PhD Dissertation

International Doctorate School in Information and

Communication Technologies

DISIi University of Trento

TOWARDS ANONTOLOGY OFSOFTWARE

Xiaowei Wang

Advisor
Prof. John Mylopoulos

Universitadegli Studi di Trento

Co-Advisor
Dr. Nicola Guarino
Institute of Cognitive Sciences and Technologies

Consiglio Nazionale delle Ricerche

April 2016

Abstract

Software is permeating every aspecoof personal and social life. And yet, the cluster of concepts
around the notion of software, suchthe notions of a software product, softwaegquirements, software
specifications, are still poorly understood with no consensus on the hoFaomany, software is just
code, something intangible best defined in contrast withvirare, but it is not pdicularly illuminating.

This erroneous notionsoftware is just code, pressrioth in the ontology of software literature and in
the software maintenance tool s. This notion is
that whenever someongds a bug, the code of a software system changes, but nobody believes that this
is a different software stem.

Several researchers have attempted to understand the core nature of software and programs in terms
of concepts such as code, copy, medium ardwtion. More recently, a proposal was magdrmak to
consider software as an abstract artifact, distinct from code, just because code may change while the
software remains the sam&/e share many dfis intuitions, as well as the methodology he adoptso-
tivate his conclusions, based on an analysis of the condition under which software maintains its identity
despite change. However, he leaves thetareof dvhat is the identity of softwadepen, and we answer
this question here.

Trying to answer th question left open by Irmaket main objective of thdissertationis to lay the
foundations for an ontology of software, groeddnthe foundationabntology DOLCE Thisnewontd-
ogy of softwares intended to facilitatéhe communication within theommunity by reducing termin@e
ical ambiguities, and by resolving inconsistenclésve had a better footing on answering the question
ANhat is softvare® we'd be in a position to build better tools for maintaining and managing a software
system througbut its lifetime The research contents of theesis consist of three results.

Firstly, we dive into the ontological nature of software, recognizing it as an abstract information a
tifact. To support this proposal the first main contribution of the diatien is demaostrated from three
dimensions: (1) We distinguish software (fpitysical object) from hardware (physical object), and
demonstrate the idea that the rapid changing speed of softwarpgderged by the easy changeability of
its medium hardwag; (2) Furthermorewe discuss about the artifactual nature of software, addressing
the erroneous notion, software is just codesspnts both in the ontology of software literature and in the
software maintenance togl§3)At last we recognize softwaresaan informationartifact, and this g@-
proach ensures that software inherits all the properties of an informatidfact, and the study ander
search could bdirectly reused for software then.

Secondlywe propose an ontology foundedtbe concepts added from Requirements Engineering
(RE), such as the notiom$ World and Machine phenomeria.this ontology, ve make a sharp disiin
tion between different kinds of software artifastsfiwareprogram, software system, and softwaredsro
uct), and describéhe ways they are interzonnected in the context of a software engineering proAess.
ditionally, we study software from a Social Perspecteplaining theconceptsof licensabé software
product and licensed software produéliso, we discuss about tip@ssibility toadopt our ontology of
softwarein software configuration managemaesyistemso provide a better understanding and control of
software changes.

Thirdly, we note the important role played by assumptions in getting software to fulfill itserequi
ments The requirements for most software systentise intended statesf-affairs these systems arepsu
posed to bring about concern their operational environment, usually a social world. But these systems
donét have any di r encironmentimorder ta bang abow theyimendedh statbs e
affairs. In what sense then can we say that such systems fulfill their requirei@eets? the main ¢e
tributions of this dissertatiorsito account for this paradox. We do so by proposing a greliy ontob-
gy of assumptions that are implicitly used in software engineering practice to establish that a system
specification S fulfills its requementsR given a set of assumptions akd air proposal is illustrated
with a meeting scheduling ample

Keywords
[software assumptiongrequirements engineering, ontolggy

Acknowledgemens

It has been more than four years since | started to pursue my Ph.D. degeseedlly a pleasure to
do the study and research in Trento, where is a beautifugaiet town in mountain. At the end of my
Ph.D. study period, | would like to express my sincere thanks to the people who edppeodil the time,
without their kind help his thesis would not have been possible

Firstly, I would liketo say many thank® my advisor John Mylopoulos. Thank you for bringing me
into the field of resear¢hfor teaching me the way of thinking a researcher should possess, for showing
me the working attitude a researcher should take, for shaping me from a student intcchaeseavery
possible aspect. | shall admit that this is the biggbatlengel have ever encountered in my life, and
withoutyou I shouldnever have a chance to conquer it.

| alsowould like to say thanks to my eadvisorNicola Guaring and to my ceuthor Giancarlo
Guizzardiin all my publications during the Ph.D. period. | emdyhe group meetings we had with all of
our four together, and frankly speaking it was not easy to follow the ideas of#mieeresearchers gi-
ultaneouslybutit wasredly a goodpracticeto examinea research subject from differguerspective as
muchas possible, resulting in the understanding of it as complete as possible. Besides the greup discu
sions, you also showed me the way of term work, and kindly providey dedail comments in my Wi
ings, without your help | couldhhave completed my conference papers.

My thanks are also given to my dear colleagues and friends at the University of Trento. The regular
seminawasalways an excellent place to share idead,after the working hours Wwasyour accompany
that makes me feeling not alohere Four yeards not a short period, andwasreally my pleasure to
share the happy memories with you.

| always caf say too many thanks to my family, especially to niizgdawho has been working hard
for the whole life to bring my two brothers and me Mpu are always the light in my life, you are the
source of my energy, and | wish you are always happy and healthy.

Thanksall the people who provided kind help!

'Support for this work was provided by the ERCaadvanc

tions for Software Evolutiondé (http://www. |l ucretius.

e

Contents

3 o o 13 o o USSP 1
1.1 The Context and MOUIVALIONS.uuuiiiiiiiiii it rmne e e e e e e e e s s rmmne e s e aaaes 1
1.2 RESEAICH PIIBIMISeiiiiiiiiiiiii ettt e e e s st e e enee e e e e e e e e e e e bbb e eee s 2.

1.2.1 WNAL IS SOWAIE?. ...ttt e e e e et ee et trnne e e e e eeeeeeeeeeas 2
1.2.2 How to Identify and Record Different Kinds of Software Changes?............................ 2
1.2.3 How DoesSoftwareChange th&NVOrId?............ooooii e 3
I T @ 11 011 11 o 7SS 5
1.3.1Software as an Inforation Artifact..............ooooeee i 5.
1.3.2ldentify and Record Changes in Different Kinds of Software Artifacts......................... 6
1.3.3Assumptions aa Bridge betwer the World and Machine.................ovvvviviicceeeeieeeeeeeenn. 7
1.4 Structure Of the DISSEIMTALIONL.uieieee s er ettt rrer s e s s e e s s e e e e aaeeeeaeeeesemenseneennnnes 8
1.5 Corresponding PUDBIICAtIONS.iiiiiiie ettt rees emensererennees 9

P2 =] L0 To IR o] g O PEPPPTR SRR 11

2.1 Understanding SOMWALE..........c.uuiiiiiii ettt eeemr e e e e s r e e e e s smme e e e e e e e aannes 11
2.1.1 Software Interpreted in @ General SENSE...........cooiiiiiiiimmriiie e 11
2.1.2Software Interpreted in a Limited SerasComputer Software...........ccccvvvvveeivimneeeenns. 12
2.1.3 Software Interpreted as an ArtifaCL...........coooviiiiini e 18

2.2 Understanding SOftware ChanQe.........coooiiiiiiiiieemiiiiiiee e e em e e eeeeae 20
2.2.1Laws Of SOftware EVOIULION............iiiiiiiiiiiiieeeieee e 21
2.2.2 The Metphor between Software Evolution and Biological Evolution.................c....... 22
2.2.3Taxonomies and Ontologidsr Software Change............ccoovviiiiiiimemiiieieeeeee e 23
2.2.4 ldentifyng and Recording Software Changes.........cccccecceiiiicccieeiieeieeeeeeeeeeeeeeee e veeeans 27

2.3 Understanding ASSUMPLIONS.........cooiii i mmmr e s aeees e e e e e s 29
2.3.1Interpretations from Linguistiand Cognitive Sciend@erspective............ccccccvveeeeiiiieenn. 29
232valamsweerdeds I nterpretati on eerihg..As.s.u30pti on
233Lewi sb6s As s lementSystem...Ma.n.a.0....cocoiiiiiiiiiiiiieieee e 32

G 1 = 7= 1S =1 11 0TRSO 35
3.1 DOLCE Adopted as the Foundational ONntolOgY..........uueuiiiiiiiiiicceeeeiiiiiiiee e rmeee e 35
G N 1 = 1o £ USSR 38
3.3 World and Machine FrameWorK.............ccooiiuiiimmmriiiiiieieeeeeesssivicineseeeeeeeeeeessssnsnnsnneeennnse s 40
G Y1 (=1 (o I = o | L1 PP 43

4 Towards an Ontological Analysis of SOftWAIE...........uuiiiiiiiiiiiie e a7
4.1 Software Changeability and Hardware Changeability................coooi v 47
4.2 Software as an Artifact: from Code {0 Programs...........c.uuuviiiiieeeiriieee e 49
4.3 Software as an Information ArtifaCL............oooo i 51

5 From Software Programs t0 SOftvere ProdUCLES.............uuiiiiiiiiiiiieece et 53
5.1 Identifying Different Kinds of Software Artifacts.............ooovvvvviiiiieeeeiiececieee e, 53

5.1.1 FromSoftwarePrograms to Software SYStemS..........oocuvviiriiiieeeieee e 53
5.1.2 From Software Systems to Software ProductS...........ccoovuiiuiccmiiiiie e eveennn 55
5.1.3The Social Nature of SOfWAIE............ueiiiiiiiiiiieee e 57

5.2 Recording Different Kinds of Software ArtifactS............cccceveeeiiiiicccniiieciieceeeeeeeeeeveeee e 59
5.2.1 Representation of Different Kinds of Software ArtifactS.........ccccceeeevviiiccciiveiieniieennnn, 59
5.2.2 OntologyDriven Software Configuration Management..................coooveecciiniiinnennnnnnnnd 60

6 How Software Changes the World through ASSUMPLIONS...........ooiiiiiiiiiiiieeee e 63
6.1 APreliminary Ontology Of ASSUMPLIONS........ccuuiiiiiiiiiie i rmmme e 64

6.1.1A Classification Of ASSUMPLIONS.......uuuuuuiiiiiiiiiiiiiee e e e e e e e e e e e e e ee e e e e e e e e e eeeeenneeennnenanenannnnn 65

6.1.3 Interpretations of the Concept of ASSUMPLION............cooviiiiiiieeeiiiicccccce e 69

6.2 The Meeting Scheduler Case StUY...............oooiiiiiiecci e ee e 71

7 Conclusions and FULUIE WOTK..........ooiiieiiiiiieieeeee e nnne e e eeeeens 77
2] 0] [ToTo =T o] 01V /2S 81

List of Figures

Figure 1. The semiotic triangle, adapted from (Ogden et al., 200L)........c.ccceeeiiiiiiirimee e 5
Figure 2. The original program abstractions taxonomy adopted from (Eden & Turner, 2007)...........ccccce.... 16
Figure 3. The revised program absStractions taXONOMLY.........ccoiurrreiurrrareiireeeesiree e e s e e e s sbeeesaneeas 17
Figure 4. Clarifying the polysemy of the term 'SOftWare!..........coooii i 18

Figure 5. Program as a swdtass of both Computer Language Expression and Artifact of Computation........ 19
Figure 6. Laws of Software Evolution, as proposed by Lehman (M. Lehman & FFr&amil, 2006)............. 22
Figure 7. An overview of domain factors affecting software maintenance (Kitchenham et al., 1999)......... 25

Figure 8 An overview structure of the ontology for software maintenance project (RUIZ et al., 2004)........ 26

Figure 9: An overview of ontology for software maintenance (Anquetil et al., 2007)........cccccevviieiiiiereeennnne. 26
Figure 10. Further distinction among statements in the problem wofldinLamsweerde, 2009)..................... 31
CA3Idz2NB mmd { &y bassumipiioNtiaOagetnhiod systeyh...[..S.6.4.8.Q oo, 32
Figure 12. A diagram of DOLCE (Masol0 et @l., 20038)cciruriiiiiiimieiiieiessiieeeeiiee e sbenee e 37
Figure 13. Artefactual objects, artefactual kinds édartefactual roles (Guarino, 2014)..........ccccceevivveeriimnenns 38
Figure 14. Reference model for requirements engineering (Gunter et al., 2000).............ccceeecviie e 41
Figure 15RWSMP framework COmMpPOSItION FUIES.............oooi i e e eeee 42
Figure 16. World and Machine Framework (WM FrameWOrk)..........ccooiuiiiiiiiime et 43
Figure 17. An example Of @ SItUATAIANSITION.uuuiiiiiieiiiiieeec e e e e e e e et e same s 44
Figure 18. A transition between two situations according to World and Machine Framework.................... 45
Figure 19. An early Paaline on display at the Musée des Arts et Métiers, Paris.........cccccoevevvivicenineee A7
Figure 20. An extract oV O1 &2y MREPMFBMEWOIKD. QAc.cvovevieeieeceeeeeeee e 54
Figue 21. Cutting the boundary between worlds and machin@ecording to WM Framework)...................... 54

Figure 22 Different abstract software artifacts induced by different requirements engineering notions....... 56

Figure 23. WM Framework With @SSUMPLIONS.uuiiiiiiiiiiiiiiee ettt ettt sttt st e sbne e 65
Figure 24. The chaining mechanism underlying software engineering enabled by assumspti..................... 67
Figure 25. A goal model of meeting scheduler SYStemM............ccooviiiiiiicii e, 72

Chapter 1

Introduction
1.1 The Contextand Motivations

Software now permeates all aspeaaftpersonal and social actiiéts, improving productivity, quality
of service, and quality of life for billions of people worldwide. This reliance on software means that it is
essential for users be they companies, governments, hospitalsndividuals-- that software is kept
running.However,the environmergtof thesesoftwareapplications arecontinuously changing and so are
stakeholder requirementBo survive insuch asetting,softwareneeds to continuously evolve.

