iso
Ω

Ω Tref

T dualref

Ωdual

Tref,2

Figure A.9: Construction of a general dual isoparametric element.
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A.5 A brief discussion about optimal order estimation

We want to give here a really brief discussion about the advantages and disad-
vantages of using an high order method instead of a low order one. In order
to do this we will consider a very simplified framework and we perform several
analysis in order to answer the question: when is it convenient to use high order
methods or not? At the base of this question there is the fact that, from one
side, high order methods produce a very fast reduction of the error but, from
the other side, they have a cost greater than a low order method. Let take a
look at the Table 2.1 in Chapter 2. We see how, taking the same number of
elements, the high order method costs much more than the low order one (i.e.
p = 0). On the contrary, since we need few elements to get a good solution, it
seems that fixing an error, it is convenient to use high order methods. Another
question is if there exists an optimal polynomial degree for a given error and
complexity of the algorithm.
For high order methods we usually estimate the error norm E as a function of
the number of elements n and polynomial degree p as follows:

E(p, n) = C(p)H(n)p+α,

where C(p) is a constant that does not depend on n; α is an optimality pa-
rameter; H(n) is a characteristic size, which for square domains can be written
such as

H ≈
√
d|Ω|
n

1
d

,

here d represents the dimension of the problem. Formally proofs applied to
central DG schemes lead to an optimality parameter of α = 0, while Shu
showed that it is at least α = 0.5 for the two dimensional unstructured case.
In practice the observed value of α is 1. We consider now n = 1, the resulting
error E(p, 1) represents the L2-error on the subspace

V pΩ = {P (x) | P is a polynomial of degree p on Ω}.

Since V pΩ ⊂ V p̄Ω ∀p̄ > p we have that E(p̄, 1) ≤ E(p, 1). We consider now the
normalized error with respect to this projection error E(p, 1):

e(p, n) =
E(p, n)

E(p, 1)
= h(n)p+α (A.13)

where h(n) = n−
1
d . In the rest of this section we will hence suppose n > 1

and e ∈ [0, 1). We need now to write an equation for the computational effort.
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The particular structure of the proposed method allows us to write everything
in terms of atomic operations and the corresponding weight of each atomic
operation. Let indicate with w(p) this weight, the computational effort for the
main operations can be schematized in:

• Element Element multiplication (EE) operation → w(p) operations,

• Matrix Element multiplication (ME) operation→ w(p)2 operations,

• Matrix Matrix Element multiplication (MME) operation→ 2w(p)2 oper-
ations.

Usually the biggest part of the algorithm consists in (ME) and (MME) oper-
ations and hence we will neglect (EE) and initialization cost in this analysis.
For an iterative linear solver we get the following computational cost in terms
of atomic operations:

I = (n · Stencil ·ME) · Loops(n, p, tol). (A.14)

We further suppose that the number of loops for the linear solver depends
on the number of elements but not on the size of the polynomial space, i.e.
Loops(N(n), p, tol) = Loops(N(n), tol). In this way we are able to write a
general expression for the computational cost such as

O(p, n) = Om(p, n) +Od(p, n)

= f(n) (wm(p))2 + g(n)
(
wd(p)

)2

, (A.15)

where f indicates the number of only atomic operations on the main grid, while
g is the equivalent for the dual staggered one. It is natural to suppose that f
and g are monotone increasing functions. A particular way to represent f and
g is to use polynomials for which we have the following result:

Lemma 4 Let f(x) =
N∑
k=0

αkx
k with αk ≥ 0 ∀k ∈ [0, N ], N > 0 a monotoni-

cally increasing function of x > 1. Then:

1. f(x) > 0 and f ′(x) > 0 ∀x > 1,

2. f(x)
xf ′(x)

> 0 ∀x > 1,

3.
(

f(x)
xf ′(x)

)′
< 0 ∀x > 1.
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A.5.1 Minimize the computational cost

We consider now a fixed error ε ∈ (0, 1). From Eq. (A.13) there exists a series
of combinations (n, p)(ε) so that e(n(ε), p(ε)) = ε and once we fix n or p then
the other is fixed. We will hence write p = p(n) as function of n so that
e(n(ε),p(n(ε))) = ε. We easily derive from Eq. (A.13) that

p(n) =
d| log ε| − α logn

logn
. (A.16)

The previous equation is valid for n ∈ (1, nlim] where nlim = ε−
d
α is the solution

of p(nlim) = 0. Furthermore we observe that

p(n) ≥ 0 ∀n ∈ (1, nlim], (A.17)

and

p(n)′ =

(
− 1

n logn

)
(p(n) + α) < 0 ∀n ∈ (1, nlim]. (A.18)

We consider now the case of one, two and three dimensional problems sep-
arately, since the weight function w(p) has different shape depending on the
problem dimension.

