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Abstract 
 

 

Software is permeating every aspect of our personal and social life. And yet, the cluster of concepts 

around the notion of software, such as the notions of a software product, software requirements, software 

specifications, are still poorly understood with no consensus on the horizon. For many, software is just 

code, something intangible best defined in contrast with hardware, but it is not particularly illuminating. 

This erroneous notion, software is just code, presents both in the ontology of software literature and in 

the software maintenance tools. This notion is obviously wrong because it doesnôt account for the fact 

that whenever someone fixes a bug, the code of a software system changes, but nobody believes that this 

is a different software system. 

Several researchers have attempted to understand the core nature of software and programs in terms 

of concepts such as code, copy, medium and execution. More recently, a proposal was made by Irmak to 

consider software as an abstract artifact, distinct from code, just because code may change while the 

software remains the same. We share many of his intuitions, as well as the methodology he adopts to mo-

tivate his conclusions, based on an analysis of the condition under which software maintains its identity 

despite change. However, he leaves the question of ówhat is the identity of softwareô open, and we answer 

this question here. 

Trying to answer the question left open by Irmak, the main objective of this dissertation is to lay the 

foundations for an ontology of software, grounded on the foundational ontology DOLCE. This new ontol-

ogy of software is intended to facilitate the communication within the community by reducing terminolog-

ical ambiguities, and by resolving inconsistencies. If we had a better footing on answering the question 

óWhat is software?ô, we'd be in a position to build better tools for maintaining and managing a software 

system throughout its lifetime. The research contents of the thesis consist of three results. 

Firstly, we dive into the ontological nature of software, recognizing it as an abstract information ar-

tifact. To support this proposal the first main contribution of the dissertation is demonstrated from three 

dimensions: (1) We distinguish software (non-physical object) from hardware (physical object), and 

demonstrate the idea that the rapid changing speed of software is supported by the easy changeability of 

its medium hardware; (2) Furthermore, we discuss about the artifactual nature of software, addressing 

the erroneous notion, software is just code, presents both in the ontology of software literature and in the 

software maintenance tools; (3)At last, we recognize software as an information artifact, and this ap-

proach ensures that software inherits all the properties of an information artifact, and the study and re-

search could be directly reused for software then.  

Secondly, we propose an ontology founded on the concepts adopted from Requirements Engineering 

(RE), such as the notions of World and Machine phenomena. In this ontology, we make a sharp distinc-

tion between different kinds of software artifacts (software program, software system, and software prod-

uct), and describe the ways they are inter-connected in the context of a software engineering process. Ad-

ditionally, we study software from a Social Perspective, explaining the concepts of licensable software 

product and licensed software product. Also, we discuss about the possibility to adopt our ontology of 

software in software configuration management systems to provide a better understanding and control of 

software changes. 

Thirdly, we note the important role played by assumptions in getting software to fulfill its require-

ments. The requirements for most software systems -- the intended states-of-affairs these systems are sup-

posed to bring about -- concern their operational environment, usually a social world. But these systems 

donôt have any direct means to change that environment in order to bring about the intended states-of-

affairs. In what sense then can we say that such systems fulfill their requirements? One of the main con-

tributions of this dissertation is to account for this paradox. We do so by proposing a preliminary ontolo-

gy of assumptions that are implicitly used in software engineering practice to establish that a system 

specification S fulfills its requirements R given a set of assumptions A, and our proposal is illustrated 

with a meeting scheduling example. 
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Chapter 1 

 

1 Introduction  

1.1 The Context and Motivations 

Software now permeates all aspects of personal and social activities, improving productivity, quality 

of service, and quality of life for billions of people worldwide. This reliance on software means that it is 

essential for users -- be they companies, governments, hospitals, or individuals -- that software is kept 

running. However, the environments of these software applications are continuously changing and so are 

stakeholder requirements. To survive in such a setting, software needs to continuously evolve.  

According to several surveys (Jarzabek, 2007), (Pfleeger & Atlee, 2009), (Kontogiannis, 2010) in 

the literature, the average cost of software maintenance covers more than 50% of the total budget in a 

software project. This is largely due to the fact that design knowledge about a software system is lost or 

forgotten as its developers drift away. Another factor that makes software evolution difficult and expen-

sive is that as software is changed, its quality deteriorates, making it more complex to understand. Hence, 

maintainers usually spend 40% to 60% of their time to understand the software being maintained 

(Gaġeviĺ, Kaviani, & Milanoviĺ, 2009). Making things even worse, stakeholders usually understand a 

software system from their own perspectives. Much of their knowledge is implicit and hard to communi-

cate to the designers. Without making this knowledge explicit, it is hard to answer important questions 

about software maintenance (Kitchenham et al., 1999). 

Although software engineers have been suffering from such kinds of missing knowledge for a long 

time, software maintenance tools such as Concurrent Versions System (CVS) and Apache Subversion 

(SVN), the version control systems of choice for almost 30 years, are used primarily for code manage-

ment and evolution, while requirements, architectural specifications etc. are left out in the cold. It is such 

code-oriented practices of software maintenance that results in so much knowledge about changes being 

left unrecorded.  

To tackle the aforementioned problems, missing knowledge should be captured and made available 

to its maintainers. In order to accomplish this, we must first change our conceptualization of software so 

that it no longer viewed as mere code. This thesis proposes to tackle precisely this problem by exploring 

an ontology of software that accounts for more than its codebase. Specifically, we propose to study three 

fundamental questions in this dissertation: (1) What exactly is software; (2) How we can identify and rec-

ord different kinds of software changes; (3) How can software that operates within a machine change the 

world by, for example, scheduling a meeting? 
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1.2 Research Problems 

1.2.1 What is Software? 

To answer this question through ontological analysis, we need to check the essential properties of 

software. To do so, we need to distinguish the scenario in which software is changed while keeping its 

identity, from the scenario in which new software is created due to the changes. 

For many, both inside and outside the software engineering community, software is just code, some-

thing intangible best defined in contrast with hardware. For example, the Oxford English Dictionary de-

fines software as óthe programs and other information used by a computerô and other dictionaries adopt 

similar paraphrases. 

The question we have posed as title for this sub-section admits several different answers, such as 

ósource code to be executed on a computerô or óinstructions used for managing tangible objectsô or some 

other answers. This demonstrates that the meaning of the concept of ósoftwareô is still under discussion. 

In other words, currently there is no shared common understanding of what software is among researchers 

and practitioners. 

Recently, some researchers have proposed to interpret software as an information object (Oberle, 

2006), (Smith et al., 2013). This is a promising direction for understanding the nature of software. How-

ever, as not enough attention has been paid in this area after decades of study on this topic, it seems that 

there is still ambiguity about the nature of information, of software and the relationship between them. 

As we already mentioned, without a shared understanding of software, it is hard to precisely com-

municate about any serious question relating to the nature of software among researchers and practition-

ers. Fortunately, ontological analysis possesses the capability to capture knowledge explicitly and unam-

biguously, and we propose to use it to understand software as an information artifact. Based on this 

understanding, we propose an ontology of software capturing the essential properties of software. 

1.2.2 How to Identify  and Record Different Kinds of Software Changes? 

Software changes all the time. Such changes have huge impacts on the software applications, so 

dealing with software changes is absolutely necessary. In the past, a few researchers have proposed some 

taxonomies intending to describe the different kinds of software changes (Swanson, 1976), (Chapin, Hale, 

Kham, Ramil, & Tan, 2001), (Buckley, Mens, Zenger, Rashid, & Kniesel, 2005), but the very nature of 

software changes  is still unclear: What does it mean for software to change? How do we tell that, after a 

change, it is still the same software or new software is created? The very possibility for software to 

change while maintaining its identity is in practice ignored by most recent studies, which have mainly fo-

cused on the relationships between software code (intended as an abstract information pattern), its physi-

cal encoding, and its execution (Eden & Turner, 2007). 

Unfortunately, treating software as simply code is not very illuminating. Microsoft (MS) Word 

turned 30 years old in 2013. During its lifetime it has been numerously changed, as its requirements, code 

and documentations have continuously evolved. If software is just code, then MS Word of today is not the 

same software as the original MS Word of 1983. But this defies the common sense that views software as 
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a persistent object intended to produce effects in the real world, which evolves through complex social 

processes involving owners, developers, salespeople and users, having to deal with multiple revisions, 

different variants and customizations, and different maintenance policies. Indeed, software management 

systems were exactly intended to support such complex processes, but most of them consider software 

just as code, dealing with software versioning in a way not much different than ordinary documents: the 

criteria underlying the versioning scheme are largely heuristic, and the change rationale remains obscure. 

Yet, differently from ordinary documents, software changes are deeply bound to the nature of the 

whole software development process, which includes both a requirements engineering phase and subse-

quent design and implementation phases. This means that, making a change to a software application may 

be motivated by the need to fix a bug, to adopt a more efficient algorithm or improve its functionality, 

adapt it to a new regulation and so on. As a result, different kinds of software changes are separated from 

each other and treated with different kinds of methodologies and technologies. 

Although the idea of classifying software changes into different kinds is a promising contribution in 

providing guidance for software engineers with different purposes, the ambiguities in the concepts make 

it difficult to be efficiently applied in practice, as researchers and practitioners hold their own criteria in 

classifying software changes, and sometimes no clear distinctions are provided but intuitions are adopted 

as they like. For example, the difference between the terms ósoftware evolutionô and ósoftware mainte-

nanceô is usually vague. Sometimes, they are used interchangeably (Chapin et al., 2001); sometimes, 

maintenance subsumes evolution (Bennett & Rajlich, 2000); sometime, evolution subsumes maintenance 

(Godfrey & German, 2008); or more abstract words óchangeô or óagingô are used to avoid the misinterpre-

tations (Buckley et al., 2005), (Parnas, 1994). Besides that, the interpretations of other relating concepts, 

such as ósoftware reengineeringô, ósoftware refactoringô and ósoftware adaptationô, are also treated am-

biguously.  

To remedy this situation, as we shall see in the following parts of this dissertation, we recognize dif-

ferent kinds of software changes that affect different kinds of software artifacts created within a software 

development process. As a solution, we shall present an ontology of software that describes what these 

different software artifacts are, and furthermore identify and record the different kinds of software chang-

es according to their effects on different kinds of software artifacts respectively. 

Currently, the tools and methods used to manage software changes are usually designed as file-based, 

and this limits their capability to track the semantics of the changes. Taking the concurrent versions sys-

tem (CVS) as an example, it compares files by lines. In other words, it is only a syntax comparing tool 

without providing any higher semantics. To tackle this problem, this dissertation tries to show the possi-

bility of adopting a suitable language (for the particular purpose of a software engineer) to represent the 

history of the changes based on the ontology of software stated above, and this could be integrated within 

the existing and future tools for managing software changes with higher semantics. We believe that it will 

be will be helpful to provide such knowledge about software during its changes for the software engineers, 

keeping their knowledge about the software updated, or recalling the forgotten knowledge easier.  

1.2.3 How Does Software Change the World? 

In addition to the essential properties of the different kinds of software artifacts recorded during the 

different kinds of software changes aforementioned, there is another kind of knowledge that deserves spe-
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cial attention: these are the assumptions made during the software engineering process. Without explicit 

representations of these assumptions, the description about the software is incomplete, something that can 

result in great difficulties when managing a software system, as argued below.  

