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Abstract

Climate change, uncertainties in energy prices, and the Covid-19 pan-

demic have significantly reshaped building management, highlighting the

need for energy-efficient, safe, and comfortable indoor environments. With

advancements in Internet of Things (IoT) sensors and Artificial Intelli-

gence (AI) techniques, optimising building performance now includes fore-

casting key parameters and intelligently controlling Heating, Ventilation

and Air Conditioning (HVAC) systems. However, existing studies often

lack practical applicability in real-world scenarios, typically relying on ex-

tensive data collection or tailored physical/mathematical models, with lim-

ited focus on deployment, scalability, and long-term performance.

This thesis addresses the problem from a different angle, proposing an adap-

tive and practical AI-based solution for energy-efficient comfort optimisa-

tion in indoor environments. The designed approach continuously learns

from the monitored environment through collected data and requires min-

imal human effort for configuration and maintenance. The contributions

are as follows: i) a method for accurately predicting key parameters using

a limited window of data, with a dynamic mechanism to keep the AI model

current with environmental changes and operational in a short time frame,

and ii) a novel algorithm called EECO for automated and intelligent HVAC

control, driven by continuous short-term decisions based on long-term pre-

dictions to balance thermal comfort and energy consumption, with no need

for preliminary knowledge of the local environment.

Evaluation results demonstrate that the proposed approach achieves high

prediction accuracy, ensures desired thermal comfort, and reduces the en-

ergy footprint by up to approximately 16% in a real-world environment, in

addition to potentially saving on operating costs.



Keywords

[Thermal Comfort; Energy Efficiency; Artificial Intelligence; Automated

HVAC Control]

4



Contents

1 Introduction 1

1.1 Scenario and Motivation . . . . . . . . . . . . . . . . . . . 1

1.2 Research Challenges . . . . . . . . . . . . . . . . . . . . . 3

1.3 Contributions and Outline of the Thesis . . . . . . . . . . 5

1.4 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . 7

2 State of the Art 9

3 Forecasting Environmental and Energy Parameters 15

3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Main Contribution . . . . . . . . . . . . . . . . . . . . . . 17

3.3 Single Output Variable: CO2 . . . . . . . . . . . . . . . . . 17

3.3.1 State of the Art . . . . . . . . . . . . . . . . . . . . 18

3.3.2 Dataset . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3.3 Methodology . . . . . . . . . . . . . . . . . . . . . 22

3.3.4 Experimental Setup . . . . . . . . . . . . . . . . . . 28

3.3.5 Results and Discussion . . . . . . . . . . . . . . . . 32

3.4 Multiple Variables: Temperature, Humidity, CO2 and En-

ergy Consumption . . . . . . . . . . . . . . . . . . . . . . 39

3.4.1 Input Variables . . . . . . . . . . . . . . . . . . . . 39

3.4.2 Methodology . . . . . . . . . . . . . . . . . . . . . 41

3.5 Preliminary Results . . . . . . . . . . . . . . . . . . . . . . 45

i



3.6 Discussion and Summary . . . . . . . . . . . . . . . . . . . 47

4 Energy-Efficient Comfort Optimisation 49

4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2 Main Contribution . . . . . . . . . . . . . . . . . . . . . . 52

4.3 State of the Art . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3.1 Pareto Analysis . . . . . . . . . . . . . . . . . . . . 53

4.3.2 Reinforcement Learning . . . . . . . . . . . . . . . 54

4.3.3 Passive strategies . . . . . . . . . . . . . . . . . . . 55

4.3.4 MPC and other solutions . . . . . . . . . . . . . . . 55

4.4 Background . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.4.1 Predicted Mean Vote . . . . . . . . . . . . . . . . . 57

4.5 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . 59

4.5.2 Tree Building . . . . . . . . . . . . . . . . . . . . . 62

4.5.3 Strategy Selection . . . . . . . . . . . . . . . . . . . 67

4.6 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . 68

4.7 Experimental Results . . . . . . . . . . . . . . . . . . . . . 70

4.7.1 Indoor Environment Forecast . . . . . . . . . . . . 70

4.7.2 Indoor Comfort and Energy Consumption Optimisa-

tion . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.7.3 Performance Analysis - Real Environment . . . . . 74

4.7.4 Performance Analysis - Simulated Environment . . 83

4.7.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . 91

4.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5 Business Analysis 95

5.1 Introduction and Scenario . . . . . . . . . . . . . . . . . . 96

5.1.1 Business Impact of Research Outcomes . . . . . . . 97

5.2 European Market Analysis . . . . . . . . . . . . . . . . . . 99

ii



5.3 Business Opportunities . . . . . . . . . . . . . . . . . . . . 102

5.4 Competitors . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.5 Customer Profile and Value Proposition . . . . . . . . . . 107

5.6 Business Model . . . . . . . . . . . . . . . . . . . . . . . . 110

5.7 Business Plan . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6 Conclusions 121

Bibliography 129

iii





List of Tables

3.1 Summary of State-of-the-Art solutions for predicting CO2

levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Simulation parameters for the designed AI model for pre-

dicting CO2 levels. . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Range of the input variables for predicting CO2 levels. . . 29

3.4 Overview of the input variables for predicting indoor tem-

perature, humidity, CO2 and energy consumption due to

HVAC devices. . . . . . . . . . . . . . . . . . . . . . . . . 41

3.5 Simulation parameters for the designed AI model for multi-

variable prediction. . . . . . . . . . . . . . . . . . . . . . . 44

4.1 Comfort categories and the related PMV range. . . . . . . 59

4.2 Accuracy of the predicted environment in terms of energy

consumption and PMV as well as difference between the real

PMV and the predicted value at 5:45 AM and 6:00 AM,

respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.3 Average PMV, total energy consumption [kWh] and PMV

at 6 AM the next day for different α values. . . . . . . . . 73

4.4 Overall performance of EECO and the Fixed Set Point ap-

proach in terms of PMV, energy consumption in cooling mode. 78

4.5 Overall performance of EECO and the Fixed Set Point ap-

proach in terms of PMV, energy consumption in heating

mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

v



4.6 Results of EECO during Mondays in heating mode. . . . . 82

4.7 Results of the Fixed Set Point approach during Mondays in

heating mode. . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.8 Simulator results during summer months. . . . . . . . . . . 85

4.9 Simulator results during winter months. . . . . . . . . . . 85

4.10 Average monthly behaviour of PMV index and energy con-

sumption for the evaluated approaches on working days in

cooling mode. . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.11 Average behaviour of PMV index and energy consumption

for the evaluated approaches on Mondays in cooling mode. 87

4.12 Overall performance of EECO compared to the Fixed Set

Point and PMV-Based approach in terms of absolute PMV

difference from the lower bound of the comfort range and

percentage difference of energy saving in cooling mode. . . 88

4.13 Average monthly behaviour of PMV index and energy con-

sumption for the evaluated approaches on working days in

heating mode. . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.14 Average behaviour of PMV index and energy consumption

for the evaluated approaches on Mondays in heating mode. 90

4.15 Overall performance of EECO compared to the Fixed Set

Point and PMV-Based approach in terms of absolute PMV

difference from the lower bound of the comfort range and

percentage difference of energy saving in heating mode. . . 91

5.1 Overview of fashion stores per country in Europe. . . . . . 100

5.2 GEM-Retail pricing strategy for monitoring and analysis so-

lution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.3 GEM-Retail pricing strategy for the intelligent HVAC con-

trol solution. . . . . . . . . . . . . . . . . . . . . . . . . . . 113

vi



5.4 GEM-Retail potential energy saving in 2022 and 2023 through

intelligent HVAC control for each type of site. . . . . . . . 114

5.5 Number of retail stores adopting GEM-Retail in the upcom-

ing years. . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.6 Prospects for costs and revenues for GEM-Retail in the up-

coming years for the M&A solution. . . . . . . . . . . . . . 117

5.7 Prospects for costs and revenues for GEM-Retail in the up-

coming years for the CONTROL solution. . . . . . . . . . 117

vii





List of Figures

3.1 The designed neural network architecture for forecasting in-

door CO2. . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 The sequence of operations for forecasting CO2 levels at each

quarter-hour interval (t0, t1, ..., t95) throughout the day. . 26

3.3 The behaviour of the mobile window during the initial sys-

tem deployment. . . . . . . . . . . . . . . . . . . . . . . . 28

3.4 The behaviour of the model at different numbers of quar-

ters of an hour per sample, with focus on the pool size (top),

kernel size (center) and number of convolutional filters (bot-

tom). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.5 The behaviour of RMSE and training time as the mobile

window increases. . . . . . . . . . . . . . . . . . . . . . . . 35

3.6 Predictions and actual CO2 levels throughout a winter day

in one of the rooms from the dataset. . . . . . . . . . . . . 36

3.7 Predictions and actual CO2 levels throughout a summer day

in one of the rooms from the dataset. . . . . . . . . . . . . 36

3.8 The behaviour of RMSE as a function of the forecast days. 38

3.9 The designed neural network architecture for forecasting

multiple variables. . . . . . . . . . . . . . . . . . . . . . . . 42

3.10 Predictions and real behaviour throughout a winter day (i.e.,

heating mode) for (a) indoor temperature, (b) energy con-

sumption, (c) indoor humidity, and (d) CO2 levels. . . . . 46

ix



3.11 Predictions and real behaviour throughout a summer day

(i.e., cooling mode) for (a) indoor temperature, (b) energy

consumption, (c) indoor humidity, and (d) CO2 levels. . . . 47

4.1 The scheme of a typical air handling unit in an HVAC system. 50

4.2 Representation of the four control states over the course of

a day. In this example, the comfort interval is set between

8 AM and 8 PM. . . . . . . . . . . . . . . . . . . . . . . . 61

4.3 The decision tree. Node’s attributes are HVAC configura-

tions (ON/OFFijk, SPijk), which are labelled with 3-digit

numbers: the level of the tree (i), the index of the parent

node (j) and the index of the node (k). Tijk, Hijk, CO2ijk

and Eijk refer to predicted values of temperature, humidity,

CO2 and energy consumption for node nijk at Level i in the

time slot [ti, ti+1]. . . . . . . . . . . . . . . . . . . . . . . . 62

4.4 The first step of the building decision process at time slot

[t0, t1], during which a tree of possible HVAC configura-

tions is built iteratively from time slot [t1, t2] to time slot

[tm−1, tm]. In this example k = {0, 1} for the two nodes at

Level 1 of the tree (Figure 4.3). . . . . . . . . . . . . . . . 63

4.5 Example of actuation strategy in terms of ON/OFF (left)

and corresponding predicted environment evolution in terms

of PMV index (middle) and energy consumption (right) in

the early morning at 5:45 AM (top) and 6:00 AM (bottom)

to achieve the comfort requirements by 8:00 AM. . . . . . 71

4.6 The behaviour of (a) hourly PMV index and (b) total energy

consumption as the α parameter changes. . . . . . . . . . 72

x



4.7 Average daily (a) PMV index, (b) total daily energy con-

sumption against the average daily PMV index, (c) indoor

temperature, (d) total daily energy consumption normalised

by degree days against the average daily PMV index and

(e) variation of PMV index compared to value at 6 AM

(PMV6AM - PMV) for both EECO and the Fixed Set Point

approach in cooling mode. . . . . . . . . . . . . . . . . . . 77

4.8 Average daily (a) PMV index, (b) total daily energy con-

sumption against the average daily PMV index, (c) indoor

temperature, (d) total daily energy consumption normalised

by degree days against the average daily PMV index and

(e) variation of PMV index compared to value at 6 AM

(PMV6AM - PMV) for both EECO and the Fixed Set Point

approach in heating mode. . . . . . . . . . . . . . . . . . . 80

4.9 Overall average behaviour of PMV index and energy con-

sumption for the evaluated approaches on working days in

cooling mode. . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.10 Overall average behaviour of PMV index and energy con-

sumption for the evaluated approaches on working days in

heating mode. . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.1 Competitor positioning map of GEM-Retail. . . . . . . . . 107

5.2 Value Proposition and Customer Segment of GEM-Retail. 108

5.3 Prospective Business Model using Lean Canvas of GEM-

Retail. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

xi





Acronyms

AI Artificial Intelligence.

ANN Artificial Neural Network.

API Application Programming Interface.

BDExp Business Development Experience.

BEMS Building Energy Management Systems.

CNN Convolutional Neural Network.

CO2 Carbon Dioxide.

DCV Demand-Controlled Ventilation.

DL Deep Learning.

EECO Energy-Efficient Comfort Optimisation.

ESCO Energy Service Company.

GEM Genius Energy Manager.

HVAC Heating, Ventilation and Air Conditioning.

IAQ Indoor Air Quality.

xiii



IoT Internet of Things.

LSTM Long Short-Term Memory.

MLP Multi-Layer Perceptron.

MPC Model Predictive Control.

NLP Natural Language Processing.

PM Particulate Matter.

PMV Predicted Mean Vote.

ppm parts per million.

RMSE Root Mean Squared Error.

SP Set Point.

VOC Volatile Organic Compound.

VRV Variable Refrigerant Volume.

xiv



Never say never, because limits, like fears, are often just an illusion.

(Michael Jordan)

xv





Acknowledgements

I would like to express my deep gratitude to the people who made this

journey possible.

A huge thanks to my company, Energenius Srl, especially my industrial

tutor Claudio Peroni. Thanks for this invaluable experience and all the

growth opportunities. Thanks for your support, esteem, trust and friend-

ship from day one.

Thanks to Domenico Siracusa, my academic supervisor, and Roberto

Doriguzzi-Corin for your patience, availability and support during these

years. Thanks for enriching my knowledge from many different perspectives

and guiding me through this completely new experience.

A special thanks to Matteo Gerola and Tommaso Gazzini, key figures

and colleagues in Energenius, for your daily support and guidance.

Last but not least, a heartfelt thanks to my family for the support over

the years, for always giving me the freedom to choose my own path and

for instilling in me solid values.

xvii





Chapter 1

Introduction

1.1 Scenario and Motivation

Buildings take a central role in global energy dynamics, contributing to 30%

of the world’s total energy consumption and accounting for approximately

26% of global energy-related emissions [1]. Since 2015, these emissions

have exhibited a consistent growth trend, increasing at an average rate of

1% annually [2]. A significant portion of this energy consumption is pri-

marily due to heating and cooling demands across industrial, commercial

and residential sectors. Notably, Heating, Ventilation and Air Condition-

ing (HVAC) systems alone account for 32% of energy use in residential

buildings and 47% in the tertiary sector [3]. In light of challenges posed by

climate change and the escalating energy prices, the demand for energy-

efficient buildings has become increasingly crucial over the past decade.

The Covid-19 pandemic in 2020 slightly reshaped this scenario, high-

lighting the critical need for safe and healthy living and working environ-

ment beyond mere building energy efficiency. As a result, sustainable build-

ings have become essential not only for addressing environmental concerns

but also for economic and public health reasons. This shift in perspective

has highlighted the importance of ensuring thermal comfort in response to

changing occupancy patterns and indoor environmental conditions while
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CHAPTER 1. INTRODUCTION

reducing energy consumption. Governments, regulatory agencies and pub-

lic bodies have been actively promoting policies and measures aimed at

achieving healthy and energy-efficient buildings. A prominent example

is the Directive (2018/844) [4] developed by the European Parliament,

which underlines the importance of guaranteeing sustainable environments

through enhanced energy performance. Additionally, the adoption of green

building certifications such as LEED (Leadership in Energy and Environ-

mental Design) and BREEAM (Building Research Establishment Environ-

mental Assessment Method) has grown significantly, drawing the interest

of managers and owners to introduce innovative technologies that reduce

environmental impact while improving occupant well-being.

The increased interest in sustainability, combined with advancements

in technology, has facilitated the deployment of advanced software solu-

tions commonly known as Building Energy Management Systems (BEMS)

in buildings. They support facility managers and owners of modern and

existing buildings in meeting the increasingly stringent requirements for

energy efficiency and thermal comfort [5]. Originally designed for real-

time monitoring of energy and environmental parameters, the integration

of cutting-edge technologies such as the Internet of Things (IoT) and Arti-

ficial Intelligence (AI) into modern BEMS has become increasingly relevant

in shaping the future of building management. By leveraging large amounts

of data collected from indoor environments through a wide range of sensors

and communication protocols (e.g., Modbus in industrial sites, BACnet in

tertiary buildings), these systems offer a range of functionalities aimed at

optimising building performance. Key features typically include predic-

tive analytics, anomaly detection and advanced control algorithms. This

allows for dynamic adjustment of heating, ventilation, and air condition-

ing (HVAC) systems, chillers, or other energy-hungry systems, resulting in

more informed decision-making and enhanced control of local devices. For

2



CHAPTER 1. INTRODUCTION

instance, AI algorithms can effectively predict energy demand and environ-

mental parameters based on current and historical data collected from IoT

sensors, using this information for providing relevant feedback for optimal

control.

In such scenario, research and development of new intelligent and inno-

vative technologies within BEMS are fundamental to achieve sustainable,

efficient and healthy environments. This ongoing innovation holds the po-

tential to significantly reduce the environmental footprint of both modern

and existing buildings, contributing to global efforts to mitigate climate

change and improving thermal comfort for people.

1.2 Research Challenges

Optimising indoor environments involves a wide range of tasks, each pre-

senting unique research challenges. Our research has been focused on two

critical tasks of building optimisation: forecasting of key parameters and

optimising HVAC devices.

One of the key aspects of building optimisation is the ability to pre-

dict the future behavior of key parameters within the environment. The

literature extensively studies solutions for predictive analytics, proposing

different AI techniques with the aim to accurately forecast the variables

of interest (e.g., indoor temperature, CO2 levels, energy consumption). To

cope with this task, research studies typically rely on a large amount of

data, requiring potential extensive data collection locally to train AI mod-

els. For instance, Kallio et.al. [6] addressed the forecasting of indoor CO2

levels using data collected throughout a whole year from different envi-

ronments. Similar approaches are adopted in other studies focusing on

different variables. A major challenge in this area lies in developing an

approach that minimises the prediction error without compromising the

3
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practical applicability. This primarily involves ensuring rapid system de-

ployment and maintaining high accuracy over time, which is particularly

crucial from a business perspective.

Another primary task in optimising indoor environments is the intelli-

gent control of HVAC devices. As discussed earlier, recent years have seen

a focus on rational energy usage while optimising indoor comfort levels.

Understanding the behaviour of key parameters within the indoor environ-

ment in response to specific HVAC configurations is crucial for this task.

Solutions proposed in the literature typically employ physical or mathe-

matical models tailored to the monitored environment, requiring significant

manual effort to model different aspects (e.g., layout, materials, location,

installed HVAC machinery). These approaches also need potential ongo-

ing adjustments to account for changes within the monitored environment,

posing clear challenges for facility managers or owners overseeing a large

number of buildings. Additionally, simulated or calculated models might

not accurately replicate the behaviour of real-world environments, which

can be affected by unexpected events. Given the large amount of data reg-

ularly collected from buildings through IoT sensors, the research challenge

is to propose innovative and actionable data-driven approaches. These

should ensure scalability, ease of maintenance and long-term performance,

enabling a direct assessment of HVAC control decisions’ impact in real

scenarios. This aligns with a priority in this research area: the validation

of AI-based control solutions in real-world environments, as underlined by

Ngarambe et.al. [7].

In summary, the optimisation of indoor environments involves forecast-

ing key parameters and intelligently controlling HVAC systems, with the

additional challenge of potentially ensuring interoperability between these

two operations. Both forecasting and optimisation present unique chal-

lenges that require innovative solutions to ensure accuracy, ease applica-

4



CHAPTER 1. INTRODUCTION

bility, and scalability.

1.3 Contributions and Outline of the Thesis

This thesis aims to provide a tangible contribution to building sustain-

ability. In line with current research directions, the overall objective is to

improve occupant comfort while minimising the energy footprint caused

by heating and cooling operations. Unlike existing studies, this thesis

presents a practical approach that is readily applicable in real-world sce-

narios. The proposed solution continuously adapts to the monitored en-

vironment through collected data and requires minimal human effort for

deployment and long-term performance. This bridges the gap between

theoretical research and practical application, which often misses in the

literature.

Considering the complexity of the topic, a systematic approach is used,

breaking the problem into multiple steps. Initially, we direct our focus

towards forecasting energy and environmental parameters. Accurate pre-

dictions of indoor environments over time are crucial for mitigating po-

tential critical issues and making informed decisions. This is achieved by

using a sliding window of recent historical data to keep the AI model cur-

rent with environmental changes over time. This predictive capability is

integrated within an intelligent algorithm capable of automatically select-

ing the HVAC configuration strategy that optimises thermal comfort while

minimising energy consumption. Specifically, the forecasting approach is

used to continuously evaluate the environmental and energy impact of a

set of possible device configurations (ON/OFF, set point) for the near fu-

ture, learning and adapting to changes within the environment based on

collected data.

In addition to simulations, the final solution is validated through ex-
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periments conducted in a real-world scenario. Specifically, it has been

tested within the warehouse of a small production plant belonging to an

International retail company located in northern Italy, a direct customer

of Energenius. This real-world validation demonstrates the effectiveness

of the designed forecasting approach and AI-based control algorithm, as

the environmental responses reflect predicted impacts studied during the

decision-making process.

From a practical perspective, the main contributions of this thesis are

twofold:

1. A practical approach for accurately predicting key parameters within

indoor environments using a limited window of collected data, thus

avoiding extensive data collection periods. The AI model remains

updated over time through an adaptive mechanism called mobile win-

dow, resulting in a potential zero-touch solution for forecasting desired

parameters in indoor environments.

2. A novel algorithm, named EECO, to intelligently control HVAC de-

vices in an automated way. The goal is to optimise thermal comfort

while minimising energy consumption within indoor environments.

