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Abstract
We introduce the notion of a simple fibration in (1, 2)-surfaces – that is, a hypersurface inside a certain weighted
projective space bundle over a curve such that the general fibre is a minimal surface of general type with 𝑝𝑔 = 2
and 𝐾2 = 1. We prove that almost all Gorenstein simple fibrations over the projective line with at worst canonical
singularities are canonical threefolds ‘on the Noether line’ with 𝐾3 = 4

3 𝑝𝑔 − 10
3 , and we classify them. Among

them, we find all the canonical threefolds on the Noether line that have previously appeared in the literature.
The Gorenstein simple fibrations over P1 are Cartier divisors in a toric 4-fold. This allows to us to show, among

other things, that the previously known canonical threefolds on the Noether line form an open subset of the moduli
space of canonical threefolds, that the general element of this component is a Mori Dream Space and that there is a
second component when the geometric genus is congruent to 6 modulo 8; the threefolds in this component are new.
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Introduction

A (1, 2)-surface S is a minimal surface of general type with invariants 𝑝𝑔 = 2, 𝑞 = 0, 𝐾2 = 1.
These surfaces are classified in [Hor76b, Theorem 2.1] as double covers of the weighted projective
space P(1, 1, 2) (equivalently the quadric cone), branched over a curve of weighted degree ten and
also over the singular point (0, 0, 1). Their canonical model is a hypersurface of weighted degree ten
in P(1, 1, 2, 5), with at worst rational double points as singularities (compare [FPR17, Theorem 3.3],
where this known result is generalized to Gorenstein stable surfaces).

These surfaces lie at the heart of the recent progress in the study of threefolds of general type (see,
for example, [CCJ20, CCZ06, HZ22a]). Namely, it seems that the threefolds that are fibred in (1, 2)-
surfaces are somewhat analogous to the genus 2 fibrations in the theory of surfaces of general type.

There is now a satisfactory theory of surfaces with a genus 2 fibration (e.g., [Hor77, Xia85, Rei90,
CP06, Pig09]). A key feature of genus 2 fibrations is that the singular fibres may have several different
topological types (see [Ogg66]), but despite this, they fit ‘algebraically’ into just two classes: the
canonical ring of a genus 2 fibre is generated by three or four elements, according to whether the fibre
is 2-connected or not. It would be nice to have a similar theory for threefolds fibred in (1, 2)-surfaces,
but the reality is much more complicated. Indeed, the study of surfaces fibred in curves of genus 𝑔 ≥ 3
is already much more difficult (see [AK02, Rei90]).

This paper originated from the observation ([Hor76a, CP06]) that the minimal surfaces of general
type fulfilling the Noether equality 𝐾2

𝑆 = 2𝑝𝑔 − 4 are exactly those with a genus 2 fibration 𝑓 : 𝑆 → P1

such that all fibres are 2-connected – in other words, such that all fibres look like smooth fibres from the
point of view of the generation of the canonical ring. This motivates the concept of simple fibrations in
(1, 2)-surfaces (see Definition 4.1); these are threefolds X with canonical singularities and a morphism
𝜋 : 𝑋 → 𝐵, where the relative canonical class is ample and B is a smooth curve such that the canonical
ring of each fibre is algebraically like the ring of a (1, 2)-surface.

In this paper, we develop a systematic theory of these simple fibrations. They have a natural description
as hypersurfaces in P(1, 1, 2, 5)-bundles over the base curve B; in particular, we have a classification of
all simple fibrations over P1 as Cartier divisors in some toric 4-fold (Theorem 1.11). They are denoted by
𝑋 (𝑑; 𝑑0) in the following, and they have geometric genus 𝑝𝑔 = 3𝑑−2 and canonical volume 𝐾3 = 4𝑑−6;
in particular,

𝐾3
𝑋 =

4
3
𝑝𝑔 − 10

3
.

The toric 4-fold depends on two nonnegative integers: d, that is related to 𝑝𝑔 by the formula above,
and 𝑑0, that may be any integer from 𝑑

4 to 3
2𝑑.

Indeed, the Noether inequality 𝐾3
𝑋 ≥ 4

3 𝑝𝑔 − 10
3 has recently been proven [CCJ20], except possibly

threefolds with 5 ≤ 𝑝𝑔 ≤ 10. It is not known if these exceptions exist. The threefolds for which the
equality holds are said to be on the Noether line, so our 𝑋 (𝑑; 𝑑0) are canonical models of threefolds on
the Noether line.

There are other works about threefolds on the Noether line, some of which appeared during the
development of this project, which started in 2015. Kobayashi [Kob92] discovered infinitely many
families of threefolds on the Noether line. These are constructed by taking the minimal model of a
certain genus two fibration over a Hirzebruch surface. Kobayashi’s construction was generalised by
Chen and Hu [CH17], who claimed a classification of smooth canonical threefolds on the Noether line
for 𝑝𝑔 ≥ 7. Their threefolds correspond to our 𝑋 (𝑑; 𝑑0) with 𝑑 ≤ 𝑑0. In fact, those 𝑋 (𝑑; 𝑑0) with
𝑑 > 𝑑0 are singular unless d is divisible by 8 and 7𝑑 = 8𝑑0, in which case the general 𝑋

(
𝑑; 7

8𝑑
)

is
(rather surprisingly) smooth!
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Using our description as divisors in a toric variety, we could prove, among other things,
Theorem 0.1.
1. The canonical 3-folds constructed by Kobayashi–Chen–Hu form an open subset of a unirational

component of the moduli space of canonical 3-folds with 𝐾3
𝑋 = 4

3 𝑝𝑔− 10
3 for all 𝑝𝑔 ≥ 7 (Propositions

2.2 and 2.4).
2. The general 3-fold in this component is a Mori Dream Space (Theorem 1.16).
3. Suppose that 𝑝𝑔 ≥ 22 is of the form 3𝑑 −2 with d divisible by 8. Then, the moduli space of canonical

3-folds with 𝐾3
𝑋 = 4

3 𝑝𝑔 − 10
3 contains a second component whose general element is smooth and

which includes our threefolds 𝑋
(
𝑑; 7

8𝑑
)

(Theorem 5.4).
Parts 1 and 3 of this theorem look very similar to Horikawa’s famous classification of the minimal

surfaces of general type on the Noether line [Hor76a, Theorems 3.3 and 7.1]. The moduli space of
Horikawa surfaces with 𝐾2 divisible by 8 has two unirational, irreducible, connected components while
that of surfaces with 𝐾2 not divisible by 8 has just one. For threefolds, when the two components arise,
they actually do intersect; more precisely, we produce a canonical threefold with a curve of singularities,
which lies in the intersection of both irreducible components.

By analogy with Horikawa’s mentioned results, we conjecture that all threefolds on the Noether
line are in our list for 𝑝𝑔 sufficiently large. Then, we would have, as in Horikawa’s case, one or two
irreducible components with a smooth element in it, and a complete description of the moduli space
should be obtained exploiting our classification in Theorem 1.11.

This conjecture is supported by the recent results of [HZ22b], where it has been proven that all
canonical threefolds on the Noether line are Gorenstein. Moreover, [HZ22b] also determine two further
lines which lie above but parallel to the Noether line, which they call the second and third Noether
lines. If 𝑝𝑔 ≥ 11, then all canonical threefolds which do not lie on the Noether line lie on or above the
second Noether line, and analogously, threefolds above the second line lie on or above the third one.
In fact, simple fibrations in (1, 2)-surfaces over P1 may be non-Gorenstein, in which case (for the sake
of simplicity, we suppose that 𝐵 = P1, see Proposition 4.21 for the full statement) the general simple
fibration has N isolated quotient 1

2 (1, 1, 1) singularities and 𝐾3 = 4
3 𝑝𝑔 − 10

3 + 𝑁
6 . When 𝑁 = 1 and 2,

we get the two lines in [HZ22b]. So, an explanation for their result could be that for 𝑝𝑔 big enough and
𝐾3 ≤ 4

3 𝑝𝑔 − 10
3 + 𝜖 (for some positive 𝜖), all canonical threefolds are simple fibrations in (1, 2)-surfaces.

We also mention that [HZ22b] proved that the canonical image of a canonical threefold on the Noether
line is smooth for 𝑝𝑔 ≥ 23 but could not determine if their bound is sharp. Our construction shows that
their result is sharp because 𝑋 (8; 2) has 𝑝𝑔 = 22 and canonical image a cone (see Example 1.13).

The paper is organized as follows.
Section 1 is devoted to the production of canonical threefolds on the Noether line. For the convenience

of the reader, we describe them directly as Cartier divisors in a suitable linear system in a specific toric
4-fold. The construction is then very explicit, depending on two integers d, 𝑑0. The main result is
the already mentioned Theorem 1.11 giving a complete classification of Gorenstein simple fibrations
in (1, 2)-surfaces. We determine their singularities and numerical invariants according to the values
of 𝑑, 𝑑0. The canonical image is the Hirzebruch surface F𝑒 with 𝑒 = 3𝑑 − 2𝑑0. The dichotomy of
Theorem 0.1 emerges here, as we find smooth examples with 𝑒 ≤ 𝑑 and with 𝑒 = 5

4𝑑. Finally, we show
that, in the first case, the general 𝑋 (𝑑; 𝑑0) is a Mori Dream Space.

In Section 2, we study the deformation theory of those 𝑋 (𝑑; 𝑑0) with 𝑒 ≤ 𝑑, showing that they form
a single unirational family, whose general element has 𝑒 = 0 or 1, according to the parity of 𝑝𝑔. This
family covers an open dense subset of one irreducible component of the moduli space.

In Section 3, we develop the basics of the theory of weighted projective bundles over a nonsingular
base B. This is a natural generalization of the standard theory of P𝑛-bundles P(E) → 𝐵, where E is a
vector bundle over B. In particular, Proposition 3.19 provides a relative Euler sequence for weighted
projective bundles and a formula for the relative canonical sheaf.

In Section 4, we finally give a definition of simple fibrations in (1, 2)-surfaces, showing that their
relative canonical algebra embeds them as a divisor in a bundle in weighted projective spacesP(1, 1, 2, 5).

https://doi.org/10.1017/fms.2023.41 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.41


4 S. Coughlan and R. Pignatelli

Then, we compute their invariants and show that if they are regular and Gorenstein, then they can be
embedded in a toric 4-fold, giving the threefolds considered in section 1.

We complete the proof of Theorem 0.1 in Section 5. Here, we first compare our simple fibrations
in (1, 2)-surfaces with the Kobayashi–Chen–Hu construction, in the cases where the two coincide.
Essentially, the Kobayashi–Chen–Hu model is the blowup of the base curve in |𝐾𝑋 |. Then, we consider
the case 7𝑑 = 8𝑑0 and show that these threefolds are not degenerations of threefolds given by the
Kobayashi–Chen–Hu construction, although we do find a common singular degeneration with canonical
singularities.

In Section 6, we finish our classification of simple fibrations over P1 by studying a handful of special
cases whose canonical class is not ample. After applying the minimal model program, we find three
canonical threefolds with 𝑝𝑔 = 4, 7, 10, respectively, which lie above the Noether line but extremely
close to it; the last two appeared already recently in the literature in [CJL20] by a totally different
construction, whereas the first one appears to be new.

1. Threefolds on the Noether line

In this section, we introduce and classify the simple fibrations in (1, 2)-surfaces that are regular and
Gorenstein, and we show that (apart from a few exceptions) they are canonical threefolds on the Noether
line.

1.1. Toric bundles

Choose integers 𝑑, 𝑑0 and define F = F(𝑑; 𝑑0) to be the toric 4-fold with weight matrix

���
𝑡0 𝑡1 𝑥0 𝑥1 𝑦 𝑧
1 1 𝑑 − 𝑑0 𝑑0 − 2𝑑 0 0
0 0 1 1 2 5

��	 (1.1)

and irrelevant ideal 𝐼 = (𝑡0, 𝑡1) ∩ (𝑥0, 𝑥1, 𝑦, 𝑧). In other words, (C∗)2 acts on C6 with coordinates
𝑡0, 𝑡1, 𝑥0, 𝑥1, 𝑦, 𝑧 via (1.1):

(𝜆, 𝜇) · (𝑡0, 𝑡1, 𝑥0, 𝑥1, 𝑦, 𝑧) = (𝜆𝑡0, 𝜆𝑡1, 𝜆𝑑−𝑑0 𝜇𝑥0, 𝜆
𝑑0−2𝑑𝜇𝑥1, 𝜇

2𝑦, 𝜇5𝑧)

and F is the quotient (C6 \𝑉 (𝐼))/(C∗)2.
Up to exchanging the 𝑥 𝑗 , we may and do assume without loss of generality any of the following

equivalent conditions:

𝑑 − 𝑑0 ≥ 𝑑0 − 2𝑑 ⇐⇒ 𝑑0 ≤ 3
2𝑑 ⇐⇒ 𝑒 := 3𝑑 − 2𝑑0 ≥ 0.

The divisor class group Cl(F) is isomorphic to Z2 ([CLS11, §5.1]). We choose generators 𝐹, 𝐻
defined by 𝑡0 and 𝑡𝑑0

0 𝑥0, respectively. With this choice, the tautological sheaf OF (1) has class 𝐻 − 𝑑𝐹.
Each of the coordinates 𝜌 ∈ {𝑡0, 𝑡1, 𝑥0, 𝑥1, 𝑦, 𝑧} corresponds to a torus invariant irreducible Weil

divisor 𝐷𝜌 in F whose class is as follows:

[𝐷𝑡0 ] = [𝐷𝑡1 ] = 𝐹, [𝐷𝑥0 ] = 𝐻 − 𝑑0𝐹, [𝐷𝑥1 ] = 𝐻 + (𝑑0 − 3𝑑)𝐹,

[𝐷𝑦] = 2(𝐻 − 𝑑𝐹), [𝐷𝑧] = 5(𝐻 − 𝑑𝐹).

Note that 𝐷𝑦 ∩ 𝐷𝑧 is a Hirzebruch surface F𝑒.

Proposition 1.1. 𝜔F(𝑑;𝑑0) � OF(𝑑;𝑑0) (−9𝐻 + (10𝑑 − 2)𝐹).

Proof. We have [𝐾F] = −[𝐷𝑡0 + 𝐷𝑡1 + 𝐷𝑥0 + 𝐷𝑥1 + 𝐷𝑦 + 𝐷𝑧] by [CLS11, Thm 8.2.3]. �
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Lemma 1.2. The intersection numbers on F(𝑑; 𝑑0) are

𝐻4 =
𝑑

2
, 𝐻3𝐹 =

1
10

, 𝐹2 = 0.

Proof. Clearly, 𝐹2 = 0 because any two distinct fibres are disjoint. Since the intersection 𝐷𝑡0 ∩ 𝐷𝑥0 ∩
𝐷𝑦 ∩ 𝐷𝑧 is a reduced smooth point, 𝐷𝑡0𝐷𝑥0𝐷𝑦𝐷𝑧 = 10𝐻3𝐹 = 1. Similarly, 𝐷𝑥0 ∩ 𝐷𝑥1 ∩ 𝐷𝑦 ∩ 𝐷𝑧 is
empty, so

𝐷𝑥0𝐷𝑥1𝐷𝑦𝐷𝑧 = 10𝐻4 + (10 · (−𝑑0 + 𝑑0 − 3𝑑) − 5 · 2𝑑 − 2 · 5𝑑)𝐻3𝐹 = 0.

Rearranging and substituting 𝐻3𝐹 = 1
10 gives 𝐻4 = 𝑑

2 . �

Proposition 1.3. The numerical divisor class 𝑎𝐻 + 𝑏𝐹 is

1. nef if and only if 𝑎 ≥ 0 and 𝑏 ≥ −𝑎 min(𝑑, 𝑑0);
2. ample if and only if 𝑎 > 0 and 𝑏 > −𝑎 min(𝑑, 𝑑0).

