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Abstract. We study the Cauchy problem for the advection–diffusion equation ∂t u + div(ub) = �u asso-
ciated with a merely integrable divergence-free vector field b defined on the torus. We discuss existence,
regularity and uniqueness results for distributional and parabolic solutions, in different regimes of integra-
bility both for the vector field and for the initial datum.We offer an up-to-date picture of the available results
scattered in the literature, and we include some original proofs. We also propose some open problems, mo-
tivated by very recent results which show ill-posedness of the equation in certain regimes of integrability
via convex integration schemes.

1. Introduction

In this survey, we give a systematic overview of some results on the so-called
advection–diffusion equation

∂t u + div(ub) = �u, (ADE)

under general, low regularity assumptions on the (divergence-free) vector field b. This
equation is one of the main building blocks in fluid-dynamics models where u is a
passive scalar which is simultaneously advected (by the given velocity field b) and
diffused. We also remark that we consider a fixed diffusivity and we are not interested
in vanishing viscosity or behaviors for small diffusivity. We refer to [1,3,8,12,15,19]
for some recent results with degenerate viscosity coefficient.
Due to the presence of the Laplacian, (ADE) is a second-order parabolic partial

differential equation. If the vector field b is smooth, classical existence and uniqueness
results are available and can be found in standard PDEs textbooks (see, e.g., [9]). The
problem (ADE) has been studied also outside the smooth framework in many classical
references, see, e.g., [9,11] and the more recent [13], whose approach is intimately
related to a fluid-dynamics context. We propose here a recent account of the state of
the art around the well-posedness problem for (ADE). The main motivation behind
this work lies in the several groundbreaking contributions appeared over the last few
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years, see, e.g., [16–18], which have shown ill-posedness for (ADE) in certain regimes
by means of convex integration schemes.

Summary of the results and structure of the paper

Given a vector field b : [0, T ]×T
d → R

d on the d-dimensional torusTd := R
d/Zd ,

we study the initial value problem for the advection–diffusion equation associatedwith
b, i.e., {

∂t u + div(ub) = �u

u|t=0 = u0,
(1.1)

where u0 : Td → R is a given initial datum. Typically, existence results are obtained
by a simple approximation argument: Under global bounds on the vector field, one
easily establishes energy estimates for the solutions of suitable approximate problems.
Such estimates allow to apply standard weak compactness results and the linearity
of the equation ensures that the weak limit is a solution to (1.1). At a closer look,
however, an interesting feature of (1.1) arises: it is possible to give several, a priori
different, notions of “weak” solutions and this corresponds to the fact that different
a priori estimates are available for (1.1). This opens a wide spectrum of possibilities
and taming this complicated scenario, understanding the relationships among different
notions of solutions, is one of the aims of the present work.

Distributional solutions We first deal with divergence-free vector fields b, satisfying
a general L1

t L p
x integrability condition in space-time, for some 1 ≤ p ≤ ∞. Corre-

spondingly, we assume that the initial datum u0 ∈ Lq(Td), for some 1 ≤ q ≤ ∞,
with 1/p + 1/q ≤ 1. This allows to introduce distributional solutions to (1.1), i.e., func-
tions u ∈ L∞

t Lq
x solving the equation in the sense of distributions. Notice that a mild

regularity in time of solutions is always granted for evolutionary PDEs, which allows
to give a meaning to the initial condition in the Cauchy problem (1.1). It is then easily
seen that distributional solutions always exist; yet, such a notion seems too vague and
uniqueness is, in general, false.

Parabolic solutions The general lack of uniqueness for distributional solutions moti-
vates the introduction of another notion of solution. Hopefully, such alternative notion
will share the same existence properties as the distributional ones, offering at the same
time some uniqueness results. It turns out that such a notion can be used to show
well-posedness for fields having enough integrability. If this is the case, exploiting
the divergence-free constraint one can show the basic available energy estimate for
smooth solutions