According to severasurveys(Jarzabek, 2007)Pfleeger & Atlee, 2009)(Kontogiannis, 2010)n
the literature the average cost sbftwaremaintenance covers more than 50% of theltbudget in a
software projectThis is largely due to the fact thaé&sgn knowledge about a software system is lost or
forgotten as its developers drift away. Another factor that makes software evolution difficult and expe
sive is that as software is changed, its quality deteriorates, making it more complex to undersiznd. He
maintainers usually spend #0to 60% of their time to understand thlmftware being maintained
(Gagevil, Kavi ani Makirg thidgs levem wovsesthkeholdz@igullly understand a
software system frortheir ownperspectivesMuch of their knowledge is implicit and hard to commun
cate to the designers. Without making this knowledgdiatt is hard to answer important questions
about software maintenangi€itchenham et al., 1999)

Although software engineelsve been sufferingrom such kinds ofmissingknowledge for a long
time, software maintenance tools such as Concurrent Versions System (CVS) and Apache Subversion
(SVN), the version control syems of choice for almost 30 years, are used primarily for code manag
ment and evolution, while requirements, architectural specifications etc. are left out in tHeisadch
codeoriented practiceof software maintenance that resutt so much kowledge about changes being
left unrecorded.

To tackle the aforementioned problems, missing knowletigelld be captured and made available
to its maintainers. In order to accomplish this, we must first change our concefituali# software so
that itno longer viewed as mere code. This thesis proposes to tackle precisely this problem by exploring
an ontology of software that accounts for more than its codeBpseifically,we propose to studiyree
fundamental questions in thikssertation(1) Whatexactly is software(2) How we candentify and re-
ord different kindsof software change$3) How can software that operates within a machine change the
world by, for example, scheduling a meeting?

INTRODUCTION

1.2 ResearchProblems
1.2.1What is Software?

To answer this qution through ontological analysis, we need to chtbekessential properties of
software. To do so, we need to distinguish the scenario in which software is changed while keeping its
identity, from the scenario in which new software is created due tohitueges.

For many, both inside and outside gwétware engineeringpmmunity, software is just code, sem
thing intangible best defined contrastwith hardware. For example, the Oxford English Dictionagy d
fines software as Otatei opm ogsadmsbynd oomput é md oa mc
similar paraphrases.

The question we have posed as title for this-sediion admits several different answers, such as
6source code to be executed on a gompet ®bd ect sOi «
ot her answers. This demonstrates that the meaning
In other words, currently there is no shared common understanding of what software is among researchers
and practitioners.

Receantly, some researchers have proposed to interpret software as an informatior{ @bk,
2006) (Smith et al., 2013)This is a promising direction for understanding tia¢ure of software. Ho-
ever, as not enough attention has been paid in this area after decades of study on this topic, it seems that
there is still ambiguity about the nature of information, of software and the relationship between them.

As we already mernined, without a shared understanding of software, it is hard to precisely co
municate about any serious question relating to the nature of software among researchers anu practitio
ers. Fortunately, ontological analysis possesses the capability to captuiedge explicitly and uma-
biguously, and we propose to use it to understand software as amdtifm artifact. Based on this
understanding, we propose an ontology of software capturing the essential properties of software.

1.2.2How to Identify and RecordDifferent Kinds of Software Change®

Software changes all the time. Such changes have huge impacts on the software applications, so
dealing with software changes is absolutely necessary. In the past, a few researchers have proposed some
taxonomies intendintp describe the different kinds of software chan@sanson, 1976)Chapin, Hale,

Kham, Ramil, & Tan, 2001)Buckley, Mens, Zenger, Rashid, & Kniesel, 2Q0&)t the very nature of
software changes is still unclear: What does it mean for software to change? How dolve, t&fldr a
change, it is still the same software or new software is created? The very possibility for software to
change while maintaining its identity is in practice ignored by most recent studies, which have oainly f
cused on the relationships betwessrfitware code (intended as an abstract information pattern), its phys
cal encoding, and its executi@Bden & Turner, 2007)

Unfortunately, treating software as simply code is not very illuminating. Microsoft (MS) Word
turned 30 years old in 2013. During its lifetime it has been numerously changedegsiitsments, code
and documentations have continuously evolved. If software is just code, then MS Word of today is not the
same software as the original MS Word of 1983. But this defies the common sense that views software as

a persistent object intended to produce effecthe real world, which evolves through complex social
processes involving owners, developers, salespeople and users, having to deal with multiple revisions,
different variants and customizations, and different maintenance policies. Indeed, softwagemesma
systems were exactly intended to support such complex processes, but most of them consider software
just as code, dealing with software versioning in a way not much different than ordinary documents: the
criteria underlying the versioning scheme largely heuristic, and thehange rationaleemains obscure.

Yet, differently from ordinary documents, software changes are deeply bound to the nature of the
whole software development process, which includes both a requirements engineering phaseeand subs
guent design and implementation phases. This means that, making a chasgjwareapplicationmay
be motivated by the need to fix a bug, to adopt a more efficigotithm or improve its functionality,
adapt it to a new regulation and so As.a result, different kinds of software changes aeparatedrom
each other and treated with different kinds of methodologies and technologies.

Although the idea of classifying software changes into different kinds is a promising contribution in
providing guidance forsoftware engineers with different purposes, the ambiguities in the concepts make
it difficult to be efficiently applied irpractice as researchers and practitioners hold their own criteria in
classifying software changes, and sometimes no dist@inctionsare provided but intuitions are adopted
as they like. For examplehe differemeb et ween the terms O6softwaere ev
n a n ¢sasually vague. Sometimes, they are used interchangé@hbpin et al.2001) sometimes,
maintenanceubsums evolution(Bennett & Rajlich, 200Q)sometime, evolution subsumegintenance
(Godfrey & German, 2008prmor e abstr act wo rac sisedd avoidthegresitergrr 6 a g
tations(Buckley et al., 2005)Parnas, 1994Besides that, the interpretations of other relating concepts,
such agsoftware eengineen g Goftwarer e f a ¢ il éGaftwageédagat | panedalso treatedma
biguously.

To remedy this situationsave shall sei the following parts othis dissertationwe recognize di
ferent kinds of softwarehangeghataffect differentkinds ofsotware artifacts creded within a software
development procesé\s a solution, & shall present an ontology of software that describes what these
differentsoftwareartifacts are, and furthermore identify and record the different kinds of softwarg-chan
es acordingto their effecton different kinds of software artifactespectively.

Currently, he tools and methods used to manage softalzaagesre usually designed as filmsed
and this limits their capability to track the semantics of the chafidgksg the concurrent versiorsys-
tem CVS) as an example, it comparfides by lines.In other wordsit is only a syntax comparing tool
without providing any higher semanticgo tackle this problem, thidissertatiortries to show the poss
bility of adoping a suitable languagdgor the particular purpose of a software engin¢éemepresent the
history of the changes based on the ontology of software stated above, and this could be integrated within
the existing and future toofer managing software chgaswith higher semanticdVe believe that it will
be will be helpfulto provide such knowledge about software duritgchanges for the software engineers
keepng their knowledge about the software updated, or liecgthhe forgotten knowledge easier.

1.2.3How DoesSoftware Changethe World?

In addition to the essential propertigisthe different kinds of software artifacts recorded during the
different kinds of software changes aforementioned, there is another kind of knowledge that deserves sp

3

INTRODUCTION

cial attenion: these are the assumptions made during the software engineering process. Without explicit
representations of these assumptions, the description about the software is incomplete, something that can
result in great difficulties when managing a softwaigeim, as argued below.

Consider a software application that schedules meetings upon request. Its basic requirement, which
the application is mandated to fulfill, is to bring about a change in the social world within whicln-it ope
ates that consists of &w meeting that satisfies timetable and other constraints provided by the requester.
But the software program, by its very nature, can only change the states of the machine within which it
operates.

There seems to be a paradox here. The requirements $visoftware systems, tlietendedstates
of-affairs these systems are supposed to bring about, concern their operational environment, wsually a s
ci al one. But these systems donot have any direc
about thentended stateof-affairs. In what sense then can we say that such systems fulfill theireequir
ments?

It seems that a software program possesses a peculiar characteristic compared with othenkinds of i
formation artifacts (e.g. recipes or laws) in tihgtlays the role of a bridge between the abstract states of a
machine andhe outside world. More specifically, other kinds of information artifacts directly manipulate
the objects in the world; instead of that, softwaregramdirectly manipulate the virtual variables in a
machine, and in turns, the result of this manipulation in the machine affects the outside world.

A softwareprogramis embedded and operates in a machine, and in this sense machines are sof
waredriven. However, the purpose of atsedre program(its requirements) is usuallptended to affect
the phenomena of its environment external to the softdwen machine. This machine monitors and
controls the environment by means of transducers bridging theahapdm symbolic data anchysical
properties. For simplicity, we hereafter refer to the softwdsneen machine as machinéllowing
(Michael Jackson, 200@nd(Axel Van Lamsweerde, 2009)

In the case of a staralone personal computer (PC) such transducers only concern the-human
computer interface and the standard I/O devices; for mobile systems they may also include location and
acceleration sensors, while in the case of embedded systems they take the foehmmphgsical sensors
and actuators. So, in the general case, the softv
program that produces certain effects insidsomputer, which drives a physical machine, which in turn
produces certain effects on its external emvirent.

Understanding this indirect effect of software on the world is essential, as our modern seciety d
pends on software for almost every aspecbwf lives (e.g. in business, hospital and et al.). A money
transfer from a person to another through software, becomes a data change in one accountexnd a corr
sponding data change in another account, even if there is no physbca) m the form of a gper receipt.
Moreover, in most modern financial systems, only about 3% of the money exists in paper form, while the
other 97% is just electronic data stored impaters (RyanCollins, Greenham, Werner, & Jackson,
2014)

We ar e f oc dsftwarg systems tha aomsidtsoftware and various interfaces, as opposed to eyber
physical systems (such as robots, drones, etc.) that consist of software and mechanical/robotic components, which
do give them the capability to directly change their physical environment.

4

Several researcherf_ewis, Mahatham, & Wrage, 2004jMamun & Hanson, 2011) (Brown,
2006) (Tun et al., 2015)have emphasized the importance of assumptions, and hapespd techniques
for capuring them. Our proposal goagrther inthatdirection ast identifies new classes of assumptions
(notably, the dependence ones) that had not been previcuslyrted for.

1.3 Contribution s
1.3.1Software as an Information Artifact

To better understand the nature of softwawve,discuss its ontologicalature, interpreting it as a
special kind of informatiorobject Focusing on informational aspects of software, éuwesearchers
(Eden & Turner, 2007)Oberle, 2006)have addressed the complex relagttips among i) softwareode
consisting of a welformed expression of a set of computer ingtams; ii) a softwarecopy, which is a
physicalinscription of the code; and iii)medium the hardware medium itself; iv)pocess which is the
result of &ecuting the software copy.

These worksan be viewed aapplications of thesemiotic triangleproposed byOgden, Richards,
Malinowski, Constable, & Crookshank, 200) express thénformationcommunication process be-
tween agentd-or exampleasshown inFigurel, a speaker may sagewordi Dogd t o denot e
in her mind, and this concept refers to animal dogs in the world; then, this word mag ensiokilar
concept in the |istenerdéds mind referring to anin

Applying this idea to software, during a software engineering process, a software program is usually
encoded in some programming language corresponds tihe symbol in the triagle, and this symbol
represents some instructions as the knowledge or concept held in stakeholder minds. This is a simple
demonstration to present the intuition and flavor of the rationale why we interpret software as-an info
mationobject, further detail and concrete explanations are left as one of our main contributitireydier
4,

Thought
(Reference)

Warm, cuddly
friend

‘GDOg,’
Word) A
Thing &,
(Bymbol) (Referent)

Figure 1. The semiotic triangle adapted from (Ogden et al., 2001)

Yet, according tdlrmak, 2013) software is synonymous to program and can be understood in terms
of the concepts of algorithm, code, copy and process, but none of these notions can be identified with
5

INTRODUCTION

software, mainly because, due to its artifactual nature, software has differerty idetgria. We share
many of I rmakés intuitions, as well as the method
analysis of the condition under which software maintains its identity despite change.