Consider a software application that schedules meetings upon request. Its basic requirement, which 

the application is mandated to fulfill, is to bring about a change in the social world within which it oper-

ates that consists of a new meeting that satisfies timetable and other constraints provided by the requester. 

But the software program, by its very nature, can only change the states of the machine within which it 

operates. 

There seems to be a paradox here. The requirements for most software systems, the intended states-

of-affairs these systems are supposed to bring about, concern their operational environment, usually a so-

cial one. But these systems donôt have any direct means to change that environment in order to bring 

about the intended states-of-affairs
2
. In what sense then can we say that such systems fulfill their require-

ments? 

It seems that a software program possesses a peculiar characteristic compared with other kinds of in-

formation artifacts (e.g. recipes or laws) in that it plays the role of a bridge between the abstract states of a 

machine and the outside world. More specifically, other kinds of information artifacts directly manipulate 

the objects in the world; instead of that, software program directly manipulates the virtual variables in a 

machine, and in turns, the result of this manipulation in the machine affects the outside world.  

A software program is embedded and operates in a machine, and in this sense machines are soft-

ware-driven. However, the purpose of a software program (its requirements) is usually intended to affect 

the phenomena of its environment external to the software-driven machine. This machine monitors and 

controls the environment by means of transducers bridging the gap between symbolic data and physical 

properties. For simplicity, we hereafter refer to the software-driven machine as machine, following 

(Michael Jackson, 2000) and (Axel Van Lamsweerde, 2009). 

In the case of a stand-alone personal computer (PC) such transducers only concern the human-

computer interface and the standard I/O devices; for mobile systems they may also include location and 

acceleration sensors, while in the case of embedded systems they take the form of ad-hoc physical sensors 

and actuators. So, in the general case, the softwareôs ultimate purpose is achieved by running a software 

program that produces certain effects inside a computer, which drives a physical machine, which in turn 

produces certain effects on its external environment.  

Understanding this indirect effect of software on the world is essential, as our modern society de-

pends on software for almost every aspect of our lives (e.g. in business, hospital and et al.). A money 

transfer from a person to another through software, becomes a data change in one account and a corre-

sponding data change in another account, even if there is no physical object, in the form of a paper receipt. 

Moreover, in most modern financial systems, only about 3% of the money exists in paper form, while the 

other 97% is just electronic data stored in computers (Ryan-Collins, Greenham, Werner, & Jackson, 

2014). 

                                                 
2
 We are focusing on ópureô software systems that consist of software and various interfaces, as opposed to cyber-

physical systems (such as robots, drones, etc.) that consist of software and mechanical/robotic components, which 

do give them the capability to directly change their physical environment. 
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Several researchers, (Lewis, Mahatham, & Wrage, 2004), (Mamun & Hansson, 2011), (Brown, 

2006), (Tun et al., 2015), have emphasized the importance of assumptions, and have proposed techniques 

for capturing them. Our proposal goes further in that direction as it identifies new classes of assumptions 

(notably, the dependence ones) that had not been previously accounted for. 

1.3 Contribution s 

1.3.1 Software as an Information Artifact 

To better understand the nature of software, we discuss its ontological nature, interpreting it as a 

special kind of information object. Focusing on informational aspects of software, several researchers, 

(Eden & Turner, 2007), (Oberle, 2006), have addressed the complex relationships among i) software code, 

consisting of a well-formed expression of a set of computer instructions; ii) a software copy, which is a 

physical inscription of the code; and iii) a medium, the hardware medium itself; iv) a process, which is the 

result of executing the software copy. 

These works can be viewed as applications of the semiotic triangle proposed by (Ogden, Richards, 

Malinowski, Constable, & Crookshank, 2001) to express the information communication processes be-

tween agents. For example, as shown in Figure 1, a speaker may say the word ñDogò to denote a concept 

in her mind, and this concept refers to animal dogs in the world; then, this word may invoke a similar 

concept in the listenerôs mind referring to animal dogs, as intended by the speaker. 

Applying this idea to software, during a software engineering process, a software program is usually 

encoded in some programming language and corresponds to the symbol in the triangle, and this symbol 

represents some instructions as the knowledge or concept held in stakeholder minds. This is a simple 

demonstration to present the intuition and flavor of the rationale why we interpret software as an infor-

mation object, further detail and concrete explanations are left as one of our main contributions in Chapter 

4. 

 

Figure 1. The semiotic triangle, adapted from (Ogden et al., 2001) 

Yet, according to (Irmak, 2013), software is synonymous to program and can be understood in terms 

of the concepts of algorithm, code, copy and process, but none of these notions can be identified with 
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software, mainly because, due to its artifactual nature, software has different identity criteria. We share 

many of Irmakôs intuitions, as well as the methodology he adopts to motivate his conclusions, based on an 

analysis of the condition under which software maintains its identity despite change. 

Hence, another main contribution of this dissertation consists of an argument, supported by ontolog-

ical analysis, that software has a complex artifactual nature, as many artifacts result from a design process, 

each having an intended purpose that characterizes its identity. This is what distinguishes software arti-

facts from arbitrary code: they are recognizable as having purposes, and they are the results of intentional 

acts. Combining the informatical nature and artifactual nature of software, we interpret software as a spe-

cial kind of information artifact, inheriting the essential properties of both an information object and an 

artifact. 

1.3.2 Identify and Record Changes in Different Kinds of Software Artifacts  

Based on the analysis of the ontological nature of software as an information artifact as aforemen-

tioned, we are going to answer the research questions left open by (Irmak, 2013): ówork still needs to be 

done on questions such as how software changes, what the identity conditions for software are, and moreô. 

So we shall focus on the identity criteria for software originated by its specific artifactual nature, and mo-

tivated by the need to properly account for software changes. 

We start with studying a peculiar aspect of software with respect to other information artifacts such 

as laws or recipes, as (Eden & Turner, 2007) observe, it is the bridging role of it between the abstract ma-

chine and the concrete world: despite the fact that it has an abstract nature, it is designed to produce spe-

cific results in the world. Therefore, it seems natural to us to adopt a requirements engineering perspec-

tive while analyzing the essence of software, looking at the whole software engineering process, 

including requirements analysis, instead of focusing on its computational aspects only. Our analysis is 

founded on a revisit of Jackson and Zaveôs seminal work on the foundations of requirements engineering 

(Michael Jackson & Zave, 1995), (Zave & Jackson, 1997), (Gunter, Jackson, & Zave, 2000), which clear-

ly distinguishes the external environment that constitutes the subject matter of requirements, the (comput-

er-based) machine where software functions fulfill such requirements, and the interface between the two.  

Jackson and Zave define the terms órequirementsô and óspecificationô as referring to the intended be-

haviors in the environment and at the interface, respectively. Here we refine their terminology using óre-

quirementsô to refer to the intended behaviors in the environment independently of the machine, exclud-

ing therefore the interface, óexternal specificationô to point to the expected behaviors at the interface, and 

óinternal specificationô referring to the specific behaviors inside the machine, namely that of the system 

that drives the machine. 

As shown in Table 1, we shall rely on these refined notions to determine the essential properties of 

three different kinds of software artifacts: software products, software systems, and software programs. In 

addition, to account for the social nature of software products in the present software market, a further 

kind of software artifact will be introduced, namely licensed software product, whose essential property is 

a mutual pattern of commitments between the software vendor and the software customer.  
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Table 1. Essential properties of software artifacts 

Object Essential Properties 

Licensed Software Product Mutual Vendor-Customer Commitments 

Software Product Requirements 

Software System External Specification 

Software Program Internal Specification 

Code Syntactic Structure 

As an output of the preceding ontological analysis, we propose an ontology of software to capture 

the essential properties of different kinds of software artifacts. This ontology could be used to semantical-

ly annotate the logs of software behaviors, or to document empirical studies so that they can be classified, 

understood and replicated, or serve as a groundwork to develop the evolution oriented model processes, 

requirement engineering, workload assignment and other software engineering activities. 

For instance, traditionally, revisions and variants are managed by means of naming conventions and 

version codes which are usually decided on the basis of the perceived significance of changes between 

versions without any clear criterion (e.g. CVS, SVN). We believe that the classification of different kinds 

of software artifacts introduced in this dissertation can make an important contribution to make this pro-

cess more disciplined by providing a general mechanism to explicitly express what is changed when a 

new version is created. 

1.3.3 Assumptions as a Bridge between the World and Machine 

As mentioned in the research problems, in addition to the essential properties about the different 

kinds of software artifacts, there is another kind of knowledge deserves special attention, and it is the as-

sumptions made during a software engineering process. Any machine designed to solve a problem makes 

assumptions. Some of these assumptions capture expectations about the world that are always supposed to 

be valid, such as natural laws, and can be exploited in the design. Other assumptions circumscribe the 

limits of the solution. For example, for meeting scheduling, we may assume that there are enough rooms 

available for all meeting requests and design a solution that only finds a suitable time slot and selects a 

room. Such an assumption means that our solution may not work when there is no room available (e.g. 

during a busy period with many meeting requests). 

Yet other assumptions may relate the interface behaviors to some expected behaviors in the world. 

For instance, we may assume that, if the computer says (by means of a suitable message on the screen) 

that a certain room is reserved for a certain meeting at a certain time, the room will not be used for any 

other meeting at that time. However, this system doesnôt have any direct means to change that environ-

ment in order to bring about the intended states-of-affairs, and the paradox aforementioned lies here. 

Hence, without explicit representations of these assumptions to clarify the world, the machine, and the re-

lations between them, the description about the software is incomplete, which could result in the difficulty 

in managing a software application. 

According to the statements above, the main purpose of this contribution is to account for this para-

dox. We do so by proposing a preliminary ontology of assumptions that are implicitly used in software 
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engineering practice to establish that a system specification S fulfills its requirements R given a set of as-

sumptions A. Adopting the formula of the requirements problem proposed by (Michael Jackson & Zave, 

1995), our task is to characterize the assumptions used and needed to establish that 

,A S R
 

given that the requirements are about world states (e.g., meetings, participants, timetables, rooms, 

and etc. ), while the specification is about machine states (database tables, tuples) and manipulations 

thereof. 

Several researchers , (Lewis et al., 2004), (Mamun & Hansson, 2011), (Brown, 2006), (Tun et al., 

2015), have emphasized the importance of assumptions, and have proposed techniques for capturing them. 

Our proposal goes further in that direction, as it identifies new classes of assumptions (notably, the de-

pendence ones) that had not been accounted for, and the specific contributions in this part of the disserta-

tion are listed as follows: 

1) A preliminary ontology of assumptions is proposed, introducing four kinds of assumptions. Two 

of them are proposed based on the literature work, including world assumptions and machine assumptions. 

Taking a further step, two new kinds of assumptions are discovered and integrated into the ontology, in-

cluding world dependence assumptions and machine dependence assumptions respectively. We claim that 

these four kinds of assumptions are the key to solve the aforementioned paradox, and we elaborate the 

role of them in linking the world states and machine states together; 

2) We clarify the concept of óassumptionô, identifying two possible senses of interpretations that are 

both important for software engineering processes, namely the assumptions-used and the assumptions-

needed, and provide an update in Jackson and Zaveôs original formula to capture the software engineering 

activities more precisely; 

3) We discuss how our results can be employed methodologically, suggesting how software devel-

opers should systematically and explicitly manage all the four kinds of assumptions proposed here. We 

suggest that these assumptions should be explicitly identified and systematically guaranteed to hold 

throughout the useful lifetime of their software system. 