1

2

∫
Td

|u(t, x)|2 dx +
∫ t

0

∫
Td

|∇u(τ, x)|2 dτ dx = 1

2

∫
Td

|u0(x)|2 dx,

for every t ∈ [0, T ]. The energy estimate entices one to look for solutions possessing
L2 gradient, i.e., solutions that are H1 in the space variable. We therefore say that a
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distributional solution u ∈ L∞
t Lq

x to (1.1) is parabolic if it holds u ∈ L2
t H1

x . Crucially,
parabolic solutions carry the exact regularity needed to establish their uniqueness
(under a suitable integrability assumption of the field b w.r.t. the time variable as
well). This uniqueness result is proven via a well-known technique, i.e., resorting to
commutators’ estimates. The L2

t H1
x regularity of the solution allows to obtain a better

control on the error one commits when considering smooth approximations of the
solution. Such error (which is commonly known as commutator) always goes to 0 in
the sense of distributions; however, in order to prove uniqueness, a better control is
needed. In particular, in [14] it is shown that the commutator for parabolic solutions
converges strongly to 0 in L1

t,x . This is made possible by the fact that, asymptotically,
the commutator is related to the quantity b · ∇u and bounds for this product can
be established (for parabolic solutions u ∈ L2

t H1
x ) if b ∈ L2

t L2
x . This approach is

somewhat in duality with the DiPerna–Lions’ theory for the linear transport equation
[7], where the same convergence of the commutator holds provided that u ∈ L∞

t Lq
x

and ∇b ∈ L1
t L p

x satisfying 1/p + 1/q ≤ 1.

A regularity result for distributional solutions Besides existence and uniqueness re-
sults for distributional and for parabolic solutions, a legitimate question concerns the
mutual relationship between these two notions; according to our definitions, parabolic
solutions cannot always be defined, but if they can, then they are always distribu-
tional. The converse implication is, in general, not true: in [16] it is shown that there
exist infinitely many distributional solutions u ∈ L∞

t L2
x to (1.1) with a vector field

b ∈ L∞
t L2

x , while the parabolic one is unique. Thismotivates our search for a condition
that guarantees parabolic regularity of a distributional solution. We show that, in the
regime 1/p + 1/q ≤ 1/2 (and under a L2 integrability assumption of b w.r.t. time), every
distributional solution is parabolic (hence, a fortiori, unique). The precise statement
is the following:

Regularity Theorem Let p, q ∈ [1,∞) such that 1/p + 1/q ≤ 1/2. If b ∈ L2
t L p

x is a
divergence-free vector field and u ∈ L∞

t Lq
x is a distributional solution to (1.1), then

u ∈ L2
t H1

x .
The proof we provide is relatively short and hinges upon a refined commutator

estimate (see also Remark 3.6). We show that, in the current regime, the convergence
to zero of the commutators takes place in L2

t H−1
x , and this is enough to obtain our

regularity result (see Lemma 3.1 for the precise commutator estimate). We remark, en
passant, that the L2 integrability seems critical in our argument. Recent works have
shown that, at lower integrability, a severe phenomenon of non-uniqueness may arise.
In particular, using convex integration techniques, in [16–18] the authors constructed
divergence-free vector fields b ∈ C0

t L p
x , with 1 ≤ p < γ (d) < 2, such that (1.1)

admits infinitely many solutions in the class C0
t H1

x . Here γ (d) = 2d/d + 2 denotes a
dimensional constant, which is indeed strictly smaller than the critical exponent 2.
The situation in the intermediate regime γ (d) ≤ p < 2 is still open, and it is the
object of one question we formulate. See also [4], where non-uniqueness of weak
solutions (not necessarily in the Leray class) of the Navier–Stokes equations is shown



1 Page 4 of 16 P. Bonicatto et al. J. Evol. Equ.

1
p
+ 1

q
≤ 1: the product ub is well defined and distributional solutions exist (Prop. 2.2)

min{p, q} ≥ 2: existence of parabolic solution (Prop. 2.4)

q ≥ 2: a-priori estimates in L2
tH

1
x (Rmk. 2.5)
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Figure 1. Visual depiction of the existence results for distributional
and parabolic solutions for vector fields b ∈ L1

t L p
x and initial datum

u0 ∈ Lq

via convex integration techniques exploiting time-intermittency, and [5], in which it is
shown that the integrability of weak solutions plays an essential role for weak-strong
uniqueness results for the Navier–Stokes equations.
Finally, we observe that also the integrability in time could play a non-trivial role

(in a similar spirit to, e.g., [6]): it seems conceivable that non-uniqueness of parabolic
solutions arises when b ∈ L2

t L p
x (instead of b ∈ C0

t L p
x ) for a larger class of exponents

p.
We refer the reader to Figs. 1 and 2 for a visual summary of the results concerning

advection–diffusion equations.

