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TWO LETTERS BY GUIDO CASTELNUOVO

CIRO CILIBERTO AND CLAUDIO FONTANARI

ABSTRACT. In this expository paper we transcribe two letters by Guido Castelnuovo, one

to Francesco Severi, the other to Beniamino Segre, and explain the contents of both, which

basically focus on the quest for an algebraic proof of the equality between the analytic

and the arithmetic irregularity and of the closedness of regular 1–forms on a complex,

projective, algebraic surface. Such an algebraic proof has been found only in the 1980’s

by Deligne and Illusie.

INTRODUCTION

As it is well-known, the treatise by Federigo Enriques epitomizing the celebrated clas-

sification of algebraic surfaces by the Italian school of algebraic geometry has been pub-

lished posthumously in 1949, a few years after the sudden death of the author in 1946. As

pointed out by Guido Castelnuovo in the preface (see [8]),

(...) dove il terreno è meno solido l’Autore mette sull’avviso lo studioso.

Di questi punti ancora fluidi quello che presenta la difficoltà più ardua ed

il maggiore interesse è la teoria dei sistemi continui di curve algebriche

(...) che esistono sopra ogni superficie irregolare. (...) tutti i tentativi com-

piuti (...) per dimostrarla mediante considerazioni algebrico-geometriche

si sono urtati contro difficoltà sinora insuperate. (...) l’Autore dà anche

suggerimenti sopra una via da tentare per giungere alla meta. Debbo con-

fessare che non vedo come quella via possa tradursi in un procedimento

irreprensibile.

(...) where the ground is less solid the Author warns the reader. Among

these still unsteady points the most difficult and interesting one is the the-

ory of the continuous systems of algebraic curves (...) existing on any

irregular surface. (...) all attempts (...) towards an algebro-geometric ap-

proach have been frustrated by still insurmountable difficulties. (...) the

Author provides some hints about a strategy to reach the goal. I should

confess I cannot see how that strategy may be translated into a fully rig-

orous argument.

The two letters by Guido Castelnuovo that we transcribe and translate into English in

§1, the first one addressed to Francesco Severi and dated 1947, the second one addressed

to Beniamino Segre and dated 1950, provide first hand witness of Castelnuovo’s attempts

to a purely algebro–geometric understanding of irregular surfaces.

In §2 we explain the background of Castelnuovo’s letters, using modern terminology.

In particular we explain a classical method, very familiar to Castelnuovo and due to Picard

and Severi, of constructing regular 1–forms on a surface. As explained in §2.3, one of the
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theory, Frölicher spectral sequence.
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2 CIRO CILIBERTO AND CLAUDIO FONTANARI

crucial points of Castelnuovo’s approach is the attempt of proving the closedness of global

regular 1-forms, a fact that today we are aware to strongly rely on the characteristic zero

assumption. Indeed, Castelnuovo’s remarks in his letters turn out to be quite inconclusive

and sometimes even unprecise, as we discuss in Section 3, that is devoted to explaining

most of the issues raised by Castelnuovo in his two letters. The algebro-geometric proof of

the results that Castelnuovo seeked (i.e., closedness of global regular 1-forms and equality

of different definitions of irregularity, in characteristic zero) is now available, it is due to

work by Deligne and Illusie in the 1980’s and turns out to be completely out of reach of

Castelnuovo’s classical tools, since (somehow paradoxically) it involves a tricky reduction

to the case of positive characteristic. Section 4 is devoted to give a brief account on how

these algebraic proofs can be obtained using modern tools.

We stress that the present note does not contain any original result, but in our opinion the

contents of Castelnuovo’s letters are worthy of careful consideration from both an historical

and a mathematical viewpoint. This paper is addressed to readers who are well aware of

rather advanced concepts in algebraic geometry, so we do not dwell on explaining standard

technical details when they occur.

Acknowledgements: The authors are members of GNSAGA of the Istituto Nazionale

di Alta Matematica “F. Severi”. This research project was partially supported by PRIN

2017 “Moduli Theory and Birational Classification”.

1. THE LETTERS

In this section we transcribe two letters of Castelnuovo, the first one of November 26,

1947 to Francesco Severi, the second one of January 15, 1950 to Beniamino Segre. The

first letter belongs to the “Fondo Guido Castelnuovo” of the Accademia Nazionale dei

Lincei, that has been edited by Paola Gario, has been digitalized and can be found on the

web page

http://operedigitali.lincei.it/Castelnuovo/Lettere E Quaderni/menuL.htm

The second letter comes from the collection of documents of Beniamino Segre kept at

the University of Caltech.

1.1. Guido Castelnuovo to Francesco Severi.

Roma, 26 novembre 1947

Caro Severi,

aderendo al tuo desiderio ti comunico alcuni risultati sulle superficie irregolari; parecchi

si ottengono senza difficoltà e possono servire come esercizio per i tuoi discepoli.

Lo scopo remoto ed ambizioso che mi proponevo era di costruire una teoria delle

dette superficie indipendente dalla nozione di sistema continuo di curve, teoria in cui si

ritrovassero il teorema sul numero (pg − pa) dei differenziali totali indipendenti di prima

specie, il teorema di Hodge, ecc.. Il programma è appena iniziato; ma si deve raggiungere

la meta, a meno che la teoria delle superficie irregolari non riservi delle sorprese che non

saprei nemmeno immaginare.

1.

Indico con |C| un sistema regolare di grado n e genere π; in molti casi occorre supporre

che |C| sia abbastanza ampio, contenga entro di sè il sistema canonico |K| od anche un

suo multiplo; ricercando caratteri invarianti, tutto ciò non ha importanza. Indico con χ il

tuo invariante q′, cioè il numero delle curve indipendenti di |2C + K| che passano per il
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gruppo jacobiano Gδ di un fascio |C| e in conseguenza per il gruppo base Gn del fascio.

Indico con Gk il gruppo dei k punti cuspidali di una superficie, d’ordine n, a singolarità

ordinarie, le cui sezioni piane appartengano al sistema |C|.
Ecco un significato di χ che si raggiunge subito:

1) E’ χ la sovrabbondanza del sistema |4C + 2K| rispetto al gruppo dei punti cuspidali

Gk (cioè Gk impone k − χ condizioni al detto sistema).

Invece Gk presenta condizioni indipendenti ai sistemi |mC +K|, |mC + 2K|, . . . , per

m > 5.

Per m = 4 vi è un risultato di Enriques ottenuto indirettamente attraverso il computo

dei moduli di una superficie, risultato che converrebbe dimostrare direttamente; lo ricordo

perché interviene tra poco: ”La sovrabbondanza del sistema |4C+K| rispetto al gruppoGk

dei punti cuspidali è un invariante”, che indicherò con Q′ e di cui sotto darò l’espressione.

2) La serie completa gk determinata dal gruppo Gk sopra una curva di |4C+K| passante

per esso ha la dimensione χ.

3) La serie completa gk determinata dal gruppo Gk sopra una curva di |3C+K| passante

per esso (ad es.: sulla f = f ′
x = 0) ha la dimensione 2n − π + 2pg + pa − (I + 4) + θ

dove 0 6 θ 6 pg − pa (si suppone |C| abbastanza ampio). E’ θ un invariante?

2.

Il procedimento che ti ha condotto a stabilire l’invarianza di q′ = χ fa vedere subito

che:

4) E’ invariante il numero delle curve linearmente indipendenti di |2C +2K| che passano

per il gruppo jacobiano Gδ di un fascio |C| ed anche per il gruppo base Gn; indicherò

questo invariante con Q.

