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Abstract

The COVID-19 epidemic has had a significant impact on society, affecting not only phys-

ical health but also mental health, social interactions, and the economy. Measures such

as lockdowns, travel restrictions, and social distancing have altered the way we live, work,

and interact. Digital contact tracing is a valuable tool in managing infectious disease out-

breaks and can help avoid severe lockdowns and excessive quarantines. Our initial research

explored the effectiveness of contact tracing apps, but we faced the challenge of accessing

actual temporal interaction networks to accurately simulate disease spread. To gain a

deeper understanding of the underlying structures of temporal networks, we delved into

the study of temporal networks in our second project. Our focus was on developing an ef-

fective approach for identifying temporal motifs in interaction networks, and we introduced

the concept of egocentric temporal neighborhoods (ETN) and egocentric temporal motifs

(ETM). Finally, we proposed a generative model for temporal networks called ETNgen,

which takes into account the intrinsic temporal correlations present in real-world temporal

networks. The model captures the time-evolving network structure of egocentric temporal

neighborhoods (ETN), thus providing a more accurate representation of real-world net-

works.
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Chapter 1

Introduction

Our world is structured upon the interactions between various entities. Society arises by

the connections between individuals, molecules are formed by bonding atoms together,

and the internet is a network of interlinking computers, among other examples. These

discrete and pairwise relationships can be represented by making use of discrete mathe-

matical objects known as networks, which consist of collections of nodes (entities) that

are connected by edges or links (relations). The study of networks has been the sub-

ject of considerable research in recent decades, making network science one of the major

disciplines in the study of complex systems.

Many real-world interacting systems, including social relationships, are dynamic and

evolve over time. These changes can be captured by temporal networks, where edges

can appear and disappear in time. Schematizing the real world via such temporal archi-

tectures allows researchers to analyze and comprehend complex dynamics. The study of

temporal networks has proven to be essential in many fields, including Chemistry, Physics,

Biology, and Computational Social Sciences. Computational Social Science (CSS) is an

interdisciplinary field that combines social science theories and methods with computer

science techniques and technologies to study social phenomena. The goal of this discipline

is to better understand and explain social behaviours, social systems, and social inter-

actions. The increasing amount of data involving people and social interactions provide

us with an extremely useful instrument, which has opened the perspective of this new

field. The possibility to acquire real privacy-preserving data allows research to evolve

and, starting with the analysis of real interactions, to get insight and formulate new the-

ories. In my thesis, I have made use of several open data on social interactions, namely

face-to-face and co-location data which have been collected in different environments.
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CHAPTER 1. INTRODUCTION

The temporal nature of face-to-face interactions can be well represented by temporal net-

works. Both network science and computational social science are complex disciplines

well studied in the last decades. However, physical interactions in a social context repre-

sent a complex problem and a complete characterization of them is still missing. Open

problems involve how social bonds arise and evolve in time, how each individual’s be-

haviour is affected by past interactions and by the features of its neighbours, and the

effect that a single individual may have on a group in a specific social context. Moreover,

if the temporal network represents the physical structure on which a dynamical process

evolves, it becomes natural to wonder how the dynamics are affected by the topology of

such networks.

Whit this in mind, we started by exploring the spreading of COVID-19 in a face-to-

face interaction network. In this study we investigated how isolating and quarantining

infected people affects the virus spreading. Both isolations and quarantines correspond to

removing connections of the original network, thus implying a change in the topology of

the temporal network. The impact of this change on spreading dynamics is very significant

and it can be quantified via appropriate indicators that we define. This highlights the

complex interplay between network structure and dynamics and makes us understand

the importance of a deeper investigation of temporal network topology. To this end, we

decompose temporal networks finding their constitutive building blocks. These correspond

to small subnetworks with an extension in time and in space, that are centred on specific

ego nodes: we refer to those subnetworks as Egocentric Temporal Neighbourhood (ETN).

We found a method to identify the most significant ones for each temporal network and

we gave them the name of Egocentric Temporal Motifs (ETM). It is worth mentioning

that finding important structures in networks is extremely expensive. This is not the case

for our ETM since they can be converted into binary strings, thus the mining becomes

extremely fast. Decomposing a temporal network into substructures not only allows for a

better understanding of the underline dynamics but also allows for generating synthetic

ones. Generating temporal networks is crucial for many applications. For instance, the

main issue with our first work is the lacking of big face-to-face interaction data. In fact,

we exploit the novel concept of ETN as a building block to generate synthetics networks

similar to the original one, namely surrogate temporal networks. Our method, not only

generates temporal networks with high temporal granularity, but it also allows for the

extension (increase in the number of temporal snapshots) and expansion (increase in the

number of nodes) of temporal networks, something not feasible so far. Moreover, since

our generative model is based on ETN the procedure is extremely fast compared to state-

of-the-art algorithms.
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CHAPTER 1. INTRODUCTION 1.1. CONTRIBUTIONS

This thesis is structured as follows. In Chapter 1, the contributions developed during the

doctoral program are presented. Chapter 2 introduces the mathematical backgrounds and

datasets that were utilized throughout this thesis. Chapter 3 provides a real-world appli-

cation of digital contact tracing and its effectiveness in reducing the spread of COVID-19.

In Chapter 4, ETN and ETM are introduced, and then we demonstrate their effective-

ness in calculating the distances between temporal networks collected from different social

contexts. Chapter 5 presents our generative model for fine-grained temporal networks,

with a particular focus on temporal extension and expansion. Finally, in the concluding

chapter, several future developments are presented. In the rest of this chapter, we discuss

in more detail the original contributions presented in this thesis.

1.1 Contributions

The upcoming subsections aim to provide an overview of the issues discussed in the

subsequent chapters. The purpose of this introduction is to offer readers an in-depth

understanding of the challenges and complexities that will be addressed in the forthcoming

sections.

1.1.1 A Real-world application: the Digital Contact Tracing

As of mid-January 2021, the COVID-19 pandemic has resulted in over 85 millions detected

cases worldwide (29), overwhelming the healthcare capacities of many countries and thus

presenting extraordinary challenges for governments and societies (104; 114; 154). Rig-

orous restrictions such as lockdowns and quarantine have proven to be effective in many

countries as a measure to curb the spread of COVID-19, limit contagions and reduce the

effective reproductive number (63; 104; 4; 86; 79; 180; 32; 22; 38; 54). Many areas slowly

started to lift the restrictions, but new outbreaks appeared again, arriving in waves as

anticipated by several early models (47; 82). An effective and affordable long-term plan

is required, since the fraction of the population that has been infected is still far too low

to provide herd immunity (154).

Despite their efficacy, large-scale quarantine and lockdown strategies carry large costs (4).

Moreover, in a situation where most of the population is not infected, population-wide

lockdowns are far from optimal, and interventions at smaller scale, selectively targeting

individuals at higher risk of spreading the disease, are more desirable.

While the testing and isolation of symptomatic cases is crucial, it is insufficient in the
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case of COVID-19, since there is clear evidence of presymptomatic and asymptomatic

transmission (117; 53; 48; 96; 141). Thus, the identification and isolation of infected cases

must be coupled with a strategy for tracing their contacts and preventively quarantining

them (113; 93; 71; 48). Traditional manual contact tracing, besides being slow and labor

intensive (46; 83; 69), is not able to entirely reconstruct close proximity contacts (162;

120). Thus, technologies based on digital sensors have been developed to complement

manual tracing. The idea is to leverage the widespread dissemination of smartphones

to develop proximity-sensing apps based on the exchange of Bluetooth radio packets

between them (170; 41; 48; 136; 146; 68; 115; 25), within a privacy-preserving contact

tracing framework (170).

The efficacy of digital contact tracing (DCT) (85; 80; 59; 49; 118; 1; 71; 112; 93; 14; 113)

has been discussed in several recent papers. We draw inspiration from the work by Fraser

et al.(52), recently adapted to the case of COVID-19 by Ferretti et al.(48). This work

models the pandemic evolution using recursive equations describing the number of infected

individuals in a homogeneously mixed population, taking into account the evolving infec-

tiousness of the infected individuals. The analysis is based on two effective parameters,

εI and εT , to represent the ability to identify and isolate infected individuals, and to cor-

rectly trace their contacts, respectively. Assuming an exponential growth for the number

of infected individuals (applicable in early phases of an uncontrolled epidemic outbreak)

the authors studied how the growth rate depends on these intervention parameters.