A.5.1.1 One dimensional case

In the one dimensional framework w = wm(p) = wd(p) = p + 1. In this way
Eq. (A.15) is rewritten such as

O(p, n) = f(n)w(p)2, (A.19)

where f groups both the main and the dual number of atomic operations. Let
o(n) = O(p(n), n) the computational cost associated to (ε, n(ε)). We want to
minimize this quantity with respect to n, so we consider the quantity o′(n) that
reads:

o′(n) = f ′(n) (p(n) + 1)2 + 2f(n) (p(n) + 1) p′(n)

= f ′(n) (p(n) + 1)2 + 2f(n) (p(n) + 1)

(
− 1

n logn

)
(p(n) + α)

= f ′(n) (p(n) + 1)2

[
1− 2

f(n)

nf ′(n)

1

logn

p(n) + α

p(n) + 1

]
= f ′(n) (p(n) + 1)2 S(n).

(A.20)
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Since f ′(n) > 0 and p(n) + 1 > 0 we have characterized the minimum such
as the zeros of S. Since the range is limited by nlim and limn→1 o(n)′ = −∞
there exists at least a minimum, which in the worst case is achieved by choosing
n = nlim. Observe how this last case would mean that it is convenient to take
p = 0 and hence a low order method. The general form of f does not allow us
to characterize better the minimum but we can still proof that, for polynomial
shape of f , the minimum is unique. Let take first α = 1 so that

S(n) = 1 + 2
f(n)

nf ′(n)

(
− 1

logn

)
,

and hence, using Lemma 4,

S′(n) = 2

(
f(n)

nf ′(n)

)′(
− 1

logn

)
+ 2

f(n)

nf ′(n)

(
− 1

logn

)′
= 2

(
f(n)

nf ′(n)

)′
︸ ︷︷ ︸

<0

(
− 1

logn

)
︸ ︷︷ ︸

<0

+2
f(n)

nf ′(n)︸ ︷︷ ︸
>0

(
1

n log2 n

)
︸ ︷︷ ︸

>0

, (A.21)

and so S′(n) > 0 for n ∈ (1, nlim]. Since the minimum are characterized only
by S, it means that the minimum is unique. In the general case of α ∈ [0, 1]
we have:

S′(n) = 2

(
f(n)

nf ′(n)

)′(
− 1

logn

)
p(n) + α

p(n) + 1

+2
f(n)

nf ′(n)

(
− 1

logn

)′
p(n) + α

p(n) + 1

+2
f(n)

nf ′(n)

(
− 1

logn

)(
p(n) + α

p(n) + 1

)′
,

(A.22)

and thanks to(
p(n) + α

p(n) + 1

)′
=

(
1− 1− α

p(n) + 1

)′
=

(1− α)p′(n)

(p(n) + 1)2
< 0, (A.23)

we still conclude that the minimum is unique. Furthermore, if n̄ is the minimum
(i.e. S(n̄) = 0), then o′(n) < 0 ∀n < n̄ and o′(n) > 0 ∀n > n̄, because
f ′(n) > 0, p(n) + 1 > 0 and limn→1 S(n) = −∞. This allows us to investigate
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in which cases it is convenient to use p = 0 just checking the sign of o′(nlim).
After some computations we obtain that it is convenient to use p > 0 if

o′(nlim) > 0⇔ | log ε| > 2
α

d
ε
d
α

f
(
ε−

d
α

)
f ′
(
ε−

d
α

) . (A.24)

From previous Eq. (A.24) and assuming f a polynomial function such as in
Lemma 4, we readily obtain that passing through the limit of ε → 0 then
log ε→∞ and

ε
d
α

f
(
ε−

d
α

)
f ′
(
ε−

d
α

) →M <∞

thanks to Lemma 4, so Eq. (A.24) is always satisfied. On the contrary, if we
pass through the limit ε→ 1 we get

0 > 2
α

d

f(1)

f ′(1)
> 0

which is a contradiction. In addition, the function on the left is a monotonic
decreasing function of ε and the right one is a monotonic increasing function
of ε and hence we recover the following results:

Lemma 5 Let f a polynomial function such as in Lemma 4, then

• ∀ε ∈ (0, 1) ∃!(n̄,p(n̄)) that minimizes the computational cost O;

• ∃εlim ∈ (0, 1) such that ∀ε > εlim it is convenient to take p = 0, otherwise
it is convenient to take p > 0;

• For ε → 0 it is always convenient to use p > 0, while for ε → 1 it is
always convenient to use p = 0.