Si vede poi (se è esatto il risultato di Enriques sopra citato) che:

5) E’ pure invariante il numero delle curve linearmente indipendenti di |2C + 2K| che

passano per il gruppo Gδ senza esser costrette a passare per Gn; questo nuovo invariante

uguaglia l’invariante di Enriques Q′.

E’ quindi invariante il numero delle condizioni che una curva di |2C + 2K| passante

per il gruppo jacobiano Gδ di un fascio |C| deve soddisfare per contenere il gruppo base.

Si dimostra che questo invariante soddisfa alla diseguaglianza Q′ −Q 6 pg.

Quanto alle espressioni di Q e Q′ posso dir questo.

Se le ∞Q−1 curve di |2C + 2K| passanti per Gδ + Gn segano sopra una curva di

|2C + K| passante per lo stesso gruppo una serie completa (residua di Gδ + Gn rispetto

alla serie canonica) allora:

Q− 1 = pa + pg + p(1) − (I − 4) + ω

doveω (6 pg−pa) è un nuovo invariante che ha un significato molto semplice: I+4−ω−1
è il numero delle condizioni che un gruppo GI+4 della tua serie d’equivalenza (in senso

stretto) presenta alle curve bicanoniche costrette a contenerlo.

Se la serie lineare nominata non è completa, dall’espressione di Q − 1 va tolta la defi-

cienza 6 pg − pa della serie stessa.

Nello stesso ordine d’idee ti comunico ancora questo risultato:
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6) La sovrabbondanza del sistema |3C + K| rispetto al gruppo jacobiano Gδ di un fas-

cio |C| è un invariante e vale precisamente 2pg (se il sistema completo |C| cui il fascio

appartiene è abbastanza ampio).

3.

Altre questioni. Come sai il teorema fondamentale da dimostrare è questo: una curva Γ
di |2C+K| passante per il gruppo jacobiano Gδ e il gruppo base Gn di un fascio |C| sega

sopra la curva generica C del fascio (fuori di Gn) un gruppo canonico che non appartiene

ad una curva aggiuntaC′. Ho cercato di trasformare la condizione in altre equivalenti. Tale

è ad esempio questa: il gruppo Gn su quella curva deve presentare condizioni indipendenti

alla serie caratteristica di Γ resa completa. Alla serie caratteristica in senso stretto, Gn

presenta solo n− 1 condizioni.

Altra forma: Scriviamo la identità di Picard in coordinate omogenee:

Xf ′
x + Y f ′

y + Zf ′
z + Tf ′

t = 0

dove X = 0, . . . sono superficie d’ordine n − 3. Occorre aggiungere la condizione (non

detta esplicitamente) che le superficie yX − xY = 0, . . . , tZ − zT = 0 siano aggiunte

alla f = 0 d’ordine n. Segue che le X = 0, . . . , T = 0 passano semplicemente per i t
punti tripli di f ed hanno inoltre in comune un gruppo di (n − 4)d − 3t punti sulla curva

doppia d’ordine d di f ; esse segano inoltre rispettivamente i piani x = 0, . . . , t = 0 in

curve aggiunte d’ordine n − 3. Da ciò segue che quel gruppo di punti della curva doppia

appartiene alla serie segata su questa dalle superficie d’ordinen−4 passanti semplicemente

per i t punti tripli, purch’e questa serie venga resa completa, mentre essa ha la deficienza

pg − pa per la definizione stessa di irregolarità. Orbene il teorema fondamentale equivale

al seguente: Per quel gruppo di (n− 4)d− 3t punti della curva doppia non passa nessuna

superficie d’ordine n − 4 che contenga i t punti tripli di f . Questo enunciato si traduce

in questo altro, molto elegante dal punto di vista analitico: Non è possibile soddisfare una

identità del tipo:

Xf ′
x + Y f ′

y + Zf ′
Z + Tf ′

t ≡ Qf

ove X = 0, . . . , T = 0 sono superficie aggiunte d’ordine n − 3 e Q = 0 una superficie

d’ordine n− 4 se non nel caso banale X = 1
n
xQ, . . . , T = 1

n
tQ.

Ritornando all’identità di Picard scritta sopra, ti consiglio di far studiare da qualche

discepolo la omografia tra il sistema di superficie non aggiunte di ordine n−3 λX+µY +
νZ + ρT = 0 e il sistema di piani λx + µy + νz + ρt = 0, ognuno dei quali taglia la

superficie corrispondente in una curva aggiunta. Nel caso delle rigate irrazionali dei primi

ordini si trovano proprietà elegantissime.

4.

Finalmente alcune osservazioni che ti potranno servire se esporrai in lezione la tua Nota

sugli integrali semiesatti.

Tu dimostri che ad ogni curva di |2C + K| passante per il gruppo jacobiano e per

il gruppo base di un fascio |C| (curva covariante del fascio, come io la chiamo) si può

associare una determinata curva covariante di ogni altro fascio |D|. Due curve associate

segano sullo stesso gruppo di punti la curva di contatto di due fasci. Esse inoltre si segano

in un gruppo GI+4 della tua serie. Si vede facilmente che questo gruppo è comune a tutta

la famiglia di curve covarianti associate relative agli infiniti fasci esistenti sulla superficie.

Ogni curva C di f = 0 è segata dalla curva covariante della famiglia in un gruppo canonico

che dirò gruppo traccia.
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Preso un puntoP della superficie, esistono infinite curve per P per le quali P appartiene

al gruppo traccia. Tutte queste curve si toccano in P . Vuol dire che ad ogni punto P di f =
0 è collegata una direzione tangente, o un elemento lineare uscente da P (indeterminato

solo se P appartiene al gruppoGI+4). Connettendo tutti questi elementi si viene a ricoprire

la superficie con un fascio di curve (trascendenti) che risultano esser le curve integrali

dell’equazione Bdx − Ady = 0, dove A = 0 e B = 0 sono due superficie aggiunte

d’ordine n − 2 secanti su f le curve covarianti dei fasci x = cost., y = cost. Resterebbe

naturalmente da far vedere che 1/f ′
z è fattore integrante dell’espressione differenziale.

Al variare di P su f quella tangente in P descrive una congruenza algebrica di classe

2π− 2 e di ordine k− ν = 6π− 6+p(1)− 1− (I+4) ove k è il numero di punti cuspidali

e ν è l’ordine della curva f = f ′
x = 0.

E qui termino questa lunghissima lettera che vorrei potesse spingere a colmare nella

teoria delle superficie quella lacuna che tutti avvertiamo.

Cordiali saluti dal tuo aff.mo

GUIDO CASTELNUOVO

Rome, November 26, 1947

Dear Severi,

following your wishes I am going to tell you some results about irregular surfaces; many

of them are easily obtained and may be useful as exercises for your students. My ambitious

and ultimate purpose was to build a theory of such surfaces independent of the notion of

continuous system of curves, a theory embracing the theorem on the number (pg − pa) of

independent global differentials of the first kind, the theorem of Hodge, etc.. This program

has just started; but the goal should be achieved, unless the theory of irregular surfaces

hide amazing things I could not even imagine.

1.

Let |C| be a regular system of degree n and genus π; in many cases we need to assume

that |C| is sufficiently ample, containing the canonical system |K| or even one of its mul-

tiples; since we are looking for invariant characters, this is immaterial. I denote by χ your

invariant q′, namely, the number of independent curves of |2C + K| passing through the

jacobian group Gδ of a pencil |C|, hence through the base locus Gn of the pencil. Let

Gk be the group of the k cuspidal points1 of a surface, of degree n, with only ordinary

singularities, and whose plane sections belong to the system |C|.
Here is a meaning of χ which is immediate:

1) The invariant χ is the superabundance of the system |4C + 2K| with respect to the

cuspidal points Gk (i.e. Gk imposes k − χ conditions to such system).

