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Abstract

Phased antenna arrays provide ultimate performance in areas where high

directivity and electronic scanning are needed. That performance is achieved

by involving large number of radiators as well as corresponding control

units. As a result, such systems become bulky and heavy. In order to re-

duce the number of control units, elements are grouped in subarrays with

one of the control units, such as time delay, put at the subarray level. The

drawback of this approach is that if elements are grouped into subarrays

producing repetitive patterns in the array structure, radiation pattern of

such array will be affected by undesired grating lobes. To eliminate that

effect, subarrays of irregular shapes, such as polyominoes, are used. Still,

those structures are an object for optimization. This work aims at apply-

ing optimization techniques like genetic algorithm to the problem of finding

optimal structures of phased antenna arrays composed of polyomino-shaped

subarrays. For this purpose a new mathematical model, new algorithm and

optimization methods are developed. Application of those techniques showed

significant advances in radiation characteristics, in particular sidelobe level.

Also new features were enabled, for example, multi-beam radiation pattern

forming.
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Structure of the Thesis

The thesis consists of chapters as follows.

The first chapter contains analysis of the field of phased antenna arrays

together with the state-of-the-art. The actual problem is formulated. Also

the topic of optimization is discussed on examples of several common tasks

and various techniques are listed.

The second chapter describes development of the mathematical model

of planar phased antenna arrays built of polyomino-shaped subarrays. Two

optimization methods based on that model are also developed and anal-

ysed.

Chapter 3 describes the problem of application of the genetic algorithm

and shows in details the algorithm for polyomino placement by Gwee and

Lim. Then the “Snowball” algorithm is developed and compared to the

Gwee—Lim algorithm with examples.

Chapter 4 is dedicated to the analysis of antenna array structures ob-

tained by two algorithms. It shows advantages of the developed algorithm

in terms of sidelobe level suppression.

Chapter 5 includes several examples and analysis of multi-beam radia-

tion patterns obtained by structures with two shapes of subarrays. They

show further enhancements of the array technology.

xv





Chapter 1

Introduction and State-of-the-Art

1.1 Actuality of the problem of polyomino placement

The task of optimization of technological processes and solutions has always

been a part of a technical thinking. Optimization is a process of finding an

optimal solution. Optimal solution is the one that is more preferable than

other according to some criteria [86].

Optimization of technological processes can be divided into four general

groups.

• Time optimization means that the process should run as fast as pos-

sible. For example, the slowest part of a conveyor may need to be

optimised to increase productivity of the whole assembly process.

• Raw materials optimization pursues the most effective usage of the

needed raw materials. As an example one may consider optimization

of a shape of a plastic cover of some unit to decrease the consumption

of plastic [42].

• Cost optimization in opposite of raw materials optimization supposes

minimization of all the costs including salary and equipment.

• Quality optimization has a goal of reaching the best quality in a pro-
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1.1. ACTUALITY OF THE PROBLEM OF POLYOMINO PLACEMENT

cess. The example is manual potato cleaning instead of automated.

The process becomes expensive and long but the quality increases.

In a similar way optimization of technological solutions is made in ac-

cordance with some set of criteria. The set may consist of one or more

criteria. Under a technological solution may be considered a solution of

some problem by applying an existing technology as well as some system in

a broad sense. Optimization of a system may be focused on choosing the

optimal components of the system, optimization of connections (including

spatial) between them or all together.

Optimal placement of a set of objects in a limited space represents a wide

class of optimization problems. Usually such space is a rectangular area

on a plane while objects are geometrical shapes, real objects or even ab-

stract objects represented in geometrical shapes.Further examples of such

problems are listed. All of them belong to NP-hard class of problems.

Optimal packing problem. This problem is classical in such areas

as system analysis, combinatorics and linear algebra. This problem can be

formulated like: there is a container of a given shape in which the maximum

number of objects again of given shapes should be placed. The objects may

be of different shapes and sizes. Such a problem has been investigated in a

one-dimensional [35], two-dimensional [80, 12], three-dimensional [87] and

multidimensional variations. In figure 1.1 an example of a solution of such

problem is shown.

Optimal cutting problem. The difference of this problem is that

there are several shapes into which a sheet of some material should be cut.

The point is to minimize the garbage from cutting, i.e. maximization of

the density of the shape placement. This problem is studied in several

well-known works [30, 29, 46].

The rucksack problem. This problem is different from the previous

ones because it is multi-criterial by definition. The essence is in the fol-

2



CHAPTER 1. INTRODUCTION AND STATE-OF-THE-ART

Figure 1.1: Example of a solution of an optimal packing problem

lowing: there is a rucksack of a limited volume. There is a set of objects

of given sizes and prices. It is needed to put in the rucksack such a set of

objects so that their total cost would be maximal. There is a variation of

this problem where instead of the limit of the volume there is a limitation

of its load capacity and the objects have weight instead of price.

But along with the listed above problems there is an important task of

optimization of the structures of phased antenna arrays built with irregular

subarrays in order to increase their energy efficiency, communication range

and electromagnetic interoperability. The topic of this work is in the area

of optimization of a system that consists of a fuzzy set of components

with particular properties and two types of connections — geometrical

and electrodynamic. Both connections will be studied during the process

of the mathematical model development.

First of all it is necessary to explain what is a phased antenna array

and what is it used for. An antenna is a device for radiating or receiving

electromagnetic waves. Antennas are the key elements in such well-known

areas as wireless communication, radio location and radio astronomy. In

recent years the research in wireless energy transfer has got an impulse.

Antennas can be of various types, shapes and sizes. But there are several

basic parameters applicable for all of them:

3



1.1. ACTUALITY OF THE PROBLEM OF POLYOMINO PLACEMENT

• radiation pattern (RP) — graphical representation of dependence of

gain or directivity of the antenna on the direction in a given plane;

• gain — ratio of input power of the reference antenna to the input

power of the given antenna given that both antennas produce the

same electric field intensity in one direction at the same distance or

same power flux density;

• directivity — ratio of squared electric field intensity produced by the

antenna in a given direction to the average square of electric field

intensity in all directions;

• sidelobe level (SLL) — relative (normalized to the maximum of RP)

level of antenna radiation in direction of side lobes;

• front-to-back ratio (F/B) — ratio of the front radiation level to the

back radiation level;

• beamwidth — angle within which the radiation level is higher than

half of the level of the main beam (or in other words, less than the

maximum for 3 dB or less).

In figure 1.2 a typical radiation pattern is shown in polar coordinates.

It has a main beam and side lobes including a backside lobe.

In some cases there are special requirements for the antenna parameters,

such as high gain or ability to change radiation pattern. In such cases

phased antenna arrays (PAA) are used (figure 1.3). Antenna arrays are

complex systems consisting of two or more equal antennas joined by one

feeding network and functioning in coherence. Radiators belong to passive

components. Phased arrays differ by having active components such as

amplifiers and phase shifters. PAAs have the ability to apply amplitude and

phase corrections at every radiator (array element) forming therefore the
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CHAPTER 1. INTRODUCTION AND STATE-OF-THE-ART

Figure 1.2: Example of a radiation pattern in polar coordinates

needed radiation pattern. Sharp RP increases the quality of transmitting

and receiving signals in a given direction decreasing the noise level coming

from other directions. PAA may be linear, when all elements are aligned

in one line, and planar, when elements lie in a plane.

In order to increase the throughput of wireless communication systems

in recent years a shift towards wideband systems has been initiated [81, 43].

The feature of those systems is wide signal spectrum, i.e. a big set of

frequencies of electromagnetic waves is used for signal transmission [77].

As it was said, PAA can change its radiation pattern, i.e. steer its main

beam [71]. In case of wideband systems and/or large antenna array the

phase shifters cannot handle the task of beam forming [49]. In this case

time delay (TD) is required. Such arrays find their application in radio

5
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Figure 1.3: Large phased antenna array for radio location

location, radio astronomy and communication systems [32].

A PAA of 8 × 8 elements is shown in figure 1.4a. Every element has

the same architecture behind it shown in figure 1.4b. A typical radiation

pattern is presented in figure 1.5. The RP is shown in three-dimensional

sine space (discussed in more details in chapter 3). The radiation level

is expressed in decibels relatively to the main beam. The simulation was

run with the beam steering to angle (45◦; 45◦) that corresponds to sine

space coordinates (0, 5; 0, 5). As it is seen from RP, there is one strongly

pronounced beam and two rows of weak side lobes in accordance with

Taylor current distribution [82].

The problem of time delay components is that they are significantly

more expensive, bigger and heavier than other components. If we don’t

consider the cost, their application is still limited in satellite communica-

tions due to its weight. To solve this problem by sacrificing the performance
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Aperture

Element

(a)

Radiator

Amplifier

Phase shifter

τ Time delay

(b)

Figure 1.4: Phased antenna array (a) and architecture of an element (b)

it was proposed to split PAA into subarrays and put one time delay com-

ponent before subarray input, i.e. move time delays to the subarray level

[79, 78]. Therefore, the number of needed time delays decreases propor-

tionally to the number of elements grouped in one subarray. In figure 1.6

a 8× 8 PAA is shown tiled with subarrays of 4× 2 elements.

There is another problem with subarrays. The delay of a signal formed

by the time delay is true only for that point of an array that it was cal-

culated for. Let us consider that TD is placed under the central element

of a subarray and the value of the delay is calculated for that element. In

this case an error will be generated on all other elements of the subarray

represented by a time shift of the signal. To be exact, it should be re-

minded that this effect occurs only for wideband systems. Every element

receives its own error value and own time shift. That shift is the same

for corresponding elements of neighbour subarrays. Consequently, the sig-

7



1.1. ACTUALITY OF THE PROBLEM OF POLYOMINO PLACEMENT

-1

-0.5

0

0.5

1 -1

-0.5

0

0.5

1
-60
-50
-40
-30
-20
-10

0

R
a
d

ia
ti

on
,

d
B

u
v

R
a
d

ia
ti

on
,

d
B

-60

-50

-40

-30

-20

-10

0

Figure 1.5: Radiation pattern of PAA with no subarraying in the sine space

nal from those elements is coherently added and amplified. It turns out

to be an error accumulation. This error is represented in grating lobes

in the RP that happen to be side lobes [68]. Their existence is highly

undesired because they lead to decrease in power of the main beam and

affect the electromagnetic interoperability of a system. Note that the error

accumulation from the corresponding elements happens due to the regular

placement of subarrays in the array. The illustrative radiation pattern is

shown in figure 1.8. Besides the main beam it has five strong side lobes

with the highest level at −9, 5 dB.

One of the ways to overcome the occurrence of strong side lobes is to

use the subarrays of irregular shape, namely polyomino-shaped (figure 1.9)

[56]. Character C defines the centre. Such shapes rotated by a multiple

of 90 degrees allow to eliminate the regularity in the subarray placement

and, therefore, prevent the error accumulation. Figure 1.10 shows the same

8×8 structure tiled this time with L-shaped octominoes. On the radiation
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Rectangular subarray

(a)

τ τ

Radiator

Phase shifter

Amplifier

Time delay

(b)

Figure 1.6: PAA tiled with rectangular subarrays (a) and architecture of subarrays (b)

pattern (figure 1.11) it can be seen that the side lobes are spread over the

whole space, decreasing therefore its maximum down to −20, 3 dB.

PAA of the same size in one and the same frequency band but with

different structures, obviously, produce different level of side lobes. It is

easy to estimate the minimal number of possible structures of size M ×N
elements tiled with polyomino with q cells. Let us define the area of a

9
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(a) (b)

Figure 1.7: Picture of a PAA tiled with rectangular subarrays: front view (a) and feeding

network behind (b)

minimal rectangle completely tiled with such a polyomino as Smin. Inside

this rectangle Smin/q polyominoes are placed unambiguously. This rectangle

can be rotated by 90 degrees or flipped. In total there are four possible

minimal rectangles. Inside the structure there can be M ×N/Smin such rect-

angles. So, we can say that the minimal number of various structures with

full coverage is

NK =

(
2
Smin

q

)M×N
Smin

. (1.1)

In table 1.1 this number has been calculated for some polyomino types.

As it is seen, even the minimal estimation of the structures number prevents

from using brute force search for the optimal structure larger than 8 × 8

according to some criteria. Therefore, an approximate method is needed.

Table 1.1: Minimal estimation of number of different structures for different polyominoes

L-tromino L-tetromino L-octomino

8× 8 2642246 6536 256

16× 16 4.87 · 1025 1.84 · 1019 4.29 · 109

32× 32 5.64 · 10102 1.16 · 1077 3.4 · 1038

In papers by Mailloux [59, 61] such structures were composed manually

10
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Figure 1.8: Radiation pattern of a PAA built with rectangular subarrays

without any optimization. The question of choosing particular structure

was not stated. So, there is an actual problem of optimization of phased

antenna arrays structures tiled with polyomino-shaped subarrays.

Therefore, the actuality of the problem was shown. Practical applica-

tion field was described in details, in which phased antenna arrays act as

complex spatially distributed objects. Problems were shown that occur in

design of large phased antenna arrays with polyomino-shaped subarraying.

1.2 Analysis of existing methods and approaches to

the optimization of planar structures

In the previous section the urgency of the research topic was described.

Now it is necessary to analyse the state of the art. Analysis of the achieve-

ments in the field will be performed from two sides. From one side, methods

and algorithms for optimization of two-dimensional structures, tiled with

11
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C C C

C

C C C

a b c d

e f g

Figure 1.9: Polyomino shapes: L-shaped tromino (a), L-shaped tetromino (b), S-shaped

tetromino (c), T-shaped tetromino (d), C-shaped octomino (e), L-shaped octomino (f ),

PU-shaped octomino (g)

objects of irregular shape, would be considered. That is geometric or sys-

tem component of the work will be analysed. From the other side, the

analysis of sidelobe level suppression methods in phased antenna arrays

will be performed.

There are analytical and empirical methods of packing objects in struc-

tures. For example, Chinn and Grimaldi in their work analytically pack

polyominoes into rectangular areas of the smallest size, which then cover

the structure [14].

Opting empirical methods was done for the following reasons:

1. Such evaluation criterion of a PAR structure as the sidelobe level is in

the complex implicit dependence on the structure itself and can only

be calculated by modelling the entire system. Thus, the optimization

problem is finding the global maximum in the large discrete space of

solutions [85].

2. number of structures that can be obtained by filling a large rectangular

12
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Figure 1.10: Phased antenna array tiled with L-shaped octominoes

area with polyominoes is so big that it is not possible to sort out all

the options and model them.

Empirical methods include optimization, that implements search for so-

lutions in some complex multidimensional space. There are a number of

studies that have compared different optimization algorithms such as parti-

cle swarm optimization method with genetic algorithm [40, 31], evolution-

ary algorithms [4, 63] and ant colony optimization [73]. Some researchers

are interested in combining particle swarm optimization with such genetic

mechanisms as breeding and selection [55, 5, 65]. Many variations of the

original method of particle swarm optimization were suggested. For ex-

ample, parallel optimization of several smaller swarms [83, 75, 84], adding

negative entropy for mixing the particles [91], dissemination of findings

within a limited number of nearest neighbours [48, 50, 62, 47], variation of

searching objects in time [3], application of the particle swarm optimization

method for controlling mutation in the evolutionary methods [89], disper-

sal of clustered particles to increase diversity [54], application of fuzzy logic

13
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Figure 1.11: Radiation pattern of PAA tiled with L-shaped octomino subarrays

for adjusting the parameters of the algorithm [74]. Daniel Boeringer and

Douglas Werner compared particle swarm optimization with the genetic

algorithm [8] and showed that the latter has a better ability to beam form-

ing. There are examples of the use of genetic algorithm in electromagnetics

and antenna design [90, 2].

Among the empirical methods we have chosen the genetic algorithm

(GA) for the following reasons:

1. Independence from the task type. In this work the task is a battery

of many parameters for which the optimal value has to be found.

2. Discreteness of the nature of the task. Since PAAs have regular grid

and polyominoes are placed in the nodes of that grid with strictly

defined possible orientations, the search space is discrete.

3. Continuous actual range of the cost function. In opposite to the search

space, the criteria that describe potential solutions are continuous
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values. This concept fits well into the nature of genetic algorithms.

Now let us face the question of sidelobe level suppression. As it was

mentioned, grating lobes appear due to the accumulation of the phase shift

error among regularly placed subarrays. The subarrays and elements inside

them could be placed within a periodic and an aperiodic grid. In the first

case the array is called equidistant and in the second — non-equidistant.

The shape of the subarrays can be rectangular and irregular. Accordingly,

there are four domains of planar array subarraying.

The first domain represents the simplest case, when rectangular subar-

rays are put into a periodic grid. In other words, the array is being split

into equal rectangle areas of several radiating elements. Although in this

case the area of the array is simply and effectively filled (figure 1.6), the

corresponding radiation pattern is characterized by poor radiation perfor-

mance with grating lobes due to the periodicity of the structure (figure 1.8)

[60].

Other three domains aim at breaking this periodicity in different ways.

In the second domain the rectangular subarrays are arranged in an ape-

riodic grid, which results in small arbitrary relative displacements and/or

rotations (figure 1.12) [51]. This is the simplest solution for breaking pe-

riodicity. This solution is still simple from the point of view of production

process but the achieved sidelobe suppression is not high (around 11 dB)

[52].

The third domain is represented by irregular subarrays that aperiodi-

cally tile the aperture of the array [76, 88]. Here subarrays of more than

one irregular shape are used simultaneously and placed in an aperiodic

order, thus in nodes of an irregular grid.

One of the examples is the “Danzer” structure by Thomas Spence and

Douglas Werner [76]. Their structure consists of many various triangles

each being a subarray (figure 1.13). Such an array produces sidelobes of
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Figure 1.12: Rectangular subarray placement on an irregular grid

−17.3 dB.

Figure 1.13: The “Danzer” structure

Pierro with colleagues published a structure called “Penrose” [66] (fig-

ure 1.14). It also contains a lot of subarrays and suppresses SLL down to

−17 dB.

A very beautiful variant of an antenna array structure was shown by

Viganó [88]. It is called “Sunflower” (figure 1.15) and also keeps SLL at

level of −17 dB.
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Much better results are demonstrated by the way of subarrays placement

called “Pinwheel” [69]. In their article Morabito and others declare SLL

suppression to −21.5 dB.

Figure 1.14: The “Penrose” structure

Figure 1.15: The “Sunflower” structure

17
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The results achieved in this domain are significant due to high irregular-

ity of the array structures (also considering arbitrary placement of elements

within a subarray) [64, 66]. Although, the structures become very complex

and include a big number of elements, which leads to high costs of the

arrays and their size and weight.

Accordingly, the fourth domain — the use of subarrays of irregular

shapes placed onto a periodic grid — has been adopted to avoid the pres-

ence of grating lobes of the array factor [57]. This approach provides good

sidelobe level suppression still keeping the structure feasible in terms of

mass production (figure 1.11). Having one irregular shape of a subarray

it is possible to produce them first and then use them to build the whole

array, just rotating the shape. Circular polarization used in communica-

tion systems will not be ruined. The question that arises is how to obtain

such a structure to meet particular requirements. In other words, the array

structure has to be optimized. The problem of large array tiling with sub-

arrays of irregular shape comes to finding subarray positions with minimal

number of holes (i.e. uncovered cells), that decrease the gain, and avoiding

periodicity in subarray placement in order to minimize the number and

level of the side lobes [6].

Therefore, existing methods and approaches to the problem of opti-

mization of planar structures were analysed. Separately the optimization

methods for phased antenna array structures were considered. Disadvan-

tages of those methods applied to antenna array design were indicated and

the way of research was chosen.

1.3 Goals and tasks of research

After substantiating actuality and analysing present methods and appro-

aches, the goal of the work was set to be an increase of operating efficiency
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of phased antenna arrays, including sidelobe level suppression, by means of

optimization of their structures composed of polyomino-shaped subarrays.

The choice of the genetic algorithm is grounded on the features of the

application field. Phased antenna array optimization is one of the ways

to fulfil the growing requirements for wireless communication speed and

electromagnetic interoperability. The following research tasks have been

formulated:

1. To develop a mathematical model of a phased antenna array structure

composed of polyomino-shaped subarrays. This model should join

geometric properties of the system, common for all planar structures,

and electrodynamic properties that are specific for antenna arrays.

The development of the model lies in the base of the whole research

and is a fundamental step for further activities.