A.5.1.2 Two dimensional case

In the two dimensional case the weights for the main and staggered grid are:

wm(p) =
(p+ 1)(p+ 2)

2
,

wd(p) = (p+ 1)2. (A.25)
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Since in general the computational cost on the main grid is higher with respect
to the one at the staggered level, we look at the minimum of the two contribu-
tions separately. Indeed, using the same reasoning of previous the section we
obtain:

om(n)′ =
1

4
f ′(n) (p(n) + 1)2 (p(n) + 2)2 Sm(n),

od(n)′ = g′(n) (p(n) + 1)4 Sd(n), (A.26)

where

Sm(n) = 1 + 2
f(n)

nf ′(n)

(
− 1

logn

)
p(n) + α

p(α) + 1
+ 2

f(n)

nf ′(n)

(
− 1

logn

)
p(n) + α

p(α) + 2
,

Sd(n) = 1 + 4
g(n)

ng′(n)

(
− 1

logn

)
p(n) + α

p(α) + 1
. (A.27)

About Sm and Sd we reach the same conclusions such as in the previous section.
In this case we potentially have two minimum values n̄ and n̂, one for the main
and another one for the dual grid. In any case o′(n) < 0 ∀n < min(n̄, n̂) and
o′(n) > 0 ∀n > max(n̄, n̂) and in the range min(n̄, n̂) ≤ n ≤ max(n̄, n̂) we have
at least a minimum. A typical shape of the function o(n) can be observed in
Figure A.10 left for f polynomial of third order and g polynomial of second
order. Figure A.10 right shows the behavior of p(n) for ε = 10−6, while Figure
A.11 shows the value of o′(nlim) for several kind of f (in particular, from right
to left, for f polynomial of degree 3,2,1 and 0).
Regarding the three-dimensional case, using the L2-mean procedure such as
described in Section 4.2.4.1, then w(p) = wd(p) = wm(p) = (p+1)(p+2)(p+3)

6

and, after some computations, we achieve the same conclusions of the Lemma
4.
This simple analysis in a very simplified framework will be now compared with
the practical results achieved for the shallow water equations.
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Figure A.10: Typical shape for o(n) and p(n).

Figure A.11: O′ as function of n for several kind of f , g = 0.
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A.6 Experimental estimation of the optimal polynomial degree

We want here to estimate which is the optimal polynomial degree that min-
imizes the computational cost. In order to do this we take the convergence
results given in Section 2.3.1.
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Figure A.12: Experimental values of CPU time for several n and polynomial
degrees.

Figure A.12 shows the resulting CPU time and number of elements chart in
semi and total logaritmic scale, colored using polynomial degree p. We observe
how, in the fully logaritmic scale (log-log), the CPU time behaves linearly
with respect to n. In addition, the gradient in the log-log space seems to be
constant. This means that the computational effort O(n, p) can be estimated
as the multiplication of two parts: one dependent only on p and the second one
dependent only on n:

O(n, p) ≈ naeb, (A.28)

where a = 1.4884 and b = b(p) is an increasing function of p. Figure A.13 shows
the behavior of eb(p) and suggests to take a polynomial type extrapolation curve.
From Figure A.13, a p4 extrapolation curve seems to be a good approximation,
but practice shows that we would take also p5 in order to approximate better
b(p) for low values of p.
In the same way we can estimate the error norm as function of the number of
elements and the polynomial degree, using p1 for the gradient and p2 extrap-
olation polynomials for the constant. The resulting approximations compared
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Figure A.13: Behavior of eb(p).

to the data are reported in Fig. A.14. In order to finish our analysis we need
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Figure A.14: Data and estimated value for the CPU time O and the error E.

to know, for a fixed ε and n̄, what is the combination so that E(n̄, p̄) = ε and
so what is p̄ = p(n̄, ε). In order to do this we have first written the nonlinear
functional f(n, p) = E(n, p) − ε and then solved it using the secant method.
Once we have p(n̄, ε) we further compute O(n, ε) = O(n(ε), p(n(ε))). Figure
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A.15 shows the resulting O(n, ε) using ε = 10−5 as well as the corresponding
value of p(n, ε).
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Figure A.15: CPU time and polynomial degree as a function of n for ε = 10−5.
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Figure A.16: p(ε) and O(ε) for several values of ε.

We finally track the position of the minimum for several values of ε. In this
way O(ε) = O(n̄(ε), p(n̄(ε))). We report in Fig. A.16 the graph for n(ε), p(ε),
and O(ε). As expected, the optimal polynomial order tends to increase for
ε → 0, confirming the theoretical analysis given in the previous section. Also
the typical behavior of the computational cost acts similar to the one observed
in the previous section, where a very simplified framework was considered.
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