On the other hand, Gk gives independent conditions to the systems |mC +K|, |mC +
2K|, . . . , per m > 5.

For m = 4 there is a result of Enriques, indirectly obtained by a moduli computation

for a surface, but which should be directly proven; I recall it because it is coming into play

shortly later: “The superabundance of the system |4C+K| with respect to the group Gk of

cuspidal points is an invariant”, which I will denote Q′ and whose expression I am going

to give below.

1The usual English term for cuspidal points is pinch points.
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2) The complete series gk determined by the group Gk on a curve of |4C + K| passing

through it has dimension χ.

3) The complete series gk determined by the group Gk on a curve of |3C + K| passing

through it (for instance: on f = f ′
x = 0) has dimension 2n− π + 2pg + pa − (I + 4) + θ

where 0 6 θ 6 pg − pa (assume |C| sufficiently ample). Is θ an invariant?

2.

The same argument which led you to establish the invariance of q′ = χ immediately

shows:

4) It is invariant the number of linearly independent curves of |2C + 2K| passing through

the jacobian group Gδ of a pencil |C| and also through the base group of Gn; I will denote

this invariant by Q.

Then one sees (if the aforementioned result of Enriques is correct) that:

5) It is also invariant the number of linearly independent curves of |2C + 2K| passing

through the group Gδ without having to pass through Gn; this new invariant is equal to

Enriques invariant Q′.

It is therefore invariant the number of conditions that a curve of |2C + 2K| passing

through the jacobian group Gδ of a pencil |C| has to satisfy in order to contain the base

group. One proves that this invariant satisfies the inequality Q′ −Q 6 pg .

Regarding the expressions of Q e Q′ I can state the following.

If the ∞Q−1 curves of |2C+2K| passing through Gδ +Gn cut on a curve of |2C+K|
passing through the same group a complete series (residual of Gδ +Gn with respect to the

canonical series) then:

Q− 1 = pa + pg + p(1) − (I − 4) + ω

where ω (6 pg − pa) is a new invariant which has a very simple meaning: I + 4 − ω − 1
is the number of conditions that a group GI+4 of your series of equivalence (in the strict

sense) prescribes to the bicanonical curves forced to contain it.

If such a linear series is not complete, from the expression of Q− 1 one has to subtract

the deficiency 6 pg − pa of the series.

In the same circle of ideas I also tell you the following result:

6) The superabundance of the system |3C +K| with respect to the jacobian group Gδ of

a pencil |C| is an invariant and its value is precisely 2pg (if the complete system |C| to

which the pencil belong is sufficiently ample).

3.

Other issues. As you know, the fundamental theorem to be proven is the following: a

curve Γ of |2C +K| passing through the jacobian group Gδ and the base group Gn of a

pencil |C| cuts on the generic curve C of the pencil (off Gn) a canonical group which does

not belong to an adjoint curve C′. I tried to translate this condition into other equivalent

formulations. Such is for instance the following one: the group Gn on that curve has to

impose independent conditions to the characteristic series of Γ made complete. To the

characteristic series in the strict sense, Gn imposes only n− 1 conditions.

Other formulation: Let us write Picard’s identities in homogeneous coordinates:

Xf ′
x + Y f ′

y + Zf ′
z + Tf ′

t = 0
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where X = 0, . . . are surfaces of degree n−3. We have to add the condition (not explicitly

stated) that the surfaces yX−xY = 0, . . . , tZ−zT = 0 are adjoint to f = 0 of degree n 2.

It follows that X = 0, . . . , T = 0 pass simply through the t triple points of f and moreover

share a group of (n − 4)d − 3t points on the double curve of degree d of f ; furthermore,

they cut the planes x = 0, . . . , t = 0, respectively, in adjoint curves of degree n−3. Hence

it follows that such group of points of the double curve belongs to the series cut on this

curve by the surfaces of degree n− 4 passing simply through the t triple points, provided

this series has been made complete, while it has deficiency pg − pa by the very definition

of irregularity. Now, the fundamental theorem is equivalent to the following: Through such

groups of (n − 4)d− 3t points of the double curve it does not pass any surface of degree

n− 4 containing the t triple points of f 3. This statement translates into the following one,

which is quite elegant from the analytic viewpoint: It is impossible to verify an identity of

the form:

Xf ′
x + Y f ′

y + Zf ′
Z + Tf ′

t ≡ Qf

where X = 0, . . . , T = 0 are adjoint surfaces of degree n − 3 and Q = 0 is a surface of

degree n− 4 except in the trivial case X = 1
n
xQ, . . . , T = 1

n
tQ.

Going back to Picard’s identity as written above, I suggest to you to propose to some

student to investigate the homography between the system of non–adjoint degree n − 3
surfaces λX + µY + νZ + ρT = 0 and the system of planes λx + µy + νz + ρt = 0,

each cutting the corresponding surface in an adjoint curve. In the case of irrational ruled

surfaces of low degree one finds very elegant properties.

4.

Finally, a few remarks you may find useful if you will present in a course your note

about semiexact integrals.

You prove that to every curve of |2C +K| passing through the jacobian group and the

base group of a pencil |C| (covariant curve of the pencil, as I call it) one can associate a

unique covariant curve of every other pencil |D|. Two associated curves cut on the same

group of points the contact curve of two pencils. They moreover cut each other in a group

GI+4 of your series. One easily checks that this group is common to the whole family

of associated covariant curves with respect to the infinitely many pencils on the surface.

Every curve C of f = 0 is cut by the covariant curve of the family in a canonical group

which I will call trace group.

Taken a point P of the surface, there exist infinitely many curves through P such that

P belongs to the trace group. All these curves intersect in P . It means that to every point

P of f = 0 is associated a tangential direction, or a linear element (not defined only if P
belongs to the group GI+4). By connecting all these elements the surface is covered by a

pencil of (transcendental) curves which turn out to be the integral curves of the equation

Bdx−Ady = 0, where A = 0 and B = 0 are two adjoint surfaces of degree n− 2 cutting

on f the covariant curves of the pencils x = const., y = const. Of course one should show

that 1/f ′
z is an integral factor of the differential expression.

Varying P on f the tangent in P describes an algebraic congruence of class 2π− 2 and

degree k− ν = 6π− 6 + p(1) − 1− (I +4) where k is the number of cuspidal points and

ν is the degree of the curve f = f ′
x = 0.

2This is clearly an error, Castelnuovo means adjoint of degree n− 2.
3The right statement here would be: Through such groups of (n− 4)d− 3t points of the double curve it does

not pass any surface of degree n− 4 containing the t triple points of f and not containing the double curve.
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Here I stop this quite long letter I wish it could stimulate to fill in the theory of surfaces

that gap we all perceive.

Best regards, yours friendly

GUIDO CASTELNUOVO

1.2. Guido Castelnuovo to Beniamino Segre.

Roma, 15 genn. 50

Caro Professore,

In relazione alla nostra conversazione di venerdı̀ scorso e al programma di ricerche di

cui Le parlavo, penso di sottoporle una questione, risolta la quale si sarebbe compiuto un

passo notevole verso la meta cui Le accennavo. Si tratta di una questione di geometria

algebrica, la quale, ove si possano togliere alcune restrizioni forse non necessarie, si muta

in una questione relativa alle equazioni alle derivate parziali con condizioni al contorno.

Con i mezzi svariati e potenti di cui Ella dispone potrà affrontarla e pervenire alla risposta

desiderata.

Sia f(x, y, z, t) una superficie (in coord. omog.) d’ordinen, irriducibile, con singolarità

ordinarie; e siano X = 0, Y = 0, Z = 0, T = 0 quattro superficie aggiunte d’ordine n−3.