Proof. By [CLS11, Thms 6.3.12 and 6.3.13], 𝑎𝐻 +𝑏𝐹 is nef (resp. ample) if and only if its restriction to
any torus invariant irreducible curve is nonnegative (resp. positive). Torus invariant irreducible curves
on F are intersections of three of the divisors 𝐷𝜌.

The Proposition then follows from

(𝑎𝐻 + 𝑏𝐹)𝐷𝑡0𝐷𝑦𝐷𝑧 = 10𝑎𝐻3𝐹 = 𝑎,

(𝑎𝐻 + 𝑏𝐹)𝐷𝑥1𝐷𝑦𝐷𝑧 = 10(𝑎𝐻4 + (𝑏 − 𝑎(5𝑑 − 𝑑0)))𝐻3𝐹 = 𝑏 + 𝑎𝑑0,

(𝑎𝐻 + 𝑏𝐹)𝐷𝑥0𝐷𝑥1𝐷𝑦 = 2𝑎𝐻4 + 2(𝑏 − 4𝑎𝑑)𝐻3𝐹 = 1
5 (𝑏 + 𝑎𝑑).

The other triples do not add any extra conditions. �

The complete linear system |𝐹 | defines a toric fibration 𝑓 : F → P1 whose fibre is the weighted
projective space P(1, 1, 2, 5). The singular locus of F is the disjoint union of two torus invariant rational
curves, corresponding to the two isolated singularities of P(1, 1, 2, 5). These are the two sections:

𝔰2 = 𝐷𝑥0 ∩ 𝐷𝑥1 ∩ 𝐷𝑧 , 𝔰5 = 𝐷𝑥0 ∩ 𝐷𝑥1 ∩ 𝐷𝑦 . (1.2)

Indeed, in a neighbourhood of every point of 𝔰2 resp. 𝔰5, F is analytically isomorphic to the product of a
smooth 1-dimensional disc with the corresponding singularity of P(1, 1, 2, 5): a quotient singularity of
type 1

2 (1, 1, 1) resp. 1
5 (1, 1, 2).

In particular, F is Q-Gorenstein of index lcm(2, 5) = 10. Since F and 10𝐻 are Cartier, we may
consider the complete linear system |10(𝐻 − 𝑑𝐹) |.

1.2. Gorenstein regular simple fibrations

Definition 1.4. A Gorenstein regular simple fibration in (1, 2)-surfaces of type (𝑑, 𝑑0) is an element
𝑋 ∈ |10(𝐻−𝑑𝐹) | on F(𝑑; 𝑑0) with at worst canonical singularities. We sometimes denote 𝑋 ⊂ F(𝑑; 𝑑0)
by 𝑋 (𝑑; 𝑑0).

We abuse notation and write 𝑓 := 𝑓 |𝑋 : 𝑋 → P1. Each fibre of f is a hypersurface in a weighted
projective 3-space and therefore, 𝑅1 𝑓∗O𝑋 = 0. By the Leray spectral sequence, this implies that
𝑞1 (𝑋) = ℎ1 ( 𝑓∗O𝑋 ) = ℎ1(OP1 ) = 0. Therefore, X is regular.

The hypersurface X is defined by a polynomial of the form∑
𝑎0+𝑎1+2𝑎2+5𝑎5=10

𝑐𝑎0 ,𝑎1 ,𝑎2 (𝑡0, 𝑡1)𝑥
𝑎0
0 𝑥𝑎1

1 𝑦𝑎2 𝑧𝑎5 ,

https://doi.org/10.1017/fms.2023.41 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.41


6 S. Coughlan and R. Pignatelli

where 𝑐𝑎0 ,𝑎1 ,𝑎2 (𝑡0, 𝑡1) is a homogeneous polynomial whose degree is

deg 𝑐𝑎0 ,𝑎1 ,𝑎2 = −𝑎0 (𝑑 − 𝑑0) − 𝑎1 (𝑑0 − 2𝑑) = (𝑎0 + 𝑎1)𝑑 + (𝑎1 − 𝑎0)𝑒
2

. (1.3)

The choices we made in defining F and X imply that deg 𝑐0,0,0 = deg 𝑐0,0,5 = 0. That is, the
coefficients of 𝑧2 and 𝑦5 are constant. After scaling z, we may assume that 𝑐0,0,0 = 1 since otherwise,
X would contain 𝔰5. The singular locus of X would then be noncanonical, a contradiction. Similarly we
may scale y to ensure 𝑐0,0,5 = 1 since otherwise, X would have 𝔰2 as a noncanonical singular curve. Then,
by a coordinate change (completing the square), we make the coefficients of all monomials 𝑥𝑎0

0 𝑥𝑎1
1 𝑦𝑎2 𝑧

equal to zero. We are left with a polynomial of the form

𝑧2 + 𝑦5 +
∑

𝑎0+𝑎1+2𝑎2=10
𝑎2≠5

𝑐𝑎0 ,𝑎1 ,𝑎2 (𝑡0, 𝑡1)𝑥
𝑎0
0 𝑥𝑎1

1 𝑦𝑎2 . (1.4)

We proved that 𝑋 ∩ 𝔰2 = 𝑋 ∩ 𝔰5 = ∅. In particular, X is contained in the smooth locus of F, and
therefore, it is Gorenstein.

Remark 1.5. Note that 𝑋 (𝑑; 𝑑0) has an involution obtained by changing the sign of the variable z,
describing X as double cover of 𝐷𝑧 . The branch locus is the surface determined by the restriction of the
polynomial (1.4) to 𝐷𝑧 and the index 2 rational curve 𝔰2 considered as a subscheme of 𝐷𝑧 . Indeed, 𝐷𝑧

is a P(1, 1, 2)-bundle over P1 (see §4.2).

For fixed 𝑑, 𝑑0, the varieties 𝑋 (𝑑; 𝑑0) form a unirational family. The next result determines when this
family is not empty and the type of singularities of the general element in it. The proof is an exercise in
Newton polytopes that we postpone to §1.4.

Proposition 1.6. Gorenstein regular simple fibrations in (1, 2)-surfaces of type (𝑑, 𝑑0) exist if and
only if 𝑑0 ≥ 1

4𝑑. The singular locus of the general 𝑋 (𝑑; 𝑑0) is contained in the torus invariant section
𝔰0 := 𝐷𝑥1 ∩ 𝐷𝑦 ∩ 𝐷𝑧 . More precisely,

(a) X is nonsingular iff 𝑑 ≤ 𝑑0 ≤ 3
2𝑑 or 𝑑0 = 7

8𝑑;
(b) X has 8𝑑0 − 7𝑑 terminal singularities iff 7

8𝑑 < 𝑑0 < 𝑑;
(c) X has canonical singularities along 𝔰0 iff 1

4𝑑 ≤ 𝑑0 < 7
8𝑑. �

Remark 1.7. Since 1
4𝑑 ≤ 𝑑0 ≤ 3

2𝑑, we see that neither d nor 𝑑0 may be negative.

By Proposition 1.1 and the adjunction formula, the canonical divisor class of 𝑋 (𝑑; 𝑑0) is

𝐾𝑋 = (𝐾F + 𝑋) |𝑋 = (𝐻 − 2𝐹) |𝑋 . (1.5)

Lemma 1.8. Suppose 𝑋 (𝑑; 𝑑0) satisfies the conditions of Proposition 1.6. Then,

1. 𝐾𝑋 is ample if and only if min(𝑑, 𝑑0) ≥ 3;
2. 𝐾𝑋 is nef if and only if min(𝑑, 𝑑0) ≥ 2.

Proof. We prove part 1 since part 2 is similar. By (1.5), 𝐾𝑋 = (𝐻 − 2𝐹) |𝑋 . By Proposition 1.3, if
min(𝑑, 𝑑0) ≥ 3, then 𝐻 − 2𝐹 is ample on F(𝑑; 𝑑0), and therefore, its restriction to X is ample too.

Conversely, consider the curve Γ := 𝑋 ∩ 𝐷𝑥0 ∩ 𝐷𝑥1 which is contained in X. Then, 𝐾𝑋Γ = 𝑑 − 2,
so 𝑑 ≤ 2 implies that 𝐾𝑋 is not ample. Finally, if 𝑑0 ≤ 2 and 𝑑 ≥ 3, then 𝑑0 < 7

8𝑑, and so 𝔰0 ⊂ 𝑋 by
Proposition 1.6. Since (𝐻 − 2𝐹)𝔰0 = 𝑑0 − 2, we are done. �

We now examine the canonical map of X. Let F𝑒 be the Hirzebruch surface with fibre l and positive
section 𝛿 with 𝛿2 = 𝑒. The class of the negative section is 𝛿 − 𝑒𝑙.

Proposition 1.9. Suppose min(𝑑, 𝑑0) ≥ 3. Then, the canonical map of 𝑋 (𝑑, 𝑑0) is a rational map whose
image is the embedding of the Hirzebruch surface F𝑒, 𝑒 = 3𝑑 − 2𝑑0 via the linear system | (𝑑0 − 2)𝑙 + 𝛿 |.
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Proof. By (1.5) and the vanishing of 𝐻1 (F,OF (−𝑋 + 𝐻 − 2𝐹)) = 𝐻1 (F, 𝐾F), the canonical system of
X is spanned by the following 3𝑑 − 2 monomials:

𝑡𝑑0−2
0 𝑥0, . . . , 𝑡

𝑑0−2
1 𝑥0, 𝑡3𝑑−𝑑0−2

0 𝑥1, . . . , 𝑡
3𝑑−𝑑0−2
1 𝑥1.

Thus, X is mapped to the image of the toric variety 𝐷𝑦 ∩ 𝐷𝑧 � F𝑒 in P3𝑑−3. This is an embedding of
F𝑒 because 𝑑0 ≥ 3. �

Remark 1.10. The base locus of |𝐾𝑋 | is the rational curve Γ := 𝑋 ∩ 𝐷𝑥0 ∩ 𝐷𝑥1 .

Thus, almost all (excluding a few degenerate cases with d, 𝑑0 small, see Remark 1.3) Gorenstein
regular simple fibrations in (1, 2)-surfaces are canonical threefolds with canonical image a Hirzebruch
surface. For each admissible pair 𝑑, 𝑑0, we have a unirational family of canonical threefolds that are all
on the Noether line, as follows.

Theorem 1.11. Gorenstein regular simple fibrations in (1, 2)-surfaces of type (𝑑, 𝑑0) are canonical
3-folds if and only if min(𝑑, 𝑑0) ≥ 3. In these cases,

𝑝𝑔 = 3𝑑 − 2, 𝑞1 = 𝑞2 = 0, 𝐾3
𝑋 = 4𝑑 − 6 =

4𝑝𝑔 − 10
3

.

Their canonical image is the Hirzebruch surface F𝑒, 𝑒 = 3𝑑 − 2𝑑0. They form a unirational family that
is not empty if and only if 𝑒 ≤ 5

2𝑑.
The singular locus of the general 𝑋 (𝑑; 𝑑0) is contained in the torus invariant section 𝔰0 := 𝐷𝑥1 ∩

𝐷𝑦 ∩ 𝐷𝑧 and more precisely it is

1. empty if 𝑒 ≤ 𝑑 or 𝑒 = 5
4𝑑;

2. 5𝑑 − 4𝑒 terminal singular points if 𝑑 < 𝑒 < 5
4𝑑;

3. 𝔰0 if 5
4𝑑 < 𝑒 ≤ 5

2𝑑.

Proof. Most of the statement follows by Lemma 1.8, Proposition 1.9 and Proposition 1.6, reformulating
the inequalities in Proposition 1.6 in terms of e (instead of 𝑑0) and d. It remains to prove the given
formulas for the invariants.

We already showed that 𝑝𝑔 = 3𝑑 − 2 and 𝑞1 = 0. Since the Leray spectral sequence of the direct
image of O𝑋 degenerates at page 2, we have ℎ2 (O𝑋 ) = ℎ0 (𝑅2 𝑓∗O𝑋 ). By Grothendieck duality,

𝑅2 𝑓∗O𝑋 � 𝑓∗O𝑋 (𝐾𝑋 + 2𝐹)∨ � 𝑓∗O𝑋 (𝐻)∨ � OP1 (−𝑑0) ⊕ OP1 (𝑑0 − 3𝑑),

and since 3𝑑 > 𝑑0 > 0, we get 𝑞2 = 0. Finally, 𝐾3
𝑋 = 𝑋 (𝐻−2𝐹)3 = 10(𝐻4 − (𝑑 +6)𝐻3𝐹) = 4𝑑−6. �

1.3. Simple fibrations with 𝐾𝑋 nef but not ample

By Proposition 1.6, there are a small number of 𝑋 (𝑑; 𝑑0) with min(𝑑0, 𝑑) = 2 which still have at worst
canonical singularities. The complete list is 𝑋 (2; 3) and 𝑋 (𝑑; 2) for 𝑑 = 2, . . . , 8. In all of these cases,
𝐾𝑋 is nef and big (big because 𝐾3

𝑋 > 0) and the invariants are the same as those of Theorem 1.11, so
these also lie on the Noether line. Below, we discuss these cases in more detail, first the case 𝑑 = 2 and
then the cases 𝑑 ≥ 3.

Example 1.12 (see [CH17, Remark 2.3]). The canonical image of 𝑋 (2; 3) is F0 (i.e., P1 × P1), and the
canonical model is the complete intersection 𝑋2,10 ⊂ P(14, 2, 5), where the quadric equation does not
contain the variable of weight 2. We see that 𝑋 (2; 3) → 𝑋2,10 contracts the base curve Γ = 𝑋∩𝐷𝑥0 ∩𝐷𝑥1

of |𝐾𝑋 | to a 3-fold ordinary double point at (0, 0, 0, 0,−1, 1). The other small resolution gives a second
simple fibration in (1, 2)-surfaces, corresponding to the other ruling on F0. The two fibrations are related
by the Atiyah flop. The canonical model of 𝑋 (2; 2) is still 𝑋2,10, but now the rank of the quadric has
dropped to three, and X has a curve of singularities.
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Example 1.13. For each 𝑋 (𝑑; 2) with 𝑑 = 3, . . . , 8, the image of the canonical map is the cone F̄𝑒 over
a rational normal curve of degree 𝑒 = 3𝑑 − 4. Indeed, the canonical model of 𝑋 (𝑑; 2) is obtained by
contracting the curve 𝔰0 to an isolated canonical singularity lying over the vertex of F̄𝑒.

The varieties 𝑋 (2; 2) and 𝑋 (7; 2) appeared recently in the literature. More precisely, a hypersurface
in a weighted projective space birational to them is in [CJL20, Table 10], respectively in line 7 and
line 11. The other examples seem to be new. The variety 𝑋 (8; 2) is a canonical 3-fold with 𝑝𝑔 = 22 and
𝐾3 = 26 with singular canonical image. This shows that the bound 𝑝𝑔 ≥ 23 in [HZ22b, Theorem 1.2,
(3)] is optimal, a question left open there.

1.4. Proof of Proposition 1.6

We assume throughout that X is general. If 𝑑0 ≥ 𝑑, by (1.3), all 𝑐𝑎0 ,𝑎1 ,𝑎2 have nonnegative degree.
Thus, X is a general element of a base point free linear system contained in the smooth part of F, and
therefore, X is smooth by the classical Bertini Theorem.