The designed solution continuously learns from the monitored envi-

ronment to select an efficient HVAC configuration through short-term

decisions based on long-term predictions of the environment, with no

need for any preliminary information (e.g., installed HVAC devices,

layout, and materials) or intervention of expert personnel.

At a high level, this research can significantly reduce the carbon foot-

print of buildings caused by HVAC systems, improve occupant comfort, and

lower the operating costs required to maintain thermal comfort, meeting

growing demands in the industry. The final solution’s potential applica-

bility to any building equipped with a control system that collects envi-
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ronmental and energy consumption data and interfaces with local HVAC

devices opens new business opportunities for Energenius, as discussed in

this thesis.

1.4 Structure of the Thesis

The remainder of this thesis is organised as follows:

• In Chapter 2, we present an overview of existing research focused on

optimising building performance in terms of energy efficiency and en-

vironmental sustainability. This Chapter highlights the potential for

advancing Building Energy Management Systems (BEMS) capabili-

ties through innovative technologies such as Internet of Things (IoT)

and Artificial Intelligence (AI), while also identifying high-level gaps

in the literature that this thesis aims to address.

• In Chapter 3, we delve into the problem of forecasting key parameters

in indoor environments. In contrast to purely performance-oriented

solutions commonly proposed in the literature, we tackle the problem

from a different angle, proposing a practical and adaptive approach

capable of achieving comparable prediction accuracy using a limited

amount of data over time.

• In Chapter 4, we address the intelligent control of HVAC devices for

optimising indoor environments. We introduce EECO, a practical

and automated solution that requires no prior information of the lo-

cal environment (e.g., installed HVAC devices, building features) nor

the intervention of expert personnel. This solution continuously se-

lects an efficient HVAC configuration in terms of ON/OFF and set

point to ensure the desired thermal comfort while minimising energy

consumption.
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• In Chapter 5, we analyse the business impact derived from the re-

search contributions of this thesis, particularly as applied in the busi-

ness domain of Energenius, the host company. This analysis aims to

demonstrate how the research outcomes (i.e., the forecasting and op-

timisation approaches) can positively impact business operations and

create new opportunities.

• Chapter 6 provides conclusions, summarising the key findings of this

research. It also highlights open issues and challenges that require

further investigation.
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Chapter 2

State of the Art

This chapter presents an overview of existing research dedicated to im-

proving building management from environmental and energy perspectives.

This research area aims to advance the functionalities of Building Energy

Management Systems (BEMS) by leveraging innovative technologies such

as Internet of Things (IoT) and Artificial Intelligence (AI). By integrat-

ing and enabling interoperability between these advanced technologies, the

research seeks to optimise building operations, improve energy efficiency,

and create more sustainable and comfortable indoor environments, in line

with with the recent needs outlined in Chapter 1.

The deployment of IoT-enabled smart sensors and meters for regular

data collection takes a central role in developing advanced solutions for

efficient building management. By harnessing the power of IoT, these

sensors and meters provide real-time data that is crucial for developing

intelligent functionalities within buildings (e.g., optimising energy usage,

enhancing indoor comfort, facility management [8]). As investigated by Jia

et.al. [8], a typical IoT-based solution consists of three layers, in particular:

i) the perception layer, responsible for sensing and data collection; ii) the

network layer, responsible for data transportation through a wide range of

communication protocols (e.g., Modbus, BACnet, Zigbee, MQTT); iii) the

9
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application layer, which offers intelligent data management and processing.

Mataloto et.al. [9] exemplify this approach by proposing an IoT open-

source layered platform to monitor indoor environments. The data col-

lected through the platform is not only used to provide critical feedback

for cost reduction but also to facilitate direct control and interaction with

existing lighting, heating and cooling systems. This highlights the multiple

benefits of adopting advanced software solutions such as BEMS. However,

in their case, the local devices are managed through automation rules that

are manually defined by users based on their own analysis of the collected

data. This manual approach, while useful, has clear limitations in scalabil-

ity and accuracy, especially when dealing with large and complex datasets.

The challenge remains to move beyond manual operations towards more

automated and intelligent control solutions.

Similarly, Marinakis et.al. [10] attempt to address this issue by devel-

oping an IoT-based solution that integrates heterogeneous real-time and

predicted data (e.g., energy production, energy prices, weather data, end-

users’ behaviour) to generate daily and weekly action plans for building

occupants. This approach promotes energy efficiency and enhances in-

door comfort, highlighting the advantages of IoT-based solutions in BEMS

for integrating and correlating raw data from different sources to provide

actionable insights. However, while their system offer suggestions for im-

proved building management, it does not automate the control of local

devices (e.g., Heating, Ventilation and Air Conditioning (HVAC) units),

leaving the task of execution to human operators.

Finally, scalability, in terms of both sensors and environments, is a key

feature for BEMS in order to manage multiple indoor environments or

buildings effectively. In this regard, Terroso-Saenz et.al. [11] address this

need by proposing an IoT platform for the management and analysis of

energy data. Their solution is validated in a real-world pilot with sev-
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eral buildings and involving many sensors, highlighting the importance of

scaling and adapting to different scenarios.

Alongside IoT technologies, Artificial Intelligence (AI) is fundamental

for extracting valuable information from collected data. AI introduces in-

novative approaches to develop smart BEMS, enabling the generation of

useful knowledge (e.g., occupancy behavior, fault detection, energy usage

patterns) to enhance building control [12]. This approach aims to overcome

the limitations of manual data analysis, which might overlook patterns,

correlations, and trends that AI models can efficiently detect. For in-

stance, forecasting the occupancy behaviour might be crucial for building

energy simulations, innovative control strategies, and management prac-

tices. Yuan et.al. [13] emphasize this aspect, proposing a machine learning

approach for detecting occupancy patterns and forecasting building occu-

pancy, with the aim to optimise the use of renewable energy sources.

As we delve into next sections, forecasting the indoor parameters through

AI-based solutions is crucial for building optimisation. Commonly pre-

dicted parameters in building environments include energy consumption

[14–16], indoor temperature [17, 18] or indoor CO2 levels [6, 19–21]. A

number of deep learning architectures, including Convolutional Neural

Network (CNN), Multi-Layer Perceptron (MLP), and Long Short-Term

Memory (LSTM), are explored, considering different input variables. As

discussed in Chapter 3, these solutions typically require extensive data

collection before model training and deployment, with limited attention

to periodic updates. These limitations could be addressed by adopting a

potential zero-touch forecasting approach for indoor environments, which

autonomously updates AI models and generates predictions, thus reducing

the need for manual intervention.

AI also supports the detection of abnormal energy consumption patterns

and faults in HVAC systems. In the first case, different research works are

11
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proposed in the literature. For instance, Himeur et.al. [22] demonstrate the

effective interoperability between IoT and AI. The authors collect power

consumption data from different appliances, along with occupancy pat-

terns. They employ a micro-moment paradigm to label power consumption

datasets, discriminating among different categories. Finally, a deep neural

network architecture is used to identify abnormal consumption classes in

an automated way. Regarding HVAC devices, BEMS typically include ex-

tensive building operational data from local systems, hence providing the

opportunity to develop robust, data-driven solutions for anomaly detec-

tion applied on building energy data. Fan et.al. [23] highlight this research

direction, proposing an autoencoder-based ensemble method for anomaly

detection. They discuss the advantages of AI techniques, with a partic-

ular attention for autoencoders (i.e., a type of artificial neural network),

for analysing complex, high-dimensional energy data and detecting critical

behaviours.

While AI-driven methods provide valuable insights for improving build-

ing performance, they often require manual analysis to derive actionable

steps for mitigating potential issues. A more advanced approach involves

integrating AI-based systems that not only analyse data intelligently (e.g.,

to optimise indoor comfort while minimising energy consumption) but also

directly control local devices in real-time. This automation reduces the

need for human intervention, allowing facility managers to lower operating

costs, simplify building management, and improve overall system efficiency.

In recent years, numerous research efforts have focused on balancing energy

consumption in HVAC systems with maintaining optimal indoor comfort

for occupants, often interfacing directly with local devices. Different AI-

based methodologies have been explored to achieve this balance, which will

be explored in detail in Chapter 4. However, many of these approaches rely

on ad-hoc physical or mathematical models (e.g., [24–29]), which require

12
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significant manual effort for both short-term deployment and long-term

maintenance, especially when managing multiple sites. Additionally, some

methods depend on simulated environments (e.g., [26, 28–31]), presenting

challenges in scaling and ease of implementation in real-world scenarios.

Further details on the state-of-the-art solution for forecasting and optimis-

ing indoor environments are discussed in Chapter 3 and 4, respectively.

Recent advancements in in IoT and AI research have driven the de-

velopment of different commercially available solutions aimed at optimis-

ing buildings and indoor environments from an energy and/or environ-

mental perspective. Some of these solutions, briefly introduced in Chap-

ter 5, include EnergyCAP SmartAnalytics [32], Enterprise Data Xchange

(EDX) [33], Powerhouse Dynamics’ SiteSage [34], Spacewell Energy Plat-

form (Dexma) [35] and Energis.Cloud [36]. These platforms are proposed

in the market and primarily focus on automated data analysis, providing

actionable insights into indoor environmental conditions and energy us-

age. However, while these systems offer valuable information, most still

require manual intervention for operational decision-making or strategy

implementation. Although some tools provide direct control over HVAC

systems, they often involve manual scheduling or static rules of HVAC

operations. Additionally, they often lack the ability to automatically bal-

ance energy consumption with occupant comfort, a key factor for achiev-

ing optimal performance. The potential for further improvement lies in

enhancing the automation across all stages, from data collection and ad-

vanced data analytics to the development of intelligent algorithms that

dynamically optimise both energy efficiency and occupant comfort, while

autonomously controlling HVAC devices. Integrating real-time predictive

capabilities combined with automated control of local devices would reduce

manual effort, improve building management and promote sustainability.

In conclusion, the integration of AI and IoT enable BEMS to trans-
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form raw data into predictive and actionable information, resulting in re-

liable and intelligent building management. The synergistic use of these

technologies facilitates advanced functionalities (e.g., forecasting, optimi-

sation) that enhance energy efficiency, optimise building operations, and

ensure sustainable and comfortable indoor environments in an automated

way.

14



Chapter 3

Forecasting Environmental and

Energy Parameters

Accurately forecasting changes in environmental parameters and energy

consumption is crucial for optimising building management. Predictive in-

formation allows building managers and owners to anticipate and respond

to fluctuations in indoor conditions, either through manual operations or

advanced solutions that optimise HVAC systems. Effective forecasting en-

ables proactive decision-making, which can lead to significant energy sav-

ings, improved thermal comfort, and enhanced occupant health and pro-

ductivity. The ability to predict these changes is increasingly important as

buildings grow in complexity and requirements in terms of energy efficiency

and indoor comfort become more stringent, as discussed in Chapter 1.

In this chapter, we explore this topic from a different angle, proposing a

practical and adaptive methodology for predicting environmental param-

eters and energy consumption in indoor environments. Initially, we delve

into forecasting a single variable, which helps us to break down the con-

sidered problem into multiple steps. Given its significant impact on IAQ,

especially highlighted during the Covid-19 pandemic, and its notable inter-

est in research literature, we direct attention to indoor CO2 levels (Section

3.3). Subsequently, we extend the designed methodology to predict mul-
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tiple variables of interest within the indoor environment, including tem-

perature, humidity, as well as energy consumption due to HVAC devices

(Section 3.4).

This chapter is mainly based on our published paper ”Segala, G.; Doriguzzi-

Corin, R.; Peroni, C.; Gazzini, T.; Siracusa, D. A Practical and Adaptive

Approach to Predicting Indoor CO2. Appl. Sci. 2021, 11, 10771.” [37].

3.1 Motivation

While solutions proposed in the literature mainly focus on maximising pre-

diction accuracy through different AI techniques, a purely performance-

oriented approach (i.e., which primarily focuses on prediction accuracy)

might limit the applicability of such solutions in real-world scenarios. High

performance typically requires a significant amount of data collected over

extended periods (both in forecasting environmental parameters such as

CO2 [6, 19–21] and energy consumption [14–16]) or complex input vari-

ables from expensive, cutting-edge sensors [21, 38], which are not always

readily available. This scenario typically necessitates data collection over

many days or even months before training AI models, resulting in lengthy

wait times for full system deployment and making it unattractive from a

business perspective.

Additionally, the challenges of periodically updating AI models to ac-

count for changes in the monitored environment are often overlooked.

These challenges include adapting to variations in environmental param-

eters due to changes in human activity or natural seasonal fluctuations,

which are essential for ensuring accurate predictions throughout the year.

Hence, while maximising prediction accuracy is important, it is equally

crucial to develop practical and adaptable solutions that can be quickly

deployed and maintained in dynamic real-world environments.
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3.2 Main Contribution

This research study places particular emphasis on the proposed method-

ology tailored for practical applicability in real-world scenarios, an aspect

often lacking in current research. Combining the practical constraints while

maintaining the requirement of accurate predictions, we provide the follow-

ing contributions:

• A Deep Learning solution based on 1D Convolutional Neural Network

(CNN) for predicting key parameters within indoor environments.

The designed AI model can be trained with a small amount of re-

cent data collected over a short time frame, hence guaranteeing high

prediction accuracy after few days from the beginning of the data

collection, with no need for model pre-training.

• A model update mechanism based on a mobile window that keeps

the predictions consistent with any environmental changes. This ap-

proach potentially provides a zero-touch forecasting method that can

effectively adapt to real-world scenarios. This adaptability ensures

that the system remains responsive to variations in the environment,

maintaining prediction accuracy throughout different conditions and

periods of the year.

3.3 Single Output Variable: CO2

CO2 is one of the main pollutants that most affects IAQ in buildings, due to

its strong correlation with human presence. Medical and scientific studies

have underlined how high levels of CO2 not only affect cognition [39] and

well-being of people, significantly reducing comfort perception in indoor

environments, but might contribute to Covid-19 infection [40]. In this

regard, National and European regulations define specific thresholds to
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maintain IAQ standards, e.g., the Joint Research Center (JRC) of the

European Commission [41] defines the limit of 1000 ppm. In this context,

effectively forecasting CO2 is crucial for implementing preventive actions

and keeping its level as low as possible.

3.3.1 State of the Art

Due to the growing interest in IAQ, as mentioned in the previous sections,

numerous research studies on forecasting indoor CO2 levels have been pub-

lished over the past decade. These studies explores different predictive

models and techniques, with the aim to maximise prediction accuracy.

Skön et.al. [42] evaluate the use of relative humidity and temperature

for modelling indoor CO2 by means of a Multi-Layer Perceptron (MLP).

Their objective is to avoid the deployment of expensive CO2 sensors. De-

spite considering data collected over six months and extracting advanced

statistical features (e.g., kurtosis, skewness) to maximise the information

available for model training, the performance is poor. The same authors

highlight the need for additional input variables. As a result, following

studies focus on adding new input variables. For instance, in [19] outdoor

temperature and humidity, alongside with supporting parameters such as

date and time, are introduced to predict CO2 using Random Forest. This

study considers different training dataset sizes and number of trees, achiev-

ing better performance, but require a large dataset covering more than a

year for training.

In contrast to previous studies, Khorram et.al. [20] integrate the histor-

ical data of CO2 and time parameters (e.g., weekday, hour and minute) in

their study. They explore two different scenarios using an ANN with three

hidden layers: the first case considers all input variables, including the

time information, while the second case only focuses on historical data of

CO2. The results indicate that time and date variables do not significantly
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improve prediction accuracy. Furthermore, the chosen approach relies on

a large amount of data (corresponding to a time period of 242 days) for

model training, with evaluation limited to a mere 10 hours following the

training period. Similarly, Putra et.al. [43] evaluate a scenario using only

CO2 data as the input variable. In this case, the authors use CO2 val-

ues with an hourly time granularity, restricting the analysis to working

hours. The proposed neural network is trained on data collected over a

single week (from Monday to Friday, excluding night periods), predicting

CO2 values for the following Monday and Tuesday. While their results

show a good correlation between true and predicted values with limited

training data, this study is constrained by clear limitations: it tests pre-

dictions for only a couple of days, hence limiting the performance overview

of the proposed method, and requires a large time granularity (i.e., one

hour) of data. Khazaei et.al. [44] provide a detailed analysis regarding the

use of CO2 as an input variable. Three different approaches are consid-

ered: the first case includes CO2 as an input variable, the second case uses

only humidity and indoor temperature while the third case partially uses

CO2 as input variable to forecast five future time-steps. Each approach

corresponds to a different neural network training method (in this case,

MLP). Similar to Skön et.al. [42], the authors highlight the importance of

collecting CO2 data through sensors for model training. Despite achiev-

ing good prediction accuracy with a small amount of training data, their

evaluation is limited to just one week of data, similar to previous research

studies [20, 43]. Furthermore, none of the aforementioned works consider

updating the AI models over time.

In the literature, some research studies integrate the prediction of CO2

as part of the broader task of forecasting Indoor Air Quality (IAQ), explor-

ing different neural network architectures for this purpose. For instance,

Sharma et.al. [38] employ an optimised Long Short-Term Memory (LSTM)
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to estimate and predict CO2 and PM 2.5 in some university classrooms.

Although their approach achieves good prediction accuracy, it relies on de-

tailed variables (e.g., indoor NO2, wind speed, wind direction, number of

students) that require cutting-edge sensors, making the whole data collec-

tion system expensive from a business perspective. Similarly, Ahn et.al. [21]

use a gated recurrent unit (GRU) network as deep learning technique to

predict fine dust, light amount, VOC, CO2, temperature and humidity by

providing the past values of these variables as input. However, this ar-

chitecture is computationally demanding, requiring more than a day and

a half for training. Furthermore, it depends on data collected over more

than six months, including complex variables.

In this study, we mainly reference the research work proposed by Kallio

et.al. [6], which provides a detailed and comprehensive analysis of indoor

CO2 prediction. Unlike the other studies, the authors analyse the research

problem from data collection architecture to the forecast results, further

considering the challenges of using edge devices in such scenarios. They

evaluate different AI techniques (Ridge, Decision Tree, Random Forest,

MLP) in terms of both computational load and prediction accuracy, and

assess the impact of input variables, the number of past values to use and

the number of future values to predict. The authors underline the infeasibil-

ity of applying neural networks on edge devices due to their computational

demands and suggest less computationally demanding techniques like De-

cision Trees. Despite the detailed overview of the problem, the proposed

approach poses challenges for real-world application. Indeed, it requires

a large amount of data collected over a whole year from different rooms

to train models for predicting CO2 within the monitored rooms in the so

called ”hard sections” (i.e., when CO2 has a significant variation). As a

result, it is necessary to collect data for an extended time period before

training the AI models, providing important limitations from a business
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perspective.

Table 3.1 highlights the key points of each research work presented in

this section. Compared to them, a major benefit of our approach is the au-

tomated model update mechanism, necessary to keep up with the changes

of the environmental conditions, hence to cope with the dynamics of real-

world application scenarios.

Table 3.1: Summary of State-of-the-Art solutions for predicting CO2 levels.

Related work Dataset Size Input Variables AI Architecture
Automated Model

Update

Segala et.al. [37]
Adaptive

(Max 30 days)

Temperature, humidity,

CO2

1D CNN Yes

Kallio et.al. [6] One year
CO2, PIR,

temperature and humidity

Ridge, Decision Tree,

Random Forest, MLP
No

Vanus et.al. [19] One year
Temperature, humidity,

time, date
Random Forest No

Khorram et.al. [20] 242 days
CO2, weekday, hour,

minute
ANN No

Ahn et.al. [21] Six months

Fine dust, light amount,

VOC,CO2,

temperature and humidity

GRU No

Sharma et.al. [38] One week

Indoor NO2, wind speed,

wind direction,

number of student

LSTM No

Skön et.al. [42] Six months Temperature, humidity MLP No

Putra et.al. [43] One week CO2 ANN No

Khazaei et.al. [44] One week CO2, humidity, temperature MLP No

3.3.2 Dataset

In this research work, we use the data provided and published by Kallio J.

et al. [6]. The authors specifically published the dataset for further anal-

ysis of CO2 predictions, making it highly-suitable for our objectives. The

dataset includes data collected from 13 different rooms (e.g., offices, meet-

ing rooms) by means of different commercial sensors at Technical Research

Center of Finland (VTT) in 2019. The monitored variables are:

• Temperature [°C];
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• Relative humidity [%];

• Air pressure [hPa];

• Carbon dioxide concentration [ppm];

• Activity level.

For this research work, as detailed in in Table 3.2, we use indoor tempera-

ture, humidity and CO2. To preprocess the data, we use a script developed

by Kallio J. et al. [6], which automatically aligns the timestamps of the

sensor data collected from the same room. As reported in their paper,

communication issues affected the sensors in five rooms during the data

collection, resulting in over 10% incomplete samples (i.e., missing at least

one among T, H or CO2). The script addresses the issue by filling the

gaps with the mean between the previous and next value. Additionally,

the script includes methods to split the dataset into train and test data.

However, we do not use this functionality because the script excludes peri-

ods of slow CO2 variation during the split process, which would impact the

validation of our solution under all conditions. Instead, we implement a

custom method to split the data within a given mobile window into train-

ing set (70%) and validation set (30%) (as indicated in Table 3.2). As

described in Section 3.3.3, we test the prediction on the first day after the

time window.

3.3.3 Methodology

Neural Network Architecture

A 1-Dimensional CNN is used as deep learning architecture for forecasting.

1D CNN, which find application in NLP [45], in network security [46] and

other domains, are able to automatically analyse and extract fine-grained

features from a single spatial dimension (in our case, time) by means of

22



CHAPTER 3. FORECASTING ENVIRONMENTAL AND ENERGY PARAMETERS

convolution operations [47]. From a computational perspective, they guar-

antee good performance through a shallow structure and advanced fea-

tures such as weight sharing, with the possibility of using a small amount

of data for training the model [48] without significantly impacting the

accuracy. In contrast to other types of neural networks (e.g., recurrent

neural networks) proposed in the literature [21,38], 1D CNN are less com-

putationally demanding [49], making them suitable for limited-power and

resource-constrained devices.