Si tratta di dimostrare che un’identità del tipo

(1) Xf ′
x + Y f ′

y + Zf ′
z + Tf ′

t = Qf,

con Q polinomio di grado n − 4, non può sussistere salvo nel caso banale (identità di

Eulero) X = 1
n
xQ, . . . , T = 1

n
tQ. Per farle vedere l’interesse della questione Le dirò

che se si toglie la condizione che le sup. X, . . . , T siano aggiunte, e si sostituisce con la

condizione meno stretta che siano aggiunte le sei superficie d’ordine n − 2 yX − xY =
0, . . ., allora la identità può sussistere con Q identicamente nulla; anzi di identità di quel

tipo ve ne sono pg − pa indipendenti per una superficie irregolare (Picard).

Ritornando alla (1), supposto che essa possa aver luogo, si vedrebbe che la superficie

Q = 0 incontra la curva doppia di f = 0 nei punti tripli e nei punti ove X ′
x + Y ′

y + Z ′
z +

T ′
t = 0, donde si concluderebbe che Q ≡ X ′

x + Y ′
y + Z ′

z + T ′
t + Q (salvo un fattore

costante), essendo Q = 0 una superficie aggiunta d’ordine n − 4 che darebbe luogo a un

integrale doppio senza periodi; e di qua l’assurdo (Hodge). Ma io richiedo evidentemente

una dimostrazione più diretta e più elementare di quella qui abbozzata.

Ci pensi quando ha tempo, perché mi pare ne valga la pena. Cordiali saluti; aff.mo

G. Castelnuovo

Rome, January 15, 1950

Dear Professor,

Concerning our conversation of last Friday and the research program I exposed to you,

I am going to propose to you a question, whose solution would provide a remarkable step

towards the goal I mentioned. It is a question in algebraic geometry, which, up to remov-

ing some maybe unnecessary restrictions, translates into a question in partial differential

equations with boundary conditions. By applying the many and poweful tools you have at

your disposal you could address it and obtain the desired answer.

Let f(x, y, z, t) be a surfaces (in homogeneous coordinates) of degree n, irreducible,

with ordinary singularities; let X = 0, Y = 0, Z = 0, T = 0 be four adjoint surfaces of



TWO LETTERS BY GUIDO CASTELNUOVO 9

degree n− 3. The point is to show that an identity of the form

(2) Xf ′
x + Y f ′

y + Zf ′
z + Tf ′

t = Qf,

with Q polynomial of degree n−4, is not satisfied unless in the trivial case (Euler identity)

X = 1
n
xQ, . . . , T = 1

n
tQ. In order to show you the interest of the question I will tell you

that if one drops the condition that the surfaces X, . . . , T are adjoint, and one replaces it

by the less strict condition that the six degree n− 2 surfaces yX−xY = 0, . . . are adjoint,

then the identity may hold with Q identically zero; indeed, there are pg − pa independent

such identities for an irregular surface (Picard).

Coming back to (2), assuming it may hold, one would see that the surface Q = 0 meets

the double curve of f = 0 in the triple points and in the points whereX ′
x+Y ′

y+Z ′
z+T ′

t = 0,

whence one would conclude that Q ≡ X ′
x + Y ′

y + Z ′
z + T ′

t +Q (up to a constant factor),

where Q = 0 would be an adjoint surface of degree n−4 which would give rise to a double

integral without periods, hence a contradiction (Hodge). But of course I am looking for a

more direct and more elementary proof than the one sketched here.

Please think about that when you have time, because I believe it is worth the trouble.

Best regards; yours friendly

G. Castelnuovo

2. REGULAR 1–FORMS ON A SURFACE

If X is a smooth, irreducible, projective surface over an algebraically closed field K, the

elements of H0(X,Ω1
X) are called regular 1–forms on X . We will denote the dimension

of H0(X,Ω1
X) by qan(X) (or simply by qan if there is no danger of confusion) and we will

call it the analytic irregularity of X (see [6]).

In this section we want to explain the background of Castelnuovo’s letters, using modern

terminology. In particular we want to explain a classical method, very familiar to Castel-

nuovo and due to Picard and Severi, of constructing regular 1–forms on a surface. In

§2.3, we explain Castelnuovo’s viewpoint on the attempts of proving closedness of regular

1–forms on a surface.

2.1. The general set up. Let X be a smooth, irreducible, projective surface over an alge-

braically closed field K. We may assume X to be linearly normally embedded as a surface

of degree d in a projective space Pr, with r > 5, in such a way that the following happens.

If we consider a general projection π of S to P3, whose image is a surface S of degree d,

then S has ordinary singularities (see [20, Thm. 2]), i.e., it has:

• an irreducible nodal double curve Γ, i.e., S has normal crossings at the general point of

Γ,

• a finite number of triple points for both Γ and S, the triple points for Γ are ordinary,

i.e., the tangent cone there to Γ consists of the union of three non–coplanar lines, and the

tangent cone there to S consists of the union of three distinct planes,

• finitely many pinch points on Γ; we will denote by Gc the pinch points scheme, i.e., the

reduced zero–dimensional scheme on X where the differential of π drops rank, so that Gc

is mapped by π to the set of pinch points of S on Γ. We will set γ = length(Gc).
The map π : X → S is the normalization map.

We will introduce homogeneous coordinates [x1, x3, x3, x4] in P3 and related affine

coordinates (x, y, z), with

x =
x1

x4
, y =

x2

x4
, z =

x3

x4
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so that x4 = 0 is the plane at infinity. We assume that the coordinates (i.e., the correspond-

ing fundamental points) are general with respect to S. The homogeneous equation of S
is of the form F (x1, x2, x3, x4) = 0, with F an irreducible homogeneous polynomial of

degree d and the affine equation of S is f(x, y, z) = 0, with f(x, y, z) = F (x, y, z, 1). We

will denote by fx, fy, fz the partial derivatives of f with respect to x, y, z and by Fi the

partial derivative of F with respect to xi, for 1 6 i 6 4 (we will use similar notations for

other polynomials). Note that

(3) fx(x, y, z) = F1(x, y, z, 1)

and similarly for the other derivatives. Therefore, by Euler’s identity, we have

(4) d · f(x, y, z) = xF1(x, y, z, 1) + yF2(x, y, z, 1) + zF3(x, y, z, 1) + F4(x, y, z, 1).

By the generality assumption of the coordinates with respect to S we have that:

• the plane at infinity is not tangent to S, i.e., it cuts out on S a curve whose pull–back on

X via π is smooth;

• each of the pencils Pi of planes with homogeneous equations hxi = kx4, with (h, k) ∈
K \ {(0, 0)}, pulls back via π to a Lefschetz pencil Xi on X , with 1 6 i 6 3;

• the pull–back Γi on X of the curve γi cut out on S off the double curve Γ by the polar

surfaces Fi = 0 is smooth for 1 6 i 6 3.

Remark 1. By the genericity of the position of S with respect to the coordinate system,

one sees that the curvesΓi, for 1 6 i 6 3, contain the pinch points scheme Gc and intersect

pairwise transversely there.

The singular points of the finitely many curves in the pencil Xi are nodes and form a

reduced 0–dimensional scheme Ji on X , which is called the jacobian scheme of Xi, for

1 6 i 6 3. We will assume that, for all i ∈ {1, 2, 3}, the image Ji of this scheme on S,

called the jacobian scheme of Pi, has no intersection with the double curve Γ.

It is also easy to check that the curve Γi cuts out on Γj the divisor Gc + Jk, where

{i, j, k} = {1, 2, 3}. So, in particular, taking into account that Γi ∈ |3C + KX |, for

1 6 i 6 3 (we denote by C a hyperplane section of X), one has

(5) OΓ3
(Gc + J1) = OΓ3

(Gc + J2) = OΓ3
(3C +KX),

hence

(6) OΓ3
(J1) = OΓ3

(J2).