From now on, we assume that 𝑑0 < 𝑑 and examine the Newton polytope of X. The base locus of |𝑋 |
is 𝔰0. Indeed, it follows from (1.3) that deg 𝑐10,0,0 < 0 and deg 𝑐0,10,0 ≥ 0. In particular, any singularities
of X lie on 𝔰0. In fact, by (1.3), we have deg 𝑐𝑎0 ,0,𝑎2 < 0 for all 𝑎0, 𝑎2. Thus, the polynomial (1.4) has
the form

𝑧2 + 𝑦5 + 𝑥1 (𝑐9,1,0 (𝑡0, 𝑡1)𝑥9
0 + 𝑔(𝑡0, 𝑡1, 𝑥0, 𝑥1, 𝑦)),

where g vanishes along 𝔰0.
First, suppose that 𝑑0 ≥ 7

8𝑑, or equivalently, deg 𝑐9,1,0 ≥ 0. By generality, 𝑐9,1,0 has distinct roots,
and X has deg 𝑐9,1,0 = 8𝑑0 − 7𝑑 ≥ 0 isolated singular points on 𝔰0 that are local analytically of the
form (𝑡𝑥1 + 𝑧2 + 𝑦5 = 0). These are terminal singularities (cf. [KM98, Corollary 5.38]). Notice that if
𝑑0 = 7

8𝑑, then by generality, 𝑐9,1,0 is a nonzero constant, and X is smooth.
Assume now that 𝑑0 < 7

8𝑑. Then, the polynomial (1.4) has the form

𝑧2 + 𝑦5 + 𝑥1 (𝑐8,2,0𝑥
8
0𝑥1 + 𝑐7,1,1𝑥

7
0𝑦 + 𝑐7,3,0𝑥

7
0𝑥

2
1 + 𝑐6,2,1𝑥

6
0𝑥1𝑦 + 𝑐5,1,2𝑥

5
0𝑦

2 + 𝑔),

where g vanishes at 𝔰0 with multiplicity at least 3. So, X is singular along 𝔰0.
By [Rei80, §1.14], if the nonisolated singularities are canonical, then the general fibre 𝑋𝑡 of 𝑋 → P1

has Du Val singularities, and the special fibres have at worst elliptic singularities (dissident points).
Conversely, if the general fibre has Du Val singularities, then X has cDV singularities there and therefore
is canonical (see e.g., [KM98, §5.3]). For the dissident points, we will show directly that there is a
crepant blowup 𝑋 ′ → 𝑋 which has cDV singularities [Rei87, §3].

The following Lemma gives a necessary and sufficient condition for 𝑋𝑡 to have at worst Du Val
singularities.

Lemma 1.14. [Rei87, §4.6, §4.9] Let 0 ∈ 𝑆 : (𝐹 = 0) ⊂ A3 be an isolated hypersurface singularity.
Then, 0 ∈ 𝑆 is Du Val if and only if in any analytic coordinate system, F has monomials of weight < 1
with respect to each of the weights 1

2 (1, 1, 0), 1
3 (1, 1, 1), 1

4 (2, 1, 1), 1
6 (3, 2, 1).

We next prove that 𝑑0 ≥ 𝑑
4 . Let x = 𝑥1/𝑥0, y = 𝑦/𝑥2

0 and z = 𝑧/𝑥5
0 be local fibre coordinates near the

point 𝔰0 ∩ 𝑋𝑡 . Considering x, y, z as an analytic coordinate system with weights 1
4 (1, 1, 2), we see that

Lemma 1.14 ensures there is a nonvanishing 𝑐𝑎0 ,𝑎1 ,𝑎2 with 𝑎1 + 𝑎2 < 4. Since 𝑎0 + 𝑎1 + 2𝑎2 = 10, that is
equivalent to 𝑎0 − 𝑎1 > 2 and then, by a parity argument, to 𝑎0 − 𝑎1 ≥ 4. Since 𝑎0 + 𝑎1 ≤ 10, it follows
from (1.3) that 4𝑑0 − 𝑑 = 10𝑑−4𝑒

2 ≥ deg 𝑐𝑎0 ,𝑎1 ,𝑎2 ≥ 0.
Finally, we prove that if 𝑑0 ≥ 𝑑

4 , then the general X has canonical singularities. To do this, we
apply Lemma 1.14 with all permutations of the weights on the local fibre coordinates. We note that
for general 𝑋𝑡 , the local equation always contains the monomials z2, y5 and x3, the latter because
deg 𝑐7,3,0 = 4𝑑0 − 𝑑 ≥ 0. The reader can easily check that for all the prescribed weights, at least one of
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these three monomials has weight < 1. Thus, if 𝑐7,3,0 does not vanish at t, then X has cDV singularities
there.

By generality, 𝑐7,3,0 has 4𝑑0 − 𝑑 distinct zeros. Over each of these, X possibly has a dissident point,
locally given by at worst z2 + y5 + 𝑡x3 = 0. This is not cDV, but the relevant affine chart of the crepant
blowup is given by

z = 𝑡5z′, y = 𝑡2y′, x = 𝑡3x′.

The blown-up variety 𝑋 ′ is defined locally by z′2 +y′5 +x′3 = 0, which is then cDV. Hence, the dissident
points of X are also canonical. �

1.5. Mori Dream Spaces

In this section, we prove that the general 𝑋 (𝑑; 𝑑0) is a Mori Dream Space when 𝑑 ≤ 𝑑0. Here, by
‘general’, we mean that 𝑋 (𝑑; 𝑑0) is an element of a suitable dense open subset of the linear system
|10(𝐻 − 𝑑𝐹) |.

By definition [AD+15, Definition 3.3.4.1], a Mori Dream Space is an irreducible normal projective
variety with finitely generated divisor class group and finitely generated Cox ring. The divisor class
group Cl(·) is the group of linear equivalence classes of Weil divisors on the variety. In particular, it
coincides with the Picard group Pic(·) when the variety is smooth.

The main point is proving the following.

Proposition 1.15. If 𝑑 ≤ 𝑑0 and X is general, then the natural map

Cl(F(𝑑; 𝑑0)) → Cl(𝑋 (𝑑; 𝑑0))

is an isomorphism.

Proof. Note that |10(𝐻 − 𝑑𝐹) | is nef but not ample by Proposition 1.3. In particular, we cannot apply
directly [RS06, Theorem 1].

We consider a desingularisation F̃→ F of the singular locus, the curves 𝔰2 and 𝔰5, of F. Let E be the
exceptional locus.

The general X is a smooth 3-fold that does not intersect 𝔰2 or 𝔰5, so its pull-back is a divisor 𝑋̃ in F̃
mapped isomorphically to X. The divisor 𝑋̃ is big since 𝑋̃4 = 𝑋4 = 104 (𝐻4 − 4𝑑𝐻3𝐹) = 103𝑑 > 0. By
the first lines of the proof of Proposition 1.6, since we assumed 𝑑 ≥ 𝑑0, the linear system |10(𝐻 − 𝑑𝐹) |
is base point free and therefore | 𝑋̃ | is base point free as well.

We factor the restriction map 𝜌 : Pic(F̃) → Pic( 𝑋̃) through Pic(F̃ \ 𝐸) as follows:

Pic(F̃)
𝜌1−−→ Pic(F̃ \ 𝐸)

𝜌2−−→ Pic( 𝑋̃).

Following [RS06, Section 1], we have isomorphisms

Cl(F) � Pic(F̃ \ 𝐸) Cl(𝑋) � Pic(𝑋) = Pic( 𝑋̃),

so our claim is that 𝜌2 is an isomorphism.
By a standard argument (detailed in [RS06, Section 1]), 𝜌1 is surjective with kernel isomorphic to

the free abelian group generated by the classes of the irreducible divisorial components of E.
Since 𝑋̃ is big and base point free (and dim F̃ = 4 ≥ 3), we can apply the Grothendieck–Lefschetz

Theorem for big linear systems [RS06, Theorem 2].
Part a) of the G–L Theorem shows that the kernel of 𝜌 is generated by the classes of the irreducible

divisors of F̃ contracted to a point by the map induced by the linear system | 𝑋̃ |. They are exactly the
divisors supported on E, since no irreducible Weil divisor of F is contracted to a point by |10(𝐻 − 𝑑𝐹) |.
So, ker 𝜌 = ker 𝜌1 which, since 𝜌1 is surjective, implies that 𝜌2 is injective.
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Finally, since dim F̃ = 4, part c) of the G–L Theorem shows that in our situation, 𝜌 is surjective, and
therefore 𝜌2 is surjective too. �

When the pull-back map Cl(F(𝑑; 𝑑0)) → Cl(𝑋 (𝑑; 𝑑0)) is an isomorphism, [AD+15, Corollary
4.1.1.5] (see also [AL12]) can be applied, giving directly the following.

Theorem 1.16. If 𝑑 ≤ 𝑑0 and X is general, defined by a polynomial f as in (1.4), then the Cox ring of X is

C[𝑡0, 𝑡1, 𝑥0, 𝑥1, 𝑦, 𝑧]/ 𝑓 .

In particular, X is a Mori Dream Space.

Proof. Using the notation of [AD+15], let 𝑋̄ be the affine hypersurface { 𝑓 = 0} in C6 and let 𝑋̂ =
𝑋̄ \ {𝑡0 = 𝑡1 = 0} ∪ {𝑥0 = 𝑥1 = 𝑦 = 𝑧 = 0} be the subset of 𝑋̄ obtained by removing the irrelevant locus.
The only relevant component of 𝑋̄ \ 𝑋̂ is {𝑧2 + 𝑦5 = 𝑡0 = 𝑡1 = 0}, which has codimension 2 in 𝑋̄ . Hence,
the last assumption of [AD+15, Corollary 4.1.1.5] is fulfilled. �

2. Deformations of threefolds on the Noether line

In this section, we study deformations of the canonical threefolds constructed in §1. By Theorem 1.11,
we have canonical threefolds 𝑋 (𝑑; 𝑑0) on the Noether line for every 𝑑, 𝑑0 with 𝑑, 𝑑0 ≥ 3, 0 ≤ 𝑒 ≤ 5

2𝑑.
Since 𝑝𝑔 = 3𝑑−2 is invariant under deformation, in the rest of this section we will consider 𝑑 ≥ 3 fixed.

The projection onto coordinates (𝑡0, 𝑡1; 𝑥0, 𝑥1) defines a rational map F(𝑑; 𝑑0) � F𝑒 whose restric-
tion to X is the canonical map. The standard degeneration F𝑒 � F𝑒+2 lifts easily to degenerations
F(𝑑; 𝑑0 + 1) � F(𝑑; 𝑑0).

We start by showing that the threefolds with minimal 𝑒 ≤ 1, that is 𝑋
(
𝑑;

⌊ 3𝑑
2
⌋ )

, form a dense subset
of an irreducible component of the moduli space.

We collect some preliminary vanishing results in the following.

Lemma 2.1. For every integer 𝑛 ≥ 0, we have

1. for all 𝑞 ≠ 0, ℎ𝑞 (OF (𝑛𝐹)) = 0;
2. for all 𝑛 ≤ 𝑑0 + 1, ℎ1 (OF (𝐻 − 𝑛𝐹)) = 0;
3. if 𝑒 ≤ 𝑑, then ℎ𝑞 (OF (𝑛(𝐻 − 𝑑𝐹))) = 0 for all 𝑞 ≠ 0;
4. if 𝑒 ≤ 𝑑, then 𝑛′ > 0 implies ℎ𝑞 (OF (−𝑛′(𝐻 − 𝑑𝐹) − 𝑛𝐹)) = 0 for all 𝑞 ≠ 4.

Proof. (1) This follows directly from the Demazure Vanishing Theorem [CLS11, Thm 9.2.3] since F is
nef.

(2) If 𝑛 ≤ 𝑑0 + 1, then 𝑛 − 1 ≤ 𝑑0 ≤ 3𝑑 − 𝑑0. Thus, 𝐻0(OF (𝐻 − (𝑛 − 1)𝐹)) contains multiples of
both 𝑥0 and 𝑥1. Hence, the restriction to a fibre 𝐻0(OF (𝐻 − (𝑛 − 1)𝐹)) → 𝐻0(OP(1,1,2,5) (1)) � C2

is surjective. Suppose that 𝐻1(OF (𝐻 − 𝑛0𝐹)) vanishes for some 𝑛0 ≥ 𝑛. Then, the claim follows by
recursively applying the cohomology exact sequence associated to the exact sequence

0 → OF (𝐻 − 𝑛𝐹) → OF (𝐻 − (𝑛 − 1)𝐹) → OP(1,1,2,5) (1) → 0.

Indeed, for 𝑛 ≤ min(𝑑, 𝑑0), we have 𝐻 − 𝑛𝐹 is nef by Proposition 1.3, and then ℎ1 (OF (𝐻 − 𝑛𝐹)) = 0
by the Demazure Vanishing Theorem.

(3) By Proposition 1.3, if 𝑒 ≤ 𝑑, then 𝐻 − 𝑑𝐹 is nef. The statement follows again by the Demazure
Vanishing Theorem.

(4) This follows by Batyrev–Borisov vanishing [CLS11, Thm 9.2.7]. Indeed, since 𝑒 ≤ 𝑑, the divisor
𝑁 := 𝑛′(𝐻 − 𝑑𝐹) + 𝑛𝐹 is a sum of nef divisors and therefore nef. We only need then to show that, for a
divisor 𝐷 =

∑
𝑎𝜌𝐷𝜌 in the class of N, the polytope

𝑃𝐷 := {𝑚 ∈ 𝑀R | 〈𝑚, 𝑢𝜌〉 ≥ −𝑎𝜌} ⊂ 𝑀R � R4
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has an internal point. We choose 𝐷 = 𝑛′

2 𝐷𝑦 + 𝑛𝐷𝑡1 . Recall that 𝑀R ⊂ R6 is the orthogonal of the two
bottom rows of (1.1) and choose 0 < 𝜖 � 1. A direct computation shows that 𝜖 (𝑑, 𝑑, 1, 1,−6, 2) is an
internal point of 𝑃𝐷 . �

Now, we can prove the announced result.

Proposition 2.2. The threefolds 𝑋
(
𝑑;

⌊ 3𝑑
2
⌋ )

form a dense open subset of an irreducible component of
the moduli space.

We need to prove that every small deformation of a smooth 𝑋
(
𝑑;

⌊ 3𝑑
2
⌋ )

is still an 𝑋
(
𝑑;

⌊ 3𝑑
2
⌋ )

.
Looking at the exact sequence defining the normal bundle of X in F

0 → 𝑇𝑋 → 𝑇F |𝑋 → 𝑁𝑋 |F → 0,

we see that it suffices to prove 𝐻1(𝑇F |𝑋 ) = 0, since then the induced map 𝐻0(𝑁𝑋 |F) → 𝐻1(𝑇𝑋 ) is
surjective. So, Proposition 2.2 is a consequence of the following.

Lemma 2.3. If 𝑑0 =
⌊ 3𝑑

2
⌋
, then 𝐻1(𝑇F |𝑋 ) = 0.