1.4 Structure of the Dissertation 

To present the contributions summarized in the preceding sub-chapter, we have arranged the rest 

contents of the dissertation as follows: 

Chapter 2 serves as a survey and review of the related work, including their understanding of soft-

ware, their understanding and management methodologies of software changes, and their understanding 

of assumptions. 

Chapter 3 introduces our research baseline that is taken as the starting point of this dissertation, con-

sisting of the adopted basic ontological concepts, the World and Machine Framework derived from the 

reference model for requirements and specifications proposed by Jackson and et al. (Gunter et al., 2000), 
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and situation calculus adopted as our representation language proposed by (McCarthy & Laboratory, 

1963). 

Chapter 4 discusses the ontological nature of software, distinguishing it from hardware, and also 

demonstrating the idea that the rapid changing speed of software is supported by the easy changeability of 

its medium hardware. Meanwhile, we also discuss about the ontological nature of information artifact, 

and show in what sense software could be recognized as an information artifact.  

Chapter 5 proposes a preliminary ontology of software. Three different kinds of software artifacts 

are identified according to their essential properties, including software products, software systems, and 

software programs. This classification is developed based on the idea of cutting the world and the soft-

ware-driven machine with a clear boundary, we name it as WM framework which is derived from the ref-

erence model for requirements and specifications proposed by Jackson and Zave. Different kinds of soft-

ware artifacts refer to the phenomena in the different parts of WM framework (outside world, interface, 

and inside machine). In addition, there is a fourth kind of software artifact reflecting the social nature of 

software products, whose essential properties are based on the mutual commitments between vendors and 

customers. Besides contributing to clarify concepts and terminologies in the software engineering com-

munity, we also demonstrate the possibility that our work could also be used as a foundation for software 

change management, especially for identifying and recording the changing histories of these different 

kinds of software artifacts.  

Chapter 6 proposes a preliminary ontology of assumptions, illustrating the four kinds of assumptions 

that enable the link between the world and machine crossing the boundary between them. Also, in this 

chapter, we explain our interpretation of the assumptions in the formula óA, S Ṻ Rô as óassumptions-usedô 

and óassumptions-neededô, from which we can derive the importance of making such assumptions explicit, 

and distinguishing these two kinds of interpretations from each other. At the end of this chapter, we pro-

pose a meeting scheduling case study in situation calculus representing the requirements, external specifi-

cation, and internal specification, and meanwhile elaborating on the role of these assumptions in estab-

lishing the link between the world and machine states. 

Chapter 7 summarizes the main contributions of this dissertation and indicates the possible promis-

ing directions of future work. 
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Chapter 2 

 

2 Related Work 

2.1 Understanding Software 

2.1.1 Software Interpreted in a General Sense 

In the literature of Computer Science, the earliest use of the term ósoftwareô is attributed to (Tukey, 

1958), who was also famous for proposing the term óbitô for an atomic data unit (Buchholz, 2000). The 

term ósoftwareô was incorporated into the Oxford English Dictionary in 1960. Historically, this term was 

used in a more general way, independently of computers. For example, it was used by rubbish-tip pickers 

around 1850 to indicate vegetable and animal matters that are decomposable. 

Many interpretations of the term ósoftwareô were proposed by researchers, and some of which are 

listed and discussed below. 

Osterweil believes that, in addition to computer software, there are other kinds of software, such as 

processes, recipes, laws, assembly instructions, and driving directions (Osterweil, 2008). He characterizes 

all these kinds of software as follows: 

óWhile software is itself non-physical and intangible, a principal goal for instances of the type soft-

ware is for them to contain one or more components whose execution effects the management and control 

of tangible entities (Osterweil, 2008)ô. 

Following Osterweilôs account above, software can be divided into two main categories, computer 

software and other kinds of software. The categorization is intuitive: computer software is intended to be 

executed on a computer, while other kinds of software execute on different physical manifestations other 

than computers. For example, laws are intended to be executed by government bureaucracies, and recipes 

are intended to be executed on cooking devices (Osterweil, 2008) . 

By examining the characteristics of different kinds of software, Osterweil proposes an interesting 

view that computer software engineering can contribute to other forms of software engineering, and op-

positely, computer software engineers can learn a lot from the study of other forms of software. For ex-

ample, software engineering formalisms and approaches could be applied to laws, such as the attempt 

with a workflow language (Georgakopoulos, Hornick, & Sheth, 1995). On the other hand, general project 

process management methods could also be good lessons for computer software development processes. 

Suber interpreted software
3
 as an even more general concept based on his interpretation of the term 

ópatternô (Suber, 1988). For him, software is any abstract pattern formulated/stored in a medium, and 

could be the embodied medium itself. In his proposal, ópatternô is used in a broad sense that anything óé 

signifying any definite structure, not in the narrow sense that requires some recurrence, regularity, or 

                                                 
3
 Suber used the terms "program" and "software" interchangeably. 



RELATED Work 

12 

symmetry.ô In a word, whenever there is a difference existing in the current situation, there exists a pat-

tern accordingly. 

Then, based on this definition of pattern, he interprets software as ópatterns, readable and executable 

by a machine, and liftable.ô According to this interpretation, we can derive some extremely counter-

intuitive cases, such as the ones stated by Suber himself that óall circuits deserve the name software, since 

they are physical embodiments of patterns, readable and executable by a machine, and liftableô and 

ófirmware is one of the most important examples of hardware that is software.ô 

However, we want to point out that Suber doesnôt distinguish a ópatternô from óthe physical embod-

iments of the patternô, and this brings about ambiguities in understanding his interpretation of software, as 

it is defined based on the concept of ópatternô. For him, there is no difference between software and hard-

ware, yet we do not want to mix the boundary to such an extreme scale. For us, to recognize a hard disk 

as software is quite counter-intuitive, and it is more desirable to separate the physical medium as hard-

ware, from the abstract representations (as patterns) which are materialized in the hardware medium. For 

example, in the situation where some sentences are printed on a piece of paper, the writing structure is not 

equal to the ink and the paper, as the same structure could also be shown on a monitor which is a total dif-

ferent hardware medium. 

2.1.2 Software Interpreted in a Limited Sense as Computer Software 

Although the ideas stated in the preceding paragraphs are certainly intriguing, we focus on a proper 

ontological account of computer software, which is still missing in the literature. Focusing on the compu-

tational aspects, several scholars have addressed the complex relationships among i) a software code, un-

derstood as a set of computer instructions; ii) a software copy, which is the embodiment of a set of in-

structions through a hard medium; iii) a medium, the hardware medium itself; iv) a process, which is the 

result of executing the software copy. 

Moorôs Work 

Moorôs work is a good point to start with, as he believes that to understand software-related notions, 

one needs to understand the conceptual framework of Computer Science, and if the notions are misunder-

stood, sloppy research conclusions might be derived, especially in the realm of Artificial Intelligence (AI) 

(Moor, 1978). 

Moor interprets a computer program from two levels: 1) from the physical level, computer programs 

can be embodied in the form of series of holes in punched cards, configurations on magnetic tape, or in 

any number of other forms; 2) from the symbol level, computer programs could be understood as symbol-

ic representations of instructions to a computer. 

Note that, the computer programs stated above possess both the physical and symbolic characteris-

tics at the same time, as Moor doesnôt separate the symbolic representation of instructions from the em-

bodiment of the symbolic representation in some physical medium. Hence, according to that, the change-

ability to the instructions is reduced into the changeability to the embodiment of the instructions. 
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Underlying the above understandings of a computer program, Moor proposed his definition of it as 

óa computer program is a set of instructions which a computer can follow (or at least there is an acknowl-

edged effective procedure for putting them into a form which the computer can follow) to perform an ac-

tivity.ô 

As we can see, this definition is based on an unexplained preliminary term ócomputerô, and the task 

of deciding what is a computer is left as a practical question for the software engineers. In other words, to 

judge the identity of a computer program, a context containing a person and a computer should be given 

first. The representations of the instructions as computer programs could be embodied in any forms, as 

long as it could be accepted and processed by the computer, or could be effectively transformed into some 

forms that could be accepted by the computer. 

Besides the understanding of a computer program, there is an orthogonal pair of concepts ósoftwareô 

and óhardwareô proposed by Moor. As aforementioned, the changeability to the instructions is reduced in-

to the changeability to the embodiment of the instructions for Moor. Consequently, for a computer pro-

gram as a set of instructions, he interpreted it as software or hardware according to the changeability to 

the instructions possessed by the software engineers or the users of it. For example, in an extreme condi-

tion, a person at a factory who can replace circuits in a computer understands her activity as giving in-

structions, then for her the programmable circuits could be interpreted as software. 

Although Moorôs idea about software and hardware was clearly explained, according to his view the 

distinction between software and hardware is quite subjective and not stable over time. What is consid-

ered hardware by one person, may be regarded as software by another. 

We accept Moorôs key point that the boundary between software and hardware is illusive. However, 

weôd like to avoid subjective definitions of software, as they invariably lead to confusion and misunder-

standings. 

Colburnôs Work 

Colburn launches his argument with an interesting example to show the importance of developing a 

clear and shared set of software-related notions. His example was first presented by (Wallich, 1997), talk-

ing about a book printed in hard copies with related floppy disks attached. One of the algorithms intro-

duced in the book is a powerful encryption algorithm, and this algorithm was printed both on paper and 

stored in the attached floppy disks. The U.S. government prohibited the export of the book because the 

algorithm stored in the floppy disks was so powerful that the government was not able to decrypt the con-

tents encrypted by it. The interesting part is that although the U.S. government recognized the algorithm 

as a dangerous machine stored in the floppy disks, this book would have been freely exportable without 

the floppy disks even with the same algorithm printed in the book. 

From the preceding example, we can derive the conclusion that although we intuitively share the 

idea that there is an abstract representation as the same software, the embodiments of it in different physi-

cal forms could be treated differently. To address this controversy, Colburn suggests interpreting software 

as a óconcrete abstractionô (Colburn, 1999). As such, software possesses a dual nature that on one hand it 

is concrete because it is encoded in physical memory elements, and on the other hand it is abstract, as it is 

a text representation abstracting itself from any particular physical embodiment. 
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Colburn cites Hailperinôs textbook óConcrete Abstractions: An Introduction to Computer Scienceô as 

an example to reinforce his proposal, as this author intentionally switches between the poles of this duali-

ty of software throughout the book (Hailperin, Kaiser, & Knight, 1999). Also, Colburn refers to the dual 

nature of microphenomena asserted by Copenhagen interpretation in the physics field to show the ration-

ality of interpreting software similarly with a dual nature. 

The concrete nature of software proposed by Colburn is intuitive and easy to understand, yet the ab-

stract nature of software was not so clearly explained, as he distinguished software abstraction from  

mathematical abstraction. For him, although both kinds of abstractions are used to hide details (called 

contents by Colburn), mathematical abstraction is used to eliminate empirical details, and only focus on 

the syntactic form transitions, and this is a restriction on their contents. Yet, software abstraction does the 

opposite, by hiding the details, they provide the possibility to replace or modify the details without affect-

ing the abstractions, and this is an enlargement of their contents. For us, this distinction is subtle and 

tricky, as mathematical methods could also be used to guide physical implementations, and the only dif-

ference between the two kinds of abstraction is that one comes with a compiler, and the other does not. 