A comparison with LeBris–Lions’ theory of renormalized solutions Yet another ap-
proach to (1.1) builds on the notion of renormalized solution. In a nutshell, such
concept allows one to define the transport term vb in a completely general framework
(i.e., for any choice of exponents p, q) and this is achieved by prescribing that the
equation in (1.1) holds not for u but for a (nonlinear) function of u (together with
some additional assumptions on the regularity of u). We have opted not to pursue this
direction here, and we refer the reader to the monograph [13] where one can find,
besides the theory of bounded parabolic solutions, an extensive and comprehensive
study of renormalized solutions (see, in particular, [13, Chapter 2, Remark 16] for an
interesting comparison between distributional and renormalized solutions).

Non-smooth diffusions We conclude this introduction noticing that one could, in prin-
ciple, consider alsomore sophisticated problems of the form (1.1), replacing the Lapla-
cian in the right-hand side with other (possibly non-smooth) diffusion operators. A
thorough study of such advection–diffusion equations with non-smooth diffusions can
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2 , α ≥ 2: every distributional solution is parabolic (Thm. 3.3)

min{α, p, q} ≥ 2: parabolic solutions are unique (Thm. 2.7)

1
p

1
q

1
α

Figure 2. Visual depiction of the uniqueness and regularity results
for distributional and parabolic solutions for fields b ∈ Lα

t L p
x and

initial datum u0 ∈ Lq . Distributional solutions u ∈ L∞
t Lq

x are well
defined in the black wedge. In the blue cube, parabolic solutions are
unique and in the redwedge every distributional solution is parabolic
(color figure online)

be found, for instance, in [10] (seeRemark 3.6) and [12,13]. Some of the techniqueswe
develop here can actually be applied also to a class of non-smooth diffusion operators,
and this is the content of [2].

Notations

Throughout the paper, d ≥ 1 is a fixed integer. We denote by T
d := R

d/Zd the
d-dimensional flat torus and by L d the Lebesgue measure on it. We identify the d-
dimensional flat toruswith the cube [0, 1)d , andwe denotewithd the geodesic distance
on Td , which is given by d(x, y) := min{|x − y − k| : k ∈ Z

d such that |k| ≤ 2}. We
use the letters p, q to denote real numbers in [1,+∞] and p′ is the (Hölder) conjugate
to p. We adopt the standard notation for Lebesgue spaces L p(Td) and for Sobolev
spaces W k,p(Td); in particular, Hk(Td) := W k,2(Td). We denote by ‖ · ‖L p (respec-
tively ‖ · ‖W k,p ,‖ · ‖Hk ) the norms of the aforementioned functional spaces, omitting
the domain dependence when not necessary, and every definition can be adapted in a
standard way to the case of spaces involving time, like e.g. L1([0, T ]; L p(Td)).
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2. Distributional and parabolic solutions

In this section, we are interested in the following Cauchy problem{
∂t u + div(bu) = �u, in (0, T ) × T

d ,

u|t=0 = u0, in Td ,
(2.1)

where the data of the problem are T > 0, the vector field b and the initial datum u0.
We want first to present some different notions of solutions (distributional and para-
bolic) and then discuss existence, uniqueness and mutual relationship under general
integrability assumptions on b and u0.

2.1. Distributional solutions

We start by giving the following definition.

Definition 2.1. (Distributional solution) Let b ∈ L1([0, T ]; L p(Td)) be a divergence-
free vector field and u0 ∈ Lq(Td) for p, q such that 1/p + 1/q ≤ 1. A function u ∈
L∞([0, T ]; Lq(Td)) is adistributional solution to (2.1) if for anyϕ ∈ C∞

c ([0, T )×T
d)

the following equality holds:

∫ T

0

∫
Td

u(∂tϕ + b · ∇ϕ + �ϕ)dxdt +
∫
Td

u0ϕ(0, ·)dx = 0.

Notice that in the definition of distributional solutions the assumption that p, q
satisfy 1/p + 1/q ≤ 1 is the minimum requirement, we need in order to have ub ∈ L1

so that the definition makes sense. The proof of existence of distributional solutions
is well-known and immediately follows from a classical a priori estimate.

Proposition 2.2. Let b ∈ L1([0, T ]; L p(Td)) be a divergence-free vector field and
u0 ∈ Lq(Td) for p, q such that 1/p+1/q ≤ 1. Then, there exists a distributional solution
u ∈ L∞([0, T ]; Lq(Td)) to (2.1).

Proof. Let (ρδ)δ be a standard family of mollifiers, and let us define bδ = b ∗ ρδ ,
uδ
0 = u0 ∗ ρδ . Then, we consider the approximating problem

{
∂t uδ + div(bδuδ) = �uδ,

uδ(0, ·) = uδ
0.