Chapter 3 discusses a new approach to understanding the effectiveness of contact tracing

in the real world. First, the mathematical framework proposed by Ferretti et al.(48) is

restructured to apply to any epidemic growth pattern and phase, and the epidemiological

aspects of the model are modified to consider asymptomatic cases and delays in isolating

infected individuals. The tracing ability is quantified through simulations on real-world

data sets, allowing for a more accurate evaluation of the impact of tracing on disease

spread. The probability of contagion events is also considered, and policies for identifying

risky contacts are developed to minimize false positives and negatives. The approach

allows for the evaluation of the effect of different tracing policies on disease spread and

their impact on the population.

1.1.2 Mining in temporal networks

Complex networks play a pivotal role in describing and analyzing complex systems in

multiple natural and artificial scenarios, representing a fundamental tool for modeling

biological, cognitive and social systems (132). Interestingly, the small substructures that
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compose the complex topology of a network are sometimes recurrently emerging as essen-

tial constituents for the specific network at hand. They consist in sub-networks composed

by a small number of nodes with a specific structure of connections. The substructures

which are identified as the most significant take the name of motifs (124; 3). The signifi-

cance of each specific substructure within the overall network architecture is assessed in

relation to its frequency and usually referring to a null model: a structure is considered

a motif if the number of its occurrences in the network is substantially higher than the

number of occurrences in the null model.

The identification of specific repeated motifs offers a unique opportunity to investigate

the complex and intricate dynamics of human behavior and interactions (177; 123). As

a matter of fact, when analyzing social dynamics we usually need to deal with time-

dependent structures (88; 87). Social interactions are indeed characterized by links which

appear and disappear in time and are associated with variable duration. The appropriate

topological tool to describe systems of dynamical interactions is represented by temporal

networks with a fixed set of nodes connected by edges that vary over time (72). In such

framework the identification of motifs becomes more challenging, since a substructure can

be repeated both in time and in space.

In the last years, a number of solutions has been developed to mine motifs in temporal

networks (see (78) for a survey). In this thesis, we focus on temporal networks where

nodes are fixed and edges can change over time. Currently, two popular strategies have

been followed to adapt graph mining approaches to deal with a changing network topology.

The first strategy (7; 42; 169) consists of aggregating temporal information, i.e., building

a static network containing all connections in the temporal graph regardless of the time

associated with them. While this simple strategy allows using standard techniques for

motifs discovery, it loses the ability to capture the temporal dynamics of the interactions

between nodes. The second one consists in building a growing network, where nodes

and edges can be added but never deleted (147; 100). However these approaches are

not appropriate to deal with data containing social interactions which are necessarily

transient.

Most methods for mining motifs of transient interactions have been developed in the field

of communication networks. Kovanen et al. (91) define the concept of ∆t − connected

graph as the connected temporal graph containing edges within a temporal gap ∆t, and

search for temporal motifs inside them. Zhao et al. (184) extended this concept to

communication motifs, basically requiring a number of occurrences greater than a given

threshold. Later, Gurukar et al. (62) proposed COMMIT, an algorithm that converts con-
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nected temporal subgraphs in sequences using graph invariants and then mines frequent

sub-sequences as communication motifs. More recently, Kosyfaki et al. (90) proposed a

new definition of max-flow communication motifs, in which flow refers to data (e.g., money,

messages, etc.). Hulovatyy et al. (75) introduced dynamic graphlets, which extend the

concept of graphlets from static networks to temporal graphs. However, they do not search

for temporal motifs but rather use all dynamic graphlets (up to a given complexity) to

generate vectorial representations of the network and its nodes. A related line of research

aims at characterizing temporal networks in terms of dense subgraphs (89; 153; 152). Fi-

nally, Paranjape et al. (139) propose a mining strategy that extracts static motifs from

the aggregate network (obtained collapsing all the temporal layers together and thus drop-

ping the temporal information) and expands them into temporal motifs by considering

the order of appearance of edges within a given temporal gap. Other studies investigated

approximate methods for counting temporal motifs (105; 176).

None of these approaches tries to capture the temporal evolution of the interactions of a

single node, which is the focus of our work. The egocentric perspective allows to extract

meaningful patterns of interaction that are hard to find with non-egocentric solutions.

Additionally, it allows to devise an efficient procedure to compare these types of patterns

that can substantially speed up the mining process.

In Chapter 4, a new approach to analyzing temporal networks called egocentric temporal

motifs (ETM ) is presented. This approach focuses on a specific node, observing its neigh-

bors and how its connections change over time from an ”ego perspective”. By comparing

the egocentric temporal sub-networks using a bit vector signature, this method simplifies

the motif identification procedure compared to traditional methods that require graph

isomorphism. The effectiveness of this approach was evaluated by applying it to various

interaction datasets, including close proximity interaction networks and distance commu-

nication networks, and comparing it to existing micro-scale, meso-scale, and global-scale

alternatives. Results showed that the ETM approach was more effective in discriminating

between different types of graphs and characterizing a wide range of interactions, although

there were some limitations.

1.1.3 Generating temporal networks

Across the past decade, temporal networks have driven breakthroughs in real world sys-

tems across Biology, communications, social interactions, and mobility. The power of

temporal networks resides in their ability to capture complex dynamics such as diffusion
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and contagion (74; 64; 43; 31; 11; 26; 164; 35; 95; 34). In order to model realistic dynam-

ics, it is often necessary to employ large temporal networks, including a large number of

nodes and many temporal layers (163; 150; 28). Many state-of-the-art temporal datasets,

however, are limited both in the number of agents and in the number of temporal lay-

ers (26; 77; 167; 2; 156). When the available data are insufficient – e.g. in long-term

epidemiological simulations – datasets are extended by simply repeating the same tem-

poral sequence multiple times, a procedure which is known to result in biases (167). An

appealing solution to the problem of insufficient or privacy sensitive data is to use surro-

gate temporal networks (142). Surrogate temporal networks are synthetic datasets which

mimic the real-world temporal patterns relevant for a desired use-case. They can involve

the desired number of nodes and number of temporal layers, where the actual dynamics

are known through smaller studies or via available small datasets. The real dynamics, that

surrogate temporal networks aim to reproduce, is known to be characterized by typical

patterns of interactions, different in different domains (social, biological, infrastructural,

etc.), but that we can often recognize and delineate (128; 81). Moreover, in the case of

sensible data, such as fine-grained records of social interactions (37), surrogate data can

freely be shared. Knowledge of actual dynamics is often available because real temporal

networks are known to be characterized by typical patterns of interactions, different in

different domains (social, biological, infrastructural, etc.), but that we can often recognize

and delineate (128; 81). For these reasons, it is clear that surrogate temporal networks

are highly desirable from the perspective of a number of applications. Over the past

years, a large number of successful algorithms for static network generation have been

proposed (23; 36); however, extending these models to the dynamic regime has proven

prohibitively difficult, due to the greatly increased complexity introduced by the temporal

dimension.

Indeed, it has become clear that temporal networks are characterized by a highly non-

trivial interplay between the network topology (adjacency, degree distribution, clustering,

etc.) at a given time and the temporal activation of nodes and links – how each connection

changes over time (duration of interactions, patterns by which new links appear and old

ones disappear, etc.). From the ‘egocentric’ perspective of an individual node, these two

dimensions imply that models must take into account (i) the history of what has occurred

in the preceding timesteps and (ii) the current activations of the neighboring nodes. Cur-

rent network theory has not yet been able to fully understand and model the interplay

between the two dimensions. So far, it is not even clear which statistics to measure (73).