Hence, another main contribution of thissirtation consists of an argument, supported by aptolo
ical analysis, that software has a complex artifactual nature, as many artifacts result from a design process,
each having an intended purpose that characterizes its identity. This is what distingaifiware art
facts from arbitrary code: they are recognizable as havirgppes, andthey are the reswbf intentional
acts. Combining the informaticatature and artifactual natuoé software, wenterpret software as asp
cial kind of informationartifact, inherting the essential properties of botmiaformation object and an
artifact.

1.3.21dentify and Record Changes inDifferent Kinds of Software Artifacts

Based on the analysis of the ontological nature of software as an information artifaceaswafo
tioned, we are going to answer the research questions left ogémbk, 2013) 6éwor k st i | | ne
done on questions such as how software changes, what the identity dom ons f or soft war e
So we shall focus on the identity criteria for software originated by its specific artifactual natureg-and m
tivated by the need to properly account for software clange

We start with studying a peculiar aspect of wafie with respect to other information artifacts such
as laws or recipes, &den & Turner, 20079bserve, it is théridging roleof it between the abstractam
chine and the concrete world: despite the fact that it has an abstract nature, it is designed to mroduce sp
cific results in the world. Therefore, it seems nattwalls to adopt a requirements engineering perspe
tive while analyzing the essence of software, looking at the whole software engineering process,
including requirements analysis, instead of focusingt®@@omputational aspects only. Our analysis is
foundl on a revisit of Jackson and Zaveb6s seminal w
(Michael Jackson & Zave, 199%Yave & Jackson, 199/(Gunter, Jackson, & Zave, 200®hich clea-
ly distinguishes thexternal environmerthat constitutes the subject matter of requirements, the (¢empu
er-based)mnachinewhere software functions fulfill such requirements, and the interface éetive two.

Jackson and Zave define the terms Orequierements

haviosi n t he environment and at the interface- respeé
gui r eme nt stiieintended khafioesrin thie environmeiridependently of the machinexclud-

ingthereforet he i nterface, O6external s p ecatfhe iotexfaceanch 6 t o |
i nternal speci fi cat i on dinsideete enachineramely that oftthesystenrs pe c i f i

that drives the machine.

As shown inTable1, we shall rely on these refined notions to determine the essential properties of
three different kinds of software artifactsiftware productssoftware systas andsoftware programsin
addition, to account for the social nature of software products in the present software market, a further
kind of softwareartifact will be introduced, namelicensed software produashose essential property is
a mutual paern of commitments between the software vendor and the software customer

Table 1. Essential properties of software artifacts

Object Essential Properties

Licensed Software Product Mutual VendorCustomerCommitments
Software Prodct Requirements

Software System ExternalSpecification
SoftwareProgram Internal Specification

Code SyntacticStructure

As an output of the preceding ontological analysis, we propose an ontology of software to capture
the essential properties of difémt kinds of software artifacts. This ontology could be used to semantica
ly annotate the logs of software behasjar to document empirical studies so that they can be classified,
understood and replicated, or serve as a groundwork to develop théoevoliented model processes,
requirement engineering, workload assignment and other software engineering activities.

For instance, traditionally, revisions and variants are managed by means of naming conventions and
version codes which are usually deciden the basis of thperceivedsignificance of changes between
versions without any clear criterion (e.g. CVS, SVN). We believetligatlassification of different kinds
of software artifacténtroduced in this dissertation can make an important cotisibto make this -
cess more disciplined by providing a general mechanism to explicitly express what is changed when a
new version is created.

1.3.3Assumptions asa Bridge between the World and Machine

As mentionedin the research problems, in addition to #wsential properties about the different
kinds of software artifacts, there is another kind of knowledge deserves special attention, and & is the a
sumptions made durirgsoftware engineering process. Any machine designed to solve a problem makes
assumgons. Some of these assumptions capture expectations about the world that are always supposed to
be valid, such as natural laws, and can be exploited in the design. Other assumptions circumscribe the
limits of the solution. For example, for meeting schiedy we may assume that there are enough rooms
available for all meeting requests and design a solution that only finds a suitable time slot and selects a
room. Such an assumption means that our solution may not work wheristhereoom available (e.g.
during a busy period with many meeting requests).

Yet other assumptions may relate the interface behaviors to some expected behaviors in the world.
For instance, we may assume that, if the computer says (by means of a suisshigenoa the screen)
that acertain room is reserved for a certain meeting at a certain time, the room will not be used for any
other meeting at that ti me. However, thisnsyste
ment in order to bring about the intended staffeaffairs, and the paradox aforementioned lies here.
Hence, without explicit representations of these assumptions to clarify the world, the machine, @nd the r
lations between them, the description about the software is incomplete, which could result ifidhkeydif
in managing a softwarepplication

Accordingto the statements above, the mpinrpose of this contribution is to account for thisapar
dox. We do so by proposing a preliminary ontology of assumptions that are implicitly used in software

INTRODUCTION

engineerig practice to establish that a system specificeitufills its requirement®R given a set of &
sumptionsA. Adopting the formula of the requirements problproposedby (Michael Jackson & Zave,
1995) our task is to chracterize the assumptionsed andheeded to establish that

A SE F

given that the requirements are about world states (e.g., meetings, participants, timetables, rooms,
and etc.), while the specification is about machine states (databbtes tduples) and manipulations
thereof.

Several researchergLewis et al., 2004)(Mamun & Hansson, 2011fBrown, 2006) (Tun et al.,
2015) have emphasized the importance of assumptions, and have proposed techniquasifoy tdagn.
Our proposal goeaifther in thatdirection, ast identifies new classes of assumopts (nhotably, the e+
pendence ones) that had not been accountedridrthespecific contributiongn this part of the disseat
tion arelisted as follows

1) A preliminaryontology of assumptionss proposedintroducing four kinds of assumptions. Two
of them are proposed based on the literature work, including world assumptions and machipdassu
Taking a futher step, two new kinds of assumptions are discovered and integrated into the omelogy, i
cluding world dependence assumptions and macatépendenceassumptions respectively. We claim that
these four kinds of assumptions are the key to solvaftrementionegaradox, and welaborate the
role of then in linking the worldstates and machine states together

2YWe clarify theticom&@epitdemt 6fapismgnpt wo possi bl e
both important for software engineering processes, namelgshemptionsisedand theassumptions
neededand provide an update in JacksonZadv e 6 s or i gi nal f o rremandingeriigo capt
activities more precisejy

3) We discuss how our results can be employed methodologically, suggesting how softwhre deve
opers should systematically and explicitly manafighe four kinds of assumptions proposed hgve.
suggest that thesassumptions should be explicitly identified and systematically guaranteed to hold
throughout the useful lifetime of their software system.

1.4 Structure of the Dissertation

To present the contributions summarized in the precedinglsafter, we have arrangéte rest
contents of the dissertation as follows:

Chapter 2 serves as a survey and reviethefelatedwork, including their understanding of $of
ware, their understanding and management methodologies of softwares;lantheheir understanding
of assurptions.

Chapter 3 introduces our research baseline that is tektre starting point of thdissertationgcon-
sisting of the adopted basic ontological concepiie World and Machine Framewoderivedfrom the
reference model for requirements and speaiionsproposed by Jackson and et(&unter et al., 2000)

and situation calculus adopted as our representation language propos@ddiarthy & Laboratory,
1963)

Chapter 4discusssthe ontological nature a$oftware, distinguishing it from hdware, and also
demonstrating the idea that the rapid changing speed of software is supported by the easy changeability of
its medium hardware. Meanwhile, we also discuss about the ontological naioferwfation artifact,
andshow in what senssoftwae could be recognized as an imf@tion artifact.

Chapter 5 proposes a preliminamptology of software. Threalifferent kinds of software artifacts
are identified according ttheir essential propertiemcludingsoftware products, swfare systems, and
software programsThis classification is developed based on the idea of cuttingrdhld and the saf
waredriven machinavith a clear boundarywve name it as WM framework which is derived from tHe re
erence model for requirements and specificationsqa®g byJacksorand Zave. Different kinds of gef
ware artifacts refer to the phenomena in the different parts of WM framework (outside world, interface,
and inside machine)n addition, there is a fourth kind sbftwareartifact reflecting the social nate of
software products, whose essential properties are based on the mutual commitments between vendors and
customersBesides contributing to clarify concepts and terminologies in the software engineering co
munity, we alsodemonstratéhe possibility tlat our work could also be used as a foundation for software
change management, especially for identifying and recording the changing histories of these different
kinds of software artifacts

Chapter Goroposes a preliminary ontology of assumptions, féistg the four kinds of assumptions
that enable the link between the world and machine crossing the bolredagen themAlso, in this
chapter we explain our interpretation of the assumptions in the fordiyl8 U Rdas@ssumptionsised
andd@assumptionmeeded from which we can derive thenportance of making such assumptions explicit,
anddistinguishing these two kinds of interpretations from each offtehe end of this chapter, wegr
pose a meeting schdihg case studyn situation calculusepresentinghe requirements, external specif
cation, and internal specification, and meanwhikboraing on the role otheseassumptions in edta
lishing thelink between the world and machine states

Chapter 7sunmarizes the main contributions of this dissertatiod indicates thpossible prons-
ing directiors of future work.

1.5 Corresponding Publications
Recognizing software asn information artifact:

Wang, X., Guarino, N., Guizzardi, G., & Mylopoulos, J. (20Bbftware as an Information Artifact
What is An Information Artifact. In Workshop on Information Artifact Ontologies. Rio de Janeiro.

Developing an ontology of software:

Wang, X. (2012). An Ontology of Software Evolution. In R. Cornet & R. Stevens (Edscedr
ings of the 3rd International Conference on Biomedical Ontology (ICBO 2012MER Series.Graz.
Retrieved from http://cetws.org/Vol897/

INTRODUCTION

(Runnerup for best paper award, out of 88 submissiongajpg, X., Guarino, N., Guizzardi, G., &
Mylopoulos, J (2014).Towards an Ontology of Software: a Requirements Engineering Perspective. In O.
K. Pawel Garbacz (Ed.), 8th International Conference on Formal Ontology in Information Systems (pp.
317 329).Rio de Janeiro: IOS Press. http://doi.org/10.3233/B684994381-317

Wang, X., Guarino, N., Guizzardi, G., & Mylopoulos, J. (20130ftware as a Social Artifact: A
Management and Evolution Perspective. In E. Yu, G. Dobbie, M. Jarke, & S. Purao (Eds.), 33&d Intern
tional Conference on Conceptual Modeling (V8824, pp. 32T 334). Atlanta: Springer International
Publishing.http://doi.org/10.1007/978-319-122®%-9 27

Explaining the role of assumptions in linking world and machine states:

(Accepted Wang, X., Guarino, N., Guizzardi, G., & Mylopoulos, (2016) wHS8oftware Changes
the World: the Role of Assumptions. Proceeding of IEEE Tenth International r€noéeon Research
Challenges in Information Science, Grenoble, France.

1C

Chapter 2

Related Work

2.1 Understanding Software
2.1.1Software Interpreted in a General Sase

In the literatureof Computer Sciencehe earliest use of the ter@poftwaréis attributed tqTukey,
1958) who was also famous for proposing the tefuitd for an atomicdata unit(Buchholz, 200Q) The
term &oftwarédwas incorporated into th@xford English Dictionaryn 1960.Historically, thisterm was
usedin amoregeneralway, independently of computerBor example, it was used by rubbish pickers
around 1850 to indicate vegetable and animal matiatsaredecomposable.

Many interpretations ofhe termdéoftwaréwere proposed by researcheasd some ofwhich are
listed and discussed below.

Osterweil believes that, in addition to computer software, there are other kinds of software, such as
processs recipes, laws, assembly instructions, and driving directig@sterweil, 2008)He characterize
all these kinds of software as follows:

O6Whi |l e s of t wphysieal and intangibdeeal pfincipalognal for instances of the type sof
ware is for them to contain one or more components whose execution dffegtanagement and control
of tangible entitiegOsterweil, 2008) .

Following Osterweils account above, software can be divided into two main categories, computer
software and other kinds of software. The categorization is intuitive: computer ofswdended tdbe
executel on a computerwhile other kinds of softwarexecute on different physical manifestatiatiser
than computers.d¥ example, laws ar@tended to bexecuted by government bureaucracies, and recipes
areintended to bexecutedn cookingdeviceg Osterweil, 2008)

By examining the characteristics of different kinds of softw@sterweilproposes an interesting
view that computer software engineering can contribute to other forms of software engineering, and o
positely,computer software engineers can learn a lot from the study of other forms of softwane. For e
ample, software engineering formalisms and approaches coulgpbedato laws, such as the attempt
with a workflow languagéGeorgakopoulos, Hornick, & Sheth, 1996n the other hand, general project
process management methods could also be good lessons for computer software developnsas proces

Suberinterpretedsoftwaré as an even more general concept based on his interpretation of the term
0 p at (Sebernl®88)For him, softvare isany abstract pattern formulated/storedanmedium, and
could bethe embodied medium itselfn his proposalpatterd i s us ed ithatamaythibgfoad s e
signifying any definite structurenot in the narrow sense that requires some recurrencdangguor

% Suberusal the terms'program” and "software" interchangeably.
11

RELATEDWork

s y mme In a ward) whenever there is a difference existing in the cusitrdtion there exists a pa
tern accordinly.