2. To develop a optimization method for polyomino placement based on

a criterion of estimation of irregularity of structures. The sidelobe

level of an antenna array that is being optimized is connected with

subarray placement in the structure, more exactly with their irreg-

ularity. Therefore, by the irregularity estimation of a structure it is

possible to estimate the sidelobe level. This task plays an important

role in universalization of the algorithm to be developed.

3. To develop an algorithm of a structural-parametric synthesis of struc-

tures of polyominoes. This is the main theoretical task of the work.

The algorithm is meant to synthesize structures, optimized by given

criteria applying developed methods.

4. To develop a software based on the proposed algorithm for solving the

phased antenna array optimization problem. The task has both theo-

retical — parameters calibration — and practical sides — synthesis of
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antenna array structures. The software is needed for testing the algo-

rithm and running numerical simulations on the obtained structures.

5. To assess the efficiency of the proposed algorithm and obtained struc-

tures by the mathematical simulation. Using the software it is needed

to get output results of the algorithm and to analyse them, proving

that the goal is achieved.

1.4 Chapter 1 conclusions

1. The actuality of the problem was shown. Practical application field

was described in details, in which phased antenna arrays act as com-

plex spatially distributed objects. Problems were shown that occur in

design of large phased antenna arrays with polyomino-shaped subar-

raying.

2. Existing methods and approaches to the problem of optimization of

planar structures were analysed. Separately the optimization methods

for phased antenna array structures were considered. Disadvantages

of those methods applied to antenna array design were indicated and

the way of research was chosen.

3. The goal of the work was formulated according to analysis of the state

of the art in the field. The scientific tasks were stated that will lead

to the goal achievement by a consistent progress.
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Chapter 2

Development of mathematical model

and optimization methods for

rectangular structures of

polyominoes

2.1 Development of a mathematical model of antenna

array structures built of polyomino-shaped sub-

arrays

First of all in order to solve the optimization problem it is necessary to

formulate and describe it mathematically. Moreover, except for the static

characteristics of the whole system it is required to describe the relations

between the system components, as well as the characteristics of the com-

ponents. This is called the development of a model of the system. The

model reflects all the necessary properties of the system and its compo-

nents and its response to external stimuli. Only having a correct model of

the system one can develop methods and algorithms for optimization and

be sure they are adequate. Main results of the chapter are published by

the author in journals and conference proceedings [16, 18, 21, 70, 23].
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2.1. DEVELOPMENT OF A MATHEMATICAL MODEL OF ANTENNA ARRAY
STRUCTURES BUILT OF POLYOMINO-SHAPED SUBARRAYS

Thus, the model of the same system may be different for different appli-

cations. For example, for the calculation of the deformation forces of the

bridge, a model is needed that takes into account the type, size and mate-

rial of the structure. If we need a model for visualizing the same bridge, it

will contain information about the shape, size and colour of the bridge.

The theme of this work is to optimize rectangular structures on the

example of antenna arrays. Accordingly, it is necessary at first to consider

the characteristics of the antenna arrays and to decide which criteria will be

used in the optimization of the characteristics and which must be present

in the model. Thereafter, these features must be combined into a single

mathematical apparatus capable in terms of the laws of physics to reliably

describe the antenna array.

In the first chapter it was mentioned that the antenna array is a sys-

tem in which there are two types of inter-element relations: geometric and

electromagnetic. Also there was a list with definitions of the main char-

acteristics of antennas: radiation pattern, gain, directivity, sidelobe level,

front-to-back ratio, beamwidth.

The usage of subarrays of different polyomino shapes (figure 1.9) in the

design of the antenna array was originally aimed at the suppression of

side lobes in the radiation pattern. However, the maximum suppression

of SLL does not mean the maximum coverage of the array by subarrays.

If a portion of the array is not included into any subarray, this means

that in this area (which may consist of one or more elements) no radiating

elements are set. Such areas are called holes. Large number of holes in the

array reduces the antenna gain, which affects both the receiving and the

transmission of signal. Thus, the optimization criteria selected are sidelobe

level and geometric fullness of the array.

In this work planar rectangular equidistant antenna arrays are consid-

ered. They are rectangular planar structures consisting of equal-sized cells.
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The easiest way to represent this structure is a matrix. Let the structure

have M rows and N columns and lies in the x − y plane, where rows are

parallel to the axis x, and the columns to axis y (Figure 2.1).

dx

dy

x

y

1 2 3 N

1

2

3

M

0

Figure 2.1: Element location in the structure

As was already mentioned, the antenna arrays consist of identical emit-

ters. The distance between the centers of the elements in an equidistant

array are the same too within the axes. Note that the physical dimen-

sions of the radiators do not play an important role in the work and are

not counted. It is supposed that the dimensions of the emitters are small

enough to fit in a predetermined inter-element distance, which is set in the

wavelengths at the central frequency of the bandwidth. Accordingly, we

denote the inter-element distance along the axes x and y as dx and dy.

An empty structure is represented by a zero-filled matrix [45]:

A =


0 0 · · · 0

0 0 · · · 0
...

... . . . ...

0 0 · · · 0

 (2.1)

As filling the structure with polyomino forms, matrix elements belonging

to those polyominoes are assigned sequence numbers, starting with one.
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Each shape of polyomino may be rotated inside the structure by an angle

that is a multiple of 90 degrees. In addition, the polyomino can be flipped

that adds four more orientations. In total there are eight orientations.

Each of the orientations may be provided by a separate matrix with two

columns and as many rows as the number of elements in polyomino without

one. Matrix elements are the coordinates defining the location of each

element relative to a pre-determined center of the polyomino. Each row of

this matrix determines the shift of each element polyomino (except center)

relative to the center. The first column specifies the offset for axis y,

and the second for axis x. For example, the L-shaped octomino comprises

eight elements. To describe its orientations we need to make eight matrices

of 7 × 2 elements. Following are the eight orientations of L-octomino in

accordance with figures 1.9 and 3.15:

T 0 =



−2 −1

−1 −1

0 −1

0 1

1 −1

1 0

1 1


, T 1 =



−1 −1

−1 0

−1 1

−1 2

0 −1

1 −1

1 0


, T 2 =



−1 −1

−1 0

−1 1

0 −1

0 1

1 1

2 1


,

T 3 =



−1 0

−1 1

0 1

1 −2

1 −1

1 0

1 1


, T 4 =



−2 1

−1 1

0 −1

0 1

1 −1

1 0

1 1


, T 5 =



−1 −1

−1 0

0 −1

1 −1

1 0

1 1

1 2


, (2.2)
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T 6 =



−1 −1

−1 0

−1 1

0 −1

0 1

1 −1

2 −1


, T 7 =



−1 −2

−1 −1

−1 0

−1 1

0 1

1 0

1 1


.

These matrices are used by the program and stored in separate files.

Possessing a structure matrix and polyomino orientations matrix, we can

formulate the condition of possibility of polyominoes placement (in our

example, L-octomino) at position (x, y). It is understood that the center

of polyomino is located at coordinates (x, y) and the other elements —

according to their relative shifts identified by vectors in an orientation

matrix. Subarrays can not be superimposed on each other, respectively a

polyomino can not be put in the structure, if at least one element of it is in

already occupied place. It is easy to figure it out. It is enough to compute

the sum of elements of the structure matrix, found in the coordinates from

the orientation matrix. Here also a ban is included on crossing border

of the structure — all polyominoes must be located entirely within the

structure:

Yµ(x, y) =

Ax,y +
q−1∑
i=1

Ax1,y1, 0 6 x1 < N ∧ 0 6 y1 < M ;

1, x1 < 0 ∨ x1 > N ∨ y1 < 0 ∨ y1 >M ;

(2.3)

x1 = x+ T µi,2,

y1 = y + T µi,1,

where µ— orientation of polyomino, q — number of elements in polyomino.

If Y = 0 then the placement of the polyomino at a given location is

considered possible (and the location is considered suitable). Let us give
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an example of placement of the first L-octomino with orientation number

zero (matrix T 0) into an empty structure of size 8 × 8 at the center with

coordinates (4, 4):

A =



0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 1 1 1 0 0 0

0 0 1 1 1 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0


(2.4)

Therefore, we have a model of a structure (array matrix), model of poly-

ominoes (orientation matrices) and conditions for polyomino placement.

This set lets us to describe and consider geometric relations between the

elements in a system.

As well as geometric, we need to consider electrodynamic relations to

compute the radiation pattern. It is well known that the far field of an

antenna array E(θ, φ) is derived from the field of a single element:

E(θ, φ) = E1(θ, φ)× AF (θ, φ), (2.5)

where θ and φ — spherical coordinates, E1 — single element field, AF —

array factor. For ease, instead of spherical coordinates they use sine space

coordinates [67]:

u = sin θ cosφ,

v = sin θ sinφ.
(2.6)

The array factor characterizes the interference of radiation from single

elements taking into account given amplitude distribution and phase shifts.
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The standard notation is the following:

AF (θ, φ) =
M∑
m=1

N∑
n=1

amne
−jk[mdx(u−u0)+ndy(v−v0)], (2.7)

where amn — amplitude coefficient that sets amplitude distribution, k =

2π/λ — wave number, λ — wave length, u0 and v0 — steering angle of

the main beam. The exponent defines the phase shift from phase shifter.

Figure 2.2 shows a simplified scheme of phase shift forming in a linear

antenna array composed of three subarrays with four elements in each. The

y axis measures the signal phase of each element. Linear phase distribution

through the array provides the forming of the main beam in the desired

direction.

x

ϕ

τ τ τ

Radiation direction

Figure 2.2: Phase shift forming

Equation (2.7) supposes that beneath each element in the array there is

an amplifier and a phase shifter (figure 1.4a). In case of subarraying that

equation should be rewritten. We shall start with rectangular subarrays.
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Let the array of size M×N be completely filled with rectangular subarrays

of size M0 × N0 (figure 1.6a) with architecture according to figure 1.6b.

Subarray factor will be written as:

SAF (θ, φ) =

M0∑
m=1

N0∑
n=1

amne
−jk[mdx(u−u0)+ndy(v−v0)]. (2.8)

Array factor will be expressed through subarrays as:

AF (θ, φ) =

M/M0∑
m0=1

N/N0∑
n0=1

SAF (θ, φ)e−j2πfτm0n0 , (2.9)

where f — frequency, τ — time delay value from the time delay element,

that can be calculated for rectangular subarrays placed regularly:

τm0n0 =
1

c
[cm + (m0 − 1)M0dx] (u− u0) +

1

c
[cn + (n0 − 1)N0dy] (v − v0),

(2.10)

where c — speed of light and cm and cn — subarray center coordinates

relatively to top left corner.

In case of polyomino-shaped subarrays the situation becomes more com-

plicated, because polyominoes and their centres are located not regularly.

Actually, for this they are used. However, they can also be described math-

ematically, meaning that we know all the orientations matrices and centre

coordinates for each of them. Subarray factor will be expressed as:

SAF (θ, φ) =

q−1∑
i=1

aie
−jk[Tµi,2dx(u−u0)+Tµi,1dy(v−v0)]. (2.11)

In the calculation of the factor of the entire array composed of polyomino-

shaped subarrays, it is also needed to know positions and orientations of

all the polyomino in the structure:

AF (θ, φ) =
N∑
i=1

SAFi(θ, φ)e−j2πfτi, (2.12)
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where N — number of subarrays in the array. Delay τi can also be calcu-

lated from the subarray centre coordinates in the array [13]:

τi =
1

c
[xidx] (u− u0) +

1

c
[yidy] (v − v0), (2.13)

where xi and yi — coordinates of the centre of i-th subarray in the array.

Having all these equations one can compute the field of a phased antenna

array and measure the sidelobe level. At the same time there is no need to

put into equation (2.5) a field of a particular radiator: radiation pattern

of a radiating element itself is not optimized in this work, and so instead

of a real radiator we can use expression for the ideal isotropic radiator:

E1(r, θ, φ) =
e−jkr

4πr
~r(θ, φ), (2.14)

where r — distance to the measuring point, ~r — unit vector. In such

called far field r � λ/2π, therefore (2.14) can be simplified significantly by

normalizing the amplitude to some value in the far field:

E1 = 1. (2.15)

So, a mathematical model of a structure of polyominoes, representing a

phased antenna array, was developed that describes and joins geometrical

and electrodynamic relations between the elements. The model takes into

account technical features of radiating structures. Radiation properties of

the structures are described by array factor.

2.2 Development of the optimization method based

on the structure irregularity estimation

In this work the optimization of phased antenna arrays acts as the appli-

cation area for the optimization methods and algorithms being developed.

Among different parameters of antenna arrays in this work optimization is
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focused on gain and sidelobe level. The gain is optimized by implication

by the increase of geometric fullness of the structure. But the sidelobe

level is not connected with evident dependence only to the geometric part

of the structure and requires experiments or numerical simulation for its

obtaining.

For obvious reasons it is impossible to run hardware experiments during

the optimization of an antenna array. There are software libraries for

numerical simulations of the sidelobe level. Depending on the sizes of the

array and accuracy the simulation may take from half a second up to several

minutes. This time multiplied by the number of iterations of the genetic

algorithm and population size grows to hours spent on one experiment.

In order to solve this problem a task was set to find another optimization

criterion that could replace the sidelobe level and be quicker to calculate.

In works of Mailloux [59, 61] it is stated that the sidelobe suppression

is proportional to the irregularity of the array structure tiled with subar-

rays. Therefore, we should search for a criterion that could estimate the

irregularity of a structure.

Two attempts were made to find such a criterion. The first one uses the

colour filtering method. This way did not show good results and so another

attemp was done based on calculation of the autocorrelation function of

the structure scanning. The second approach has shown good results and

was used in the examples provided in the fourth chapter. Further the two

methods are described in more details.

Irregularity of a structure tiled with polyominoes may mean that it does

not have patterns repeated with some spatial periodicity. At the same time

a pattern can be represented by a single polyomino as well as a group of

two, three or more. So, it is important to consider uniform distribution of

not only all eight orientations of the polyomino, but also groups of such

polyominoes. For this purpose it was proposed to use the principle of colour
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filtering. Its essense is in the following.

According to the RGB model, all the colours can be obtained by mixing

three basic colours: red, green and blue (figure 2.3). The basic colours are

orthogonal to each other: they cannot be obtained by mixing two other

colours.

Figure 2.3: RGB model: three basic and three secondary colours

If we mix each pair of basic colours in equal proportion we will get three

secondary colours:

red + green = yellow

red + blue = magenta

green + blue = cyan

In total we can use these six colours. We paint polyominoes in the

structure with these colours. Each colour is associated with one orientation.

In figure 2.4 a structure is shown where all the polyominoes are painted in

their colours.

Now let us describe colour channels. Colour channels correspond to the

basic colours of the model. In RGB it is red, green and blue. They say a

colour is visible in a channel if the corresponding basic colour is used to

obtain it. Therefore, in the red channel among our six colours we will see

red, yellow and magenta. In the green channel it is green, yellow and cyan
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Figure 2.4: Example of a structure in which polyominoes are painted in colours according

to orientations

while in blue channel — blue, cyan and magenta.

Now, if we “turn on” only one channel we will see only those polyomi-

noes in the structure that are painted in the corresponding visible colours.

Figure 2.5 shows the initial structure in each of three channels.

But we ought to remember that every polyomino in the structure has

eight orientations, while there are only six basic and secondary colours.

Black colour is used to designate invisible polyominoes and holes that are

invisible in any channel. White colour is useless because it is visible in all

channels.

It is impossible to find four orthogonal colours. But we can abstract our

mind from colours and transfer the same principle (mixing and elicitation)

to other objects. In this work the prime numbers have been chosen as such

objects. Four imaginary colours act as basic: C2, C3, C5 and C7. They

are orthogonal and they don’t divide by one another. Their multiplication

will represent mixing. Since the numbers are prime, every product will be

divisible by only the numbers that represent basic colours. In total there
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(a) (b)

(c)

Figure 2.5: Views of the structure in red (a), green (b) and blue (c) channels

are six secondary colours:

C2 + C3 = C6,

C2 + C5 = C10,

C2 + C7 = C14,

C3 + C5 = C15,

C3 + C7 = C21,

C5 + C7 = C35.

We will use only two basic colours (C2 and C3) and six secondary to

paint eight orientations of polyominoes.
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Then we need somehow to estimate the uniformity of visible elements

in the structure in each channel. For that we calculate the number of

visible elements in all the rows and columns and their standard deviation

(separately among rows and columns). The average value is set exactly to

the number of elements in a row/column per one channel. In channels C2

and C3 four colours are visible, while in channels C5 and C7 only three.

Therefore we divide the number of elements in a row/column by 3.5 to

obtain the average:

〈U (C)〉 =
N

3.5
, (2.16)

〈V (C)〉 =
M

3.5
, (2.17)

σ p
C =

√√√√ 1

M

M∑
i=1

(
V

(C)
i − 〈V (C)〉

)2

, (2.18)

σ−C =

√√√√ 1

N

N∑
i=1

(
U

(C)
i − 〈U (C)〉

)2

, (2.19)

where σ p
C , σ−C — standard deviation of visible elements in a row and column

in channel C, U
(C)
i and V

(C)
i — number of visible elements in the i-th row

or column in channel C, M and N — number of rows and columns in the

structure.

By this the information about the uniformity of the elements distribu-

tion for each colour channel is extracted. Then all the standard deviations

are summed up forming a numerical value of the irregularity of the struc-

ture R:

R =
∑
C

(
σ p
Cσ
−
C

)
. (2.20)

The optimization criterion in this case will be positive minimization

down to zero, meaning uniform distribution of visible elements among rows
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and columns in all the channels and, therefore, absence of repeated patterns

inside the structure.

Next we present several experiments to identify the dependence between

sidelobe level and calculated value of irregularity of structures.

2.2.1 Example values of irregularity by colour filtration method

Here two examples of structures of 32×32 elements are presented for which

irregularity values are calculated by the colour filtering method as well as

sidelobe levels. In the first example the structure is tiled with L-shaped

trominoes, in the second — L-shaped octominoes. These examples are

listed for understanding the range of values of irregularity. According to

the formulae, those values can be non-integer. In the first example it is

346.36 and in the second — 370.54. At the same time sidelobe level differ

slightly: 8.5 dB for bandwidth r = 1.3 and 11 dB for bandwidth r = 1.818.
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Example 1: structure 32 × 32, L-tromino

Input parameters:

• structure size: M = N = 32;

• polyomino type: L-tromino.

Figure 2.6 shows the structure, numerical results are given in table 2.1.

Figure 2.6: Array structure in the first example

Table 2.1: Output data of the first example

Parameter Value

Number of polyominoes 363

Fullness of the structure A, % 100

Irregularity R 346.36

Sidelobe level γ for r = 1.300, dB −28.43

Sidelobe level γ for r = 1.818, dB −21.76
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Example 2: structure 32 × 32, L-octomino

Input parameters:

• structure size: M = N = 32;

• polyomino type: L-octomino.

Figure 2.7 shows the structure, numerical results are given in table 2.2.

Figure 2.7: Array structure in the second example

Table 2.2: Output data of the second example

Parameter Value

Number of polyominoes 144

Fullness of the structure A, % 98.63

Irregularity R 370.54

Sidelobe level γ for r = 1.300, dB −19.97

Sidelobe level γ for r = 1.818, dB −10.76

Below the analysis of the method is provided from the point of view of

stability of values and correspondence to the sidelobe level.
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2.2.2 Colour filtering method analysis

Figure 2.8 shows graphs of irregularity calculated by the colour filtering

method and sidelobe level obtained by simulation for bandwidth rsim = 1.3.

The experiments were run for structures of different sizes tiled with L-

tromino. Numerical data is presented in table 2.3.
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Figure 2.8: Irregularity and sidelobe level of structures of different sizes, tiled with L-

trominoes

Table 2.3: Irregularity and SLL of structures of different sizes of L-tromino

Structure size M = N Irregularity R SLL, dB

20 144.32 −11.75

25 198.80 −13.30

30 242.85 −16.25

35 279.09 −20.20

40 362.88 −19.39

45 509.85 −21.76

50 545.69 −21.24
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Similar analysis for structures tiled with L-octominoes is shown on fig-

ure 2.9 and table 2.4.