In fact, the scientific literature is full of studies focusing on the spatial dimension but

unable to take into account possible temporal correlations (12; 92; 39; 20; 40; 138), or

– alternatively – work dedicated to model the behavior of individual nodes in time (for

9
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example activity driven models (140; 164)) which does not reproduce realistic network

topologies (55). There exist models for link prediction that try to combine temporal and

topological dimensions by using small local temporal patterns (16) or building over a

backbone of significant links (142). However, there is currently a dearth of models for

generating surrogate networks from scratch that are able to take into account the two

dimensions simultaneously. The few works that do this rely on temporal motifs, like

Dymond (179) and STM (143), or on deep learning like TagGen (185). These three mod-

els represent the state-of-the-art. We show, however, that all these techniques generate

temporal networks with massive macroscopic differences compared with the original tem-

poral network datasets, and that – in many cases – the output-networks do not reflect

the dynamic behavior of the original network.

Chapter5 proposes a method called Egocentric Temporal Neighborhood Generator (ETN-

gen) for generating synthetic networks that match real-world networks in terms of topolog-

ical and dynamic measures. The generative algorithm uses the idea of egocentric temporal

neighborhood, which includes a small number of prior time steps for a node without inter-

actions between its neighbors. The algorithm characterizes a given real-world network in

terms of neighborhoods and uses them as building blocks for a new synthetic network. A

local probabilistic model suggests new temporal interactions for each node at subsequent

time steps based on its behavior during the prior time steps. The algorithm is scalable,

easily interpretable, and can be used for generating any type of graph. The surrogate

networks generated by ETN-gen match original networks with high accuracy, not just in

terms of local features, but also in terms of global features such as the number of inter-

actions, the number of interacting individuals in time, and density of their connections.

The method can generate large datasets without resolution limits and mitigates privacy

issues.

1.2 Publications

My doctoral program has brought to the publication of the following papers, inherent to

this thesis.

• Giulia Cencetti, Gabriele Santin, Antonio Longa, Emanuele Pigani, Alain Barrat,

Ciro Cattuto, Sune Lehmann, Marcel Salathé and Bruno Lepri (2021, March) Dig-

ital proximity tracing on empirical contact networks for pandemic control. Nature

communications. (28)

• Antonio Longa, Giulia Cencetti, Bruno Lepri and Andrea Passerini (2021, Novem-
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ber) An efficient procedure for mining egocentric temporal motifs. Data Mining and

Knowledge Discovery. (110)

• Antonio Longa, Giulia Cencetti, Sune Lehmann, Andrea Passerini and Bruno

Lepri. Neighbourhood matching creates realistic surrogate temporal networks. Un-

der review at Communication Physics.(109)

The program was instrumental to study other topics, which I chose not to include in this

thesis, and have however produced those publications:

• Hazem Peter Samoaa,Antonio Longa, Mazen Mohamad, Morteza Haghir Chehreghani

and Philipp Leitner (2022, November) TEP-GNN: Accurate Execution Time Predic-

tion of Functional Tests Using Graph Neural Networks. Proceeding of Product-

Focused Software Process Improvement: 23rd International Conference, PROFES

2022, Jyväskylä, Finland.(155)

• Giovanni Mauro, Massimiliano Luca, Antonio Longa, Bruno Lepri and Luca Pap-

palardo (2022, December) Generating mobility networks with generative adversarial

networks. EPJ data science. (122)

• Steve Azzolin, Antonio Longa, Pietro Barbiero, Pietro Liò and Andrea Passerini

(2023 March) Global explainability of GNNs via logic combination of learned con-

cepts. Proceedings of International Conference on Learning Representations: 11th

International Conference, ICLR 2023. (10)

• Antonio Longa, Steve Azzolin, Gabriele Santin, Giulia Cencetti, Pietro Liò, Bruno

Lepri and Andrea Passerini. Explaining the Explainers in Graph Neural Networks:

a Comparative Study. Under review at ACM Computing surveys.(108)

• Antonio Longa, Veronica Lachi, Gabriele Santin, Monica Bianchini, Bruno Lepri,

Pietro Lio, Franco Scarselli and Andrea Passerini. Graph Neural Networks for tem-

poral graphs: State of the art, open challenges, and opportunities. Under review

at International Joint Conferences on Artificial Intelligence Organization, IJCAI

2023.(111)

• Hazem Peter Samoaa, Linus Aronsson, Antonio Longa, Mazen Mohamad, Morteza

Haghir Chehreghani and Philipp Leitner. A Unified Active Learning Framework

for Annotating Graph Data with Application to Software Source Code Performance

Prediction. Under review at ECMLPKDD 2023
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Chapter 2

Background

In this chapter, we delve into the concept of networks and provide a formal definition

of what they are. We begin by discussing the fundamental building blocks of networks,

such as nodes and edges, and how they can be used to model various types of relation-

ships between entities. We also explore different types of networks, such as directed and

undirected networks.

Additionally, we provide background information on important concepts and techniques

used in network analysis. We explain how these tools can be used to extract valuable

insights from network data and uncover hidden patterns and structures. Towards the end

of the chapter, we showcase some of the networks used in this work, highlighting their

characteristics.

2.1 Networks

At their core, both molecular and internet systems rely on the interaction and communi-

cation between different entities. In the case of molecules, the atoms are linked together

by specific chemical bonds, forming a complex network of interactions that give rise to

a vast array of chemical properties and behaviors. Similarly, in the internet, individual

computers are connected through a complex network of cables, routers, and other devices,

allowing for the seamless transfer of data and communication across the globe.

Relational data is a crucial concept in understanding these systems, as it refers to any type

of data where the relationships between different entities are essential to understanding

the overall system. In addition to molecules and the internet, other examples of relational
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data include social networks, economic systems, biological ecosystems, and many others.

Understanding and analyzing these complex systems requires a range of tools and tech-

niques, from computational modeling and simulation to network analysis and data vi-

sualization. By studying the relationships between different entities in these systems,

researchers can gain a deeper understanding of their underlying structure, dynamics, and

function, and develop new insights and innovations that can help to address a wide range

of scientific and societal challenges.

A network, also known as a graph, is a mathematical construct that provides a way to

represent and analyze relational data. In a network, entities are represented as vertices

or nodes (denoted as V ), while the relationships between them are represented as edges

(denoted as E). These edges connect pairs of vertices, indicating a specific type of rela-

tionship or interaction between them.

Definition 1 (Graph). A graph G can be defined as a pair (V,E), where V is a set of

vertices or nodes, and E is a set of edges between the nodes, i.e., E ⊆ {(u, v)|u, v ∈ V }.
A graph can be represented with a squared adjacency matrix A of size |V | × |V | in which

the element ai,j is one if the graph has an edge from i to j. The graph is undirected if

it does not contain self-loops and the associated adjacency matrix is symmetric, directed

otherwise. At each node (or edge) of the graph can be associated features.

The provided illustration, depicted in Figure 2.1, serves as an exemplar of three types

of graphs, namely an undirected graph, a directed graph, and a graph that encompasses

both node and edge features. Notably, each of these graphs comprises seven vertices and

nine edges.

Figure 2.1: Example of undirected, directed and graph with node and edge feature

Definition 2 (Graph isomorphism). Two graphs G = (V,E) and G′ = (V ′, E ′) are said

to be isomorphic if and only if there exists a bijection π between their vertex sets such that

for all (u, v) ∈ E it holds that (π(u), π(v)) ∈ E ′ (edge-preservation). Graph isomorphism

is denoted as G ≃ G′.
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Definition 3 (Node neighborhood). Given a graph G = (V,E), the neighbors of a node

v ∈ V are the set of nodes adjacent to u, i.e., N (v) = {u ∈ V |(u, v) ∈ E}. The node

neighborhood is the subgraph of G containing v and its neighbors as nodes and all edges

connecting them as edges.

Network motifs are patterns of connections occurring on a given network significantly

more often than in random networks (124). The next definition formalizes the concept.