Proof. By the restriction exact sequence

0 → 𝑇F (−𝑋) → 𝑇F → 𝑇F |𝑋 → 0,

we need only prove that 𝐻1(𝑇F) and 𝐻2(𝑇F (−𝑋)) vanish.
Consider the cohomology exact sequence associated to the dual of the Euler sequence (see [CLS11,

Thm 8.1.6])

0 → O2
F →

⊕
𝜌

OF (𝐷𝜌) → 𝑇F → 0. (2.1)

We use Lemma 2.1. By part (1), ℎ2(OF) = ℎ1 (OF (𝐷𝑡 𝑗 )) = 0; by part (3), ℎ1 (OF (𝐷𝑦) =
ℎ1 (OF (𝐷𝑧)) = 0; by part (2), ℎ1 (OF (𝐷𝑥0 )) = 0 and, since 𝑑0 =

⌊ 3𝑑
2
⌋
⇒ 3𝑑 − 𝑑0 ≤ 𝑑0 + 1, also

ℎ1 (OF (𝐷𝑥1 )) = 0. Then, ℎ1 (𝑇F) = 0.
Consider now the tensor product of the sequence (2.1) by OF (−𝑋). By Lemma 2.1, part (4),

ℎ3 (OF (−𝑋)) = ℎ2 (OF (𝐷𝑥0 − 𝑋) = ℎ2 (OF (𝐷𝑥1 − 𝑋)) = ℎ2 (OF (𝐷𝑦 − 𝑋) = ℎ2 (OF (𝐷𝑧 − 𝑋)) = 0;
moreover, also ℎ2 (OF (−𝑋)) = 0, and then by

0 → OF (−𝑋) → OF (𝐷𝑡 𝑗 − 𝑋) → OP(1,1,2,5) (−10) → 0

since ([Dol82, 1.4.1]) ℎ2 (OP(1,1,2,5) (−10)) = 0 also ℎ2 (OF (𝐷𝑡 𝑗 − 𝑋)) = 0. Then, ℎ2 (𝑇F (−𝑋)) = 0. �

Now we try to lift the degenerations F𝑒−2 � F𝑒 to degenerations 𝑋 (𝑑; 𝑑0 + 1) � 𝑋 (𝑑; 𝑑0) by the
argument of [Pig12, Remark 1.3]. We first construct a degeneration F(𝑑; 𝑑0 + 1) � F(𝑑; 𝑑0). Assume
then 𝑑 <

⌊ 3𝑑
2
⌋

(𝑒 ≥ 2) and let F̃ be the toric variety with weight matrix

����
𝑡0 𝑡1 𝑥0 𝑥0 𝑥1 𝑦 𝑧

1 1 𝑑 − 𝑑0 𝑑 − 𝑑0 − 1 𝑑0 − 2𝑑 + 1 0 0
0 0 1 1 1 2 5

���	
and irrelevant ideal (𝑡0, 𝑡1) ∩ (𝑥0, 𝑥0, 𝑥1, 𝑦, 𝑧).

Consider the family F̃ × Λ ⊃ F → Λ defined by

𝜆𝑥0 = 𝑡0𝑥0 − 𝑡𝑒−1
1 𝑥1 (2.2)

with parameter 𝜆 ∈ Λ, where Λ is a disc around 0 ∈ C.
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Set as usual F𝜆 for the fibre over 𝜆 ∈ Λ. Then, for 𝜆 ≠ 0, the equation (2.2) eliminates 𝑥0, and
thus, the fibre F𝜆 is isomorphic to F(𝑑; 𝑑0 + 1). On the contrary, F0 � F(𝑑; 𝑑0) with ‘coordinates’
𝑡0, 𝑡1, 𝑥0, 𝑥1 := 𝑥1

𝑡0
= 𝑥0

𝑡𝑒−1
1

, 𝑦, 𝑧.

We choose generators 𝐹̃ and 𝐻̃ of Cl(F̃) defined, respectively, by 𝑡0 and 𝑡𝑑0+1
0 𝑥0. Notice that the

restrictions of 𝐻̃ and 𝐹̃ to F𝜆 � F(𝑑; ∗) give, respectively, the classes H and F. This is obvious for 𝐹̃
and for 𝜆 ≠ 0. For the restriction of 𝐻̃ to F0 � F(𝑑; 𝑑0), it follows since the divisors of 𝑡𝑑0 𝑥0 and 𝑡𝑑+1

0 𝑥0
belong to the same class.

Then, for every 𝑋̃ ∈ |10(𝐻̃ − 𝑑𝐹̃) | on F̃, the flat family

( 𝑋̃ × Λ) ∩ F =: X → Λ

defines a degeneration 𝑋 (𝑑; 𝑑0 + 1) � 𝑋 (𝑑; 𝑑0) if all fibres have canonical singularities. This works
very well when 𝑑0 is big enough (i.e., when e is small enough).

Proposition 2.4. If 𝑒 ≤ 𝑑, then every 𝑋 (𝑑; 𝑑0) lies in the closure of the family of the 𝑋 (𝑑;
⌊ 3𝑑

2
⌋
).

Proof. Arguing as in the previous section, we may assume that 𝑋̃ is defined by a polynomial of the form

𝑧2 +
∑

𝑎̃0+𝑎0+𝑎1+2𝑎2=10
𝑐𝑎̃0 ,𝑎0 ,𝑎1 ,𝑎2 (𝑡0, 𝑡1) (𝑥0) 𝑎̃0𝑥𝑎0

0 𝑥𝑎1
1 𝑦𝑎2

analogous to (1.4). Intersecting with F0 � F(𝑑; 𝑑0), we can substitute 𝑥0 = 𝑡𝑒−1
1 𝑥1 and 𝑥1 = 𝑡0𝑥1 to get

a polynomial of the form 𝑧2 +
∑

𝑎̃0+𝑎̃1+2𝑎2=10 𝑐𝑎̃0 ,𝑎̃1 ,𝑎2 (𝑥0) 𝑎̃0 (𝑥1) 𝑎̃1 𝑦𝑎2 with

𝑐𝑎̃0 ,𝑎̃1 ,𝑎2 =
∑

𝑎0+𝑎1=𝑎̃1

𝑡𝑎1
0 𝑡𝑎0 (𝑒−1)

1 𝑐𝑎̃0 ,𝑎0 ,𝑎1 ,𝑎2 .

Recall that, by (1.3), deg 𝑐𝑎̃0 ,𝑎̃1 ,𝑎2 = 𝑎̃1

(
𝑑+𝑒

2

)
+ 𝑎̃0

(
𝑑−𝑒

2

)
, so

deg 𝑐𝑎̃0 ,𝑎̃1 ,𝑎2 − 𝑎̃1𝑒 = (𝑎̃0 + 𝑎̃1)
(

𝑑−𝑒
2

)
.

Then, by the assumption 𝑒 ≤ 𝑑, it follows that deg 𝑐𝑎̃0 ,𝑎̃1 ,𝑎2 ≥ 𝑎̃1𝑒. Since every homogeneous polynomial
in C[𝑡0, 𝑡1] of degree ≥ 𝑎̃1𝑒 belongs to the ideal (𝑡0, 𝑡𝑒−1

1 ) 𝑎̃1 , it follows that the polynomial of X0
in F(𝑑; 𝑑0) may assume every possible value of (1.4). Hence, every 𝑋 (𝑑; 𝑑0) can be deformed to a
𝑋 (𝑑; 𝑑0 + 1). �

The condition 𝑒 ≤ 𝑑 is necessary in the previous proof to ensure that the scrollar deformations
deform every 𝑋 (𝑑, 𝑑0) (𝑑0 ≠ � 3𝑑

2 �) to some 𝑋 (𝑑, 𝑑0 + 1). For 𝑒 > 𝑑, the situation looks more tricky,
and it seems that we have more components.

This, however, includes almost all smooth threefolds; by Proposition 1.6, we only miss those with
5𝑑 = 4𝑒 – that is, 7𝑑 = 8𝑑0. In fact, they belong to a different component (see the forthcoming
Theorem 5.4).

3. On P(𝑎1, . . . , 𝑎𝑟 )-bundles

We develop some foundations for weighted P𝑟 -bundles over a nonsingular base B, generalizing the work
of Mullet ([Mul09]). Such bundles can be constructed by taking relative Proj of a sheaf S of graded
O𝐵-algebras. We do not assume that S is generated in degree 1.
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3.1. Weighted symmetric algebras

Definition 3.1. Let B be an algebraic variety, 𝑎𝑖 positive integers. A weighted symmetric algebra S on
B with weights (𝑎1, . . . , 𝑎𝑛) is a sheaf of graded O𝐵-algebras S :=

⊕
𝑑≥0 S𝑑 such that S0 � O𝐵 and B

is covered by open sets U with the property

S |𝑈 � O𝑈 [𝑥1, . . . , 𝑥𝑛], (3.1)

where O𝑈 [𝑥1, . . . , 𝑥𝑛] is graded by deg 𝑥𝑖 = 𝑎𝑖 . We sometimes use the shorthand notation 𝑎𝑟 to denote
a repeated r times.

Example 3.2. If E is a locally free sheaf on B of rank r, then Sym(E) is a weighted symmetric algebra
with weights (1𝑟 ).

The inclusion S1 ⊂ S induces an injective morphism of sheaves of algebras Sym(S1) → S , which is
an isomorphism if and only if 𝑎𝑖 = 1 for all i. Therefore, the weighted symmetric algebras with weights
(1𝑟 ) are exactly the usual symmetric algebras Sym(E), where E is a locally free sheaf of rank r on B.
Similarly, all weighted symmetric algebras with weights (𝑎𝑟 ) are isomorphic to some Sym(E) up to
changing the grading as follows.

Example 3.3. Let a be a positive integer. We define Sym(𝑎) (E) =
⊕

𝑑≥0 Sym(𝑎) (E)𝑑 , where

Sym(𝑎) (E)𝑑 �
{

Sym(E)𝑘 if 𝑑 = 𝑘𝑎

0 otherwise.

The algebra structure is inherited from the natural isomorphism with Sym(E).
If we take two weighted symmetric algebras S and S ′ with respective weights (𝑎1, . . . , 𝑎𝑚) and

(𝑎′1, . . . , 𝑎
′
𝑛), then S ⊗O𝐵 S ′ has a natural structure of weighted symmetric algebra with weights

(𝑎1, . . . 𝑎𝑚, 𝑎′1, . . . , 𝑎
′
𝑛). This leads us to the following definition.

Definition 3.4. Choose positive integers 𝑎1 < 𝑎2 < · · · < 𝑎𝑛 and locally free sheaves E𝑎1 , . . . , E𝑎𝑛 over
B. Then, we define the associated free weighted symmetric algebra

wSym𝑎1 ,...,𝑎𝑛
(E𝑎1 , · · · , E𝑎𝑛 ) := (Sym(𝑎1) E𝑎1) ⊗O𝐵 · · · ⊗O𝐵 (Sym(𝑎𝑛) E𝑎𝑛 )

whose weights are (𝑎𝑟𝑎1
1 , . . . , 𝑎

𝑟𝑎𝑛
𝑛 ), where 𝑟𝑎𝑖 = rank E𝑎𝑖 .

To consider more general weighted symmetric algebras, we will need the following

Definition 3.5. Let S be a weighted symmetric algebra. For a nonnegative integer 𝜏, we define the
truncated subalgebra S [𝜏] as the sheaf of subalgebras locally generated by 1 and {𝑥 𝑗 | deg 𝑥 𝑗 ≤ 𝜏} as
an O𝑈 -algebra (see Definition 3.1 for notation).

Example 3.6. If S is a weighted symmetric algebra with weights 𝑎1 < 𝑎2 < . . . < 𝑎𝑛, then S [0] = O𝐵,
S [𝜏] = S if and only if 𝜏 ≥ 𝑎𝑛.

Example 3.7. If S is a weighted symmetric algebra with weights (𝑎𝑟 ), then S [𝜏] = S if 𝜏 ≥ 𝑎, whereas
S [𝜏] = S0 � O𝐵 if 𝜏 < 𝑎.

Example 3.8. Since we assumed that 𝑎𝑖 < 𝑎𝑖+1 in Def. 3.4, we have

wSym𝑎1 ,...,𝑎𝑛
(E𝑎1 , · · · , E𝑎𝑛 ) [𝑎𝑖] = wSym𝑎1 ,...,𝑎𝑖

(E𝑎1 , · · · , E𝑎𝑖 ).

More generally, if S is a weighted symmetric algebra with weights (𝑎𝑟1
1 , . . . , 𝑎𝑟𝑛

𝑛 ), where 𝑎1 < · · · <
𝑎𝑛, then S [𝜏] is a weighted symmetric algebra with weights (𝑎𝑟1

1 , . . . , 𝑎𝑟𝑡
𝑡 ), where 𝑎𝑡 = max{𝑎 𝑗 |

𝑎 𝑗 ≤ 𝜏}.
Truncation enables us to define an analogue of the sheaves E𝑎 𝑗 for any weighted symmetric algebra.
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Definition 3.9. Let S be a weighted symmetric algebra with weights (𝑎𝑟1
1 , . . . , 𝑎𝑟𝑛

𝑛 ), where 𝑎1 < · · · <
𝑎𝑛. For every 1 ≤ 𝑗 ≤ 𝑛, the characteristic sheaf of degree 𝑎 𝑗 is the cokernel E𝑎 𝑗 (S) of the natural
inclusion

𝜎𝑎 𝑗 : S [𝑎 𝑗 − 1]𝑎 𝑗 ↩→ S𝑎 𝑗 .

Since S |𝑈 � O𝑈 [𝑥1, . . . , 𝑥𝑟 ], this is a locally free sheaf of rank 𝑟 𝑗 . We denote the projection maps by
𝜖𝑎 𝑗 : S𝑎 𝑗 → E𝑎 𝑗 (S).

Remark 3.10. A weighted symmetric algebra with weights (𝑎𝑟1
1 , . . . , 𝑎𝑟𝑛

𝑛 ) is free (see Definition 3.4) of
the form wSym𝑎1 ,...,𝑎𝑛

(E𝑎1 , · · · , E𝑎𝑛 ) if and only if all 𝜖𝑎 𝑗 have a right inverse.

The proof of the following Proposition is left as an exercise.

Proposition 3.11. Let S be a weighted symmetric algebra with weights (𝑎𝑟1
1 , . . . , 𝑎𝑟𝑛

𝑛 ), with 𝑎1 < · · · <
𝑎𝑛. The natural map

S [𝑎𝑛 − 1] ⊗O𝐵 Sym(𝑎𝑛) (S𝑎𝑛

)
→ S

is surjective, and its kernel is the ideal sheaf locally generated by the elements of the form 𝑢 ⊗ 1 − 1 ⊗
𝜎𝑎𝑛 (𝑢).

The maps 𝜎𝑎 𝑗 determine S recursively. Indeed, we can use the above Proposition to construct
every weighted symmetric algebra with weights (𝑎𝑟1

1 , . . . , 𝑎𝑟𝑛
𝑛 ), where 𝑎1 < · · · < 𝑎𝑛 according to the

following algorithm:

Step 1 Set S [𝑎1 − 1] = S [0] = O𝐵, the symmetric algebra which is zero in degrees > 0.
Step 2 Given S [𝑎 𝑗 − 1], choose a locally free sheaf S𝑎 𝑗 and an inclusion 𝜎𝑎 𝑗 : S [𝑎 𝑗 − 1]𝑎 𝑗 → S𝑎 𝑗

with locally free cokernel E𝑎 𝑗 . Then, by Proposition 3.11, we define S [𝑎 𝑗 ] = S [𝑎 𝑗+1 − 1] to be the
quotient of S [𝑎 𝑗 − 1] ⊗O𝐵 Sym(𝑎 𝑗 )

(
S𝑎 𝑗

)
by the ideal sheaf locally generated by the elements of the

form 𝑢 ⊗ 1 − 1 ⊗ 𝜎𝑎𝑛 (𝑢).
Step 3 Finally, set S := S [𝑎𝑛].

It is helpful to work out the specific case of weighted symmetric algebras S with weights (1, 1, 2, 5)
in detail. The primary example to have in mind is wSym1,2,5 (E1, E2, E5), in which case the maps 𝜖2, 𝜖5
below have a right inverse.