Similar relations hold on Γ2 and Γ3. Note that (5) implies that |3C + KX | has no fixed

component and (3C +KX)2 > 0, hence 3C +KX is big and nef.

Let e := e(X) be the Euler–Poincaré characteristic of X (i.e., the second Chern class

of the tangent bundle of X) and g the arithmetic genus of the hyperplane sections of X .

By the Zeuthen–Segre formula (see [10, p. 301]), the length δ of Ji is

δ = e+ 4(g − 1) + d.

2.2. The expression of 1–forms on a surface. It is a result by Picard (see [19, p. 116],

Picard works over C but it is easy to check that his argument works on any algebraically

closed field K) that if ω is a regular 1–form on X , then it is the pull–back on X of a rational

1–form of the type

(7)
Ady −Bdx

fz
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where A = 0, B = 0 are affine equations of two adjoint surfaces of degree d − 2 to S.

Recall that a surface is said to be adjoint to S if it contains the double curve Γ of S.

In the 1–form (7) we can make a change of variables passing from x, y to x, z. From

the relation

fxdx + fydy + fzdz = 0

we deduce

dy = −
fxdx+ fzdz

fy
.

Substituting into (7) we find

−
Afx+Bfy

fz
dx−Adz

fy
and this has to be of the same form as (7) with respect to the variables x, z. This implies

that there must be a polynomial C of degree d − 2 such that C = 0 is the affine equation

of an adjoint surface to S, such that

−
Afx +Bfy

fz
= C, modulo f = 0.

This yields the Picard’s relation

(8) Afx +Bfy + Cfz = Nf

where N is a suitable polynomial of degree d−3. The Picard relation has some remarkable

consequences, pointed out by Severi (see [22, §9]). Before stating Severi’s result, we recall

the following:

Lemma 2 (Castelnuovo’s Lemma). Let g(x1, x2, x3) = 0 be the equation of an irreducible

plane curve of degree n with no singular points except nodes. Then there is no non–trivial

syzygy of degree l 6 d− 2 of the triple (g1, g2, g3) of derivatives of g.

For the proof see [22, §7] or [14, p. 34]. Next we can prove Severi’s result:

Proposition 3. If A,B,C are non–zero polynomials verifying (8), then the (projective

closure of the) surface with equation A = 0 [resp. B = 0, C = 0] contains the base line

of the pencil of planes P1 [resp. of P2, of P3] and also the jacobian scheme J1 [resp. J2,

J3] of this pencil. Moreover the (projective closures of the) surfaces A = 0, B = 0, C = 0
cut out on the plane at infinity the same curve off the aforementioned lines.

Proof. First we prove that the surface with equation A = 0 contains the scheme J1. Let

P be a point of J1. Then f, fy, fz vanish at P . Hence by (8), also Afx vanishes at P .

However fx does not vanish at P because P does not belong to the double curve Γ of S.

Hence A vanishes at P . Similarly for the surface with equation B = 0 [resp. C = 0]

containing the scheme J2 [resp. J3].

Next, homogenize (8). By (3) (and the similar for the other derivatives) we get a relation

of the form

ĀF1 + B̄F2 + C̄F3 = N̄F

where we denote by the bars the homogenization of the corresponding polynomials. By

taking into account the Euler identity, this relation takes the form

(dĀ− x1N̄)F1 + (dB̄ − x2N̄)F2 + (dC̄ − x3N̄)F3 = x4N̄F4.

Setting x4 = 0 and taking into account Castelnuovo’s Lemma 2, we have identically

dĀ− x1N̄ ≡ 0, dB̄ − x2N̄ ≡ 0, dC̄ − x3N̄ ≡ 0
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under the condition x4 = 0. This implies that

dA0 − x1N0 ≡ 0, dB0 − x2N0 ≡ 0, dC0 − x3N0 ≡ 0

where A0, B0, C0 are the homogeneous components of A,B,C in degree d− 2 and N0 is

the homogeneous component of N of degree d− 3. The assertion follows right away. �

Remark 4. Note that the surfaces with equations A = 0, B = 0, C = 0 in Proposition 3

are not necessarily adjoint. Keeping the notation of the proof of Proposition 3, set N0 = ϑ.

Then we have identities of the form

(9) A = xϑ+A1, B = yϑ+B1, C = zϑ+ C1, N = dϑ+N1

where A1, B1, C1 are (non–homogeneous) polynomials of degree at most d − 3 and N1

has degree at most d− 4.

Severi next proved the following proposition (see [22, §9]):

Proposition 5. Let A = 0 be the affine equation of an adjoint surface of degree d− 2 to S
containing the scheme J1. Then there are uniquely determined adjoint surfaces of degree

d − 2 to S with affine equations B = 0 and C = 0, containing the schemes J2 and J3
respectively, such that (8) holds. Each of the polynomials A,B,C uniquely determines the

other two.

Proof. Consider A as in the statement. The complete linear system |2C+KX | is the pull–

back to X of the curves cut out on S, off the double curve Γ, by the adjoint surfaces of

degree d− 2. Looking at the exact sequence

0 −→ OX(−C) −→ OX(2C +KX) −→ OΓ3
(2C +KX) −→ 0

we see that |2C+KX | cuts out onΓ3 a complete linear series ξ, because h1(X,OX(−C)) =
0 (by the Kodaira vanishing theorem, see [11, p. 154]). Moreover, since h0(X,OX(−C)) =
0, the restriction map

H0(X,OX(2C +KX)) −→ H0(Γ3,OΓ3
(2C +KX))

is injective.

Let us abuse notation and denote by A ∈ |2C +KX | the pull back on X of the curve

cut out on S by the (projective closure of the) surface A = 0 off Γ. Then A cuts out on

Γ3 a divisor of the form J1 + Z ∈ ξ. Since J2 + Z ∈ ξ by (6), there is a unique curve

B ∈ |2C + KX | that cuts out J2 + Z on Γ3. By abusing notation, we denote by B a

non–zero polynomial, uniquely defined up to a constant, such that B = 0 is the adjoint

surface cutting out on S off Γ the curve whose pull–back on X is B. The surfaces Afx and

Bfy cut out on the curve γ3 the same divisor, hence there is a non–zero constant b such that

Afx− bBfy = 0 on γ3. By substituting B with −bB we may assume that Afx+Bfy = 0
on γ3.

Consider now the complete intersection scheme Y , whose ideal is generated by f and

fz , which consists of two components given by γ3 and by Γ with a double structure. Since

Afx+Bfy vanishes on γ3 and vanishes with multiplicity 2 on Γ, then Afx+Bfy vanishes

on Y and therefore Afx +Bfy is a combination of f and fz , i.e., there are polynomials C
and N , of degrees d− 2 and d− 3 respectively, such that (8) holds. Note that C cannot be

identically zero. Otherwise we would have an identity of the sort

Afx +Bfy = Nf.

This is impossible, because then Bfy would vanish along the curve γ1, but neither fy nor

B can vanish along this curve. Since Afx, Bfy and f vanish doubly along Γ, then C
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vanishes along Γ so that C = 0 is adjoint to S. Moreover C is uniquely determined. In

fact, from another identity of the form

Afx +Bfy + C′fz = N ′f,

subtracting memberwise from (8), we deduce

(C − C′)fz = (N −N ′)f

and f would divide the left hand side, what is impossible because both factors there have

degree smaller than f . The assertion follows. �

By taking into account Proposition 3, one has the:

Corollary 6. Every adjoint surface to S of degree d−2 containing the scheme J1 contains

also the base line of the pencil P1.