(2.2)

Being bδ and uδ
0 smooth, there exists a unique smooth solution uδ to (2.2) (see [9]). It is

readily checked that the sequence uδ is equi-bounded in L∞([0, T ]; Lq(Td)). Indeed,
we can multiply the equation in (2.2) by β ′(uδ), where β : R → R is a smooth, convex
function: by an easy application of the chain rule and integrating in space, we get

d

dt

∫
Td

β(uδ(t, x))dx = −
∫
Td

β ′′(uδ(t, x))|∇β(uδ(t, x))|2dx ≤ 0.
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In particular, fixing t > 0 and integrating in time on [0, T ] we obtain∫
Td

β(uδ(t, x)) dx ≤
∫
Td

β(uδ
0(x)) dx . (2.3)

By considering a sequence of smooth, convex functions, uniformly convergent to
β(s) = |s|q , for 1 < q < ∞, we obtain the following uniform bounds on the Lq -
norm of the solutions uδ:

‖uδ(t, ·)‖Lq (Td ) ≤ ‖uδ
0‖Lq (Td ) ≤ ‖u0‖Lq (Td ). (2.4)

For q > 1 by standard compactness arguments, we can extract a subsequence which
converges weakly-star to a function u ∈ L∞([0, T ]; Lq(Td)), and it is immediate to
deduce that u is a distributional solution of (2.1) because of the linearity of the equation.
For q = ∞, the estimate (2.4) still holds for every δ > 0: we send q → ∞ in (2.4) and
thenwe can conclude as in the previous case.When q = 1, the estimate is not sufficient
to obtain weak compactness in L1, as we need to show the equi-integrability of the
family (vε)ε>0. To do so, we argue in the following way: since uδ

0 → u0 strongly in
L1(Td), by De la Vallée Poussin’s theorem, there exists a convex, increasing function
� : [0,+∞] → [0,+∞] such that �(0) = 0 and

lim
s→∞

�(s)

s
= ∞ and sup

δ>0

∫
Rd

�(|uδ
0(x)|) dx =: C < ∞. (2.5)

By an easy approximation argument, we can suppose � to be smooth and we can
multiply the equation in (2.10) by � ′(|uδ|) and we obtain

d

dt

∫
Td

�(|uδ(τ, x)|) dx +
∫
Td

� ′′(|uδ(τ, x)|)|∇(|uδ|)|2 dx = 0.

The convexity of � and an integration in time on (0, t) give∫
Td

�(|uδ(t, x)|) dx ≤ C,

where C is the same constant as in (2.5). Since t is arbitrary,

sup
t∈(0,T )

∫
Td

�(|uδ(t, x)|) dx ≤ C. (2.6)

Since the constant C is independent of δ, we can resort again to De la Vallée Poussin’s
theorem, and we infer that the family (uδ)δ>0 is weakly precompact in
L∞([0, T ]; L1(Td)), and therefore, it admits a limit u ∈ L1([0, T ]; L1(Td)) (up
to subsequences). Then by using the bound in (2.4), it is not hard to show that

u ∈ L∞([0, T ]; L1(Td)) and uδ ∗
⇀ u in L∞([0, T ]; L1(Td)), see for example Propo-

sition 3.9 in [2]. �
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2.2. Parabolic solutions

A special sub-class of distributional solutions is given by the so-called parabolic
solutions, whose peculiar property is the Sobolev regularity in the space variable.
As we are going to see, this notion of solution is natural for vector fields possessing
enough integrability in the space variable.

Definition 2.3. Let b ∈ L1([0, T ]; L2(Td)) a divergence-free vector field and u0 ∈
L2(Td). A function u ∈ L∞([0, T ]; L2(Td)) is a parabolic solution to (2.1) if it is a
distributional solution to (2.1) and furthermore u ∈ L2([0, T ]; H1(Td)).

We will sometimes refer to the space L2([0, T ]; H1(Td)) as the parabolic class.

2.2.1. Existence

We now prove that, under the assumptions above, there exists at least one solution
in the parabolic class:

Proposition 2.4. Let b ∈ L1([0, T ]; L2(Td)) be a divergence-free vector field and
u0 ∈ L2(Td). Then, there exists at least one parabolic solution.