The characteristic sheaves of S are three vector bundles E1, E2 and E5 of respective ranks 2, 1, 1. Set
S1 := E1 and S [1] = SymS1. We get the short exact sequence

0 → (SymS1)2
𝜎2−−→ S2

𝜖2−→ E2 → 0,

where 𝜎2 is locally the inclusion O𝑈 [𝑥0, 𝑥1]2 → O𝑈 [𝑥0, 𝑥1, 𝑦]2. In this case, S [2]5 can be written
down explicitly as cokernel of the injective map

S1 ⊗ S2 ⊗ detS1 → S1 ⊗ Sym2 S2

given by

𝑥 ⊗ 𝑦 ⊗ (𝑥 ′ ∧ 𝑥 ′′) ↦→ 𝑥 ′ ⊗ (𝑦𝜎2 (𝑥𝑥 ′′)) − 𝑥 ′′ ⊗ (𝑦𝜎2 (𝑥𝑥 ′)).

The map 𝜎5 is locally the inclusion O𝑈 [𝑥0, 𝑥1, 𝑦]5 → O𝑈 [𝑥0, 𝑥1, 𝑦, 𝑧]5, giving the exact sequence

0 → S [2]5
𝜎5−−→ S5

𝜖5−→ E5 → 0.

Since the highest weight is 5, we have constructed S .
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3.2. Bundles in weighted projective spaces

Definition 3.12. LetS be a weighted symmetric algebra with weights (𝑎1, . . . , 𝑎𝑛). Then,F := Proj𝐵 (S)
is called a P(𝑎1, . . . , 𝑎𝑛)-bundle over B.

By definition, F comes with a natural projection 𝜋 : F → 𝐵 whose fibres are all isomorphic to the
weighted projective space P(𝑎1, . . . , 𝑎𝑛). There are also sheaves OF (𝑑) ([Gro61, (3.2.5.1)]) for all 𝑑 ∈ Z
whose restriction on each fibre is isomorphic to the sheaf OP(𝑎1 ,...,𝑎𝑛) (𝑑). For every coherent sheaf F
on F, we write as usual F (𝑑) for F ⊗ OF (𝑑).
Remark 3.13. By definition for all 𝑑 ≥ 0, 𝜋∗OF (𝑑) � S𝑑 , and for all 𝑑 < 0, 𝜋∗OF (𝑑) = 0.

Remark 3.14. If L is a line bundle on B, then Proj𝐵 (S) � Proj𝐵 (S ⊗̂𝐿), where S ⊗̂𝐿 is the weighted
symmetric algebra with (S ⊗̂𝐿)𝑑 = S𝑑 ⊗ 𝐿𝑑 .

Remark 3.15. If 𝐵 = P𝑘 , S = wSym𝑎1 ,...,𝑎𝑛
(E𝑎1 , · · · , E𝑎𝑛 ) and all E 𝑗 split as sums of line bundles, then

F is the toric variety in [Mul09, Construction 3.2].

Example 3.16. Suppose E1 is locally free of rank 2 and E2, E5 are line bundles on 𝐵 = P1. Then,
S := wSym1,2,5 (E1, E2, E5) is a weighted symmetric algebra with weights (1, 1, 2, 5). Since every vector
bundle on P1 splits as a direct sum of line bundles, we may write E1 = O(𝑑0) ⊕ O(𝑑1), E2 = O(𝑑2),
E5 = O(𝑑5).

The relative Proj of S over B is naturally isomorphic to the toric varietyC6//(C∗)2 with weight matrix

���
𝑡0 𝑡1 𝑥0 𝑥1 𝑦 𝑧
1 1 −𝑑0 −𝑑1 −𝑑2 −𝑑5
0 0 1 1 2 5

��	
and irrelevant ideal (𝑡0, 𝑡1) ∩ (𝑥0, 𝑥1, 𝑦, 𝑧). If there exists 𝑑 ∈ Z such that 𝑑1 = 3𝑑−𝑑0, 𝑑2 = 2𝑑, 𝑑5 = 5𝑑,
then Proj𝐵 (S) is isomorphic to F(𝑑; 𝑑0), the toric variety with weight matrix (1.1) of §1; indeed, the
reader can check that the latter is isomorphic to Proj𝐵 (S ⊗ OP1 (−𝑑)).

Remark 3.17. Not every P𝑛-bundle is relative Proj of a symmetric algebra. There is an obstruction
which is a torsion element in 𝐻2(O∗

𝐵). Examples are known where B is a 2-dimensional complex torus
[EN83].

3.3. Relative dualising sheaf

Definition 3.18. We say that a P(𝑎1, . . . , 𝑎𝑛)-bundle over B is well-formed if the fibre P(𝑎1, . . . , 𝑎𝑛) is
well-formed – in other words, if hcf (𝑎1, . . . , 𝑎𝑛) = 1 and hcf (𝑎1, . . . , 𝑎𝑖 , . . . , 𝑎𝑛) = 1 for all i.

Let F be a well-formed P(𝑎1, . . . , 𝑎𝑛)-bundle. Then, F is singular in codimension ≥ 2, and we denote
by 𝑗 : 𝑊 → F the inclusion of the nonsingular locus W inside F. Recall that 𝜔F/𝐵 = 𝑗∗𝜔𝑊 /𝐵.

Proposition 3.19. Let F = Proj𝐵 (S) be a well-formed P(𝑎𝑟1
1 , . . . , 𝑎𝑟𝑛

𝑛 )-bundle, 𝑎1 < 𝑎2 < · · · < 𝑎𝑛.
There is a sheaf V on F and an exact sequence:

0 → ΩF/𝐵 → V → OF → 0. (3.2)

This is the relative Euler sequence in the sense that its restriction to a fibre of 𝜋 : F→ 𝐵 gives the Euler
sequence for P(𝑎𝑟1

1 , . . . , 𝑎𝑟𝑛
𝑛 ) ([Dol82, §2]).

Then, we have

1. There is an exact sequence

0 →
⊕

𝑘

𝜋∗S [𝑎𝑘 − 1]𝑎𝑘 ⊗ OF (−𝑎𝑘 ) →
⊕

𝑘

𝜋∗S𝑎𝑘 ⊗ OF (−𝑎𝑘 ) → V → 0.
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2. The relative dualising sheaf of F is

𝜔F/𝐵 � 𝜋∗
(⊗

𝑘 det E𝑎𝑘

)
(−

∑
𝑘 𝑟𝑘𝑎𝑘 ),

where E𝑎𝑘 is the characteristic sheaf of S in degree 𝑎𝑘 .

Proof. First, consider the following natural map of S-modules:

𝜑̃ :
𝑛⊕

𝑘=1
S𝑎𝑘 ⊗ S (−𝑎𝑘 ) → S ,

which is defined on each direct summand by multiplication of sections 𝑠 ⊗ 𝑡 ↦→ deg 𝑠 · 𝑠𝑡 and then
extending by linearity. If we choose local isomorphisms

S𝑎𝑘 |𝑈 � O𝑈 [𝑥1, . . . , 𝑥𝑟 ]𝑎𝑘 �
𝑁⊕
𝑖=1

O𝑈 · d𝑚𝑘𝑖 ,

where d𝑚𝑘𝑖 , 𝑖 = 1, . . . , 𝑁 are the free generators corresponding to the monomials 𝑚𝑘𝑖 in S𝑎𝑘 |𝑈 of
degree 𝑎𝑘 , then 𝜑̃ maps d𝑚𝑘𝑖 to 𝑎𝑘𝑚𝑘𝑖 . The degree shift ensures that deg d𝑚𝑘𝑖 = deg 𝑚𝑘𝑖 = 𝑎𝑘 .

Let Ω̃S/O𝐵 be the kernel of 𝜑̃ and Ω̃F/𝐵 its associated sheaf on F. Then, the induced maps of
associated sheaves on F form a short exact sequence

0 → Ω̃F/𝐵 →
𝑛⊕

𝑘=1
𝜋∗S𝑎𝑘 ⊗ OF (−𝑎𝑘 ) → OF → 0,

where the exactness on the right follows because 𝜑̃ is surjective in degrees ≥ 1.
Note that Ω̃S/O𝐵 is a locally free S-module and using the isomorphism S |𝑈 � O𝑈 [𝑥1, . . . , 𝑥𝑟 ], it

has local generators

𝑎𝑖 · 𝑥𝑖d𝑥 𝑗 − 𝑎 𝑗 · 𝑥 𝑗d𝑥𝑖 and d𝑚𝑘 −
𝑟∑

𝑖=1

𝜕𝑚𝑘

𝜕𝑥𝑖
d𝑥𝑖 ,

where here we write 𝑎𝑖 for the degree of 𝑥𝑖 . However, ΩS/O𝐵 is locally generated as an S |𝑈 -module by
the generators of the first type – that is, 𝑎𝑖 · 𝑥𝑖d𝑥 𝑗 − 𝑎 𝑗 · 𝑥 𝑗d𝑥𝑖 .

Let K :=
⊕𝑛

𝑘=1 S [𝑎𝑘 − 1]𝑎𝑘 ⊗ S (−𝑎𝑘 ). We construct a map 𝛼 : K → Ω̃S/O𝐵 whose cokernel is
ΩS/O𝐵 . Locally, we define 𝛼𝑈 : K|𝑈 → Ω̃S/O𝐵 |𝑈 by

𝑚 ⊗ 1 ↦→ d𝑚 −
𝑟∑

𝑖=1

𝜕𝑚
𝜕𝑥𝑖

d𝑥𝑖 ,

where𝑚 = 𝑚(𝑥1, . . . , 𝑥𝑟 ) is a section ofS |𝑈 [𝑎𝑘−1]𝑎𝑘 . Next, we show that𝛼 is well-defined. Suppose that
S |𝑉 � O𝑉 [𝑥 ′1, . . . , 𝑥

′
𝑟 ]. The transition function on 𝑈 ∩ 𝑉 is an isomorphism 𝑣 : O𝑈∩𝑉 [𝑥 ′1, . . . , 𝑥

′
𝑟 ] →

O𝑈∩𝑉 [𝑥1, . . . , 𝑥𝑟 ], 𝑥𝑖 = 𝑣𝑖 (𝑥 ′1, . . . , 𝑥
′
𝑟 ). We denote the induced isomorphisms on K and Ω̃S/O𝐵 by v as

well. Then,

𝛼𝑈 (𝑚(𝑥)) = 𝛼𝑈 (𝑚(𝑣(𝑥 ′))) = d𝑚(𝑣(𝑥 ′))) −
𝑟∑

𝑖=1

𝜕𝑚(𝑣(𝑥 ′))
𝜕𝑣𝑖

d𝑣𝑖 (𝑥 ′).

Now, by the chain rule, we have(
𝜕𝑚(𝑣 (𝑥′))

𝜕𝑥′1
, . . . , 𝜕𝑚(𝑣 (𝑥′))

𝜕𝑥′𝑟

)
=
(

𝜕𝑚(𝑣)
𝜕𝑣1

, . . . , 𝜕𝑚(𝑣)
𝜕𝑣𝑟

)
· 𝐷𝑥′𝑣(𝑥 ′) and

(d𝑣1, . . . , d𝑣𝑟 )𝑡 = 𝐷𝑥′𝑣(𝑥 ′) · (d𝑥 ′1, . . . , d𝑥 ′𝑟 )𝑡 .
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Multiplying the first equation on the right by 𝐷𝑥′𝑣(𝑥 ′)−1 and combining them, we get

𝑟∑
𝑖=1

𝜕𝑚(𝑣(𝑥 ′))
𝜕𝑣𝑖

d𝑣𝑖 (𝑥 ′) =
(

𝜕𝑚(𝑣 (𝑥′))
𝜕𝑥′1

, . . . , 𝜕𝑚(𝑣 (𝑥′))
𝜕𝑥′𝑟

)
· (d𝑥 ′1, . . . , d𝑥 ′𝑟 )𝑡 .

It follows that

𝛼𝑈 (𝑚(𝑥)) = d𝑚(𝑣(𝑥 ′)) −
𝑟∑

𝑖=1

𝜕𝑚(𝑣(𝑥 ′))
𝜕𝑥 ′𝑖

d𝑥 ′𝑖 = 𝛼𝑉 (𝑚(𝑣(𝑥 ′))),

and thus, 𝛼 is well-defined. Hence, we have a short exact sequence

0 → K 𝛼−→ Ω̃S/O𝐵 → ΩS/O𝐵 → 0.

The two short exact sequences involving Ω̃S/O𝐵 fit together as the middle row respectively first
column of the following commutative diagram:

0 0

K K

0 Ω̃S/O𝐵

⊕𝑛
𝑘=1 S𝑎𝑘 ⊗ S (−𝑎𝑘 ) S

0 ΩS/O𝐵 VS S

0 0

𝛼

𝜄

𝜓 𝛽

𝜑̃

𝜄 𝜑

The composition 𝜄 ◦ 𝛼 : K →
⊕𝑛

𝑘=1 S𝑎𝑘 ⊗ S (−𝑎𝑘 ) is injective. We call the cokernel VS and fill in
the third row using a diagram chasing argument. Since 𝜑̃ is surjective in degrees ≥ 1, 𝜑̃ = 𝜑 ◦ 𝛽 and 𝛽 is
surjective, it follows that 𝜑 is surjective in degrees ≥ 1. Thus, the sequence of sheaves of OF-modules
associated to the bottom row is the relative Euler sequence (3.2) on F.

We can now prove statements (1) and (2).
(1) is proved by taking the exact sequence of sheaves associated to the middle column of the above

diagram.
(2) Since F is well-formed, the singular locus of F has codimension ≥ 2. Hence, it suffices to prove that

the two sheaves are isomorphic on the nonsingular locus 𝑊 ⊂ F. We restrict the relative Euler sequence
(3.2) to W. Then, this is an exact sequence of vector bundles and since 𝜔𝑊 /𝐵 = detΩ𝑊 /𝐵, we deduce
that 𝜔𝑊 /𝐵 = detV . By part (1), we conclude that 𝜔𝑊 /𝐵 is the restriction of det

(⊕
𝑘 𝜋∗E𝑎𝑘 (−𝑎𝑘 )

)
�

𝜋∗
(⊗

𝑘 det E𝑎𝑘

)
(−

∑
𝑘 𝑟𝑘𝑎𝑘 ) to W. �

Example 3.20. Let F = P𝐵 (E), where E is a vector bundle of rank r over B. Then, 𝜑 : E ⊗ Sym E →
(Sym E) (1) is the canonical surjection ([Gro61, §4.1]). The cotangent sequence reads

0 → ΩF/𝐵 → 𝜋∗E (−1) → OF → 0

and the relative dualising sheaf is 𝜔F/𝐵 = 𝜋∗(det E) (−𝑟).

Example 3.21. With the same setup as Remark 3.15, F = Proj𝐵S is toric, and Proposition 3.19
specialises to the Euler sequence for toric P(𝑎𝑟1

1 , . . . , 𝑎𝑟𝑛
𝑛 )-bundles (cf. Proposition 1.1).
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4. Simple fibrations in (1,2)-surfaces

Definition 4.1. A simple fibration in (1, 2)-surfaces is a morphism 𝜋 : 𝑋 → 𝐵 between compact
varieties of respective dimension 3 and 1 such that

1. B is smooth;
2. X has canonical singularities;
3. 𝐾𝑋 is 𝜋-ample;
4. for all 𝑝 ∈ 𝐵, the canonical ring 𝑅(𝑋𝑝 , 𝐾𝑋𝑝 ) :=

⊕
𝑑 𝐻0(𝑋𝑝 , 𝐾𝑋𝑝 ) of the surface 𝑋𝑝 := 𝜋∗(𝑝) is

generated by four elements of respective degree 1, 1, 2 and 5 and related by a single equation of
degree 10.

The fibres 𝑋𝑝 of 𝜋 : 𝑋 → 𝐵 with at worst Du Val singularities are (1, 2)-surfaces.

Remark 4.2. In applications, we are interested in 𝑋, 𝐵 compact. The first part of the forthcoming
discussion can be generalized to 𝜋 : 𝑋 → 𝐵 proper.