Then, based on this definition of pattern,imterpretssoftwarea® pat t erns, readabl e
by a machine, andftable.6 According tothis interpretation we can derive somexgemely counter
intuitive cases, such #éise ones stated by Suber himself thed | | circuits deserve the
they are physical embodiments of patterns, readable and dxdciga by a mac hame, and

dirmware is one of the most important examples of hardware that is sofiware

However, we want to point out that Sultkresid distinguish ajpatterdfrom ¢&he physical embd-
iments ofthep a t t and thisdbrings abo@ambiguities in understanding his interptietn of software, as
it is defined based on tle®nceptof @atterd For him, there is no difference between software and+ har
ware, yet ve do not want tanix the boundary to suchaxtremescale For us to recognize ahard disk
as software is quitecounterintuitive, and it is more desirable weparate the physical madi as had-
ware,from the abstractepresentations (as patterns) which are materializéteinardware medim. For
example, in the situationlvere some sentences are printed on a piece of papeiritihg structure is not
equal to the ink and the paper, as the same structure could also be shown on a monitor which i a total di
ferent harevare medium

2.1.2Software Interpreted in a Limited Senseas Computer Software

Althoughtheideasstated in the preceding paragrapins certainly intriguing, we focus on a proper
ontological account of computer software, which is still missing in the literature. Focusing on the comp
tational aspects, several schelaave addressed the complex relationshipsengi) a software code,ns
derstood as a set of computer instructions; ii) a software copy, which is the embodiment of a-set of i
structions through a hard medium; iii) a medium, the hardware medium itselfpigcess, which is the
result of executing the software copy.

Moor $Work

Mooré& work is a googbointto start with, as he believéisat to understand softwarelated notions,
one needs to understand the conceptual framework of Computer Sciencehambtfdns are misunde
stood, sloppyesearch conclusiomsight be derived, especially the realm ofArtificial Intelligence (Al)
(Moor, 1978)

Moorinterpretsa computer progratimiom two levels: 1)from the physical levelcomputer programs
can be embodieth the form ofseries ofholes inpunchedcards, configurations on magnetic tape, or in
any number of other form&) from the symbol levelcomputer programsould beunderstood & symbd-
ic representations of instructions to a computer.

Note that, the computer programs stated above possess both the physical and shalaalies-
tics at the same timeas Moordoestit separateéhe symbolic representation of instructidnsm the an-
bodiment of the symbolic regentation in some physical mediuAence, according to that, tebang-
ability to theinstructionds reduced into thehangeabilityto the enbodiment of thénstructions

12

Underlyingthe above understandimgf a computer prgram, Moor proposed his definition of it as
6a computer program is a set of(bratileastthereusan aclolews wh i
edged effective procedure for putting them into a form which the computer can follow) to perfocm an a
tivity . 6

As we can see, this definition is basedaprunexplained preliminary ter@ompute§ and the task
of deciding what is a computerleft asa practical question for the software émgers. In other words, to
judge the identity of a computer programg¢ontext containing a person and a computer should be given
first. Therepresentations of thastructions as computer programs could be embodied in any forms, as
long as it could be accepted and processed by the computer, or ceffiechieelytransfomed into some
forms that could be accepted by the computer.

Besides the understanding of a computer progr e
and 6éhardwared proposed ¢hangeshiligto theingirgctionsts edicedie nt i o n
to thechangeabilityto the embodiment of th@structionsfor Moor. Consequently, for eomputer po-
gramas a set of instructions, limterpreedit as software or hardware accordingthe changeabilig to
the instructiongpossessed by the softwagngineers ahe users of it. For exampl@ an extreme corid
tion, aperson at a factory who can replace circuits in a computer understands her activity angiving i
structions, then for her the programmable circuits could be interpreted as software.

AlthoughMoor 6 s i dea about soft war e,aaordihgth lisveewther e wé
distinction between software and hardware is quite subjective and not stable ovéWliatés consi-
ered hardware by one person, may be regarded as softwanetber.

We accept Moords key point that the IHowevedary

we 6 d | i ksabjettivedefinitians af software, as they invariably lead tofosion and misunde
standings.
Colburn& Work

Colburn launches kiargument with an interesting example to show the importance of developing a
clear and shared set of softwaiedated notions. His example was first presente@gilich, 1997) tak-
ing about a book printeith hard copiesvith relatedfloppy disks attached. One of the algorithmsdntr
duced in the book is a powerful encryption algorithm, and thiarigthgn was printed both on paper and
stored in the attacheftbppy disks. The U.S. government prohibited the export of the book because the
algorithm stored in the floppy disks was saveoful that the government was not able to decrypt time co
tents encrypted by it. The interesting part is that although the UvBrrgonent recognized the algorithm
as a dangerous machine stored in the floppy disks, this book would have been freely exportable without
the floppy disks even with the same algorithm printed in the book.

From the preceding example, we can derive the ceiweiuthat although we intuitively share the
idea that there is an abstract representation as the same software, the embodiments of it in diffierent phys
cal forms could be treated differently. To address this controversy, Colburn suggests interpretarg softw
as a o6concr (€dlbarn, 499%) Asrsuclt, softwane @sesses a dual nature that on one hiand
is concrete because it is encoded in physical memory elements, and on the othei lzdostr#ctas it is
a text representation abstracting itself from any particular physicabdiment

13

RELATEDWork

Col burn cites Hailperinds textbook 6Concrete Ab
an example to reinforce his proposal, as this author intentyoswaitches between the poles of this dual
ty of software throughout the bodKailperin, Kaiser, & Knight, 1999)Also, Colburn refers to the dual
nature of microphenomena asserted by Copenhagen ingtirén the physics field to show the ratio
ality of interpreting software similarly with audl nature.

The concrete nature of software proposed by Colburn is intuitive and easy to understand,byet the a
stract nature of software was not so clearly expldims he distinguished software abstraction from
mathematical abstraction. For him, althbugoth kinds of abstractions are used tcelddtaik (called
contents by Colburn), mathematical abstractinsed to eliminate empirical dewiland only focus on
the syntacticform transitions and this is a restriction on their contenist, softwae abstraction desthe
opposite, by hiding the detailiey provide the possibility to replace or modify the details without &ffec
ing the abstractis) and this is an enlargement thieir contents. For us, this distinction is subtle and
tricky, as matheiatical methods could also be used to guide physical implementations, and the-only di
ference between the two kinds of abstraction is that one comes with a compiler, and the other does not.
Hence, we dofl see theneedto distinguish them.

Col bur n d s interestng, @rsdanight be illuminating. However, the cognitive understanding
of the world need not be the same as the world. Some social entities only exgpihped s mi nd s, h
making metaphors between different disciplines is not necessasbfal vesearch method.

On the other hand, the examples about the encryption algorithm and the textbook interpreting sof
ware as a concrete abstraction provided by Colburn, @sidde used talemonstratehe ambiguities of
softwarerelated concepts with many communitiesf research or practicand this underscorgbe im-
portance of providing clear criteria for distinguisilamong suclsoftwarerelated notions.

Duncands Wor k

Similarly with Moor and Colburn, Duncan also recognizes the dual natuddtaise, although this
was implicitly stated, we still can find clear proof of this from his definition dfrgmie. As he clarifies in

his paper, the term O0softwared should be interpre
encodedhyssi céa lpDundan, 20tl)anddo avoid producingmbiguities, he coined the term
6software programbé to replace the original one.

Stated more specifically, a software program consists of a set of instructions written in seme pr
gramming language. Moreover, this set of instructions should be encodeshenpsgscal medium as
patterns, such as holes on a punch card, pattern of 1s and Os in the magnetic coating of a hard disk, or the
pits and lands on a CD.

However, unli ke Moor , Duncanbdés o6software progr .
For Dun@a n , a software program gener al twardkepe nAdss wen sa
above, a software program must be encoded on some physical medium, and the physical medium must be
an instance of the ki nd outatiodachardwane ts ntentianallyadesighed r d wa r
for computation, for example, a hard disk is designed to be used for computations within a computer, and
a piece of papewith printed symbolsnay not be recognized as a computational hardware, as it is usually

14

not designed for computations within a computinis narrove down the range of meaningéa software
program, &cluding the ones that could not be accepted by the computer directly.

For Moor, a piece of source code printed on a piece of paper could begtaerps a computergr
gram, as it could beanslated into a forrasaninput to a computer; yet for Duncan, it could not berinte
preted as a software program, because the paper is not designed for computations within the computer,
and it cannot be acceptéy the computer directly.

Another point on which Duncan disagrees with Moor is that Moor adopts the changeabilitynef an e
tity asthecriterion for deciding if the entity is software or hardware, yet Duncan thought this wasiimpla
sible, given the generahtological nature of them. However, Duncan made a step in this directisn, pr
posing that the ontological dependency of an entity could be used as the criterion to distinguish software
from hardware.

More specifically, D u n c tationalsharégware is antohtaogicalty &éxd pi e c
pendent entity, whereas a software program i s an
hardware can exist independently of any other entity, such as a hard disk, it exists by itself; yet, a sof
ware program cannot exists by itself, it must be encoded onraputational hardware instance. For e
ample, a software program could be encoded on many different hard disks, yet when all hard désks are d
stroyed, the software program ceases to exist.

Duncams proposals are interest.i nih Foryegamplemamght i s s
be counteiintuitive for many that a piece of source code printed on a piece of paper cannot be interpreted
as a computer program; or, as he proposes, a seffwagram as an entity generally depends on a kind of
computational hardware, all the software programs with the same instruction syntax encoded in CDs are
identical to each other, yet they are different from the software program with the same inssyurten
encoded in a hard disk, and this alsglmibe quitecounterintuitive.

Eden andT u r nséMor&

Different from previously discussed researchers who believed that the dual nature of a computer
program consisted of an abstract syntax and its phyesichbdiments, Eden and Turner recognize & sim
lar but different duality of a computer program including the abstract syntax as pregipta and the
executions of the prograscripts as prograsprocessegEden & Turner, 2007)

I n other words, for them, the term O6progr ambd
script is a welformed expression based on a Turgmnplete programming langudgevhich is static
(timeless); while a prografprocess is an execution of a prograonipt, which is dynamic (¢gnding in
time). They describ¢he relation between a prognescript and a mgramprocess as that a program
script is an 0ab s tproeesstdr @vedelyfaprogmmrt ohcee spsr oigst aan 6 c O r
from the progranscript.

“Thenot i on afo mpT wervasprgrides By Martin, which requires a computer program suppaoTtsra
trivial set of instructiongMartin, 2010)

15

RELATEDWork

As shown inFigure 2, the distinction between ag@ramscript and a prograsprocess contributed
as a small part of an ontology of computer programs consisting of several otheelatest notions, and
the concept of &éabst r acritefiontadstinguisiaall teeseenotionfranneacdt i s t h
otherin the secalled program abstractions taxonomy.

However, for Eden and Turner, the term dabstr a
the meanings of it were not stable, as they stated that any of the combinations of the fatl@aryinga-
tions was acceptable, including) Intangilffeamely urtouchable) Il) Generalized(categoryvs. ele-
mentg, lll) Underspecifiednamelysubsumptiomrelationship) IV) Immanently meaningful to humans, V)
It from bit (namely instances of informan), VI) A-temporal (timeless).

[Metaprograms] [Programs] [Hardware]
[Program-Scripts] [Program-Processes]
[Source Code] [Machine Code]

Figure 2. Theoriginal program abstractions taxonomy adopéd from (Eden & Turner, 2007)

Al though there have been many i nt esgshownikigt i ons 0
ure 2, they were all representdy a unique diagma legend (linked solid line without direction). We find
this way of representation is a bit misleading, as the readers may be not capable of distinguishing one link
from another with a different meaning. To provide a betteletstanding of Edenand Turdes i deas, w
revised their original diagram into a modified version as showherfollowing Figure3. As you shall
see, firstly we replace each solid line in the original diagram withreowed solid lingthen, each of
themisl abel ed with a specified interpretation of the

For example, a program is abstract from a hardware, as the program is intangible syntax and the
hardware is the tangible physical storage/execution medium; a metaprogram is abstracpfogram,
as a metaprogram is a specification describing the characteristics which a program should possess, hence
a possible set of programs could be developed satisfying theisptaif, and each of these prograres b
comes a member of this metapragrasimilarly but differently, a program is an abstraction froma pr
gramscript or a progranprocess, as they abethinterpreted as subtypes of program, a progsanpt is
a program, and a prograpnocess is also a program.

16

| Generalized

o[

[Metaprograms J

(category vs.

elements)

> Programs
L g)

] Intangible

Generlalized (is-A)

h

4

[Program-Scripts J

)

h 4

:[Hardware]

A-temporal (

Generlalized (is-A)

’l Program-Processes]

h

[Source Code }

y

Machine Code]

Immanently 'l
Meaningful
to humans

abstracted from ——>

I: Intangible

II: Generalized

lll: Underspecified

IV: Immanently meaningful
to humans

V: It from bit

VI: A-temporal

Figure 3. The revised program abstractions taxonomy

In a word, Eden and Turner recognize plagr ofconcept a b st r acca n corne taithelkey i on 6
to understand the computer program relatetions, especially they claithat it isits bridgingrole link-
ing the abstract and the concrédgetherthat provide the unigue philosophical identity of softwares-di
tinguishing iselffrom other kinds of objects. We shdhis ideathatthere exist a paradox underlying the
situations where world phenomena tsnaffected by a computer program tbamonly change machine
statesdirectly, and has no physical means to changeadisideworld. However, ve will try to avoid
overloadng a term with so mangifferentinterpretationsand weshallgive a detailed eplanation of this
paradox by illustrating the role of assumptions in software engineering processes.