We can state this corollary in an intrinsic form:

Corollary 7. Let X be a smooth, irreducible, projective surface, C a very ample effective

divisor on X and P a Lefschetz pencil in |C|. Then any curve in |2C+KX | containing the

jacobian scheme of the pencil P (i.e., the scheme of double points of the singular curves in

P) also contains the base locus scheme of P .

Now, given an adjoint surface of degree d−2 to S containing the scheme J1, with affine

equation A = 0, consider the other two adjoint surfaces B = 0 and C = 0 existing by

Proposition 5. We can consider the three regular 1–forms pull backs on X of the forms

Ady −Bdx

fz
,

Bdz − Cdy

fx
,

Cdx−Adz

fy
.

By the very proof of Proposition 3 we see that these forms are equal. In conclusion, if

we consider the vector space Adjd−2(S) of (non–homogeneous) polynomials of degree (at

most) d− 2 defining adjoint surfaces to S passing through J1, this determines an isomor-

phism

(10) ϕ : Adjd−2(S) → H0(X,Ω1
X).

The map ϕ sends a polynomial A to the 1–form pull–back of the form (7) to X , where

B = 0 is the adjoint surface of degree d − 2 described in Proposition 5. The same by

exchanging J1 with J2 or J3.

2.3. Closedness of 1–forms. The following result is well known:

Proposition 8. If X is a complex, smooth, compact surface, any regular 1–form on X is

closed.

Proof. This proof is extracted from [2, p. 137–138].

Let ω ∈ H0(X,Ω1
X) be a non–zero regular form. By Stokes’ Theorem one has

(11)

∫

X

dω ∧ dω̄ =

∫

X

d(ω ∧ dω̄) = 0.

Write down locally dω = fdz1 ∧ dz2. Then

dω ∧ dω̄ = −|f |2dz1 ∧ dz̄1 ∧ dz2 ∧ dz̄2 = 4|f |2dx1 ∧ dy1 ∧ dx2 ∧ dy2

where zj = xj + iyj , for 1 6 j 6 2, so that by (11) one gets f = 0, i.e., dω = 0. �



14 CIRO CILIBERTO AND CLAUDIO FONTANARI

The proof of this proposition is analytic and does not hold in positive characteristic. In

fact in positive characteristic there are counterexamples to Proposition 8 (see [16, Corol-

lary]). There is then the problem, which was classically well know (see [24, p. 185]) and

considered also in the two letters by Castelnuovo, of finding a purely algebraic proof of

Proposition 8. It is useful for us to review the classical viewpoint on this subject.

Let us keep the notation introduced above. Let ω be a regular 1–form on the surface X ,

which is the pull–back on X of the rational 1–form (7). Then we have dω = φdx ∧ dy,

with

φ =
∂

∂x

(A

fz

)

+
∂

∂y

(B

fz

)

where it is intended that the differentiations take place on the surface X , so that z is func-

tion of x, y implicitly defined by f(x, y, z) = 0. So, for instance

∂z

∂x
= −

fx
fz

and

∂
∂x

(

A
fz

)

=

(

Ax+Az
∂z
∂x

)

fz−A

(

fzx+fzz
∂z
∂x

)

f2
z

=

=

(

Ax−Az
fx
fz

)

fz−A

(

fzx−fzz
fx
fz

)

f2
z

=

=
f2

zAx−fz(Afzx+Azfx)+fzzAfx
f3
z

and similarly

∂

∂y

(B

fz

)

=
f2
zBy − fz(Bfzy +Bzfy) + fzzBfy

f3
z

so that

(12) φ =
f2
z (Ax +By)− fz(Afzx +Azfx +Bfzy +Bzfy) + fzz(Afx +Bfy)

f3
z

.

Taking into account (8) and the identity

∂(Afx +Bfy)

∂z
= Azfx +Afxz +Bzfy +Bfyz,

(12) becomes

φ =
1

f3
z

[

f2
z (Ax +By + Cz −N) + f(Nfzz − fzNz)

]

so that

φ =
Ax +By + Cz −N

fz
, modulo f

and this is regular on X . Hence if we set

Q = Ax +By + Cz −N

the polynomial Q has to vanish on the double curve Γ of S, because it has to vanish where

fz vanishes.

A priori Q is a polynomial of degree d− 3 but one has actually:

Lemma 9. In the above setting Q has degree d− 4.
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Proof. By taking into account the identities (9) in Remark 4, we have

Ax = θ + xθx +
∂A1

∂x
, By = θ + yθy +

∂B1

∂y
, Cz = θ + zθz +

∂C1

∂z

where θ is a homogeneous polynomial of degree d− 3. Hence, by Euler’s identity, we get

(13)
Ax +By + Cz −N = dθ + ∂A1

∂x
+ ∂B1

∂y
+ ∂C1

∂z
− (dθ +N1) =

= ∂A1

∂x
+ ∂B1

∂y
+ ∂C1

∂z
−N1

which proves the assertion. �

In conclusion, we have

∂

∂x

(A

fz

)

+
∂

∂y

(B

fz

)

=
Q

fz

and with similar computations one finds

∂

∂y

(B

fx

)

+
∂

∂z

( C

fx

)

=
Q

fx
,

∂

∂z

(C

fy

)

+
∂

∂x

( A

fy

)

=
Q

fy
.

In any event, the form ω as above is closed if and only if Q = 0 modulo f . But, since

Q has degree smaller than d, this is the case if and only if Q is identically zero. So, taking

into acccount (13), the problem of giving an algebraic proof of Proposition 8 translates in

the following:

Problem 10. Find an algebraic proof that (8) implies either one of the two equivalent

relations

(14) N = Ax +By + Cz, N1 =
∂A1

∂x
+

∂B1

∂y
+

∂C1

∂z

each of which is called the integrability condition.

We want to stress that any solution of Problem 10 must use the fact that the base field

K has characteristic zero.

2.4. Homogeneous form of Picard’s relation. It is useful to describe the homogeneous

form of Picard’s relation (8). This is contained in [19, p. 119] and we expose this here for

the reader’s convenience.

By (4), we can rewrite (8) as

d ·AF1(x, y, z, 1) + d · BF2(x, y, z, 1) + d · CF3(x, y, z, 1) =
= N(xF1(x, y, z, 1) + yF2(x, y, z, 1) + zF3(x, y, z, 1) + F4(x, y, z, 1))

Set

X1 = dA− xN, X2 = dB − yN, X3 = dC − zN, X4 = −N̄

where, as usual, the bars stay for homogenization. By (9), we have

X1 = dA1 − xN1, X2 = dB1 − yN1, X3 = dC1 − zN1, X4 = −N̄

and the polynomials Xi, with 1 6 i 6 4, are of degree d− 3. Then we have the relation

(15) X1F1 +X2F2 +X3F3 +X4F4 = 0

which is the homogeneous Picard’s relation. If we consider the matrix

(16) M =

(

X1 X2 X3 X4

x1 x2 x3 x4

)

,

all minors of order 2 of M , after dehomogenization, are linear combinations of A,B,C
and so are in Adjd−2(S).
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Suppose the homogeneous Picard’s relation (15) holds. Taking into account the expres-

sions of the polynomials Xi, for 1 6 i 6 4, and the relations (9), the integrability relation

in the form of the right hand side of (14), becomes

(17)
∂X1

∂x1
+

∂X2

∂x2
+

∂X3

∂x3
+

∂X4

∂x4
= 0

which is the homogeneous integrability condition. Problem 10 can now be expressed in

homogeneous form as:

Problem 11. Find an algebraic proof that (15) (with all minors of order 2 of the matrix

M in (16), after dehomogenization, in Adjd−2(S)) implies the homogeneous integrability

condition (17).