Dense LinearFlattenMax Pooling1D Convolution
ReLU

h

k

n-h+1

n

f

k

(n-h+1)/

pool_size

k*[(n-h+1)/

pool_size]

Figure 3.1: The designed neural network architecture for forecasting indoor CO2.

The proposed CNN architecture, depicted in Figure 3.1, consists of the

following layers:

• Input layer. Each sample includes the values of the input environmen-

tal variables (i.e., temperature, humidity and CO2) covering a window

of n quarters of an hour. Basically, a sample is a data matrix of size

n×f where n is the number of quarters of an hour and f is the number
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of features. This approach leverages the temporal nature of environ-

mental variables., as the values of temperature, humidity or CO2 at

close time intervals are correlated between each other. Before feed-

ing the neural network, the input values are normalized by defining a

maximum and minimum value for each variable.

• 1D Convolutional Layer. This layer analyses and extracts features

along time-dimensional axis of the input data. It outputs a matrix of

size (n− h+ 1)× k, where each column is a feature vector extracted

using convolutional filters or kernels. Each of the k kernels slides over

the input matrix with a step equal to 1 and makes a convolution oper-

ation to extract the most significant local information. The common

rectified linear activation function (i.e., ReLU(x) = max{0,x}) is used
to extract non-linearity patterns from data.

• Max Pooling layer. This layer aims to learn the most valuable infor-

mation from the extracted feature vectors by applying a subsampling

operation to the output matrix from the CNN layer. A filter slides

along each feature map according to a step given by the stride pa-

rameter and applies a maximum operation to a number of elements

equal to the pool size parameter. The stride is set equal to pool size,

providing an output matrix of size [(n− h+ 1)/pool size]× k.

• Flatten layer. This layer reshapes the input matrix into a one-dimensional

feature vector which can be used to make predictions by the subse-

quent output layer.

• Output layer. This linear fully connected layer, consisting of a single

neuron, predicts the CO2 value for the next quarter hour.
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Proposed Approach

The proposed approach is based on the use of a small amount of data

collected over a short time frame to train the neural network model. This

enables the system to become operational and provide accurate predictions

shortly after its initial deployment, without requiring extensive data collec-

tion (e.g., over weeks or even months) or across different environments. In

this regard, we introduce the concept of the mobile window, which refers to

the amount of recent data used to train and update the model over time.

This approach relies on the idea that only recent data include valuable

information for modelling the local environment. In contrast, including

outdated data from distant past periods might degrade prediction accu-

racy, potentially capturing conditions related e.g., to a another season of

the year or different scenarios. Hence, the mobile window serves as a dy-

namic mechanism to keep the model up-to-date upon recent environmental

changes. This capability is particularly valuable in dynamic environments

where conditions can change rapidly, ensuring that the model remains accu-

rate and reliable. The mobile window size is adjusted to achieve prediction

accuracy within the 10-20 ppm range, hence ensuring an accurate control

of HVAC systems, as indicated by previous studies [6].

The proposed approach seamlessly integrates with typical data col-

lection procedures for IAQ monitoring. Furthermore, by leveraging a

small amount of data and a lightweight neural network architecture (i.e.,

1D CNN), this method can be effectively applied on edge devices to au-

tonomously forecast local CO2 levels. This results in a potential zero-touch

indoor CO2 prediction approach, making it highly efficient and practical

for real-world application.

The main operations of our approach can be summarised as follows

(Figure 3.2):

25



CHAPTER 3. FORECASTING ENVIRONMENTAL AND ENERGY PARAMETERS
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Figure 3.2: The sequence of operations for forecasting CO2 levels at each quarter-hour

interval (t0, t1, ..., t95) throughout the day.

• Every quarter of an hour throughout the day t0, t1, ..., t95, the en-

vironmental data (i.e., temperature, humidity, CO2) are collected on

the edge device through smart IoT sensors. This data collection fre-

quency ensures a good balance among the accuracy of analysis, bat-

tery lifetime of sensors and storage capabilities of the edge device.

Additionally, some industrial protocols (e.g., Modbus [50]) keep the

channel busy during data reading operations. A quarter-hour granu-
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larity prevents the physical channel from being occupied at a high rate,

enabling the edge device to perform other local tasks (e.g., actuation)

without potential interference.

• Immediately after the data collection at every quarter hour t0, t1,

..., t95, the system processes the collected data as samples. Specifi-

cally, the sample including the values of the environmental variables

of the last n quarters of an hour is input to the Convolutional Neu-

ral Network to predict the CO2 level of the next quarter hour. This

process enables the system to regularly provide the forecast value of

CO2 for the next future, considering recent short-term environmental

trends. The predicted value can be effectively used to regulate HVAC

systems proactively to keep CO2 levels under control. As noted by

Pistochini et.al. [51], typical CO2-based Demand-Controlled Ventila-

tion (DCV) methods integrated into HVAC systems operate by either

opening the damper at a fixed rate until the set point is reached,

closing it when CO2 levels fall below the minimum deadband, or by

using a proportional-integral (PI) algorithm, or adjusting the damper

position in function of CO2 concentration.

• Every N days, a window of data spanning the past few days is used to

update the neural network model. Initially, during the early stages of

deployment, this window progressively increases to account for a larger

amount of information with the aim to to improve the modelling of

the environment as soon as possible. Basically, the adaptability of

the mobile window allows the system to continuously refine its pre-

dictions, improving its performance over time in the start-up phase.

Once the window achieves its optimal size, balancing prediction ac-

curacy against computational demand, it slides over time to update

the models, effectively becoming a mobile window (Figure 3.3). From
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a processing perspective, the data are handled as samples, which are

then used to feed the 1D Convolutional Neural Network for training

the model. This operation can be properly scheduled after the last

data collection operation of the day (before t0).

...
d1 d2 d3 d4 d5 d6 d30 d31 d32 d33 d34 d35

time

N=1

N=2

N=3

N=4

N=5

N=6

N=30

N=30

N=30

N=30

N=30

N=30

...

...

Figure 3.3: The behaviour of the mobile window during the initial system deployment.

3.3.4 Experimental Setup

In Table 3.2 we report the values of the main parameters used in the

simulations.

Temperature, humidity and CO2 of the dataset are used as input vari-

ables to predict future CO2 levels. These variables take a central role for

facility managers to have an overview of IAQ in their indoor environments.

Integrating additional advanced sensors to monitor complex air pollutants
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Table 3.2: Simulation parameters for the designed AI model for predicting CO2 levels.

Parameter Value

Environmental variables in input Temperature, humidity, CO2

Time granularity of data 15 minutes

Quarters of an hour in a sample 8

Number of kernel filters - Convolutional layer 64

Kernel size - Convolutional layer 3

Pool size - Max Pooling layer 2

Learning rate 0.001

Batch size 32

Optimizer Adam

Loss function Mean squared error

Validation split 0.3

Maximum number of epochs 5000

Patience 25

like particulate matters (PM1, PM2.5, PM10) or VOC significantly esca-

lates the cost of the data collection system. Additionally, these variables

depend not only on human activity but also on other agents, which can

be considered of minor interest. As a result, we optimised the choice of

the input variables, coherently with the rest of the proposed system. Their

value range is reported in Table 3.3.

Table 3.3: Range of the input variables for predicting CO2 levels.

Parameter Range

Temperature 0-40 °C
Humidity 0-80 %

CO2 350-5000 ppm

In [6], the data are characterized by a time granularity equal to one

minute. However, the original values of the dataset have been aggregated

every 15 minutes to simulate a typical data collection scenario.

We evaluated the main hyper-parameters of the 1D CNN in order to
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find the values that guarantee a good balance between model accuracy and

computational demands. In this regard, we used RMSE as performance

metric:

RMSE =

√√√√ 1

N

N∑
i=1

(yi − ŷi)2 (3.1)

where yi is the real CO2, ŷi is the predicted CO2 and N is the number of

total quarters of an hour.

We evaluated the performance of the system by varying the number

of quarters of an hour per sample. We conducted experiments involving

other relevant parameters such as: pool size, kernel size and number of

convolutional filters. The results from these experiments are detailed in

Figure 3.4:

• Pool size takes a central role in extracting the most relevant infor-

mation from the feature vectors generated by the convolutional layer.

According to Figure 3.4, we set it equal to 2, as global max pooling

significantly impacted the accuracy.

• Kernel size is important to extract valuable information along the

time dimension. The simulation results reported in Figure 3.4 show

similar performance between different kernel sizes. Thus, we set it

equal to 3, which is one of the standard values for CNN.

• Number of convolutional filters was set to 64. Indeed, as reported in

Figure 3.4, we noticed that higher values (e.g., 128, 256) yielded com-

parable performance, especially when samples include a few quarters

of hour. In this way, we provide more compact and lightweight mod-

els, reducing memory usage and guaranteeing faster computations,

especially on limited-power and resource-constrained devices.
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Figure 3.4: The behaviour of the model at different numbers of quarters of an hour per

sample, with focus on the pool size (top), kernel size (center) and number of convolutional

filters (bottom).
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Other involved parameters are:

• The learning rate is set to 0.001, a value used in many complex and

non-linear problems, which guarantees a good trade-off between con-

vergence and computational time.

• The batch size is set to 32 to guarantee stability and to limit the

memory footprint of the models.

• Adam optimizer [52] is used as optimisation algorithm.

• RMSE is used as the loss function during the training.

• The validation split is set equal to 0.3, as per common practice in

studies on CO2 prediction. Before the split, we shuffle the samples

so that both training and validation sets contain samples which are

spread across the whole time window. It is worth noting that we

do not shuffle the time series within a single sample, as we want to

preserve the chronological order of the consecutive quarters of hour.

• Maximum number of epochs set to 5000, combined with an early stop-

ping patience parameter set to 25 epochs.

3.3.5 Results and Discussion

In this section, we present the outcomes of our experiments designed to

evaluate the effectiveness of our proposed approach. Specifically, a couple

of experiments have been conducted:

1. The first experiment aims to understand the impact of the mobile win-

dow, highlighting the practical and adaptive features of the proposed

approach;

2. The second experiment assesses performance in predicting multiple

days into the future, simulating model updates after N days.
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Mobile Window

The mobile windows, which determines the amount of data user for training

the AI model, is the most important hyper-parameter in our approach. For

this reason, it needs to be deeply investigated in order to understand how

its size affects the accuracy of the predictions.

To delve into the impact of different mobile window sizes, we use the

simulation setup detailed in Section 3.3.4. Given a certain mobile window

of N days, each of the 13 rooms in our dataset was subjected to analy-

sis, picking up a random day per month to predict using the previous N

days for training. Finally, the resulting performance metrics are averaged

across all rooms, hence providing an overall performance for different sizes

of the mobile window. This experimental approach enables us to simulate

our methodology taking into account any possible period of the year (i.e.,

the deployment of the proposed system at any time of the year) as well

as environments with different physical characteristics (i.e., volume and

area), thus having a detailed overview of the performance of the proposed

approach unlike other previous research works (e.g., [20, 43, 44]). As re-

ported in Section 3.3.2, the dataset exhibits some missing values due to

communication failures during the data collection. We recognise the po-

tential impact of these gaps on the correctness of the predictions, hence

we excluded from our experiments the days with holes in their data and in

the previous N days used for training.

The experiment is executed on Raspberry Pi 4 Model B with 4 GB of

memory, which plays the role of the edge device. This setup facilitates

a realistic assessment of our approach’s performance under practical con-

straints.

Figure 3.5 outlines the results of this experiment, demonstrating the

benefits of the proposed approach. In the first place, it underlines the
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feasibility of deploying the system after just one day of data collection,

without the need of any model pre-training or extensive data collection.

Despite poor performance in the first days with RMSE values ranging be-

tween 30 and 50 ppm due to weak correlation between the days within the

mobile window and the target day for prediction, the accuracy exhibits a

significant improvement within a few days. Indeed, the model progressively

learns complex features, improving its capacity to model dynamics and be-

haviours within the indoor environment. Within a week of data collection,

the RMSE drastically decreases to around 15 ppm, ensuring precise control

of HVAC systems in short time. As a result, during the initial deployment

phase, the model can be regularly updated, progressively increasing the

mobile window used for training in order to improve the performance as

soon as possible from the beginning of data collection. After around a

month, the RMSE is reduced until about 10 ppm, achieving prediction

accuracy comparable to other literature studies employing larger datasets

for training.

The results of this experiment highlight the benefits of the proposed

approach:

1. During the first period of the system deployment, performance can

be progressively improved by increasing the data within the mobile

window, enabling the system to adapt and learn new features over

time.

2. After just a month of data collection, the proposed approach achieves

the best performance in terms of prediction accuracy. This amount of

data proves sufficient to model the indoor environments accurately.

3. A 30-day window of data can effectively slides over time to update

the model at a certain rate, effectively becoming a mobile window.

This automated mechanism enables the model to guarantee accurate
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Figure 3.5: The behaviour of RMSE and training time as the mobile window increases.

long-term performance.

The plot in the figure also shows that mobile windows larger than 30

days do not bring any major improvements in terms of RMSE. On the other

hand, as the training time grows exponentially, shorter time windows are

preferred to prevent overloading the edge node and minimise interference

with other (critical) processes executed on the same device. Additionally,

with a time window size of 30 days, the model takes approximately 25

minutes to train. Thus, this operation can be scheduled when the device

is idle or does not execute critical operations (e.g., overnight, when indoor

environments are typically empty). Based on the above considerations, we

can conclude that a 30-day mobile window allows a good trade-off between

the computational demand and accuracy.

To illustrate a typical CO2 trend in the dataset and visually assess

forecast accuracy, Figures 3.6 and 3.7 present the predicted and actual CO2

levels for one of the rooms described in Section 3.3.2, using a 30-day mobile
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window for training. As observed, CO2 levels are typically lower in the

summer compared to winter, likely due to increased ventilation as windows

are often kept open, allowing for better air circulation. Nevertheless, in

both cases, the predictive model demonstrates strong accuracy in capturing

the overall trends.
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Figure 3.6: Predictions and actual CO2 levels throughout a winter day in one of the rooms

from the dataset.
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Figure 3.7: Predictions and actual CO2 levels throughout a summer day in one of the

rooms from the dataset.

36



CHAPTER 3. FORECASTING ENVIRONMENTAL AND ENERGY PARAMETERS

Despite the above benefits, the proposed approach is affected by some

limitations. First, as outlined in Figure 3.5, the RMSE during the first

week is above the target threshold of 10-20 ppm. Although the performance

of the system improves quickly, this warm-up phase can possibly lead to

non-optimal regulations of HVAC systems. Second, the current version of

the system is not resilient to missing values, as it requires a robust data

collection system to work properly. This means that in the case of holes in

the data (because of, e.g., communication issues, sensor failures), the future

level of CO2 cannot be predicted. In this regard, as further improvement of

the system, we plan to solve this issue by implementing a mechanism that

finds the largest time window with no holes in the past data, which would

be used to perform the prediction of the CO2 level. Here the challenge is

to find a trade-off between the size and the age of the old window. Thus,

we need a sufficiently large time window for a good prediction, but we do

not want to go too far in the past to find such a large time window.

Model Update Rate

Based on our previous analysis, the model can be effectively updated on a

daily basis. However, it is important to analyse whether the frequency of

model updates can be reduced once the mobile window reaches the desired

size. This prompts us to investigate how often the model should be re-

trained to maintain the desired accuracy level. To this aim, we set the

window size at a certain value and we evaluate the prediction error of our

model when increasing the number of forecast days.

Figure 3.8 reports the results of this experiment, outlining a very slow

increase in prediction error as the forecast horizon in terms of number of fu-

ture days extends. This suggests that the indoor environmental behaviour

remains relatively stable over weeks, demonstrating once again that data

collection over extended time periods does not enhance indoor CO2 predic-
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Figure 3.8: The behaviour of RMSE as a function of the forecast days.

tion accuracy in a significant way. Consequently, this allows for potentially

less frequent model updates compared to a daily basis. For instance, the

model could be effectively refreshed weekly e.g., in the scenario of retail

stores, during the weekend when the store might be closed and the edge

device is idle for most of the time. However, the best prediction accuracy

is achieved with a daily model update. This can be properly scheduled at

the end of the day, as defined by the previous experiment of the mobile

window, when all the data of the previous N days are collected on the edge

device.
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3.4 Multiple Variables: Temperature, Humidity, CO2

and Energy Consumption

Following the development of the forecasting approach based on the use of

mobile window, we now aim to enhance the method for optimisation tasks.

Our primary objective is to extend the AI model to predict changes within

indoor environments from both environmental and energy perspectives. To

address this task, we review and refine the designed architecture to forecast

multiple variables, including indoor temperature, humidity, CO2 and en-

ergy consumption due to HVAC devices. These predictions are based on a

set of heterogeneous input variables that directly influence the evolution of

key indoor environmental parameters and energy consumption, as we will

discuss in Section 3.4.1. The ultimate goal is to use these predictions to in-

telligently and timely adjust HVAC systems through the EECO algorithm

(discussed in Chapter 4), ensuring the desired comfort level is maintained

with minimal energy consumption.

3.4.1 Input Variables

The variables used by the AI model to forecast changes within the consid-

ered environment can be categorised as follows (an overview is reported in

Table 3.4):

• HVAC parameters. These include status (i.e., ON/OFF), Set Point

(SP) (i.e., target temperature), fan speed and operating mode (i.e.,

heating or cooling) for each HVAC device installed in the environ-

ment. Such parameters are fundamental for modeling the indoor en-

vironment based on the operational settings of the HVAC systems.

Data is collected through an electronic interface that enables our dat-

alogger/master node to communicate through Modbus protocol [50]

with the HVAC unit.
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• Outdoor environmental parameters, which include temperature and

humidity. Such variables significantly influence indoor environments,

hence taking a central role in indoor climate control requirements

and energy usage. This kind of information is retrieved from the

OpenWeatherMap platform [53] through available APIs.

• Indoor environmental parameters, which include temperature, humid-

ity and CO2, and energy consumption. These variables are crucial for

optimisation tasks, as they directly impact the trade-off between ther-

mal comfort and energy footprint. Indoor temperature is sensed by

thermostats connected to the HVAC devices, while humidity and CO2

levels are monitored by an IoT ambient probe [54] installed within

the environment, which sends raw data to its receiver. Additionally,

energy consumption is monitored through a wireless energy meter [55]

installed on the three-phase line powering the considered HVAC de-

vices (i.e., Variable Refrigerant Volume (VRV) systems). This device

communicates with its gateway [56] and provides data through the

Modbus protocol [50]. The monitored energy consumption includes

the overall energy demand of the VRV system (i.e., compressor and

fans).

• Supporting variables. They basically include temporal features such as

the day of the week and the hour of the day. This kind of information

is important for the model to learn temporal patterns from historical

data.

All the aforementioned input variables are collected every 15 minutes,

except for the outdoor temperature and humidity, which are affected by

a one-hour time granularity. In this case, a linear interpolation has been

applied to fill the missing quarters of hour.
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Table 3.4: Overview of the input variables for predicting indoor temperature, humidity,

CO2 and energy consumption due to HVAC devices.

Variable Type Description

ON/OFF Categorical ON/OFF of HVAC devices.

Set Point Number SP temperature [°C] of HVAC devices.

Fan Speed Categorical
Fan speed of HVAC devices (1 = low, 2 = high,

3 = very high).

Operating Mode Categorical
Operating mode of HVAC devices,

i.e., cooling or heating.

Outdoor Temperature Number
Outdoor temperature [°C] collected

from the OpenWeatherMap platform [53].

Outdoor Humidity Number
Outdoor humidity [%] collected

from the OpenWeatherMap platform [53].

Indoor Temperature Number

Indoor temperature [°C] sensed by the thermostats,

which feed their readings to the installed HVAC devices.

The mean value is used within the algorithm.

Indoor Humidity Number
Indoor humidity [%] collected through an IoT sensor

installed in the environment.

Indoor CO2 Number
Indoor CO2 [ppm] collected through an IoT sensor

installed in the environment.

Energy Consumption Number
Energy consumption [kWh] due to HVAC devices

collected from a smart energy meter.

Day of the week Number Information on the day of the week.

Hour of the day Number Information on the hour of the day.

3.4.2 Methodology

A one-dimensional (in short 1D) CNN is a neural network model com-

posed of one or more 1D convolutional layers. As previously reported in

Section 3.3.3, 1D convolutions enable us to extract fine-grained information

from one-dimensional data (such as indoor temperature, humidity, energy

consumption) along the temporal dimension. Considering the strong per-

formance achieved with CO2 predictions, we use the same architecture for

multi-variable predictions. Specifically, this approach aims to correlate

heterogeneous data — including HVAC parameters and both outdoor and
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indoor environmental conditions — to accurately forecast future values

of temperature, humidity, CO2 levels, and energy consumption related to

HVAC devices.

Neural Network Architecture

Dense LinearFlattenMax Pooling1D Convolution

ReLU

h

k

n-h+1

n

f

k

(n-h+1)/

pool_size

k*[(n-h+1)/

pool_size]


...

Figure 3.9: The designed neural network architecture for forecasting multiple variables.

The designed architecture consists of four layers, as sketched in Figure 3.9:

• Input layer. The first layer takes as input an n× f array, where n is

the duration of the observation time window (expressed in quarters of

an hour) and f is the number of features. That is, an input sample

consists of the values of f variables (previously described in Section

3.4.1), including temperature, humidity and CO2, energy consump-

tion, HVAC operating parameters, collected during a time window of

n quarters of an hour. Each sample is normalised along the tempo-

ral axis by using the nominal minimum and maximum values of each

variable.
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• 1D Convolutional Layer. Each sample is operated by a convolutional

layer with k filters, each filter of size h × f , with h being the height

and f the width of the input sample (i.e., the number of features).