Ober Wald s

Similar as the previous reviewed research, Oberle also spotted the ambiguities in the interpretations
of softwarerelated notions, and empliesd the importance of clarifying themceording to his view, the
s heavily
gineering community, including the abstract syntax cogeession, th@hysicalrealization of the code,
and the execution of the code, and he coined three t8oitwareAsCodeComputationalObjegtand
ComputationalActivityo refer to thesenterpretations respectively.

term 6softw

ar eod

overl

oaded, Wi

tnh at

For Oberle, a piece @doftwareAsCodshould be the encoding ah algorithm specification. For
example, the Bubble Samg algorithm could be encoded in Java, and the abstract source code in Java is

the secalled SoftwareAsCodwhich, Oberle believe

deserves

t he name

tion of softwaredenies the dual nature view of software, and ordggrizing thesyntacticside of it.

a-soft

The physical side of the dual nature of software was separated out and referred by Gentarm
tationalObjectas thephysial realization of thesyntacticcode in sme concrete hdwa r e .

tiond ment.i

physical medium of the realization could be a hard disk, a memory card, or et al. Note that Oberle also

oned

her e

means

17

t he

physical

Tle Or
nscri

w

e
p

RELATEDWork

restricts the smpe of suitable realizations, as previous researchers did, to théhahean be loaded and
execued by the CentrdProcessingJnit (CPU).

Finally, he proposes that the te@omputationalActivityvhich denotegshe software execution pr
cesses. Differentl f r om Eden and Tur ner 0 9roocessasa suibhspof ppe cogni z
gram, Oberle adopted the relationshipseatlizesandparticipantinto link the different software related
notions together. As shown Figure 4, a piece ofSoftwareAsCodeould berealizedby a corresponding
ComputationalObje¢tand whenever th€EomputationalObjecis called and executed in a computge
can say th€omputationalObjegbarticipates ina correspondin@omputationalActivity

participantin

SoftwareAsCode -(% ComputationalObject ——— > Computational Activity

Figure 4. Clarifying the polysemy of the term 'software’

Yet, differently from others, Oberle proposes his own ontology of software based on two specific
principles: 1) developing the ontology on top of some ‘atined foundational andomain ontologies; 2)
restricting the scope of the ontologysasd| as possibléOberle, 2006)(Oberle, Gimm, & Staab, 2009)

The first principle was chosen because v¥i@liimed foundational and domain ontologies usually are
consisted of preliminary concepts which are vdelimited with clear philosophical analysis. The reliabi
ity of these ontologies hadebn examined and proved by many otlesearchers the literature, so that
by referring to them, the newly developed ontology could inlleegewell-formed ontological comrt
ments diectly from the previous work.

The second principle was chosen becdbses were so many notions used in the software ernginee
ing community andthatmakes ithard to provide a complete ontology that covers all of them. According
to that, he tries to captutbe core notionsonly, and calls his new ontology Core Softwaret@wgy
(CSO). This core ontology can be extended in various direxdiggending on its intended uses.

After reviewing Oberleb6s ontology, we would say
pinning down different software related notions,aefing them from each othecapingfrom the trap
of mixing two contradictory notionmto the secalled dual nature of software.

Final point to notice from Oberle, he recognizes software as an information object based on the work
of Ga n g e rfGadgemi, \BargokCatenacci, & Lehmann, 2004k share a similar viewn this
point, yet the ontological nature of information object itself is still under considerable debate, and we will
try to clarify this concept as a contribution of this thesis in Chapter 4. Still, there is another missing piece
in the puzzle of montdogy of software: the artifactual nature of software.

2.1.3Software Interpreted asan Artifact
Lando& Work

Similally asOberle, Lando builds upon somestarical foundational and domain ontologiasthe
literatureand restricts the scope s ontology to dimited core Lando and his dteagues develop their

18

own ontology, named Core Ontology of Programs and Software (C@B&)rding to this ontology, a
program is aComputer Language Expressisimilar asSotwareAsCodg Besides that, Lando makes a
further step in thatdirection, ashe recognizea program as an artifact. We believe this opedsor to
reacha genuine and shared understanding of softylamaedo, Lapujade, Kasg & First, 2007) (Lando,
Lapujade, Kassel, & Fiist, 2009)

Formal Expression | Artifact of Computation

i

Computer Language Expression ‘

L Program

Figure 5. Program as a sultlass of both Computer Language Expression and Artifact of Computation

As shownin Figure 5, aprogram is a piece of computer language expression, which in turns is a
piece of formal expression. By taking this position, similar as previous researchers, a program could be
interpreted as a piece of abstract syntactic expression engodeaine programming language. This
choice makes the identity of a program depend on its encodiggapnming language, and this expre
sion should be accegileby some compiler and then executed by a computer.

More importantly, a program is also interpebtes an artifact of computation by Lando. For him, an
artifact is an objeéto which a function is assigned. A functionsismecapability asigned by the agent
who crafted the artifact, and through the function assignment the agentsegher purpoge use the
artifact to carry out some actions. The actions could affect the physical world or tphysioal world,
and Lando believes thatprogram should be interpreted as an artifact being only capable to modify the
non-physical world.

Lando restriad his study within the interpretation of a program as an artifacbrputationthat
can only affect corresponding abstract computing activities. Although this choice is clean and tidy, diffe
ently from Lando, we believe it is also important to capthesdffects of progrants the physical world.
After all, most softwara@pplicationgoday are developed to solve r@arld problems. According to this
view, as we shall seejfiierent kinds of software artifacts apeoposedconsidering their intentiona-
fects to the different parts among amputerandits outside world.

I r mawodk

Similarly asLando,yet Irmak proposes different approach to account for the artifactual nature of
softwarethat distinguishes it from other kinds of objewatisich wereclosdy related to but totally diffie
ent from software (e.galgorithm, code, copyandexecutionprocesy yet most of the historical work in

°Lando treated the term 6softwared differen€Cdmputef r om
Language Expressigipet software is a collection tibrary of programsThis distinction seemsounterintuitive to

us and to avoid ambiguity, this distinction is ignored here, and a set of consistent terminology for the softivare rela
ed notions will be provided and discussed as a contribirti@mapter 5.

® More precisely, it is an endurant, which is something canednstantiated further and can exist in a time point,
and keep its identity during time periods. Details are much more complex and left as explanations in our baseline
chapter.

19

¢

RELATEDWork

understanding the nature of software fails to capture this point. He disagrees with both the interpretations
of software in a general sense or in a limited sense presesfiésl, denying the proposals about the dual
nature of software, as he believdgt such proposals are setintradictory. Instead of tise interpred-

tions, for Irmak, software should be integfed as an abstract artifglrimak, 2013)

Firstly, software is an artifact, and being an artifact it is supposed to be the resafi@ntentional
human activities Irmak defended his proposal by pointing out that any ontology should be developed
considering theeommonminds and ideas existing in a community. It is the ontolag@jiststo make the
implicit and anbiguous tionsexplicit and clear, but not to study what is tlealrtrue nature of thehys-
ical world which is the physiciségob. This claim is intuitiveo us because ithe modern society sof
ware is indeed developed by software iapgrs withspecific purposes in mindRandony-generated
source code may be accegtby a compiler by chance, yet it ams nothing to human users unlédssy
understandvhat it does Similarly, a natural stone from a riverbank is not an artifagtdayf, yet when-
ever it is used aspaperweighbn the table, an artifact comes to exist

Furthermore software is an abstraattifact Differently from the Platonic view of abstract objects
that are eternal and independent, software as an artifact depends on the intentions of humambeings. U
like Platonic abstract objects that lack bothtigppaand temporal properties, software only lacks spatial
properties, as it possesdemporal ones, and has in addition imi@nal properties.

To make thismoreintuitive, Irmak illustrates his ideas throughdemonstration ahe similarities
between aftware and music. For him, both software and musical works are abstifacts, the former
is created by software engineers and ltiter is created by composers, yet batte created with inta-
tions. Both can be created or destroyed, whdn theyare destroyedthe following conditions holdl)
their authors cease txist in the world?2) all of their physical copies are destroyed, 3) they are @t ex
cuted or performed ever again, and 4) theyfergottenby everyone.

This idea of interpreting saftare as an artifact wadsoacknowledged byTurner, 2013)n his re-
cent, comprehensive entry on the philosophy of Computer Science publighe&tanford Encycloge-

dia of Philosophy Wealsos har e very much | rmakdés intuitions, a .
motivate his coalusions, based othe analysis of the conditions under which a software maintains its
identity despite changeHoweverh e | eaves the question of o6what is

we shallanswer this questioim this dissertationMaking a futher step, based upaohne understandingf
software as an abstract artifact, we interpret it as an information artifact, emphasizing both itg-inform
tional natureand artifactual a&ure. Besides that, by checking the effects of these software artdahts
computerstatesand the world, we classify them into differeattegories

2.2 Understanding Software Change

As we mentioned in the beginning of the dissertation, software has become an essentiakand indi
pensible parbf themodern society. To meet theedsof arapidy changing society, software hasdm-
tinuouslyevolve.(Parnas, 19949dopteda metaphor to characterize tesntinuous change of softwaas
Goftware aging For him, programs get old while time passes by, decaying in their efficiency and

" The Philosophy of Computer Scienbétp://plato.stanford.edu/entries/compmscience/

2C

productivity. We cannot prevent this process, and asresequencehe older the software gets, the more
it costs tobe maintaired until it becomes urféordableand replaced bgew software

Considering the importance of software, and the huge cost of its continuauion, researchers
have been trying, for decades, to get better understandings of this phenomenon, and to provide proper
methods and technologies to manage these changes in software, yet it is still a young and chaflenging to
ic because of the undervalion of it (Mens et al., 2005)(Mens, Gueheneuc, Fernandeamil, &
D6 Ho n d t. In th&dldwihg, wewill go through several representative works in the literature.

However, aghe main purposeof this dissertationis not in the area of software evolution, we only
discuss how an ontology of softwareuld contribute to better manament ofsoftware evolution. Speti
ically, our proposed ontology of software provides the foundation to identify and record different kinds of
changes in different kinds software artifacts during their life spans. Hence, within this section, we just
make a brief sumary of the literaturevork on software evolution, without diving into detailed discu
sions. In other words, the main purpose of this section is to provide a general view of the state of the art
on software evolution, and locate our work within this framewas a basic and foundational contrib
tion by capturing rich and clear semantitshe softwaraluring the processes of software evolution.

2.2.1Laws of Software Evolution

Lehman was recognized as the O0fathemaSbofivarse of t we
Evolution and Feedback: Theory and Practigganfora et al.,, 2011)as he founded the principles for
empiricalresearch on software evolution with his colleague Belady. Together, they studied the evolution
processes of (BdaByMOoLehm&ans197H)and extrded this study into the famous eight
laws of software evolution that profoundly influenced the ways in which software was undé€kétddd
Lehman, 198Q)M. M. Lehman, 1996)(M. Lehman & FernandeRamil, 2006)

To start with, Lehman recognized the unexpected and unplanned phenomena occurring during the
devel opment and evol 8360, an uspdthese asreseusce to sinitya@avbd s O
lution and propose that software should be studied as a natural phenofaealmgously to physical
phenomena)For him,the properties ofcftwareare intrinsic and primary, arttie effectsby human le-
ings areexternal and secondary. As he stated in an intep\develutionprocess and system control the
managers rather than managers controllingtlyes t e mo

To nail down the scope of his study, he firstly proposed a classification of software programs,
cluding: 1) Stype programs that possess formal specifications which strictly define the problems to be
solved in terms of some programming language, and dlypeSprograms serve as their solutions; 2) P
type programs that are similar agype prograrm, yet the given spedifations for the problems are-e
pressed in terms of the terminology of the problems in the real world instead of the progranmming la
guage scenario; 3)-fpe programs, differently from-fpe and Rype programs, treat themselvesaas
component of the outside problem world. The interpretation of-Bfp& program is quite similar as the
idea of socieechnicalsystem, ecording to which, an Eype program serves as the technical support
within a social environment, communicating antkiacting with social agents.

21

RELATEDWork

For Lehman only the Etype programs were adopted as tbgearclsubject, as they are placed into
a changing environment, and by studying their reactions to the changes initberaents, he developed
eight general laws dhe software evolution as shown fleiowing Figure®6.

No.