Proof. The proof follows the same idea of the one of Proposition 2.2. We consider
the approximating problems (2.2) and their unique smooth solutions uδ . Choosing
β(s) = s2/2 and integrating in time on [0, T ], we get the following energy balance

1

2

∫
Td

|uδ(t, x)|2dx +
∫ t

0

∫
Td

|∇uδ(s, x)|2dxds = 1

2

∫
Td

|uδ
0(x)|2dx . (2.7)

The assumption u0 ∈ L2(Td) allows us to obtain a uniform estimate on the L2
t L2

x -
norm of ∇uδ: by retaining the gradient term in (2.7) and we use standard estimates on
the convolution we obtain that

‖uδ‖2L∞L2 + 2‖∇uδ‖2L2L2 ≤ ‖u0‖2L2 . (2.8)

Thus, standard weak compactness arguments yield the conclusion. �

Remark 2.5. In the proofs of Proposition 2.2 and Proposition 2.4, we have constructed
solutions as limit of solutions (uδ)δ associated with a regularization (bδ)δ of the vector
field and (uδ

0)δ of the initial datum. This strategy will be used once more later in
the paper, and we explicitly remark here that the family (uδ)δ satisfies two a priori
estimates:

(E1) supt∈[0,T ] ‖uδ‖Lq ≤ C‖u0‖Lq if u0 ∈ Lq(Td);

(E2)
∫ T
0 ‖∇uδ(t, ·)‖L2 dt ≤ C‖u0‖L2 if u0 ∈ L2(Td).

These bounds follow integrating by parts and exploiting the divergence-free assump-
tion on the vector field, in particular they are independent of the integrability of b.
However, we need the assumption b ∈ L1([0, T ]; L2(Td)) in Proposition 2.4 to give
a distributional meaning to the product ub.
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2.2.2. Uniqueness of solutions in the parabolic class

The uniqueness of solutions in the parabolic class is a consequence of the following
lemma, which is a straightforward modification of [14, Lemma 5.1]. Notice that we
do not need to assume div b = 0.

Lemma 2.6 (Commutator estimates I). Consider a vector field b ∈ L2([0, T ]; L p(Td))

and a function w ∈ L∞([0, T ]; Lq(Td)), where p, q are positive real numbers with
1/p + 1/q ≤ 1. Let (ρδ)δ be a family of smooth convolutions kernels. Define the com-
mutator of w and b as follows:

r δ := b · ∇(w ∗ ρδ) − (b · ∇w) ∗ ρδ. (2.9)

If ∇w ∈ L2([0, T ]; Lq(Td)), then r δ converges to 0 in L1([0, T ] × T
d).

Proof. Observe that, for a.e. t ∈ [0, T ] and a.e. x ∈ T
d , we can explicitly write the

commutator in the following form:

r δ(t, x) = [b · ∇(w ∗ ρδ)](t, x) − [(b · ∇w) ∗ ρδ](t, x)

= b(t, x) · ∇
∫
Td

w(t, x − y)ρδ(y)dy −
∫
Td

b(t, x − y) · ∇w(t, x − y)ρδ(y)dy

=
∫
Td

ρδ(y) (b(t, x) − b(t, x − y)) · ∇w(t, x − y)dy

=
∫
Td

ρ(z) (b(t, x) − b(t, x − δz)) · ∇w(t, x − δz)dz.

We thus have that∫∫
[0,T ]×Td

|r δ(t, x)|dtdx

=
∫∫

[0,T ]×Td

∣∣∣∣
∫
Td

ρ(z) (b(t, x) − b(t, x − δz)) · ∇w(t, x − δz)dz

∣∣∣∣ dtdx

≤
∫
Td

ρ(z)
∫ T

0

∫
Td

|b(t, x) − b(t, x − δz)||∇w(t, x − δz)|dxdtdz.

Since (t, x) �→ b(t, x) − b(t, x − δz) converges to 0 in measure (for every fixed z),
the conclusion follows by the dominated convergence theorem. �

Having at our disposal the previous lemma, we can now show the uniqueness of
solutions in the parabolic class, arguing as in [14].

Theorem 2.7. (Uniqueness of parabolic solutions) Consider a divergence-free vector
field b ∈ L2([0, T ]; L2(Td)). Then, there exists at most one parabolic solution to (2.1).

