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Particle Density Retrieval in Random Media Using a
Percolation Model and a Particle Swarm Optimizer
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Abstract—This letter is a first attempt to apply a percolation
theory model to the estimation of the density of particles in
complex layered two-dimensional media from electromagnetic
measurements. A procedure based on an analytical closed-form
description of the wave propagation process is presented. The
problem is recast as an iterative optimization one and solved by
means of a particle swarm optimizer. Numerical experiments
show the validity of the proposed solution.

Index Terms—Particle swarm optimizers (PSOs), percolation
theory, remote sensing, stratified random media.

I. INTRODUCTION

R ETRIEVING the particle density of random media (e.g.,
hydrometeor masses, granular soils, etc.) is of great in-

terest in several problems arising in remote sensing and radar
engineering [1]. This letter proposes a method relying neither
on wave theory nor on radiative transfer theory, but describing
electromagnetic propagation in terms of a suitable stochastic
process [2]. Such a description allows to obtain very simple
closed-form analytical solutions that facilitate the inversion pro-
cedure. The proposed probabilistic model is a simplified version
of the real propagation problem. Nevertheless, it provides the
framework for a new inversion method which can be in prin-
ciple extended to more realistic and complex scenarios. A key
assumption is that scatterers are large compared to the wave-
length, which is motivated by the recent interest in Terahertz
technology [3].

II. PROBLEM STATEMENT

Let us consider a stratified two-dimensional distribution
of particles preceded and followed by free-space (Fig. 1)
and let us model such a distribution as a two-dimensional
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Fig. 1. Sketch of the geometry (top) and the solution (bottom) of the problem.

percolation lattice [4] described by the following obstacles
density profile

...
(1)

where each site belonging to level is independently occupied
with probability (Fig. 1). Each layer is made up by

levels and its obstacles density is equal to .
Let us assume to know the number of layers and the depth
of each layer. The problem is to estimate the obstacles density
values .

We assume to illuminate the half-plane filled by the obstacles
by a monochromatic plane wave with free-space power density
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, that scatterers are large with respect to the wavelength, and
that losses and diffractions can be neglected. In this case, the
wave can be modeled as a collection of rays undergoing specular
reflections on the occupied sites. Hence, the transmitted power
density splits along the two vertical directions, see Fig. 1. One
portion, , is associated to the rays crossing the medium and
reaching the empty half-plane on the bottom. The other, , is
associated to the rays reflected back to the empty half-plane on
the top. The values of and clearly depend on the un-
known characteristics of the medium and carry information on
the scatterers density. Let us suppose to measure the backscat-
tered power density .

We now introduce the following notation. We write
to indicate the probability that a ray in level reaches

level before going into level . Accordingly, the probability
that the ray is reflected back in the above empty half-plane be-
fore reaching level is given by [5], [6]

(2)

where ,
is the probability that a ray travels from level (i.e.,
the first level of layer ) to level (i.e., the last level of layer

) before going back to level . In the multilayer
Martingale (MMT) approach [5], is estimated as follows:

(3)

where and
being the incidence angle. In the Markov (MK) approach [6],

is estimated as

(4)

The hybrid (HB) approach proposed in [6] exploits both (3) and
(4) as follows: if , then whatever ; if

, then if and
elsewhere; if , then if and

otherwise.
Whatever the mathematical approach used, the probability

represents the expected number of rays being
reflected back in the above empty half-plane. Thus, we have that
the backscattered power density is given by

(5)

Before addressing the inverse problem, we point out the main
drawbacks we have to deal with. Besides the typical negative
features of the inversion procedures (i.e., non-linearity and ill-
posedness), the mathematical models of ray propagation de-
scribed above satisfactorily perform only in a specific range of
parameters. Specifically, as described in [6], more accurate es-
timations are obtained when the incidence angle tends to 45 .
Furthermore, while the MMT approach and the MK approach
perform better for dense and sparse media, respectively, the HB
approach allows reliable predictions whatever the obstacles den-
sity is [6]. However, the HB approach requires to know the oc-

cupation probability of each layer and such a-priori knowledge
is not available in this case.