Hence, we donôt see the need to distinguish them. 

Colburnôs proposal is interesting, and might be illuminating. However, the cognitive understanding 

of the world need not be the same as the world. Some social entities only exist in peopleôs minds, hence 

making metaphors between different disciplines is not necessarily a useful research method.   

On the other hand, the examples about the encryption algorithm and the textbook interpreting soft-

ware as a concrete abstraction provided by Colburn, could also be used to demonstrate the ambiguities of 

software-related concepts within many communities of research or practice, and this underscores the im-

portance of providing clear criteria for distinguishing among such software-related notions. 

Duncanôs Work 

Similarly with Moor and Colburn, Duncan also recognizes the dual nature of software, although this 

was implicitly stated, we still can find clear proof of this from his definition of software. As he clarifies in 

his paper, the term ósoftwareô should be interpreted as a concept to refer to ócomputer programs that are 

encoded on é physical objectsô (Duncan, 2011), and to avoid producing ambiguities, he coined the term 

ósoftware programô to replace the original one. 

Stated more specifically, a software program consists of a set of instructions written in some pro-

gramming language. Moreover, this set of instructions should be encoded in some physical medium as 

patterns, such as holes on a punch card, pattern of 1s and 0s in the magnetic coating of a hard disk, or the 

pits and lands on a CD. 

However, unlike Moor, Duncanôs ósoftware programô should be accepted by a computer directly. 

For Duncan, a software program generally depends on a kind of ócomputational hardwareô. As we stated 

above, a software program must be encoded on some physical medium, and the physical medium must be 

an instance of the kind of ócomputational hardwareô. A computational hardware is intentionally designed 

for computation, for example, a hard disk is designed to be used for computations within a computer, and 

a piece of paper with printed symbols may not be recognized as a computational hardware, as it is usually 
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not designed for computations within a computer. This narrows down the range of meanings of a software 

program, excluding the ones that could not be accepted by the computer directly. 

For Moor, a piece of source code printed on a piece of paper could be interpreted as a computer pro-

gram, as it could be translated into a form as an input to a computer; yet for Duncan, it could not be inter-

preted as a software program, because the paper is not designed for computations within the computer, 

and it cannot be accepted by the computer directly. 

Another point on which Duncan disagrees with Moor is that Moor adopts the changeability of an en-

tity as the criterion for deciding if the entity is software or hardware, yet Duncan thought this was implau-

sible, given the general ontological nature of them. However, Duncan made a step in this direction, pro-

posing that the ontological dependency of an entity could be used as the criterion to distinguish software 

from hardware. 

More specifically, Duncan states that óa piece of computational hardware is an ontologically inde-

pendent entity, whereas a software program is an ontologically dependent entityô. For him, computational 

hardware can exist independently of any other entity, such as a hard disk, it exists by itself; yet, a soft-

ware program cannot exists by itself, it must be encoded on an computational hardware instance. For ex-

ample, a software program could be encoded on many different hard disks, yet when all hard disks are de-

stroyed, the software program ceases to exist. 

Duncanôs proposals are interesting, yet many issues still need to be dealt with. For example, it might 

be counter-intuitive for many that a piece of source code printed on a piece of paper cannot be interpreted 

as a computer program; or, as he proposes, a software program as an entity generally depends on a kind of 

computational hardware, all the software programs with the same instruction syntax encoded in CDs are 

identical to each other, yet they are different from the software program with the same instruction syntax 

encoded in a hard disk, and this also might be quite counter-intuitive. 

Eden and Turnerôs Work 

Different from previously discussed researchers who believed that the dual nature of a computer 

program consisted of an abstract syntax and its physical embodiments, Eden and Turner recognize a simi-

lar but different duality of a computer program including the abstract syntax as program-scripts and the 

executions of the program-scripts as program-processes (Eden & Turner, 2007). 

In other words, for them, the term óprogramô is therefore polysemic in a different way: a program-

script is a well-formed expression based on a Turing-complete programming language
4
, which is static 

(timeless); while a program-process is an execution of a program-script, which is dynamic (extending in 

time). They describe the relation between a program-script and a program-process as that a program-

script is an óabstractionô from the program-process, or reversely a program-process is a óconcretizationô 

from the program-script. 

                                                 
4
 The notion of óTuring-completenessô was provided by Martin, which requires a computer program supports a non-

trivial set of instructions (Martin, 2010). 
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As shown in Figure 2, the distinction between a program-script and a program-process contributed 

as a small part of an ontology of computer programs consisting of several other inter-related notions, and 

the concept of óabstractionô aforementioned is the key criterion to distinguish all these notions from each 

other in the so-called program abstractions taxonomy.  

However, for Eden and Turner, the term óabstractionô was interpreted in a very general sense, and 

the meanings of it were not stable, as they stated that any of the combinations of the following interpreta-

tions was acceptable, including I) Intangible (namely un-touchable), II) Generalized (category vs. ele-

ments), III) Underspecified (namely subsumption relationship), IV) Immanently meaningful to humans, V) 

It from bit (namely instances of information), VI) A-temporal (timeless).  

 

Figure 2. The original program abstractions taxonomy adopted from (Eden & Turner, 2007) 

Although there have been many interpretations of the relationship óabstraction ofô, as shown in Fig-

ure 2, they were all represented by a unique diagram legend (linked solid line without direction). We find 

this way of representation is a bit misleading, as the readers may be not capable of distinguishing one link 

from another with a different meaning. To provide a better understanding of Eden and Turnerôs ideas, we 

revised their original diagram into a modified version as shown in the following Figure 3. As you shall 

see, firstly we replace each solid line in the original diagram with an arrowed solid line; then, each of 

them is labeled with a specified interpretation of the concept óabstractionô. 

For example, a program is abstract from a hardware, as the program is intangible syntax and the 

hardware is the tangible physical storage/execution medium; a metaprogram is abstract from a program, 

as a metaprogram is a specification describing the characteristics which a program should possess, hence 

a possible set of programs could be developed satisfying the specification, and each of these programs be-

comes a member of this metaprogram; similarly but differently, a program is an abstraction from a pro-

gram-script or a program-process, as they are both interpreted as subtypes of program, a program-script is 

a program, and a program-process is also a program.  
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Figure 3. The revised program abstractions taxonomy 

In a word, Eden and Turner recognize the pair of concepts óabstraction and concretizationô as the key 

to understand the computer program related notions, especially they claim that it is its bridging role link-

ing the abstract and the concrete together that provides the unique philosophical identity of software dis-

tinguishing itself from other kinds of objects. We share this idea that there exists a paradox underlying the 

situations where world phenomena can be affected by a computer program that can only change machine 

states directly, and has no physical means to change the outside world. However, we will try to avoid 

overloading a term with so many different interpretations, and we shall give a detailed explanation of this 

paradox by illustrating the role of assumptions in software engineering processes. 

Oberleôs Work  

Similar as the previous reviewed research, Oberle also spotted the ambiguities in the interpretations 

of software-related notions, and emphasized the importance of clarifying them. According to his view, the 

term ósoftwareô is heavily overloaded, with at least three different interpretations used in the software en-

gineering community, including the abstract syntax code expression, the physical realization of the code, 

and the execution of the code, and he coined three terms SoftwareAsCode, ComputationalObject, and 

ComputationalActivity to refer to these interpretations respectively. 

For Oberle, a piece of SoftwareAsCode should be the encoding of an algorithm specification. For 

example, the Bubble Sorting algorithm could be encoded in Java, and the abstract source code in Java is 

the so-called SoftwareAsCode which, Oberle believes, deserves the name ósoftwareô best. This interpreta-

tion of software denies the dual nature view of software, and only recognizing the syntactic side of it. 

The physical side of the dual nature of software was separated out and referred by the term Compu-

tationalObject as the physical realization of the syntactic code in some concrete hardware. The órealiza-

tionô mentioned here means the physical inscription or the embodiment of the code, and the supporting 

physical medium of the realization could be a hard disk, a memory card, or et al. Note that Oberle also 
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restricts the scope of suitable realizations, as previous researchers did, to the ones that can be loaded and 

executed by the Central Processing Unit (CPU). 

Finally, he proposes that the term ComputationalActivity which denotes the software execution pro-

cesses. Differently from Eden and Turnerôs view who recognized program-process as a sub-class of pro-

gram, Oberle adopted the relationships of realizes and participantIn to link the different software related 

notions together. As shown in Figure 4, a piece of SoftwareAsCode could be realized by a corresponding 

ComputationalObject, and whenever the ComputationalObject is called and executed in a computer, we 

can say the ComputationalObject participates in a corresponding ComputationalActivity. 

 

Figure 4. Clarifying the polysemy of the term 'software' 

Yet, differently from others, Oberle proposes his own ontology of software based on two specific 

principles: 1) developing the ontology on top of some well-formed foundational and domain ontologies; 2) 

restricting the scope of the ontology as small  as possible (Oberle, 2006), (Oberle, Grimm, & Staab, 2009). 

The first principle was chosen because well-formed foundational and domain ontologies usually are 

consisted of preliminary concepts which are well-delimited with clear philosophical analysis. The reliabil-

ity of these ontologies had been examined and proved by many other researchers in the literature, so that 

by referring to them, the newly developed ontology could inherit these well-formed ontological commit-

ments directly from the previous work. 

The second principle was chosen because there were so many notions used in the software engineer-

ing community, and that makes it hard to provide a complete ontology that covers all of them. According 

to that, he tries to capture the core notions only, and calls his new ontology Core Software Ontology 

(CSO). This core ontology can be extended in various directions depending on its intended uses. 

After reviewing Oberleôs ontology, we would say that he makes a significant step in the direction of 

pinning down different software related notions, separating them from each other, escaping from the trap 

of mixing two contradictory notions into the so-called dual nature of software. 

Final point to notice from Oberle, he recognizes software as an information object based on the work 

of Gangemiôs work (Gangemi, Borgo, Catenacci, & Lehmann, 2004). We share a similar view on this 

point, yet the ontological nature of information object itself is still under considerable debate, and we will 

try to clarify this concept as a contribution of this thesis in Chapter 4. Still, there is another missing piece 

in the puzzle of an ontology of software: the artifactual nature of software. 

2.1.3 Software Interpreted as an Artifact  

Landoôs Work 

Similarly as Oberle, Lando builds upon some historical foundational and domain ontologies in the 

literature and restricts the scope of his ontology to a limited core, Lando and his colleagues develop their 
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own ontology, named Core Ontology of Programs and Software (COPS). According to this ontology, a 

program
5
 is a Computer Language Expression (similar as SoftwareAsCode). Besides that, Lando makes a 

further step in that direction, as he recognizes a program as an artifact. We believe this opens a door to 

reach a genuine and shared understanding of software (Lando, Lapujade, Kassel, & Fürst, 2007), (Lando, 

Lapujade, Kassel, & Fürst, 2009). 

 

Figure 5. Program as a sub-class of both Computer Language Expression and Artifact of Computation 

As shown in Figure 5, a program is a piece of computer language expression, which in turns is a 

piece of formal expression. By taking this position, similar as previous researchers, a program could be 

interpreted as a piece of abstract syntactic expression encoded in some programming language. This 

choice makes the identity of a program depend on its encoding programming language, and this expres-

sion should be acceptable by some compiler and then executed by a computer. 