Proof. The uniqueness is a rather straightforward consequence of the strong conver-
gence of commutators established in Lemma 2.6. More precisely, since the problem
is linear, it suffices to show that, if u is a parabolic solution to (2.1) with u0 = 0, then



1 Page 10 of 16 P. Bonicatto et al. J. Evol. Equ.

u = 0. Consider again a standard family of mollifiers (ρδ)δ and set uδ := u ∗ ρδ .
Then, a direct computation shows that uδ solves the following equation:

{
∂t uδ + div(buδ) = �uδ + r δ,

uδ(0, ·) = 0,
(2.10)

where r δ is the commutator between u and b, defined as in (2.9). Consider now a
smooth function β ∈ C2(R), with the following properties: β(s) ≥ 0, |β ′(s)| ≤ C
for some C > 0 and β ′′(s) ≥ 0 for any s ∈ R with β(s) = 0 if, and only if, s = 0
(e.g., one could easily verify that the function which satisfies β ′(s) = arctan(s) with
β(0) = 0 is an admissible choice). Multiplying the equation by β ′(uδ) and integrating
on [0, t] × T

d , we obtain

∫
Td

β(uδ)dx +
∫ t

0

∫
Td

β ′′(uδ)|∇uδ|2dxds =
∫ t

0

∫
Td

β ′(uδ)r δdxds.

We now let δ → 0: using the uniform bound on β ′ and Lemma 2.6 we deduce that the
right-hand side converges to 0, and thus,

∫
Rd

β(u(t, x))dx = −
∫ t

0

∫
Td

β ′′(u)|∇u|2dxds ≤ 0.

Since t ∈ [0, T ] is arbitrary, the conclusion u ≡ 0 easily follows. �

Remark 2.8. Notice that in the proof above we do not really need r δ → 0 strongly in
L1 as δ → 0. A weaker convergence is enough to guarantee that the integral of the
product β ′(uδ)r δ converges to 0 as δ → 0: this is precisely the idea that will be used
in the next section to prove the regularity theorem, see in particular Lemma 3.1.

If the vector field is less integrable than L2(Td), then a severe phenomenon of
non-uniqueness may arise. In particular, in [16] counterexamples are constructed
via convex integration techniques: it is shown that there exist infinitely many so-
lutions to (2.1) in the class C([0, T ]; H1(Td)) with a divergence-free vector field
b ∈ C([0, T ]; L p(Td)) with 1 ≤ p < 2d/d + 2, for which it additionally holds ub ∈
L1([0, T ] × T

d). This, however, leaves open the following questions.

(Q1) What happens in the case 2d/d + 2 ≤ p < 2?
(Q2) If uniqueness holds for p as in (Q1), is it possible to show non-uniqueness

of solutions in the larger class L2([0, T ]; H1(Td)) for vector fields which are
merely L2 in time (instead than continuous)?

(Q3) For a vector field b ∈ Lr ([0, T ]; L2(Td)) with 1 ≤ r < 2, are parabolic
solutions unique?

It is reasonable to imagine that a possible strategy to tackle (Q2) could be to exploit
“time-intermittency” as in [4,6], which allows to increase the space integrability at
the expense of the time integrability.
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3. A regularity result

A natural question is under which conditions a distributional solution is a parabolic
solution. In order to address this problem, we will need the following version of the
commutator lemmawhich, to the best of our knowledge, is not present in the literature.

Lemma 3.1. (Commutator estimates II) Consider a divergence-free vector field b ∈
L2([0, T ]; L p(Td)) and a function w ∈ L∞([0, T ]; Lq(Td)), where p, q are positive
real numbers with 1/p + 1/q ≤ 1/2. Let (ρδ)δ be a family of smooth convoutions kernels
and define r δ as in (2.9). Then, r δ converges to 0 in L2([0, T ]; H−1(Td)).

Proof. We write the commutator as

r δ = [b · ∇(w ∗ ρδ)] − [(b · ∇w) ∗ ρδ]
= div[b(w ∗ ρδ)] − [div(bw) ∗ ρδ] = div[b(w ∗ ρδ) − (bw) ∗ ρδ],

in the sense of distributions on [0, T ] × T
d . We can thus write

r δ(t, x) = divx

(∫
Td

[b(t, x) − b(t, x − y)]w(t, x − y)ρδ(y)dy

)
,

and, by defining the set A := ϕ ∈ L2([0, T ]; H1(Td)) : ||ϕ||L2H1 ≤ 1, we can esti-
mate

‖r δ‖L2(H−1) = sup
ϕ∈A

∣∣∣∣
∫∫

[0,T ]×Td
r δ(t, x)ϕ(t, x)dtdx

∣∣∣∣
= sup

ϕ∈A

∣∣∣∣
∫ T

0

∫
Td

(∫
Td

[b(t, x) − b(t, x − y)]w(t, x − y)ρδ(y)dy

)
∇ϕ(t, x)dtdx

∣∣∣∣
≤ sup

ϕ∈A

∫
Td

ρ(z)
∫ T

0

∫
Td

|b(t, x) − b(t, x − δz)||w(t, x − δz)||∇ϕ(t, x)|dxdtdz.