Remark 4.3. Suppose that 𝑋 → 𝐵 is a fibration all of whose fibres 𝑋𝑏 are stable Gorenstein surfaces
with 𝑝𝑔 (𝑋𝑏) = 2, 𝐾2

𝑋𝑏
= 1. Then, X is simple by [FPR17, Thm 3.3, part 1] and Theorem 4.6 below.

Nonsimple fibrations 𝑋 → 𝐵 whose general fibre is a (1, 2)-surface do exist; see [FPR17, Ex. 4.7]
or Example 4.13.

Remark 4.4. Theorem 4.23 below proves that all the Gorenstein regular simple fibrations with 𝐾3
𝑋 =

4𝑝𝑔−10
3 appear in Section 1. That is, under the above assumptions, 𝜖2 : S2 → E2 always has a right inverse.

Example 4.5. Simple fibrations need not be Gorenstein nor stable. For example, consider

𝑋 : 𝑧2 = 𝑡 𝑓10(𝑡; 𝑥0, 𝑥1, 𝑦) ⊂ P𝐵 (1, 1, 2, 5),

where, for simplicity, B is a small disc with coordinate t (it is not difficult to construct an example
with B compact). Then, X has nonreduced central fibre a weighted projective space P(1, 1, 2) with
multiplicity 2. Despite this, if 𝑓 |𝑡=0 is general, then X has only (nonisolated) canonical singularities.

4.1. Relative canonical model

Recall that the relative canonical sheaf of 𝜋 : 𝑋 → 𝐵 is

O𝑋 (𝐾𝑋/𝐵) := O𝑋 (𝐾𝑋 − 𝜋∗𝐾𝐵)

and the relative canonical algebra of 𝜋 is the sheaf of O𝐵-algebras

R :=
⊕
𝑑≥0

R𝑑 :=
⊕
𝑑≥0

𝜋∗O𝑋 (𝑑𝐾𝑋/𝐵).

Since we assumed that 𝐾𝑋 is 𝜋-ample, X and Proj𝐵R are isomorphic.

Theorem 4.6. Let 𝜋 : 𝑋 → 𝐵 be a simple fibration in (1, 2)-surfaces. Then, there is a weighted symmetric
algebra S (𝑋) with weights (12, 2, 5) such that X is isomorphic to a hypersurface of relative degree 10
in the P(1, 1, 2, 5)-bundle F(𝑋) := Proj𝐵 (S) → 𝐵.

Proof. Throughout this proof, we use implicitly the formula rankR𝑛 = ℎ0 (𝑆, 𝐾𝑆), where S is a (1, 2)-
surface. Hence, rankR1 = 2 and rankR𝑛 = 3 + 1

2𝑛(𝑛 − 1) for 𝑛 ≥ 2.
We construct S (𝑋) as follows: First, consider the weighted symmetric algebra SymR1 with

weights (12). Since any fibre S is mapped to P1 by |𝐾𝑆 |, there are no relations involving only variables
of degree 1. Hence, the natural map SymR1 → R is injective and an isomorphism in degree 1.

The multiplication map 𝜎2 : Sym(R1)2 → R2 has cokernel E2 which is locally free of rank 1 because
S is mapped onto P(1, 1, 2) by |2𝐾𝑆 |. Hence, we can construct (cf. §3.1) a weighted symmetric algebra
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S ′ with weights (12, 2) with an injective morphism S ′ ↩→ R, which is an isomorphism in degrees 1, 2,
3 and 4.

The cokernel E5 of the inclusion S ′
5 ↩→ R5 is locally free of rank 1, so we get a weighted symmetric

algebra S ⊃ S ′ with weights (12, 2, 5) such that S ′ � S [2]. There is a morphism S → R that is an
isomorphism in degrees ≤ 9 and thereafter surjective, so inducing an inclusion

𝑋 � Proj𝐵R ⊂ F := Proj𝐵S

of X as divisor in a P(1, 1, 2, 5)-bundle over B. The relative degree of X is then 10, the degree of the
single equation defining its general fibre. �

Remark 4.7. Conversely, any divisor X of relative degree 10 in a P(12, 2, 5)-bundle over a smooth curve
B and with at worst canonical singularities is a simple fibration in (1, 2)-surfaces. Thus, from now on,
we assume that a simple fibration is a hypersurface of relative degree 10 in a P(1, 1, 2, 5)-bundle with
𝜔𝑋/𝐵 = OF (1)|𝑋 .

4.2. X as double cover of a P(1, 1, 2)-bundle

We first describe the singular locus of F as in §1.

Definition 4.8. The singular locus of a P(1, 1, 2, 5)-bundle over B is the disjoint union of two sections
𝔰2 and 𝔰5, where 𝔰𝑘 has Gorenstein index k.

Since X has at worst canonical singularities, we get some constraints on the intersections 𝑋 ∩ 𝔰𝑘 .

Proposition 4.9. Let 𝜋 : 𝑋 → 𝐵 be a simple fibration in (1, 2)-surfaces and suppose that 𝑋 ⊂ F(𝑋),
where F(𝑋) is the P(1, 1, 2, 5)-bundle constructed in Theorem 4.6. Then,

1. 𝑋 ∩ 𝔰5 = ∅;
2. 𝔰2 ⊄ 𝑋 .

Proof. (1) Suppose 𝑝 ∈ 𝑋 ∩ 𝔰5. Then, in a neighbourhood of p, F(𝑋) has a singular point that is a
quotient singularity of type 1

5 (1, 1, 2, 0). Since X is a Cartier divisor, P is a noncanonical singular point
of X, at best a 1

5 (1, 1, 2) point, which is a contradiction (see also [FPR17, Rmk 4.6]).
(2) Suppose 𝔰2 ⊂ 𝑋 . For a general point p in B, there is a local analytic neighbourhood 𝑝 ∈ 𝑉 ⊂ 𝐵

such that the equation of X has the form 𝑧2 = 𝑞(𝑥0, 𝑥1)𝑦4 + . . . , where q is (at best) a relative quadratic
form over V. Thus, in a neighbourhood of 𝔰2, X looks like 𝑉 × {(𝑧2 = 𝑞) ⊂ 1

2 (1, 1, 1)}. This is at best a
curve of singularities 𝑉 × 1

4 (1, 1) [Hac16], which is not canonical, a contradiction. �

We now show that X is a double cover of a P(1, 1, 2)-bundle.

Definition 4.10. We define the truncated subalgebra Q(𝑋) := S (𝑋) [2] and let 𝑔 : F(𝑋) � Q(𝑋) :=
Proj𝐵Q(𝑋) be the natural map corresponding to the inclusion Q(𝑋) ⊂ S (𝑋).

In the toric case of §1 or Example 3.16,Q(𝑋) is naturally isomorphic to the torus invariant divisor 𝐷𝑧 .

Lemma 4.11. The restriction 𝑔 |𝑋 : 𝑋 → Q(𝑋) is a finite morphism of degree 2. The double-cover
involution on X lifts to S (and R) in such a way that the invariant part of R is Q.

Proof. The indeterminacy locus of g is 𝔰5, so by Proposition 4.9(1), the restriction 𝑔 |𝑋 : 𝑋 → Q(𝑋) is
a finite morphism of degree 2. The involution on X which swaps the two sheets of this covering can be
lifted to S .

Indeed, on an open subset 𝑈 ⊂ 𝐵, we have S |𝑈 � O𝑈 [𝑥0, 𝑥1, 𝑦, 𝑧] with deg 𝑥 𝑗 = 1, deg 𝑦 = 2,
deg 𝑧 = 5. Proposition 4.9(1), implies that the coefficient of 𝑧2 in the equation of X never vanishes;
completing the square, we may assume that the equation has the form 𝑧2 = 𝑓 (𝑥0, 𝑥1, 𝑦). Then, the
involution may be lifted to S |𝑈 as the involution fixing 𝑥0, 𝑥1, 𝑦 and mapping 𝑧 ↦→ −𝑧. These glue
in the obvious way to give an involution on S and a splitting into invariant and anti-invariant parts:
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S = S+ ⊕ S−. By construction, the involution preserves X, so we get a splitting R = R+ ⊕ R−, and
clearly, R+ = Q. �

Remark 4.12. Notice the analogy with the splitting of the relative canonical algebra of a genus 2
fibration induced by the hyperelliptic involution of the fibres [CP06, Lem. 4.3].

Example 4.13. If we allow the quadric cone to degenerate to a quadric of rank two over a finite number
of points of B, then we obtain a fibration in (1, 2)-surfaces that is not simple. For example, consider the
complete intersection

𝑋 : (𝑥0𝑥1 = 𝑡𝑦0, 𝑧2 = 𝑓10(𝑡; 𝑥0, 𝑥1, 𝑦0, 𝑦1)) ⊂ P𝐵 (1, 1, 2, 2, 5),

where, for simplicity, B is a small disc with coordinate t. When t is invertible, the fibre 𝑋𝑡 is just a
hypersurface of degree 10 in P(1, 1, 2, 5) because 𝑦0 is eliminated using 1

𝑡 𝑥0𝑥1. However, when t is not
invertible, the fibre 𝑋0 is a reducible surface with two components (𝑥𝑖 = 0). In fact, 𝑋0 consists of two
singular K3 surfaces glued along a line (see [FPR17, Ex. 4.7]).

We describe R− as a Q-module.

Proposition 4.14. The map 𝜖5 : S5 (𝑋) → E5 has a right inverse. Moreover,

R− � Q(−5) ⊗ E5.

Proof. For all 𝑑 ≤ 4, we get S+
𝑑 = Q𝑑 and thus, S−

𝑑 = 0. In degree 5, S+
5 = Q5 = ker 𝜖5 so that (𝜖5)|S−

5
is an isomorphism, whose inverse is a right inverse for 𝜖5. Hence, R−

5 � S−
5 � E5.

Now as locally freeO𝐵-modules,R+
𝑑 andR−

𝑑 are generated by the monomials 𝑥𝑎
0 𝑥

𝑏
1 𝑦

𝑐 with 𝑎+𝑏+2𝑐 =
𝑑 (resp. 𝑥𝑎

0 𝑥
𝑏
1 𝑦

𝑐𝑧 with 𝑎 + 𝑏 + 2𝑐 = 𝑑 − 5). Thus, all multiplication maps

R+
𝑑 ⊗ R−

5 → R−
𝑑+5

are isomorphisms, completing the proof. �

Now, we describe the ‘equation’ of X in F = Proj𝐵 (S)
𝜋−→ 𝐵. For any line bundle L on B, there are

natural isomorphisms 𝐻0 (F,OF (𝑑) ⊗ 𝜋∗
F
L−1) � HomO𝐵 (L,S𝑑). So, X is defined by a map L ↩→ S10

for a suitable line bundle L. The line bundle can be determined precisely

Corollary 4.15. The hypersurface 𝑋 ⊂ F is defined by an injective homomorphism E2
5 ↩→ S+

10.

Proof. Since the involution of F(𝑋) preserves X, the image of L is contained in the invariant part S+
10

(or in S−
10, but this would contradict Proposition 4.9(1)). By Proposition 4.14, E5 � R−

5 � S−
5 . Then,

S+
10 splits as Q10 ⊕ E2

5 . This corresponds locally to separating the polynomials in 𝑥0, 𝑥1, 𝑦 from those
involving 𝑧2.

Consider the induced projection S+
10 → E2

5 . Then, Proposition 4.9(1) says that the composition of
maps L → S+

10 → E2
5 is surjective. Therefore, since both L and E5 are line bundles, L � E2

5 . �

We can now translate the conditions of Proposition 4.9 coming from the canonical singularities of X
in terms of the characteristic sheaves E1, E2 and E5.

Corollary 4.16.

1. E5 � (det E1) ⊗ E2.
2. ℎ0 (E3

2 ⊗ (det E1)−2) ≠ 0.

Remark 4.17. Note that (1) together with Proposition 4.14 shows that R is determined as a Q-module
by Q itself:

R � Q ⊕ (Q(−5) ⊗ (det E1) ⊗ E2).
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Proof. (1) By Proposition 3.19,

𝜔F/𝐵 = OF (−9) ⊗ 𝜋∗F det(E1 ⊕ E2 ⊕ E5)

and since 𝑋 ∈ |OF (10) ⊗ 𝜋∗E−2
5 |, the adjunction formula gives

𝜔𝑋/𝐵 = O𝑋 (1) ⊗ 𝜋∗ det(E1 ⊕ E2 ⊕ E−1
5 ).

Finally, by Remark 4.7, we have 𝜔𝑋/𝐵 � O𝑋 (1), so the thesis follows immediately.
(2) This proof is inspired by [Pig12, Definition 2.4 and Proposition 2.5]). The map

Sym5(𝜖2) : Sym5 (S2) → E5
2 induced by 𝜖2 : S2 → E2 factors through Q10 giving a map 𝛼 : Q10 → E5

2
whose kernel consists of those elements of Q10 vanishing along 𝔰2.

By Corollary 4.15, X is defined by a map E2
5 → S+

10 � Q10 ⊕ E2
5 , where locally, the factor E2

5
gives the multiples of 𝑧2, and therefore, E2

5 is in the ideal sheaf of 𝔰2. Hence, 𝔰2 ⊄ 𝑋 if and only if the
composition of the first component of this map E2

5 → Q10 with 𝛼 : Q10 → E5
2 is not the zero map. Thus,

HomO𝐵 (E2
5 , E5

2 ) ≠ 0. Substituting E5 � (det E1) ⊗ E2, we obtain the result. �

The corollary suggests the following definition

Definition 4.18. Let 𝜋 : 𝑋 → 𝐵 be a simple fibration in (1, 2)-surfaces. Then,

𝑁 (𝑋) := 3 deg E2 − 2 deg E1 = 3𝜒(E2) − 2𝜒(E1) + 𝜒(O𝐵) ≥ 0.

Geometrically, N is the expected number of 1
2 (1, 1, 1) singularities on X. In fact, by the proof of

Corollary 4.16(2), if the divisor in |E3
2 ⊗ (det E1)−2 | corresponding to the homomorphism in that proof

is reduced, then X intersects 𝔰2 in N quasismooth points of X, of type 1
2 (1, 1, 1).

4.3. The invariants of a simple fibration in (1, 2)-surfaces

To compute the invariants of a simple fibration in (1, 2)-surfaces, we need the following lemma.

Lemma 4.19. Let 𝜋 : 𝑋 → 𝐵 be a simple fibration in (1, 2)-surfaces and suppose L is any line bundle
on B. Then, for 𝑖 = 0, 1, we have

ℎ𝑖 (O𝑋 (𝑑𝐾𝑋/𝐵) ⊗ 𝜋∗L) = ℎ𝑖 (R𝑑 ⊗ L) for all 𝑑 ≥ 1,

and for 𝑖 = 2, 3, we have

ℎ𝑖 (O𝑋 (𝑑𝐾𝑋/𝐵) ⊗ 𝜋∗L) =
{
ℎ𝑖−2(L) for 𝑑 = 1
0 for 𝑑 ≥ 2.

Proof. Since the fibres are hypersurfaces in weighted projective space, we have

𝜋∗O𝑋 � O𝐵; 𝑅1𝜋∗O𝑋 (𝑑𝐾𝑋/𝐵) = 0 for all 𝑑.

Thus, in combination with the projection formula

𝑅𝑖𝜋∗(O𝑋 (𝑑𝐾𝑋/𝐵) ⊗ 𝜋∗L) �
(
𝑅𝑖𝜋∗O𝑋 (𝑑𝐾𝑋/𝐵)

)
⊗ L,

we see that the Leray spectral sequence of the direct image of O𝑋 (𝑑𝐾𝑋/𝐵) ⊗ 𝜋∗L degenerates at page 2
for each d and L.