Each of these k kernels slides over the input matrix with a step of 1 to

extract the temporal properties of the f features. This layer outputs a

matrix of size (n−h+1)× k, in which i-th column is a feature vector

extracted by the i-th filter. The rectified linear activation function

(ReLU(x) = max{0,x}) is used to break linearity in the model, as per

convention for CNN.

• Max Pooling layer. The max-pooling operation downsamples the tem-

poral properties extracted with the convolution by keeping only the

largest values. This operation involves a filter that slides along each

feature map with a pre-defined step (also called stride) and applies

a maximum operator to a number of elements equal to the pool size

parameter. As we set stride equal to pool size, the size of the resulting

matrix is equal to ((n− h+ 1)/pool size) · k.

• Flatten layer. It reshapes the output of the max pooling operation

into a one-dimensional feature vector.

• Output layer. The vector is processed by a final fully connected layer.

The output of this layer is a vector of four elements, with the predic-

tions of indoor temperature, humidity, CO2 and energy consumption

for the quarter of an hour that follows the input time window.

Model Training

Table 3.5 reports the values of the main hyper-parameters of the AI model.

Considering the obtained performance, we use largely the same configura-

tion reported in 3.3.4, differing only in a couple of parameters: we define

different loss weights for the output variables with the aim to balance their
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contribution equally within the overall loss, and we reduce the maximum

number of training epochs to 1000.

Table 3.5: Simulation parameters for the designed AI model for multi-variable prediction.

Parameter Value

Time granularity of data 15 minutes

Quarters of an hour in a sample 8

Number of kernel filters - Convolutional layer 64

Kernel size - Convolutional layer 3

Pool size - Max Pooling layer 2

Learning rate 0.001

Batch size 32

Optimizer Adam [52]

Loss function Mean squared error

Validation split 0.3

Loss weights
co2: 0.1, indoor temperature: 100,
indoor humidity: 1, energy: 1000

Maximum number of epochs 1000

Patience 25

Every day after midnight, we train the AI model by using a mobile

window of data, as described in Section 3.3.3. This window consists of

data collected over the past 30 days, handled in samples covering a window

of eight quarters of an hour. The objective of this update mechanism

leveraging the mobile window is twofold:

1. Enabling the model to learn the impact of actuations (ON/OFF, set

point) on the indoor environment and energy consumption over the

recent period. This allows the model to adapt to the most current

conditions within the environment and improve prediction accuracy.

2. Keeping up with seasonal variations in environmental conditions. The

same HVAC settings might lead to different effects on the environ-

ment, depending on factors such as outdoor weather and seasonal
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changes. By continuously updating the model with recent data, we

ensure it remains effective in adapting to these variations.

Overall, this strategy ensures that the AI model continuously learns and

adapts to the monitored environment, providing reliable and accurate pre-

dictions that help optimise HVAC operations to improve energy efficiency

and thermal comfort.

3.5 Preliminary Results

As outlined in Section 3.4, this predictive approach is integrated into

EECO, an intelligent and automated algorithm designed to optimise HVAC

systems, which we will discuss further. Before testing the EECO algorithm

in a real environment during both winter and summer, we conducted a brief

and preliminary analysis of the prediction accuracy to evaluate the relia-

bility of the predictive engine. Specifically, we simulated few days using

real data as input and analysed the resulting outputs.

In Figures 3.10 and 3.11 we illustrate the behaviour of the predicted

variables (indoor temperature, energy consumption, indoor humidity and

CO2) for a typical winter and summer day, respectively. Although the pre-

dictions occasionally struggle to capture rapid or unexpected changes (e.g.,

during the late afternoon of the winter day), it is evident that the overall

predicted trends closely align with the real behaviour. This consistency is

a crucial aspect for optimisation tasks, as it ensures that the system can

make informed adjustments based on reliable information. It is also worth

noting that the accuracy of these predictions is further demonstrated in

Section 4.7.4, where we validate the simulated environment by emulating

real-world HVAC configurations across different days and comparing the

corresponding predictions with the real values.
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Figure 3.10: Predictions and real behaviour throughout a winter day (i.e., heating mode)

for (a) indoor temperature, (b) energy consumption, (c) indoor humidity, and (d) CO2

levels.
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Figure 3.11: Predictions and real behaviour throughout a summer day (i.e., cooling mode)

for (a) indoor temperature, (b) energy consumption, (c) indoor humidity, and (d) CO2

levels.

3.6 Discussion and Summary

In this section, we have presented a practical approach for forecasting key

parameters in indoor environments, with a particular focus on CO2 levels.

The proposed system uses a small amount of collected data and does not

require model pre-training. It includes an adaptive mechanism based on a

dynamic mobile window to keep the model up-to-date upon environmental

changes. This approach guarantees rapid system deployment and high pre-
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diction accuracy in a short time frame, along with long-term performance.

Evaluation results for predicting CO2 levels demonstrate the system’s

effectiveness on edge devices, providing a potential zero-touch solution for

forecasting the desired parameters in indoor environments. Indeed, each

edge device relies only on its own collected data, making the system setup

and its general operation more practical in real-world scenarios.

The forecasting model for indoor environmental parameters and energy

consumption has been deployed in a scenario using the well-known VRV

system, commonly adopted in small environments such as retail stores (fur-

ther details will be provided in Chapter 4). However, other types of HVAC

systems, like hydronic systems, are also prevalent in larger and more com-

plex buildings. While the modeling approach might be adapted for these

systems, the complexity of the scenario increases. Hydronic HVAC systems

typically consist of multiple devices, including heat pumps, chillers, valves,

and water-based distribution networks, all of which introduce a greater

number of variables in the model. These additional components not only

influence the operational parameters of HVAC devices needed to optimise

thermal comfort but also the overall energy consumption sources. Indeed,

the interaction between different components, such as the balance between

heat exchangers, circulating pumps and flow rates, directly affects both op-

erational parameters and overall energy consumption. Therefore, adapting

the forecasting model for hydronic systems requires a more comprehen-

sive analysis, capable of integrating these dynamic processes. A promising

research direction might involve developing multiple ad-hoc models, each

tailored to specific aspects of the hydronic system (e.g., one model for heat

pump operation, another for chiller efficiency, etc.). These models could

then cooperate to provide a more accurate prediction and optimisation of

environmental parameters and energy consumption in such complex sce-

narios. However, further research is necessary to fully explore the potential.
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Chapter 4

Energy-Efficient Comfort

Optimisation

As mentioned in Chapter 1, the Covid-19 pandemic has highlighted the

importance of environmental comfort in fostering the well-being and health

of people. In modern industrial, commercial, and residential buildings, the

required comfort is typically achieved through a combination of passive

energy sources, such as solar irradiance and heat exchangers, and HVAC

systems. While passive strategies can effectively enhance the livability of

indoor spaces at minimal or no energy expense, active strategies based on

HVAC machines are often preferred to have direct and immediate control

over the indoor environment.

An HVAC system (i.e., VRV) typically consists of one or more air han-

dling units. As depicted in Figure 4.1 and detailed by Ahmad et.al. [57], a

standard air handling unit in an HVAC system includes several key compo-

nents: an outdoor air damper for regulating outside air intake, an exhaust

air damper for managing air discharge, a return air damper for recircula-

tion control, a return air fan for extracting indoor air, and heating and

cooling coils for adjusting air temperature. Additionally, a supply air fan

ensures the flow of conditioned air. Depending on specific requirements,

other components (e.g., filters, dehumidifiers, etc.) might also be inte-
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grated. Finally, as described by Ghahramani et.al. [58], HVAC systems

are typically connected to thermostats and actively operate in response to

detected changes in temperature to maintain the desired set point.

Figure 4.1: The scheme of a typical air handling unit in an HVAC system.

Traditionally, the control of these devices is managed on-site by local

personnel, who manually adjust thermostats to regulate thermal comfort,

often without adequate attention to energy efficiency. For instance, in com-

mercial buildings, HVAC systems are frequently left active at the end of the

day, resulting in unnecessary energy consumption during night periods. In

other cases, the operational parameters of these machines are manually set

to a fixed set point (i.e., desired target temperature) during working hours

or throughout the whole day, regardless of outdoor weather conditions and

their impact on indoor environments. These behaviours commonly lead to

inefficiencies, impacting both comfort levels and energy consumption.

In response to these challenges, facility managers are increasingly inter-

ested in automated systems that can continuously optimise HVAC devices

over time. These solutions take a central role in scenarios involving a large

amount of geographically distributed and physically heterogeneous sites,

each potentially requiring different control strategies. This chapter in-
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troduces an intelligent algorithm called EECO to tackle these challenges.

EECO efficiently meets comfort requirements throughout the day while

reducing the energy footprint in an automated manner. Basically, after

an initial configuration of the main parameters (e.g., the desired comfort

interval throughout the day, specific parameters of the comfort model),

the proposed solution can effectively work shortly after its deployment

and it keeps up to date independently over time. This results in an au-

tomated and practical solution for HVAC optimisation, ensuring comfort

requirements are met during opening hours while balancing both thermal

comfort and energy consumption concerns. Indoor comfort is modelled

using the Predicted Mean Vote (PMV) index [59, 60], a thermal comfort

metric referenced by different indoor comfort standards globally, including

the European Standard EN 16798.

This chapter is mainly based on our published paper ”Segala, G.; Doriguzzi-

Corin, R.; Peroni, C.; Gerola, M.; Siracusa, D. EECO: An AI-Based Al-

gorithm for Energy-Efficient Comfort Optimisation. Energies 2023, 16,

7334.” [61].

4.1 Motivation

Existing research on the comfort-energy trade-off in indoor environments

proposes different approaches. Despite advancements in this field leading

to innovative solutions, a major drawback is the limited scalability. This

refers to the capability to replicate and automate a specific approach across

different environments, regardless of their physical characteristics. Typi-

cally, proposed solutions are tailored to the specific environment under

study, requiring a comprehensive analysis of each building’s layout, mate-

rials, location, and installed HVAC systems to define customised physical

or mathematical models (e.g., [24–29]). Similarly, other solutions rely on
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complex building-related information (e.g., [31, 62–64]) and might require

customisations within the monitored environment.

Additionally, AI-based solutions (e.g., based on reinforcement learning)

often require a significant time-bounded amount of data to train these

models. This requirement might impact both short-term deployment and

long-term maintenance, making it challenging to quickly implement and

continuously update AI models to stay current with environmental changes.

In this regard, mechanisms for updating HVAC configurations over time

are rarely addressed, except in rare cases [26,62,64]. Finally, several works

provide theoretical analysis techniques for comfort and energy optimisation

but lack real-world validation [65–67].

4.2 Main Contribution

We approach the problem from a different angle, proposing a data-driven

AI-based solution called EECO for automated and intelligent regulation of

HVAC systems. While designing smart and adaptive solutions using data

collected from IoT sensors is essential for optimising HVAC systems [68],

our focus is also on ensuring that these solutions are deployable and repli-

cable with minimal human intervention. This aspect is crucial for practi-

cal applications, particularly for managers overseeing tens or hundreds of

buildings.

The proposed solution does not require any intervention of expert per-

sonnel or prior information about the monitored environment (e.g., in-

stalled HVAC devices, layout, and materials) to define physical or math-

ematical models of the environment. It continuously learns from the col-

lected data how the different agents, including passive phenomena, impact

the monitored parameters. Basically, after an initial configuration of key

parameters (e.g., the comfort interval throughout the day, some param-
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eters of the comfort model), the proposed solution can effectively work

immediately after deployment and remains self-updating over time. This

adaptive approach allows the system to make short-term decisions based

on long-term predictions, continuously selecting the proper HVAC config-

uration in terms of ON/OFF and set point to optimise thermal comfort

and minimise energy consumption.

From an applicability perspective, the proposed solution holds the po-

tential for being applied in any building equipped with a control system

capable of gathering environmental and energy consumption data and in-

terfacing with local HVAC devices. The algorithm has been tested during

summer and winter periods in a warehouse of a small production plant be-

longing to a large retail company in northern Italy. Validating AI-control

solutions in real environments is crucial to demonstrate their effectiveness

in the intelligent control of HVAC systems [7]. Indeed, using simulated

data or models might not accurately replicate real-world environments,

which can be affected by unexpected events (e.g., windows or doors being

opened or rapid increases in occupancy).

4.3 State of the Art

In recent scientific literature, numerous studies address achieving thermal

comfort, tackling the trade-off between maximising comfort and minimising

energy consumption from different perspectives.

The following sections will offer a detailed overview of state-of-the-art

solutions in this field.

4.3.1 Pareto Analysis

Different works [65–67] address the problem using Pareto analysis. This

approach provides a set of possible trade-offs between comfort and energy
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consumption, each of which might be a viable solution for the deployment.

Nonetheless, the mentioned research works provide static analysis with a

restricted number of software simulations and do not consider any predic-

tion in the future for proactive decision making. Additionally, they model

the objective functions through ad-hoc mathematical models tailored to

specific environments under study, hence limiting their applicability across

multiple sites. Finally, while calculating the Pareto front can be useful,

these studies lack an effective strategy to select a single configuration that

ensures optimal comfort at minimal cost.

4.3.2 Reinforcement Learning

As mentioned in Section 4.1, most research works address the problem

from a different perspective, using simulation software to physically model

buildings. This approach provides either simulated environments for anal-

ysis or generate a large amount of data to train AI models [26, 28, 29, 31].

For instance, Gao et al. [29] propose a DL solution based on reinforcement

learning validated through a simulated building thermal environment and

an HVAC system. Their AI models are trained with extensive hourly sim-

ulated data. Another solution based on reinforcement learning is presented

by Valladares et al. [28]. In their study, a reinforcement learning model is

first trained with 10 years of simulated data, following a similar approach

to Gao et al. [29], before being deployed in real environments to evaluate

the performance. By means of this extensive training data, they achieve a

balance among indoor comfort, air quality, and the energy consumption of

the air conditioning and ventilation systems.

In contrast to the research works proposed by Valladares et al. [28]

and Gao et al. [29], a different solution based on model predictive control

(MPC) is proposed by Ascione et al. [26]. However, even this approach

relies on simulation-based physical models to optimise the hourly set point
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temperature for the next 24 hours. Furthermore, Jing et al. [31] pro-

pose a simple PMV-based approach to keep the environment within the

comfort level and overcome the limitations of typical temperature-based

mechanisms. Despite improvements in terms of daily energy savings, the

proposed solution only focuses on thermal comfort, with no attention for a

trade-off between PMV index and energy consumption in the HVAC con-

trol strategy. Additionally, the proposed solution is validated and analysed

only through simulation models, with no real-world validation.

4.3.3 Passive strategies

Other works rely on advanced passive strategies. For instance, Liu et

al. [24] analyse the applicability and effectiveness of these technologies

in residential buildings through physical models, resulting in significant

energy savings. Additionally, de Araujo Passos et al. [25], in their study,

define a mathematical model to optimise a novel HVAC system by relying

on passive energy sources (e.g., solar irradiance and heat exchangers) as

much as possible. Their study demonstrates that significant energy-saving

results can be achieved, with over half of the energy demand met through

passive means.

4.3.4 MPC and other solutions

Alternative approaches that do not rely on physical models of buildings

are proposed in the literature. Chen et al. [27] propose an MPC solu-

tion by modelling the building through mathematical models. However,

complex building-specific information is used (e.g., conduction/convection

coefficient, wall thickness, air mass flow rate, etc.). It is worth noting that,

in this work, feedback from occupants takes a central role to adapt ther-

mal comfort based on personal perception, leading to improved comfort
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outcomes. In this regard, other MPC-based studies explore how personal

preferences affect the optimisation of energy consumption and the well-

being of occupants [69].

To overcome the limitations of physical-based models, as per our goal,

Manjarres et al. [63] introduce a framework aimed at minimising energy

consumption while ensuring indoor temperatures remain within predefined

ranges. The proposed framework outlines an optimal schedule for HVAC

ON/OFF and mechanical ventilation (MV) operation for the next 24 hours.

However, it requires the deployment of specific sensors (e.g., in the outlet

conduct of the air handling unit within the HVAC device). Additionally, it

primarily considers indoor temperature rather than thermal comfort (e.g.,

PMV index) and does not account for updates to the operating schedule

throughout the day in response to potential environmental changes. Simi-

larly, Yang et al. [62] propose an MPC approach that integrates AI to over-

come the constraints associated with physical models. Additionally, they

introduce an update mechanism over time to capture any possible environ-

mental change. However, their solution requires customisations within the

environments in terms of advanced sensors (e.g., combined temperature-

humidity-pressure-lux (THPL) sensors) to be installed in specific locations

as well as detailed information regarding chilled water of HVAC devices.

This bounds their approach to the specific environment being evaluated.

Martell et al. [64] present another approach that effectively keeps up with

with environmental changes but includes complex building-related infor-

mation. The authors propose a multi-objective control architecture to

estimate optimal set points, updating the Pareto front hourly to select op-

timal temperature settings for each hour of the day. Despite the update

mechanism, even in this case, complex parameters closely tied to the evalu-

ated environment are considered. For instance, the authors use heat gains

resulting from different natural phenomena (e.g., convection, ventilation,
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and infiltration) to model the indoor temperature behaviour, which might

be different across different sites.

4.4 Background

4.4.1 Predicted Mean Vote

The PMV is a thermal comfort index introduced by Fanger [70] and used

by many research works to model the thermal comfort of the occupants. In

particular, as observed by Tartarini et al. [71], PMV computes the mean

thermal sensation vote of a large number of people according to a sensa-

tion scale ranging from –3 to +3, respectively from cold to hot passing

through a value equal to 0, which means a neutral condition. In this re-

search work, the open-source Python library pythermalcomfort [72] is used

to compute PMV index. This library comprises a range of functions for

modeling indoor environmental comfort and its associated parameters. In

addition, we refer to an online tool [71] to dynamically find the boundaries

for the different thermal comfort categories defined by EN 16798 standard.

The PMV index is computed as a function of environmental and personal

variables [59], in particular:

• Air temperature [°C]. The indoor temperature in the environment.

• Mean radiant temperature [°C], defined as the temperature due to

radiant heat exchange between a human body and a given environ-

ment [73]. For the sake of simplicity, we assume the mean radian

temperature equal to the air temperature.

• Relative humidity [%]. Indoor relative humidity in the environment.

• Metabolic rate [W/m2]. It is associated with the activity performed

by the occupants in the environment. We set it equal to 1.6, which
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corresponds to a light activity in the environment coherently with our

real test case.

• Relative air velocity [m/s]. It includes the air speed within the consid-

ered environment as well as the air speed due to body movement. It

is computed by using function v relative(v, met) from library pyther-

malcomfort, with v equal to 0.15 m/s (heating) or 0.25 m/s (cooling)

according to standard limits defined by ISO 7730 [74].

• Clothing insulation [clo]. It is the thermal insulation provided by

clothing worn by people in the environment. As estimating a single

value for each person requires advanced sensors as well as possible

customisations within the environment, we modeled such parameter

with a unique value. To cope with this task, we used the function

clo dynamic(clo, met) from library pythermalcomfort, which estimates

the dynamic clothing insulation of a moving occupant. Basically, it

corrects for the effect of the body movement for met equal or higher

than 1, using the same equation of ASHRAE 55 Standard (i.e., clo =

clo × (0.6 + 0.4/met)). The clo parameter is computed by means of

function clo tout(tout, units=”SI”), which computes the daily clothing

insulation based on outdoor temperature at 6.00 a.m.. In this way,

we provide a dynamic estimate of the clothing insulation throughout

the year.

Standard EN 16798 ( [75]) defines specific categories for indoor comfort

based on the PMV, which are reported in Table 4.1:
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Table 4.1: Comfort categories and the related PMV range.

Category PMV

I -0.2 < PMV < 0.2

II -0.5 < PMV < 0.5

III -0.7 < PMV < 0.7

IV -1 < PMV < 1

It is worth noting that, negative ranges of PMV index are typical for

heating mode while positive values are obtained when cooling mode is

active.

As underlined by Yau et al. [59], the PMV index serves as an objective

measure that can be computed in any indoor environment, regardless in-

stalled HVAC systems and conditions of outdoor environment. Therefore,

considering its widespread use in the literature and reference in different

standards (e.g., ISO 7730, EN 16798), we have chosen to employ such

methodology.

4.5 Methodology

4.5.1 Introduction

As previously mentioned, in this chapter we tackle the problem of energy-

efficient comfort optimisation in indoor environments. Specifically, we

study and develop a methodology for the automated control of HVAC

systems, with the aim to ensure the defined comfort requirements within

the considered environment during opening hours.

As introduced in Section 4.4.1, the thermal comfort index (PMV) (de-

fined by Fanger [70]) depends on a set of parameters (such as air tempera-

ture and humidity of the environment), which, in a real-world environment,

59



CHAPTER 4. ENERGY-EFFICIENT COMFORT OPTIMISATION

can be influenced by the outdoor conditions. In this regard, adapting the

HVAC optimisation according to outdoor weather takes a central role from

a research perspective [76]. At a first glance, a trivial greedy PMV-Based

mechanism that activates the HVAC system when the thermal comfort

level is outside the desired range, similar to the approach proposed by Jing

et.al [31], might be seen as a viable solution., However, such an approach,

which takes decisions only considering the current state, might not work

as desired. In particular, let us first define four comfort states (represented

in Figure 4.2) based on the comfort interval defined over the course of the

day:

• No Comfort (NC): the shop is closed (e.g., at night or on Sundays).

• No Comfort then Comfort (NC-C): usually early morning before

the opening.

• Comfort (C): the shop is open (e.g., during a working day).

• Comfort then No Comfort (C-NC): generally late afternoon be-

fore closing.