3. COMMENTS ON CASTELNUOVO’S LETTERS

This section is devoted to explaining most of the issues raised by Castelnuovo in his two

letters. Both letters focus on the understanding of the algebro–geometric meaning of the

analytic irregularity qan and on solving Problems 10 or 11.

In §§1 and 2 of the first letter, Castelnuovo suggests, with no proofs, various geometric

interpretations of qan. Analogous remarks have been partially included by Castelnuovo in

the paper [4] published two years after this letter. Castelnuovo does not say it, but maybe he

had in mind in the letter that the various geometric interpretations of qan could have been

useful to algebro–geometrically prove the equality between qan and qa := h1(X,OX),
that we will call the the arithmetic irregularity, an equality that Castelnuovo proved with

analytic methods in the paper [3] of 40 years before (a different proof was given by Severi

in [21]; see also [6]). Note that this equality does not hold in positive characteristic, as

proved by Igusa in [12] (see also [17]).

Let us keep the notation introduced so far. The first result Castelnuovo states in his letter

to Severi is the following:

Proposition 12. Let |C| be a very ample linear system on X . Then

h1(X,OX(4C + 2KX)⊗ IGc|X) = qan.

Proof. In Remark 1 we saw that 3C +KX is big and nef. This implies that also 4C +KX

is big and nef.

Look at the exact sequence

0 −→ OX(C +KX) −→ OX(4C + 2KX) −→ OΓ3
(4C + 2KX) −→ 0.

We have hi(X,OX(C+KX)) = 0 for 1 6 i 6 2 (by the Kodaira vanishing theorem), and

h1(X,OX(4C + 2KX)) = 0, because 4C +KX is big and nef (by Mumford’s theorem,

see [18, §II]). This implies that |4C +2KX | cuts out on Γ3 a complete, non–special linear

series grn, where

r = n− pa(Γ3)

(recall the definition of the curves Γi, i = 1, 2, 3, from the beginning of §2.1).

Set now

h1(X,OX(4C + 2KX)⊗ IGc|X) = h.

The linear system |OX(4C + 2KX) ⊗ IGc|X | cuts out on Γ3, off Gc, a complete linear

series ξ = gr−γ+h
n−γ (recall that γ = length(Gc)), so that h is the index of speciality of ξ.

Let G be a general divisor of ξ, so that

OΓ3
(G+Gc) = OΓ3

(4C + 2KX).
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Let G′ be a divisor on Γ3 such that

OΓ3
(G′ + J1) = OΓ3

(2C +KX).

Adding up these two relations and subtracting (5), we get

OΓ3
(G+G′) = OΓ3

(3C + 2KX) = ωΓ3
.

So we get

h = h0(Γ3,OΓ3
(G′)).

On the other hand, by looking at the exact sequence

0 −→ OX(−C) −→ OX(2C +KX) −→ OΓ3
(2C +KX)) −→ 0,

since h1(X,OX(−C)) = 0 (by the Kodaira vanishing theorem), we see that |2C +KX |
cuts out on Γ3 a complete linear series, hence

h = h0(Γ3,OΓ3
(G′)) = h0(X,OX(2C +KX)⊗ IJ1|X)

and the assertion follows by the isomorphism ϕ in (10). �

After this Castelnuovo claims that

h1(X,OX(nC +mKX)⊗ IGc|X) = 0

for n > 5 and m > 1. We have not been able to prove (or disprove) this assertion.

Another geometric interpretation of qan that Castelnuovo suggests in the letter to Severi

is the following: let D be a curve in |4C + KX | that contains Gc and it is smooth there,

then

(18) h0(D,OD(Gc)) = qan + 1.

Also for this statement we could not come up with a proof (or a counterexample).

Remark 13. It looks rather difficult that (18) could hold. In fact, consider again the curve

Γ3. Then D cuts out on Γ3 a divisor Gc +G, where, by (5), one has

(19) OΓ3
(G) = OΓ3

(J1 +H)

where H is a divisor cut out on Γ3 by a hyperplane. By looking at the exact sequence

0 −→ OX(−C) −→ OX(3C +KX) −→ OD(3C +KX) −→ 0

and since h1(X,OX(−C)) = 0, we see that |3C +KX | cuts out on D a complete linear

series. Hence the linear series |OD(Gc)| is cut out on D, off G, by the linear system

|OX(3C +KX)⊗ IG|X |, and therefore

(20) h0(D,OD(Gc)) = h0(X,OX(3C +KX)⊗ IG|X).

From the exact sequence

0 −→ OX −→ OX(3C +KX)⊗ IG|X −→ OΓ3
(3C +KX)⊗ IG|X −→ 0

we have

(21) h0(X,OX(3C +KX)⊗ IG|X) 6 h0(Γ3,OΓ3
(3C +KX)⊗ IG|X) + 1.

By (19), we have

OΓ3
(3C +KX)⊗ IG|X = OΓ3

(2C +KX)⊗ IJ1|X .

Since, as we saw in the proof of Proposition 12, |2C + KX | cuts out on Γ3 a complete

linear series, we have

h0(Γ3,OΓ3
(2C +KX)⊗ IJ1|X) = h0(X,OX(2C +KX)⊗ IJ1|X) = qan.
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Putting together this, (20) and (21), one gets

h0(D,OD(Gc)) 6 qan + 1.

Now the equality holds if and only if the restriction map

H0(X,OX(3C +KX)⊗ IG|X) −→ H0(Γ3,OΓ3
(3C +KX)⊗ IG|X)

is surjective. This looks difficult because the map

H0(X,OX(3C +KX)) −→ H0(Γ3,OΓ3
(3C +KX))

is not surjective (it has corank qa).

At the end of the first section of his letter to Severi, Castelnuovo claims that: if D is a

curve in |3C +KX | containing Gc and smooth there, then

h0(D,OD(Gc)) = 2d− g + 2pg + χ− e − 1 + θ

with 0 6 θ 6 qa, and, as usual, χ = χ(OX) and pg = h0(X,OX(KX)). It is easy to

check that this is equivalent to

2pg + χ− 1 6 h1(D,OD(Gc)) 6 3pg.

However we have not been able to prove this.

In the second section of the letter to Severi, Castelnuovo states the:

Proposition 14. Let P be a Lefschetz pencil in |C|, with jacobian scheme J . Then

h1(X,OX(4C +KX)⊗ IGc|X) = h0(X,OX(2C + 2KX)⊗ IJ |X).

The proof of this, not so different from the one of Proposition 12, is contained in [4,

§3] and we do not reproduce it here. Let B be the base locus scheme of the Lefschetz

pencil P . Castelnuovo compares h0(X,OX(2C + 2KX)⊗ IJ |X) with h0(X,OX(2C +
2KX) ⊗ IJ+B|X). This does not look particularly interesting and we do not dwell on it

here. Castelnuovo also claims that if P is a Lefschetz pencil in |C| with jacobian scheme

J , then

h1(X,OX(3C +KX)⊗ IJ |X) = 2pg

but we have not been able to prove it.

Let us jump for a moment to section 4 of the letter to Severi. In this part, as well as in the

paper [4], Castelnuovo takes for granted the existence of the so called Severi equivalence

series. Severi claimed in [23] that, unless the surface has an irrational pencil, there exists

the rational equivalence series, of dimension qan − 1, of the zero dimensional schemes of

length e that are zeros of non–zero 1–forms in H0(X,Ω1
X). In addition Severi claimed

that Ω1
X is generated by global sections. These claims are false in general, as shown by F.

Catanese in [5, §6]. Hence the contents of section 4 of the letter, and of the paper [4] have

biases because of this.

Let us now go back to section 3 of the letter to Severi. The focus of this section is on

Problems 10 or 11. Castelnuovo proposes a few equivalent formulations of these problems,

the most interesting of which, in our opinion, is the following, which is also the topic of

the letter to B. Segre.