From this graphs it can be seen that the irregularity value behaves in

opposite to the sidelobe level. Despite that the value of irregularity can

be inverted and scaled, beforehand we need to make sure that values are

stable, i.e. see how do they differ for structures with similar SLL.
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Figure 2.9: Irregularity and sidelobe level of structures of different sizes, tiled with L-

octominoes

Table 2.4: Irregularity and SLL of structures of different sizes of L-octomino

Structure size M = N Irregularity R SLL, dB

20 124.71 −11.38

25 196.14 −11.94

30 206.15 −10.63

35 283.20 −12.51

40 329.16 −14.90

45 442.91 −15.33

50 549.38 −16.21
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Further there are graphs, comparing irregularity values with sidelobe

level of structures obtained with different random generator seeds. SLL was

simulated for rsim = 1.3 and rsim = 1.818. The structures are of equal sizes

32× 32. Figure 2.10 shows the graph for structures tiled with L-trominoes

while figure 2.11 presents the graph for structures of L-octominoes.

From the graphs it can be seen that the irregularity values are not

only unstable and allow a deviation of ±25 with SLL being more or less

the same, but also demonstrates ungrounded tendency (figure 2.11). Con-

sidering this we can say that the developed method is not suitable as a

replacement for sidelobe level in cost function.

Nevertheless, the method has proved its capacity. It can be studied

further and applied to other fields of research dealing with planar discrete

structures. For example, the method can be used for calculation of image

hashes,
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Figure 2.10: Irregularity and sidelobe level of structures of same size tiled with L-tromino

Therefore, a colour filtering method has been developed that provides
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Figure 2.11: Irregularity and sidelobe level of structures of same size tiled with L-octomino

numerical estimation of irregularity of a structure. The method was im-

plemented and analysed. As a result of the analysis it was found out that

the method cannot be used for PAA optimization, because the derivable

irregularity estimation does not correlate with the sidelobe level.

2.3 Development of an optimization method based

on estimation of structure’s self-similarity

Experiments with colour filtering method showed that the calculated value

of irregularity has almost nothing to do with the simulated value of the

sidelobe level. We had to find a new approach for the optimization criterion

that could replace SLL.

Since we talk about irregularity of some structure, it makes sense to

apply the concept of autocorrelation. Autocorrelation function expresses

the degree of self-similarity of a function at a certain shift of the argument.
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There is a two-dimensional expression of the autocorrelation function, but

its computing time grows exponentially with the growth of the area of two-

dimensional domain of the function (in this case, the area of the structure).

It was therefore decided to use the one-dimensional expression.

In order to calculate one-dimensional autocorrelation function from a

two-dimensional function one has to reduce the dimensionality of it. In

other words, obtain its scanning. The structure contains a finite number

of discrete elements, therefore the scanning will also be discrete and finite.

There are several different scannings. The simplest one — serial scanning

which joins rows or columns of a structure in series (figure 2.12). But

conformably to our task the recursive Hilbert scanning is of special interest

[39, 26].

Figure 2.12: Serial scanning

The Hilbert scanning represents a continuous line, that passes all ele-

ments in the structure [72]. Depending on the size of the structure, various

number of iterations is needed (figure 2.13). At the same time the size of

a structure covered by the scanning is a power of two.

Let the structure have M×N elements. The length of the Hilbert curve

for it will be:

lh = M ×N. (2.21)

The Hilbert scanning of such a structure will return a vector ~s, consisting of
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Figure 2.13: First six steps of the Hilbert curve

orientations of polyominoes to which the elements belong. Autocorrelation

function from function f(t) in general is expressed in the following way:

Ψ(τ) =

∫
f(t)f(t− τ)dt. (2.22)

For a discrete vector it can be rewritten as a sum:

Ψ(τ) =

lh∑
i=τ

[~s(i)× ~s(i− τ)] . (2.23)

In order to calculate self-similarity of the vector we have to compute an

integral from the autocorrelation function for all τ :

R =

∫
Ψ(τ)dτ. (2.24)

Return back to the sum:

R =

lh∑
τ=1

lh∑
i=τ

[~s(i)× ~s(i− τ)] . (2.25)
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Here we need to describe the multiplication of vectors more exactly. First

of all, the vector contains orientations of not all the elements, but only cen-

tres of polyominoes. But it does not become shorter: all other elements are

set equal to −1. Secondly, we want to find not the product of numbers of

orientations, but the number of their coincidences. That is why multiplica-

tion is replaced with conditional intersection. Sidelobe level suppression is

inversely proportional to self-similarity of the structure. In order to make

SLL and self-similarity directly proportional the minus sign is added:

R = −
lh∑
τ=1

lh∑
i=τ

[~s(i)⊗ ~s(i− τ)] , (2.26)

~s(i)⊗ ~s(j) =


1,

{
~s(i) = ~s(j)

~s(i) 6= −1

0 otherwise

. (2.27)

2.3.1 Examples of self-similarity values by the autocorrelation

method

Below two examples of 32×32 structures are provided, for which the values

of self-similarity and sidelobe levels are calculated.
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Example 1: structure 32 × 32, L-tromino

Input parameters:

• structure size: M = N = 32;

• polyomino type: L-tromino.

Figure 2.14 shows the structure, numerical results are provided in ta-

ble 2.5.

Figure 2.14: Structure of an array in the first example

Table 2.5: Output data of the first example

Parameter Value

Number of polyominoes α 363

Fullness of the structure A, % 100

Self-similarity R −7527

Sidelobe level γ at band r = 1.300, dB −28.43

Sidelobe level γ at band r = 1.818, dB −21.76

45



2.3. DEVELOPMENT OF AN OPTIMIZATION METHOD BASED ON
ESTIMATION OF STRUCTURE’S SELF-SIMILARITY

Example 2: structure 32 × 32, L-octomino

Input parameters:

• structure size: M = N = 32;

• polyomino type: L-octomino.

Figure 2.15 shows the structure, numerical results are provided in ta-

ble 2.6.

Figure 2.15: Structure of an array in the second example

Table 2.6: Output data of the second example

Parameter Value

Number of polyominoes α 144

Fullness of the structure A, % 98.63

Self-similarity R −902

Sidelobe level γ at band r = 1.300, dB −19.97

Sidelobe level γ at band r = 1.818, dB −10.76
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2.3.2 Autocorrelation method analysis

Autocorrelation method analysis will be done over two criteria. Firstly,

the dependence will be analysed of the sidelobe level on the structure self-

similarity. Secondly, the stability of the self-similarity value will be judged,

i.e. how much does it vary for similar structures.

Figure 2.16 shows graphs of the self-similarity value calculated by the

autocorrelation method and the sidelobe level obtained by numerical sim-

ulation for band rsim = 1.3. The experiments were run for structures of

32×32 elements, tiled with polyominoes of different types. Numerical data

is presented in table 2.7.
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Figure 2.16: Self-similarity and sidelobe level of 32×32 structures of different polyominoes

Similar analysis for structures 64 × 64 is shown on graph 2.17 and in

table 2.8.

It can be seen from the graphs that the self-similarity value behaves

very similarly to the sidelobe level. Now we need to investigate, how much

do the values vary for the similar structures, i.e. for the structures with
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Table 2.7: Self-similarity and SLL of 32× 32 structures of different polyominoes

Polyomino type Self-similarity R SLL at rsim = 1.3, dB

L-tromino −7527 −28.43

L-tetromino −4196 −24.22

S-tetromino −4146 −22.35

T-tetromino −4042 −22.78

L-octomino −902 −19.97

Pu-octomino −885 −20.09

Table 2.8: Self-similarity and SLL of 64× 64 structures of different polyominoes

Polyomino type Self-similarity R SLL at rsim = 1.3, dB

L-tromino −118749 −32.76

L-tetromino −66907 −28.67

S-tetromino −66491 −28.83

T-tetromino −62545 −29.21

L-octomino −15444 −25.01

Pu-octomino −15208 −26.33

more or less the same SLL. For this purpose experiments were run with

different seeds of the pseudo random number generator.

Below the graphs are listed that compare self-similarity with sidelobe

level of structures, built with different seeds. SLL was simulated for bands

rsim = 1.3 and rsim = 1.818. Structures have equal sizes of 32 × 32.

Figure 2.18 shows the graph for structures tiled with L-tromino while fig-

ure 2.19 — for structures tiled with L-octomino.

It can be seen from the graphs that the self-similarity values are stable,

i.e. little deviations of SLL correspond to little deviations of self-similarity.

This means that the value of self-similarity can be used as a replacement

for SLL.

Still we see that different sizes of structures and different polyomino

types produce different ranges of self-similarity values. To make use of

this value in the cost function it should be normalized. Table 2.9 provides
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Figure 2.17: Self-similarity and sidelobe level of 64×64 structures of different polyominoes

normalizing denominators for different structure sizes and types of poly-

ominoes. In the cost function this component will be added in a form of a

weighted normalized value:

ψR
R (~s)

ρ
(2.28)

Table 2.9: Normalizing denominators ρ

16× 16 32× 32 64× 64

L-tromino −500 −7500 −100000

L-tetromino −250 −4000 −60000

S-tetromino −250 −4000 −60000

T-tetromino −250 −4000 −60000

L-octomino −60 −1000 −15000

Pu-octomino −60 −1000 −15000

Therefore, an autocorrelation method has been developed, that allows

estimation of self-similarity of structures. Provided analysis of the method

showed that self-similarity values correlate with computed values of side-
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Figure 2.18: Self-similarity and sidelobe level of structures of same size tiled with L-

trominoes

lobe levels. This lets us use this method during the process of optimization

of phased antenna arrays.

2.4 Chapter 2 conclusions

1. A mathematical model of a structure of polyominoes, representing a

phased antenna array, was developed that describes and joins geomet-

rical and electrodynamic relations between the elements. The model

takes into account technical features of radiating structures. Radia-

tion properties of the structures are described by array factor.

2. A colour filtering method has been developed that provides numerical

estimation of irregularity of a structure. The method was implemented

and analysed. As a result of the analysis it was found out that the

method cannot be used for PAA optimization, because the derivable
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Figure 2.19: Self-similarity and sidelobe level of structures of same size tiled with L-

octominoes

irregularity estimation does not correlate with the sidelobe level.

3. An autocorrelation method has been developed, that allows estima-

tion of self-similarity of structures. Provided analysis of the method

showed that self-similarity values correlate with computed values of

sidelobe levels. This lets us use this method during the process of

optimization of phased antenna arrays.
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Chapter 3

Development of an optimization

algorithm based on the genetic

algorithm

3.1 Problem of the genetic algorithm application

In recent years, genetic algorithm proved to be a powerful way of solving

problems. Strategy of the GA is based on the principle of natural selection

and genetic recombination. GA starts with an initial population of indi-

vidual chromosomes. Each chromosome with its cost function value is a

separate solution in the search space. For each generation chromosomes are

being selected from the previous population according to a probability that

is proportional to their cost function value. These chromosomes undergo

genetic operations to get the new population. During the formation of a

new generation, the best chromosomes are recombined in order to produce

even better offspring.

The first empirical study of GA in optimization was done by Holland

[41] for two-armed bandit problem. Since then, GA was applied to many

complex optimization problems in various fields, especially in those where

the search space is poorly understood. Some examples of GA for practical
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engineering tasks include monitoring gas pipes [36], robotics control [27],

scheduling [28], medical image analysis [37] and designing adaptive fuzzy

controllers logic [44, 53]. There are several studies on the use of GA in the

optimal packing [9, 10].

Success of the GA depends on many factors. It is important that the

solution could be represented as a binary string, suitable for manipula-

tion using various genetic operations inside GA. Selecting string structure

depends largely on the characteristics of the optimization problem. Such

a representation should ideally cover all the search space without violat-

ing constraints. In the case of polyomino placement it is more efficient

to encode configuration of polyominoes by changing the position of the

corresponding gene in the string, especially for large structures.

When determining points of global optimality in the search space, GA

does not use any additional information. So no matter whether a task

is uni-modal, multi-modal or combinatorial. Necessary information is en-

coded in the cost function. Basically, the cost function is used to calculate

the suitability of solutions. Suitability is the basis for deciding which chro-

mosomes in the population will produce offspring in the next generation.

This is a quality score of possible solutions to the problem. Thus, the

choice of an appropriate cost function, which expresses the suitability of a

potential solution is critical.

Figure 3.1 shows a flow-chart that indicates the steps of optimal place-

ment problem adaptation for GA. In general, the scheme reflects a imple-

mentation methodology for GA from a problem formulation to obtaining

a complex object-oriented algorithm.

To state the problem to the algorithm clearly, it is necessary to own

all the necessary information regarding the specifics of the area and re-

strictions on the search. This applies, among other things, also systems

including the human factor [33]. In the polyomino placement problem

54



CHAPTER 3. DEVELOPMENT OF AN OPTIMIZATION ALGORITHM BASED
ON THE GENETIC ALGORITHM

Problem formulation

Binary interpretation

Optimization criteria

Cost function

Genetic algorithm

Figure 3.1: Optimal placement problem adaptation for GA

this information should include the number of polyominoes for placement,

shape and orientation of each polyomino, area of the structure and all the

criteria that must be met under restrictions. The next step is to choose a

suitable coding scheme.

After choosing a coding scheme, optimization criteria are considered.

They are used during search by the cost function. In the formulation of

the objective function all the criteria are converted into maximizations of

the functions of some system variables. Then their combination forms the

objective function, which is used in the search. For this purpose it is pro-

posed to merge all of the criteria to form a single scalar objective function.

The idea is to get a set of weighting coefficients for all system variables.

Once the objective function is formulated, the object-oriented GA is ready.

Various genetic operators and parameters are carefully calibrated to meet

the applicable limitations and problems.
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Next will be given a description of a polyominoes placement algorithm

for rectangular areas, developed by Gwee and Lim [38], which is the basis

for the algorithm developed in this work. Chromosome decoding, cost

function choosing and calibration of GA parameters will be addressed. At

the end of this section the results of implementation of the algorithm in

the program code with examples of structures and their characteristics will

be provided. Main results from this chapter are published by the author

in journals and conference proceedings [19, 22, 20, 25, 24, 15].

3.1.1 Circular placement principle

In the GA choice of a binary interpretation depends on the characteristics

of the optimization problem. Consider the case of placing m polyomino on

two-dimensional chessboard. We can encode the position of a polyomino

by rearrangements in chromosome, where each gene is a unique number to

identify a particular polyomino. Position of a gene in a chromosome dic-

tates a polyomino position on the chessboard. Let ~x denote a chromosome

representing positions of m polyominoes. Structure of the string ~x can be

written as a concatenation of the following:

~x = (µ1 µ2 . . . µm) , (3.1)

where µi represents i-th gene of the chromosome ~x, 1 6 µi 6 m.

Two requirements should be met to decode a chromosome with arranged

genes:

• polyominoes should not overlap;

• all polyominoes should be placed on the board.

These restrictions mean that in the search for the optimal placement,

each polyomino is located on a chessboard without overlapping other poly-
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ominoes. Optimal solution is achieved when all polyominoes successfully

placed without overlapping.

As a general example of a circular placement, figure 3.2 shows how to

organize polyominoes designated as µ1, µ2, . . . , µm. As shown in the

figure, µ1 with its orientation is placed as close as possible to the upper

left corner. After that µ2, µ3 and µ4 with their orientations are placed in

the lower left, lower right and upper right corners respectively. Similarly,

the others are pushed towards the corresponding polyomino boundaries

according to the arrows. Each polyomino during placement should not

overlap existing polyominoes. Figure 3.3 shows a tree diagram that cor-

responds to the implied sequence of placing polyominoes in quadrangular

region [11]. The number of branches in the diagram corresponds to the

number of corners. Circular placement works not only with quadrangular

area, it may be efficient also when the object is placed on a plane defined

by the polygon.

µ1

µ5

µ2 µ6

µ4µ8

µ3

µ7

Figure 3.2: Circular placement of the Gwee—Lim algorithm

Extraction technique of polyomino positions on the chessboard from the
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µm−3 µm−2 µm−1 µm

·
·
·

µ5 µ6 µ7 µ8

µ1 µ2 µ3 µ4

Figure 3.3: Tree diagram of the Gwee—Lim algorithm

chromosome is called circular placement. The idea is to place polyominoes

with a predetermined orientations from the corners towards the centre

in a counter-clockwise direction. Given the rotation and flipping, there

are eight different orientations for polyominoes. It is believed that the

orientation of each polyomino contributes the largest number of common

sides. Number of common edges between the two polyominoes equals the

number of cells of the first polyomino, which lie next to the cells of the

second polyomino. Those edges of polyominoes that are in contact with

the borders are considered as common edges too. Border edges can be

easily understood if we consider border as an imaginary frame around the

area.

Circular placement has some advantages over other methods of placing

polyominoes, such as top to down or left to right. For them, the configu-

ration is being built starting from a certain point. Changing positions of

previously established polyomino entails significant changes in the whole

structure. This problem is less likely for a circular placement where poly-
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ominoes are positioned from four corners. Circular placement first puts

polyominoes, suitable for placement in corners. During the search, groups

of polyominoes are made up from corners. For the direction of arrangement

from the corners to the centre, the method is called centripetal circular

placement.

3.1.2 Fitness function

Measure of fitness of the chromosome is determined by the fitness function.

It is a measure of optimality of a possible solution represented in a chro-

mosome. Generally speaking, the more fit chromosome suggests a better

configuration, in which polyominoes are located closely to each other. Al-

though the study of the best region in the search space is performed using

a selection mechanism, the effectiveness of search is heavily dependent on

the formulation of the objective function for evaluation of the quality of

chromosomes. It provides the necessary control over the direction of the

search towards the best of the region during GA search.

The objective function can be used to interpret complex tasks when

there is more than one optimization criterion. In order to obtain optimal

solutions that satisfy all the criteria it is necessary to consider all of them

in the formation of the target function. For the problem of locating m

polyominoes, three system variables are used to represent the problem :

• α — number of polyominoes successfully placed in the structure with-

out overlapping;

• β — number of border edges;

• ω — number of common edges among all polyominoes.

These variables are used in the formulation of the objective function.

Value α is the number of non-overlapping polyominoes that have been
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successfully placed in the structure. The maximum value of α is m, i.e.

the total number of polyominoes for arrangement. Likewise, for any given

configuration, β — number of edges of polyominoes that are in contact

with the border of the structure. This allows us to determine the suitability

of polyominoes for insertion into a corner. To get the ω, the number of

common edges of polyominoes in the entire configuration is added to β.

A common side is one that is between two elements of the neighbouring

polyominoes. Together, the three system variables allow us to estimate the

overall quality of the filling, defining suitable polyominoes for border area,

the compatibility between the polyominoes and proximity to the goal of

placing all polyominoes.

As an illustration of how these variables are calculated, consider fig-

ure 3.4, which shows part of the configuration with three polyominoes:

C-octomino, L-tetromino and L-octomino. C-octomino has 7 border edges

indicated by the numbers 1, 2, 3, 11, 12, 13 and 14 in the upper left corner

and 14 common sides, numbered 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 and

14. Note that the border edges are considered as common sides too.

1

2

3
4

5

6

7

8
9

10

14 13 12 11

Figure 3.4: Clarification of border edges and common edges [38]

Simple way to formulate the objective function is to combine all relevant

system variables into a scalar function. However, the difference in the

values of the variables can seriously distort the distribution of chromosomes
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in the search space, if they are combined without scaling. To avoid such

inadvertent systematic errors, all the variables are scaled to range from

0 to 1. This is achieved by normalization of the variables by αmax, βmax

and ωmax — maximum values of α, β and ω accordingly. Let us define

normalized variables as ᾱ, β̄ and ω̄ in the following way:

ᾱ (~x) =
α (~x)

αmax
,

β̄ (~x) =
β (~x)

βmax
, (3.2)

ω̄ (~x) =
ω (~x)

ωmax
,

where ~x corresponds to the given configuration of a set of polyominoes.

Thus, the objective function is formulated in relation to the three rele-

vant criteria of polyomino placement. Objective function can be described

as the maximization of some linear combination of these criteria:

↑ C (~x) =
[
ᾱ (~x) , β̄ (~x) , ω̄ (~x)

]
(3.3)

For all of these criteria to be considered equal, each criterion is assigned

a weighting factor. Thus, the optimization can be performed based on

a common target function. It is calculated as a linear combination of

criteria. Importance of each criterion is adjusted in the expression by its

weight. The general expression for the objective function for the problem

of polyomino placement will be written as:

C (~x) = ψαᾱ (~x) + ψββ̄ (~x) + ψωω̄ (~x) , (3.4)

where ψα, ψβ and ψω are the weighting coefficients. It should be noted that

relevant and not absolute values of ψα, ψβ and ψω will affect the search.