Definition 4 (Network motif ). Given a graph G and a set of n random graphs G0, a

sub-graph M of G is a network motif if and only if: (i) Pr(N̄G0 > NG) < α (over-

representation); (ii) NG − N̄G0 ≥ βN̄G0 (minimum deviation); (iii) NG ≥ γ (minimum

frequency). Here NG is the number of occurrences of sub-graph M in G, N̄G0 is the average

number of occurrences of sub-graph M in the random graphs (G0) and α ∈ [0, 1], β ∈ [0, 1]

and γ ∈ N are parameters.

The over-representation condition requires that the probability of observing a motif in the

random graphs more than in the original one is lower than a certain threshold α. Minimum

deviation instead prevents the detection as motifs of subgraphs with a slight difference

in occurrences between the graph under investigation and the random graphs. Finally,

minimum frequency avoids detecting statistically significant but infrequent motifs.

Definition 5 (Temporal graph). A temporal graph G = (V,E) is a pair of sets where

V is a set of vertices or nodes and E is a set of temporal edges, i.e., edges enriched

with temporal information. Each temporal edge e ∈ E is a quadruple (u, v, tstart, tend),

where u and v are nodes (u, v ∈ V ) and tstart and tend are time instants representing,

respectively, the beginning and the end of the interaction between node u and node v. Given

a temporal graph G, its corresponding (static) aggregate graph G is obtained removing

temporal information from the edges of G.

Definition 6 (Temporal graph snapshot). Given a temporal graph G = (V,E) and a

temporal gap ∆t, a temporal graph snapshot at time t is a static graph Gt = (Vt, Et) such

that Vt = V and there is a static edge (u, v) ∈ Et if and only if the corresponding temporal

interaction (u, v, tstart, tend) ∈ E exists within ∆t, i.e. tstart ∈ [t, t+∆t)∨ tend ∈ [t, t+∆t).

A temporal graph G = (V,E) can be represented as a sequence of temporal graph snapshots

Gt1 , Gt2 , ..., Gtm where t1 is the smallest tstart in E, ti+1 = ti +∆t and tm is smaller than

the largest tend in E.

A simple example of temporal graphs and temporal graph snapshots is given in figure 2.2
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Figure 2.2: The left panel shows a temporal graph G. The right panel shows three graph snapshots.

2.2 Datasets of human interaction

As mentioned in the opening section of this chapter, graphs provide an effective tool for

modeling a wide range of real-world situations. Specifically, the focus of this study is

on network modeling human interactions, including face-to-face interactions, proximity

networks, phone call networks, SMS networks, and email networks. In the following sec-

tions, we delve into each of these categories, presenting the specific networks utilized in

our analysis.

Face-to-face interactions networks: Those networks have been collected using the

wearable sensors developed by the SocioPatterns1 collaboration, equipped with radio-

frequency identification devices (RFIDs) capturing face-to-face interactions. The devices

record an interaction if and only if there is at least one exchanged signal within 20 seconds,

so 20 seconds is the smallest time resolution.

• HighSchool11 (50). The dataset has been collected in 2011 in Lycée Thiers, Mar-

seilles, France, over four days (Tuesday to Friday). It reports the interactions among

118 students and 8 teachers in three different high school classes.

• HighSchool12 (50). The dataset has been collected in 2012 in Lycée Thiers, Mar-

seilles, France, over seven days (Monday to Tuesday of the following week). It reports

the interactions among 180 students in five different high school classes.

• HighSchool13 (120). The dataset has been collected in 2013 in Lycée Thiers,

Marseilles, France, over five days in December. It reports the interactions among

327 students in nine different high school classes.

• InVS13 (58). The dataset has been collected in 2013 at the Institut National de

1http://www.sociopatterns.org/
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Veille Sanitaire, a health research institute near Paris, over two weeks. The dataset

contains 92 individuals divided in five departments: DISQ, DMCT, SFLE, DSE and

SRH.

• LH10 (172). The dataset has been collected in the geriatric ward of a university

hospital (173) in Lyon, France, over four days in December 2010. The individuals

belong to four classes: medical doctors (MED), paramedical staff (NUR), adminis-

trative staff (ADM) and patients (PAT).

• Primary school (168). The dataset has been collected in a primary school in

France, over two days in October 2009. The individuals belong to two classes: teach-

ers (10 individuals) and children (232 individuals).

Proximity networks: Those networks have been Bluetooth technology to infer physical

co-location. In particular, we explore the DTU dataset ((156)) representing proximity

interactions among university students, collected over a month.

• DTU (156). The dataset represents the interactions among university freshmen

students at Copenhagen University. In particular, DTU represents the network of

interactions among students collected over a month using Bluetooth technology to

infer physical proximity.

Phone calls networks: Those networks represent the phone calls between people. In

this work, we explore two phone calls dataset.

• DTU calls (156). The dataset represents phone calls among university freshmen

students in the Copenhagen University. Number of edges: 605, number of nodes:

525.

• Friends and Family calls (2). The dataset represents phone calls among mem-

bers of a young-family residential living community adjacent to a major research

university in North America.

SMS networks: Those networks represent the SMS between people. In this work, we

explore two SMS dataset.

• DTU SMS (156). The dataset represents SMSs among university freshmen stu-

dents in the Copenhagen University. Number of edges: 697, number of nodes: 568.
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• Friends and Family SMS (2). The dataset represents SMSs among members of

a young-family residential living community adjacent to a major research university

in North America.

Email networks: Those networks represent the emails exchanged between people. In

this work, we explore two email networks.

• Email EU (139) The dataset is a collection of emails between members of a Euro-

pean research institution.

• Email DNC (151) The dataset is a collection of leaked emails between members

of the 2016 Democratic National Committee.

The key attributes of the networks being analyzed, which encompass the number of nodes,

temporal edges, density, duration in days, and data collection technology, are presented

in Table 2.1.

Network name nodes temporal edges density length technology

HighSchool 11 126 28560 0.217 4 days SocioBadge

HighSchool 12 180 45047 0.138 7 days SocioBadge

HighSchool 13 327 188508 0.109 5 days SocioBadge

InVS13 92 9827 0.180 10 days SocioBadge

LH10 75 32424 0.410 5 days SocioBadge

PrimarySchool 242 125773 0.285 2 days SocioBadge

DTU 692 2426279 0.333 30 days Bluetooth

DTU calls 525 3489 0.004 30 days Calls

Friends and Family calls 95 1613 0.027 7 days Calls

DTU SMS 405 6366 0.004 30 days SMS

Friends and Family SMS 49 796 0.034 7 days SMS

Email EU 986 332334 0.027 803 days email

Email DNC 1900 37400 0.021 27 days email

Table 2.1: The fundamental characteristics of the networks being examined

Data availability

The datasets employed in our experiments can be downloaded at:

• Sociopattern networks http://www.sociopatterns.org

• DTU networks https://doi.org/10.6084/m9.figshare.7267433

• Friends&Family networks http://realitycommons.media.mit.edu/friendsdataset.html
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• Emails http://snap.stanford.edu/data/email-Eu-core-temporal.html

• Emails DNC http://networkrepository.com/email-dnc.php
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Chapter 3

Digital Contact Tracing

Recalling the work by Ferretti et al.(48), in which they adapt the work by Fraser et

al.(52), to the case of COVID-19. In particular, Ferretti et al.(48) model the pandemic

evolution using recursive equations describing the number of infected individuals in a

homogeneously mixed population, taking into account the evolving infectiousness of the

infected individuals. The analysis is based on two effective parameters, εI and εT , to

represent the ability to identify and isolate infected individuals, and to correctly trace

their contacts, respectively. Assuming an exponential growth for the number of infected

individuals (applicable in early phases of an uncontrolled epidemic outbreak) the authors

studied how the growth rate depends on these intervention parameters.

Here, we discuss a new approach to understand the effectiveness of contact tracing in the

real world. First, we restructure and generalize the mathematical framework. proposed

by Ferretti et al(48), to allow us to completely avoid assumptions regarding the functional

form of the epidemic growth. This development makes the setting applicable to any pos-

sible evolution shape and any phase of the epidemic. Moreover, we modify the epidemio-

logical aspects of the model according to recent literature on COVID-19 (66; 181; 30), to

properly consider asymptomatic cases and the delay in isolating individuals after they are

identified as infected. We consider different values of R0, reduced with respect to the one

assigned to the free pandemic, to take into account the widely implemented additional

containment strategies, e.g., physical distancing and masks wearing (Appendix 7.1.2).