Indeed, a greedy approach might not be able to achieve the target com-

fort at the beginning of the working time (NC-C state), i.e., when the

comfort level is far from the target value because of a long inactivity pe-

riod (e.g., night closure, holiday, etc.). Similarly, it might activate the

HVAC system when the store closure is approaching (C-NC state), leading

to inefficient energy utilisation.
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Figure 4.2: Representation of the four control states over the course of a day. In this

example, the comfort interval is set between 8 AM and 8 PM.

Based on these premises, we propose an AI-based solution called Energy-

Efficient Comfort Optimisation (EECO), in which the 1D CNN described in

Section 3.4.2 is employed to predict the future indoor environmental param-

eters (i.e., temperature, humidity and CO2) and energy consumption due

to HVAC devices, considering both indoor and outdoor conditions. Specif-

ically, given a range of possible HVAC configurations (meaning, ON/OFF

and SP), the CNN predicts the effects of each choice on future thermal

comfort and energy consumption. At every quarter of an hour, the system

generates the predictions for the next m quarters of an hour, building a

m-level tree of candidate sequences of HVAC configurations that tracks the

environment’s evolution in the near future based on past (real or predicted)

conditions.

The ultimate goal of EECO is to select the branch of the tree (hence a

sequence of future HVAC configurations), which, based on the CNN predic-

tions, minimises an objective function defined as the weighted summation

of thermal comfort index PMV and energy consumption.

In the remainder of this Section, we describe the whole process of com-

fort optimisation, including input/output of the CNN, the structure of the

decision tree and the logic behind the choice on the HVAC settings. This

process is described in Algorithms 1 e 2 and illustrated in Figure 4.3 and

4.4.
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4.5.2 Tree Building
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Figure 4.3: The decision tree. Node’s attributes are HVAC configurations (ON/OFFijk,

SPijk), which are labelled with 3-digit numbers: the level of the tree (i), the index of

the parent node (j) and the index of the node (k). Tijk, Hijk, CO2ijk and Eijk refer to

predicted values of temperature, humidity, CO2 and energy consumption for node nijk at

Level i in the time slot [ti, ti+1].

The decision tree is built every quarter of an hour (or time slot), using

the output from the previous time slot as a root node. The process that

builds the tree is formulated in Algorithm 1 BuildTree. BuildTree

takes as input the current root node n000, historical data of HVAC settings,

weather conditions, energy consumption and the target comfort value C̄ (a

PMV value) and the operating mode o (either heating or cooling). The root

node’s attributes include the current HVAC settings, i.e. the operational

settings in time slot [t0, t1] = [t0, t0 + 15min] In general, a node nijk of the

tree is characterised by a 3-digit label and range of attributes. The first
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Figure 4.4: The first step of the building decision process at time slot [t0, t1], during which

a tree of possible HVAC configurations is built iteratively from time slot [t1, t2] to time

slot [tm−1, tm]. In this example k = {0, 1} for the two nodes at Level 1 of the tree (Figure

4.3).

digit of the label indicates the level of the tree to which the node belongs,

the second digit is the index of the parent node, while the third digit is the

index of the node. The attributes are: the current HVAC settings at time

ti, i.e. the pair of values (ON/OFFijk, SPijk), fan speed and operating

mode. Node’s attributes also include average energy consumption Eijk,

indoor temperature Tijk, indoor humidity Hijk and indoor CO2ijk.

Figure 4.3 illustrates a portion of the tree built during time slot [t0, t1],

starting from Level 0, which consists of root node n000. Level 1 of the tree is
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populated with a set of children nodes n10k, k = {0, · · · , K1− 1}, each one

defined with pair (ON/OFF10k, SP10k), i.e. a set of possible HVAC config-

urations that could be applied during time slot [t1, t2] (Level 1 in Figure

4.3). Like all the other tree levels, Level 1 includes the OFF actuation

(line 8 of Algorithm 1), and a set of actuations that are computed with

Algorithm 2 (called at line 10 of Algorithm 1) using the indoor tempera-

ture of the parent node (p00(T ) = T000 for Level 1), the indoor humidity

of the parent node (p00(H) = H000 for Level 1), the target comfort level

C̄ and the HVAC’s operating mode o (either HEATING or COOLING).

Algorithm 2 defines the temperature range to be within the desired target

comfort C̄ and, based on that information and HVAC’s operating mode o,

selects the strategy to enter the comfort range or move within that through

a couple of actuations.

One of the nodes at Level 1 is the output of the process executed during

time slot [t0, t1], and contains the HVAC configuration for time slot [t1, t2].

Moreover, such a node will be the root node when the process is executed

in time slot [t1, t2]. Which is the right node? The selection of the most

appropriate node is done by populating the tree up to Level m using the

predictions of the CNN to simulate the behaviour of the system in differ-

ent conditions over the time (until time slot [tm−1, tm]). The solution is the

node at Level 1 that belongs to the branch of the tree whose sequence of

actuations guarantees the best comfort at the minimum energy consump-

tion in the long term. The logic behind this decision is explained in the

following steps:

• Given a Level Li, and a parent node pij, with j ∈ {0, · · · , |Li−1|} and
|Li−1| the cardinality of Level Li−1, Aij is the list of possible HVAC

actuations for time slot [ti, ti+1] applied to the children nodes of parent

pij (lines 8, 10). In Figure 4.3, A21 = {(ON/OFF210, SP210),

(ON/OFF211, SP211)}.
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For each HVAC configuration Aij[k] k ∈ {0, · · · , Kj − 1}, the sys-

tem predicts the effects of such configuration on comfort and energy

consumption starting from the parent’s conditions Vij of indoor tem-

perature pij(T ), indoor humidity pij(H), indoor CO2 pij(CO2), and

energy consumption pij(E) (line 14).

Algorithm 1 Tree building.

Input: Root node (n000), Historical data (X), Tree depth (m), Target comfort (C̄),

Operating mode (o)

Output: Tree (t)

1: procedure BuildTree(n000,X,m,C̄,o)

2: t← L0(n000) ▷ Init tree node n000 at level 0

3: for i = 1, ...,m do ▷ Loop over tree levels

4: Li ← ∅ ▷ Init level i

5: Xi ← X[−n+ i, i− 1] ▷ Extract n-1 rows from X

6: for j = 0, ..., |Li−1| − 1 do ▷ Loop over parents pij

7: Pij ← ∅ ▷ Init list of children of parent node pij

8: Aij ← [(OFF, pij(SP))] ▷ Init list of actuations

9: if C̄ ̸= NC then

10: Aij ← Aij ∪ GetAct(pij(T), pij(H), C̄, o)

11: end if

12: for k = 0, ..., Kj − 1 do ▷ with Kj = |Aij|
13: (ON/OFFijk, SPijk) = Aij[k]

14: Vij = [pij(T ), pij(H), pij(CO2), pij(E))]

15: Xijk ← Xi ∪ [ON/OFFijk, SPijk, · · · , Vij]

16: nijk ← GetNode(Xijk)

17: Pij.insert(nijk)

18: end for

19: Li.insert(Pij) ▷ Add nodes of list Pij to level i

20: end for

21: t.insert(Li) ▷ Add level i to the tree

22: end for

23: return t

24: end procedure
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Algorithm 2 Get actuations.

Input: Current temperature (T ), Current humidity (H), Target comfort (C̄), Operating

mode (o)

Output: List of actuations (A)

1: procedure GetAct(T, H, C̄, o)

2: A← ∅ ▷ Init list of actuations

3: Tmin, Tmax ← GetRangeTemperature(T, H, C̄)

4: if Tmin <= T <= Tmax then

5: SP ← T

6: if o = HEATING then

7: while SP <= Tmax and SP <= T + 1 do

8: A.insert((ON,SP))

9: SP ← SP + 1

10: end while

11: else if o = COOLING then

12: while SP >= Tmin and SP >= T − 1 do

13: A.insert((ON,SP))

14: SP ← SP − 1

15: end while

16: end if

17: else

18: if o = HEATING then

19: SPmin ← ceil(T )

20: A.insert((ON, SPmin))

21: else if o = COOLING then

22: SPmax ← floor(T )

23: A.insert((ON, SPmax))

24: end if

25: end if

26: return A

27: end procedure

• As sketched in Figure 4.4, the prediction for node k is obtained by

feeding the CNN with an array of n − 1 rows of historical HVAC

settings, environmental values and other features (see Table 3.4) ob-
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served from ti−1 to t−n+i. While the nth line contains the node’s

attributes Aij and other features related to [ti, ti+1]. This operation

is summarised at line 16 with function GetNode. Node nijk gener-

ated using actuation Aij[k] is added to the list of children nodes Pij

of parent pij (line 17).

• The list of children nodes Pij is added to Level Li, which is then added

to the tree when all the parents of the previous Level Li−1 have been

processed.

• The above steps are repeated until the maximum tree depth m is

reached.

4.5.3 Strategy Selection

The result of the process is a set B of simulated sequences of HVAC con-

figurations from time t1 to time tm, which can be also seen as a set of paths

across the decision tree (or branches) from the root node to the leaves. The

final step consists of choosing the best path, i.e. the path that minimises

both PMV and energy values, as formally expressed in Equation 4.1:

fα(Cb, Eb) = α · Cb + (1− α) · Eb

Emax ·m
∀b ∈ B (4.1)

The objective function fα(Cb, Eb) is the weighted sum of predicted com-

fort and energy for branch b, where Cb is a sum of the predicted values of

thermal comfort on each node of the branch, while Eb is the sum of the

predicted values of energy consumption. More precisely, Cb and Eb are

computed as follows:

Cb =
m∑
i=0

(|Cb,i| − |C̄|) · βi Eb =
m∑
i=0

Eb,i ∀b ∈ B (4.2)
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where β is a positive number smaller than 1, so that βi (β at the power

of i) decreases as the tree level i increases to give less importance to the

nodes far from the root (i.e., far in the future).

The energy is normalised with the estimation of the maximum energy

Emax consumed by the HVAC system in a quarter of an hour and multiplied

by the number of time slots in a branch (m). α controls the relative weight

of comfort and energy values. In our analysis we focus on a scenario where

comfort holds priority. In this regard, we set α = 0.9.

For a given value of α, the solution is represented by the branch b̄ ∈ B

such that:

b̄ = argmin
b∈B

fα(Cb, Eb) (4.3)

Hence, the output of the whole process is the HVAC configuration

(ON/OFF10kb̄
, SP10kb̄) for the next time slot [t1, t2], i.e., the attributes of

node kb̄ at Level 1 of branch b̄. The above process is executed every 15

minutes.

4.6 Experimental Setup

The proposed solution has been tested in a real warehouse of approxi-

mately 250 m2 within an underwear manufacturing plant in northern Italy,

owned by an international retail company. The monitored environment

is equipped with HVAC devices (i.e., VRV systems) that are interfaced

through the Modbus protocol [50] and regulated with same settings in

terms of ON/OFF and set point. We provided additional details regarding

meters and sensors adopted in Chapter 3, Section 3.4.1. All data collection

and control operations within the environment are performed locally on an

Intel NUC [77], equipped with an Intel Core i3 CPU and 8 GB of memory,

which serves as the master node for all connected devices.
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The building under consideration, as mentioned in Section 4.2, is lo-

cated in northern Italy and generally experiences a Mediterranean climate.

During the winter, outdoor temperatures range from approximately 0 ◦C

to 15 ◦C while in the summer temperatures vary between 18 ◦C and 35
◦C. Both real-world experiments and software simulations have been per-

formed to validate our algorithm, covering both winter and summer days.

This provides a performance overview both in heating and cooling mode.

We have compared EECO, which dynamically sets the HVAC configura-

tion to achieve a trade-off between thermal comfort and energy consump-

tion, with other two approaches:

• The Fixed Set Point approach, which configures the same set point

value throughout the whole day.

• The PMV-based approach, a greedy strategy that controls the HVAC

devices by just analysing the current value of the PMV index. In

this regard, the greedy approach aims to achieve the best comfort

conditions within the desired range (i.e., the lower bound), switching

the HVAC devices off once such objective is addressed.

For all the experiments, we set a comfort time interval of twelve hours

between 8 AM and 8 PM in accordance with our partner’s requirements.

During this interval, a pre-defined comfort level needs to be guaranteed

(Table 4.1). Due to lack of activities within the environment on the week-

ends, experiments were performed exclusively from Monday to Friday. For

evaluation purposes, we set the tree depth m equal to 10, starting from the

current quarter of hour. This enables us to align the operational sched-

ule of HVAC devices according to EECO with that of the fixed set point

strategy (from 6 AM to 8 PM), which is defined by the partner company.
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4.7 Experimental Results

In this section, we present the benefits of EECO from different perspec-

tives, both through experiments in a real environment and by software

simulation.

4.7.1 Indoor Environment Forecast

One of the strengths of EECO is the capability to predict the evolution of

the indoor environment and to take proper short-term decisions. To this

aim, let us consider a Summer early morning scenario when the HVAC

devices need to be activated in advance to reach the desired comfort level

at a specific time (e.g., 8 AM). Also, let us select the category III (cf. Table

4.1) as the target comfort, i.e., -0.7 < PMV < 0.7 with positive values in

cooling mode and α = 0.9 in Equation 4.1. With this experiment, we show

the ability of our predictive methods in activating the HVAC devices in

advance, ensuring the target comfort is achieved before 8 AM.

Figure 4.5 illustrates the actuation strategy in terms of ON/OFF and

predicted/actual values of the PMV index and energy consumption over

two overlapping time intervals of two hours, one starting at 5:45 AM and

the following one starting at 6:00 AM. From the plots in the figure, we can

observe that the algorithm turns on the HVAC devices at 6 AM and plans

to keep them active over the following two hours to achieve the comfort

range on time (i.e., PMV< 0.7 before 8 AM). As reported in Table 4.2, such

configuration is expected to achieve a PMV value just below 0.7 at 8 AM.

Actually, analysing the dashed line in the PMV plots, which corresponds to

the actual comfort values recorded every quarter of an hour, it is possible

to notice that the environment meets the comfort requirements from 7

AM, resulting in a PMV value equal to 0.65 at 8 AM. This is achieved

thanks to an accurate prediction of the environment’s evolution (Table
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Figure 4.5: Example of actuation strategy in terms of ON/OFF (left) and corresponding

predicted environment evolution in terms of PMV index (middle) and energy consumption

(right) in the early morning at 5:45 AM (top) and 6:00 AM (bottom) to achieve the comfort

requirements by 8:00 AM.

4.2). Notably, this result would not have been possible with a basic greedy

strategy, mentioned in Section 4.5, which would have activated the HVAC

devices starting from 8 AM, thereby failing to ensure the required comfort

range at the beginning of the working day.

Table 4.2: Accuracy of the predicted environment in terms of energy consumption and

PMV as well as difference between the real PMV and the predicted value at 5:45 AM and

6:00 AM, respectively.

Time Energy - RMSE PMV - RMSE Real PMV - 8 AM Predicted PMV - 8 AM

5:45 AM 0.32 0.08 0.65 0.7

6:00 AM 0.37 0.07 0.65 0.68

71



CHAPTER 4. ENERGY-EFFICIENT COMFORT OPTIMISATION

4.7.2 Indoor Comfort and Energy Consumption Optimisation

In this experiment, our objective is to evaluate the sensitivity of our solu-

tion to term α of Equation 4.1, which controls the relative weight between

comfort and energy in the HVAC strategy selection. To this aim, let us

choose for this test α = {0.3, 0.5, 0.7, 0.9}, with a target comfort level set

to category I in cooling mode, i.e., 0 <= PMV < 0.2 (cf. Table 4.1). Due

to the consistently low outdoor temperatures observed during the period of

these experiments, the indoor environment would have exceeded the com-

fort boundaries of category II or III (which are more appropriate for this

specific scenario), regardless of the value of α, while keeping the HVAC

devices off (as reported in Section 4.5). This would have affected the per-

formance analysis of our solution on different values of α both in terms of

both energy consumption and thermal comfort. As a result, under these

conditions, category I (i.e., which is typically defined in environments with

vulnerable people) enables us to effectively analyse the behaviour of our

solution while varying the α parameter.
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Figure 4.6: The behaviour of (a) hourly PMV index and (b) total energy consumption as

the α parameter changes.

Figure 4.6 outlines the behaviour of the PMV index and total energy

consumption at different values of α. When α = 0.9, the PMV value
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remains close to zero for most of the day, which corresponds to optimal

comfort conditions for the occupants. However, this strategy impacts the

building’s energy footprint, as HVAC devices are constantly activated to

maintain maximum comfort. Reducing the value of α to 0.7 impacts com-

fort, especially in the morning. Nevertheless, equivalent performance to

higher α values is achieved in the late afternoon, due to a decreasing trend

in outdoor temperature. Compared to α = 0.9, this configuration reduces

energy consumption by approximately 5 kWh. Finally, with lower values

of α (i.e., 0.3, 0.5) we penalise the indoor comfort, resulting in higher PMV

values ranging between 0.1 and 0.2. We can anyway notice that the re-

duction in energy consumption is negligible compared to tests with higher

values of α. As reported in Table 4.3, lower values of α not only impact

daily comfort conditions but also result in higher PMV values the follow-

ing early morning, leaving the environment in less comfortable conditions

at the end of the day. This necessitates increased activity of the HVAC

devices to restore the desired comfort level, hence affecting the energy foot-

print. The table’s last column indicates that higher values of α ensure the

desired comfort level from the early hours of the next day.

Table 4.3: Average PMV, total energy consumption [kWh] and PMV at 6 AM the next

day for different α values.

α PMV Total Energy Consumption PMV 6 AM

0.3 0.15 24 kWh 0.27

0.5 0.13 24 kWh 0.22

0.7 0.08 25 kWh 0.09

0.9 0.04 29 kWh 0.12
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4.7.3 Performance Analysis - Real Environment

The previous analysis highlighted that our solution can effectively achieve

the comfort objective at different values of α. In this experiment, we

focus on guaranteeing a high comfort level with a minimum attention on

the energy footprint as well, comparing our algorithm with α = 0.9 in

Equation 4.1 and a manual approach, where the set point is fixed to the

same value throughout the day. We configure our algorithm with category

III as the target comfort, i.e. -0.7 < PMV < 0.7 with positive values in

cooling mod, and we consider both days in heating and cooling mode.

Finally, for the manual approach, HVAC devices are activated at 6 AM

to guarantee the same operating interval for both strategies (see the dis-

cussion of the experiment in Section 4.7.1).

The evaluation of the two strategies has been performed over 10 days,

five days each, in cooling mode. While we have considered 20 days, 10 days

each, in heating mode.

Cooling mode

In the manual approach, we set SP=27°C, i.e., the value typically set within
the considered environment during cooling periods when the indoor tem-

perature is usually higher. It roughly corresponds to category III of the

target comfort according to Tartarini et.al. [71] and the configured param-

eters of PMV index described in Section 4.4.1, which define our evaluated

scenario.

Figure 4.7 reports the results in terms of average (a) PMV during open-

ing hours, (b) total energy consumption over the operational interval of

HVAC devices against the average daily PMV index, (c) indoor tempera-

ture, (d) total daily energy consumption normalised by degree days (i.e., a

measure to quantify the deviation of the average daily temperature from a
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given standard, calculated as the difference between the outdoor temper-

ature and a reference temperature) against the average daily PMV index

and (e) variation of PMV during opening hours (i.e., the difference between

PMV at 6 AM and PMV at the different quarters of hour).

In the case of PMV and indoor temperature, Figure 4.7 reports the

confidence interval bounded by the maximum and minimum values. From

a comfort perspective, our solution constantly keeps the PMV value close

to the lower bound (i.e., 0.5), which corresponds to the best possible in-

door comfort conditions within the desired range (Figure 4.7a). The pro-

cess of comfort optimisation generally requires more activity by HVAC

devices (Figure 4.7d), hence affecting the total energy footprint (Figure

4.7b). However, the impact on energy consumption is generally limited,

with no relevant peaks on the energy footprint. A slight increase in energy

consumption can be observed during the last two days (i.e., day four and

five), attributed to slightly higher outdoor temperatures.

On the other hand, the Fixed Set Point approach results in unstable

thermal comfort (Figure 4.7a). Indeed, with static settings, the HVAC

devices are activated only based on the indoor temperature. However, the

configured set point value (i.e., 27 °C) might not consistently achieve the

target comfort requirements which, in the evaluated scenario, represent

a constraint of the problem; as reported in Section 4.4, the PMV index

depends on multiple parameters. For instance, clothing insulation, whose

value is computed daily using the outdoor temperature at 6 AM, affects

the weight of indoor temperature on the computation of thermal comfort.

Obviously, this parameter is not considered when using a static set point,

potentially leading to discomfort conditions. For instance, on day four of

the EECO experiment and day three of the Fixed Set Point similar clothing

insulation values were expected. However, during the former the set point

is automatically set to SP=26°C for large part of the day. While, with
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the Fixed Set Point, the set point value is close to the indoor temperature

of 27°C, resulting in the HVAC devices operating in an economic mode.

HVAC devices typically have a dead band equal to 0.5°C around the control

set point, which keeps them active to maintain the target temperature

without excessive activity. In terms of energy consumption, if we compare

the two days in Figures 4.7b and 4.7d, we can observe that our solution

consumed slightly more energy than the Fixed Set Point configuration; as

underlined previously, the Fixed Set Point configuration never reached the

required comfort range during that day due to the static set point value

that never changes during the day while EECO was able to drive the HVAC

devices in a way that the comfort requirements were respected throughout

the whole day.

In Figure 4.7b we can notice a peak in energy consumption on day five

of the Fixed Set Point experiment. Compared to days one and two of the

same experiment, day five reaches a similar comfort level, but with no-

ticeably higher energy consumption due to higher outdoor temperatures.