Still, without any knowledge of how these criteria are interconnected, it

is difficult to choose appropriate set of weighting coefficients in order to

formulate well the cost function.
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Gwee and Lim in their work run a series of experiments and obtain

optimal values for weighting coefficients [38]:

ψα = 0.22,

ψβ = 0.45, (3.5)

ψω = 0.33.

3.1.3 Calibration of GA parameters

GA has stochastic nature and its efficiency depends on values of several

special parameters. For each particular task there is an optimal set of those

parameters that provides the best convergence. That includes probability

of crossover pc, probability of mutation pm and probability of mutation of

a bit pbm. In this paragraph we will describe the process of calibration of

these parameters in order to achieve the maximal efficiency of the algorithm

[34].

In [90] Weile and Michielssen say that, because of the incomplete na-

ture of genetic algorithm theory, much knowledge about successful imple-

mentation of GA comes from experience and experiment. Thanks to this

experience, they achieve the best ranges of values for each parameter of

the GA. In our implementation we only invert the ranges between pm and

pbm with respect to [90]:

0.6 < pc < 0.9,

0.1 < pm < 0.3,

0.001 < pbm < 0.1.

(3.6)

We should try all possible combinations of these three parameters and

then choose the combination which gives the best value of fitness func-

tion. Trying all possible combinations is too much expensive in terms of

time. The larger the size of the array, more time is required by the tiling
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Figure 3.5: Calibration space

algorithm. Hence, we divide each interval in steps where we evaluate the

fitness function:
pc ∈ {0.6, 0.7, 0.8, 0.9} ,
pm ∈ {0.1, 0.2, 0.3} ,

pbm ∈ {0.001, 0.01, 0.1} .
(3.7)

Performing the tests for all those combinations, we achieve 36 test results

(table 3.1). Figure 3.5 shows the generic initial calibration tests space,

where the parameters are the axes of the coordinates system. As you can

see, red points represent the tests computed: for each test, the parameters

correspond to the coordinates of the point. Numbers in purple define the

cubes index.

GAs are stochastic algorithms which generate and use random vari-

ables. We are dealing with a pseudo random number generator (PRNG)
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Figure 3.6: The first step of GLA calibration

which should be initialized to a starting state using a particular value

called seed. If PRNG is initialized always with the same seed value, it

will produce always the same sequence of random values. For this rea-

son, we compute tests with different values of seed for each point of the

initial calibration space. We use Ns = 10 different values of s: s ∈
{10, 20, . . . , 100}. In total we get Ns solutions for each point i in the

space: Φs
i ∈

{
Φ10
i , Φ20

i , . . . , Φ100
i

}
. Then, for each point of the initial

calibration space we compute the average fitness value (3.8) and standard

deviation (3.9):

Φavg
i =

Ns∑
k=1

Φsk
i

S
, (3.8)

σi =

√√√√√ Ns∑
k=1

(Φsk
i − Φavg

i )
2

S
. (3.9)
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Table 3.1: Average fitness function values at the first step of GLA calibration

i Φi σi pc pm pbm

1 0.8580 0.0125 0.6 0.1 0.001

2 0.8660 0.0092 0.6 0.1 0.01

3 0.8610 0.0070 0.6 0.1 0.1

4 0.8600 0.0100 0.6 0.2 0.001

5 0.8670 0.0110 0.6 0.2 0.01

6 0.8630 0.0064 0.6 0.2 0.1

7 0.8680 0.0075 0.6 0.3 0.001

8 0.8630 0.0078 0.6 0.3 0.01

9 0.8580 0.0040 0.6 0.3 0.1

10 0.8510 0.0070 0.7 0.1 0.001

11 0.8640 0.0080 0.7 0.1 0.01

12 0.8650 0.0103 0.7 0.1 0.1

13 0.8560 0.0092 0.7 0.2 0.001

14 0.8620 0.0060 0.7 0.2 0.01

15 0.8630 0.0046 0.7 0.2 0.1

16 0.8600 0.0100 0.7 0.3 0.001

17 0.8670 0.0064 0.7 0.3 0.01

18 0.8640 0.0080 0.7 0.3 0.1

i Φi σi pc pm pbm

19 0.8550 0.0103 0.8 0.1 0.001

20 0.8610 0.0054 0.8 0.1 0.01

21 0.8620 0.0098 0.8 0.1 0.1

22 0.8610 0.0104 0.8 0.2 0.001

23 0.8670 0.0110 0.8 0.2 0.01

24 0.8650 0.0128 0.8 0.2 0.1

25 0.8630 0.0078 0.8 0.3 0.001

26 0.8620 0.0087 0.8 0.3 0.01

27 0.8620 0.0060 0.8 0.3 0.1

28 0.8590 0.0083 0.9 0.1 0.001

29 0.8620 0.0060 0.9 0.1 0.01

30 0.8630 0.0078 0.9 0.1 0.1

31 0.8630 0.0078 0.9 0.2 0.001

32 0.8660 0.0092 0.9 0.2 0.01

33 0.8670 0.0046 0.9 0.2 0.1

34 0.8690 0.0114 0.9 0.3 0.001

35 0.8710 0.0083 0.9 0.3 0.01

36 0.8630 0.0078 0.9 0.3 0.1

For more accurate calibration we use a zooming approach. Initial cal-

ibration space is divided into 12 cubes. The average value of the fitness

function Φavg
cj is calculated among 8 vertices belonging to the same cube j,

where j = 1, . . . , 12. The a cube jM is selected with the highest average

value Φavg
cjM

> Φavg
cj ∀j and considered as a calibration space for the second

step.

Let the chosen cube be defined by intervals pc ∈ [ac; bc], pm ∈ [am; bm],

pbm ∈ [abm; bbm]. Parameter ranges for the second step will be expressed as

follows:
pc ∈

{
ac;

ac+bc
2 ; bc

}
,

pm ∈
{
am; am+bm

2 ; bm
}
,

pbm ∈
{
abm; abm+bbm

2 ; bbm
}
.

(3.10)
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Table 3.2: Average fitness function values of cubes at the first step of GLA calibration

j Φavg
cj ac ÷ bc am ÷ bm abm ÷ bbm

1 0.8605 0.6 ÷ 0.7 0.1 ÷ 0.2 0.001 ÷ 0.01

2 0.8596 0.7 ÷ 0.8 0.1 ÷ 0.2 0.001 ÷ 0.01

3 0.8618 0.8 ÷ 0.9 0.1 ÷ 0.2 0.001 ÷ 0.01

4 0.8629 0.6 ÷ 0.7 0.2 ÷ 0.3 0.001 ÷ 0.01

5 0.8623 0.7 ÷ 0.8 0.2 ÷ 0.3 0.001 ÷ 0.01

6 0.8653 0.8 ÷ 0.9 0.2 ÷ 0.3 0.001 ÷ 0.01

7 0.8639 0.6 ÷ 0.7 0.1 ÷ 0.2 0.01 ÷ 0.1

8 0.8636 0.7 ÷ 0.8 0.1 ÷ 0.2 0.01 ÷ 0.1

9 0.8641 0.8 ÷ 0.9 0.1 ÷ 0.2 0.01 ÷ 0.1

10 0.8634 0.6 ÷ 0.7 0.2 ÷ 0.3 0.01 ÷ 0.1

11 0.8640 0.7 ÷ 0.8 0.2 ÷ 0.3 0.01 ÷ 0.1

12 0.8654 0.8 ÷ 0.9 0.2 ÷ 0.3 0.01 ÷ 0.1

Now there are 3 × 3 × 3 = 27 points. As before, the fitness function is

calculated at every point with 10 different seeds. The average values are

computed and the one with the highest average is chosen. Its coordinates

will be the optimal parameters of GA.

All the experiments use the following parameters:

• number of elements along axis x: M = 64;

• number of elements along axis y: N = 64;

• type of polyomino: L-shaped octomino;

• number of individuals: P = 10;

• number of iterations: K = 100.

Figure 3.6 shows the values of the fitness function at each point of the

initial calibration space. Table 3.2 provides average values of the fitness

function for each of the 12 cubes.
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Figure 3.7: Second step of the GLA calibration

The average fitness values of each cube are slightly different from each

other. Anyway, we can see that cube number 12 has the best average

fitness function value: Φavg
c12 = 0.8654. We compute more detailed tests

for the chosen cube number 12, following the rules described above. For

each point of the new calibration space, we compute the fitness value with

different seed values, the average fitness value and the standard deviation

value (table 3.3). Figure 3.7 shows average values for all points of the

second calibration space.

Point number 25 has the highest average value of the fitness function

Φavg
25 = 0.871. It corresponds to the set of parameters pc = 0.9, pm = 0.3,

pbm = 0.01. Those are the calibrated GA parameters for the Gwee—

Lim algorithm. Therefore, the optimal GA parameters such as crossover

probability, mutation probability and bit mutation probability have been
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Table 3.3: Average values of the fitness function at the second step of calibration of GLA

i Φi σi pc pm pbm

1 0.867 0.0110 0.80 0.20 0.01

2 0.866 0.0102 0.80 0.20 0.05

3 0.865 0.0128 0.80 0.20 0.10

4 0.865 0.0067 0.80 0.25 0.01

5 0.869 0.0070 0.80 0.25 0.05

6 0.865 0.0067 0.80 0.25 0.10

7 0.862 0.0087 0.80 0.30 0.01

8 0.865 0.0050 0.80 0.30 0.05

9 0.862 0.0060 0.80 0.30 0.10

10 0.867 0.0064 0.85 0.20 0.01

11 0.863 0.0046 0.85 0.20 0.05

12 0.866 0.0080 0.85 0.20 0.10

13 0.868 0.0087 0.85 0.25 0.01

14 0.866 0.0066 0.85 0.25 0.05

i Φi σi pc pm pbm

15 0.869 0.0083 0.85 0.25 0.10

16 0.863 0.0090 0.85 0.30 0.01

17 0.865 0.0067 0.85 0.30 0.05

18 0.867 0.0078 0.85 0.30 0.10

19 0.866 0.0092 0.90 0.20 0.01

20 0.864 0.0128 0.90 0.20 0.05

21 0.867 0.0046 0.90 0.20 0.10

22 0.868 0.0087 0.90 0.25 0.01

23 0.865 0.0067 0.90 0.25 0.05

24 0.868 0.0075 0.90 0.25 0.10

25 0.871 0.0083 0.90 0.30 0.01

26 0.862 0.0060 0.90 0.30 0.05

27 0.863 0.0078 0.90 0.30 0.10

obtained for the Gwee—Lim algorithm.

3.1.4 Examples of structures by the Gwee—Lim algorithm

In this section we provide four experiments as examples of work of the

Gwee—Lim algorithm. The experiments are done with different structure

sizes and various polyomino shapes. Following parameters were used:

• number of iterations: K = 50;

• population size: P = 10;

• seed: s = 37.

We used the calibrated values of pc, pm and pbm. Figures 3.8 and 3.9

show the graphs of fitness function and its components in the first and

second examples.
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Figure 3.8: Fitness function in the first example
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Figure 3.9: Fitness function in the second example
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Example 1: Structure 16 × 16, L-tromino

Input parameters:

• structure size: M = N = 16;

• polyomino type: L-tromino.

Figure 3.10 shows the structure obtained by GLA with those parameters.

Numerical results are provided in table 3.4.

Figure 3.10: Structure of the array in the first example

Table 3.4: Output data of the first example

Parameter Value

Number of polyominoes α 80

Number of boundary edges β 59

Number of common edges ω 263

Number of holes H 16

Fullness of the structure A, % 93.75

Algorithm shows fair fullness of the structure.
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Example 2: Structure 16 × 16, L-octomino

Input parameters:

• structure size: M = N = 16;

• polyomino type: L-octomino.

Figure 3.11 shows the structure obtained by GLA with those parameters.

Numerical results are provided in table 3.5.

Figure 3.11: Structure of the array in the second example

Table 3.5: Output data of the second example

Parameter Value

Number of polyominoes α 27

Number of boundary edges β 61

Number of common edges ω 113

Number of holes H 40

Fullness of the structure A, % 84.38

Larger size of polyominoes led to decrease in the fullness of the structure.
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Example 3: Structure 32 × 32, L-tromino

Input parameters:

• structure size: M = N = 32;

• polyomino type: L-tromino.

Figure 3.12 shows the structure obtained by GLA with those parameters.

Numerical results are provided in table 3.6.

Figure 3.12: Structure of the array in the third example

Table 3.6: Output data of the third example

Parameter Value

Number of polyominoes α 322

Number of boundary edges β 113

Number of common edges ω 1130

Number of holes H 58

Fullness of the structure A, % 94.34

In this example the fullness by L-tromino got higher because their rel-

ative dimensions became smaller.
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Example 4: Structure 32 × 32, L-octomino

Input parameters:

• structure size: M = N = 32;

• polyomino type: L-octomino.

Figure 3.13 shows the structure obtained by GLA with those parameters.

Numerical results are provided in table 3.7.

Figure 3.13: Structure of the array in the fourth example

Table 3.7: Output data of the fourth example

Parameter Value

Number of polyominoes α 111

Number of boundary edges β 110

Number of common edges ω 560

Number of holes H 136

Fullness of the structure A, % 86.72

Similarly, the fullness of the structure has increased but still it is lower

than 90%.
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Thus, the questions were described that arise with application of the

genetic algorithm and sequence of solving provided. The Gwee—Lim al-

gorithm for tiling rectangular structures with polyominoes was described

in details including circular placement principle and fitness function. Pa-

rameters have been calibrated and example results shown. The analysis of

the examples revealed that this algorithm is not able to fill structures with

polyominoes well and that it is necessary to develop another algorithm to

solve this problem.

3.2 Development of the “Snowball” algorithm for op-

timization of structures of polyominoes

From the examples by the Gwee—Lim algorithm it can be seen that the

fullness of structures composed of octominoes does not exceed 90%. In

other words, more than 10% of the structures remains unused. With re-

spect to the antenna arrays, this means a reduction of electrical dimensions,

thus reducing the directivity. Using octominoes is also important, since

grouping of elements in the subarrays of eight cells reduces the number of

delay lines, respectively, eight times.

If we analyse the structure in figure 3.11, we can see that octominoes are

relatively large polyominoes. In a limited space they begin to interfere with

each other. With centripetal circular placement it is especially evident in

the central region of the structures, where colonies of polyominoes growing

from different angles meet.

In this regard, an attempt was made to develop another algorithm ca-

pable to overcome the above drawbacks.
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3.2.1 Mathematical formulation

In this work we consider planar arrays which dimensions are defined as

M × N elements on the x-y plane and inter-element spacing dx and dy

along the x and y axis. The aperture is being tiled with subarrays of q

elements, the maximum number of subarrays that can be used to tile the

whole aperture is Q = M ×N/q. A set ~S of Q or less polyominoes with

defined positions and orientations represent a particular structure of the

array or, in other words, one of the possible solutions. Optimal solution
~Sopt in our case is the one that provides good filling of the aperture of

the array together with low sidelobe level. The genetic algorithm works

with chromosomes during search of the optimal solution, the final result is

represented by a chromosome as well. A chromosome ~x is a vector of binary

numbers. Evaluation of a fitness of a solution is performed by computation

of the value of a fitness function C.

The algorithm uses such a term as a fitness effect ∆C. The fitness of a

solution is the value of the fitness function given that solution:

C = f(~x). (3.11)

Let us call the ~xn a solution containing only n first polyominoes. The

corresponding fitness value will be:

Cn = f(~xn). (3.12)

The fitness effect of m-th polyomino is defined as:

∆Cm = Cm − Cm−1. (3.13)

It can be shown that the sum of all the fitness effects is equal to the fitness

of a whole solution. Let us assume that there are α polyominoes in a whole

solution:

~x = ~xα, (3.14)
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C = f(~x) = f(~xα) = Cα, (3.15)
α∑
i=1

∆Ci = ∆C1+. . .+∆Cα = (C1−0)+...+(Cα−Cα−1) = Cα = C. (3.16)

In order to evaluate the fitness function, the solution represented by a

chromosome should first be decoded. In our case each solution is a partic-

ular structure of an array tiled with given shape of irregular polyomino. So

the task is to transform a binary vector into a tiled structure. The decod-

ing strategy and fitness function are two main components of our approach

called “Snowball” algorithm (SA).

3.2.2 Decoding strategy

The decoding strategy is similar to one proposed by Gwee and Lim [38].

The main novelty of their strategy is a technique called circular place-

ment. They assume that any tiling structure can be represented by a set

of orientations ~S = {µ1, µ2, . . . µQ} of polyominoes which then are being

placed using a predefined rule. Since we use a rectangular grid, there are

4 possible orientations of a polyomino. Also the polyomino can be flipped.

Therefore, an asymmetric polyomino can have Nµ = 8 orientations. A

symmetric polyomino will have 4 orientations repeated twice. We dedicate

Lg = log2Nµ = 3 bits to code Nµ orientations. The tiling strategy can

be described in three steps. Corresponding flowchart can be seen in fig-

ure 3.14, where P — size of population, imax — number of iterations. Let

us consider a chromosome of length L = Lg ×Q:

~x = 100 001 011 111 010 . . . . (3.17)

Step 1 — Extraction of genes

We assume, that the chromosome is a concatenation of orientations in a

binary notation. Parts of the chromosomes (genes) that correspond to
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Figure 3.14: Flowchart of the “Snowball” algorithm

each particular polyomino should be extracted. We split the chromosome

in blocks of Lg bits and convert them into orientations µi. As a result we

obtain a vector of orientations, one per polyomino µ = {4, 1, 3, 7, 2, . . .}.
As an example, 8 orientations of an L-shaped octomino are shown in fig-

ure 3.15.
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0 1 2 3

4 5 6 7

Figure 3.15: Orientations of L-shaped octomino with corresponding numbers

Step 2 — Placing the first polyomino

The main difference of SA is the order of polyomino placement in structure.

In order to provide good tiling, polyominoes are placed starting from center

towards borders. Such placement method got name centrifugal placement.

The first polyomino is put in the center of the area. The coordinates of the

barycentre of the first polyomino in case of M ×N array are defined as:

XC =

⌊
M

2

⌋
, (3.18)

YC =

⌊
N

2

⌋
. (3.19)

Step 3 — Placing other polyominoes

We place other polyominoes close to the first one and choose the position

depending on the fitness effect (3.13). Each polyomino is being checked

at all positions (to be correct, the barycentre of a polyomino is being put

at all the possible positions) in a defined order (figure 3.16). This order

is based on the rule that the priority in tiling is given to the central part
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of the array. If a position is suitable, the fitness effect is calculated. A

suitable position means that the polyomino does not cross the borders of

the array and does not overlap any existing polyominoes. The polyomino

is put at the position with the largest fitness effect.

... ... ... ... ... ... ... ... ...

... ... ... ... ... ... ... ... ...

... ... 9 10 11 12 13 ... ...

... ... 14 1 2 3 15 ... ...

... ... 16 4 5 17 ... ...

... ... 18 6 7 8 19 ... ...

... ... 20 21 22 23 24 ... ...

... ... ... ... ... ... ... ... ...

... ... ... ... ... ... ... ... ...

Array centre

MarginBorder

Figure 3.16: Search order of suitable positions

For better tiling of the periphery we introduce margins of B = 2 ele-

ments around the array (figure 3.16). Margins allow the algorithm to put

additional polyominoes into the structure, that will cover those areas which

can’t accommodate the whole polyomino. New size of the array becomes

M = (M+2B), N = (N+2B). After tiling all the elements placed outside

the border are eliminated. Eliminating or cutting the elements may not

suit all practical areas, but it does not affect badly the performance of the

antenna arrays. Our chromosome example (3.17) will result in a structure

shown in figure 3.17.
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Figure 3.17: Chromosome (3.17) decoding result

3.2.3 Fitness function

For the snowball algorithm we use a similar fitness function to one proposed

by Gwee and Lim (3.4). Since the polyominoes can cross the border there

is no need to consider the number of boundary edges. Two criteria are left:

• α — number of polyominoes successfully placed in the structure with-

out overlapping;

• ω — number of common edges between all polyominoes.