Second, we provide a realistic quantification of the tracing ability εT by performing simu-

lations of contact tracing strategies on real-world data sets collected across different social

settings (i.e., a university campus, a workplace, a high school) (157; 57; 121). Hence, the

tracing ability εT , defined by Ferretti et al.(48) as a free parameter, becomes here an em-

pirically estimated quantity, which directly depends on the contact network. The impact
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of the tracing procedure on the spread can then be evaluated by inserting εT into the

mathematical model. Third, we assume that the probability of a contagion event occur-

ring during an interaction between a susceptible and an infected individual also depends

on the duration and on the degree of proximity of the contact (148; 161) (along with

other epidemiological variables such as the infectiousness of the individual). This can be

simulated on real contact data sets, in particular on the Copenhagen Networks Study

(CNS) data set (157) that provides proximity information, via the strength of Bluetooth

radio packets exchanged between their smartphones. Finally, we investigate in detail the

contact tracing procedure, designing appropriate policies in terms of the definition of the

most risky contacts. We thus implement a system where tracing does not necessarily im-

ply a massive preventive quarantine of the population. We define duration and proximity

thresholds to discriminate between “risky” contacts and contacts that instead correspond

to a low contagion probability. Note that, as contagion events are stochastic in nature,

not all contacts that we consider at risk lead to infection events. This leads to ”false

positives”, i.e., non-infected individuals who will be quarantined. Similarly, among the

contacts considered as ”non-risky” by the contact tracing, some might actually have led

to a contagion event (”false negatives”). Quantifying these outcomes represents crucial

information to calibrate the policies for contact tracing apps. Quarantine too few and

omit many potential spreaders. Quarantine too many and incur unnecessarily high social

cost.

Overall, our approach allows to evaluate the effect of different contact tracing policies,

not only on the disease spread but also in terms of their impact on the population, as

quantified by the fraction of quarantined individuals.

3.1 Methods

In this section we introduce our model for contact tracing. The tracing procedure allows to

identify individuals who are considered to be at the highest infection risk and quarantine

them without necessarily isolating a large fraction of the population. This allows for

devising ad-hoc strategies to control the epidemic.
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3.1.1 A modeling framework for digital contact tracing on empirical contact

networks

We consider a population within which a virus is spreading, and the spread is determined

by the contacts between individuals. As we do not consider geography nor large-scale

mobility, our modeling can be considered as referring to a limited geographical area or

community, similar to previous modeling efforts (48; 93). The spreading process is de-

signed in order to mimic the COVID-19 epidemic, thus characterized by values of R0,

viral load and fraction of asymptomatic individuals that are typical of SARS-CoV-2. We

assume that two types of non-pharmaceutical interventions are at play: isolation and

contact tracing. Infected individuals are isolated when they self-report as symptomatic

or if they are identified through randomized testing. Isolated individuals do not have

contacts with other individuals, thus can not infect anyone else once they have been iden-

tified. In other words, they are removed from the system. Individuals who have had a

potentially contagious contact with identified infected individuals are traced and can be

warned through a privacy preserving app on their smartphone (170), and they quarantine

preemptively.

The only difference between isolation and quarantine is that the latter is only precau-

tionary: if quarantined individuals show symptoms before the end of quarantine they

immediately become isolated and their past contacts (before quarantine) are traced, oth-

erwise they are released at the end of the quarantine.

A natural baseline for the work we present here is the model by Fraser et al. (52), recently

adapted to the COVID-19 case in Ferretti et al.(48). The mathematical model is based

on recursive equations designed to quantify the number of newly infected individuals at

time intervals, given a characterization of the disease in terms of infectiousness and mani-

festation of symptoms. The model is designed to consider the two interventions described

above, whose effectiveness are quantified by two parameters εI , εT varying from 0 to 1,

where εI = 0 means “no isolation” and εI = 1 represents a perfectly successful identifi-

cation and isolation of all infected individuals; analogously, εT quantifies the efficacy of

contact tracing.

Here we use this model as a stepping stone in order to define a more general approach. The

generalization of the equations of Fraser et al. (52) is derived in detail in the Appendix and

resolves an important limitation. Indeed, it identifies a solution at finite time t, while the

original model only shows the asymptotic behavior, for t going to infinity. The equation

models the number Λ(t, τ) of people who are infected at time t by people that have been

in turn infected for a time τ ≤ t. In the equation, R0 is the reproductive number of the
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disease, ω(τ) is the infectiousness of individuals at time τ after being infected, and s(τ)

is the probability of symptom onset at time τ after infection. The details of each of these

quantities are discussed in Appendix 7.1.1. The equation reads

Λ(t, τ) = R0ω(τ) (1− εIs(τ))

∫ t−τ

0

(
1− εT

s(ρ+ τ)− s(ρ)

1− s(ρ)

)
Λ(t− τ, ρ)dρ , (3.1)

where the integration variable ρ spans the time range between 0 and t− τ , meaning that

the contagion at time t from people infected at time t− τ is in turn affected by contagion

at time ρ before t− τ .

For εI = 0 and εT = 0 we obtain a free spreading without control. The quantity of

interest, which can be derived by numerically solving the above equations, is the incidence

λ(t) :=
∫ t

0
Λ(t, τ)dτ of newly infected individuals at time t. We use the model to predict

the evolution of λ(t) up to time t = 50 days, which is sufficient for the numerical solutions

to reach a stationary growth or decline regime (constant growth or decline rate of λ(t)),

and we consider the average growth or decline in the last 10 days as an indicator of the

long-term behavior of the epidemic. A negative number indicates that the epidemic is

declining, while a positive one corresponds to growth (uncontained epidemic).

An important feature of the model is given by the probability s(τ). The ideal case in

which all infected individuals can eventually be identified because they exhibit symptoms

(s(τ) approaching 1 for large times) is reported in Fig. 3.1a: this represents the best

case scenario, considered in the previous studies of this model (52; 48). Next, we assume

instead that 40% of infected individuals are asymptomatic (96; 141; 48; 135; 137) and that

only symptomatic individuals can be identified: no randomized testing is performed. This

represents our worst case scenario. We represent the presence of asymptomatic individuals

by considering that the probability of an infected individual to display symptoms is a

growing function of time, which however never reaches 1. In this case, the model predicts

epidemic containment for the upper half of the range of values of the parameters εI and

εT (Fig. 3.1c).

In the following, we assume an alternative scenario where 50% of the asymptomatic in-

dividuals are identified by a policy of randomized testing (38). These, added to the

symptomatic individuals, result in a detection of 80% of the total infected cases. We re-

mark that this scenario is equivalent to assuming that asymptomatic individuals account

for only 20% of the infected population (18; 125). Indeed, there is still no agreement in

the scientific community about the fraction of asymptomatic infections for COVID-19,

and different possible scenarios should be considered (38) (Appendix 7.1.1). This is our

baseline for the following investigations and the resulting model predictions are plotted

in Fig. 3.1b.
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Figure 3.1: Infection rate scenarios. Growth or decrease rate of the number of newly infected individu-

als, assuming either that all the infected people can eventually be identified and isolated (Fig. 3.1a); or that

only symptomatic people can be isolated with 20% of asymptomatic infected individuals (Fig. 3.1b); or

that only symptomatic people can be isolated with 40% of asymptomatic infected individuals (Fig. 3.1c).

Infection rates are reported as a function of the isolation efficiency εI and the tracing efficiency εT . In

all three settings the cases are reported with a delay of 2 days.

Note also that we take into account in all settings a delay of 2 days between the detection

of an infected individual and the time when this person is actually isolated and contact

tracing is implemented. A delay of 3 days is considered in Appendix 7.1.2.

The algorithm modelling the spreading and containment of the virus is implemented on

the real contact network and coupled with the mathematical model.