More importantly, a program is also interpreted as an artifact of computation by Lando. For him, an 

artifact is an object
6
 to which a function is assigned. A function is some capability assigned by the agent 

who crafted the artifact, and through the function assignment the agent expresses her purpose to use the 

artifact to carry out some actions. The actions could affect the physical world or the non-physical world, 

and Lando believes that a program should be interpreted as an artifact being only capable to modify the 

non-physical world. 

Lando restricted his study within the interpretation of a program as an artifact of computation that 

can only affect corresponding abstract computing activities. Although this choice is clean and tidy, differ-

ently from Lando, we believe it is also important to capture the effects of programs to the physical world. 

After all, most software applications today are developed to solve real-world problems. According to this 

view, as we shall see, different kinds of software artifacts are proposed, considering their intentional ef-

fects to the different parts among a computer and its outside world. 

Irmakôs work 

Similarly as Lando, yet Irmak proposes a different approach to account for the artifactual nature of 

software that distinguishes it from other kinds of objects which were closely related to but totally differ-

ent from software (e.g., algorithm, code, copy, and execution process), yet most of the historical work in 

                                                 
5
 Lando treated the term ósoftwareô differently from óprogramô, as he interprets a program as a piece of Computer 

Language Expression, yet software is a collection or library of programs. This distinction seems counter-intuitive to 

us, and to avoid ambiguity, this distinction is ignored here, and a set of consistent terminology for the software relat-

ed notions will be provided and discussed as a contribution in Chapter 5. 
6
 More precisely, it is an endurant, which is something cannot be instantiated further and can exist in a time point, 

and keeps its identity during time periods. Details are much more complex and left as explanations in our baseline 

chapter. 
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understanding the nature of software fails to capture this point. He disagrees with both the interpretations 

of software in a general sense or in a limited sense presented earlier, denying the proposals about the dual 

nature of software, as he believes that such proposals are self-contradictory. Instead of those interpreta-

tions, for Irmak, software should be interpreted as an abstract artifact (Irmak, 2013). 

Firstly, software is an artifact, and being an artifact it is supposed to be the result of some intentional 

human activities. Irmak defended his proposal by pointing out that any ontology should be developed 

considering the common minds and ideas existing in a community. It is the ontologistsô job to make the 

implicit and ambiguous notions explicit and clear, but not to study what is the real true nature of the phys-

ical world which is the physicistsô job. This claim is intuitive to us, because in the modern society soft-

ware is indeed developed by software engineers with specific purposes in mind. Randomly-generated 

source code may be accepted by a compiler by chance, yet it means nothing to human users unless they 

understand what it does. Similarly, a natural stone from a riverbank is not an artifact by itself, yet when-

ever it is used as a paperweight on the table, an artifact comes to exist. 

Furthermore, software is an abstract artifact. Differently from the Platonic view of abstract objects 

that are eternal and independent, software as an artifact depends on the intentions of human beings. Un-

like Platonic abstract objects that lack both spatial and temporal properties, software only lacks spatial 

properties, as it possesses temporal ones, and has in addition intentional properties.  

To make this more intuitive, Irmak illustrates his ideas through a demonstration of the similarities 

between software and music. For him, both software and musical works are abstract artifacts, the former 

is created by software engineers and the latter is created by composers, yet both are created with inten-

tions. Both can be created or destroyed, and when they are destroyed, the following conditions hold: 1) 

their authors cease to exist in the world, 2) all of their physical copies are destroyed, 3) they are not exe-

cuted or performed ever again, and 4) they are forgotten by everyone. 

This idea of interpreting software as an artifact was also acknowledged by (Turner, 2013) in his re-

cent, comprehensive entry on the philosophy of Computer Science published in the Stanford Encyclopae-

dia of Philosophy
7
. We also share very much Irmakôs intuitions, as well as the methodology he adopts to 

motivate his conclusions, based on the analysis of the conditions under which a software maintains its 

identity despite changes. However, he leaves the question of ówhat is the identity of softwareô open, and 

we shall answer this question in this dissertation. Making a further step, based upon the understanding of 

software as an abstract artifact, we interpret it as an information artifact, emphasizing both its informa-

tional nature and artifactual nature. Besides that, by checking the effects of these software artifacts to the 

computer states and the world, we classify them into different categories. 

2.2 Understanding Software Change 

As we mentioned in the beginning of the dissertation, software has become an essential and indis-

pensible part of the modern society. To meet the needs of a rapidly changing society, software has to con-

tinuously evolve. (Parnas, 1994) adopted a metaphor to characterize this continuous change of software as 

ósoftware agingô. For him, programs get old while time passes by, decaying in their efficiency and 

                                                 
7
 The Philosophy of Computer Science, http://plato.stanford.edu/entries/computer-science/ 
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productivity. We cannot prevent this process, and as a consequence, the older the software gets, the more 

it costs to be maintained, until it becomes unaffordable and replaced by new software. 

Considering the importance of software, and the huge cost of its continuous evolution, researchers 

have been trying, for decades, to get better understandings of this phenomenon, and to provide proper 

methods and technologies to manage these changes in software, yet it is still a young and challenging top-

ic because of the undervaluation of it (Mens et al., 2005), (Mens, Gueheneuc, Fernandez-Ramil, & 

DôHondt, 2010). In the following, we will go through several representative works in the literature. 

However, as the main purpose of this dissertation is not in the area of software evolution, we only 

discuss how an ontology of software could contribute to better management of software evolution. Specif-

ically, our proposed ontology of software provides the foundation to identify and record different kinds of 

changes in different kinds software artifacts during their life spans. Hence, within this section, we just 

make a brief summary of the literature work on software evolution, without diving into detailed discus-

sions. In other words, the main purpose of this section is to provide a general view of the state of the art 

on software evolution, and locate our work within this framework as a basic and foundational contribu-

tion by capturing rich and clear semantics of the software during the processes of software evolution. 

2.2.1 Laws of Software Evolution 

Lehman was recognized as the ófather of software evolutionô by the editors of the journal óSoftware 

Evolution and Feedback: Theory and Practiceô (Canfora et al., 2011), as he founded the principles for 

empirical research on software evolution with his colleague Belady. Together, they studied the evolution 

processes of IBMôs OS 360 (Belady & Lehman, 1976), and extended this study into the famous eight 

laws of software evolution that profoundly influenced the ways in which software was understood (M. M. 

Lehman, 1980), (M. M. Lehman, 1996), (M. Lehman & Fernandez-Ramil, 2006). 

To start with, Lehman recognized the unexpected and unplanned phenomena occurring during the 

development and evolution processes of IBMôs OS 360, and used these as resource to study software evo-

lution and propose that software should be studied as a natural phenomenon (analogously to physical 

phenomena). For him, the properties of software are intrinsic and primary, and the effects by human be-

ings are external and secondary. As he stated in an interview, óevolution process and system control the 

managers rather than managers controlling the systemô. 

To nail down the scope of his study, he firstly proposed a classification of software programs, in-

cluding: 1) S-type programs that possess formal specifications which strictly define the problems to be 

solved in terms of some programming language, and the S-type programs serve as their solutions; 2) P-

type programs that are similar as S-type programs, yet the given specifications for the problems are ex-

pressed in terms of the terminology of the problems in the real world instead of the programming lan-

guage scenario; 3) E-type programs, differently from S-type and P-type programs, treat themselves as a 

component of the outside problem world. The interpretation of an E-type program is quite similar as the 

idea of socio-technical system, according to which, an E-type program serves as the technical support 

within a social environment, communicating and interacting with social agents. 
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For Lehman, only the E-type programs were adopted as the research subject, as they are placed into 

a changing environment, and by studying their reactions to the changes in the environments, he developed 

eight general laws of the software evolution as shown the following Figure 6. 

 

Figure 6. Laws of Software Evolution, as proposed by Lehman (M. Lehman & Fernandez-Ramil, 2006) 

These laws are derived from an empirical study of software evolution, and all of them are quite in-

tuitive to understand, such as the Continuing Change Law that indicates an E-type program must be con-

tinually changed to adapt to the changing environment, or the Increasing Complexity Law that indicates 

an E-type program becomes more and more complex as the program grows older. The eight laws now are 

adopted as baseline by many researchers in this field, yet we shall point out that Lehmanôs study was all 

based on an objective view, which must be obeyed by the software engineers. For us, this view underes-

timated the importance of the role played by the software engineers, as the creators of software, it is their 

intentions that decide the properties of software, hence the interpretation of software becomes quite sub-

jective for us, and we adopt it into the requirements engineering domain to study the nature of software, 

as we shall see in Chapter 4 and Chapter 5. 

2.2.2 The Metaphor between Software Evolution and Biological Evolution 

Another interesting branch of the study of software evolution tried to make a metaphor linking it to 

the biology evolution, such as what Godfrey and German did, they proposed a model of software evolu-

tion where source code serves as gene, and software functions are the result of explaining the gene, and a 

version of software is recognized as an individual (Godfrey & German, 2008). 
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Based on this model, they pointed out that software maintenance and software evolution are differ-

ent concepts: software maintenance was a process that keeps software running without changing the gene 

(code) of the software, and software evolution meant adding essential changes to the software by chang-

ing the gene (code) of the software. Although this idea is interesting, yet we shall point out that a biology 

species is usually characterized by a pool of gene serials from multiple creature individuals but not only a 

gene serial from just one software individual. 

Similarly as Godfrey and German, Mens attempts to convey the concept of ósoftware ecosystemô. 

For him, a software ecosystem is óa collection of software projects developed and used by the same com-

munityô (Mens & Grosjean, 2015), and this definition was derived from two older works: 1) Messer-

schmitt and Szyperskiôs definition, óa collection of software products that have some given degree of 

symbiotic relationshipô (Messerschmitt & Szyperski, 2003); 2) Lunguôs definition, as óa collection of 

software projects which are developed and evolve together in the same environmentô (Lungu, 2008). 

Whichever of the aforementioned definition is adopted, the general idea is the same: studying interactions 

between software and its environment. By comparing with biological ecosystems, new strategies can be 

developed to improve the effectiveness and resilience of software. 

For Mens, there are two possible ways to make comparisons, depending on the roles software plays 

in a trophic web (food world), as producer or a consumer: 1) biological species å software components, 

this is a technical view, interpreting all the software and hardware as components of a trophic web (e.g., 

application websites are content producers, and a search engine web site consumes these contents and in-

dexes them as its own products for other possible consumers in a higher level); 2) biological species å 

project contributors, this is a social view, classifying software engineers into different kinds according to 

their roles in a trophic like web (e.g., some engineers develop core library packages acting as producers, 

and some other engineers may develop applications based on such libraries acting as consumers). 

Both Godfreyôs and Mensô work are interesting, and indeed such kinds of comparisons might con-

tribute to a better understanding of software practice. For example, to make a software company efficient 

and robust, the structure of the role arrangement should be carefully designed that the dependency be-

tween the producers and consumers should be balanced well, neither too many producers, nor too many 

consumers. Similar examples could be fund in the bionics field that batsô acoustic detection system was 

studied and used as a prototype of the modern radar systems (Bin-bin, Hai, Xiaoping, & Hesheng, 2012). 

However, not all aspects of the two species, software and biology, can be compared to make a com-

plete metaphor. To achieve a shared set of foundational understandings of software evolution, we still 

need to get back to its original nature. Following this view, many researchers proposed taxonomies and 

ontologies for software change, and we shall list out some of their main contributions as follows to delin-

eate an outline of the study in this field. 