Despite the extended operation of the HVAC system to maintain the indoor

temperature near the set point of SP=27°C, the total energy consumption

normalised by degree days, reported in Figure 4.7d, highlights similar en-

ergy demands between both approaches. On the other hand, at first glance,

days one and two benefit from lower outdoor temperatures, aiding cooling

operations and reducing the overall energy footprint. However, a closer

analysis of normalised energy consumption in relation to outdoor temper-

ature (i.e., degree days) highlights that EECO achieves the same comfort

level while optimising energy use. This optimisation is driven by the in-

telligent control system, which dynamically adjusts to outdoor weather

conditions, especially on days when lower outdoor temperature can take a

central role in cooling the environment at reduced energy costs.
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Figure 4.7: Average daily (a) PMV index, (b) total daily energy consumption against

the average daily PMV index, (c) indoor temperature, (d) total daily energy consumption

normalised by degree days against the average daily PMV index and (e) variation of PMV

index compared to value at 6 AM (PMV6AM - PMV) for both EECO and the Fixed Set

Point approach in cooling mode.
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Table 4.4: Overall performance of EECO and the Fixed Set Point approach in terms of

PMV, energy consumption in cooling mode.

PMV Energy Consumption

EECO 0.56 78 kWh

Fixed Set Point 0.63 77 kWh

Difference 11% -1%

In conclusion, as reported in Table 4.4, in cooling mode our solution

guarantees better comfort conditions with approximately the same impact

on the building’s energy footprint compared to the Fixed Set Point ap-

proach.

Heating mode

In the manual approach, we set SP=21°C, i.e., the value typically set within
the considered environment during heating periods when the indoor tem-

perature is usually lower and roughly corresponding to category III of the

target comfort. Even in this case, we refer to Tartarini et.al. [71] and the

parameters of PMV index described in Section 4.4.1 we set for our scenario.

As in the previous subsection, Figure 4.8 reports results in terms of

average (a) PMV during opening hours, (b) total energy consumption over

the operational interval of HVAC devices against the average daily PMV

index, (c) indoor temperature and (d) variation of PMV during opening

hours (i.e., the difference between PMV at 6 AM and PMV at the different

quarters of hour).

From a comfort perspective, as depicted in Figure 4.8a, our algorithm

provides non-optimal results during the coldest days (days one, two and

three in both approaches) unlike the Fixed Set Point approach. This be-

haviour is due to some shutdowns of the HVAC devices configured by our
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approach throughout the day with the aim to effectively achieve a trade-off

between the thermal comfort and the energy consumption. However, due

to the low outdoor temperature, just a shutdown for a quarter of hour pre-

vents our solution from achieving good PMV values in the long term unlike

the Fixed Set Point, which constantly keeps the HVAC devices active at

21°C as set point value. Even if the target temperature is not reached, the

given comfort category is effectively achieved when the indoor tempera-

ture ranges between 20°C and 21°C. Despite such scenario, EECO meets

the minimum comfort requirements at some point during the day (i.e.,

in the afternoon), resulting in about 20 kWh on average of saved energy

(Figure 4.8b).

When the average outdoor temperature is around 5°C-6°C (from day

four to seven in both approaches), EECO generally provides better re-

sults in terms of thermal comfort compared to the Fixed Set Point ap-

proach. Indeed, as depicted in Figure 4.8a, larger improvements of PMV

are performed by our approach to enhance the comfort conditions within

the desired range. As a result, HVAC devices are forced to have a higher

activity, resulting in slightly higher energy consumption (Figures 4.8b and

4.8d) compared to the Fixed Set Point approach. In contrast, the latter

struggles to maintain comfort in these conditions (e.g., day five falls outside

comfort levels). Indeed, the Fixed Set Point strategy is driven only by the

indoor temperature which is always really close to the set point value (i.e.,

21°C) throughout the whole day. This forces the HVAC devices to con-

stantly work in economic mode, as reported previously, limiting their en-

ergy consumption but potentially compromising optimal comfort. In such

conditions, achieving the desired comfort levels typically requires setting a

higher target temperature (e.g., 22°C). In this regard, EECO dynamically

adjusts the set point value to enhance comfort, resulting in only a marginal

increase in energy consumption compared to the Fixed Set Point approach.
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Figure 4.8: Average daily (a) PMV index, (b) total daily energy consumption against

the average daily PMV index, (c) indoor temperature, (d) total daily energy consumption

normalised by degree days against the average daily PMV index and (e) variation of PMV

index compared to value at 6 AM (PMV6AM - PMV) for both EECO and the Fixed Set

Point approach in heating mode.
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During warmer Winter days (from day eight to ten in both approaches),

the higher outdoor temperature values help the environment to achieve

good comfort conditions with both approaches. In this scenario, our algo-

rithm is capable of reducing the energy footprint by almost 20% compared

to the Fixed Set Point approach, as also underlined by the total energy con-

sumption normalised by degree days in Figure 4.8d and similarly to what

is observed in cooling mode. In this regard, EECO not only strategically

configures shutdowns of the HVAC devices to take advantage of higher

outdoor temperatures for optimising heating operations (as happened in

cooling mode in the previous section) but also turns off the HVAC devices

once the lower bound of the desired comfort level (i.e., in our case, 0.5)

is achieved. In contrast, such behaviour is not included in the Fixed Set

Point approach. Indeed, the latter is driven solely by the indoor temper-

ature with no attention for thermal comfort. As a result, it always keeps

the HVAC devices active, even after achieving the desired thermal comfort

level with the configured set point value, as observed on day eight. This

leads to a significant amount of wasted energy over the long term, which

can be effectively minimised through an intelligent approach like EECO,

which adapts to real-time environmental conditions.

Table 4.5: Overall performance of EECO and the Fixed Set Point approach in terms of

PMV, energy consumption in heating mode.

PMV Energy Consumption

EECO 0.67 79 kWh

Fixed Set Point 0.63 95 kWh

Difference -6% 16%

To sum up, as presented in Table 4.5, in heating mode EECO provides

slightly worse overall performance in terms of thermal comfort compared to
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the Fixed Set Point strategy, mainly due to cold days, as discussed previ-

ously. While a portion of the energy savings equal to 16% can be attributed

to the slightly higher PMV value, it is worth noting that, considering the

overall amount of energy saved, a better trade-off between thermal comfort

and energy consumption is achieved.

In heating mode, we provide an additional analysis to compare the two

approaches on Mondays, which are a particular case in terms of thermal

comfort and energy consumption. The initial environmental conditions on

Monday mornings are often significantly outside the desired range due to

the HVAC inactivity over the weekend. This requires the HVAC devices to

operate more intensively throughout the day to ensure the desired comfort

level. Although both approaches fail to fully address this task, resulting in

out-of-comfort conditions, the Fixed Set Point achieves an average PMV

value closer to the upper bound of the range than our solution, as reported

in Table 4.7. On the other hand, while EECO provides slightly less favor-

able environmental conditions, it significantly reduces the building’s energy

footprint by more than 40 kWh on average, as underlined in Table 4.6.

Table 4.6: Results of EECO during Mondays in heating mode.

Days PMV PMV 6 AM
Indoor

Temperature
Outdoor

Temperature
Energy

Consumption

Day 1 0.81 1.03 19.1 °C 4.3 °C 84 kWh

Day 2 0.89 1.28 19.7 °C 4.8 °C 154 kWh

Day 3 0.82 1.09 19.9 °C 6.6 °C 61 kWh

Day 4 0.72 1.12 20.9 °C 12.5 °C 51 kWh

Average 0.81 1.13 19.9 °C 7.1 °C 87 kWh
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Table 4.7: Results of the Fixed Set Point approach during Mondays in heating mode.

Days PMV PMV 6 AM
Indoor

Temperature
Outdoor

Temperature
Energy

Consumption

Day 1 0.75 1.04 19.1 °C 2.8 °C 204 kWh

Day 2 0.77 1.07 19.2 °C 4.5 °C 125 kWh

Day 3 0.74 1.18 19.6 °C 9.1 °C 122 kWh

Day 4 0.77 1.14 20.6 °C 10.3 °C 82 kWh

Average 0.76 1.11 19.6 °C 6.7 °C 133 kWh

4.7.4 Performance Analysis - Simulated Environment

The validation in real-world scenarios presents challenges that hinder direct

comparisons with multiple approaches. Firstly, we are forced to conduct

experiments only from Monday to Friday as the building is closed on week-

ends, thus requiring many weeks to collect a good amount of results for

each approach. Secondly, even with a great availability of experimental

data, it is difficult to compare more strategies over multiple days due to

different outdoor weather conditions.

Considering these limitations, we propose a comparison analysis among

our solution, the Fixed Set Point approach (in this case, we test it with two

different set point values) and the greedy PMV-Based approach through

software simulations. To simulate the behavior of each strategy through-

out selected days and model the environment’s response to specific HVAC

configurations at each quarter hour, we employ an AI model that we call

Global Model. This model is based on 1D CNN and trained using all data

collected from the warehouse during the evaluated operating mode (from

June to October in cooling mode and from November to February in heat-

ing mode). The idea is to include as much information as possible, allowing

the Global Model to learn the environment’s response under all the differ-
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ent conditions (e.g., due to outdoor weather), thus maximising simulation

accuracy.

In terms of results, we first demonstrate the reliability of the simulated

environment by emulating the HVAC settings (i.e., ON/OFF and SP) oc-

curred in the real environment during the day by means of the designed

Global Model. We then simulate the three different approaches i.e., EECO,

PMV-Based, Fixed Set Point. Consistently with the previous analysis in

the real environment, we consider category III as the target comfort. For a

thorough comparison, we examine days in both cooling and heating modes,

selecting 8 random days for each month under consideration. Furthermore,

we split the results between normal working days and Mondays, as in the

subsection 4.7.3. Finally, as observed in the manual approach outlined in

Section 4.7.3, both for the PMV-Based and Fixed Set Point approach we

activate the HVAC devices at 6 AM, thus ensuring the same operating

interval of our solution.

Simulator Validation

In this subsection, we aim to validate the simulated environment. In this

regard, we analyse the accuracy of the Global Model mentioned in Section

4.7.4. To cope with this task, we analyse the behaviour of the predicted

environment (indoor temperature, humidity, CO2 and energy consump-

tion) at each quarter of hour upon the actuations (ON/OFF, SP) that

occurred in the real environment. Basically, each time, we rely on the pre-

vious predictions to forecast the future evolution of the environment for the

next quarter of hour. This approach enables us to evaluate the reliability

of the simulator by comparing the simulated behaviour of the warehouse

throughout each selected day with the real observed data.

84



CHAPTER 4. ENERGY-EFFICIENT COMFORT OPTIMISATION

Table 4.8: Simulator results during summer months.

Energy [kWh] Indoor Temperature [°C] Indoor Humidity [%] CO2 [ppm]

Months RMSE % Error RMSE % Error RMSE % Error RMSE % Error

July 0.42 10.9 0.43 1.1 2.0 3.1 27.7 3.2

August 0.37 11.9 0.40 1.0 2.0 2.6 24.2 2.6

September 0.36 36 0.34 0.9 1.9 2.7 47.7 4.5

Average 0.38 kWh 19.6 % 0.39 °C 1.0 % 2.0 % 2.8 % 33.2 ppm 3.4 %

Table 4.9: Simulator results during winter months.

Energy [kWh] Indoor Temperature [°C] Indoor Humidity [%] CO2 [ppm]

Months RMSE % Error RMSE % Error RMSE % Error RMSE % Error

December 0.34 22.1 0.32 1.1 1.4 2.5 35.3 3.6

January 0.33 10.2 0.29 1.1 1.3 2.3 25.0 2.4

February 0.31 11.9 0.49 1.9 1.3 2.8 38.8 3.0

Average 0.33 kWh 14.7% 0.37 °C 1.3 % 1.3 % 2.5 % 33.0 ppm 3.0 %

Tables 4.8 and 4.9 present the overall monthly results of the simulated

environment during the Summer (cooling mode) and the Winter months

(heating mode), respectively. To provide a detailed overview of the ac-

curacy of our simulated environment, we report the RMSE between the

predicted and actual values for each variable as well as the percentage er-

ror (i.e., the percentage difference between the mean of the predicted values

and the real ones). Unlike the percentage error used by Mancini et.al. [78]

in a similar scenario, the RMSE enables us to highlight possible deviations

in the behaviour of each variable.

To the best of our knowledge, few research studies in the literature

demonstrate the goodness of their simulated environments in a systematic

way. Nevertheless, we try to compare the accuracy of our simulator with

results from other works in the same research domain. Unlike the valida-

tion results presented by Mancini et.al. [78], our simulated environment
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achieves better performance in terms of percentage error for all the out-

put variables (except for CO2, which was not considered by the authors).

However, similar to other studies, energy consumption due to HVAC de-

vices results in the most challenging variable to be simulated accurately.

In this regard, our results show an average percentage error between 14%

and 20%, indicating a slight underestimation or overestimation of the total

predicted energy consumption compared to the real behaviour. However,

the same amount of error is expected among all evaluated approaches,

guaranteeing a fair comparison. Nevertheless, it is worth noting that the

RMSE value is limited for all the variables, demonstrating the simulator’s

ability to accurately model the environment throughout the day.

Cooling mode

In cooling mode, we have done experiments from July to September. As

depicted in Figure 4.9, EECO provides slightly worse comfort conditions

but reduces the energy footprint by at least 6 kWh on average compared

to all the other evaluated approaches. In this scenario, the Fixed Set Point

approach provides better thermal comfort conditions than requested but

impacts the buildings’ energy footprint more than EECO and the PMV-

Based approach (Table 4.10). This behaviour is particularly clear with

a lower set point value (e.g. 26 °C), which forces the HVAC devices to

work more, especially during very hot months such as July and August.

Conversely, the greedy PMV-Based approach achieves PMV values close to

the lower bound of the comfort range but consumes slightly more energy

than EECO. Finally, comparable performance in terms of both thermal

comfort and energy consumption is observed on Mondays, as reported in

Table 4.11.

86



CHAPTER 4. ENERGY-EFFICIENT COMFORT OPTIMISATION

Fixed SP - 26°C Fixed SP - 27 °C PMV-Based EECO
Strategies

0

0.2

0.5

0.7

1

PM
V

0

25

62.5

87.5

125

En
er

gy
 C

on
su

m
pt

io
n 

[k
W

h]

Energy
PMV

Figure 4.9: Overall average behaviour of PMV index and energy consumption for the

evaluated approaches on working days in cooling mode.

Table 4.10: Average monthly behaviour of PMV index and energy consumption for the

evaluated approaches on working days in cooling mode.

Fixed SP - 26 °C Fixed SP - 27 °C PMV-Based EECO

Months Energy PMV Energy PMV Energy PMV Energy PMV

July 131 kWh 0.51 123 kWh 0.57 126 kWh 0.57 117 kWh 0.65

August 112 kWh 0.44 113 kWh 0.50 115 kWh 0.54 105 kWh 0.63

September 67 kWh 0.25 60 kWh 0.33 56 kWh 0.43 56 kWh 0.42

Average 104 kWh 0.40 99 kWh 0.47 99 kWh 0.51 93 kWh 0.57

Table 4.11: Average behaviour of PMV index and energy consumption for the evaluated

approaches on Mondays in cooling mode.

Fixed SP - 26 °C Fixed SP - 27 °C PMV-Based EECO

Energy PMV Energy PMV Energy PMV Energy PMV

114 kWh 0.46 108 kWh 0.52 109 kWh 0.53 108 kWh 0.54
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To summarise the results from simulation data in cooling mode, Table

4.12 shows the improvement of EECO compared to the other approaches

from both comfort and energy perspectives. In cooling mode, our solution

achieves 6% to 13% energy savings while maintaining comfort conditions

that are slightly less optimal in terms of proximity to the lower bound of

the comfort range.

Table 4.12: Overall performance of EECO compared to the Fixed Set Point and PMV-

Based approach in terms of absolute PMV difference from the lower bound of the comfort

range and percentage difference of energy saving in cooling mode.

PMV Distance Energy Consumption

Fixed SP - 26°C 0.03 11%

Fixed SP - 27°C -0.04 6%

PMV-Based -0.06 6%

Heating mode

In heating mode, we have compared the different approaches in the period

between December and February. In such scenario, as depicted in Figure

4.10, our solution guarantees similar comfort conditions compared to the

Fixed Set Point and PMV-Based approaches while reducing the energy

footprint by about 15 kWh on average, resulting in significant energy sav-

ings. This efficiency is achieved through strategic shutdowns of the HVAC

devices configured by our approach at some quarters of hour during the

day: this enables the environment to maintain the desired comfort level

while limiting the impact on the energy consumption. In contrast, the

Fixed Set Point approach lacks this intelligent adjustment, leading to po-

tential energy inefficiencies if the set point value is not optimally set. For

instance, increasing the set point value from 21°C to 22°C does not improve

the expected thermal comfort but impacts the building’s energy footprint

88



CHAPTER 4. ENERGY-EFFICIENT COMFORT OPTIMISATION

in a significant way (Table 4.13). The same behaviour, as reported in Table

4.14, is also observed on Mondays.
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Figure 4.10: Overall average behaviour of PMV index and energy consumption for the

evaluated approaches on working days in heating mode.

Table 4.13: Average monthly behaviour of PMV index and energy consumption for the

evaluated approaches on working days in heating mode.

Fixed SP - 21 °C Fixed SP - 22 °C PMV-Based EECO

Months Energy PMV Energy PMV Energy PMV Energy PMV

December 71 kWh 0.64 79 KWh 0.62 76 kWh 0.62 56 kWh 0.68

January 65 kWh 0.62 71 kWh 0.61 69 kWh 0.61 48 kWh 0.67

February 72 kWh 0.54 79 kWh 0.53 69 kWh 0.57 60 kWh 0.58

Average 69 kWh 0.60 76 kWh 0.59 72 kWh 0.60 55 kWh 0.64

As highlighted in cooling mode, better results in terms of PMV value

are observed during the last evaluated month (i.e., February). This is

due to December and January being the coldest Winter months. The

PMV values obtained during these experiments underline the difficulties
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in heating operations to maintain optimal comfort conditions during the

harshest winter months.

Table 4.14: Average behaviour of PMV index and energy consumption for the evaluated

approaches on Mondays in heating mode.

Fixed SP - 21 °C Fixed SP - 22 °C PMV-Based EECO

Energy PMV Energy PMV Energy PMV Energy PMV

85 kWh 0.79 92 kWh 0.78 90 kWh 0.78 75 kWh 0.83

To summarise, as reported in Table 4.15, in heating mode EECO guar-

antees a comfort level comparable to basic approaches, i.e., PMV-Based,

Fixed Set Point. However, unlike these strategies, our solution achieves

energy savings greater than 20%. As discussed previously as well as in

Section 4.7.3, this is mainly achieved by selectively shutting down HVAC

devices, which minimally affects comfort but significantly improves energy

efficiency. Given the building’s position, which receives direct sunlight for

much of the day, it can take advantage of the outdoor environment for in-

door heating. Therefore, as highlighted in the following section, integrating

solar irradiation as an input is crucial for further optimising the algorithm.

This scenario highlights the limitations of traditional approaches, which

have a limited overview of the problem as they follow a single objective

function with no attention for the energy footprint. In contrast, an intel-

ligent approach such as EECO can guarantee a proper balance between

thermal comfort and energy consumption. It is worth noting that these

simulated results are consistent with those obtained in the real environment

and described in Section 4.7.3.
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Table 4.15: Overall performance of EECO compared to the Fixed Set Point and PMV-

Based approach in terms of absolute PMV difference from the lower bound of the comfort

range and percentage difference of energy saving in heating mode.

PMV Distance Energy Consumption

Fixed SP - 21°C -0.04 20%

Fixed SP - 22°C -0.05 28%

PMV-Based -0.04 24%

4.7.5 Discussion

Comfort Model

Despite the benefits described in the previous sections, the proposed so-

lution is affected by some limitations. For instance, some parameters of

the PMV index (i.e., metabolic rate, clothing insulation, air velocity) have

been configured statically. However, some studies suggest the implemen-

tation of dynamic configurations for the comfort model parameters (e.g.,

air velocity [31] and clothing insulation [79]) to align with local environ-

mental conditions. Additionally, other research works [27, 69] underline

the importance of personal control by building occupants in satisfying the

requirements of a large amount of people and accurately modelling the

comfort.

In this study, our primary focus has centered around refining the algo-

rithm responsible for the management of HVAC devices. While we delve

into an extensive examination of EECO performance using static PMV pa-

rameter values, we acknowledge that the usage of dynamic values and per-

sonal control is beyond the current scope and does not impact the designed

methodology. Nevertheless, we consider these aspects as opportunities for

further investigation and exploration in the future, along with considering
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other comfort methodologies such as operative temperature, which might

better fit the considered scenarios.

Methodology

The proposed algorithm is designed to optimise a single comfort objective

as input. However, environments often involve multiple stakeholders (e.g.,

local personnel, customers), each potentially having conflicting comfort

requirements. In this case, a decision-making process is necessary, as this

algorithm lacks the capability to simultaneously address multiple comfort

objectives. In this regard, this solution particularly fits scenarios where

occupants share similar comfort needs or a preference for one stakeholder

over the other is exhibited. As a result, the solution’s applicability might

be better suited to scenarios with a less diverse environment of stakeholder.

Further improvements could also be integrated into the proposed solu-

tion e.g., additional input variables might be considered. In this regard,

different research studies in the literature include solar irradiation in their

solutions [29, 69]. Such information, integrated into the proposed algo-

rithm, might allow for a more accurate selection of the HVAC configuration.

This could help fine-tune the use of natural effects (i.e., passive methods),

instead of activating HVAC devices at certain times during the day. Con-

sidering the complexity of the problem, the promising results and the lack

of a reliable source for solar irradiation data in the early stages, we have

preferred to not include solar irradiation at this stage while acknowledging

it as a promising avenue for future research.

Validation

We underline the possibility to validate the designed solution from other

perspectives. Indeed, our partner has provided us with strict constraints

to test the proposed solution within a real production environment that
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includes human presence, preventing us from performing different experi-

ments. In this regard, for instance, specific tests need to be conducted to

evaluate the performance on days characterized by alternating comfort and

no comfort requirements (i.e., similarly as Yang et.al. in [62]), as opposed

to solely focusing on a single comfort interval throughout the day.