For solution ~x the fitness function is:

C (~x) = ψαᾱ (~x) + ψωω̄ (~x) , (3.20)

Values of weighting coefficients are chosen proportionally to ones pro-

posed by Gwee and Lim:

ψα = 0.4,

ψω = 0.6.
(3.21)
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3.2.4 Calibration of GA parameters

Likewise the Gwee—Lim algorithm, it is needed to perform a calibration

of parameters of the genetic algorithm for the snowball algorithm. That

includes probability of crossover pc, probability of mutation pm and prob-

ability of mutation of a bit pbm. In this paragraph we will describe the

process of calibration of these parameters in order to achieve the maximal

efficiency of the algorithm [34].

We consider same ranges recommended by Weile and Michielssen [90],

as for GLA: 0.6 < pc < 0.9, 0.1 < pm < 0.3, 0.001 < pbm < 0.1, and

use the same calibration space (figure 3.5). The calibration process runs

in two steps at different scales. At first step, in order to walk through all

the combinations of parameters, the ranges were discretized with bigger

intervals:
pc ∈ {0.6, 0.7, 0.8, 0.9} ,
pm ∈ {0.1, 0.2, 0.3} ,

pbm ∈ {0.001, 0.01, 0.1} .
(3.22)

Performing the tests for all those combinations, we achieve 36 test re-

sults (table 3.8). We are dealing with a pseudo random number generator

(PRNG) which should be initialized to a starting state using a particu-

lar value called seed s. If PRNG is initialized always with the same seed

value, it will produce always the same sequence of random values. For

this reason, we compute tests with different values of seed for each point

of the initial calibration space. We use Ns = 10 different values of s:

s ∈ {10, 20, . . . , 100}. In total we get Ns solutions for each point i in

the space: Φs
i ∈

{
Φ10
i , Φ20

i , . . . , Φ100
i

}
. Then, for each point of the initial

calibration space we compute the average fitness value (3.8) and standard

deviation (3.9):

For more accurate calibration we use a zooming approach. Initial cal-

ibration space is divided into 12 cubes. The average value of the fitness
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Figure 3.18: The first step of SA calibration

function Φavg
cj is calculated among 8 vertices belonging to the same cube j,

where j = 1, . . . , 12. The a cube jM is selected with the highest average

value Φavg
cjM

> Φavg
cj ∀j and considered as a calibration space for the second

step.

Let the chosen cube be defined by intervals pc ∈ [ac; bc], pm ∈ [am; bm],

pbm ∈ [abm; bbm]. Parameter ranges for the second step will be expressed as

follows:

pc ∈
{
ac;

ac+bc
2 ; bc

}
,

pm ∈
{
am; am+bm

2 ; bm
}
,

pbm ∈
{
abm; abm+bbm

2 ; bbm
}
.

(3.23)

Now there are 3 × 3 × 3 = 27 points. As before, the fitness function is

calculated at every point with 10 different seeds. The average values are

computed and the one with the highest average is chosen. Its coordinates

will be the optimal parameters of GA.
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Table 3.8: Average fitness function values at the first step of SA calibration

i Φi σi pc pm pbm

1 0.8920 0.0040 0.6 0.1 0.001

2 0.8900 0.0000 0.6 0.1 0.01

3 0.8910 0.0030 0.6 0.1 0.1

4 0.8920 0.0040 0.6 0.2 0.001

5 0.8920 0.0040 0.6 0.2 0.01

6 0.8920 0.0040 0.6 0.2 0.1

7 0.8940 0.0049 0.6 0.3 0.001

8 0.8920 0.0040 0.6 0.3 0.01

9 0.8910 0.0030 0.6 0.3 0.1

10 0.8920 0.0040 0.7 0.1 0.001

11 0.8930 0.0046 0.7 0.1 0.01

12 0.8910 0.0030 0.7 0.1 0.1

13 0.8930 0.0046 0.7 0.2 0.001

14 0.8940 0.0049 0.7 0.2 0.01

15 0.8910 0.0030 0.7 0.2 0.1

16 0.8910 0.0030 0.7 0.3 0.001

17 0.8910 0.0030 0.7 0.3 0.01

18 0.8930 0.0046 0.7 0.3 0.1

i Φi σi pc pm pbm

19 0.8900 0.0045 0.8 0.1 0.001

20 0.8930 0.0046 0.8 0.1 0.01

21 0.8900 0.0000 0.8 0.1 0.1

22 0.8900 0.0000 0.8 0.2 0.001

23 0.8920 0.0040 0.8 0.2 0.01

24 0.8910 0.0030 0.8 0.2 0.1

25 0.8910 0.0070 0.8 0.3 0.001

26 0.8920 0.0040 0.8 0.3 0.01

27 0.8910 0.0030 0.8 0.3 0.1

28 0.8920 0.0040 0.9 0.1 0.001

29 0.8920 0.0040 0.9 0.1 0.01

30 0.8900 0.0000 0.9 0.1 0.1

31 0.8920 0.0060 0.9 0.2 0.001

32 0.8930 0.0046 0.9 0.2 0.01

33 0.8920 0.0040 0.9 0.2 0.1

34 0.8930 0.0064 0.9 0.3 0.001

35 0.8920 0.0040 0.9 0.3 0.01

36 0.8910 0.0030 0.9 0.3 0.1

All the experiments use the following parameters:

• number of elements along axis x: M = 64;

• number of elements along axis y: N = 64;

• type of polyomino: L-shaped octomino;

• number of individuals: P = 10;

• number of iterations: K = 100.

Figure 3.18 shows the values of the fitness function at each point of the

initial calibration space. Table 3.9 provides average values of the fitness

function for each of the 12 cubes.
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Table 3.9: Average fitness function values of cubes at the first step of SA calibration

j Φavg
cj ac ÷ bc am ÷ bm abm ÷ bbm

1 0.8922 0.6 ÷ 0.7 0.1 ÷ 0.2 0.1 ÷ 0.01

2 0.8921 0.7 ÷ 0.8 0.1 ÷ 0.2 0.1 ÷ 0.01

3 0.8917 0.8 ÷ 0.9 0.1 ÷ 0.2 0.1 ÷ 0.01

4 0.8923 0.6 ÷ 0.7 0.1 ÷ 0.3 0.1 ÷ 0.01

5 0.8917 0.7 ÷ 0.8 0.1 ÷ 0.3 0.1 ÷ 0.01

6 0.8919 0.8 ÷ 0.9 0.1 ÷ 0.3 0.1 ÷ 0.01

7 0.8917 0.6 ÷ 0.7 0.1 ÷ 0.2 0.1 ÷ 0.1

8 0.8919 0.7 ÷ 0.8 0.1 ÷ 0.2 0.1 ÷ 0.1

9 0.8916 0.8 ÷ 0.9 0.1 ÷ 0.2 0.1 ÷ 0.1

10 0.8920 0.6 ÷ 0.7 0.1 ÷ 0.3 0.1 ÷ 0.1

11 0.8919 0.7 ÷ 0.8 0.1 ÷ 0.3 0.1 ÷ 0.1

12 0.8918 0.8 ÷ 0.9 0.1 ÷ 0.3 0.1 ÷ 0.1

The average fitness values of each cube are slightly different from each

other. Anyway, we can see that cube number 4 has the best average fitness

function value: Φavg
c4 = 0.8923. We compute more detailed tests for the

chosen cube number 4, following the rules described above. For each point

of the new calibration space, we compute the fitness value with different

seed values, the average fitness value and the standard deviation value

(table 3.10). Figure 3.19 shows average values for all points of the second

calibration space.

Point number 11 has the highest average value of the fitness function

Φavg
11 = 0.8950. It corresponds to the set of parameters pc = 0.65, pm = 0.2,

pbm = 0.005. Those are the calibrated GA parameters for the snowball algo-

rithm. Therefore, the optimal GA parameters such as crossover probability,

mutation probability and bit mutation probability have been obtained for

the snowball algorithm. Those values will be used in further experiments.

The accuracy of values is enough for this kind of tasks, because the fitness

function will contain a criterion, nonlinearly connected with the structure.
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Figure 3.19: Second step of the SA calibration

Its existence will decrease current values of the weighting coefficients by

such criteria, as number of successfully placed polyominoes in a structure

and number of common edges.

3.2.5 Examples of structures by the “Snowball” algorithm

In this section we provide four experiments as examples of work of the

snowball algorithm. The experiments are done with different structure

sizes and various polyomino shapes. We used the calibrated values of pc,

pm and pbm. Figure 3.20 shows the graph of a fitness function and its

components in the fourth example.
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3.2. DEVELOPMENT OF THE “SNOWBALL” ALGORITHM FOR
OPTIMIZATION OF STRUCTURES OF POLYOMINOES

Table 3.10: Average values of the fitness function at the second step of calibration of SA

i Φi σi pc pm pbm

1 0.892 0.001 0.60 0.20 0.001

2 0.892 0.001 0.60 0.20 0.005

3 0.892 0.001 0.60 0.20 0.01

4 0.893 0.006 0.60 0.25 0.001

5 0.893 0.005 0.60 0.25 0.005

6 0.890 0.005 0.60 0.25 0.01

7 0.894 0.005 0.60 0.30 0.001

8 0.891 0.003 0.60 0.30 0.005

9 0.892 0.004 0.60 0.30 0.01

10 0.892 0.004 0.65 0.20 0.001

11 0.895 0.005 0.65 0.20 0.005

12 0.891 0.003 0.65 0.20 0.01

13 0.890 0.005 0.65 0.25 0.001

14 0.892 0.004 0.65 0.25 0.005

i Φi σi pc pm pbm

15 0.892 0.004 0.65 0.25 0.01

16 0.891 0.005 0.65 0.30 0.001

17 0.893 0.005 0.65 0.30 0.005

18 0.892 0.004 0.65 0.30 0.01

19 0.893 0.005 0.70 0.20 0.001

20 0.893 0.005 0.70 0.20 0.005

21 0.894 0.005 0.70 0.20 0.01

22 0.891 0.003 0.70 0.25 0.001

23 0.890 0.001 0.70 0.25 0.005

24 0.892 0.004 0.70 0.25 0.01

25 0.891 0.003 0.70 0.30 0.001

26 0.892 0.004 0.70 0.30 0.005

27 0.891 0.004 0.70 0.30 0.01
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Figure 3.20: Fitness function in the fourth example
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Example 1: Structure 16×16, L-tromino

Input parameters:

• structure size: M = N = 16;

• polyomino type: L-tromino.

Figure 3.21 shows the structure obtained by GLA with those parameters.

Numerical results are provided in table 3.11.

(a) (b)

Figure 3.21: Structure of the array in the first example without (a) and with margins (b)

Table 3.11: Output data of the first example

Parameter Value

Number of polyominoes α 96

Number of common edges ω 320

Number of holes H 0

Fullness of the structure A, % 100

In this example the algorithm was able to fill the structure completely.
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Example 2: Structure 16×16, L-octomino

Input parameters:

• structure size: M = N = 16;

• polyomino type: L-octomino.

Figure 3.22 shows the structure obtained by GLA with those parameters.

Numerical results are provided in table 3.12.

(a) (b)

Figure 3.22: Structure of the array in the second example without (a) and with margins

(b)

Table 3.12: Output data of the second example

Parameter Value

Number of polyominoes α 40

Number of common edges ω 202

Number of holes H 3

Fullness of the structure A, % 98.83

This example shows only three holes that is 13 times less then in a

similar example by GLA.
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Example 3: Structure 32×32, L-tromino

Input parameters:

• structure size: M = N = 32;

• polyomino type: L-tromino.

Figure 3.23 shows the structure obtained by GLA with those parameters.

Numerical results are provided in table 3.13.

(a) (b)

Figure 3.23: Structure of the array in the third example without (a) and with margins

(b)

Table 3.13: Output data of the third example

Parameter Value

Number of polyominoes α 363

Number of common edges ω 1323

Number of holes H 0

Fullness of the structure A, % 100

In this example too use of L-trominoes avoided any uncovered cells.

89



3.2. DEVELOPMENT OF THE “SNOWBALL” ALGORITHM FOR
OPTIMIZATION OF STRUCTURES OF POLYOMINOES

Example 4: Structure 32×32, L-octomino

Input parameters:

• structure size: M = N = 32;

• polyomino type: L-octomino.

Figure 3.24 shows the structure obtained by GLA with those parameters.

Numerical results are provided in table 3.14.

(a) (b)

Figure 3.24: Structure of the array in the fourth example without (a) and with margins

(b)

Table 3.14: Output data of the fourth example

Parameter Value

Number of polyominoes α 144

Number of common edges ω 835

Number of holes H 14

Fullness of the structure A, % 98.63

In the fourth there are 14 holes, that is less than 2% of the structure.
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Therefore, the “Snowball” algorithm was developed, that differs by the

way of polyomino placement that provides better structure filling in com-

parison with the Gwee—Lim algorithm. Parameters of the algorithm have

been calibrated. Examples have been obtained and shown. Analysis of the

examples shows that structure fullness grew up to 98–100%.

3.3 Comparison of the Gwee—Lim and “Snowball”

algorithms by the fullness of structures

In this paragraph we show the comparison of the functioning of the Gwee—

Lim and “Snowball” algorithms. The following parameters were used:

• structure size: M = N = {20, 25, 30, 35, 40, 45, 50, 55, 60};

• number of iterations: K = 50;

• population size: P = 10;

• elitism: on;

• seed: s = {10, 20, 30, 40, 50, 60, 70}.

Obtained fullness values for each structure size was averaged over seven

different seeds of PRNG. Each algorithm used its calibrated parameters.

Figure 3.25 shows the graph of the average fullness of structures by

L-trominoes. Numerical data is provided in table 3.15. It can be seen

that unlike GLA, SA demonstrates constantly high fullness of structures

regardless its size.

Figure 3.26 shows the graph of the average fullness of structures by L-

octominoes. Numerical data is provided in table 3.16. Due to big size of

L-octominoes the fullness of both algorithms decreased, but the difference

between GLA and SA only increased, which says about advantage of the

SA in structure tiling.
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Figure 3.25: Fullness of structures of different sizes by L-trominoes

As the final comparison of GLA and SA we list several test cases on tiling

a square structure of 32× 32 elements with polyominoes of different types,

shown in figure 1.9. Figure 3.27 presents the graph of average fullness

of structures with different polyominoes. Numerical data is provided in

table 3.17.

As it is seen from the graph, the Gwee—Lim algorithm tends to decrease

the fullness with the growth of the polyomino size. Again, SA shows better

results. there is an evident problem with tiling by C-shaped octominoes.

Figures 3.28 and 3.29 show examples of such structures with C-octominoes.

It is visible, that the “C” shape does not let polyominoes to lie close to

each other and leads to many holes. In the upper part of figure 3.29 there

is a tiled area of high density, but it is characterized by repeated patterns

of polyominoes’ relevant placement. In the fourth chapter it will be shown,

that such patterns have negative effect on the radiation pattern leading to

grating lobes. Therefore, using C-octominoes does not seem prospective
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Table 3.15: Fullness of structures of different sizes by L-trominoes

Structure size M = N Fullness by GLA, % Fullness by SA, %

20 93.4 99.9

25 94.2 99.9

30 94.9 99.9

35 95.2 99.8

40 95.6 99.9

45 96.0 99.9

50 96.6 99.9

55 96.8 99.9

60 96.9 99.9

Table 3.16: Fullness of structures of different sizes by L-octominoes

Structure size M = N Fullness by GLA, % Fullness by SA, %

20 86.2 98.6

25 86.1 98.1

30 87.1 98.0

35 87.2 98.2

40 87.7 98.0

45 87.7 97.9

50 88.2 97.8

55 88.4 97.9

60 88.7 97.9

and will not be considered further.

Table 3.17: Fullness of a 32× 32 structure with different polyominoes

Polyomino type Fullness by GLA, % Fullness by SA, %

L-tromino 95.0 99.9

L-tetromino 90.6 99.5

S-tetromino 89.8 99.4

T-tetromino 89.7 97.7

L-octomino 86.9 98.0

C-octomino 70.3 84.9

Pu-octomino 84.1 96.6
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Figure 3.26: Fullness of structures of different sizes by L-octominoes

Thus, the comparative analysis of functioning of two algorithms has

been performed from the point of view of fullness of the obtained structures.

The comparison has shown that the snowball algorithm tiles the structures

in average 10% better, than the Gwee—Lim algorithm.

3.4 Tiling with two shapes of polyominoes simulta-

neously

In order to increase the fullness of structures, tiled with large polyominoes,

in this work we propose to tile structures with two shapes of polyominoes

simultaneously. The first shape appears to be a large polyomino, mainly

octomino. The second shape is a smaller polyomino, for example, tromino

or tetromino. The use of two shapes in the process of filling the geometric

structure leads to geometric symbiosis of polyominoes, when small poly-

ominoes fill hard to reach areas and large ones at the same time get more
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Figure 3.27: Fullness of a 32× 32 structure with different polyominoes

Figure 3.28: A 32× 32 structure, tiled by GLA with C-octominoes

95



3.4. TILING WITH TWO SHAPES OF POLYOMINOES SIMULTANEOUSLY

Figure 3.29: A 32× 32 structure, tiled by SA with C-octominoes

options for placement.

The selection of one of two shapes is done by the genetic algorithm. For

this reason the length of genes was increased from 3 to 4 bits, where the

fourth bit defines the shape of polyomino (figure 3.30).

Gene 1 Gene 2

Orientation 1 Orientation 2Type 1 Type 2

0 1 1 0 1 0 1 1 · · ·

Figure 3.30: Extended genes in a chromosome

Further, examples of structures obtained by two algorithms with two

shapes of polyominoes are listed. At the end, the analysis of results is

done and the optimal pair is being chosen.
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3.4.1 Examples of structures by GLA with two shapes of poly-

ominoes

In this paragraph we present four experiments as examples of structures by

the Gwee—Lim algorithm with two shapes of polyominoes. Experiments

were held with different structure sizes and different pairs of polyominoes.

We used calibrated values of pc, pm and pbm. Figure 3.31 shows fitness

function and its components for the second example.
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Figure 3.31: Fitness function in the second example
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Example 1: Structure 16 × 16, L-tromino and L-octomino

Input parameters:

• structure size: M = N = 16;

• polyomino type: L-tromino and L-octomino.

Figure 3.32 shows the structure obtained by the GLA with these pa-

rameters. Numerical results are provided in table 3.18.

Figure 3.32: Array structure in the first example

Table 3.18: Output data of the first example

Parameter Value

Number of polyominoes α 50

Number of boundary edges β 61

Number of common edges ω 211

Number of holes H 11

Fullness of structure A, % 95.70

Structure fullness has grown in comparison with structure of only L-

octominoes.
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Example 2: Structure 16 × 16, L-tetromino and L-octomino

Input parameters:

• structure size: M = N = 16;

• polyomino type: L-tetromino and L-octomino.

Figure 3.33 shows the structure obtained by the GLA with these pa-

rameters. Numerical results are provided in table 3.19.

Figure 3.33: Array structure in the second example

Table 3.19: Output data of the second example

Parameter Value

Number of polyominoes α 43

Number of boundary edges β 61

Number of common edges ω 194

Number of holes H 16

Fullness of structure A, % 93.75

The fullness decreased, because tetrominoes are larger than trominoes.
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Example 3: Structure 32 × 32, L-tromino and L-octomino

Input parameters:

• structure size: M = N = 32;

• polyomino type: L-tromino and L-octomino.

Figure 3.34 shows the structure obtained by the GLA with these pa-

rameters. Numerical results are provided in table 3.20.

Figure 3.34: Array structure in the third example

Table 3.20: Output data of the third example

Parameter Value

Number of polyominoes α 183

Number of boundary edges β 124

Number of common edges ω 791

Number of holes H 70

Fullness of structure A, % 93.16

The decrease in fullness of larger structures indicates that GLA is not

efficient in working with two shapes.
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Example 4: Structure 32 × 32, L-tetromino and L-octomino

Input parameters:

• structure size: M = N = 32;

• polyomino type: L-tetromino and L-octomino.

Figure 3.35 shows the structure obtained by the GLA with these pa-

rameters. Numerical results are provided in table 3.21.

Figure 3.35: Array structure in the fourth example

Table 3.21: Output data of the fourth example

Parameter Value

Number of polyominoes α 167

Number of boundary edges β 116

Number of common edges ω 782

Number of holes H 88

Fullness of structure A, % 91.41

In case of tetrominoes we also see a decrease in fullness of a larger

structure.
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3.4.2 Examples of structures by SA with two shapes of poly-

ominoes

In this paragraph we present four experiments as examples of structures

by the snowball algorithm with two shapes of polyominoes. Experiments

were held with different structure sizes and different pairs of polyominoes.