2.2.3 Taxonomies and Ontologies for  Software Change 

Swanson and Lientzôs Work 

Researchers have been trying, for decades, to unify the concepts and terminologies of software 

maintenance and evolution. Swanson and Lientz are recognized as the pioneers who firstly provided an 

exclusive and exhaustive typology for software maintenance. They divided the maintenance activities of 
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application software into three categories: 1) corrective maintenance, consisting of the activities of fixing 

bugs; 2) adaptive maintenance, referring to the changes made to adapt to the new technical environment 

(e.g. operating system software, frameworks); 3) perfective maintenance, referring to the changes of elim-

inating processing inefficiencies, enhancing performance, improving maintainability and other enhance-

ments on functions (Swanson, 1976), (Lientz & Swanson, 1980). 

Although Swanson and Lientzôs work has been widely accepted, later works revised the initial 

meanings of these concepts inconsistently sometimes, and even the standards of the IEEE (Institute of 

Electrical and Electronics Engineers) have been revised it in this way. In 1990, a new category called 

ópreventive maintenanceô was added in the main body of the IEEE standard. The new term means 

ómaintenance performed for the purpose of preventing problems before they occurô. Later in 1998, it was 

removed from the main body of the standard and only mentioned in its appendix (óIEEE Standard 

Glossary of Software Engineering Terminology,ô 1990), (óIEEE Standard for Software Maintenance,ô 

1998). 

Chapinôs Work 

Following Swanson and Lientzôs work, Chapin et al. proposes a classification from a different per-

spective, which is not based on peoplesô intentions but on the objective observations of the differences 

before and after the changes occur (Chapin et al., 2001). This classification is composed of four main 

clusters and refined into 12 different types, including: 1) support interface cluster (types: training, consul-

tive, evaluative); 2) documentation cluster (types: reformative, updative); 3) software properties cluster 

(types: groomative, preventive, performance, adaptive); 4) business rules cluster (types: reductive, correc-

tive, enhancive). 

Generally speaking, Chapinôs work constitutes an extension of Swansonôs work, refining the initial 

classification of software maintenance into a finer granularity. The whole work is based on an objective 

view, identifying different kinds of software changes according to the ascertainable evidences observed, 

and the process of deciding the type of a software change activity is quite intuitive and reliable for the 

software maintainers, including all practitioners, managers, and researchers. However, when we recog-

nize software as an artifact, we cannot understand the true nature of software change without considering 

the intentions of its stakeholders. In this dissertation, we demonstrate this view in further detail in Chapter 

4 and Chapter 5. 

Buckley et al.ôs Work 

Buckley et al. proposed another taxonomy in 2005. Compared with previous work, this taxonomy 

focuses more on the technical characteristics rather than on the general concept of software evolution 

(Buckley et al., 2005). The life cycle of software is partitioned into three phases: compile-time, load-time 

and run-time. Furthermore, several other dimensions of software change are proposed which could be 

grouped into two main categories: ócharacteristics of software change mechanisms and the factors that in-

fluence these mechanisms.ô 

Generally speaking, these authors view previous works as trying to answer why software changes 

occurred, and their work contributed in answering the how, when, what and where software changes oc-

cur. According to this view, they discuss software changing mechanisms, and the factors that influence 
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these mechanisms. This work was restricted more likely as a list of criteria to justify the qualities of dif-

ferent kinds of software change supporting tools, although this is intuitive and handy for practitioners, the 

research subject was shifted from the software change itself to its supporting tools. Instead of improve-

ment, it was a supplementation of the previous works, and what we do is to provide foundations for all 

such kinds of research and practices. 

Kitchenham, Ruiz and Anquetilôs Work 

Ontology constitutes a more rigorous method to explicitly represent the meanings of concepts than a 

taxonomy. It has been used widely to capture knowledge in many research areas, and several researchers 

have tried to provide ontologies for software maintenance. 

Kitchenham is the researcher who firstly provided a carefully crafted ontology for software mainte-

nance in 1999. For her, software development is different from software maintenance, as the later refers 

about the activities applied to later releases delivered after the software has been deployed. In her paper, 

she identifies several factors that influence software maintenance, and classifies them into four dimen-

sions as shown in Figure 7, including product, peopleware, process organization, and maintenance activi-

ty types (Kitchenham et al., 1999). According to this classification, general questions could be answered, 

such as what is under maintenance (e.g., product with size, age, and etc.), who is maintaining the product 

(a software maintainer with some skills, attitudes, and etc.), under what kind of organization the product 

is maintained (e.g., a maintenance group with some resource, and technologies, and etc.), and finally what 

kind of maintenance activity is taken out (e.g., corrections, new requirements, and etc.). Instead of talking 

about the ontological nature of software maintenance, it is more like a project management oriented work 

for the team members of a maintenance group. 

 

Figure 7. An overview of domain factors affecting software maintenance (Kitchenham et al., 1999) 

Five years later, Kitchenhamôs work was refined and enlarged by Ruiz in 2004. This work extends 

the four dimensions of software maintenance proposed by Kitchenham into four sub-ontologies respec-

tively: Products Sub-ontology, Agents Sub-ontology, Process Sub-ontology, and Activities Sub-ontology. 

Besides these refinements, additional Workflow Ontology and Measure Ontology are introduced in order 
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to support maintenance projects in organizations, as shown in Figure 8 (RUIZ, VIZCAÍNO, PIATTINI, & 

GARCÍA, 2004) . These can be used to provide meta-level guidance for managing software maintenance 

projects. 

 

Figure 8. An overview structure of the ontology for software maintenance project (RUIZ et al., 2004) 

Comparing with Kitchenham and Ruizô work, Anquetil and et al. provided a similar ontology in the 

book Ontologies in Software Engineering and Software Technology (Anquetil, de Oliveira, de Sousa, & 

Batista Dias, 2007). They shared the same idea that after the initial development phase, software mainte-

nance phase will follow and will last for a long period of time, and during which lots of changes will be 

adopted to better suit stakeholdersô needs. Yet, Anquetil deals with these software maintenance activities 

from a knowledge management perspective. In other words, he emphasizes the importance to provide 

suitable knowledge according to a specific maintenance scenario for the proper software maintainers. As 

shown in Figure 9, a software system is implemented to solve some problems in an application domain, 

the knowledge about the application domain and the system itself will be elicited and stored in a 

knowledge base (KB). Additionally, the knowledge about the maintenance project will also be added into 

this KB. Consequently, according to such a KB, a modification process (task) to a software system will be 

assigned to the proper software maintainers who possess the required computer science skills. 

 

Figure 9: An overview of ontology for software maintenance (Anquetil et al., 2007) 

Similarly to Buckley et al.ôs work, Kitchenham, Ruiz and Anquetilôs work was also a supplementa-

tion of the earlier work, because instead of explaining the nature of software and software evolution, they 

paid more attention to the issues about software project management, clarifying the roles of different 

kinds of stakeholders who took different kinds of software maintenance activities during the life span of a 

software project. In other words, their work was project oriented, and the most possible consumers of 

their work should be software managers instead of software practitioners. 

Tappolet et al.ôs Work  
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Similarly, Tappolet and his colleagues lunched the project OntEvo
8
 trying to remedy the problems 

caused by software change. More specifically, they divided the sources of problems into two categories, 

including: 1) the internal source, referring to the difficulty to study or recall the meaning underlying a 

piece of source code without sufficient comments or documents; 2) and the external source, referring to 

the difficulty to manage the dependencies among so many libraries that are developed and maintained by 

different groups or organizations (Tappolet, Kiefer, & Bernstein, 2010). 

For Tappolet at et al., both the two kinds of problem sources are derived from the lack of knowledge 

about the source code, hence they propose a set of ontologies, including a software, version and bug on-

tology. With these ontologies, on one side, software engineers can encode relevant knowledge into shara-

ble files (or repositories); and on the other side, others could query the files (or repositories) to extract 

useful knowledge. As the knowledge is stored in sharable and query-able files, this solution provides help 

for both two kinds of problem sources in the process of software evolution. However, as this approach is 

source-code oriented, it completely ignores the software artifact perspective (e.g., the architectural com-

ponents, behavioural models and requirements ones). To capture more semantics necessary, as demon-

strated in Chapter 5, we propose different kinds of software artifacts at different abstraction layers. 

2.2.4 Identifying and Recording Software Changes 

The Version Control Systems (VCSs) are widely used in the industry to record the development his-

tory of software projects, and according to a survey published by Ohloh
9
 concerning open source software 

projects, 70% of them use Concurrent Versions System (CVS) or Subversions, and over 25% of them use 

Git (Kleine, Hirschfeld, & Bracha, 2012). However, as we stated earlier, most of the literature work in 

understanding of software and software change have been limited to source code level. Consequently, the 

work in identifying and recording software changes was also limited to source code level. 

For instance, all the VCS tools mentioned above were developed on a unique core mechanism, 

checking the syntactic difference between two versions of a file. In this context, a version of a file could 

be understood as a snapshot of the syntactic content of the file with a time stamp. Whenever a program-

mer commits a new version of a file, the syntactic difference between these two versions will be calculat-

ed, and recorded in a repository with some additional limited meta-data (e.g., commit user, commit time, 

and etc.) and some description of the commit (e.g., usually a few nature language sentences). 

As aforementioned, all the information collected is source code oriented, this is because such tools 

are not initially developed to identify and record software changes, but to provide a cooperation platform 

for the project members (some time they are distributed geographically), committing their contributions 

to the project simultaneously, and meanwhile solving the possible conflicts they may encounter among 

each other. For example, if two programmers commit to the same version of a file, rewriting the same line 

of the source code differently, only one of the new commits could be used as the latest version, based on 

which further updates of the file could be made. 

The data collected by such VCS tools could be used to do analysis about the evolution process of the 

software, yet as we stated, this is a subsidiary function we can get from them, and it is not practical to use 
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 A Software Evolution Ontology, https://files.ifi.uzh.ch/ddis/oldweb/ddis/research/evoont/index.html 

9
 Ohloh, http://www.ohloh.net 
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them as a main means to study the evolution process of software, especially for the project managers 

without sufficient technical skills to navigate within these tools. To remedy this situation, some software 

change analysis tools were developed, such as (Fischer, Pinzger, & Gall, 2003) and (Ghezzi, Wursch, 

Giger, & Gall, 2012), who provide interfaces for users to query and navigate within a library of software 

changing history. 

To enhance these VCS tools used as software change analysis tools, other technologies were pro-

posed. One of the branches is to detect changes automatically. In other words, the programming activities 

of the programmers are monitored, analyzed, and then recorded by such óchange-awareô tools. Comparing 

with the history data provided by VCS tools, these new tools adopt the change of software as the center of 

a software developing process, and the collected data about the programmersô activities could be used as 

another source to analyze software change processes (Robbes & Lanza, 2008), (Wloka, Ryder, & Tip, 

2009), (Omori & Maruyama, 2008). 

Compared with automatic software change detection, the other branch of software change analysis 

tools tries to visualize the software change history, providing more intuitive ways to examine the way 

software evolves. For example, some of the these tools collect change activities on the software modules 

during a period of time, then create a static figure about the changing path of the modules (Gîrba & 

Ducasse, 2006), (DôAmbros & Lanza, 2009). Taking a further step, Beyer and his colleagues reused the 

records from CVS to create a dynamic visualization (e.g., an animation/movie of a change process) of 

software changing history (Beyer & Hassan, 2006). 