Name

Statement

Continuing Change

An E-type system must be continually adapted, else it
becomes progressively less satisfactory in use

Increasing
Complexity

As an E-type system is changed its complexity increases and
becomes more difficult to evolve unless work is done to
maintain or reduce the complexity

Self Regulation

Global E-type system evolution is feedback regulated

Conservation of
Organisational
Stability

The work rate of an organisation evolving an E-type software
system tends to be constant over the operational lifetime of
that system or phases of that lifetime

Conservation of
Familiarity

In general, the incremental growth (growth rate trend) of
E-type systems is constrained by the need to maintain
familiarity

Continuing Growth

The functional capability of E-type systems must be
continually enhanced to maintain user satisfaction over system
lifetime

Declining Quality

Unless rigorously adapted and evolved to take into account
changes in the operational environment, the quality of an
E-type system will appear to be declining

Feedback System

E-type evolution processes are multi-level, multi-loop,
multi-agent feedback systems

Figure 6. Laws of Software Evolutionasproposed by Lehman(M. Lehman & FernandezqRamil, 2006)

These laws are derived from an empirical study of software evolution, and all of them ara-quite i

tuitive to understand, such as tientinuing Change Lawhat indicates an-f/pe pogram must be ao

tinually changed to adapt to the changing environment, ointlreasing Complexity Lathat indicates
an Etype programbecoms more and more complex as the program groldsr. The eight laws ow are
researchers

adopted

as basel

ine by many

n

t hi

based on awbjective view which must be obeyed by the software engineers. For us, this view sndere
timated the importance of the role playwdthe software engineers, as the creators of software, it is their
intentions that decide the properties of software, hence the interpretation of software beconseb-quite

jectivefor us, and we adopt it into the requirements engineering domain to beidyature of software,

as we shall see @hapter 4 an€hapter 5.

2.2.2The Metaphor between Software Evolution and Biological Evolution

Another interesting branch of the study of software evolution tried to make a metaphor linking it to

the biology evolutionsuch as what Godfrey and German did, they proposed a model of software evol
tion where source code sesws gene, and software functicergthe result of explaining the gene, and a
version of softwarés recognized as an individugbodfrey & German, 2008)

22

S

f

Based on this model, they pointed out that software maintenance and software evolutionrare diffe
ent concepts: software maintenance was a process that kesyaesobinning without chamng the gene
(code) of the software, and software evolution meant adding essential changes to the softwarg-by chan
ing the gene (code) of the software. Although this idea is interesting, yet we shall point out that a biology
spedes is usually characterized by a pool of gene serials from multiple creature individuals but not only a
gene serial from just one software individual.

Similarly as Godfrey and Ger man, Mens attempt
Forhimas of t ware ecosystem is 6éa collection oM soft
mu n i (Mgn® & Grosjean, 2015)and this definition was derived from two older work$: Messe-
schmitt and Szyperskids definition, 6a collecti

symbiotic relationshi@ (Messerschmitt & Szyperski, 2003) 2) Lungubé®adefil hietcit o n
software projects which are devel ope(dunga r2@eD8) ev ol v
Whichever of the aforementioned definition is adopted, the general idea is the same: studying interactions
between software and its environment. By comparing with biological ecosystems, new strategies can be
developed to improve ¢heffectiveness and resilience of software.

For Mens, there are two possible ways to make comparisons, depending on the roles software plays
in a trophic web (food worl d), as producer or a
this is a tehnical view, interpreting all the software and hardware as components of a trophic web (e.g.,
application websites are content producers, and a search engine web site consumes these comtents and i
dexes them as its own products for other possible consumérn a hi gher | evel); y
project contributors, this is a social view, cigag software engineers into different kinds according to
their roles in a trophic like web (e.g., some engineers develop core library packages actingasgrod

and some other engineers may develop applications based on such libraries acting as consumers).

Both Godfreyds and Mensd work are intereaesting
tribute to a better understanding of software practiceekample, to make a software company efficient
and robust, the structure of the role arrangement should be carefully designed that the dependency b
tween the producers and consumers should be balanced well, neither too many producers, nor too many
consumers Si mi |l ar examples could be fund in the bio
studied and used as a prototype of the modatar systemg¢Bin-bin, Hai, Xiaoping, & Hesheng, 2012)

However, not all aspects of the two species, software and biology, can be compared to make a co
plete metaphor. To achieve a shared set of foundational understandings of softwarenewetustill
need to get back to its original nature. Following this view, many researchers proposed taxonomies and
ontologies for software change, and we shall list out some of their main contributions as follows-to deli
eate an outline of the study im4 field.

2.2.3Taxonomies and Ontologie$or Software Change

SwansonandL i e 8 Warkd

Researchers have been trying, for decades, to unify the concepts and terminologies of software
maintenance and evolution. Swansord Lientz are recognized dke pioneers o firsly provided an
exclusive and exhaustive typology for software maintenance. They divided the maintenance activities of

23

RELATEDWork

application software into three categorigscorrective maintenance, congigj of the activities of fixing
bugs;2) adaptive matenancerefering to the changes made to adapt to the new technical environment
(e.g.operatingsystem software, frameworksd) perfective maintenanceefering to the changes of ati-
inating processing inefficiencies, enhancing performance, improvaigtainability and other enhasc
ments on functionéSwanson, 1976)Lientz & Swanson, 1980)

Although SwansorandL i e &1work has been widely accepted, later works revitbedinitial
meanings otheseconceptsinconsistently sometimes&nd even the standards of the IEEE (Institute of
Electrical and Electronics Engineers) have been revtsedthis way In 1990, a new category called
Opreventive maintenanc e 6of theaSEE atahdaeddThe nmew terimereama i n |
O6mai ntenance performed for the purpose of prevent
removed from the main body of the standard and onliptioreed in its appendiX 6 | EEE St anda
Glossary of Software Engineeringg™ mi nol o g(yg I6EEIE9 99t)andar d f or Softv
1998)

C h a psiWwor&

Following SwansorandL i e swoik,8Chapin et al. proposes a classification from a different pe
spective, which is not based olbservato®gs theedifférencemt ent i
before and after the changes oc@@hapin et al., 2001)This classification is composed of four main
clusters and refined into 12 different types, includibigupport inteface cluster (types: traimg, consi
tive, evaluative) 2) documentation cluster (types: reformative, updafid})oftware properties cluster
(types: groomative, preventive, performance ptida); 4) business rules cluster (types: reductive, @orre
tive, enhancive).

Generally spddng, C h a B warkbconstitutes aextension of Swans@ work, refining the initial
classification of softwarenainenanceinto a finer granularity. The whole woik based on an objective
view, identifying different kinds of software changes accordinthéascertainablevidences observed,
and the process of deciding the type of a software chastiyityais quite intuitive and reliable for the
software maintainers, including all practitioners, managers, and researchers. Heovieveryverecay-
nize softvare as an artifact, we cannot urgtand the tru@atureof software change without considering
the intentions of its stakeholders. In tHissertationwe demonstrate this view in further detail in Chapter
4 andChapterb.

Buckley et al&s Work

Buckley & al. proposed another taxonomy in 2005. Compared with previous work, this taxonomy
focuses more on the technical characteristics rather than on the general concept of software evolution
(Buckley et al, 2005) The life cycle of software is partitioned into three phases: cottipike loadtime
and runtime. Furthermore, several other dimensions of softwasngeare proposed which could be
grouped into two mai n c ateehame meemmnismdandtierfaatorstieatii st i ¢
fluence these mechani sms. 6

Generally speaking, these autheiew previous works as trying to answer why software changes
occurred, and their work contributed in answering the how, when, what and where softavayesot-
cur. According to this view, they discuss software changing mechanam the factors that influence

24

these mechanissnThis work was restricted more likely as a list of criteria to justify the qualitiesf-of di
ferent kinds of software change suppgy tools, although this intuitive and handy for practitioners, the
research subject was shifted from the software change itself to its supporting tools. Instead &-improv
ment, it was a supplementation of the previous works, and what we do is idepf@ndations for all

such kinds of research and practices.

Kitchenham, RuizandA n g u eWarkl 6 s

Ontology constitutes a more rigorouethod to explicitly represent the mearsiofj concepts than a
taxonomy It has been used widely to capture knowledgmamy research areaand several researchers
havetried to provide atologies for softwarenaintenance.

Kitchenham is the researcher who fiygprovided a carefully crafted ontology for software maint
nance in 1999For her, software development is diffat from software maintenance, as the later refers
about the activities applied to later releases delivered thftesoftware has been deploydd.her paper,
she identifies several factors that influence software maintenance, and classifies thésuarimlionen-
sions as shown iRigure7, including product, peoplewarg@rocesrganizationand maintenance ackv
ty types(Kitchenham et al., 1999According to this classification, general questionald beanswered,
such as what is under maintenance (e.g., product with size, age, and etts)malntaining the product
(a software maintainer with some skills, attitudes, and etc.), under what kind of organization the product
is maintained (e.g., a maintenance group with some resource, and technologies, and etc.), and finally what
kind of maint@ance activity is taken out (e.g., corrections, new requirements, and etc.). Instead of talking
about the ontological nature of software maintenance, it is more like a project management oriented work
for the team members of a maintenance group.

Maintenance Activity Types Product
Corrections Size

New Requirements 1’ Age
Requirements Changes Type
Implementation Changes Composition

MAINTENANCE J

N
r PROCESS q

Peopleware Process Organization
Skills J L Engineering Management
Attitudes Group Organization
Customer and User Methods

Resources

Technology

Figure 7. An overview of domain factors affecting software maintenancdgitchenham et al., 1999)

Five years lateiKi t chenhamdés work was refined @axeddsenl!| ar
the four dimensions of softwammaintenanceroposed byKitchenhaminto four subontologiesrespe-
tively: Producs Subontology Agents Sukontology, Process Suintology, and Activities Subntology.
Besides theseefinementsadditionalWorkflow Ontology and Measure Ontology are introduced in order

25

RELATEDWork

to support maintenance projects in organizations, as sholigure8 (RUIZ, VIZCANO, PIATTINI, &
GARCA, 2004). These can be used to provide rdetael guidancefor managing software maintance
projects

Components of the Software Maintenance Projects Ontology

Workflow Ontology

Measue Ontology

Figure 8. An overview structure of the ontology for software maintenance projediRUIZ et al., 2004)

Comparing withKitchenhamandRuizdwork, Anquetil andet al. provided a similar ontology in the
book Ontolagies in Software Engineering and Software Techno{dgyuetil, de Oliveira, de Sousa, &
Batista Dias, 2007)They shared the same idea that after the initial development phase, softwage maint
nance phase will follow angill last for a long period of time, and during whiclslof changes will be
adopted to better suit stakeholdiamseds. YetAnquetil dealswith these software maintenance activities
from a knowledge management perspectiln other words, he emphasizbe importance to provide
suitable knowledge according & specific maintenance scenario for the proper software maintainers. As
shown inFigure9, a sofware system is implemented to solve some problems in an application domain,
the knowledge about the application domain and theesyéiself will be elicited and stored in a
knowledge base (KB). Additionally, the knowledge about the maintenance project will also be added into
this KB. Consequently, according to such a KB, a modification process (task) to a sofsterevgyl be
assgned to the proper software maintainers who possess the required computer science skKills.

Application Computer r needs
Domain Science Skills |
A 3
P o Organizational
deals with requires Structure
Software System |«Made upon | Modification 1
Process regulates

Figure 9: An overview of ontology for software maintenancéAnquetil et al., 2007)

Similady toB u ¢ k | e g wogkKitclrehhanfRuizandA n q u work Wa8 also asupplemerd-
tion of the earlierwork, because instead of explaining the nature of softaadesofware evolution, they
paid more attention to the issues about software project management, clarifying the oiféeyanft
kinds of stakeholders who took different kinds of software rea@ice activities during the life span of a
software projet In other words, their work was project oriented, and the most possible consumers of
their work should be software managers instead of software practitioners.

Tappolet et alé Work

26

Similarly, Tappolet and his colleagues lunched ghgject OntEv8trying to remedy the problems
caused by software change. More specifically, they divided the sources of problems into two categories,
including: 1) the internal source, referring to the difficulty to study or recall the meaning underlying a
piece of source codsithout sufficient comments or documents; 2) and the external source, referring to
the difficulty to manage the dependencies among so many libraries that are developed and maintained by
different groups or organizatioifappolet, Kiefer, & Bernstein, 2010)

For Tappolet at et al., both the two kinds of problem sources are derived from the lack of knowledge
about the source code, hence they propose a setalbgies, including a software, versiand bugon-
tology. With these ontologies, on one side, software engineers can encode relevant knowledg&into shar
ble files (or repositories); and on the other side, others could query the files (or repositogsadt
useful knowledge. Athe knowledgeis stored irsharable andueryable files this solutionprovides help
for both two kinds of problem sources in the process of software evolution. However, as this approach is
sourcecode oriented, itcompletey ignoresthe software artifacperspective (e.gthe architectural cm-
ponents, behavioural rdels and requirements one§o capture more semantics necessary, as m@emo
strated in Chapter 5, we propose different kinds of software artifacts at differeatidslayers.

2.2.41dentifying and Recording Software Changes

The Version Control Systems (VCSs) are widely used in the industry to record the develogment hi
tory of software projects, and according tsuavey published b@hloh’ concerning open sourseftware
projects 70% of them us€orcurrent Versions System (CV8) Subvesions and over 25% of them use
Git (Kleine, Hirschfeld, & Bracha, 2012However, a we statedearlier, most of the literature work in
understanding of software and software change haeea limitecto source codéevel. Consequently, the
work in identifying and recording swiare changes was also limited to source dede!.