The following parameters were used:

• number of iterations: K = 50;

• population size: P = 10;

We used calibrated values of pc, pm and pbm with seed s = 37. Fig-

ure 3.36 shows fitness function and its components for the fourth example.

It is seen that the fitness function possesses lower values. That is because

the maximal number of common edges in a structure is normalized by the

biggest such number, that is achievable by only the smaller polyomino.
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Figure 3.36: Fitness function in the first example
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Example 1: Structure 16 × 16, L-tromino and L-octomino

Input parameters:

• structure size: M = N = 16;

• polyomino type: L-tromino and L-octomino.

Figure 3.37 shows the structure obtained by the SA with these param-

eters. Numerical results are provided in table 3.22.

(a) (b)

Figure 3.37: Array structure in the first example without (a) and with (b) margins

Table 3.22: Output data of the first example

Parameter Value

Number of polyominoes α 68

Number of common edges ω 263

Number of holes H 0

Fullness of structure A, % 100

Using two shapes, SA was able to fill the structure completely.
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Example 2: Structure 16 × 16, L-tetromino and L-octomino

Input parameters:

• structure size: M = N = 16;

• polyomino type: L-tetromino and L-octomino.

Figure 3.38 shows the structure obtained by the SA with these param-

eters. Numerical results are provided in table 3.23.

(a) (b)

Figure 3.38: Array structure in the second example without (a) and with (b) margins

Table 3.23: Output data of the second example

Parameter Value

Number of polyominoes α 58

Number of common edges ω 241

Number of holes H 4

Fullness of structure A, % 98.44

In this example four holes appeared in the structure due to tetrominoes.
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Example 3: Structure 32 × 32, L-tromino and L-octomino

Input parameters:

• structure size: M = N = 32;

• polyomino type: L-tromino and L-octomino.

Figure 3.39 shows the structure obtained by the SA with these param-

eters. Numerical results are provided in table 3.24.

(a) (b)

Figure 3.39: Array structure in the third example without (a) and with (b) margins

Table 3.24: Output data of the third example

Parameter Value

Number of polyominoes α 216

Number of common edges ω 1003

Number of holes H 5

Fullness of structure A, % 99.51

This example shows that as the structure size grows, the probability of

holes increases.
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Example 4: Structure 32 × 32, L-tetromino and L-octomino

Input parameters:

• structure size: M = N = 32;

• polyomino type: L-tetromino and L-octomino.

Figure 3.40 shows the structure obtained by the SA with these param-

eters. Numerical results are provided in table 3.25.

(a) (b)

Figure 3.40: Array structure in the fourth example without (a) and with (b) margins

Table 3.25: Output data of the fourth example

Parameter Value

Number of polyominoes α 194

Number of common edges ω 986

Number of holes H 8

Fullness of structure A, % 99.22

In the fourth example with tetromino the number of holes increased.

Thus, we have described tiling of structures with two shapes of poly-

ominoes simultaneously and corresponding adjustments in the algorithms.
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Examples of structures by both algorithms were shown. Use of two shapes

increased fullness of structures for both algorithms.

3.5 Comparison of the Gwee—Lim and “Snowball”

algorithms by the fullness of structures with two

shapes of polyominoes

In this paragraph we show the comparison of the functioning of the Gwee—

Lim and “Snowball” algorithms with two shapes of polyominoes. The

following parameters were used:

• structure size: M = N = {20, 25, 30, 35, 40, 45, 50, 55, 60};

• number of iterations: K = 50;

• population size: P = 10;

• elitism: on;

• seed: s = {10, 20, 30, 40, 50, 60, 70}.

Obtained fullness values for each structure size was averaged over seven

different seeds of PRNG. Each algorithm used its calibrated parameters.

Figure 3.41 shows the graph of the average fullness of structures by L-

trominoes and L-octominoes. For comparison the graph also contains re-

sults obtained by tiling with one shape of polyomino (figures 3.25 and 3.26).

We can see, that structures tiled with L-trominoes and L-octominoes at

the same time take intermediate position at fullness between the structures,

tiled with each of those polyominoes separately. And SA demonstrates less

dispersion than GLA. Numerical data is provided in table 3.26.

Figure 3.42 shows the graph of the average fullness of structures by L-

octominoes and L-tetrominoes. Numerical data is provided in table 3.26.

Fullness of structures by SA is higher than those by GLA by 7–9%.
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3.5. COMPARISON OF THE GWEE—LIM AND “SNOWBALL” ALGORITHMS BY
THE FULLNESS OF STRUCTURES WITH TWO SHAPES OF POLYOMINOES

As the final analysis of polyomino pairs, we list several test cases on

tiling a square structure of 32×32 elements with different pairs of polyomi-

noes. Figure 3.43 presents the graph of average fullness of structures with

different pairs of polyominoes. Numerical data is provided in table 3.27.
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Figure 3.41: Fullness of structures of different sizes by L-trominoes and L-octominoes

The graph shows that both algorithms demonstrate the best tiling by

using L-tromino and L-octomino in pair. For this reason, further in the

work only this pair will be considered while synthesizing antenna arrays

with two shapes of subarrays.

Therefore, the comparative analysis of results by Gwee—Lim and snow-

ball algorithms was performed from the point of view of structure fullness

by tiling with two shapes of polyominoes simultaneously. The comparison

showed that the snowball algorithm fills structures by 6–10% better than

Gwee—Lim algorithm.
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Table 3.26: Fullness of structures of different sizes with different pairs of polyominoes

Structure size

M = N

L-tromino and L-octomino L-tetromino and L-octomino

Fullness by

GLA, %

Fullness by SA,

%

Fullness by

GLA, %

Fullness by SA,

%

20 93.5 99.6 90.2 99.3

25 92.6 99.1 90.6 99.1

30 93.4 99.2 90.1 98.8

35 93.4 99.3 89.9 98.7

40 92.9 99.2 90.6 99.0

45 93.6 99.3 90.9 99.0

50 93.6 99.2 90.8 98.8

55 93.6 99.3 91.5 99.0

60 93.8 99.3 91.5 98.9

Table 3.27: Fullness of a 32× 32 structure with different pairs of polyominoes

Polyomino type Fullness by GLA, % Fullness by SA, %

L-tromino and L-octomino 93.2 99.2

L-tromino and Pu-octomino 90.8 98.9

L-tetromino and L-octomino 90.5 98.8

L-tetromino and Pu-octomino 88.8 98.5

S-tetromino and L-octomino 87.6 98.5

S-tetromino and Pu-octomino 87.2 98.4

T-tetromino and L-octomino 87.7 97.8

T-tetromino and Pu-octomino 87.7 97.6

3.6 Chapter 3 conclusions

1. The questions were described that arise with application of the ge-

netic algorithm and sequence of solving provided. The Gwee—Lim

algorithm for tiling rectangular structures with polyominoes was de-

scribed in details including circular placement principle and fitness

function. Parameters have been calibrated and example results shown.

The analysis of the examples revealed that this algorithm is not able
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Figure 3.42: Fullness of structures of different sizes by L-tetrominoes and L-octominoes

to fill structures with polyominoes well and that it is necessary to

develop another algorithm to solve this problem.

2. The “Snowball” algorithm was developed, that differs by the way of

polyomino placement that provides better structure filling in compari-

son with the Gwee—Lim algorithm. Parameters of the algorithm have

been calibrated. Examples have been obtained and shown. Analysis

of the examples shows that structure fullness grew up to 98–100%.

3. The comparative analysis of functioning of two algorithms has been

performed from the point of view of fullness of the obtained struc-

tures. The comparison has shown that the snowball algorithm tiles

the structures in average 10% better, than the Gwee—Lim algorithm.

4. We have described tiling of structures with two shapes of polyomi-

noes simultaneously and corresponding adjustments in the algorithms.

Examples of structures by both algorithms were shown. Use of two
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Figure 3.43: Fullness of a 32× 32 structure with different pairs of polyominoes

shapes increased fullness of structures for both algorithms.

5. The comparative analysis of results by Gwee—Lim and snowball al-

gorithms was performed from the point of view of structure fullness

by tiling with two shapes of polyominoes simultaneously. The com-

parison showed that the snowball algorithm fills structures by 6–10%

better than Gwee—Lim algorithm.
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Chapter 4

Application of the optimization

algorithms to antenna array design

In this chapter we apply the developed methods and algorithms for the

design of phased arrays structures. First we show examples of radiation

patterns of structures obtained using the Gwee—Lim algorithm. Similar

experiments were carried out with the “Snowball” algorithm. Then, a

comparative analysis of the two algorithms in terms of the characteristics

of antenna arrays is presented. Main results of the chapter are published

by author in journals and conference proceedings [17, 7, 1].

All results of this chapter, namely the structures of arrays, their fullness,

patterns and sidelobe levels are obtained using the developed software.

Software implements the developed mathematical model, describing the

structure of phased arrays composed of subarrays in shape of polyominoes,

developed optimization method for polyomino placement in structure by

calculating the autocorrelation function, the snowball algorithm and the

Gwee—Lim algorithm. The software contains a procedural engine that

simulates the radiation patterns of PAA. Figure 4.1 shows the structure of

the developed software. Arrows denote data exchange between the blocks.

Software is written in C language and has a command line interface.
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4.1. APPLYING GWEE—LIM ALGORITHM TO PHASED ANTENNA ARRAY
OPTIMIZATION

Input parameters

Polyomino placement optimization method

Mathematical model of the antenna array

Output data

“Snowball”

algorithm

Gwee—Lim

algorithm

Radiation pattern

simulation

Sidelobe level

computation

Figure 4.1: Structure of the software

4.1 Applying Gwee—Lim algorithm to phased an-

tenna array optimization

In this paragraph we present examples of radiation patterns of those arrays,

which were obtained by the Gwee—Lim algorithm. In total there are four

examples with the following parameters:

• number of iterations: K = 50;

• population size: P = 10;
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ANTENNA ARRAY DESIGN

• elitism: on;

• seed: s = 37;

• SLL optimization: r = 1.3.

Calibrated values pc, pm and pbm were used. Figure 4.2 shows the graph

of the fitness function in the second example.
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Figure 4.2: Fitness function in the second example
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4.1. APPLYING GWEE—LIM ALGORITHM TO PHASED ANTENNA ARRAY
OPTIMIZATION

Example 1: Structure 16 × 16, L-tromino

Input parameters:

• structure size: M = N = 16;

• polyomino type: L-tromino;

Figure 4.3 shows the radiation pattern obtained by GLA with those

parameters. Numerical results are provided in table 4.1.
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Figure 4.3: Radiation pattern in the first example at r = 1.3

Table 4.1: Output data of the first example

Parameter Value

Number of polyominoes α 79

Fullness of the structure A, % 92.58

Sidelobe level γ at r = 1.300, dB −21.13

Sidelobe level γ at r = 1.818, dB −16.86
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Example 2: Structure 16 × 16, L-octomino

Input parameters:

• structure size: M = N = 16;

• polyomino type: L-octomino;

Figure 4.4 shows the radiation pattern obtained by GLA with those

parameters. Numerical results are provided in table 4.2.
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Figure 4.4: Radiation pattern in the second example at r = 1.3

Table 4.2: Output data of the second example

Parameter Value

Number of polyominoes α 26

Fullness of the structure A, % 81.25

Sidelobe level γ at r = 1.300, dB −18.16

Sidelobe level γ at r = 1.818, dB −10.10
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4.1. APPLYING GWEE—LIM ALGORITHM TO PHASED ANTENNA ARRAY
OPTIMIZATION

Example 3: Structure 32 × 32, L-tromino

Input parameters:

• structure size: M = N = 32;

• polyomino type: L-tromino;

Figure 4.5 shows the radiation pattern obtained by GLA with those

parameters. Numerical results are provided in table 4.3.
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Figure 4.5: Radiation pattern in the third example at r = 1.3

Table 4.3: Output data of the third example

Parameter Value

Number of polyominoes α 323

Fullness of the structure A, % 94.63

Sidelobe level γ at r = 1.300, dB −27.65

Sidelobe level γ at r = 1.818, dB −20.96
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Example 4: Structure 32 × 32, L-octomino

Input parameters:

• structure size: M = N = 32;

• polyomino type: L-octomino;

Figure 4.6 shows the radiation pattern obtained by GLA with those

parameters. Numerical results are provided in table 4.4.

-1

-0.5

0

0.5

1 -1

-0.5

0

0.5

1
-60
-50
-40
-30
-20
-10

0

R
ad

ia
ti

on
,

d
B

u
v

R
ad

ia
ti

on
,

d
B

-60

-50

-40

-30

-20

-10

0

Figure 4.6: Radiation pattern in the fourth example at r = 1.3

Table 4.4: Output data of the fourth example

Parameter Value

Number of polyominoes α 106

Fullness of the structure A, % 82.81

Sidelobe level γ at r = 1.300, dB −21.45

Sidelobe level γ at r = 1.818, dB −13.51
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4.2. APPLYING “SNOWBALL” ALGORITHM TO PHASED ANTENNA ARRAY
OPTIMIZATION

Therefore, examples of radiation patterns and parameters of antenna

arrays were listed, which were obtained by the Gwee—Lim algorithm. The

analysis shows that sidelobe level at band r = 1.818 is too high for struc-

tures tiled with L-octomino.

4.2 Applying “Snowball” algorithm to phased an-

tenna array optimization

In this paragraph we present examples of radiation patterns of those arrays,

which were obtained by the snowball algorithm. In total there are four

examples. The same parameters were used as in the previous paragraph.

Figure 4.7 shows the graph of fitness function and its components in the

second example.
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Figure 4.7: Fitness function in the second example
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Example 1: Structure 16 × 16, L-tromino

Input parameters:

• structure size: M = N = 16;

• polyomino type: L-tromino;

Figure 4.8 shows the radiation pattern obtained by SA with those pa-

rameters. Numerical results are provided in table 4.5.
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Figure 4.8: Radiation pattern in the first example at r = 1.3

Table 4.5: Output data of the first example

Parameter Value

Number of polyominoes α 92

Fullness of the structure A, % 98.83

Sidelobe level γ at r = 1.300, dB −25.08

Sidelobe level γ at r = 1.818, dB −17.85
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4.2. APPLYING “SNOWBALL” ALGORITHM TO PHASED ANTENNA ARRAY
OPTIMIZATION

Example 2: Structure 16 × 16, L-octomino

Input parameters:

• structure size: M = N = 16;

• polyomino type: L-octomino;

Figure 4.9 shows the radiation pattern obtained by SA with those pa-

rameters. Numerical results are provided in table 4.6.
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Figure 4.9: Radiation pattern in the second example at r = 1.3

Table 4.6: Output data of the second example

Parameter Value

Number of polyominoes α 41

Fullness of the structure A, % 98.83

Sidelobe level γ at r = 1.300, dB −21.05

Sidelobe level γ at r = 1.818, dB −13.16
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Example 3: Structure 32 × 32, L-tromino

Input parameters:

• structure size: M = N = 32;

• polyomino type: L-tromino;

Figure 4.10 shows the radiation pattern obtained by SA with those

parameters. Numerical results are provided in table 4.7.
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Figure 4.10: Radiation pattern in the third example at r = 1.3

Table 4.7: Output data of the third example

Parameter Value

Number of polyominoes α 360

Fullness of the structure A, % 99.71

Sidelobe level γ at r = 1.300, dB −29.18

Sidelobe level γ at r = 1.818, dB −22.36
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4.2. APPLYING “SNOWBALL” ALGORITHM TO PHASED ANTENNA ARRAY
OPTIMIZATION

Example 4: Structure 32 × 32, L-octomino

Input parameters:

• structure size: M = N = 32;

• polyomino type: L-octomino;

Figure 4.11 shows the radiation pattern obtained by SA with those

parameters. Numerical results are provided in table 4.8.
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Figure 4.11: Radiation pattern in the fourth example at r = 1.3

Table 4.8: Output data of the fourth example

Parameter Value

Number of polyominoes α 142

Fullness of the structure A, % 97.17

Sidelobe level γ at r = 1.300, dB −23.18

Sidelobe level γ at r = 1.818, dB −16.18
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Therefore, examples of radiation patterns and parameters of antenna

arrays were listed, which were obtained by the snowball algorithm. The

analysis shows that the snowball algorithm can synthesize structures with

better sidelobe level suppression in the radiation pattern.

4.3 Comparison of the Gwee—Lim and “Snowball”

algorithms by the sidelobe level

In this paragraph we perform a comparison of the Gwee—Lim and “Snow-

ball” algorithms from the point of view of radiation pattern forming. The

following parameters were used:

• structure size: M = N = {20, 25, 30, 35, 40, 45, 50, 55, 60};

• number of iterations: K = 50;

• population size: P = 10;

• elitism: on;

• seed: s = {10, 20, 30, 40, 50, 60, 70}.

Obtained value of the sidelobe level for each structure size was averaged

over seven different seeds of PRNG. Each algorithm used its calibrated

parameters.

Figure 4.12 shows the graph of average sidelobe level of structures tiled

with L-trominoes. SLL was optimized for r = 1.3. A graph of SLL for

the same structures but optimized for r = 1.818 is shown in figure 4.13.

Numerical data is provided in table 4.10. It is seen that SA demonstrates

better SLL for structures of all sizes.

Figure 4.14 shows the graph of average sidelobe level of structures tiled

with L-octominoes. SLL was optimized for r = 1.3. A graph of SLL for

125
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THE SIDELOBE LEVEL

the same structures but optimized for r = 1.818 is shown in figure 4.15.

Numerical data is provided in table 4.12. Here again SA outperforms GLA

and results for r = 1.818 got better.
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Figure 4.12: SLL of structures tiled with L-trominoes, ropt = 1.3

Table 4.9: SLL of structures tiled with L-trominoes, ropt = 1.3

Structure size
GLA SA

rsim = 1.3, dB rsim = 1.818,

dB

rsim = 1.3, dB rsim = 1.818,

dB

20 −23.8 −17.8 −25.9 −18.7

25 −25.2 −19.2 −27.2 −20.1

30 −26.3 −20.1 −28.0 −21.0

35 −27.5 −20.8 −29.1 −22.3

40 −28.6 −22.0 −30.2 −23.0

45 −29.7 −22.7 −30.7 −23.7

50 −30.4 −24.0 −31.6 −24.5

55 −31.0 −24.5 −32.2 −25.0

60 −32.1 −25.2 −33.0 −25.9
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Figure 4.13: SLL of structures tiled with L-trominoes, ropt = 1.818

Table 4.10: SLL of structures tiled with L-trominoes, ropt = 1.818

Structure size
GLA SA

rsim = 1.3, dB rsim = 1.818,

dB

rsim = 1.3, dB rsim = 1.818,

dB

20 −22.8 −17.3 −25.6 −18.9

25 −24.6 −19.4 −27.2 −20.4

30 −26.0 −20.2 −28.0 −21.1

35 −27.1 −21.6 −29.1 −22.3

40 −28.0 −22.5 −29.8 −22.9

45 −29.2 −23.3 −30.6 −23.7

50 −30.0 −24.0 −31.5 −24.7

55 −31.0 −24.9 −32.3 −25.3

60 −31.5 −25.3 −32.9 −25.9

This analysis is the main and final in the research work. It proves several

important points that have been stated in previous chapters:

1. The developed snowball algorithm is able to optimize complex struc-
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Figure 4.14: SLL of structures tiled with L-octominoes, ropt = 1.3

Table 4.11: SLL of structures tiled with L-octominoes, ropt = 1.3

Structure size
GLA SA

rsim = 1.3, dB rsim = 1.818,

dB

rsim = 1.3, dB rsim = 1.818,

dB

20 −19.3 −12.1 −21.9 −13.1

25 −19.6 −11.4 −22.2 −13.1

30 −20.6 −12.9 −22.9 −14.0

35 −21.7 −13.2 −24.5 −16.1

40 −23.0 −15.5 −24.5 −16.5

45 −23.5 −15.6 −25.4 −17.2

50 −24.1 −16.3 −25.9 −17.2

55 −24.8 −16.7 −26.6 −18.2

60 −25.3 −17.4 −27.0 −18.4

tures tiled with polyominoes. At the same time fullness of structures

increases as well as side lobes are suppressed better in the radiation

pattern.
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Figure 4.15: SLL of structures tiled with L-octominoes, ropt = 1.818

Table 4.12: SLL of structures tiled with L-octominoes, ropt = 1.818

Structure size
GLA SA

rsim = 1.3, dB rsim = 1.818,

dB

rsim = 1.3, dB rsim = 1.818,

dB

20 −18.1 −12.5 −21.3 −13.9

25 −18.8 −13.1 −21.6 −14.1

30 −20.2 −14.3 −22.9 −15.5

35 −20.8 −14.7 −24.0 −16.8

40 −22.7 −15.9 −24.1 −16.9

45 −23.7 −16.6 −24.9 −17.8

50 −23.8 −17.2 −25.4 −18.1

55 −24.4 −17.6 −26.3 −18.4

60 −24.8 −18.2 −26.5 −19.0

2. SA outperforms GLA by all values for all structure sizes.

3. Sidelobe level decreases with the growth of structure size.

4. At a wider band r = 1.818 SLL is higher than at band r = 1.3 for one
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and the same structure.