Notice now that, as in the proof of Lemma 2.6, the map (t, x) �→ b(t, x)−b(t, x −δz)
converges to 0 in measure (for every fixed z). Hölder inequality on the product space
[0, T ] × T

d with exponents (p, q, 2) (in space) and (2,∞, 2) (in time) allows to
apply Lebesgue-dominated convergence theorem, and we can therefore conclude that
r δ → 0 in L2(H−1). �
Remark 3.2. (On the case div b ∈ L∞) Lemma 3.1 remains valid if we require only
div b ∈ L∞. Indeed, one can write the commutator r δ in the following way:

r δ = div[b(w ∗ ρδ) − (bw) ∗ ρδ] − (w ∗ ρδ) div b + (w div b) ∗ ρδ.

The first two summands converge to 0 in L2H−1 precisely by the proof above. For
the other two terms, one observes that w ∗ ρδ → w strongly in L∞Lq (hence also in
L∞L2, since q > 2); similarly, (w div b) ∗ ρδ → w div b strongly in L∞L2. Overall,
we get that the remainder (w div b)∗ρδ − (w ∗ρδ) div b → 0 in L∞L2 (and thus also
L2H−1).
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We can nowpresent a regularity resultwhich guarantees that a distributional solution
in the class L∞([0, T ]; Lq(Td)) is actually in L2([0, T ]; H1(Td))whenever 1/p+1/q ≤
1/2.

Theorem 3.3. Let p, q ≥ 1 such that 1/p + 1/q ≤ 1/2. If b ∈ L2([0, T ]; L p(Td)) is a
divergence-free vector field and u ∈ L∞([0, T ]; Lq(Td)) is a distributional solution
to (2.1), then u ∈ L2([0, T ]; H1(Td)) and satisfies

1

2

∫
Td

|u|2dx +
∫ T

0

∫
Td

|∇u|2dxdt = 1

2

∫
Td

|u0|2dx . (3.1)

Proof. To commence, we observe that 1/p+ 1/q ≤ 1/2 clearly implies that both p, q ≥ 2
and, since we are on the torus, any u ∈ L∞([0, T ]; Lq(Td)) lies also in L∞([0, T ]; L2

(Td)). We thus need to prove ∇u ∈ L2([0, T ]; L2(Td)), and this will be achieved
exhibiting an approximating sequence (uδ)δ enjoying uniform bounds on ∇uδ: in
turn, this estimate will be obtained as a consequence of Lemma 3.1.

Let (ρδ)δ be a standard family of mollifiers. As in the proof of Theorem 2.7, the
function uδ := u ∗ ρδ solves (2.10). Let us now prove an estimate on the H1-norm
of uδ , which is independent of δ: multiply the equation (2.10) by uδ and integrate by
parts to obtain

1

2

∫
Td

|uδ|2dx +
∫ T

0

∫
Td

|∇uδ|2dxdt = 1

2

∫
Td

|uδ
0|2dx +

∫ T

0

∫
Td

r δuδdxdt.

(3.2)

On the one hand, by standard properties of convolutions, we can estimate the first term
in the right-hand side of (3.2) as∫

Td
|uδ

0|2dx = ‖uδ
0‖2L2 ≤ ‖uδ

0‖2Lq ≤ ‖u0‖2Lq . (3.3)

On the other hand, for the second term in the right-hand side of (3.2) we can apply
Young’s inequality to obtain∫ T

0

∫
Td

r δ(t, x)uδ(t, x)dxdt ≤ ‖r δ‖L2H−1‖uδ‖L2H1

≤ C(T )‖r δ‖2L2H−1 + 1

4(1 + T )
‖uδ‖2L2H1

= C(T )‖r δ‖2L2H−1 + 1

4(1 + T )

(
‖uδ‖2L2L2 + ‖∇uδ‖2L2L2

)

≤ C(T )‖r δ‖2L2H−1 + 1

4(1 + T )

(
T ‖uδ‖2L∞L2 + ‖∇uδ‖2L2L2

)

≤ C(T )‖r δ‖2L2H−1 + 1

4

(
‖uδ‖2L∞L2 + ‖∇uδ‖2L2L2

)
.