4.8 Summary

In this chapter, we have presented a novel algorithm based on AI to regulate

HVAC devices in an automated way to optimise thermal comfort while

minimising the energy footprint.

Compared to a static approach where the HVAC set point is config-

ured to a fixed temperature, evaluation results show that our solution can

slightly improve the indoor comfort with a minimal impact on the build-

ing’s energy footprint in Summer (i.e., cooling mode). On the other hand,

in cold months (i.e., heating mode) it results in significant energy savings

(up to 16%) while providing comparable comfort conditions.

Due to clear limitations in comparing multiple approaches in a real

environment, we have provided an additional comparison analysis based on

software simulations between our solution and other two approaches (i.e.,

the fixed set point and a greedy PMV-based approach). In this regard,

evaluation results show significant improvements in Winter months rather

than in Summer, confirming the results obtained in the real-world scenario.

Indeed, we have achieved slightly worse performance in terms of comfort

requirements but resulting in energy savings greater than 20%.

Despite the promising results obtained in the evaluated scenario, the

application of our solution on a very large scale is subject to overcom-

ing of some limitations mentioned in Section 4.7.5. Nevertheless, unlike

non-intelligent approaches that just follow a single objective function, the
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results obtained in the evaluated scenario demonstrate the capability of

our solution to guarantee a trade-off between the comfort level and the en-

ergy consumption by dynamically selecting the configuration (ON/OFF,

set point) of the HVAC devices.
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Chapter 5

Business Analysis

My PhD in Industrial Innovation included not only traditional research

activities but also a number of business-focused activities. In collaboration

with EIT Digital, I participated in the Business Development Experience

(BDExp), an activity designed to promote the development of business and

innovation skills within the industry. This experience offered me a valuable

opportunity to apply the business concepts I had learned during different

seminars attended throughout the three years of my Doctorate Program.

Specifically, I decided to focus on analysing the impact of my research

outcomes on the business operations of my host company, Energenius Srl,

with a particular emphasis on the GEM-Retail product. This chapter

delves into the different business aspects that emerged from the potential

transfer of technological insights gained during my research. It explores

how these insights, along with the specific outcomes of my research, can be

effectively applied within the business domain of Energenius Srl, enhancing

its operational effectiveness and strategic positioning in the market.

This chapter is mainly based on the report developed during the Busi-

ness Development Experience (BDExp) in collaboration with EIT Digital.
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5.1 Introduction and Scenario

Energenius [80] is an Italian innovative small-scale company with high

technological know-how, born from the synergy between energy managers,

electric engineers, and IT experts in energy measurement and analysis. The

company offers tailor-made solutions for monitoring energy consumption

and the analysis of collected data using AI. From small retail shops to

office buildings and banks, up to extensive production plants, Energenius

offers dedicated solutions for energy monitoring through its Genius Energy

Manager (GEM) suite.

One of Energenius’ latest solutions, GEM-Retail, is specifically tailored

to meet the needs of tertiary buildings, with a particular focus on the re-

tail sector (e.g., shops). With escalating energy prices and the effects of

climate change, European retailers have to face the dual challenge of im-

proving energy efficiency and maintaining indoor comfort on a large scale,

as discussed in Chapter 1. In this scenario, GEM-Retail is an innovative

hardware and software solution that leverages cutting-edge technologies

such as Edge Computing and AI to reduce energy consumption while en-

suring customer satisfaction and well-being in indoor environments.

GEM-Retail is currently undergoing refinements to enhance its compet-

itiveness and better align with market demands. The core technological

concept behind GEM-Retail is to move computation to the edge, where a

low-power, resource-constrained device is installed. The objective is to in-

crease reliability and scalability, providing fast data analysis and response

to potential issues while reducing the monitoring efforts to guarantee sus-

tainability across a large number of sites. Among its implemented func-

tionalities, GEM-Retail enables users (e.g., facility managers, owners) to

monitor energy consumption and environmental parameters (e.g., tempera-

ture, humidity, CO2), analyse advanced KPIs to highlight the most critical
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and challenging shops, compare multiple sites in an automated way, opti-

mise HVAC devices.

5.1.1 Business Impact of Research Outcomes

In the previous section, we introduced GEM-Retail, a product developed

by Energenius that aligns perfectly with my research focus. While the re-

search findings might be transferred within the company in different ways,

their integration into GEM-Retail appears particularly promising for En-

ergenius. Consequently, this chapter focuses on this potential business di-

rection, highlighting how academic research can positively impact business

operations and enhance the existing product.

A significant achievement of my research is the development of powerful

AI tools capable of predicting future values of a series of relevant variables,

e.g., the Carbon Dioxide (CO2) level, to prevent it from exceeding recom-

mended thresholds. These models exhibit the capability to achieve com-

parable predictive accuracy while training on a limited dataset in contrast

to other state-of-the-art solutions that require extensive historical data, as

described in Chapter 3. This approach offers important advantages from

technical and business perspectives:

1. The designed system becomes operational shortly after deployment,

making it highly attractive from a business perspective;

2. The lightweight AI models can be continuously updated based on

recent local environmental behavior, adapting to changes over time

while maintaining high prediction accuracy. This eliminates the need

for manual operations and, importantly, there is no requirement to

transmit data to costly centralised servers;

3. The AI models can be trained and deployed on cost-effective, resource-

constrained devices, with no need for expensive server infrastructure,
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thus preventing any escalation in the solution’s market price.

In Chapter 4, we demonstrated that these models can be effectively inte-

grated within a novel AI-based algorithm that controls the operation of

HVAC devices with the aim to optimise indoor comfort while minimising

energy consumption in an automated way, addressing a key concern for

managers handling multiple sites. This algorithm yields significant bene-

fits:

1. No need for human intervention or any customisation within the en-

vironment;

2. In contrast to many state-of-the-art solutions, no mathematical or

physical models of the buildings are necessary, relying only on real

collected data;

3. Potential customers (e.g., managers of big retailer companies) can save

on operating costs to control the well-being of occupants and lower

the energy footprint of their buildings.

This solution ensures replicability and scalability on a broad scale with

minimal human effort, enabling managers to enhance the energy efficiency

and sustainability of their buildings in an automated and intelligent way.

Considering that the retail sector in the European Union comprises more

than 6800 companies, collectively generating an annual turnover exceed-

ing 8000 billion euros, and with escalating energy costs and the growing

impact of climate change, European retailers are increasingly interested in

improving the energy efficiency and indoor comfort of their sites without

negatively affecting the business. In light of the above factors, the ob-

tained outcomes hold the potential to greatly enrich the solution proposed

by Energenius from a business perspective, enhancing its competitiveness

in comparison to other market-available products or services.
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Nonetheless, a comprehensive analysis is fundamental to assess their

impact with the aim to not only better penetrate the existing market but

also to potentially enter other market segments. In the next sections, we

will provide a comprehensive overview of the conducted analysis across

different areas (market and competitors’ analysis, business opportunities,

customer profile and value proposition, business model and business plan),

with the aim to emphasize the contribution of my research within the

operational business of the industrial company.

5.2 European Market Analysis

Retail market holds a distinctive role in the European economy, contribut-

ing 11% to the EU’s GDP and engaging one in three companies across

the continent. In this regard, factors such as rising energy prices and the

effects of climate change force European retailers to face the challenge

of constantly improving their energy efficiency. On average, electricity

consumption constitutes three-quarters of a store’s overall energy require-

ments, primarily allocated to lighting, air conditioning, heating sales areas,

and water heating. At the same time, ensuring optimal comfort conditions

is fundamental to make people feeling safe and comfortable within indoor

environments, especially after Covid-19 pandemic, as reported in Chapter

1.

As previously mentioned, the retail world has more than 6,800 compa-

nies in the EU, with a total turnover exceeding 8,000 billion euros / year.

In such scenario, energy management systems (EMS) that allow an orga-

nization to collect real-time information on energy consumption through

monitoring, evaluation, and visualization, are becoming increasingly pop-

ular. Indeed, they help companies gain a competitive advantage, increase

productivity, and reduce energy costs, aligning with government policies
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promoting energy saving and environmental sustainability. While many

potential buyers acknowledge the benefits of implementing such systems,

a considerable number still rely on conventional technologies and applica-

tions. Financial barriers and limited skills emerge as significant challenges

for the energy management systems market. Energy monitoring and con-

trol hold a significant market share in the energy services segment and is

expected to continue to provide profitable business opportunities. The im-

plementation of an information system for energy management proves to be

an effective strategy not only to save energy but to continuously optimise

and safeguard the health of occupants. Such platform automates tasks that

are time-consuming and labour-intensive, allowing management groups to

concentrate on more value-added activities. A comprehensive analysis of

the current retail market in Europe highlights promising opportunities for

solutions like GEM-Retail, particularly in the following sectors:

• The first focus is on the fashion industry since Energenius is already

in contact with a major customer in this category. This positions the

company advantageously in knowing the specific needs of companies

in the sector. Two of the main players in Europe are Inditex [81] and

H&M [82]. Through insights from a “per country” analysis, a first

strategy to spread GEM-Retail solution include the following countries

based on their number of stores:

Table 5.1: Overview of fashion stores per country in Europe.

Country Number of H&M Stores Number of Inditex Stores Total

Spain 146 1225 1371

France 201 268 469

Germany 430 115 545

Poland 188 222 410
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Inditex has already collaborated with several international groups to

improve energy use and procurement. H&M, one of the largest cloth-

ing chains in the world, underline how there is still significant room for

improvement, with the primary interest being the adoption of energy

efficiency tools for automating systems, including real-time monitor-

ing and indoor temperature adjustments [83]. Additionally, in re-

cent years, H&M has explored outsourcing its efficiency investments

through an Energy Service Company (ESCO), which would facilitate

communication with energy service managers.

We underline that the availability of other fashion companies poten-

tially interested in GEM-Retail depends on the chosen country. For

example, in France, LVMHMoët Hennessy Louis Vuitton SE [84] owns

over 500 physical stores.

• Electronic stores offer a similar experience. The electronic store mar-

ket is more segmented along national borders, despite having a signif-

icant size. Here the example of the French retail Fnac Darty, and the

German Media Markt:

– FNAC Darty [85] has around 200 stores in France, and few hun-

dred stores across Europe (e.g., in Spain, Belgium, Netherland,

Switzerland)

– Media Markt [86] is present in Europe through a network of more

than 1000 stores in ten countries (e.g., in Spain, Italy, Poland,

Germany)

• On the other hand, general stores exhibit great diversity. However, it

is important to consider this market sector because of its current size

and the potential future growth. Some examples are the following:

– Aldi [87] dominates the German retail market, managing 5000
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stores across the country. They also expanded in Austria, United

Kingdom, Switzerland, and Italy.

– Carrefour [88] is France’s biggest retailer company with a strong

international presence as well. They operate almost 4000 stores

in France and more than 6000 shops across the Europe.

– Coop [89], born in Switzerland, is another big player in this sector.

Indeed, they handle more than 2000 shops.

Additionally, there are other potential markets that have not been con-

sidered in this analysis but are worth mentioning: sports equipment (i.e.,

Decathlon), pharmacies, and retail space renters. While not fitting the

traditional retail model, coworking spaces might also be a viable market,

given their focus on enhancing client satisfaction inside their spaces.

5.3 Business Opportunities

During the last years, the business all over the world has been affected

by the Covid-19 pandemic. This can be seen as an unforeseen event often

known as “Black Swan Event” in the business. In the retail sector, the

pandemic has forced everyone to move a lot of activities to online platforms,

particularly impacting fashion retail. However, some business activities

(e.g., in the food, beverage, and tobacco retail sectors) have remained

relatively unaffected, with on-site shopping maintaining an important role

in people’s lives.

Generally, potential business opportunities for GEM-Retail have emerged

because of the Covid-19 pandemic. As highlighted in Chapter 1, until 2020,

the primary focus was only on minimising energy consumption. Nowadays,

the trend among managers is to prioritise thermal comfort in indoor en-

vironments while simultaneously reducing energy consumption. This dif-
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ference is particularly clear as retail managers now consider ensuring safe

and comfortable environments crucial, leading to an increased interest in

obtaining relevant IAQ certifications to distinguish themselves from com-

petitors in terms of environmental sustainability as well as to align with

the green policies being set in place to fight the global warming crisis.

In this context, the innovative aspects derived from my research out-

comes, integrated within GEM-Retail, align perfectly with these emerging

opportunities. Additionally, while initially tailored for the retail sector,

GEM-Retail now exhibits versatility and applicability across the whole

tertiary and commercial sector. This flexibility introduces new avenues for

commercial approaches, allowing GEM-Retail to effectively monitor and

manage geographically distributed buildings. One potential market seg-

ment worth considering is the banking sector. As of the end of 2022, Italian

banks and branches of foreign banks in Italy collectively operated 20,986

branches, with 55 percent belonging to larger institutions, and the rest

distributed roughly equally among other categories [90]. This expansion

into diverse market areas signifies a strategic evolution for the GEM-Retail

solution.

Hotels represent another perspective business opportunity for GEM-

Retail. Although the tourist demand of the resident population has suf-

fered the impact of the COVID-19 pandemic in 2020, registering an un-

precedented contraction, the sector has returned to rapid growth. In this

regard, in the latest Horwarth reports (IT and EU Hotel Chains) [91], an

evolution of the landscape was outlined thanks to the identification of a

cluster of 10 Italian hotel groups based on the total turnover generated

in Italy. This cluster includes: Starhotel, Gruppo UNA, Aeroviaggi, ITI

Hotels, TH Resorts, Delphina, Blu Hotels, Blu Serena, JSH and Parc Ho-

tels Italia. The cluster represents 31% of the number of Italian chain hotel

rooms as well as 20% of all chains (thus including international ones). The
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segments concerned are for the most part upscale, followed by luxury and

midscale.

5.4 Competitors

In the Italian market, different indirect competitors provide generic solu-

tions for monitoring and analysing energy consumption in the retail sector.

These competitors include both hardware manufacturers (e.g., Siemens,

Electrex, Socomec, Energy Team, IME) and software producers (e.g., Zuc-

chetti, Inspiring, Dexma, Trend). Both categories of competitors focus

on selling software solutions exclusively dedicated to the energy monitor-

ing of smart meters, whether owned or third-party. However, they often

overlook advanced functionalities and offer generic solutions that are not

closely tailored to the target market of GEM-Retail. Specifically, the ter-

tiary buildings, including the retail sector, have different needs compared

to the industrial sector, in terms of costs, scalability, and analytics aimed

at comparing the performance of individual sites to identify the most criti-

cal cases. Additionally, as previously mentioned, managers are committed

to fulfilling both energy efficiency and indoor comfort requirements. As

a result, we focus on European market, where competitors offer solutions

similar to GEM-Retail but are primarily focused on specific energy assess-

ments. Indeed, their aim is to identify energy waste and create alarms that

provide maintenance personnel with tools to set up systems efficiently.

In conducting an analysis of the competitive landscape, the main com-

petitors in such market include:

• EnergyCAP [32]. EnergyCAP provides a comprehensive retail en-

ergy management solution comprising both hardware and software

(EnergyCAP SmartAnalytics). This solution assists proprietors and

administrators overseeing an extensive array of buildings in expand-
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ing energy efficiency across many sites and stores. It enables prompt

responses to real-time fluctuations, such as unusual consumption pat-

terns and unforeseen peaks. The key benefits are:

– Efficient handling of bulk meter data

– Continuous monitoring and timely alerts

– Effective performance and resource management

– Benchmarking and comparative analysis

– Accurate measurement and verification

• Phoenixet [33]. Specialized in corporate energy management within

the retail sector, Phoenixet’s energy management software enables

customers to control and handle energy consumption across hundreds

or even thousands of buildings. Enterprise Data Xchange (EDX) is an

IoT platform that optimises building performance, reduces energy con-

sumption, and enhances customer comfort. Enterprise Data Xchange

oversees, manages, and monitors millions of data points from HVAC,

lighting, refrigeration, industrial machines, and consumer devices.

• Powerhouse Dynamics [34]. The Powerhouse Dynamics’ SiteSage project

allows you to monitor, analyse, and control IoT devices. It not only

allows to improve consumption but also to focus on monitoring the de-

vices’ condition. SiteSage is designed for multisite operators of small

commercial facilities; they have a starting point of 20 buildings, but

the solution is scalable. Right now, they are specialized in Food Ser-

vice Facilities.

• DEXMA [35]. Dexma contributes to lowering energy expenses and en-

hancing customer satisfaction through the Spacewell Energy Platform

(Dexma). With DEXMA Detect, you can benchmark performance
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across various store locations, pinpointing stores with the highest re-

turn on investment (ROI) and determining the most effective energy-

saving measures for each. After identifying high-consumption sites,

DEXMA Analyze provides the capability to scrutinise consumption

during specific time intervals, facilitating more precise comparisons.

Finally, DEXMA Optimise automates the energy management process

with 24/7 powered anomaly detection.

• ENERGIS [36]. They propose Energis.Cloud, an innovative energy

management software applied in the tertiary and industrial sectors,

particularly for renewable energy producers. It is crafted to assist

players in the energy and environmental markets in reaching their

energy efficiency objectives. Key advantages include:

– Multi-site Portfolio: Gather and centralize energy data, enabling

the comparison of entire portfolios. Identify underperforming sites

and actions that lead to savings.

– Air Quality and Comfort.

– Real-time Identification of Inefficiencies.

In conclusion, the common points of the various competitors are related

to pricing strategies. Competitors always have a plan that offers a cost of

meters equal to 5% of the energetic costs to allow the customers to return

the investment in a year. The second point to note is that several com-

petitors offer different flexible plans that scale based on customer’s needs.

They exhibit great diversification in their offerings, tailoring services based

on the specific needs of clients. Noteworthy, there are differences in acquisi-

tion, data analysis, direct control of devices, analysis of KPIs, verification,

and comparison between multiple shops. Finally, it is worth noting that

not all solutions prioritise the trade-off between indoor comfort and energy
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efficiency or include forecasting features. In Figure 5.1, we compare the

competitors’ solution based on price and their ability to effectively optimise

multiple buildings.

Figure 5.1: Competitor positioning map of GEM-Retail.

5.5 Customer Profile and Value Proposition

In this section, we exploit the customer profile and value proposition, fo-

cusing particularly on managers who are tasked with managing multiple

sites - a common scenario for large retail companies. To tackle this chal-

lenge, the well-known Value Proposition Canvas is used (Figure 5.2). The

customer profile is divided into:

• Customer Job: Managers need to find new affordable ways to monitor

and manage the energy consumption [92] across their sites, detect-

ing possible anomalies and making decisions about the interventions

to be carried out to solve them. Additionally, they are responsible
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for ensuring safe and comfortable environments to enhance customer

comfort and potentially boost the sale of goods.

• Pains : Managers face challenges to reduce the impact of energy re-

quirements on their balance sheets and ensuring optimal comfort con-

ditions to occupants [93], thereby preventing early customer depar-

tures, or discouraging entries. Additionally, they lack sufficient re-

sponsiveness to potential issues within their environments. Finally,

the introduction of an informative and control system should consider

the presence of already existing systems to minimise integration costs

and avoid delaying the return on investment from the perspective of

managers.

Figure 5.2: Value Proposition and Customer Segment of GEM-Retail.
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• Gains : Managers need tools that provide real-time analysis and au-

tomated monitoring across all their sites. Real-time monitoring and

control are crucial, requiring swift and easy-to-read countermeasures

to spotted anomalies. This approach overcomes manual operations

in managing multiple sites, thereby reducing operating costs. Addi-

tionally, considering the potential heterogeneity of sites, privacy and

security are paramount.

Given the delineated customer profile, GEM Retail, leveraging the in-

tegration of novel functionalities derived from the research outcomes, pro-

vides the following value proposition:

• Product : GEM Retail consists of three main pillars:

Monitoring: consistent monitoring of all environments from both

energy and environmental perspectives.

Analysis and Diagnosis: customer assistance while executing auto-

mated deep analysis to analyse, forecast and improve the performance

of the sites.

Intelligent control of HVAC devices: Artificial Intelligence engine

applied to Big Data to identify the optimal regulations for energy-

intensive HVAC devices.

• Pain Relievers : GEMRetail leverages Fog Computing to non-invasively

install the sensors in the existing plant of shops. Thanks to lightweight

AI models resulting from research activities, all the operations (e.g.,

training of the AI models) are executed on a low-power, resource-

constrained device, leading to restrained installation and maintenance

costs. This system empowers managers to analyse and reduce energy

wastefulness and discomfort conditions in an automated way, thereby

lessening the economic impact and enhancing sustainability.
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• Gain Creators : GEM Retail provides managers with clear and pre-

cise details of the energy consumption of all shops, highlighting the

most and less performing ones. Thanks to AI, it forecasts the future

environment to identify anomalies in terms of energy consumption

or environmental parameters (e.g., CO2) in advance, resulting in a

proactive approach to potential issues. Privacy and security concerns

are guaranteed: all operations are executed locally with no need for

advanced computing in the cloud.

5.6 Business Model

This section proposes a preliminary outline for a prospective business

model using the Lean Canvas framework, outlined in Figure 5.3. The

draft highlights the different elements of the business behind GEM-Retail,

with particular emphasis on the direct contributions arising from my re-

search. These contributions, clearly denoted in bold, exhibit a clear impact

on key areas of the envisioned business model (e.g., solution, unique value

proposition, key metrics).