This simulation is used in two ways. First, it produces results which are averaged over

the network and then aggregated into a quantity, εT , that can be plugged into the math-

ematical model. In this step, the network simulation is used as an estimator of a real-

world parameter value. We remark in particular that the prediction of the outcome of

the policies (epidemic containment or exponential contagion) is obtained solely from the

mathematical model, informed with these real-world parameters.

On the other hand, the simulation on the network goes beyond the mathematical model

in that it captures complex and non-uniform events and the heterogeneity of individual

behaviors. The simulations thus give also access to several fine-grained quantities of in-

terest that provide a complementary view on the epidemic. In particular, we can measure

the number and time evolution of false and true positives, offering a quantification of the

cost of the quarantine measures.

In the following we detail the implementation of the numerical simulations (Section ”3.1.2”)

and the methods used to extract the aggregated parameters (Section ”3.1.3”).
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3.1.2 Spreading and tracing on the real network

The contact data set is represented as a temporal sequence of undirected and weighted

graphs. The nodes of the graphs are the individuals stored via their unique identifiers,

and an edge connects two of them if their respective Bluetooth devices have recorded each

other. The weight of each edge is the pair of the signal strength and the duration of this

contact. These two values are obtained by aggregating the continuous measures of the

data set on successive time windows of duration 300s.

The simulation keeps track of the status of each node, which is updated depending on

the spread of the infection (which is a stochastic phenomenon regulated by the infection

probability ωdata) and on the enforcement of the tracing and isolation policy (which is

again stochastic, and dependent on the definition of the policy’s thresholds).

The simulation is parametrized by two types of inputs: disease-dependent parameters,

which are discussed in Section3.1.1 and Appendix Table 7.2, and tracing-dependent pa-

rameters, which are the isolation efficiency εI ∈ [0, 1], the memory length of the contact

tracing, the duration of the quarantine, and the fraction of app adopters in the population.

Once these parameters are set the algorithm works as follows:

Setup. A fraction of the nodes, extracted uniformly at random, is set to non-adopters,

i.e., not using the app. They will contribute to the spread of the virus and they can

be isolated, but their contacts cannot be traced and they cannot be quarantined.

Observe that we make the simplifying assumption that the app influences only the

quarantining of individuals, but not the isolation policy. Namely, we assume to be

able to detect and thus isolate an infected individual independently of the app, while

we are able to trace the contacts only between pairs of app adopters.

Initialization. A randomly extracted node from the first graph of the sequence is set to

infected. It is assigned a time since infection chosen uniformly at random in [0, 10]

days.

Time evolution. For each temporal step the following steps are repeated:

Update contacts. The list of contacts of each app adopter node is updated by

adding the contacts of other app adopters at the current time, if they fall within

the policy’s thresholds. Each list stores the contacts for a fixed maximum number

of days (which is set to 7 days in the main simulations).

Update quarantined. The list of quarantined nodes is scanned. Nodes who com-

pleted the quarantine time (10 days in the main simulations) are just removed
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from the list if healthy, or removed and added to the list of isolated if they

developed symptoms.

Update infected. The list of infected nodes is scanned. Those who became symp-

tomatic or are tested positive, depending on the probability onset time(·) (see

Section ”3.1.1” and Appeindix Table 7.2) are added to the list of infected identi-

fied by the health authority. Then, the list of identified infected is scanned, and

each of its nodes is isolated with a probability εI . For each successfully isolated

node who is an app adopter, the tracing policy is enforced on its contacts, i.e. all

the nodes registered as contacts are quarantined. All the other infected nodes in-

stead can spread the infection: each of their neighbors is infected independently

with a probability modeled by ωdata (Appendix 7.1.1).

Check quarantined. The list of quarantined is scanned again to find symptomatic

nodes. If a symptomatic node is found, it is isolated and the tracing policy is

enforced on its contacts who are app adopters.

Observe that the contacts taken into account for the contact tracing are defined according

to a given policy’s thresholds (distance and duration), i.e. only those interactions with

sufficient duration and small enough distance are stored in the contact lists. However, the

spreading process can a priori occur between an infected node and any of its neighbors,

the probability of a contagion event being given by ωdata.

Moreover, the simulation assumes that each individual that is required to quarantine is

willing to do so. We consider in Appendix 7.1.2 the situation where individuals have a

decreasing acceptance to comply, based on the number of times that they are asked to

quarantine.

On the other hand, the compliance to isolation is already modelled by the user-defined

parameter εI , which represents the effective fraction of identified infected who successfully

isolate, where the value of this fraction may depend on the health system capacity, but

also on the nodes’ compliance and possibility to isolate.

3.1.3 Aggregation and parameter estimation

During the simulation, whenever the tracing and quarantine policy is enforced a quar-

antine error eT is computed to score its success. This value is defined for each isolated

node as the ratio between the number of its secondary infections (i.e. the nodes that it

infected) that did not quarantine, and the total number of its secondary infections.
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The list of values eT (one for each isolated individual) is collected and averaged over the

entire simulation to obtain a mean score ⟨eT ⟩. This value encodes the contributions of

the chosen policy, of the adoption rate, of the duration of the memory of contacts and in

general of the heterogeneity of the network dynamics.

This allows to assign to each policy a tracing efficiency εT observed over the simulation

as a function of its inputs and of the network dynamics. We define it as the product

of two independent factors modelling the efficiency of the isolation (individuals who are

not isolated are automatically excluded from the contact tracing, so their contacts do not

quarantine) and the effect of the quarantine error, as:

εT = εI (1− ⟨eT ⟩) . (3.2)

A perfect efficiency of the tracing policy (εT = 1) is possible only under perfect isolation

(εI = 1) and zero quarantine error (⟨eT ⟩ = 0).

Considering εI as a free parameter allows us to explore different scenarios, thus providing

a full range of predictions. This choice accounts for the fact that in a realistic scenario the

ability to identify and consequently isolate an infected individual is set by the number of

tests that are implemented and by their accuracy, features whose identification is out of

the scope of this work. We mention that the adoption of an app might have a positive effect

on this quantity if the possibility of self-reporting when symptoms appear is implemented

in the device.

3.2 Results

3.2.1 Tracing efficiency based on empirical contact data

The proposed mathematical framework makes it possible to address our main goal: char-

acterizing the efficiency of contact tracing. This can be quantified by εT , which instead

of being a free parameter can be estimated numerically, by observing how well the imple-

mented policies enable to find the infected individuals. More precisely, we assume that

a fraction εI of infected individuals is identified at each time step. Their recent contacts

are then traced and, according to the nature of their interaction, as we explain in detail

in the next sections, some of them will be classified as “at risk and thus possibly conta-

gious”. Tracing is therefore strongly dependent on the ability to identify those primary

infected individuals that caused the secondary infections, and we thus assume that εT is
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proportional to εI . Moreover, it is influenced by the actual ability to find the secondary

cases, given the primary infected. This in turn depends on multiple factors, involving the

spreading model, the definition of a risky contact, the app adoption, the compliance to

quarantine and clearly the quantity and nature of contacts in the population. For this

reason we need a numerical model that takes into account all these factors and simulates

the spreading, with isolation and tracing, in a population of individuals with realistic

contacts. To this end, we make use of three different data sets of empirical contacts in-

volving large groups of people, in a high school, in a university campus and in an office

building. The variable εT will be computed by counting, for each primary infection, the

fraction of the corresponding secondary cases that are actually quarantined according to

some contact tracing strategy, see Section ”3.1.3” for the details on the derivation of εT .

True positive (infected)

False positive (not infected)

False negative (infected)

True negative (not infected)

Quarantined

Contagious contact

Tracing

Figure 3.2: Contagion, tracing and quarantines. The contacts among users of the contact tracing

app are registered via the app. When individuals are identified as infected they are isolated, and the

tracing and quarantine policy is implemented. Depending on the policy design, the number of false

positives and false negatives may vary significantly.