Finally, figure 4.16 shows the graph that compares averaged values of

sidelobe levels by Gwee—Lim algorithm, snowball algorithm and results

obtained by Robert Mailloux [59, 58] for L-octomino.
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Figure 4.16: SLL comparison for structures of different sizes of L-octominoes, obtained

by GLA, SA and R. Mailloux [59]

Therefore, there was done the final comparative analysis of the Gwee—

Lim algorithm and the “Snowball” algorithm. The analysis from the point

of view of radiation pattern forming and level of sidelobes has shown that

the developed algorithm is able to synthesize antenna arrays with charac-

teristics, outperforming existing analogues, including ones by the GLA
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CHAPTER 4. APPLICATION OF THE OPTIMIZATION ALGORITHMS TO
ANTENNA ARRAY DESIGN

4.4 Analysis of steering capabilities

In this paragraph we present examples of radiation patterns of arrays,

obtained by Snowball and steered at different angles. In total there are six

examples. The following settings were applied:

• aperture size: M = N = 32;

• polyomino type: L-octomino;

• number of iterations: K = 50;

• population size: P = 20;

• seed: s = 37.

Calibrated values of pc, pm and pbm were used. Figure 4.17 shows the graph

of fitness function and its components in the first example.
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Figure 4.17: Fitness function in the first example
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4.4. ANALYSIS OF STEERING CAPABILITIES

Example 1: steering at (0◦; 0◦)

Input parameters:

• steering: (0◦; 0◦);

• SLL optimization: r = 1.3.
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Figure 4.18: Radiation pattern in the first example at r = 1.3

Table 4.13: Output data of the first example

Parameter Value

Number of polyominoes α 140

Fullness of the structure A, % 98.93

Sidelobe level γ at r = 1.300, dB −47.22
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CHAPTER 4. APPLICATION OF THE OPTIMIZATION ALGORITHMS TO
ANTENNA ARRAY DESIGN

Example 2: steering at (15◦; 15◦)

Input parameters:

• steering: (15◦; 15◦);

• SLL optimization: r = 1.3.
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Figure 4.19: Radiation pattern in the second example at r = 1.3

Table 4.14: Output data of the second example

Parameter Value

Number of polyominoes α 140

Fullness of the structure A, % 97.95

Sidelobe level γ at r = 1.300, dB −25.20
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4.4. ANALYSIS OF STEERING CAPABILITIES

Example 3: steering at (30◦; 30◦)

Input parameters:

• steering: (30◦; 30◦);

• SLL optimization: r = 1.3.
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Figure 4.20: Radiation pattern in the third example at r = 1.3

Table 4.15: Output data of the third example

Parameter Value

Number of polyominoes α 141

Fullness of the structure A, % 97.27

Sidelobe level γ at r = 1.300, dB −28.00
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CHAPTER 4. APPLICATION OF THE OPTIMIZATION ALGORITHMS TO
ANTENNA ARRAY DESIGN

Example 4: steering at (45◦; 45◦)

Input parameters:

• steering: (45◦; 45◦);

• SLL optimization: r = 1.3.
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Figure 4.21: Radiation pattern in the fourth example at r = 1.3

Table 4.16: Output data of the fourth example

Parameter Value

Number of polyominoes α 142

Fullness of the structure A, % 98.44

Sidelobe level γ at r = 1.300, dB −25.05
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4.4. ANALYSIS OF STEERING CAPABILITIES

Example 5: steering at (60◦; 60◦)

Input parameters:

• steering: (60◦; 60◦);

• SLL optimization: r = 1.3.
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Figure 4.22: Radiation pattern in the fifth example at r = 1.3

Table 4.17: Output data of the fifth example

Parameter Value

Number of polyominoes α 139

Fullness of the structure A, % 96.88

Sidelobe level γ at r = 1.300, dB −23.08
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CHAPTER 4. APPLICATION OF THE OPTIMIZATION ALGORITHMS TO
ANTENNA ARRAY DESIGN

Example 6: steering at (75◦; 75◦)

Input parameters:

• steering: (75◦; 75◦);

• SLL optimization: r = 1.3.
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Figure 4.23: Radiation pattern in the sixth example at r = 1.3

Table 4.18: Output data of the sixth example

Parameter Value

Number of polyominoes α 143

Fullness of the structure A, % 97.36

Sidelobe level γ at r = 1.300, dB −20.59
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4.5. ANALYSIS OF BANDWIDTH CAPABILITIES

Next, figure 4.24 presents the graph of sidelobe levels for 32× 32 struc-

tures, averaged over seven different seeds s = 10, 20, . . . , 70. The graph

demonstrates a logarithmic rise of SLL.
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Figure 4.24: SLL at different steering angles

4.5 Analysis of bandwidth capabilities

In this paragraph we present examples of radiation patterns of 32 × 32

arrays, obtained by Snowball, optimized and simulated at different band-

widths. In total there are eight examples. The following settings were

applied:

• polyomino type: L-tromino;

• number of iterations: K = 50;

• population size: P = 20;

• seed: s = 37.
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CHAPTER 4. APPLICATION OF THE OPTIMIZATION ALGORITHMS TO
ANTENNA ARRAY DESIGN

Calibrated values of pc, pm and pbm were used.

Example 1: bandwidth 2:1

Input parameters:

• SLL optimization: r = 1.333.

Figure 4.25 shows the radiation pattern obtained by SA with those

parameters. Numerical results are provided in table 4.19.
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Figure 4.25: Radiation pattern in the first example at r = 1.333

Table 4.19: Output data of the first example

Parameter Value

Number of polyominoes α 364

Fullness of the structure A, % 99.90

Sidelobe level γ at r = 1.333, dB −28.34
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4.5. ANALYSIS OF BANDWIDTH CAPABILITIES

Example 2: bandwidth 3:1

Input parameters:

• SLL optimization: r = 1.500.

Figure 4.26 shows the radiation pattern obtained by SA with those

parameters. Numerical results are provided in table 4.20.
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Figure 4.26: Radiation pattern in the second example at r = 1.500

Table 4.20: Output data of the second example

Parameter Value

Number of polyominoes α 362

Fullness of the structure A, % 99.71

Sidelobe level γ at r = 1.500, dB −26.03

140



CHAPTER 4. APPLICATION OF THE OPTIMIZATION ALGORITHMS TO
ANTENNA ARRAY DESIGN

Example 3: bandwidth 4:1

Input parameters:

• SLL optimization: r = 1.600.

Figure 4.27 shows the radiation pattern obtained by SA with those

parameters. Numerical results are provided in table 4.21.
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Figure 4.27: Radiation pattern in the third example at r = 1.600

Table 4.21: Output data of the third example

Parameter Value

Number of polyominoes α 363

Fullness of the structure A, % 100.00

Sidelobe level γ at r = 1.600, dB −25.19
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4.5. ANALYSIS OF BANDWIDTH CAPABILITIES

Example 4: bandwidth 5:1

Input parameters:

• SLL optimization: r = 1.667.

Figure 4.28 shows the radiation pattern obtained by SA with those

parameters. Numerical results are provided in table 4.22.
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Figure 4.28: Radiation pattern in the fourth example at r = 1.667

Table 4.22: Output data of the fourth example

Parameter Value

Number of polyominoes α 359

Fullness of the structure A, % 99.90

Sidelobe level γ at r = 1.667, dB −24.10
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CHAPTER 4. APPLICATION OF THE OPTIMIZATION ALGORITHMS TO
ANTENNA ARRAY DESIGN

Example 5: bandwidth 7:1

Input parameters:

• SLL optimization: r = 1.750.

Figure 4.29 shows the radiation pattern obtained by SA with those

parameters. Numerical results are provided in table 4.23.
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Figure 4.29: Radiation pattern in the fifth example at r = 1.750

Table 4.23: Output data of the fifth example

Parameter Value

Number of polyominoes α 364

Fullness of the structure A, % 99.61

Sidelobe level γ at r = 1.750, dB −23.03
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4.5. ANALYSIS OF BANDWIDTH CAPABILITIES

Example 6: bandwidth 10:1

Input parameters:

• SLL optimization: r = 1.818.

Figure 4.30 shows the radiation pattern obtained by SA with those

parameters. Numerical results are provided in table 4.24.
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Figure 4.30: Radiation pattern in the sixth example at r = 1.818

Table 4.24: Output data of the sixth example

Parameter Value

Number of polyominoes α 363

Fullness of the structure A, % 99.90

Sidelobe level γ at r = 1.818, dB −22.24
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CHAPTER 4. APPLICATION OF THE OPTIMIZATION ALGORITHMS TO
ANTENNA ARRAY DESIGN

Example 7: bandwidth 15:1

Input parameters:

• SLL optimization: r = 1.875.

Figure 4.31 shows the radiation pattern obtained by SA with those

parameters. Numerical results are provided in table 4.25.
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Figure 4.31: Radiation pattern in the sixth example at r = 1.875

Table 4.25: Output data of the sixth example

Parameter Value

Number of polyominoes α 366

Fullness of the structure A, % 100.00

Sidelobe level γ at r = 1.875, dB −22.27
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4.5. ANALYSIS OF BANDWIDTH CAPABILITIES

Example 8: bandwidth 20:1

Input parameters:

• SLL optimization: r = 1.905.

Figure 4.32 shows the radiation pattern obtained by SA with those

parameters. Numerical results are provided in table 4.26.
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Figure 4.32: Radiation pattern in the sixth example at r = 1.905

Table 4.26: Output data of the sixth example

Parameter Value

Number of polyominoes α 362

Fullness of the structure A, % 99.71

Sidelobe level γ at r = 1.905, dB −22.01

146



CHAPTER 4. APPLICATION OF THE OPTIMIZATION ALGORITHMS TO
ANTENNA ARRAY DESIGN

Next, figure 4.33 presents the graph of sidelobe levels for 32× 32 struc-

tures, averaged over seven different seeds s = 10, 20, . . . , 70. The graph

demonstrates the upper limit of SLL to which it tends at wide bands.
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Figure 4.33: SLL at different bandwidths

4.6 Chapter 4 conclusions

1. Examples of radiation patterns and parameters of antenna arrays were

listed, which were obtained by the Gwee—Lim algorithm. The analy-

sis shows that sidelobe level at band r = 1.818 is too high for structures

tiled with L-octomino.

2. Examples of radiation patterns and parameters of antenna arrays were

listed, which were obtained by the snowball algorithm. The analysis

shows that the snowball algorithm can synthesize structures with bet-

ter sidelobe level suppression in the radiation pattern.
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4.6. CHAPTER 4 CONCLUSIONS

3. There was done the final comparative analysis of the Gwee—Lim al-

gorithm and the “Snowball” algorithm. The analysis from the point

of view of radiation pattern forming and level of sidelobes has shown

that the developed algorithm is able to synthesize antenna arrays with

characteristics, outperforming existing analogues, including ones by

the Gwee—Lim algorithm.

4. Analysis of steering and bandwidth capacities of the resulting struc-

tures has been done. Steering analysis shows, that 32× 32 structures

are able to scan up to ±30◦ from broad sight at a bandwidth of 10:1

and up to ±75◦ at a bandwidth of 2:1.

5. The bandwidth analysis has shown that the upper limit for SLL in a

32× 32 structures tiled with L-trominoes is −15 dB.
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Chapter 5

Multi-beam features of phased

antenna arrays

In this chapter we unveil and make preliminary analysis of another impor-

tant feature of phased antenna arrays: multi-beam radiation patterns. It

means that the array can have more than one main beam in its radiation

pattern. Those beams can be controlled electronically and independently,

making possible two spatially separated channels or two scanning lobes for

radar.

Although it is possible to achieve this feature with structures tiled with

one type of subarrays, we will use two shapes of subarrays simultaneously

as a trade-off between number of subarrays and performance. In this case

subarrays of one shape will act to form the beam in one direction.

Figure 5.1 shows such a structure. All L-octominoes are steered to

angle (45◦; 45◦) while all L-tetrominoes as steered to (−135◦; 45◦). The

corresponding radiation pattern is shown in figure 5.2.

This chapter includes analysis of sidelobe level for different angles be-

tween the lobes. The final part is dedicated to providing examples of power

management among the beams. In the first case the control of lobe power

is assigned by the genetic algorithm, and in the second these lobes are

rigidly aligned.
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Figure 5.1: Structure of the array in the first example
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Figure 5.2: Radiation pattern for structure in figure 5.1 at r = 1.3
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CHAPTER 5. MULTI-BEAM FEATURES OF PHASED ANTENNA ARRAYS

5.1 Analysis of SLL for different angles between two

beams

This paragraph presents examples and analysis of radiation patterns of

32× 32 arrays, obtained by Snowball, having two main beams pointed at

different angles. In total there are five examples. The following settings

were applied:

• polyomino type: L-octomino and L-tetromino;

• number of iterations: K = 50;

• population size: P = 20;

• seed: s = 37.

Calibrated values of pc, pm and pbm were used. Figure 5.3 shows the graph

of fitness function and its components in the seventh example.
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Figure 5.3: Fitness function in the first example
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5.1. ANALYSIS OF SLL FOR DIFFERENT ANGLES BETWEEN TWO BEAMS

Example 1: angle 30◦

Input parameters:

• beam 1 direction: (0.25; 0.06);

• beam 2 direction: (−0.25;−0.06).

Figure 5.4 shows the radiation pattern obtained by SA with those pa-

rameters. Numerical results are provided in table 5.1.
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Figure 5.4: Radiation pattern in the first example at r = 1.300

Table 5.1: Output data of the first example

Parameter Value

Number of polyominoes α 212

Fullness of the structure A, % 98.73

Sidelobe level γ at r = 1.300, dB −19.05

Beam power difference at r = 1.300, dB 3.25
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CHAPTER 5. MULTI-BEAM FEATURES OF PHASED ANTENNA ARRAYS

Example 2: angle 60◦

Input parameters:

• beam 1 direction: (0.43; 0.25);

• beam 2 direction: (−0.43;−0.25).

Figure 5.5 shows the radiation pattern obtained by SA with those pa-

rameters. Numerical results are provided in table 5.2.
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Figure 5.5: Radiation pattern in the second example at r = 1.300

Table 5.2: Output data of the second example

Parameter Value

Number of polyominoes α 210

Fullness of the structure A, % 98.14

Sidelobe level γ at r = 1.300, dB −17.56

Beam power difference at r = 1.300, dB 0.00
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5.1. ANALYSIS OF SLL FOR DIFFERENT ANGLES BETWEEN TWO BEAMS

Example 3: angle 90◦

Input parameters:

• beam 1 direction: (0.5; 0.5);

• beam 2 direction: (−0.5;−0.5).

Figure 5.6 shows the radiation pattern obtained by SA with those pa-

rameters. Numerical results are provided in table 5.3.
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Figure 5.6: Radiation pattern in the third example at r = 1.300

Table 5.3: Output data of the third example

Parameter Value

Number of polyominoes α 208

Fullness of the structure A, % 99.22

Sidelobe level γ at r = 1.300, dB −16.22

Beam power difference at r = 1.300, dB 0.00
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CHAPTER 5. MULTI-BEAM FEATURES OF PHASED ANTENNA ARRAYS

Example 4: angle 120◦

Input parameters:

• beam 1 direction: (0.433; 0.75);

• beam 2 direction: (−0.433;−0.75).

Figure 5.7 shows the radiation pattern obtained by SA with those pa-

rameters. Numerical results are provided in table 5.4.
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Figure 5.7: Radiation pattern in the fourth example at r = 1.300

Table 5.4: Output data of the fourth example

Parameter Value

Number of polyominoes α 212

Fullness of the structure A, % 99.12

Sidelobe level γ at r = 1.300, dB −15.38

Beam power difference at r = 1.300, dB 0.00
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5.1. ANALYSIS OF SLL FOR DIFFERENT ANGLES BETWEEN TWO BEAMS

Example 5: angle 150◦

Input parameters:

• beam 1 direction: (0.251; 0.93);

• beam 2 direction: (−0.251;−0.93).

Figure 5.8 shows the radiation pattern obtained by SA with those pa-

rameters. Numerical results are provided in table 5.5.
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Figure 5.8: Radiation pattern in the fifth example at r = 1.300

Table 5.5: Output data of the fifth example

Parameter Value

Number of polyominoes α 207

Fullness of the structure A, % 98.34

Sidelobe level γ at r = 1.300, dB −15.03

Beam power difference at r = 1.300, dB 0.00
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CHAPTER 5. MULTI-BEAM FEATURES OF PHASED ANTENNA ARRAYS

Figure 5.9 presents the graph of sidelobe levels and beam power dif-

ferences for 32 × 32 structures, averaged over seven different seeds s =

10, 20, . . . , 70. The graph demonstrates that power difference is mainly

zero, while SLL rises too high for wide angles.
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Figure 5.9: SLL and beam power difference for various angles

5.2 Application of the developed algorithm to two

beams forming

As it is known, the amount of radiated power is proportional to the number

of emitters. In the first set of six examples algorithm decides itself how

many polyominoes of each shape should be there in the structure. So, it

can be seen that the main lobe levels slightly differ.

In the second six examples it is hard-coded in the algorithm that the

number of subarrays in shape of L-tetromino must be twice the number of

subarrays in the shape of L-octomino. This is done for having equal areas
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emitting in every direction. Accordingly, the lobes have the same power.

The following parameters were used:

• polyomino type (1 — 6): L-octomino and L-tromino;

• polyomino type (7 — 12): L-octomino and L-tetromino;

• number of iterations: K = 50;

• population size: P = 10;

• elitism: on;

• seed: s = 37;

• SLL optimization: none, r = 1.3, r = 1.818;

• steering: (45◦; 45◦) and (135◦; 45◦).

Figure 5.10 shows the graph of the fitness function in the fourth example.
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Figure 5.10: Fitness function in the fourth example
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Example 1: Structure 32 × 32, L-octomino and L-tromino

Input parameters:

• structure size: M = N = 32;

• SLL optimization: no.

Figure 5.11 shows the radiation pattern obtained by SA with those

parameters. Numerical results are provided in table 5.6.
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Figure 5.11: Radiation pattern in the first example at r = 1.3

Table 5.6: Output data of the first example

Parameter Value

Number of polyominoes α 225

Fullness of the structure A, % 99.02

Sidelobe level γ at r = 1.300, dB −12.63

Sidelobe level γ at r = 1.818, dB −9.84
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Example 2: Structure 64 × 64, L-octomino and L-tromino

Input parameters:

• structure size: M = N = 64;

• SLL optimization: no.

Figure 5.12 shows the radiation pattern obtained by SA with those

parameters. Numerical results are provided in table 5.7.
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Figure 5.12: Radiation pattern in the second example at r = 1.3

Table 5.7: Output data of the second example

Parameter Value

Number of polyominoes α 806

Fullness of the structure A, % 99.17

Sidelobe level γ at r = 1.300, dB −20.79

Sidelobe level γ at r = 1.818, dB −15.68

160



CHAPTER 5. MULTI-BEAM FEATURES OF PHASED ANTENNA ARRAYS

Example 3: Structure 32 × 32, L-octomino and L-tromino

Input parameters:

• structure size: M = N = 32;

• SLL optimization: r = 1.3.

Figure 5.13 shows the radiation pattern obtained by SA with those

parameters. Numerical results are provided in table 5.8.
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Figure 5.13: Radiation pattern in the third example at r = 1.3

Table 5.8: Output data of the third example

Parameter Value

Number of polyominoes α 198

Fullness of the structure A, % 98.93

Sidelobe level γ at r = 1.300, dB −18.02

Sidelobe level γ at r = 1.818, dB −10.79
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Example 4: Structure 64 × 64, L-octomino and L-tromino

Input parameters:

• structure size: M = N = 64;

• SLL optimization: r = 1.3.