III. INVERSION STRATEGY

The use of the HB approach and of a measurement when the
incidence angle is equal to 45 seems to be the best solution to
limit the inaccuracies of the models. However, in order to apply
the HB approach, the knowledge of the obstacles density distri-
bution is needed. Accordingly, the inversion problem is recast
as an iterative optimization problem

(6)

where is the estimated obstacles density profile,
is a sequence of trial solutions, being the iteration

number, and

(7)

where and are the estimated and measured
power density values, respectively.

The ill-posedness of the problem is due to the loss of infor-
mation in the solution of the forward problem, where an input
quantity (i.e., ) is mapped into an
output value (i.e., the power density ) with a smaller infor-
mation content. The most natural way to introduce information
would be to consider additional incidence conditions besides

. However, as noticed before, the accuracy of the math-
ematical models decreases as deviates from 45 . Hence, we
exploit a new model when the probing wave impinges normally
on the half-plane lattice (i.e., ). We refer to this in the
following as normal incidence (NI) approach. Let us consider a
single ray entering the grid and let us estimate the probability

. Such a quantity is equal to the probability
that any of the cells on the ray path is occupied. As a matter
of fact, if a reflection occurs, such a reflection is surely on a hori-
zontal face and the ray escapes from the grid traveling along the
free path just covered, but with negative direction. Thus, pro-
vided that , the backscattered power density is given by

(8)

where . Accordingly, the functional to be min-
imized takes the form

(9)

where

(10)

Moreover, some additional information on the actual solution
is introduced by exploiting the phase transition property exhib-
ited by percolation lattices [4]. According to such a property,
propagation is inhibited when , is lower than
the so-called percolation threshold in the two-
dimensional case. Thus, when , the backscattered value
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tends to and it is not possible to extract any reliable infor-
mation on the medium at hand from the field measurement. Ac-
cordingly, when looking for the medium distribution, we can set

(11)

In order to look for the global minimum of (9) that satisfies
(11), an optimization algorithm able to effectively explore the
solution space is needed. In such a choice, the nonlinearity of
the problem plays a relevant role. Although some a priori in-
formation has been introduced, the cost function still presents
several local minima, which correspond to false solutions of the
physical problem. Moreover, (9) has some discontinuities. To
overcome these drawbacks, a typical solution is to use global
optimization techniques, such as genetic algorithms (GAs) [8]
and particle swarm optimizers (PSOs) [9]. In fact, deterministic
approaches such as gradient methods [10] are reliable only when
the cost function is everywhere differentiable and the search
space is limited at the attraction basin of the global minimum.

A PSO is applied here. The choice has been motivated by the
advantages exhibited by PSOs when compared to GAs. Such
advantages are mainly concerned with the ability to control the
convergence and the stagnation of the optimization process,
an easier implementation and calibration, and the exploitation
of the cooperation among the trial solutions. Moreover, PSOs
present a better heuristic adaptability with respect to GAs,
where stagnation phenomena can be avoided only thanks to
lucky mutations. In the following, the main steps of the imple-
mented PSO are summarized.

Initialization Step : The positions of the particles of
the swarm

, and their velocities
, are randomly generated.

Evaluation Step: The optimality of each trial solution at the
th iteration is evaluated and the personal best position

(12)

as well as the global best position

(13)

are updated. The iteration index is increased and the
termination criteria are checked. If the cost of the global best
is smaller than a given threshold or the maximum number of
iteration is reached, then the optimization process stops and
the global best is assumed as the problem solution .