Although many works attempted to identify and record software changes, they are generally limited 

to the source code level. As such, these tools can process semantic granularities at the file, class, method 

level, but not at a component or requirement level. This limitation in the semantic granularity causes a lot 

of knowledge to go unrecorded and therefore missed during a software change process. This missing 

knowledge constitutes one of the main reasons of the high cost of software change. 

Parnas shares the same idea, and states that the primary cause of a poor state-of-the-art in software 

engineering practice is the failure to produce good documentation to record the multi-faceted knowledge 

that comes with a software system (Parnas, 2011). In his paper Software Aging, several practical reasons 

related to documentation were proposed explaining why software maintenance is costly and may result in 

chaos. Besides that, he emphasizes that although documentation is an unpopular topic which is often ne-

glected, systematic documentation might be essential to ameliorate the current situation (Parnas, 1994). 

But of course, to do proper documentation one needs to decide first what knowledge about a software 

should be identified and recorded. 

Although little work has been done in capturing richer semantics during the process of identifying 

and recording software changes, it seems a promising research topic to provide foundational support for 

software change. Some attempts were made, such as Altmanningerôs work, in which the changing granu-

larity was extended to the conceptual models about the software instead of source code itself 

(Altmanninger, 2008); or the Semantic Versioning standard provided by OSGi
10

, indicating the depend-

ency status of a version of software (e.g., from v-1.2.3 to v-1.2.4, nothing happened at interface, no need 

to adjust the calls of the interface methods; from v-1.2.4 to v-1.3.0, some changes happened at the inter-
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face, however it is compatible with the old calls of the interface methods; from v-1.3.0 to v-2.0.0, essen-

tial changes happened at the interface, and the old calls of the interface methods wonôt work anymore). 

Different from all the related work stated above, we start our research with studying the ontological 

nature of software, based on which we examine the essential properties of different kinds of software arti-

facts, according to the fact that each of these software artifacts (software program, software system, soft-

ware product, and licensed software product) is constantly dependent on a different intentional entity. 

Each of these intentional entities refers to a kind of expected behaviors involving different parts of a 

complex socio-technical system (namely, the inside machine, the interface, and the outside world), which 

in turn emerges from the interaction between a software-driven machine and a social environment. 

In other words, we extend the interpretation of software from the perspective of source code to the 

perspective of socio-technical system. By recognizing the changes in these different kinds of software ar-

tifacts as different kinds of software changes accordingly, the task of identifying and recording different 

kinds of software changes is reduced to the task of identifying and recording the changes in the different 

kinds of software artifacts. Meanwhile, this approach will help to clarify some terminology ambiguities. 

For example, we may define the following kinds of software changes: 1) refactoring refers to the creation 

of new codes, keeping the identity of the software program; 2) re-engineering refers to the creation of 

new software programs, keeping the identity of the software system; 3) software evolution refers to the 

creation of new software systems, keeping the identity of the software product. 

These changes in different software artifacts happen at different abstraction levels within the socio-

technical system, providing help in understanding the software and software change for different kinds of 

stakeholders who play different roles in a software project (e.g., a company manager may focus on the 

software evolution of software products in the social environment, a project manager may focus on the 

software re-engineering of software systems at the interface, and a programmer may focus on the soft-

ware refactoring of software programs inside a software-driven machine). 

2.3 Understanding Assumptions 

As mentioned in the introduction chapter, in addition to the essential properties about the different 

kinds of software artifacts, there is another kind of knowledge that deserves special attention, and it is the 

assumptions made during a software engineering process. The requirements for most software applica-

tions -- the intended states-of-affairs these applications are supposed to bring about -- concern their opera-

tional environment, usually a social world. But these applications donôt have any direct means to change 

that environment in order to bring about the intended states-of-affairs. In what sense then can we say that 

such applications fulfill their requirements? One of the main contributions of this dissertation is to ac-

count for this paradox. We do so by proposing a preliminary Ontology of Assumptions. Before diving in-

to the details of this ontology characterizing and making explicit a number of notions that are used implic-

itly in software engineering practice, we illustrate several similar related works as follows. 

2.3.1 Interpretati ons from Linguistic and Cognitive Science Perspectives 

óAssumptionô is a severely overloaded term used in many communities (e.g., research, industry, and 

etc.) as well as in our daily lives. The interpretations of this term diverge significantly in different con-

texts. Nkwake authored a chapter named óWhat are Assumptions?ô in the book óWorking with Assump-



RELATED Work 

30 

tions in International Development Program Evaluationô, in which he discusses the nature of assumptions, 

and grouped assumptions into several categories, including: Ontological Assumptions, Epistemological 

Assumptions, Axiological Assumptions, Cultural Assumptions, Idiosyncratic Assumptions, Legal Pre-

sumptions, Metaphoric Assumptions, Intellectual Assumptions, and Causal Assumptions. (Nkwake, 2013) 

Among so many ways to interpret assumptions, in the sequel, we present a few examples of these possible 

interpretations, relying on the language use of the term (Ennis, 1982): 

Conclusion: e.g. Tom said: ómy assumption is that you are going out, since you are wearing your 

cap.ô The conclusion of ógoing outô is derived from the current situation ówearing your capô. 

Less-than-fully established proposition, in an accusation sense: e.g. Mike answers: óthat is only your 

assumption, you donôt know it.ô Mikeôs reply suggests that it only looks like heôs going out, and that was 

only Tomôs guess, with no guarantee that it holds. 

Adopted in order to deceive, fictitious, pretended: e.g. óalthough bad things did happen, please as-

sume that they never happened.ô The term assumption is interpreted as a kind of óself-deceptionô here that 

óyou can deceive yourself that nothing bad happenedô. 

Another dimension of the work tries to interpret assumptions from the perspective of Cognitive Sci-

ence. More specifically, many researchers try to explain the meaning of an assumption as a proposition 

that is created from a particular kind of mental state. In the literature, mental states are usually classified 

into three categories, including Belief (B), Desire (D), Intention (I), and this understanding of mental 

states is referred as the BDI model. A proposition in a belief is the knowledge of an agent about the world, 

a proposition in a desire represents the states an agent wants to reach (in a derived sense), and a proposi-

tion in an intention represents a desire content that an agent is committed to achieve (Ferrario & Oltramari, 

2005). 

According to this BDI model, Jureta and et al. systematically analyzed the role of assumptions in re-

quirements engineering, which is reported in (Jureta, Mylopoulos, & Faulkner, 2009). Three basic con-

cepts in requirements engineering are matched to those three kinds of mental states respectively: 1) an as-

sumption is matched to a believed proposition; 2) a requirement is matched to a desired proposition; 3) 

and a task is matched to an intended proposition.  

Although it is a promising research direction to address such a detailed ontological analysis of the 

nature of assumptions as well as of their relations to cognitive and social agents, we prefer to leave it as 

another contribution in the future work, and in this dissertation we focus on explaining the bridging role 

of assumptions in software engineering, solving the paradox aforementioned. In other words, when we 

refer to the propositional contents of assumptions, we make them neutral with the discussions about men-

tal states. We simply say that the assumptions are composed of propositions, yet we donôt discuss which 

kind of propositions is concerned in this dissertation. We believe this topic deserves another specialized 

paper, and we are working on it in parallel. 

2.3.2 van Lamsweerdeôs Interpretat ion of Assumptions in Requirements Engineering 

van Lamsweerde interprets assumptions within the requirements engineering framework proposed 

by (Michael Jackson & Zave, 1995), in which the process of requirements engineering is composed of the 
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following procedures: 1) anchoring the machine in the problem world; 2) characterizing the problem 

world; 3) delimiting and structuring the problem world; 4) chaining satisfaction arguments; and 5) deriv-

ing specifications from requirements. For him, domain assumptions characterize partial properties of the 

problem world, hence a set of domain assumptions should be elicited and expressed as a set of statements 

about the problem world (van Lamsweerde, 2009). 

For Jackson and van Lamsweerde, the basic elements used to characterize the problem world are 

statements about the world. A statement could be understood as a piece of expression in some language, 

and usually statements could be classified into three categories as shown in Figure 10: 1) a prescriptive 

statement states desirable properties of the world in the optative mood (an agent wants to do something); 

2) a descriptive statement states properties about the world in the indicative mood (an agent possesses 

some understanding about the world); 3) and a definition is a statement assigning the precise meanings to 

the terms used in the problem world without mood. 

 

Figure 10. Further distinction among statements in the problem world (vanLamsweerde, 2009) 

As shown in Figure 10, the two kinds of statements rounded by red rectangles represent two kinds of 

domain assumptions proposed by van Lamsweerde. An expectation is a prescriptive statement, it pre-

scribes a specific behavior of the problem world that the machine cannot reach (e.g., a passenger will 

press the buttons when he/she is in an elevator). A domain hypothesis is a descriptive statement about the 

problem world, this hypothesis is an estimation of a behavior of the problem world (e.g., the possible 

temperature of the room is always between 10 degree to 20 degree). Hence, a domain hypothesis is not 

expected to hold invariably, unlike descriptive the domain properties resulting from natural laws. 

According to such statement based characterization of the problem world, and the other procedures 

within a requirements engineering process, van Lamsweerde made an extension of Jackson and Zaveôs 

original formula A, S Ṻ R (A: Assumptions, S: specification, R: Requirements), and refined it into: {Spec-

ification, Assumption, Domain Property} ṺRequirement. According to this new formula, a requirement 

engineer should ensure that the requirements will be satisfied whenever the specification is met, provided 

the domain assumptions and domain properties hold.  

However, van Lamsweerdeôs discussion focuses only on world assumptions. In this dissertation, in-

stead, we extend it into machine assumptions, and propose two additional kinds of dependence assump-

tions which, as we have mentioned, are essential for explaining how software can affect the social world. 
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2.3.3 Lewisôs Assumption Management System 

Lewis states that óassumptions are made concerning how the software will be used, é, what envi-

ronments it will operate inô, as well as óthe incompatibilities between the assumptions and the assumed 

operation environment will cause failuresô (Lewis et al., 2004). 

Based upon this understanding, she also emphasizes the importance of making assumptions explicit-

ly represented as we do in this paper. To achieve this goal, she proposes a system called Assumption 

Management System (AMS) to insert and extract assumptions in and from the source code. This system is 

supported by the functions of storing the extracted assumptions in a repository, querying the repository, 

and making management decisions based on the assumptions recorded in the repository. 

 

Figure 11. Syntax struÃÔÕÒÅ ÉÎ ,Å×ÉÓȭs assumption management system 

The syntax structure of an assumption assertion is adopted here from Lewisôs work as shown in Fig-

ure 11. Simply put, assumptions are recorded as comments to the source code, and they are encoded in 

XML . As shown in Figure 11, and following the usual XML convention, the pair of ó/* é */ô indicates 

the comment area, the pair of labels ó<assumption>ô indicates the assumption area, the pair of labels 

ó<type>ô indicates the type of the assumption, and the pair of labels ó<description>ô indicates the natural 

language description of the assumption. 

The idea underlying this work is that assumptions are recorded by software engineers while they are 

writing source code. When the source code is ready, a XML parser can be used to extract the assumptions 

and store them into a repository in a structured way for future queries. This is useful for sharing purposes 

with all members of a software project, reducing the chance of misunderstanding, and helping to ensure 

global consistency of the system. 