The data that we use have been collected using wearable devices in different populations of

individuals and contain time-resolved information on their pairwise close-range proximity

interactions. In each case, we simulate an epidemic spread starting from a single random

individual. The epidemic propagates from person to person via their interactions and we

assume that the recent contacts of each individual are stored in their mobile phones. Each

infected individual has a probability of being identified equal to εI . When this happens, all

the identified people are isolated, i.e. removed from the simulation, and their recent stored

contacts are automatically traced (i.e., warned by the app). In order to avoid quarantining

a large portion of the population we define specific criteria to determine which contacts

are at risk, and only the corresponding individuals go into quarantine. As the definition

of risky contacts is made a priori, and as infection events occur stochastically, quarantines

will not only concern individuals who have been infected, but also some who have been in
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contact but were not infected (false positives), while some other individuals who have been

infected although their contact was not considered at risk, will not receive any warning by

the app and thus remain outside quarantines (false negatives). Note also that individuals

who did not adopt the app cannot be notified nor quarantined, and contribute both to

the true and false negatives. This is schematically explained in Fig. 3.2.

Different policies to define the risky contacts will be delineated in Section ”3.2.3” and their

efficiency will be quantified by not only observing their ability in controlling the epidemic

but also by their efficiency in minimizing the number of false positives, i.e. unnecessary

quarantines.

In the following we will mainly rely, for the numerical evaluations of tracing, on the

Copenhagen Networks Study (CNS) data set (157). These data describe the interactions

of 706 students, as registered by the exchange of Bluetooth radio packets between smart-

phones, for a period of one month. From the complete data set we extract the proximity

measures in the form of Bluetooth signal strength. We therefore have access to two im-

portant properties of contacts: their duration and the proximity of the two individuals at

the time of the interaction. We are hence able to refine the spreading model by including

the dependence on these variables too, as explained in the next section. Moreover, the

risk assessment in the tracing procedure will be based on contacts proximity and duration

thresholds, corresponding to different policies which will be discussed in Section ”3.2.3”.

In the Supplementary Information we also show simulations performed using two other

data sets collected by the SocioPatterns collaboration in two environments: a high school

(121) and an office building (57).

It is important to emphasize that these simulations are specifically used to evaluate the

impact of isolation and tracing in different contexts and under different policies and to

extract the resulting values of isolation and tracing efficiencies. On the other hand, the

epidemic model we use to understand which policies are efficient is the theoretical one

described by Equation 3.1 and is thus not restricted to any specific setting.

3.2.2 How infectiousness depends on duration and proximity

In the theoretical model (3.1), infectiousness is simply given by the curve ω(τ) multiplied

by R0; on the other hand, as stated above, the numerical simulations make it possible to

take into account several crucial factors, like duration and proximity of contacts.

We thus multiply ω(τ) by two independent factors, ωexposure(e) and ωdist(ss). They repre-
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sent the probability for an infected individual to transmit the disease respectively given

the duration e of a contact and given the signal strength ss of a contact. Here, the

Bluetooth received signal strength can be considered as a proxy for the distance between

two individuals, where signal attenuations (in dBm) with smaller absolute value tend to

correspond to smaller distances (160). We refer to Appendix 7.1.1. for a detailed dis-

cussion on the functional shapes of ωexposure(e) and ωdist(ss). In particular, as both are

parametric functions, it is possible to tune their parameters by imposing some physical

constraints regarding duration, distance and R0. The reproductive number of COVID-19

can be extracted from the literature as being close to R0 = 3 (30), while there is little

evidence for the dependence on proximity and duration; we thus consider multiple possi-

ble infection curves corresponding to different combinations of ωexposure(e) and ωdist(ss),

keeping R0 = 3 fixed. To this aim, we elaborate a procedure aimed at choosing the func-

tion parameters starting from physical constraints so as to always consider meaningful

infectiousness curves. The procedure is explained in detail in Appendix 7.1.1, where we

characterize three different possible curves. The constraint given by R0 requires to find

a good balance between the two functions ωexposure(e) and ωdist(ss). If for instance we

suppose that infectiousness is high even at long distances we should thus set ωexposure such

that contacts are contagious only for long durations in order not to have a huge R0.(e.g.,

the pink curves in Figure 7.1 in the Appendix). Vice versa, if ωdist is adjusted such that

only close proximity contacts are contagious, we should give more importance to duration

and suppose that also short durations are at risk(e.g., the blue curves in Appendix Fig-

ure 7.1). In Appendix7.1.1, we show the results of simulations in these different cases. We

observe that for the controllability of the epidemics, the different types of infectiousness

do not lead to significant differences. However, from the point of view of cost versus effec-

tiveness of the restrictive measures, different curves lead to different results. We discuss

this point in Appendix 7.1.1.

Here, we choose for definiteness one of the obtained pairs of curves (ωexposure(e), ωdist(ss))

compatible with R0 = 3, and we assume in the following that infectiousness is governed

by these. They correspond to an ωexposure(e) which reaches 90% infectiousness after 2

hours of contact, and to an ωdist such that the contagion probability drops by 50% at a

distance of 2.5 meters, and by 99% at 7.0 meters.

Finally, in the numerical model we rescale the curves of infectiousness of a factor rR0 ,

which plays a pivotal role. Indeed, the procedure described above for parameter setting is

aimed at reconstructing a scenario without restrictions, where the epidemic of COVID-19

is free to spread and is characterized by a reproductive number equal to 3. However, in this

work we analyze the effect of isolation and tracing in the context of reemerging epidemics
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where a number of protective measures are in place, such as face masks and physical

distancing. Such measures contribute to mitigate the spreading and enter in our model as

an overall reduction of R0, in a range suggested by recent literature (33; 144; 84; 94; 60).

This can be obtained by setting the reduction factor rR0 to specific values, reported in

Appendix Table 7.5 in the Appendix.

3.2.3 Design of appropriate policies

Figure 3.3: Policies based on distance and duration. In the left table, the signal strength threshold

Tp and the duration threshold Td defining the policies are reported. Contacts with a duration larger

than Td and signal strength larger than Tp are considered at risk. The last column gives the fraction

of the total number of interactions of the CNS data set that they correspond to. A larger value of the

magnitude of the signal strength tends to correspond to a larger distance, such that in the second column

the thresholds go from the least to the most restrictive policy. The policies are sketched in the left figure.

As mentioned above, the empirical CNS data set provides us with the opportunity to

devise policies for tracing in order to avoid a massive preventive quarantine of the popu-

lation.

We can classify contacts at low and high probability of contagion on the basis of thresh-

olds of duration and proximity: only contacts with duration above a threshold Td and

Bluetooth signal strength above a threshold Tp are considered as at risk and thus stored

in the individual’s devices (when both individuals in contact have adopted the app). As-

suming that the dependence of infectiousness from duration and proximity is unknown,

we consider several possible values for the thresholds Td and Tp, thus defining multiple

possible policies, reported in Fig. 3.3, from the least to the most restrictive. We also

consider two additional policies in Appendix 7.1.2, corresponding to either close range

but short exposure interactions or long range but long exposure interactions.

We remark that the policies implement distance detection directly as a measure of the

Received Signal Strength Indicator (RSSI) values, since a precise and reliable conversion
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to an actual distance is a notoriously difficult task (160; 130) that would only add a layer

of uncertainty to our analysis, without any gain in terms of accuracy. It is in general true

that weak signal strengths correspond to large distances between users and vice versa

but the link between RSSI and actual distance is affected by multiple factors, from the

smartphone brand to the presence of obstacles between devices, and more (160; 130).

In substance, we simulate the epidemic and at the same time implement the contact

tracing, supposing that we do not know which individuals are infected. We then compare

the set of quarantined individuals with the set of people who have actually been infected

in the spreading simulation, and measure the performances of each tracing policy (i.e. of

each definition of thresholds Tp and Td). The performance of a policy is quantified first of

all by its ability to find the infected individuals, and consequently by its ability to contain

the epidemic according to our mathematical model; in addition, we will measure the

efficacy of a policy in quarantining only infected individuals (i.e. in limiting the number

of false positives), in order to limit the social and economic damage to society.