Whence for 𝑖 = 0, 1 and any 𝑑 ≥ 1, we have

ℎ𝑖 (O𝑋 (𝑑𝐾𝑋/𝐵) ⊗ 𝜋∗L) = ℎ𝑖 (𝜋∗O𝑋 (𝑑𝐾𝑋/𝐵) ⊗ L) = ℎ𝑖 (R𝑑 ⊗ L).
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When 𝑖 = 2, 3, we get

ℎ𝑖 (O𝑋 (𝑑𝐾𝑋/𝐵) ⊗ 𝜋∗FL) = ℎ𝑖−2(𝑅2𝜋∗O𝑋 (𝑑𝐾𝑋/𝐵) ⊗ L).

If 𝑑 ≥ 2, then 𝑅2𝜋∗O𝑋 (𝑑𝐾𝑋/𝐵) = 0 by the base change theorem because the fibres are canonically
polarised. Thus, ℎ𝑖 (O𝑋 (𝑑𝐾𝑋/𝐵) ⊗ 𝜋∗L) = 0 for 𝑑 ≥ 2. When 𝑑 = 1, 𝑅2𝜋∗O𝑋 (𝐾𝑋/𝐵) � (𝜋∗O𝑋 )∨ by
Grothendieck duality, so ℎ𝑖 (O𝑋 (𝐾𝑋/𝐵) ⊗ 𝜋∗L) = ℎ𝑖−2(𝜋∗O𝑋 ⊗ L) = ℎ𝑖−2(L). �

Now we compute the birational invariants of X.

Proposition 4.20. Let 𝜋 : 𝑋 → 𝐵 be a simple projective fibration in (1, 2)-surfaces. Then,

𝑝𝑔 (𝑋) = ℎ0 (E1 ⊗ 𝜔𝐵), 𝑞1 (𝑋) = 𝑔(𝐵) =: 𝑏,
𝑞2 (𝑋) = ℎ1 (E1 ⊗ 𝜔𝐵) ≤ 2, 𝜒(𝜔𝑋 ) = 𝜒(E1) − 5𝜒(O𝐵).

Proof. The first three equalities follow from Lemma 4.19 with L = 𝜔𝐵. For the last, note that 𝜒(𝜔𝑋 ) =
𝑝𝑔−𝑞2+𝑞1−1 = 𝜒(E1 ⊗𝜔𝐵)− 𝜒(O𝐵). Then, by the Riemann–Roch Theorem for curves, 𝜒(E1 ⊗𝜔𝐵) =
𝜒(E1) + 2 deg(𝜔𝐵), and the result follows.

The inequality 𝑞2 ≤ rank(E1) = 2 follows then by the semipositivity of E1 ([Vie83, Thm III]). �

Then, we compute the top selfintersection of the canonical divisor of X.

Proposition 4.21. Let 𝜋 : 𝑋 → 𝐵 be a simple fibration in (1,2)-surfaces. Then,

𝐾3
𝑋 =

4
3
𝜒(𝜔𝑋 ) − 2𝜒(O𝐵) +

𝑁

6
=

4
3
(𝑝𝑔 − 𝑞2) +

10
3
(𝑞1 − 1) + 𝑁

6
.

Proof. By Lemma 4.19, 𝜒(𝜔2
𝑋 ) = 𝜒(R2 ⊗𝜔2

𝐵); twisting the exact sequence 0 → Sym2(R1) → R2 →
E2 → 0 by 𝜔2

𝐵, we get

𝜒(𝜔2
𝑋 ) = 𝜒(R2 ⊗ 𝜔2

𝐵)
= 𝜒(𝑆2 (R1 ⊗ 𝜔𝐵)) + 𝜒(E2 ⊗ 𝜔2

𝐵)
= 3𝜒(R1 ⊗ 𝜔𝐵) − 3𝜒(O𝐵) + 𝜒(E2) + deg𝜔2

𝐵 .

By Proposition 4.20, this last line is equivalent to

𝜒(𝜔2
𝑋 ) = −3𝜒(O𝑋 ) + 𝜒(E2) − 4𝜒(O𝐵).

However, the Riemann–Roch formula [Rei87, Cor. 10.3] gives

𝜒(𝜔2
𝑋 ) =

1
2
𝐾3

𝑋 − 3𝜒(O𝑋 ) +
𝑁

4
.

Combining these two expressions to eliminate 𝜒(𝜔2
𝑋 ) and simplifying gives𝐾3

𝑋 = 2𝜒(E2)−8𝜒(O𝐵)− 𝑁
2 .

Finally, substituting 𝜒(E2) = 1
3 (𝑁 + 2𝜒(E1) − 𝜒(O𝐵)) and then 𝜒(E1) = 𝜒(𝜔𝑋 ) + 5𝜒(O𝐵), we obtain

the result. �

As a corollary, we get a Noether type inequality for simple fibrations in (1, 2)-surfaces.

Corollary 4.22. Let 𝜋 : 𝑋 → 𝐵 be a simple fibration in (1, 2)-surfaces. Then, 𝐾3
𝑋 ≥

1
3 (4(𝑝𝑔 − 𝑞2) − 10(1 − 𝑞1)) with equality holding if and only if X is Gorenstein.

We conclude this section with the following Theorem, which shows that the results of Section 1 are
complete.
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Theorem 4.23. Let 𝜋 : 𝑋 → 𝐵 be a Gorenstein regular simple fibration with 𝐾3
𝑋 =

4𝑝𝑔−10
3 . Then, X

appears in Section 1.

Proof. Since X is regular, we know that 𝐵 = P1. Moreover, X is Gorenstein, so 𝑁 = 𝑞2 = 0. By definition
of N and Corollary 4.16, there is a d such that det E1 = OP1 (3𝑑), E2 = OP1 (2𝑑)𝑦, E5 = OP1 (5𝑑)𝑧.
Moreover, there is a unique 𝑑0 ≤ 3𝑑 − 𝑑0 such that E1 = OP1 (𝑑0)𝑥0 ⊕ OP1 (3𝑑 − 𝑑0)𝑥1.

Now consider the short exact sequence

0 → Sym2 E1
𝜎2−−→ S2

𝜖2−→ E2 → 0.

The main point of the proof is to show that 𝜖2 has a right inverse.
We have Sym2 E1 = O(2𝑑0)𝑥2

0 ⊕O(3𝑑)𝑥0𝑥1 ⊕O(6𝑑−2𝑑0)𝑥2
1 and 𝑑, 𝑑0 ≥ 0 by Fujita semipositivity.

In this case,

Ext1O
P1
(E2, Sym2 E1) � 𝐻1 (Sym2 E1 ⊗ E∨

2 ) � 𝐻1 (O(2(𝑑0 − 𝑑))), (4.1)

because 3𝑑 ≥ 2𝑑 and 6𝑑 − 2𝑑0 ≥ 2𝑑. Standard cohomological arguments allow us to deduce the
existence of an inverse when 𝑑0 ≥ 𝑑, so we assume that 𝑑0 ≤ 𝑑 − 1.

We complete the proof arguing by contradiction. We show that if the extension class in (4.1)
corresponding to the above short exact sequence is nontrivial, then HomO

P1
(E2

5 ,Q10) is zero. Arguing
as in the proof of 4.16(2), this implies that 𝔰2 ⊂ 𝑋 , which is a contradiction.

Motivated by this, we define I = 𝑥1Q, the sheaf of ideals locally principally generated by O(3𝑑 −
𝑑0)𝑥1. Then, define T = Q/I and note that ProjP1 (T ) is the divisor (𝑥1 = 0) in the P(1, 1, 2)-bundle
Q(𝑋) over P1.

Replacing E1 with Q1 and S2 with Q2 in the above short exact sequence and quotienting by I, the
multiplication maps in T give the following exact sequence

0 → Sym2 T1 � O(2𝑑0) → T2
𝜖2−→ E2 → 0, (4.2)

and 𝜖2 has a right inverse if and only if 𝜖2 has, because of (4.1).
Since T is generated in degree 2, and T1 has rank 1, the multiplication map Sym𝑘 T2 → T2𝑘 is an

isomorphism. Note that T2 is a direct sum of two line bundles on P1. Thus, if (4.2) does not split, then
the maximal degree in T2 is < 2𝑑, and hence, the maximal degree in T2𝑘 is < 2𝑘𝑑.

Since T is a quotient of Q, we get a surjective map Q10 → T10. Thus, all summands of Q10 are line
bundles of degree < 10𝑑. Since E2

5 � O(10𝑑), it follows that Hom(E2
5 ,Q10) is zero. Hence, 𝜖2 has a

right inverse.
We already know that 𝜖5 has a right inverse by Proposition 4.14. Thus,S (𝑋) � wSym1,2,5 (E1, E2, E5),

and hence, F is a toric variety as in Example 3.16. This finishes the proof. �

5. More on threefolds on the Noether line

5.1. Kobayashi’s construction

We relate our simple fibrations with the threefolds on the Noether line constructed by Kobayashi [Kob92]
and generalised by Chen–Hu [CH17].

Proposition 5.1. The smooth threefolds in [CH17, Thm 1.1] are exactly those of Theorem 1.11 part (1)
with 𝑒 ≤ 𝑑.

Proof. In [CH17, Thm 1.1], the authors generalise Kobayashi’s construction to exhibit threefolds𝑌 (𝑎, 𝑒)
on the Noether line with canonical image F𝑒 and 𝑝𝑔 (𝑌 ) = 6𝑎 − 3𝑒 − 2 for all pairs of integers 𝑎, 𝑒 with
𝑎 ≥ 𝑒 ≥ 0 excepting (𝑎, 𝑒) = (2, 2), (1, 1), (1, 0), (0, 0).

We show that 𝑌 (𝑎, 𝑒) is the same as our 𝑋 (𝑑; 𝑑0) with 𝑑 = 2𝑎 − 𝑒, 𝑑0 = 2𝑑 − 𝑎.
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Recall that there is a double cover 𝑋 (𝑑; 𝑑0) → 𝐷𝑧 , where 𝐷𝑧 is a bundle in quadric cones over P1

(see Remark 1.5). We perform a weighted blowup 𝐷 ′
𝑧 → 𝐷𝑧 of the index 2 section 𝔰2 = 𝐷𝑥0 ∩𝐷𝑥1 ∩𝐷𝑧

and a corresponding blowup 𝑋 ′ → 𝑋 of the preimage of 𝔰2 in X, to obtain the following diagram:

𝑋 ′ 𝐷 ′
𝑧 F𝑒

𝑋 (𝑑; 𝑑0) 𝐷𝑧 P1.

Recall from §1 that 𝛿 is the positive section and l is the fibre on F𝑒. We claim that 𝐷 ′
𝑧 is the following

P1-bundle over F𝑒:

𝐷 ′
𝑧 := PF𝑒

(
OF𝑒 ⊕ OF𝑒 (2𝛿 + (𝑑 + 𝑒)𝑙)

)
.

Indeed, in coordinates, the blowup 𝐷 ′
𝑧 → 𝐷𝑧 is given by

𝑡𝑖 ↦→ 𝑡𝑖 , 𝑥0 ↦→ 𝑢𝑥 ′0, 𝑥1 ↦→ 𝑢𝑥 ′1, 𝑦 ↦→ 𝑦,

where u is the section defining the exceptional divisor E. Note that 𝑠 = 𝑡2(𝑑0−𝑑)
0 𝑥2

0 is a section of
OF𝑒 (2𝛿 + (𝑑 + 𝑒)𝑙) because 2(𝑑0 − 𝑑) = 𝑑 + 𝑒. The rational function 𝑠/𝑦 on 𝐷𝑧 pulls back to 𝑠𝑢2/𝑦 on
𝐷 ′

𝑧 . Since y, 𝑢2 are the fibre coordinates of 𝐷 ′
𝑧 → F𝑒, we get the claimed P1-bundle over F𝑒.

Moreover, 𝑋 ′ → 𝐷 ′
𝑧 is a double cover with branch locus 𝐵 + 𝐸 , where 𝐵 ∈ |O𝐷′

𝑧
(5) | is the strict

transform of the branch divisor of 𝑋 → 𝐷𝑧 and E is the exceptional divisor of 𝐷 ′
𝑧 → 𝐷𝑧 . This is the

Kobayashi–Chen–Hu construction with 𝑑 + 𝑒 = 2𝑎. The condition 𝑎 ≥ 𝑒 is equivalent to the condition
𝑒 ≤ 𝑑.

The short list of exclusions (𝑎, 𝑒) = (2, 2), . . . mentioned above are just the 𝑋 (𝑑; 𝑑0), which violate
min(𝑑, 𝑑0) ≥ 3 (i.e., those with 𝐾𝑋 nonample). �

We thus have more smooth examples than [CH17], namely the general Gorenstein regular simple
fibration in (1, 2)-surfaces with 𝑒 = 5

4𝑑; that is, 8𝑑0 = 7𝑑. The simplest possible example is 𝑋 (8; 7):

Example 5.2. Choose 𝑑 = 8, 𝑑0 = 7, so 𝑒 = 10. The polynomial

𝑧2 + 𝑦5 + 𝑥9
0𝑥1 + (𝑡90

0 + 𝑡90
1 )𝑥10

1

defines a smooth 3-fold 𝑋 (8; 7) ⊂ F(8; 7). By Theorem 1.11, this is a canonical 3-fold with 𝑝𝑔 = 22
and 𝐾3

𝑋 = 26, not belonging to the examples in [CH17, Thm 1.1], since in this case, 𝑒 = 10, 𝑎 = 9.
Therefore, it contradicts [CH17, Prop. 4.6.(b)] and consequently the last assertion in [CH17, Thm 1.3].

Remark 5.3 (The discriminant can be disconnected). If 𝑒 = 5
4𝑑, then we can still blow up the curve 𝔰2

in 𝐷𝑧 to obtain a construction in the style of Kobayashi as explained above. Thus, 𝑋 ′ → 𝐷 ′
𝑧 is a double

cover branched over E and the surface B defined by

𝑢10(𝑥 ′90 𝑥 ′1 + · · · + 𝑐0,10,0𝑥
′10
1︸������������������������︷︷������������������������︸

𝑎0

) + 𝑢8𝑦(𝑐7,1,1𝑥
′7
0 𝑥 ′1 + . . .︸��������������︷︷��������������︸
𝑎1

) + · · · + 𝑦5.

The blowup resolves the base locus of |𝐾𝑋 |, and the projection 𝑋 ′ → F𝑒 onto coordinates 𝑡0, 𝑡1, 𝑥
′
0, 𝑥

′
1

is a genus 2 fibration over F𝑒 with fibre (𝑧2 =
∑

𝑖 𝑎𝑖 (𝑝)𝑢10−2𝑖𝑦𝑖) ⊂ P(1𝑢 , 2𝑦 , 5𝑧), where p is a point of
F𝑒 and 𝑎𝑖 (𝑡0, 𝑡1, 𝑥 ′0, 𝑥

′
1) are the coefficients as in the above displayed formula.

The discriminant Δ ⊂ F𝑒 of the genus two fibration 𝑋 ′ → F𝑒 is reducible because all 𝑎𝑖 are divisible
by 𝑥 ′1. Moreover, the two components of Δ are disjoint because the monomial 𝑥 ′90 𝑥 ′1 appears in 𝑎0 with
constant nonzero coefficient.
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5.2. A second component of the moduli space

Theorem 5.4. For every 𝑝𝑔 ≥ 7 of the form 3𝑑 − 2, let N 0
𝑝𝑔

be the subset of the moduli space of
canonical threefolds with geometric genus 𝑝𝑔 and 𝐾3 = 4

3 𝑝𝑔 − 10
3 given by smooth simple fibrations in

(1, 2)-surfaces. Then, N 0
𝑝𝑔

has

◦ one connected component if d is not divisible by 8,
◦ two connected components if d is divisible by 8.