Updating Step: The velocity of each particle is updated

(14)

where and are constant parameters called inertial
weight, cognition and social acceleration, respectively. More-
over, and are random coefficients drawn from a uniform
distribution in [0,1]. The position of each particle is updated as
follows:

(15)

TABLE I
PSO SETUP PARAMETERS

Particles escaping the actual solution space are handled ac-
cording to the reflecting wall technique [11]: whenever the
particle hits the boundary of the solution space along direction

, then the sign of the velocity in such direction is changed
and the particle is reflected back in the solution space. The
optimization algorithm restarts from the “Evaluation Step.”

IV. NUMERICAL VALIDATION

The proposed inversion strategy is validated by referring
to three-layer profiles having and
(Fig. 1). Such a configuration could be of interest to model
a rain column, which is usually considered as made by three
regions [7]. More in detail, experiments consider three different
test cases, i.e., a profile consisting of very sparse and very
dense layers in alternated succession ,
a sparse profile , and a dense profile

.
The scattering data and have been numeri-

cally obtained by Monte Carlo computer-based ray tracing ex-
periments. Specifically, 100 random lattices with the same ob-
stacles density have been generated and for every grid 500 rays
have been launched from different entry positions.

The PSO parameters values are given in Table I and have been
chosen following the guidelines provided in [12]. In particular,
considering the dimension of the solution space and in order
to avoid not strictly necessary fitness evaluations, has been
set equal to 5. The parameters and have been empirically
chosen. The inertial weight has been set equal to 0.4 to damp
oscillations of the optimizer around the optimal solution and
speed up the convergence rate, while and have been set
equal to 2 [12]. Taking into account the dynamic range of the
particle, has been set equal to 0.4. For each experiment,
the optimizer has been executed times.

In order to quantify the effectiveness of the inversion proce-
dure, the discrepancy

is analyzed, and being the reference and the
estimated occupation probability values, respectively. More in
detail, since the PSO is executed times for each experiment,
the average value , the standard devi-
ation , the maximum

, and minimum are evaluated,
being the discrepancy obtained at the th trial.

The proposed approach allows good estimations of the un-
known probability distributions (Fig. 2). This is confirmed by
the discrepancy values, being % %,
and %, for the variable, the sparse and the dense
profiles, respectively. It is worth noting that obtained results
considerably worsen when . In fact,
at higher densities rays are almost immediately backscattered
without exploring much of the medium and therefore the mea-
sured power density does not carry much information useful for
the inversion procedure.
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Fig. 2. Retrieved obstacles density profiles.

For comparison purposes, we consider results obtained by
minimizing other kinds of cost functions, i.e., (7) and

(16)

where is given in (10) and

(17)

(18)

The underlying idea of (16) is combining the two different terms
and in order to compensate the comple-

mentary negative features of the MMT approach and of the MK
approach, which satisfactorily perform only provided that the
obstacles density is high and low, respectively.

Comparing the proposed strategy with the one re-
lying on (Fig. 3), it is evident that mini-
mizing leads to better estimations (for in-
stance, when

). Such a behavior validates the effec-
tiveness of introducing the additional term in the cost
function to be minimized.

The proposed strategy outperforms the one relying on (16)
as well (Fig. 3). This is particularly evident when

, being
. Such a behavior can be explained taking into account that

Fig. 3. Error statistics.

neither the MK approach nor the MMT approach satisfactorily
perform in describing ray propagation when highly variable
profiles are at hand. On the contrary, when either dense or
sparse profiles are considered, performances of the strategy
relying on get better since one between the
MK approach and the MMT approach properly works.

V. CONCLUSION

In this letter, a new approach to the retrieval of the density of
particles in complex layered media from electromagnetic mea-
surements has been proposed. Thanks to the analytical nature of
the model estimating the measured power density, the conver-
gence rate of the PSO (i.e., satisfactory solutions are obtained
after few hundreds of iterations), and the very small ensemble
of unknowns, the proposed inversion procedure turns out to be
extremely fast. Numerical experiments have shown that reliable
estimations can be achieved.
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