(3.4)

Since r δ goes to 0 in L2(H−1), the term ‖r δ‖L2H−1 is equi-bounded. Combining (3.3),
(3.4) and plugging them into (3.2), we can conclude

‖uδ‖2L∞L2 + ‖∇uδ‖2L2L2 ≤ C(T, ‖u0‖Lq ),
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for some constant C , which does not depend on δ: this shows that the distributional so-
lution u is parabolic and thus unique thanks to Theorem 2.7. Finally, (3.1) immediately
follows from (3.2) sending δ → 0. �

Remark 3.4. We observe that (3.1) holds as an equality, that is, as an exact energy
balance. This is amore precise information than the bound obtained in Proposition 2.4,
which is obtained viaweak convergence and lower semi-continuity, and therefore holds
as an inequality.

Combining Theorem 3.3 and Theorem 2.7, we obtain the following corollary.

Corollary 3.5. Let p, q ≥ 1 such that 1/p + 1/q ≤ 1/2. If b ∈ L2([0, T ]; L p(Td))

is a divergence-free vector field, then there exists at most one distributional solution
u ∈ L∞([0, T ]; Lq(Td)).

3.1. Further remarks and open problems

We conclude this section with some observations and some further open questions.
The assumption on the time integrability of the vector field in Theorem 3.3 suggests

the following question.

(Q4) Let u ∈ L∞([0, T ]; Lq(Td)) be a distributional solution associated with a
divergence-free vector field b ∈ Lr ([0, T ]; L p(Td)) with 1 ≤ r < 2, and
assume that 1/p + 1/q ≤ 1/2. Is u a parabolic solution?

At this point, it is natural to wonder whether in the regime 1/2 < 1/p + 1/q ≤ 1 there
exist distributional solutions that are not parabolic and, therefore, whether uniqueness
of parabolic solutions holds but uniqueness of distributional solutions does not. A
partial answer to this, in dimension d > 2, can be obtained using [16, Theorem 1.4],
which gives non-uniqueness of distributional solutions in the regime 1/p + 1/q = 1 and
p < d (notice that in those examples the vector field and the solution are bounded in
time). A particular case of interest (somewhat reminiscent of the case of the Navier–
Stokes equations in [4]) iswhen p = q = 2:with such a choice, one obtains an example
where there exist infinitely many distributional solutions, despite the parabolic one is
unique in view of Theorem 2.7.

However, the convex integration schemes of [16] are not able to cover the case
d = 2. We therefore formulate the following question.

(Q5) Does it exist a divergence-free vector field b ∈ L2([0, T ]; L2(T2)) and a
distributional solution u ∈ L∞([0, T ]; L2(T2)) which is not parabolic, i.e.
u /∈ L2([0, T ]; H1(T2))? What if the vector field b ∈ L2(T2) is autonomous?

As a last point, we observe that the situation in the intermediate regime 1/2 < 1/p+1/q <

1 is completely open:

(Q6) Let 1/2 < 1/p + 1/q < 1. Does it exist a divergence-free vector field b ∈
L2([0, T ]; L p(Td))and a distributional solution u ∈ L∞([0, T ]; Lq(Td))which
is not parabolic, i.e. u /∈ L2([0, T ]; H1(Td))?
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It is worth noticing that a partial answer to (Q6) is given in [14, pag. 70]: when
1 ≤ q < 2 we cannot expect ∇u ∈ L2

t L2
x since this does not hold for the heat

equation.

Remark 3.6. In [10, Theorem 4.3] it is shown that, for bounded vector fields, distribu-
tional solutions u ∈ L2

t,x are parabolic and therefore unique. This deep result is proven
for advection–diffusion equations with possibly non-smooth diffusion operators and
relies on a combination of parabolic PDEs tools and variational arguments. The gist of
Figalli’s proof of the parabolic regularity is that, for given f ∈ L2([0, T ]; H−1(Td))

and w0 ∈ L2(Td), there exists a unique parabolic solution to the (inhomogeneous)
heat equation {

∂tw − �w = f,

w|t=0 = w0.

Now given u, b as in Theorem 3.3, one can choose f := − div(bu) and w0 :=
u0. It is then immediate to check that w − u is an L2([0, T ]; L2(Td)) solution to
the heat equation with zero initial data. Standard facts imply that u = w a.e. and
therefore parabolic regularity, uniqueness and the energy balance (3.1) follow. Our
approach, inspired by LeBris–Lions’ one, is based on the new commutator estimate
(Lemma 3.1) and gives a self-contained proof of the parabolic regularity within the
theory of renormalized solutions. Interestingly, a similar L2

t H−1
x commutator estimate

can also be applied to non-smooth diffusions in the setting of [10], and this direction
is taken in our recent work [2].
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