While specific details on some Lean Canvas components will not be

extensively covered, as they have already been addressed or discussed in

previous sections, it is important to highlight a few key areas. Notably,

the key metrics take a central role in the business model: the percentage

of sites with improved comfort conditions and the percentage of sites with

enhanced energy efficiency are crucial indicators for assessing the perfor-

mance and success of the proposed solution. These metrics are directly

linked to the research outcomes. Additionally, the channels for reaching

customers include direct sales, B2B events/meetings, online seminars and

partnerhips with ESCOs. The cost structure includes expenses related to

hardware, wages for the sales and marketing team, and software upgrades.
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Figure 5.3: Prospective Business Model using Lean Canvas of GEM-Retail.

5.7 Business Plan

In alignment with the proposed business model, this section presents a

prospective business plan collaboratively developed with Energenius to in-

tegrate the HVAC optimisation algorithm derived from the research out-

comes and described in Chapter 4. The plan is based on the current busi-

ness scenario of GEM-Retail, which, as of 2023, involves the management

of 25 shops. These shops are categorized into 7 small shops, 10 medium

shops, and 8 large shops. The selected pricing strategy, as outlined in the

revenue stream section of the Lean Canvas (Figure 5.3), includes an initial

startup cost and an annual maintenance fee for the service. The pricing is
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differentiated based on the size of the shop or building, resulting in varied

costs for GEM-Retail, similar to strategies offered by competitors.

Basically, our value proposition proposes two distinct solutions:

1. Data monitoring and analysis only (M&A)

2. Intelligent HVAC control in addition to data monitoring and analysis

(CONTROL)

Tables 5.2 and 5.3 provide an overview of the setup costs, selling prices,

and annual fees for the M&A and CONTROL solutions, respectively. The

setup cost covers hardware and engineering expenses, which are higher for

the CONTROL solution due to the need for additional hardware to inter-

face with HVAC devices. Unlike the M&A solution, which only requires

a limited-power, resource-constrained device and energy meters/ambient

probes to collect environmental and energy data, the CONTROL solution

typically necessitates one or more electronic interfaces compatible with the

specific brand of HVAC units (e.g., Daikin, LG) to enable communication

between the edge node and the installed equipment (e.g., through Mod-

bus protocol), hence providing control operations. While modern buildings

might already have the necessary infrastructure, eliminating the need for

extra hardware, GEM-Retail is usually deployed in older stores with out-

dated systems. As such, the setup costs account for this extra hardware,

with the assumption that these costs are similar across different HVAC

systems and increase in relation to store size. Given the added value of

the CONTROL solution, we have adjusted the margin between the selling

price and setup cost accordingly.
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Table 5.2: GEM-Retail pricing strategy for monitoring and analysis solution.

Size Setup Cost Selling Price Annual Fee

Small shops

(up to 500 m2)
e1,200.00 e1,900.00 e120.00

Medium shops

(500 m2 < area < 1000 m2)
e2,200.00 e3,500.00 e265.00

Large shops

(over 1000 m2)
e2,800.00 e4,400.00 e335.00

Table 5.3: GEM-Retail pricing strategy for the intelligent HVAC control solution.

Size Setup Cost Selling Price Annual Fee

Small shops

(up to 500 m2)
e1,800.00 e2,600.00 e400.00

Medium shops

(500 m2 < area < 1000 m2)
e3,300.00 e4,800.00 e700.00

Large shops

(over 1000 m2)
e4,200.00 e6,000.00 e1100.00

The annual maintenance fee for the intelligent HVAC control includes

the monitoring and analysis fee as well as an additional fee based on the

potential energy savings estimated in Table 5.4, derived from the research

outcomes presented in Sections 4.7.3 and 4.7.4. On average, our research

indicates an energy saving of approximately 15 kWh daily for an indoor

environment of 250m2. We extrapolate this savings rate for environments

up to 500m2. Larger sites are expected to achieve higher energy savings,

estimated at 25 kWh for medium sites and 40 kWh for large sites. By

considering the average yearly PUN value (i.e., the reference price for elec-

tricity in Italy) over the past years [94], we can estimate the potential
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annual energy savings for each site based on its size, as summarised in

Table 5.4:

Table 5.4: GEM-Retail potential energy saving in 2022 and 2023 through intelligent HVAC

control for each type of site.

Size Year Average PUN Potential Savings

Small shops
2022 e0.303 ∼ e1,658.00
2023 e0.127 ∼ e695.00

Medium shops
2022 e0.303 ∼ e2,764.00
2023 e0.127 ∼ e1,158.00

Large shops
2022 e0.303 ∼ e4,423.00
2023 e0.127 ∼ e1,854.00

The annual fee for the intelligent HVAC control is determined based on

these potential energy savings. Considering that the average PUN of 2022

was exceptionally high due to unprecedented energy price increases, we

base our estimates on more typical PUN values, hence considering the po-

tential savings for 2023 outlined in Table 5.4. The estimated savings range

from e695.00 to e1,854.00, depending on the size of the monitored site.

The basic annual fee for theM&A solution is tied to the number of measure-

ments points (i.e., the number of smart energy meters and ambient probes),

which increases with the store’s size. As defined by Energenius, annually

each energy meter costs e25.00 while each ambient probe costs e20.00,

with the total determining the basic annual fee. For the CONTROL solu-

tion, an additional fee is applied based on potential energy savings. This

extra fee is approximately 40% of the projected savings reported in Table

5.4, resulting in total annual fees from e400.00 to e1,110.00, depending

on the size of the controlled site.

Further details about the pricing strategy based on the size of the shop

are as follows:
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• Small shop/site (up to 500 m2):

– For the M&A solution, the setup cost is estimated at e1,200.00,

with a selling price of e1,900.00, resulting in a revenue margin of

58%.

– For the CONTROL solution, the setup cost is e1,800.00, and the

selling price is e2,600.00, resulting in a revenue margin of 44%.

• Medium shop/site (500 m2 < area < 1000 m2):

– For the M&A solution, the setup cost is estimated at e2,200.00,

with a selling price of e3,500.00, resulting in a revenue margin of

59%. The annual fee is e265.00.

– For the CONTROL solution, the setup cost is e3,300.00, and the

selling price is e4,800.00, resulting in a revenue margin of 45%.

• Large shop/site (over 1000 m2):

– For the M&A solution, the setup cost is estimated at e2,800.00,

with a selling price of e4,400.00, resulting in a revenue margin of

57%. The annual fee is e335.00.

– For the CONTROL solution, the setup cost is e4,200.00, and

the selling price is e6,000.00, resulting in a revenue margin of

approximately 43%.

Based on a preliminary cost analysis, we observe that, in a fair view,

Energenius expects to manage 160 shops in 2026, divided into: 40 small,

70 medium and 50 large stores, as reported in Table 5.5. In our opin-

ion, it is reasonable to expect that customers will prioritise monitoring

and optimising medium and large sites, where the potential for significant

sustainability improvements is greater. Indeed, medium and large stores

typically consume more energy due to their larger footprints and more
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HVAC devices. As such, the application of advanced optimisation tech-

niques in these environments can lead to substantial reductions in energy

consumption and operational costs.

Table 5.5: Number of retail stores adopting GEM-Retail in the upcoming years.

Size 2023 2024 2025 2026

Small shops 7 14 26 40

Medium shops 10 22 40 70

Large shops 8 14 24 50

Total 25 50 90 160

In Table 5.6, we present the projected costs and revenues for the M&A

solution. Our forecasts indicate that the margin for 2023 is e30,700.00,

which is expected to increase significantly to e239,130.00 by 2026. The

margin for Energenius offering the intelligent HVAC control solution is

even higher, starting from e35,000.00 in 2023 and potentially reaching

e334,640.00 by 2026, as reported in Table 5.7. Specifically, if we consider

2026 to highlights the benefits:

1. Small shops: The setup cost for the intelligent HVAC control amounts

to e72,000.00 compared to e48,000.00 for the M&A solution. How-

ever, the expected revenue in the first case is e120,000.00, whereas it

is only e81,640.00 for the M&A solution.

2. Medium shops: By 2026, the setup cost for the intelligent HVAC

control is e231,000.00 compared to e154,000.00 for theM&A solution.

The corresponding revenue is e382,190.00 for the intelligent HVAC

control, significantly higher than e264,080.00 for the M&A solution.

3. Large shops: In 2026, the setup cost for the intelligent HVAC control is

e210,000.00 compared to e140,000.00 for theM&A solution, while the

116



CHAPTER 5. BUSINESS ANALYSIS

revenue is e344,650.00 for the intelligent HVAC control, as opposed

to e235,410.00 for the M&A solution.

Table 5.6: Prospects for costs and revenues for GEM-Retail in the upcoming years for the

M&A solution.

Size 2023 2024 2025 2026

Small shops
Cost 8,400.00 e 16,800.00 e 31,200.00 e 48,000.00 e

Revenue 13,300.00 e 27,440.00 e 51,920.00 e 81,640.00 e

Medium shops
Cost 22,000.00 e 48,400.00 e 88,000.00 e 154,000.00 e

Revenue 35,000.00 e 79,650.00 e 148,480.00 e 264,080.00 e

Large shops
Cost 22,400.00 e 39,200.00 e 67,200.00 e 140,000.00 e

Revenue 35,200.00 e 64,280.00 e 112,970.00 e 235,410.00 e

Internal Costs 52,800.00 e 104,400.00 e 186,400.00 e 342,000.00 e

Internal Revenues 83,500.00 e 171,370.00 e 313,370.00 e 581,130.00 e

Profit Margin 30,700.00 e 66,970.00 e 126,970.00 e 239,130.00 e

Table 5.7: Prospects for costs and revenues for GEM-Retail in the upcoming years for the

CONTROL solution.

Size 2023 2024 2025 2026

Small shops
Cost 12,600.00 e 25,200.00 e 46,800.00 e 72,000.00 e

Revenue 18,200.00 e 39,340.00 e 76,420.00 e 120,800.00 e

Medium shops
Cost 33,000.00 e 72,600.00 e 132,000.00 e 231,000.00 e

Revenue 48,000.00 e 113.050.00 e 215,840.00 e 382,190.00 e

Large shops
Cost 33,600.00 e 58,800.00 e 100,800.00 e 210,000.00 e

Revenue 48,000.00 e 93,400.00 e 169,850.00 e 344,650.00 e

Internal Costs 79,200.00 e 156,600.00 e 279,600.00 e 513,000.00 e

Internal Revenues 114,200.00 e 245,790.00 e 462,110.00 e 847,640.00 e

Profit Margin 35,000.00 e 89,190.00 e 182,510.00 e 334,640.00 e

Customer Savings ∼ 17,669.00 e ∼ 65,958.00 e ∼ 154,252.00 e ∼ 315,456.00 e

Customer Real Costs ∼ 96,530.00 e ∼ 179,831.00 e ∼ 307,857.00 e ∼ 532,183.00 e

The intelligent HVAC control solution, while initially more expensive in

terms of setup costs, yields significantly higher revenues over time. The key
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factor driving this revenue growth is the significant energy savings that the

automated optimisation of HVAC devices provides to customers. Based on

the estimations outlined in Table 5.4 for a single site, the customer could

see significant energy savings over the years, starting from approximately

e17,669.00 in 2023 and increasing to e315,456.00 by 2026. Importantly,

the revenues figures for each year account for both the new stores added

in that year and the recurring fees from stores installed in previous years.

These savings translate into lower effective costs for the customers after

just a couple of years, as the total amount paid basically equals the total

revenues for Energenius minus the savings from the intelligent energy man-

agement of HVAC devices. For instance, in 2025, the M&A solution would

cost the customer e313,370.00, while the CONTROL solution would cost

about e307,857.00. The cost difference becomes even more pronounced in

2026: the real cost for customers with the intelligent HVAC control solu-

tion is approximately e532,000.00, compared to about e581,130.00 for the

M&A solution. This creates a margin of over e50,000.00 in favor of the

CONTROL solution by the fourth year, demonstrating a clear financial

benefit for customers who choose the intelligent HVAC control.

Customer savings, when compared to internal revenues (i.e., the cost of

the solution to the customer), indicate that the estimated payback period

for the CONTROL solution is approximately 4 to 5 years. This relatively

short payback period results from its intelligent, direct control over HVAC

devices, which leads to significant energy savings and efficiency improve-

ments. In contrast, estimating the savings for the M&A solution is more

complex. Unlike the CONTROL solution, the M&A solution lacks auto-

mated control of HVAC devices, requiring manual intervention. This effort

increases with the number of environments managed, leading to potential

inaccuracies, higher operational costs and reduced energy savings. Conse-

quently, the payback period for the M&A solution is expected to be longer,
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approximately around 10 years.

The prospects for the upcoming years highlight the significant business

potential of the intelligent and automated HVAC control derived from our

research. This innovative solution creates a win-win scenario for both En-

ergenius and its potential customers. Energenius can anticipate substantial

revenue growth over the years, driven by the increasing adoption of this

advanced technology. Meanwhile, customers will spend progressively less

money compared to a basic monitoring and analysis solution. In addition

to cost savings, they will achieve substantial benefits in terms of energy

efficiency, reduced operational costs, and enhanced sustainability, as un-

derlined in the previous chapters. This dual advantage not only enhances

Energenius’s market position but also supports customers in meeting their

energy management and sustainability goals more effectively.

5.8 Summary

In this chapter, we have conducted a business analysis to evaluate the

impact of our research outcomes on Energenius’ business strategies, specif-

ically focusing on the GEM-Retail product.

Our analysis demonstrates that the research findings offer significant

advantages for the company from a business perspective. Specifically, the

EECO algorithm, detailed in Chapter 4, has the potential to generate sub-

stantial revenue in the coming years if integrated into the GEM-Retail

product. By implementing this algorithm, Energenius can provide cus-

tomers with significant energy savings, leading to lower system costs and

enhanced customer satisfaction in managing their sites from a sustainabil-

ity perspective. This not only positions Energenius in a privilege position

in energy-efficient solutions for smart buildings but also creates a compet-

itive advantage in the market.
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Chapter 6

Conclusions

In this thesis, we have addressed the challenge of optimising indoor environ-

ments from energy and environmental perspectives, aligning with current

research directions.

In Chapter 3, we have introduced an adaptive and practical approach

for predicting indoor environmental and energy parameters. This approach

leverages a dynamic mobile window, facilitating rapid system deployment

and ensuring AI models remain current with environmental changes. Our

findings demonstrate that this kind of approach does not compromise pre-

diction accuracy. Even with a limited input dataset, our solution achieves

prediction accuracy comparable to existing methods, providing clear ben-

efits during the initial start-up phase and throughout regular system oper-

ation. Additionally, evaluation results further indicate that the proposed

system can efficiently run on resource-constrained devices. Consequently,

each device installed within a certain environment or building operates

independently using only its collected data, eliminating the need for ex-

pensive cloud infrastructure, as discussed in Chapter 5. This capability

reduces costs, enhances system reliability, and improves scalability, making

it a viable solution for widespread adoption in different business contexts.

The result is a potential zero-touch approach for predicting key parameters
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within indoor environments.

Nonetheless, there are still research gaps to be explored to enhance the

proposed solution for forecasting, especially in terms of robustness. For

instance, future work could focus on improving the solution’s resilience to

missing data. Currently, the proposed approach relies on a robust data

collection system, which means that if there are gaps in the data (because

of, e.g., communication issues, sensor failures), the system is unable to pre-

dict future values and could miss relevant samples in the training data. To

address this issue, a mechanism could be developed to identify the largest

continuous time window with complete data (i.e., no holes) for making pre-

dictions. The challenge lies in balancing the size and age of the old data

window: a sufficiently large window is necessary for accurate predictions,

but it is important to avoid using outdated data that might misrepresent

current indoor environmental conditions. Additionally, another area for

improvement is the capability to identify and handle abnormal readings or

measurement errors from IoT sensors. Inaccurate or corrupted data can

lead to faulty predictions, degrading overall accuracy. Introducing logic to

detect and filter out anomalous data points can enhance the robustness of

the predictive solution.

In Chapter 4, we have demonstrated the effective application of our

predictive approach to regulate HVAC systems. We have introduced an

automated solution called EECO, which continuously adjusts HVAC de-

vices to optimise thermal comfort while minimising energy consumption.

Unlike traditional methods, this solution operates without requiring pre-

liminary information about the local environment or any physical or math-

ematical modeling. By leveraging the collected data and the designed AI

model for forecasting, EECO implicitly evaluates the impact of various fac-

tors, including building features (e.g., wall thickness, orientation, window

presence), outdoor environment (e.g., outdoor temperature, humidity) and
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passive phenomena (e.g., passive heating), on the monitored parameters,

thereby adapting to the observed environment. In contrast to existing

research, we have addressed the challenge of scalability, facilitating the

applicability of our solution in real-world scenarios while minimising the

manual effort required for deployment and long-term maintenance.

Beyond the aspects covered in this thesis, there is a range of open is-

sues related to the optimisation of environmental and energy parameters

in indoor environments. Extensive testing across diverse environments and

integration with other building management systems should be explored

to obtain a broader understanding of performance, as discussed in Sec-

tion 4.7.5. Due to clear limitations, we were unable to test the proposed

solution across a large number of sites. Additionally, it is crucial that

input datasets be representative and balanced. In HVAC control algo-

rithms leveraging AI models, configuration strategies not reflected in the

data might be evaluated in EECO’s tree-building process (discussed in

Section 4.5.2), potentially leading to poor HVAC control, especially during

the initial deployment phase. To address this challenge, further research

is necessary. In parallel, additional input variables (e.g., solar irradiance)

might be introduced to account for outdoor environmental factors and lead

to more accurate HVAC control, as outlined in Section 4.7.5. In terms of

occupant behaviour, while CO2 levels provide valuable information regard-

ing indoor occupancy (i.e., they typically increase and decrease with the

number of people present), integrating data from other sources, such as

motion sensors, might offer a more comprehensive model of the indoor

environment. Finally, another key aspect is the integration of electricity

prices into HVAC optimisation to increase energy efficiency, which is often

overlooked in the literature, as noted by Ala’raj et.al. [76]. The authors

highlight the importance of analysing the impact of energy prices on HVAC

modelling, control and optimisation and, in our opinion, in the trade-off
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between thermal comfort and energy savings. In recent years, fluctua-

tions in energy prices have become increasingly important in controlling

energy-intensive devices in terms of ON/OFF and operating point, in both

the industrial and tertiary sectors. Therefore, this represents a promising

research direction not explored in this thesis.

Finally, in Chapter 5 we have presented a detailed analysis to under-

stand the impact of the obtained research outcomes on the business of

Energenius. This analysis offers valuable insights into increasing the rev-

enues and attractiveness of the GEM-Retail solution. Aligned with the

objectives of the Doctorate Program in Industrial Innovation, this analysis

provides a practical example of how research can directly enhance business

operations, potentially increasing the competitiveness of companies in the

market while increasing revenues.

Overall, the contributions of this thesis offer important insights into ad-

dressing some of the limitations present in the current literature on building

sustainability and beyond. In this regard, the designed methodology might

find application in other sectors for different objectives, such optimising

production processes in industry, where maximising outputs while min-

imising production costs under changing conditions is often crucial. While

further research is fundamental to comprehensively explore sustainability

from different perspectives, the obtained outcomes can draw the interest

of managers seeking to manage indoor environments more effectively by

reducing operating costs, improving thermal comfort, and lowering energy

consumption in an automated and intelligent way. During my research

at Energenius, I integrated the developed AI algorithms and predictive

models into the GEM-Retail product, discussed in Chapter 5. Specifically,

the designed approaches were included in the existing software solutions,

which can then be downloaded and configured onto devices (e.g., Rasp-

berry Pi) installed in buildings for optimising indoor environments. The
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predictive engine and intelligent HVAC control operate alongside other

software modules (i.e., data collection and actuation modules) to provide

these advanced functionalities. In this regard, my doctoral experience at

Energenius demonstrates how collaborative efforts between academia and

industry can facilitate the technology transfer, ensuring the practical viabil-

ity and effectiveness of innovative solutions in different real-world scenarios.

By bridging the gap between theoretical research and practical application,

this collaboration highlights the potential for academic research to directly

enhance business operations and contribute to broader environmental and

economic benefits.
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Activity Report

Research/Study Activities

The activities conducted during the Doctorate Program are the following:

• Industrial Research Projects at Energenius S.r.l.: I actively

participated in different industrial research projects directly related

to my research area:

– GEM-Retail - “Programma operativo FESR 2014–2020” of Provin-

cia autonoma di Trento

– DIHC4CPS: Fostering DIHs for Embedding Interoperability in

Cyber-Physical Systems of European SMEs - European Union’s

Horizon 2020 Research and Innovation Programme under grant

agreement no. 872548

– EUHubs4Data: European Federation Of Data Driven Innovation

Hubs - European Union’s Horizon 2020 Research and Innovation

Programme under grant agreement no. 951771

– i-NERGY - European Union’s Horizon 2020 Research and Inno-

vation programme under grant agreement no. 101016508

• Geo-Mobility Period with EIT Digital: As part of the EIT Digi-

tal Doctoral Program, I spent four months (01/05/2022 - 31/08/2022)

at the Institute for Automation of Complex Power Systems (ACS)
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hosted at E.ON Energy Research Center (RWTH) in Aachen and di-

rected by prof. Antonello Monti.

• Business Development Experience (BDExp): Within the EIT

Digital Doctoral Program, I participated in the Business Development

Experience (15/05/2023 - 03/09/2023). As reported by EIT Digital,

this activity expects to provide a report on a business topic selected

by the student, with the goal of fostering the development of business

and innovation skills within the industry.

• Business Seminars by EIT Digital: Within the EIT Digital Doc-

toral Program, I participated in the following business seminars:

– I year: Research To Value

– II year: Business Change, Business Modelling

– III year: Business Development, Business Growth

• Courses at the University of Trento: I completed the following

courses offered by the University of Trento:

– Research Methodology

– Academic Writing for the Sciences and Engineering

• Online Courses: I attended the following online courses (on Cours-

era):

– Neural Networks and Deep Learning

– Improving Deep Neural Networks: Hyperparameter Tuning, Reg-

ularization and Optimization
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