For instance, althe VCS tools mentioned above were developed on a unique core mechanism,
checking thesyntactc difference between two versions of a file. In this context, a version of a file could
be understood as a snapshot ofgimetacticcontent of the file with a time stamp. Whenever a pnogra
mer commits a new version of a file, thyntacticdifference betwen these two versions will lsalculd-
ed and recorded in a repository with some additional limited wiata (e.g., commit user, commit time,
and etc.) and some description of the commit (esually a few nature languagentences).

As aforementionedall the information collected is source code oriented, this is because such tools
are not initially developed to identify and record software changes, but to provide a cooperation platform
for the project members (some time they are distribueadygphielly), committing their contributions
to the project simultaneously, and meanwhile solving the possible conflicts thegnoaynteramong
each other. For example, if two programmers commit to the same version of a file, rewriting the same line
of the souce code differently, only one of the new commits could be used as the latest version, based on
which furtherupdates of the file could be made.

The data collected by such VCS tools could be used to do analysis about the evolution process of the
software, gt as we stated, this is a subsidiary function we can get from them, and it is not practical to use

8 A Software Evolution Ontology, https://files.ifi.uzh.ch/ddis/oldweb/ddis/research/evoont/index.html
° Ohloh, http://www.ohloh.net

27

RELATEDWork

them as a main means to study the evolution process of software, especially for the project managers
without sufficienttechnicalskills to navigate withirthese tools. To remedy this situation, some software
change analysis tools were developed, suctF@seher, Pinzger, & Gall, 2003nd (Ghezzi, Wursch,

Giger, & Gall, 2012)who provide interfaces for useto query and navigate within a library of software
changing history.

To enhance thee VCS tools used as software change analysis tools, tgbknologiesvere po-
posed. One of the branches is to detect changes automatically. In other wordsgrdrening activities
of the programmers are monitoreshalyzed and then recorded lsy u cchangéawarétools. Comparing
with the history data provided by VCS tools, these new tools adopt the change of software as the center of
a software developing processid the collected data about the programéesvities could be used as
another source to analyze software change procéRsbbes & Lanza, 2008fWloka, Ryder, & Tip,
2009) (Omori & Maruyama, 2008)

Compared with automatic software changesdibn, the other branch offsmare change analysis
tools triesto visualize the software change history, providing more intuitive ways to examine the way
software evolves. For example, some of the these tools collect change activities on the softwik® mod
during a period of time, then create a static figure about thegicitapath of the module@Gba &
Ducasse, 2006) D6 Ambr os & . Takinga éurtherate@e9er and his colleagues reushd
recads from CVS to create a dynamic visualizat{eng., an animation/movie of a change process)
software changing historBeyer & Hassan, 2006)

Although many works attemgd to identify and record software changes, they are generally limited
to the source code level. As sythese toolxan processemantiograndarities at thefile, class, method
level, but not at a component or requiremeneleThis limitation in the semantic granularity causes a lot
of knowledgeto go unrecorded andhereforemissed during a software change process. Tissing
knowledgeconstitutes onef the main reasons of the high cost of software change.

Parnasshareghe same ideand states thahe primarycause ofa poor stat®f-the-art in software
engineeing practiceis the failure to produce good documentatiomecord the mulifaceted knowledge
that comes with aoftwaresystem(Parnas, 2011)n his papeSoftware Agingseveral practical reasons
related to documentatiomere proposed explaining why software maintenance is costly and may result in
chaos. Besides that, he empizasthatalthough documaation is an unpopular topic which is ofteg-n
glected, systematic documentation might beeatial to ameliorate the current situati®arnas, 1994)
But of course, to do proper documentation one needs to decide firskmdwledge aboua software
should be identifiedrad recorded

Although lttle work has been done in capturing richer semantics during the process of identifying
and recording software changes, it seems a promising research topic to proviégdoahdgupport for
software change. Some attempts were madeh as Altmanningé work, in which the changing gnan
larity was extended to the conceptual models about the softwatead of source code itself
(Altmanninger, 2008)or the Semantic Versioning standard provided by &S@idicating thedeper-
encystatus of a version of defare(e.g., from v¥1.2.3 to ¥1.2.4, nothing happened at interface, no need
to adjust the cadlof the interface methadfrom +1.2.4 to v1.3.0, some changes happenethainter-

12 OSGi, hitps://www.osgi.org/

28

face, however it is compatible with the old ealf the interface methaifrom +1.3.0 to ¥2.0.0, esse
tial changes happened at the interface, and the o&btale interface meth@dvond work anymore).

Different from all the related work stated above, we start our research with studying the ontological
nature of softwarebased on which we examine the essential properties of different kinds of software art
facts, according tthe fact that each dhese software artifacts (software program, software systetn, sof
ware product, anddensedsoftware produc) is constantly dpendent on a different intentional entity.
Each of theséntentional entities refers ta kind of expected behavisrinvolving different parts of a
complex socigechnical systennamely, thenside machinethe interface, andhe outside world) which
in turn emerges from the interactibetweera softwaredriven machine and a social environment.

In other words, we extend the interpretation of software from the perspective of source code to the
perspective ofociatechnical systemmBy recognizing the chaes in theseifferent kinds of softwarear-
tifacts as different kinds of software changes accordingly, the task of identifying and recording different
kinds of software changes is reduced to the task of identifying and recording the changes in the differen
kinds of software artifacts. Meanwhile, tlapproachwill help to clarify some terminology ambiguities.
For example, we may define the following kinds of software charigesfactoringrefers to the creation
of new codes, keeping the identity of thetware program;2) re-engineeringrefers to the creation of
new softwareprograms, keeping the identity of the software syst&nsoftware evolutiomefers to the
creation of new software systems, keeping the identity of the software product.

These chargg in different software artifacts happen at different abstraction levels within the socio
technical system, providing help in understanding the software and software change for different kinds of
stakeholders who play different roles in a software prq@ckt, a company manager may focus on the
software evolution of software products in the social emment, a project manager may focus on the
software reengineering of software systems at the interface, and a programmer may focus ot the sof
ware refaadring of software programs inside a softwdrazen machine).

2.3 Understanding Assumptions

As mentionedin the introduction chapterin addition to the essential properties about the @iffier
kinds of software artifactshere is another kind of knowledgf@at deserves speciattantion, and it is the
assumptions made durirgysoftware engineering procesthe requirerants for most softwarapplica-
tions-- the intended statesf-affairs thesepplicationsare supposed to bring abeutoncern their oper
tional environment, usually a social world. But thegplicatonsd on 6t have any direct
that environment in order to bring about theended statesef-affairs. In what sense then can we say that
suchapplicationsfulfill their requirements?ne of the main contributionsf this dissertationis to a-
count for this paradox. We do so by proposing a preliminary Ontology of Assum@Befiose diving n-
to the details ofttis ontolay charaterizing and makng explicit a number of notions that arsad implc-
itly in software engineering préce, we illustrate several similar related works as follows.

2.3.1lInterpretati ons from Linguistic and Cognitive SciencePerspectives

O0Assumptiond is a severely overl|l oadamdustry,andm u s e
etc.) as well as in our daily live$he interpretations of this term diverge significantly in differem-co
texts Nkwake authored a chapter nan@dhat are Assumptioffs@n the bookdNorking with Assurp-

29

RELATEDWork

tions in International Development Bram Evaluatiog in which he discusses the nature of assumptions,
and grouped assumptions into several categories, including: Ontological Assumptions, Epistemological
Assumptions, Axiological Assumptions, Cultural Assumptions, ldiosyncratic Assumptiegs| Pe-
sumptions, Metaphoric Assumptions, Intellectual Assumptions, and Causal Assunptiomake, 2013)
Among so many ways to imj@ret assumptionshithe sequel, we preseatew examples of these possible
interpretdéions relyingon the language use of the teffmnis, 1982)

Conclusion e.g. Tom saiddmy assumption is that you are going out, since youna@ing your
capdbThe conclusion of &égoing outdéd is derived from t

Lessthanfully established proposition, in an accusation seesg. Mike answersthat is only your
assumptiony o u d o n dd6Mikeksneplysuggests that it onlpoks | i k @ng bug énsthatgvas
only Tomb s g witk soguarantee that Holds.

Adopted in order to deceive, fictitious, pretended). @lthough bad thingdid happenplease s
sume that theyever happesd6The termaasmpt i on i s i nterypeeepdi asmbdahki k
6you can deceive yourself that nothing bad happen

Another dimension of the work tries to interpret assumptions from the perspective of Cognitive Sc
ence. More specifically, many researchigysto explain the meaning of an assumption as a proposition
that is created from a particular kind of mental stiatehe literature, mental states are usually classified
into three categories, including Belief (B), Desire (D), Intention (I), and thitenstanding of mental
states is referred as the BDI model. A proposition in a belief is the knowledge of an agent about the world,
a proposition in a desire represents the states an agent wants to reach (in a derived sense), aird a propos
tion in an interibn represents a desire content that an agent is committed to g¢rgenagio & Oltramari,
2005)

According to this BDI model, Jureta and etssistematically analyzed thiele of assumptions irer
quirements engineeringvhich is reported irfJureta, Mylopoulos, & Faulkner, 2009jhree basic oo
cepts inrequirements engineerirage mathed to those three kinds miental statesespectivelyl) an a&-
sumption ismatched taa believed propositior2) a requirement isnatched taa desired propositior8)
and a task isnatched t@n intended proposition.

Although it is a promising researctirection b address such a detailed ontological analysis of the
nature of assumptions as well as of their relations to cognitive and social, agemsfer to leave it as
another contributiomn the future workand in this dissertatiowe focus on expalining the bridging role
of assumptions in software engineering, solving the paradoenaéotioned In other wordswhen we
refer to the propositional contents of assumptions, aketihemneutralwith the discussions aboorten-
tal statesWe simply say tht the assumptions are composed of propositions, yet wik discuss which
kind of propositiongs concerned in thislissertation We believe this topic deserves another specialized
paper, and we are working on itparallel

2.3.2van Lamsweerdess Interpretat ion of Assumptions in Requirements Engimering

van Lamsweerddnterpretsassumptions within the requirements engineering framework proposed
by (Michael Jackson & Zave, 1995h which the process of requirements enginedsrapmposed of the

3C

following procedures: 1) anchoring the machinethe problem world; 2) characteiig the problem
world; 3) celimiting and structuring the problem world; 4) chaining satisfaction arguments; and\s) deri
ing specifications from requiremts. For him, domain assumptions characterize partial properties of the
problem world, hence a set of domain aggtimns should be elicited and expressed as a set of statements
about the problem worlfyan Lamsweerde, 2009)

For Jacksonand van Lamsweerde, the basic elements used to characterize the problem world are
statements about the world. A statement could be underatadiece of expression in some language,
and usually statement®uld be classified into three categories as showhRigure 10: 1) aprescriptive
statement states desirable properties of the world in the optative mood (awagesnto do something);

2) a descriptive statement states properties about the world in the indicative mood (an agemspossess
some understanding about the world); 3) and a diefimis a statement assignittte precise meanirgto
the terms used in throblem world without mood.

Statement
/ \\

Prescriptive Descriptive Definition

Requirement Expectation Domain property Domain hypothesis

Specification
Figurel0. Further distinction among statements in the problem wedd_amsweerde, 2009)

As shown inFigure 10, the two kinds of statements rounded by red rectangles represent two kinds of
domain assumptions proposed ®n Lamsweerde. Arexpectationis a prescriptive statement, itepr
scribes aspecific behavior of the problem world that the machine cannot reach (e.g., a passenger will
press the buttons when he/she is irekavato). A domain hypothesiis a descriptive statement about the
problem world, this hypothesis is an estimation of aabih of the problem world (e.g., the possible
temperature of the room @waysbetween 10 degree to 20 degree). Hence, a domain hypothssts is
expected to hold invariably, unlike descriptite domain propertiesesulting from natral laws.

Accordingto suchstatement based characterizatwfnthe problem world, and the other procedures
within a requirements engineering process) Lamsweerdenadeane x t ensi on of Jacksc
original formulaA, SUR (A: Assumptions, S: specification, R: Remgment$, and refined it into{Spee-
ification, Assumption, Domain Property}RequirementAccording to this new formula, a requirement
engineer shouldnsure that the requirements will be satisfied velenthe specificatiors met provided
thedomainassimpions and domain propiges hold

However,van Lamsweerdé discussioriocusesonly onworld assumptiondn this dissertationin-
stead, weextendit into machine assumptions, aptbpose two additional kinds ofpendencessunp-
tions which, as we haveentionedare essential for explaining how software can affect the social world.

31

RELATEDWork

2.3.3LewisG Assumption Management System

Lewis statesthatées sumpti ons are made concerning how the
ronments it ,asiwellasithe peompatibidtiesi betvieen the assumptions and the assumed
operation envir onifiewistetalyR004) cause failuresd

Based upon this understandi she alsoemphasizethe importance of making assumptions explici
ly represented as we do in this paper. To achieve this gmalproposes system called\ssumption
Management SystefAMS) to insert and extract assumptions in and ftbesource codeThis system is
supported by the functioraf stoiing the extracted assumptions in a repository, gagrshe repository,
and makng management decisions based on the assumptions recorded in the repository.