Although, as stated by Lewis, recording and parsing of the assumptions as contents of comments in 

source code has been proved very useful in the coding process in a software engineering project, this is 

too late a stage for uncovering possible inconsistencies in the project. This is noted by Lewis  who states 

that óto address interoperability requirements, the use of assumptions management would have to be 

moved to other activities and artifacts of software development, such as requirements analysis, architec-

ture, and designô. 

The problem pointed out by Lewis is essential to software engineering projects, as the evidence has 

proved that the errors in requirements, such as misinterpreting or neglecting some implicit assumptions, 

are much more expensive to fix at a later stage than in the early stages of a software project (Nuseibeh & 
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Easterbrook, 2000). What we do in this dissertation is to capture and analyze the assumptions in the re-

quirements engineering stage of the process, i.e., in the earliest stages of the software engineering process. 

Instead of dealing with source code, we capture and record assumptions in the process of deriving 

specifications from the requirements. In this stage, requirements are decomposed or refined into specifica-

tions including an external specification and an internal specification. Moreover, we provide here a more 

refined categorization of assumptions that should be discovered by software engineers in the requirements 

engineering stage. Furthermore, and more importantly, we illustrate the key role that such assumptions 

play in linking the world and machine states together. To illustrate these points, in the Chapter 6, we pre-

sent a case study of a meeting scheduler system that demonstrates how and what kinds of assumptions can 

be captured in a requirements engineering process. 
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Chapter 3 

 

3 Baseline 

3.1 DOLCE Adopted as the Foundational Ontology 

Along with the vigorous development in the field of Semantic Web proposed by (Berners-Lee, 

Hendler, & Lassila, 2001), ontology also has been pervasively adopted in many science fields as a means 

of knowledge repository, especially in the fields in which huge amount of information should be classi-

fied and maintained. For example, in the biology field, Gene Ontology Consortium aims at producing on-

tologies covering a set of dynamic and controlled vocabulary as shared knowledge of the roles of gene 

and protein in cells (Ashburner et al., 2000); and in the astronomy field, NASA
11

 launched a project 

called Semantic Web for Earth and Environment (SWEET), in which a collection of ontologies are devel-

oped, including many basic concepts, such as space, time, Earth realms, physical quantities, and etc. 

(Raskin & Pan, 2005). 

Although the term óontologyô is widely used in many fields, the meaning of this term itself was not 

clear enough till recent years. Thanks to the work of many ontologists clarifying this terms for many 

years, especially a series of works made by Nicola Guarino, a precise definition is emerged and accepted 

by many researchers in the ontology field (Guarino & Giaretta, 1995), (Guarino, 1995), (Guarino, 1998), 

(Guarino, 2009). Among his works, a paper titled óWhat Is an Ontology?ô is published in 2009, in which 

the meaning of the óontologyô was thoroughly discussed (Guarino, Oberle, & Staab, 2009). 

For him, the term óontologyô could be interpreted in two senses: 1) Ontology
12

 is a philosophical dis-

cipline, a research filed similarly as Physics, Chemistry, Biology, and etc. More precisely Ontology is a 

research discipline studies the nature and structure of objects, as Aristotle defined this term óOntologyô in 

his Metaphysics as the science of óbeing qua beingô. By given a domain, Ontology discusses about the en-

tities and relations existing in it; 2) an ontology
13

 is an special kind of computational artifact, as it is cre-

ated by people with the purpose to represent the understanding of a given domain. In this sense of inter-

pretation, an ontology is a product within the Ontology research discipline. In other words, by studying 

the domain, people can get some knowledge about it, and by representing such knowledge in some form 

of language expressions, they create an ontology about the domain as a result. 

The prevalent use of this term óontologyô in Computer Science should refer to the interpretation in 

the second sense. Intuitively, a conceptual model about the domain in concern developed during a soft-

ware engineering process could be understood as an ontology of this kind, according to the definition of 

conceptual modelling proposed by (Mylopoulos, 1992) that óconceptual modelling is the activity of for-

mally describing some aspects of the physical and social world around us for purposes of understanding 

and communicationô.  

                                                 
11

 National Aeronautics and Space Administration (in United States of America) 
12

 Guarino suggested using the capitalized term to refer to this research discipline. 
13

 Accordingly, Guarino suggested using the lowercased term to refer to a product in this research discipline. 
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This interpretation of ontology from the perspective of conceptualization was firstly proposed by 

Gruber in 1993 that an ontology is an óexplicit specification of a conceptualizationô (Gruber, 1993). Later 

on, it was extended into a new expression that an ontology is a óformal specification of a shared concep-

tualizationô proposed by (Borst, 1997), and again this definition was refined by Stuber et al. that óan on-

tology is a formal, explicit specification of a shared conceptualizationô (Studer, Benjamins, & Fensel, 

1998). Guarino adopted Studerôs view, and provided a detailed account of the notions of óconceptualiza-

tionô and óspecificationô, and emphasized the importance of ósharabilityô of an ontology. 

We adopted Guarinoôs interpretation of ontology as a component of our baseline in this dissertation, 

and based on that we will discuss about the ontological nature of software, and furthermore provide an 

ontology of software which could be used as a foundation for identifying and recording changes in differ-

ent kinds of software artifacts. As an ontology of software, we share similar idea with Irmak, it should be 

in accordance with the common beliefs and practices held by different kinds of stakeholders who share 

the related concepts. It must óbe coherent with the way people talk about them, with the things they be-

lieve about them, with their practices that involve those objectsô (Irmak, 2013). 

To clarify the point here, we are not trying to discover the unique true nature of software, like what 

the physicists do in looking for the true nature of the physical universe. However, we shall say that to 

question the meanings of software is different from questioning the physical laws of the universe. More 

likely, it is a problem from the linguistic and cognitive point of view. People in the community usually 

interpret the terms differently and ambiguously, and what an ontologist should do is to provide definitions 

and explanations of the terms based on some widely shared primitive concepts, then the newly proposed 

interpretations of the terms could be widely shared and used in communications. After all, we believe an 

ontologist is different from a physicist. 

To develop an ontology of software, we start with looking for a suitable set of widely shared primi-

tive concepts for our purpose, and as a result the ontology óDescriptive Ontology for Linguistic and Cog-

nitive Engineering (DOLCE) (Masolo, Borgo, Gangemi, Guarino, & Oltramari, 2003a)ô is chosen as the 

foundational ontology for our work. On one hand, as a top-level ontology (Guarino, 1997), DOLCE pro-

vides preliminary concepts which are well-delimited with clear philosophical analysis. Hence, referring to 

these finely restricted concepts in DOLCE, our domain ontology could inherit these well-formed ontolog-

ical commitments, and this makes our proposals clearer and easier to discuss in the community (Jureta et 

al., 2009).  

On the other hand, DOLCE has a clear cognitive bias, for that it is intended to capture the ontologi-

cal categories that underlie natural language and human commonsense (Masolo et al., 2003a). This makes 

it more compliant with peopleôs intuition, and the concepts could be easier to be understood and accepted 

by stakeholders. For these reasons mentioned above, we choose DOLCE as our foundational ontology, 

and we present a brief introduction of some main concepts in this ontology, and after the introduction 

they will be reused as preliminary concepts many times in the later contents of this dissertation. Note that, 

this introduction is presented in an intuitive way, and for the readers who are interested in the details of 

DOLCE, please refer to the reports D-17 (Masolo, Borgo, Gangemi, Guarino, & Oltramari, 2003b) and 

D-18 (Masolo et al., 2003a) published in the WonderWeb project
14

. 

                                                 
14

 WonderWeb, http://www.istc.cnr.it/project/wonderweb-ontology-infrastructure-semantic-web 
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As shown in Figure 12, the most general concept in DOLCE is called óparticularô, and a particular 

could be informally understood as something has no instance. Oppositely, a óuniversalô is something that 

does have some instances, yet to control the scale of the ontology, only particulars are adopted as the el-

ements in DOLCE. Generally speaking, a particular is in the specific individual level, and a universal is in 

the abstract class or type level. A particular could be a physical thing, like my cat which is an existing 

creature in the world; also it could be a non-physical thing, such as stories, laws, and etc. 

 

Figure 12. A diagram of DOLCE (Masolo et al., 2003a) 

Under the concept particular, there are four specialized sub-concepts of it, including óendurantô, 

óperdurantô, óqualityô and óabstractô. An endurant is a particular that presents its whole at a time point, 

and as time passing by, it could keep its identity. For example, my cat in last year and the cat in this year, 

they are the same cat growing up, and in this case it is a óphysical endurantô; a law or an economic system 

is ónon-physical endurantô; and putting my hands and my shoes together makes an óarbitrary sumô. 

A perdurant, on the other hand, is a particular that presents its whole among a time period. Its identi-

ty is associated with this specific time period. For example, a party has its starting part, duration part and 

the ending part. In each of these parts, the party only shows itself partially. Usually in our daily lives, we 

use these two concepts (endurant and perdurant) together: an endurant could participate in a perdurant; 

and meanwhile a perdurant shows itself through some endurants. For example, a ógroup of peopleô is an 

endurant, a ópartyô is a perdurant, then a group of people could participate in a party, and meanwhile this 

party exists through this group of people. 

Quality and abstract form another pair of basic concepts in DOLCE, generally speaking a quality 

could be understood as an entity that we can perceive or measure, like the ódimensionô referred in (Gruber, 

1995). For example, the color of a flower and the height of my body are both qualities. On the other hand, 

an abstract may provide a value region for a quality. For example, the value of the color could be red, yel-

low, blue, or any other color which is in this defined color region. 
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3.2 Artifact s 

As we aim at providing an ontology of software, hence the main question we need to answer is 

ówhat is a softwareô. The term ósoftwareô is usually interpreted as a preliminary concept to refer all the 

non-physical parts of a computer system by computer science communities. However, as aforementioned, 

this general and vague understanding of software might cause many ambiguities, and our ontology of 

software is proposed to remedy this situation. Intuitively, software may be interpreted as a tool. Compar-

ing with a hammer, software is a tool of a different kind which processes different functions. However, 

this brings about another question that ówhat is a tool thenô. To answer this question, we borrow the con-

cept of artefactual object
15

 introduced by (Guarino, 2014). As shown in Figure 13, software might be 

placed under the node óArtefactual objectô, meaning that if a particular
16

 is a software then it is also a arte-

factual object, as shown in the formula óᶅὼὛέὪὸύὥὶὩὼᴼὃὶὸὩὪὥὧὸόὶὥὰ έὦὮὩὧὸὼ ô. 

 

Figure 13. Artefactual objects, artefactual kinds and artefactual roles (Guarino, 2014) 

According to the statement from Guarino, an artefactual object is a physical object which exists ac-

cording to some design specification. In other words, an artefactual object exists only if some rational de-

sign choices have been made. Taking an example of a stone which is collected from a river, it may be 

used as a paperweight, or be used as a hammer, or be used as a piece of material to build a wall, and etc. 

However, the stone itself is not an artefactual object, because there is no design for the stone that it is an 

ordinary nature physical object. On the other hand, a paperweight or a hammer could be recognized as an 

artefactual object because there exist some design specifications for them. Taking the example of a ham-

                                                 
15

 In this dissertation, we treat term óartifactô the same as óartefactô, and óartificialô the same as óartefactualô. 
16

 As Guarinoôs ontology of artifact is based on DOLCE, the basic elements in the ontology are all particulars. 
























































