Figure 5.14 shows the radiation pattern obtained by SA with those

parameters. Numerical results are provided in table 5.9.
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Figure 5.14: Radiation pattern in the fourth example at r = 1.3

Table 5.9: Output data of the fourth example

Parameter Value

Number of polyominoes α 793

Fullness of the structure A, % 98.97

Sidelobe level γ at r = 1.300, dB −21.06

Sidelobe level γ at r = 1.818, dB −15.02
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Example 5: Structure 32 × 32, L-octomino and L-tromino

Input parameters:

• structure size: M = N = 32;

• SLL optimization: r = 1.818.

Figure 5.15 shows the radiation pattern obtained by SA with those

parameters. Numerical results are provided in table 5.10.
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Figure 5.15: Radiation pattern in the fifth example at r = 1.818

Table 5.10: Output data of the fifth example

Parameter Value

Number of polyominoes α 199

Fullness of the structure A, % 98.14

Sidelobe level γ at r = 1.300, dB −17.78

Sidelobe level γ at r = 1.818, dB −13.25
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Example 6: Structure 64 × 64, L-octomino and L-tromino

Input parameters:

• structure size: M = N = 64;

• SLL optimization: r = 1.818.

Figure 5.16 shows the radiation pattern obtained by SA with those

parameters. Numerical results are provided in table 5.11.
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Figure 5.16: Radiation pattern in the sixth example at r = 1.818

Table 5.11: Output data of the sixth example

Parameter Value

Number of polyominoes α 784

Fullness of the structure A, % 99.07

Sidelobe level γ at r = 1.300, dB −20.48

Sidelobe level γ at r = 1.818, dB −16.09
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Example 7: Structure 32 × 32, L-octomino and L-tetromino

Input parameters:

• structure size: M = N = 32;

• SLL optimization: no.

Figure 5.17 shows the radiation pattern obtained by SA with those

parameters. Numerical results are provided in table 5.12.
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Figure 5.17: Radiation pattern in the seventh example at r = 1.3

Table 5.12: Output data of the seventh example

Parameter Value

Number of polyominoes α 213

Fullness of the structure A, % 99.02

Sidelobe level γ at r = 1.300, dB −10.78

Sidelobe level γ at r = 1.818, dB −5.37

165



5.2. APPLICATION OF THE DEVELOPED ALGORITHM TO TWO BEAMS
FORMING

Example 8: Structure 64 × 64, L-octomino and L-tetromino

Input parameters:

• structure size: M = N = 64;

• SLL optimization: no.

Figure 5.18 shows the radiation pattern obtained by SA with those

parameters. Numerical results are provided in table 5.13.

-1

-0.5

0

0.5

1 -1

-0.5

0

0.5

1
-60
-50
-40
-30
-20
-10

0

R
ad

ia
ti

on
,

d
B

u
v

R
ad

ia
ti

on
,

d
B

-60

-50

-40

-30

-20

-10

0

Figure 5.18: Radiation pattern in the eighth example at r = 1.3

Table 5.13: Output data of the eighth example

Parameter Value

Number of polyominoes α 794

Fullness of the structure A, % 99.22

Sidelobe level γ at r = 1.300, dB −18.38

Sidelobe level γ at r = 1.818, dB −12.85
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Example 9: Structure 32 × 32, L-octomino and L-tetromino

Input parameters:

• structure size: M = N = 32;

• SLL optimization: r = 1.3.

Figure 5.19 shows the radiation pattern obtained by SA with those

parameters. Numerical results are provided in table 5.14.
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Figure 5.19: Radiation pattern in the ninth example at r = 1.3

Table 5.14: Output data of the ninth example

Parameter Value

Number of polyominoes α 207

Fullness of the structure A, % 98.54

Sidelobe level γ at r = 1.300, dB −15.26

Sidelobe level γ at r = 1.818, dB −8.87
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Example 10: Structure 64 × 64, L-octomino and L-tetromino

Input parameters:

• structure size: M = N = 64;

• SLL optimization: r = 1.3.

Figure 5.20 shows the radiation pattern obtained by SA with those

parameters. Numerical results are provided in table 5.15.
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Figure 5.20: Radiation pattern in the tenth example at r = 1.3

Table 5.15: Output data of the tenth example

Parameter Value

Number of polyominoes α 794

Fullness of the structure A, % 99.22

Sidelobe level γ at r = 1.300, dB −18.38

Sidelobe level γ at r = 1.818, dB −12.85
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Example 11: Structure 32 × 32, L-octomino and L-tetromino

Input parameters:

• structure size: M = N = 32;

• SLL optimization: r = 1.818.

Figure 5.21 shows the radiation pattern obtained by SA with those

parameters. Numerical results are provided in table 5.16.
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Figure 5.21: Radiation pattern in the eleventh example at r = 1.818

Table 5.16: Output data of the eleventh example

Parameter Value

Number of polyominoes α 206

Fullness of the structure A, % 97.85

Sidelobe level γ at r = 1.300, dB −13.37

Sidelobe level γ at r = 1.818, dB −10.17
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Example 12: Structure 64 × 64, L-octomino and L-tetromino

Input parameters:

• structure size: M = N = 64;

• SLL optimization: r = 1.818.

Figure 5.22 shows the radiation pattern obtained by SA with those

parameters. Numerical results are provided in table 5.17.
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Figure 5.22: Radiation pattern in the twelfth example at r = 1.818

Table 5.17: Output data of the twelfth example

Parameter Value

Number of polyominoes α 793

Fullness of the structure A, % 99.05

Sidelobe level γ at r = 1.300, dB −18.65

Sidelobe level γ at r = 1.818, dB −14.64
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5.3 Chapter 5 conclusions

1. Examples of antenna arrays synthesis is shown, which are able to form

two beams in radiation pattern for receiving and transmitting signals

in two directions simultaneously.

2. Analysis of angle between the two main lobes was done. It showed,

obviously, that SLL grows with the angle and reaches inappropriately

high values.

3. Examples demonstrate ability of the algorithm to control the power

radiated in each direction, considering structure size and polyomino

type. Algorithm is able to make the beams equal in power. Otherwise,

the difference due to SLL suppression may reach 8 dB.
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Chapter 6

Conclusions

1. The mathematical model of the antenna array structure was devel-

oped, that describes geometrical and electrodynamic connections be-

tween the elements. The model is based on the matrix representation

of polyomino orientations, differs by using the modified array factor

and allows describing arrays tiled with polyomino-shaped subarrays.

2. The optimization method was developed, based on calculation of the

integral of the autocorrelation function, different by using the Hilbert

curve and allowing performing multicriteria optimization considering

the irregularity of structures of polyominoes. Analysis of the method

has shown that estimation of irregularity of a structure correlates with

computed value of sidelobe level and can be used in the process of

optimization of phased antenna arrays.

3. The “Snowball” algorithm for synthesis of structures of polyominoes

was developed, based on the evolutionary principle, different by way

of polyomino placement in the structure and producing structures

with fullness up to 98–100%. Parameters of the algorithm have been

calibrated.

4. The software was developed based on the proposed algorithm for solv-
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ing the task of antenna array structure optimization. Software made

it possible to conduct numerical simulations of structures of phased

antenna arrays.

5. The results of simulations were shown, demonstrating efficiency of

the proposed algorithm and structures of arrays obtained by it. Op-

timization led to suppression of sidelobe levels by more than 3 times

in comparison with other researchers’ results.

174



Bibliography

[1] G. Abdrakhmanova, R. Chirikov, and V. Bagmanov. Laguerre func-

tions for pulse simulation in uwb communication systems. In Proc.

of 14th Int. Workshop “Problems of Technics and Technologies of

Telecommunication”, pages 87–91, Samara, Russia, 2013. PSUTI.

[2] G. I. Abdrakhmanova. Uwb antenna simulation based on optimization

algorithms. Modern problems of science and education, (4), 2013.

[3] Buthainah Al-kazemi and Chilukuri K Mohan. Multi-phase general-

ization of the particle swarm optimization algorithm. In Proceedings

of the IEEE Congress on Evolutionary Computation, volume 2, pages

1057–1062, 2002.

[4] Peter J. Angeline. Evolutionary optimization versus particle swarm

optimization: Philosophy and performance differences. In Evolution-

ary Programming VII, pages 601–610. Springer, 1998.

[5] Peter J Angeline. Using selection to improve particle swarm optimiza-

tion. In Proceedings of IEEE International Conference on Evolutionary

Computation, volume 89, 1998.

[6] Constantine A. Balanis. Antenna theory: analysis and design. John

Wiley & Sons, 2012.

[7] E. Bekele, R. Chirikov, M. Carlin, L. Manica, G. Oliveri, L. Poli,

P. Rocca, and A. Massa. What’s new on antenna synthesis @ eledia

175



BIBLIOGRAPHY

research center. In Atti XIX Riunione Nazionale di Elettromagnetismo

(XIX RiNEm), pages 297–300, Rome, Italy, 2012. RiNEm.

[8] Daniel W. Boeringer and Douglas H. Werner. Particle swarm optimiza-

tion versus genetic algorithms for phased array synthesis. Antennas

and Propagation, IEEE Transactions on, 52(3):771–779, 2004.

[9] Andreas Bortfeldt. A genetic algorithm for the two-dimensional strip

packing problem with rectangular pieces. European Journal of Oper-

ational Research, 172(3):814–837, 2006.

[10] Andreas Bortfeldt and Hermann Gehring. A hybrid genetic algorithm

for the container loading problem. European Journal of Operational

Research, 131(1):143–161, 2001.

[11] Robert C. Brigham, Richard M. Caron, Phyllis Z. Chinn, and Ralph P.

Grimaldi. A tiling scheme for the fibonacci numbers. Journal of Recre-

ational Mathematics, 28:10–16, 1997.

[12] A. V. Chekanin and V. A. Chekanin. Algorithms for effective rectan-

gular packing problem solving. Journal of computational mathematics

and mathematical physics, 53(10):1639–1648, 2013.

[13] I Chernyh. Electrical devices modelling in MATLAB, SimPowerSys-

tems and Simulink. Litres, 2011.

[14] Phyllis Chinn, Ralph Grimaldi, and Silvia Heubach. Tiling with l’s

and squares. Journal of Integer Sequences, 10(2):3, 2007.

[15] R. Chirikov. Innovative tiling algorithm for the design of antenna

arrays. In Proc. of 15th Int. Workshop on Computer Science and

Information Technology CSIT2013, volume 3, pages 87–90, Vienna,

Austria, 2013. USATU.

176



BIBLIOGRAPHY

[16] R. Chirikov. Large phased antenna array design as an optimal pack-

ing problem. Infocommunication Technologies: journal of PSUTI,

12(3):77–82, 2013.

[17] R. Chirikov, G. Abdrakhmanova, and A. Abdrakhmanova. Fractal

antennas design for uwb communication systems. In Proc. of 7th All-

Russian Winter School “Actual Problems of Science and Technics”,

pages 153–156, Ufa, Russia, 2012. USATU.

[18] R. Chirikov and P. Rocca. Genetic algorithm for advanced clustering

in phased array design. In Proc. of 13th Int. Workshop on Computer

Science and Information Technology CSIT2011, volume 2, pages 32–

34, Garmisch-Partenkirchen, Germany, 2011. USATU.

[19] R. Chirikov and P. Rocca. Implementation of the gwee—lim tiling

algorithm. In Proc. of 14th Int. Workshop on Computer Science and

Information Technology CSIT2012, volume 3, pages 163–166, Ham-

burg, Germany, 2012. USATU.

[20] R. Chirikov, P. Rocca, and V. Bagmanov. Calibration of the genetic

algorithm parameters for phased antenna array design. Electrical and

Data Processing Facilities and Systems: journal of UGUES, 9(3):89–

92, 2013.

[21] R. Chirikov, P. Rocca, V. Bagmanov, and G. Abdrakhmanova. Evo-

lutionary algorithms for advanced clustering methods in phased array

design. In Proc. of 12th Int. Workshop “Problems of Technics and

Technologies of Telecommunication”, pages 263–264, Kazan, Russia,

2011. KSTU.

[22] R. Chirikov, P. Rocca, V. Bagmanov, and A. Sultanov. Phased an-

tenna design algorithm for satellite communications. Vestnik USATU:

journal of USATU, 17(4 (57)):159–166, 2013.

177



BIBLIOGRAPHY

[23] R. Chirikov, P. Rocca, and E. Grakhova. Irregularity estimation of

planar structures based on colour mixing. In Proc. of Int. Conf. “Infor-

mation Technologies for Intelligent Decision Making Support”, pages

45–48, Ufa, Russia, 2012. USATU.

[24] R. Chirikov, P. Rocca, L. Manica, S. Santarelli, R. J. Mailloux, and

A. Massa. Innovative ga-based strategy for polyomino tiling in phased

array design. In EuCAP-2013, pages 2216–2219, Gothenburg, Sweden,

2013. EuCAP.

[25] R. Chirikov, P. Rocca, and A. Massa. Advanced clustering optimiza-

tion in phased array design through genetic algorithms. In Proc.

of 13th Int. Workshop “Problems of Technics and Technologies of

Telecommunication”, pages 190–192, Ufa, Russia, 2012. USATU.

[26] Richard Courant and David Hilbert. Methods of mathematical

physics. 1966.

[27] Y. Davidor. Genetic Algorithms and Robotics: A heuristic strategy for

optimization. World Scientific, 1991.

[28] Lawrence Davis. Job shop scheduling with genetic algorithms. In

Proceedings of the 1st international conference on genetic algorithms,

pages 136–140. L. Erlbaum Associates Inc., 1985.

[29] Harald Dyckhoff. A typology of cutting and packing problems. Euro-

pean Journal of Operational Research, 44(2):145–159, 1990.

[30] Harald Dyckhoff and Ute Finke. Cutting and packing in production

and distribution: A typology and bibliography. 1992.

[31] Russell C. Eberhart and Yuhui Shi. Comparison between genetic algo-

rithms and particle swarm optimization. In Evolutionary Programming

VII, pages 611–616. Springer, 1998.

178



BIBLIOGRAPHY

[32] F. I. Emelchenkov. Onboard non-equidistant phased arrays with high

density of phase shifters. Antennas journal, (11):102, 2005.

[33] Ailbhe Finnerty, Pavel Kucherbaev, Stefano Tranquillini, and Gregorio

Convertino. Keep it simple: Reward and task design in crowdsourcing.

In Proceedings of the Biannual Conference of the Italian Chapter of

SIGCHI, page 14. ACM, 2013.

[34] Silvano Gambadoro. Innovative Strategy for Element Clustering in

Large Antenna Arrays. PhD thesis, University of Trento, 2012.

[35] Hermann Gehring and A. Bortfeldt. A genetic algorithm for solving the

container loading problem. International Transactions in Operational

Research, 4(5-6):401–418, 1997.

[36] David Edward Goldberg. Computer-aided gas pipeline operation using

genetic algorithms and rule learning. 1983.

[37] John J. Grefenstette and J. Michael Fitzpatrick. Genetic search with

approximate function evaluation. In Proceedings of the 1st Interna-

tional Conference on Genetic Algorithms, pages 112–120. L. Erlbaum

Associates Inc., 1985.

[38] B.H. Gwee and M.H. Lim. Polyominoes tiling by a genetic algorithm.

Computational Optimization and Applications, 6(3):273–291, 1996.

[39] David Hilbert, William Bragg Ewald, Wilfried Sieg, and Ulrich Ma-

jer. David hilbert’s lectures on the foundations of mathematics and

physics, 1891-1933: David hilbert’s lectures on the foundations of

arithmetic and logic 1917-1933/william ewald; wilfried sieg, ed. in col-

lab. with ulrich majer and dirk schlimm. 2013.

179



BIBLIOGRAPHY

[40] RJW Hodgson. Partical swarm optimization applied to the atomic

cluster optimization problem. In GECCO, volume 2, pages 68–73,

2002.

[41] J.H. Holland. Adaptation in natural and artificial systems. University

of Michigan press, 1975.

[42] L. V. Kantorovich and V. A. Zalgaller. Optimal cutting of industrial

materials. Nauka, Sib. branch, 1971.

[43] Anirban Karmakar, Rowdra Ghatak, Utsab Banerjee, and DR Poddar.

An uwb antenna using modified hilbert curve slot for dual band notch

characteristics. Journal of Electromagnetic Waves and Applications,

27(13):1620–1631, 2013.

[44] Charles L. Karr. Design of an adaptive fuzzy logic controller using a

genetic algorithm. In ICGA, pages 450–457, 1991.

[45] V. M. Kartak. Matrix-based searching algorihm for optimal solution

of packing rectangles in a half-infitite band. Information technologies,

2:24–30, 2008.

[46] V. M. Kartak. Grouping method for continuous linear cutting problem

solving. Discrete analysis and operations investigation, 16(3):47–62,

2009.

[47] James Kennedy. Small worlds and mega-minds: effects of neighbor-

hood topology on particle swarm performance. In Evolutionary Com-

putation, 1999. CEC 99. Proceedings of the 1999 Congress on, vol-

ume 3. IEEE, 1999.

[48] James Kennedy and Rui Mendes. Population structure and particle

swarm performance. 2002.

180



BIBLIOGRAPHY

[49] Dang Oh Kim, Che Young Kim, Jeung Keun Park, and Nam I Jo.

Compact band notched ultra-wideband antenna using the hilbert-

curve slot. Microwave and Optical Technology Letters, 53(11):2642–

2648, 2011.

[50] Thiemo Krink, Jakob S VesterstrOm, and Jacques Riget. Particle

swarm optimisation with spatial particle extension. In Computational

Intelligence, Proceedings of the World on Congress on, volume 2, pages

1474–1479. IEEE, 2002.

[51] Y. V. Krivosheev. Sidelobe suppression in non-equidistant arrays made

of equal rectangular subarrays. III All-Russian conference ”Radiolo-

cation and communication” — IRE RAS, pages 72–76, 2009.

[52] Yury V. Krivosheev and Alexandr V. Shishlov. Grating lobe suppres-

sion in phased arrays composed of identical or similar subarrays. In

Phased Array Systems and Technology (ARRAY), 2010 IEEE Inter-

national Symposium on, pages 724–730. IEEE, 2010.

[53] M.H. Lim, S. Rahardja, and B.H. Gwee. A ga paradigm for learning

fuzzy rules. Fuzzy Sets and Systems, 82(2):177–186, 1996.

[54] Morten Lovbjerg and Thiemo Krink. Extending particle swarm op-

timisers with self-organized criticality. In Computational Intelligence,

Proceedings of the World on Congress on, volume 2, pages 1588–1593.

IEEE, 2002.

[55] Morten Lovbjerg, Thomas Kiel Rasmussen, and Thiemo Krink. Hy-

brid particle swarm optimiser with breeding and subpopulations. In

Proceedings of the Genetic and Evolutionary Computation Conference,

volume 2001, pages 469–476. Citeseer, 2001.

181



BIBLIOGRAPHY

[56] R.J. Mailloux. Polyomino shaped subarrays for limited field of view

and time delay control of planar arrays. Technical report, DTIC Doc-

ument, 2006.

[57] R.J. Mailloux, S.G. Santarelli, and T.M. Roberts. Wideband arrays

using irregular (polyomino) shaped subarrays. electronics Letters,

42:1019, 2006.

[58] R.J. Mailloux, S.G. Santarelli, and T.M. Roberts. New results using

polyomino-tiled subarrays for time-delay control of wideband arrays.

Technical report, AIR FORCE RESEARCH LAB HANSCOM AFB

MA SENSORS DIRECTORATE, 2007.

[59] R.J. Mailloux, S.G. Santarelli, T.M. Roberts, and D. Luu. Irregular

polyomino-shaped subarrays for space-based active arrays. Interna-

tional Journal of Antennas and Propagation, 2009, 2009.

[60] Robert J. Mailloux. Phased array antenna handbook. Artech House

Boston, 2005.

[61] Robert J. Mailloux, Scott G. Santarelli, and Thomas M. Roberts. Ar-

ray aperture design using irregular polyomino subarrays. In Phased

Array Systems and Technology (ARRAY), 2010 IEEE International

Symposium on, pages 740–744. IEEE, 2010.

[62] Rui Mendes, Paulo Cortez, Miguel Rocha, and José Neves. Particle
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