/*_
<assumption>
<type>
Assumption type.
</type>
<description>
Assumption description.
</descriptions>
</assumption>

*/
Figure11.Syntax strttA OO O A B &ssumptienEn@riagement system

The syntax structure of an assumption assertion is adbptefl r 0 m &veork asssidown ifFig-
ure 11.Simply put assumptiongre recordeds comments to theurce code, anthey are encoded in
XML. As show in Figure 11 and following the usual XML conventiothe pair ofd* é */6indicates
the comment area, the pair of labétmssumption® indicates the assumption area, the pair of labels
&type>bindicates the type of the assumption, and the pair eldébdescription>6indicates the natural
language description of the assumption.

The ideaunderying this workis thatassumptions are recorded snyftware engineers while they are
writing source codéWhen the source code is ready, a XML parser can éx tasetract the assumptions
and store them into a reptisly in a structured way fduture queries. This is useful for sharipgrposes
with all members of software project, reducing the chance of misunderstandirjhelping to ensure
global consigtncy of thesystem.

Although as stated by Lewis, recordiagd parsg of the assumptions as contents of comments in
source coddas beemproved very useful in the coding process in a software emyigeproject,this is
too late a stage for uncoveringgsibleinconsistencies the project. This imotedby Lewis who states
that ¢o address interoperability requirements, the use of gggm management would have to be
moved to other activities and artifacts of software development, such as requsr@malysis, archite
ture, and designo.

The problem pointed out by Lewis is essentiiedoftware engineering projects, as the eviddras
proved that the errors in requirements, such as misinterpreting or neglectingnguitié assumptions,
are much rare expensive to fix at later stage than in the early stage a software projediNuseibeh &

32

Easterbrook, 2000)What we do in thiglissertationis to capture and analytbe assumptions in theer
quirements engineerirgjage of thg@rocessi.e.,in the earlieststagef the software engineering process.

Instead of daling with source code, we capture and record assumptions in the prockesaing
specificatiors fromthe requiremeist In this stagerequirements are decomposedédined into specifia-
tions including an external specification and an internal spatibn.Moreover we provideherea more
refinedcategoizationof assumptions that should be discovered by software engineers in the requirements
engineeringstage. Furthermor@nd moreimportantly, we illustrate the key roléhat such assumptions
playin linking the world and machine states togetherillustrate these pointsy itheChapter 6 we pre-
sent a case study afneeting scheduler systdimt demonstratdsow and what kinds chssumptionsan
be capturedh arequirements engineering process.

33

34

RELATEDWork

Chapter 3

Baseline
3.1DOLCE Adopted asthe Foundational Ontology

Along with the vigorous developmentin the field of Semantic Welproposed by(BernersLee,
Hendler, & Lassila, 2001pntologyalsohas beemervasivey adopted irmanysciencefields as a means
of knowledge repositoryespeailly in the fields in which huge amount of information should be elass
fied andmaintained For examplein thebiology field, Gene Ontalgy Consortiumaims atprodudng on-
tologes coveringa set ofdynamic and controlled vocabularas sharedknowledge ofthe roles of gene
and protein in cell{Ashburner et al., 2000)and in theastronomyfield, NASA™ launcheda project
calledSemantic Welfor Earth and Environment (SWEET) whicha collection ofontologiesare deve
oped, including many basicconcepts such asspace, time, Earth realms, physical qu#¥j and etc.
(Raskin & Pan, 2005)

Although the termoontologydis widely used in many fields, the meaning of this term itsak not
clear enough till recent yearShanks to the work of many ontologists clarifying this terms for many
years,especiallya series of works made by Nicola Guarino, a precise definition is emerged and accepted
by many researchers in the ontology fiéBlarino & Giaretta, 1995)Guarino, 1995)(Guarino, 1998)
(Guarino, 2009)Among his works, a paper tittledd/Vhatls an Ontology8is published in 2009, in which
the meaning of théontologydwas thoroughly dicussedGuarino, Oberle, & Staab, 2009)

For him,the termdntologydcould be interpreted in two sensé$Ontology* is a philosophical -
cipline, a research filedimilarly asPhysics, ChemistryBiology, and etcMore pecisely Ontology is a
research discipline studies thatare and structure of objects, as Arilgtalefined this terndOntologydin
his Metaphysics as the sciencedaéing qua bein@y By given adomain, Ontology discusses about the e
tities and relations existing in it; 2) an ontoldtig an special kind of computational artifaas it is ce-
ated ly people with the purpose to represent the understanding of a given dbomthis.sense of inte
pretation, an ontology is a product within the Ontology research disciftirather words, by studying
the domainpeople can get somowledgeabout it, @d by representing such knowledge in some form
of language expressions, they create an ontology abodbthain as a result.

The prevalent use of this ter@antologydin Computer Science should refer to theerpretation in
the seond sensdntuitively, a conceptuamodelabout the domain in concern déweed during a sof
ware engineering processuld be understood @ ontology of this kindaccording to the definition of
conceptuaimodeling proposed byMylopoulos, 1992hat &conceptualmodeling is the activity of fe-
mally describing some aspects of the physical and social world arodod pugrposes ofinderstanding
and communicatiain

1 National Aeronautics and Space AdministratfonUnited States of America)
12 Guarino suggestedsingthe capitalized term to refer to this research discipline.
13 Accordingly, Guarinsuggested using thewercasederm to refer ta product irthis research discipline.

35

BASELINE

This interpretation of ontology from the perspective of conceptualization was firstly proposed by
Gruber in 1993 that an ontology is @xplicit specification of a conceptualizatiiGruber, 1993)Later
on, it was extended o a new expression that an ontology &amal specification of a shared copee
tualizatiord proposed byBorst, 1997)andagain this definition was refined by Stuber et al. taat -
tology is a formal, explicit specification of a shared conceptualizafidtuder, Benjamins, & Fensel,
1998) Guarino adopte&tudets view, and provided a detailetcountof the notions oftonceptualia-
tonband o6specificationd, adbslarearpflaeostoigge d t he I mport a

We adopted Guarinobés interpretation of ontol ogy
andbased on that we will discuss about the ontological nature of software, ridmefhiore provide an
ontology of softwaravhich could be used as a foundation for identifying and recording changes in diffe
ent kinds of software artifactds an ontology of software, we share similar idea with Irmak, it should be
in accordance with the common beliefs and practiedd bydifferent kinds of stakeholdergho share
the related concepts.t nibe sohereit with the way people talk about them, with the things they b
lieve about them, with their practices that involve those oldjéictsak, 2013)

To clarify the point here, we are not trying to discover tivéque true nature of softwarée what
the physicists do in looking for the true nature of the physical universeeowweshall say that to
guestionthe meanings of software is different from questioning the physical laws of the universe. More
likely, it is a problem from the linguistic and cognitive point of view. People in the community usually
interpret the terms differentignd ambiguouslyand whaan ontologist should do is to provide definitions
and explanations of the terms basedsomewidely shared primitive conceptthen the newly proposed
interpretations of the terms could be widely shared and used in communicati@msali\fvebelievean
ontologist is different from a physicist.

To develop arontology of softwarewe start with looking for a suitable setwidely shared prina
tive conceptdor our purpose, ands a result h e o0 nDRescliptivg @ntotogy for Linguistic and Ge
nitive Engineering POLCE) (Masolo, Borgo, Gangemi, Guarino, & Oltramari, 20@s)chosen as the
foundatbnal ontolgy for our work. On one hand,saa toplevel ontology(Guarino, 1997)DOLCE po-
vides preliminary concép which are welllelimited with clear philosophical analysis. Hence, referring to
these finely restricted concepts in DOLCE, our domain ontology could inherit theseradd ontolg-
ical commitments, and this makes quoposalslearer and easier tostiuss in the communijureta et
al., 2009)

On the other hand, DOLCE has aatleognitive bias, for that is intended to capturthe ontolog-
cal categories that underlie natural language and human commo(idessé et al., 2003a)l his makes
it more compliant with peopleds intuition, and th
by stakeholders. For teereasonanentionedabove, we choose DOLCE as our foundational onyolog
andwe presenta brief introductionof some main concepts in this ontology, and after the introduction
theywill be reused as preliminary conceptsiny times in the laterontentsof this dissertationNote that,
this introduction is presented in an intuitive yyand for the readers who are interested in the details of
DOLCE, please refer to theports D17 (Masolo, Borgo, Gangemi, Guarino, & Oltramari, 200ahji
D-18 (Masolo et al., 2003g)ublished in the WonderWeiroject*,

14 WonderWebhttp://www.istc.cnr.it/project/wonderwebntologyinfrastructuresemantieweb

36

As shown inFigure 12, the mos general concept in DOLCE is callégarticular§ and aparticular
could be informallyunderstood as something hasinstanceOppositely,a universab i s s omet hi n
does haveame instances, yet to control the scale of the ontology, only pariaiaradopted as the e
ements in DOLCEGenerally speaking, a particular is in the specific individual level, and a universal is in
the abstract class or tydevel. A particular couldbe aphysicalthing, like my cat which is an existing
creaure in the verld; alsoit could be anonphysicalthing, such as stories, laws, and etc.

Pr
Particular

/// l\-\-\\
— /// \ \\;-;\- o
/'/ - \ \\\
PD Q

ED AB

Endurant Perdurant Quality Abstract
PED NPED AS EV STV 70 PQ AQ ... Fact Set R
Physical Non-physical Arbitrary Event Stative Temporal Physical ~ Abstract Region
Endurant Endurant Sum Quality Quality Quality //’
_— \ / — [
M F POB NPOB ACH ACC ST PRO e TL ... SL TR PR AR
Amount of Feature Physical Non-physical Achievement Accomplishment State Process Temporal Spatial Temporal Physical Abstract
Matter Object Object /\\ //\ //\ /\ Location Location Region Region Region
e , e T . S
APO NAPO MOB SOB Time Space
Agentive Non-agentive Mental Object Social Object Interval Region
Physical Physical
Object Object
ASO NASO
Agentive Non-agentive
Social Object Social Object
SAG N
Social Agent Society

Figure 12. A diagram of DOLCBVasolo et al., 2003a)

Under the concept particular, there are fepecializedsub-conceptsof it, including éendurant
gerduranfy @ualityd and @bstrach An endurant is a particular that presdatg wholeat a time point,
and & time passing by, it could keep its identity. For example, my cat in last year and the cat iarthis ye
they are the same cat growing up, and in this case dpisyaical @duran€ a law or an economic system
is on-physical enduradtand puttingmy hands and my shoesgeher makesan Grbitrary suna

A perdurant, on the other hand, is a partictitat preserstits wholeamonga time period. Its ident
ty is associated witthis specific time period. For example, a party has itsistagart durationpartand
the endhg part In eachof these partsthe party only shows itseffartially. Usually in our daily lives we
use these two conceptsndurant and perdurgribgether:an endurant ould participate in a perdurant;
andmeanwhilea perdurant shositself throughsomeendurang. For examplea @yroup of peoplé i s an
endur antisa pedurarp, thentaygroup of people could participate party, andneanwhilethis
party exists through this group of people.

Quality and &stract form another pair of basic concepts in DOLCE, generally spealduglity
could be understood as entitythatwe can perceive or measure, like tdenensiodreferred in(Gruber,
1995) For examplethe color of a floweandthe height of my bodgreboth qualities. On the other hand,
an abstract may providevalueregion for a quality. For example glvalue of the color could be red]Jye
low, blue or any other colowhich is inthis definedcolor region.

37

BASELINE

3.2 Artifact s

As we aim at providing an ontology of software, herfoerhain question we need to answer is
6what i s .Tah es otf et rwa istestally intevaeted &s a preliminary concept to refethe
nonphysicalpars of a computer system omputer scienceommunties However, as aforementioned,
this general and vague understanding of softwaghintause many ambiguities, and our ontglad
software is proposed to remethys situation.Intuitively, software may be interpreted as a tool. Campa
ing with a hammer, software &tool of a differentkind which processsdifferent functions. However,
this bringsaboutanotherquestion thatwhat is a tool thei To answer this question, we borrow the€o
cept of artefactual object® introduced by(Guarino, 2014) As shown inFigure 13, software might be
placed undet h e Artefhatual 6bjed@ meaning thaif aparticdar'®is a ®ftware then it is also arte-
factual object, as shown in the formdlan "Y£ "Q0 0P B 6 Q QW & S DICHDD

Figure 13. Artefactual objects, artefactual kinds and artefactdaoles (Guarino, 2014)

According to the statement from Guarino,aatefactual object is a physical object which exists a
cording to some design specification.difmerwords, an artefactual object exists only if some ratioreal d
sign choices hae been made. Taking an example of a stone which is collected from a river, it may be
used as a paperweiglat, be used aga hammerpr be used aa piece of material to build a walind etc.
However, the stone itself is not an artefactual object, be¢hase is no design for the stone that it is an
ordinary nature physical object. On the other hand, a paperweight or a hammer could be recognized as an
artefactual object because there egmhedesign specifications for them. Taking the example ofra-ha

“I'n this dissertation, we treat term o6artifacto the sa
¥AsGuarinds ontology of artifact is based on DOLCE, the ba

38