Problem 15. Suppose there is a (homogeneous) relation of the form

(22) Y1F1 + Y2F2 + Y3F3 + Y4F4 = QF
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where Yi = 0 are adjoint surfaces of degree d − 3 to S and Q = 0 is a surface of degree

d− 4. Prove (algebraically) that Q is an adjoint surface and that

Yi =
1

d
xiQ.

The solution of this problem implies the solution of Problem 11. Indeed, we can rewrite

(22) as
4

∑

i=1

(

Yi −
1

d
Qxi

)

Fi = 0

and this is a homogeneous Picard’s relation of the type (15), with

Xi = Yi −
1

d
Qxi, 1 6 i 6 4.

Problem 11 asks to prove that (17) holds, whereas Problem 15 asks to prove much more,

i.e., that Xi = 0, for 1 6 i 6 4. So Problem 15 does not look equivalent to Problem 11,

and it is not at all clear if it has a solution or not.

4. ALGEBRAIC PROOFS VIA THE HODGE-FRÖLICHER SPECTRAL SEQUENCE

This section is devoted to give a brief account on how algebraic proofs of the closedness

of regular 1–forms and of the equality between algebraic and analytic irregularity (both in

characteristic zero) can be obtained using modern tools.

4.1. Global regular 1-forms are closed in characteristic zero. Let X be a smooth, ir-

reducible and projective variety of arbitrary dimension over an algebraically closed field

K. Let Ωi
X be the sheaf of algebraic differential i-forms on X . The exterior derivative

d : Ωi
X → Ωi+1

X allows to define a complex (the so-called algebraic de Rham complex)

and a spectral sequence (the so-called Hodge-Frölicher spectral sequence):

E1 =
⊕

i,j>0

Ei,j
1

where

Ei,j
1 := Hj(X,Ωi

X)

and

d1 : Ei,j
1 → Ei+1,j

1

is given by

d : Hj(X,Ωi
X) → Hj(X,Ωi+1

X ).

If this spectral sequence degenerates at E1, then in particular we have E1,0
2 = E1,0

1 , i.e.

Ker(H0(X,Ω1
X) → H0(X,Ω2

X))

Im(H0(X,OX) → H0(X,Ω1
X))

= Ker(H0(X,Ω1
X) → H0(X,Ω2

X)) = H0(X,Ω1
X).

Hence we see that if the Hodge-Frölicher spectral sequence degenerates at E1, then all

global regular 1-forms are closed.

An algebraic proof of the degeneration at E1 of the Hodge-Frölicher spectral sequence

in characteristic zero has been obtained by Deligne and Illusie in the paper [7] published

in 1987 (see also [9] and [13] for more detailed and self-contained expositions). The

strategy involves two steps: first, the result is proven under suitable assumptions in positive

characteristic; then, by applying standard ”spreading out” techniques, it is extended to

characteristic zero.
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Theorem 16. ([13], Corollary 5.6) Let k be a perfect field of characteristic p and let X
be a smooth and proper k-scheme of dimension < p. If X satisfies a technical assumption

(namely, X can be lifted over the ring W2(k) of Witt vectors of length 2 over k), then the

Hodge-Frölicher spectral sequence of X over k degenerates at E1.

Corollary 17. ([13], Theorem 6.9) Let K be a field of characteristic zero and let X be a

smooth and proper K-scheme of arbitrary dimension. Then the Hodge-Frölicher spectral

sequence of X over K degenerates at E1.

For a friendly introduction to this circle of ideas we refer the interested reader to the

informal survey [15] (see also [17], which explains the role of Witt vectors in studying the

irregularity in positive characteristic). Unluckily, it seems that in order to address the case

of surfaces one needs to apply the whole machinery developed for the general case.

4.2. Analytic irregularity and arithmetic irregularity coincide. Let X be a smooth

and projective surface over the complex field C. As already realized (at least implicitly)

by Castelnuovo, the fact that the analytic irregularity qan(X) = h0(X,Ω1
X) is equal to the

arithmetic irregularity qa(X) = h1(X,OX) (which holds in general only in characteristic

zero) is strictly related to the closedness of global regular 1-forms.

A crucial additional ingredient for proving algebraically that qan(X) = qa(X) is the

following equality, which admits a purely algebraic proof (see for instance [24, Mumford’s

remarks i) and iii) on p. 200], and [1, Theorem 5.1]):

(23) h1(X,C) = 2h1(X,OX) = 2qa(X).

As in [2], proof of Lemma (2.6) on p. 139, there is a natural exact sequence

0 → C → OX → S → 0,

where S denotes the sheaf of closed regular 1-forms on X . Since all global regular 1-forms

are closed, we get an exact sequence

0 → H0(X,Ω1
X) → H1(X,C) → H1(X,OX).

It follows that h1(X,C) 6 h0(X,Ω1
X) + h1(X,OX) and together with (23) we may

deduce

h1(X,OX) 6 h0(X,Ω1
X).

On the other hand, the opposite inequality turns out to be much subtler and seems to

require the full strength of the Hodge-Frölicher spectral sequence. Indeed, if one defines

the algebraic de Rham cohomology H∗
dR(X/K) as the hypercohomology of the algebraic

de Rham complex, then the equality

dim(H1
dR(X/K)) = qan(X) + qa(X)

is a formal consequence of the degeneration atE1 of the Hodge-Frölicher spectral sequence

(see for instance [15], Lemma 3.4). In particular, for K = C we have

qan(X) + qa(X) = dim(H1
dR(X/K)) = h1(X,C) = 2qa(X)

by (23), hence we obtain qan(X) = qa(X).



TWO LETTERS BY GUIDO CASTELNUOVO 21

REFERENCES

[1] L. Badescu, Algebraic surfaces. Springer-Verlag, New York, 2001.

[2] W. Barth, K. Hulek, C. Peters, A. van de Ven, Compact Complex Surfaces, Second Enlarged Edition, Ergeb-

nisse der Mathematik und ihrer Grenzgebiete, Springer Verlag, Berlin, Heidelberg, New York, 4, 2003.

[3] G. Castelnuovo, Sugli integrali semplici appartenenti ad una superficie irregolare, Rend. R. Accad. Lincei,

V 14, 545–556, 593–598, 655–663 (1905).

[4] G. Castelnuovo, Sul numero dei moduli di una superficie irregolare, Rend. della R. Acc. Nazionale dei Lincei,

(8) 7, (1949), 3–7 and 8–11.

[5] F. Catanese, On the moduli space of surfaces of general type, J. Diff. Geom., 19, (1984), 483–515.

[6] C. Ciliberto, The theorem of completeness of the characteristic series: Enriques’ contribution, this volume.
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Villars et Fils, Paris, 1897.

[20] J. Roberts, Generic projections of algebraic varieties, American Journal of Mathematics, 93, No. 1, (1971),

191–214.

[21] F. Severi, Il teorema d’Abel sulle superficie algebriche, Annali di Mat., (3) 12, (1905), 55–79.

[22] F. Severi, Sugl’integrali algebrici semplici e doppi, (4 papers), Rend. della R. Acc. Nazionale dei Lincei,

(6), 7, (1928), 3–8, 9–14, 101–108, 161–169.

[23] F. Severi, La serie canonica e la teoria delle serie principali di gruppi di punti sopra una superficie alge-

brica, Comment. Math. Helv., 4, (1932), 268–326.

[24] O. Zariski, Algebraic surfaces Second supplemented edition, Ergebnisse der Mathematik und ihrer Gren-

zgebiete, Springer Verlag, Berlin, Heidelberg, New York, 61, 1971.
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