All these components are unirational.
One component is formed by those 3-folds with canonical image F𝑒, 0 ≤ 𝑒 ≤ 𝑑. This is an open

subset of the moduli space of canonical 3-folds.
When d is divisible by 8, there is a second component of the moduli space of canonical 3-folds, in-

cluding smooth 3-folds whose canonical image is F 5
4 𝑑 . The intersection of the closures of the components

in the moduli space of canonical 3-folds is not empty.
In particular, the moduli space of canonical 3-folds with given 𝑝𝑔 = 3𝑑 − 2, 𝐾3 = 4

3 𝑝𝑔 − 10
3 is

reducible when d is divisible by 8.

Proof. By Propositions 1.6, 2.2, 2.4 and 4.22, all smooth simple fibrations with 𝑒 ≠ 5
4𝑑 are Gorenstein

regular of the form 𝑋 (𝑑; 𝑑0) with 𝑑0 ≥ 𝑑. Moreover, they belong to the same irreducible component of
the moduli space of canonical 3-folds, whose general element is a 𝑋

(
𝑑;

⌊ 3
2𝑑

⌋ )
.

Now, assume d divisible by 8 and choose 𝑑0 = 7
8𝑑 so that 𝑒 = 5

4𝑑. A general scrollar deformation
X as in §2 gives a degeneration 𝑋 (𝑑; 𝑑0 + 1) � 𝑋 (𝑑; 𝑑0) with singular central fibre X0. Indeed, in the
notation of the proofs of Propositions 1.6 and 2.4 in this case, we get first of all

◦ deg 𝑐10,0,0 < 0 ⇒ 𝔰0 ⊂ 𝑋 (𝑑; 𝑑0).
◦ deg 𝑐9,1,0 = 0 and 𝑐9,1,0 ∈ (𝑡0, 𝑡1)𝑒−1 ⇒ 𝑐9,1,0 = 0 that implies 𝔰0 ⊂ Sing 𝑋 (𝑑; 𝑑0) and then the

degeneration X0 can not be smooth.

However, for general X , X0 is canonical. Indeed, deg 𝑐7,3,0 = 2𝑒. Then, following the argument of the
proof of Proposition 2.4, we may get any 𝑐7,3,0 ∈ (𝑡0, 𝑡𝑒−1

1 )3 of degree 2𝑒: these are all the multiples of 𝑡0,
and, in particular, we may get 𝑐7,3,0 with distinct roots – that is, the condition we used in Proposition 1.6
to ensure that the general element has canonical singularities. In particular, near 𝑡0 = 0, X0 looks like
(𝑧2 + 𝑦5 + 𝑡0𝑥

3
1 = 0), which is canonical by §1.4.

We now show that there is no degeneration 𝑋 (𝑑; 𝑑0) � 𝑋
(
𝑑; 7

8𝑑
)

with 𝑑0 ≥ 𝑑 and all fibres non-
singular. The argument is inspired by Horikawa [Hor76a, Lemma 7.3], although it is more complicated
to set up in our situation. Suppose, by contradiction, that X → Λ is such a degeneration. The rela-
tive canonical linear system |𝐾X /Λ | gives a rational map X /Λ → F/Λ, where F is a degeneration of
surfaces F3𝑑−2𝑑0 � F 5

4 𝑑 . If 3𝑑 − 2𝑑0 ≠ 0, then the Hirzebruch surface F3𝑑−2𝑑0 admits a unique fibra-
tion to P1. However, if 3𝑑 − 2𝑑0 = 0, then 𝑑 ≥ 3 and by §1.9, one of the two fibrations F0 → P1 is
distinguished by the canonical linear system of X. Thus, each fibre of F/Λ has a unique distinguished
fibration to P1, and hence, X /Λ admits a map to P1

Λ = P1 × Λ factoring through F/Λ. Moreover, this
map induces the fibration in (1, 2)-surfaces X𝜆 → P1 on each fibre.

Now, the relative bicanonical linear system |2𝐾X /P1
Λ
| endows X with a double cover structure of the

quadric cone bundle Q → P1
Λ. This is the relative version of the double cover 𝑋 → Q(𝑋) on each fibre

as defined in 4.10. The branch locus consists of a divisor B ⊂ Q and the special section 𝔰2 : P1
Λ → Q/Λ

corresponding to the vertex on each fibre ofQ/P1
Λ. In particular, we have a distinguished element y which

cuts out a divisor in Q which is isomorphic to F . Thus, the family (F ,B |𝑦=0) is a degeneration of pairs

(F3𝑑−2𝑑0 , 𝐵) � (F 5
4 𝑑 , 𝐵0),
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where the general B is irreducible, but the central 𝐵0 is disconnected. This is impossible since, as
observed by Horikawa [Hor76a, Lemma 7.3, p. 382], if t is sufficiently close to 0, then B𝑡 must be
disconnected. �

6. Threefolds with 𝐾𝑋 big but not nef

In this section, we analyse those 𝑋 (𝑑; 𝑑0) with min(𝑑, 𝑑0) = 0, 1 and at worst canonical singularities.
First, by Proposition 1.6, we have 0 ≤ 1

4𝑑 ≤ 𝑑0 ≤ 3
2𝑑. Hence, if min(𝑑, 𝑑0) = 0, then 𝑑 = 𝑑0 = 0 and

𝑋 (0; 0) is a product P1 × (𝑆10 ⊂ P(1, 1, 2, 5)). Second, if min(𝑑, 𝑑0) = 1, then 𝑑0 = 1 and there are four
possibilities, the first of which is 𝑋 (1; 1), which has Kodaira dimension 0. The other three are more
interesting to us.

Proposition 6.1. Consider 𝑋 = 𝑋 (𝑑; 1) with 𝑑 = 2, 3, 4. Then, X has canonical singularities along 𝔰0,
and 𝐾𝑋 is big but not nef. After flipping the negative curve 𝔰0, we get a quasismooth variety 𝑋+(𝑑; 1) in
F+(𝑑; 1) with 𝐾𝑋+ nef and big. The invariants of 𝑋+ are listed in Table 1.

Since 𝑋 (2; 1) has a model as a hypersurface in weighted projective space (see Remark 6.3), it can be
found using the methods of [BKZ19], [BK16]. The 3-folds 𝑋 (3; 1) and 𝑋 (4; 1) are in [CJL20, Table 10],
respectively in lines 8 and 10.

Proof. Since 𝑑0 = 1 and 𝑑 ≥ 2, we know that X is singular along 𝔰0 by Proposition 1.6. Moreover, by
Lemma 1.8 and its proof, we have 𝐾𝑋 · 𝔰0 = (−2𝐹 + 𝐻) · 𝔰0 = 𝑑0 − 2 = −1 < 0; hence, 𝐾𝑋 is not nef.

We determine a minimal model for X by applying the toric minimal model program to F(𝑑; 1) (see
[CLS11, §15]). The ray spanned by the class of the curve 𝔰0 is extremal in NE(F), and there is a
birational map F � F+ which flips 𝔰0 to a weighted projective plane 𝑆+. The flipped variety F+ is toric
with the same weight matrix as F, but the irrelevant ideal is changed to (𝑡0, 𝑡1, 𝑥0) ∩ (𝑥1, 𝑦, 𝑧). The nef
cone of F+ is R+(𝐻 − 𝐹) + R+(𝐻 − 𝑑𝐹). Hence, 𝐻 − 2𝐹 is (at least) nef on F+.

The birational transform 𝑋+ is defined by the same element of |10(𝐻 − 𝑑𝐹) | as X was, but we
consider 𝑋+ as a subvariety of F+. By the above discussion, 𝐾𝑋+ = (𝐻 − 2𝐹)𝑋+ is nef.

The rest of the proof is a case by case computation, showing that 𝑋+ is quasismooth, determining the
quotient singularities of 𝑋+ and the invariants 𝑝𝑔 and 𝐾3 (see the following example for 𝑋+(2; 1)). �

Example 6.2. Consider the toric variety F+(2; 1) with weight matrix
( 1 1 1 −3 0 0

0 0 1 1 2 5
)

and irrelevant ideal
(𝑡0, 𝑡1, 𝑥0) ∩ (𝑥1, 𝑦, 𝑧). Let 𝑋+(2; 1) be a general element of the linear system |10(𝐻 − 2𝐹) |. After the
usual coordinate changes (see §1), the equation of 𝑋+ can be written as

𝑧2 + 𝑦5 + 𝑥3
0𝑥1𝑦

3 + 𝑥6
0𝑥

2
1𝑦 = 𝑥1𝑔(𝑡0, 𝑡1, 𝑥0, 𝑥1, 𝑦),

where g is contained in the ideal (𝑡0, 𝑡1) and for simplicity, we set all coefficients to be 1. More precisely,
a Newton polygon computation shows that 𝑥1𝑔(1, 1, 1, 𝑥1, 𝑦) does not contain any monomials 𝑥𝛼

1 𝑦𝛽 with
𝛽 < 5 − 2𝛼, and thus, 𝑋 (2; 1) has a curve of 𝐷6 singularities along 𝔰0.

Taking the irrelevant ideal into account, we see that the base locus of |10(𝐻 − 2𝐹) | in F+(2; 1) is the
single point 𝑃 : (𝑡0 = 𝑡1 = 𝑦 = 𝑧 = 0). Moreover, 𝑋+ is quasismooth at P because the equation contains
the monomial 𝑥6

0𝑥
2
1𝑦, so the affine cone over 𝑋+ is nonsingular at P.

Table 1. Threefolds with 𝐾𝑋 not nef..

𝑋 (𝑑; 1) 𝑝𝑔 𝐾 3
𝑋+ Singularities of 𝑋+

𝑋 (2; 1) 4 9
4 2 × 1

2 (1, 1, 1) , 1
4 (1, 3, 3)

𝑋 (3; 1) 7 85
14

1
2 (1, 1, 1) , 1

7 (3, 4, 6)

𝑋 (4; 1) 10 301
30

1
2 (1, 1, 1) , 1

3 (1, 2, 2) , 1
5 (1, 4, 4)
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The flipped locus on F+ is 𝑆+ defined by 𝑡0 = 𝑡1 = 0, which implies that 𝑥0 ≠ 0 because of the
irrelevant ideal. Hence, we can rescale 𝑥0 to eliminate one of the C∗-actions on F+. Row operations on
the weight matrix show that the remaining C∗-action reduces to(

𝑡0 𝑡1 𝑥1 𝑦 𝑧
−1 −1 4 2 5

)
.

Thus, 𝑆+ � P(4, 2, 5) and the flipped curve 𝔰+0 = 𝑋+ ∩ 𝑆+ is defined by 𝑧2 + 𝑦5 + 𝑥1𝑦
3 + 𝑥2

1𝑦 = 0 in 𝑆+.
Next we determine the quotient singularities of 𝑋+. Using the row-reduced weight matrix, we may

identify the orbifold charts on F+ covering 𝔰+0 ; they are 𝑈𝑥0 ,𝑥1 �
1
4 (3, 3, 2, 1), 𝑈𝑥0 ,𝑦 � 1

2 (1, 1, 2, 1) and
𝑈𝑥0 ,𝑧 � 1

5 (4, 4, 4, 2). Note that 𝑈𝑥0 ,𝑥1 and 𝑈𝑥0 ,𝑦 cover a curve Γ � P(4, 2) of 1
2 (1, 1, 1) singularities

containing a dissident 1
4 (3, 3, 1) point. Since 𝑋+ ∩ Γ is defined by 𝑦5 + 𝑥1𝑦

3 + 𝑥2
1𝑦 = 0, we see that

𝑋+ contains two 1
2 (1, 1, 1) points and the 1

4 (3, 3, 1) point. The other chart 𝑈𝑥0 ,𝑧 has an isolated index 5
singularity which is not contained in 𝑋+ because of the monomial 𝑧2.

Thus, the basket of singularities of 𝑋+ is {2× 1
2 (1, 1, 1), 1

4 (3, 3, 1)}. Moreover, 𝜒(O𝑋 ) = 1−0+0−4 =
−3 and 𝑃2 (𝑋) = 11. Next, we apply the orbifold Riemann–Roch formula [Rei87] for 𝜒(2𝐾𝑋 ):

1
2
𝐾3

𝑋+ = 𝑃2 (𝑋) + 3𝜒(O𝑋 ) −
∑
𝑄∈B

𝑏(𝑟 − 𝑏)
2𝑟

,

where 𝑄 � 1
𝑟 (1,−1, 𝑏), to get

𝐾3
𝑋+ = 2 ·

(
11 + 3 · (−3) − 2 · 1

4 − 3
8

)
= 9

4 .

Remark 6.3 (Hypersurface model of 𝑋+(2; 1)). Recall that 𝐾𝑋+ (2;1) is nef but not ample. In this case,
there is a model of 𝑋+(2; 1) as a hypersurface in weighted projective space:

𝑋30 ⊂ P(1, 1, 4, 6, 15).

This has 3-divisible canonical class, an additional Gorenstein canonical singularity 1
3 (1, 1, 1) on the line

P(6, 15). Let 𝑎0, 𝑎1, 𝑏, 𝑐, 𝑑 denote the coordinates on P(1, 1, 4, 6, 15). The contraction 𝑋+(2; 1) → 𝑋30
is given by

(𝑎0, 𝑎1, 𝑏, 𝑐, 𝑑) = ( 3√𝑥1𝑡0, 3√𝑥1𝑡1, 3√𝑥1𝑥0, 𝑦, 𝑧),

which is the crepant resolution of the 1
3 (1, 1, 1) point. The pencil |O(1) | are surfaces with 𝑝𝑔 = 2,

𝐾2 = 4
3 , 2 × 𝐴1, 𝐴3 and a 1

3 (1, 1) singularity, the minimal resolution being a (1, 2)-surface.

6.1. Nonterminal flips

The birational map 𝑋 � 𝑋+ is a nonterminal flip because X is singular along 𝔰0. One approach to
describing this map would be to resolve the singularities along 𝔰0 and then run the MMP to get a
minimal model. See Figure 1 for a schematic picture of this for 𝑋 (2; 1).

Unlike in Proposition 1.9, the canonical linear system of 𝑋 (2; 1) has a fixed part 𝐷𝑥1 , and |𝐾𝑋 −𝐷𝑥1 |
is a basepoint free pencil of (1, 2)-surfaces. Every fibre has a 𝐷6-singularity along the section 𝔰0. On
𝑋+, |𝐾𝑋+ | is a pencil with base curve 𝔰+0 . Each element of |𝐾𝑋 | is a (1, 2)-surface with a 𝐷6-singularity
where it meets 𝔰0. The flip extracts the central curve 𝔰+0 giving a partial resolution of the 𝐷6-singularity,
so each element of |𝐾𝑋+ | has two 𝐴1-singularities and one 𝐴3-singularity, lying on the base curve 𝔰+0 .

The other two cases have a similar description:
◦ After a crepant blowup, 𝑋 (3; 1) has a curve of 𝐸8-singularities along 𝔰0, and the flip extracts the

curve marked with a square in Figure 2 below, so the pencil |𝐾𝑋+ | consists of (1, 2)-surfaces with
one 𝐴1-singularity and one 𝐴6-singularity on the base curve 𝔰+0 .
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resolution of 𝐷6 × P1

contract ruling

𝔰+0 𝔰+0

1
2

1
2 1

4

Figure 1. Schematic picture of the flip 𝑋 (2; 1) to 𝑋+(2; 1).

Figure 2. Partial resolutions of 𝑋 (3; 1) and 𝑋 (4; 1).

◦ There is also a curve of 𝐸8-singularities along𝔰0 in 𝑋 (4; 1). This time, the partial resolution extracts the
curve marked with a triangle in Figure 2, and the elements of |𝐾𝑋+ | have 𝐴1, 𝐴2 and 𝐴4-singularities.
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