Figure 3.4 shows the distributions of RSSI and contact durations of the interactions

contained in the CNS data set. Most contacts have short duration and low signal strength,

but long lasting durations are also observed, with overall a broad distribution of contact

durations as is typical for data on human interactions (27; 160). The thresholds defined

by the tracing policies determine the fraction of these contacts that can be traced by

the app. Even slight variations in the tracing policy thresholds may strongly influence

the capacity to identify the contacts corresponding to the highest risks of infection, as

shown in Fig. 3.4 by comparing the RSSI and contact duration distributions with the

infectiousness curves.

In line with many privacy preserving contact tracing apps, we additionally assume that

each individual device stores the anonymous IDs received from other devices only for a

limited time, such that every device does not keep track of all its past contacts but only

those of the last n days. This is already implemented in apps used by most countries,

applying the privacy-preserving DCT model (170). We assume n = 7 days, and we show

in the Supplementary Information (Appendix 7.1.2) alternative results for shorter and

longer tracing memories.
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Figure 3.4: Contacts in CNS data set: signal strength, exposure and inter-contact time.

Fig. 3.4a shows a scatterplot of signal strength vs. duration for all contact events in the CNS data set,

and displays the thresholds defining the various policies (Tp for signal strength and Td for duration):

the contacts identified as “at risk” are those situated above and to the right of the dashed colored lines.

Fig. 3.4b and Fig. 3.4c separately depict the distributions of signal strength and duration, together with

the infectiousness functions ωdist and ωexposure, respectively (black curves) see Appendix 7.1.1. Fig. 3.4d

shows the distribution of time elapsed between the infection of an individual and their successive contacts,

obtained with εI = 0.8 and for Policy 5 in the CNS data set. The black curve shows the normalized

infectiousness ω(τ) as a function of time, and the purple dashed line is the cumulative probability s(τ)

to identify an infected individual.

3.2.4 Digital tracing enables containment for moderate reproductive num-

bers

In this section we show the results provided by the combination of numerical simulations

on empirical data and the theoretical model. The five policies described in Fig. 3.3

are tested in different scenarios corresponding to different levels of app adoption and

different values of R0. Only individuals adopting the app participate to contact tracing;
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the remaining individuals are outside the reach of the tracing and quarantining policies,

but they are still isolated whenever detected because symptomatic or through random

testing. We consider as possible levels of app adoption: 20%, 40%, 60%. These levels

constitute realistic cases, as the fraction of population that owns a smartphone rarely

reaches larger levels (64% for instance for the French population (112; 97)), and a certain

level of non-compliance should be also considered (from the point of view of the app,

non-compliance or non-adoption can be considered as equivalent). As of mid-October

2020, for example adopters represent 24% of the population in Germany (165), 32% in

the U.K. (67), and 20% in Italy (76).

In addition, each policy is tested with the isolation efficiency values εI = 0.2, 0.5, 0.8, 1,

which encode isolation capacities ranging from rather poor to perfect isolation of any

symptomatic or tested positive person.

The results are shown in Fig. 3.5. We observe that if R0 = 2, practically none of the poli-

cies is able to stop the spreading, even with high app adoption. However, this pessimistic

scenario changes under the hypothesis of R0 = 1.5 (second line of panels in Fig. 3.5),

where a larger portion of the phase space implies that the spread can be controlled. An

app adoption above 40% is then sufficient to obtain good results: all policies manage to

contain the spread for εI = 0.8 (except Policy 1 for 40% adoption), and all of them for

εI = 1. The situation is even better with R0 = 1.2, as all policies are effective as soon

as the isolation efficacy is at least 0.5, even in the case of an app adoption of only 20%

(bottom left panel in Fig. 3.5).

We notice that the tracing efficiency εT varies considerably with different levels of app

adoption, but does practically not depend on R0. Indeed, εT only accounts for the fraction

of secondary infections that are correctly traced, independently on the spread of the virus

and the amount of infected individuals in the population.

The different scenarios explored above draw a framework where R0 is limited by imple-

menting several primary containment measures. DCT is added on top of them and its

effect is observed as a component of a broader general effort. While in the absence of

DCT a value of R0 larger than one may rapidly lead to a new exponential outbreak and

thus to renewed (possibly local) lockdown measures, we have shown here the possible

improvement that can be obtained thanks to the deployment of a contact tracing app.

The results however highlight that DCT should be accompanied by additional measures

and by a sufficient app adoption in order to be effective.
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Figure 3.5: Tracing policy efficiency. Growth or decrease rate of the number of newly infected individ-

uals assuming that symptomatic individuals can be isolated and that an additional 50% of asymptomatics

can be identified via randomized testing. The points correspond to the parameter pairs such that the

isolation efficiency εI is an input and the tracing efficiency εT an output of the simulations on CNS

contact data, for the five policies. The different scenarios are defined by an app adoption level of 20%,

40%, or 60% (from left to right), and by a value of the reproductive number R0 equal to 2, 1.5, or 1.2

(from top to bottom). All the points have been obtained as mean values over n = 200 simulations and

the error bars represent the standard error.

3.2.5 Any effective containment comes at a cost

Behind the scenes of the results of the previous section, there is a complex dynamic

deserving further investigation. Contact tracing produces in some cases the desirable

36



CHAPTER 3. DIGITAL CONTACT TRACING 3.2. RESULTS

effect of containing the spread, but side effects emerge as well. Indeed, some of the “at

risk” contacts do not actually correspond to a contagion event, while contacts classified

as not risky might, as discussed above. It is thus important to quantify the ability of

each policy to discriminate between contacts on which the disease actually propagated

and the others, in terms of false positives (quarantined individuals who were not infected)

and false negatives (non-quarantined infected individuals). To visualize this behavior, we

focus on the setting with R0 = 1.5 and εI = 0.8, with an app adoption of 40%, since it is

representative of a situation in which some policies are effective in containing the spread

and others are not (see Fig. 3.5, center). The corresponding time evolution of the average

percentages of false negatives and of false positives over the population for each policy

are shown in Fig. 3.6.

In terms of epidemic containment, the best policies are those that can rapidly reduce the

number of active infected, i.e., of false negatives. In the case of Policy 1, this number

remains quite high for the entire simulation time, whereas for all other policies the number

of false negatives remains lower. These policies lead overall to a larger value of the tracing

effectiveness εT (see Section ”3.1”), thus leading to a better epidemic containment.

The smaller number of false negatives for the effective policies comes however at the

cost of an increased number of false positives, as shown in Fig. 3.6 (top right). In other

words, as a policy becomes more effective in tracing actually infected individuals, it also

leads to the quarantine of individuals that have not been infected but that had a contact

classified as risky by the tracing policy. The maximal number of false positives is very

sensitive to the specific policy, contrarily to the number of false negatives. In particular,

it appears from the analysis of Section ”3.2.4” that Policies 2, 3, 4 and 5 have a similar

effectiveness to contain the epidemic and Fig. 3.6 (top left) shows that they yield similar

numbers of false negatives, but their undesired side costs are different, as the broader

definition of risky contacts produces a larger number of false positives. This highlights

once more the importance of the fine-tuning of the chosen policy. Since balancing between

these two effects may be non trivial, we plot in Fig. 3.6 (bottom left) the effectiveness

vs. cost for each policy, showing that Policy 2 is favorable in that it achieves an almost

maximal effectivity (small number of false negatives) at a very low cost (small number

of quarantines). The table reports the average percentage of the population that had to

quarantine in the simulations (increasing from policy 1 to 5) and the percentage of those

were actually infected (decreasing from policy 1 to 5).

To further facilitate the challenge of choosing the right policy, in Appendix 7.1.2 we test

the behavior of the model under extended scenarios to precisely quantify the sensitivity

of the outcomes with respect to changes of our fundamental assumptions. The model
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robustness is assessed by changing the tracing memory (longer and shorter) in Appendix

7.1.2, the reporting delay in Appendix 7.1.2, the ability to trace second order contacts in

Appendix 7.1.2, the fraction of asymptomatics infected in Appendix 7.1.2, the adoption of

modified policy thresholds in Appendix 7.1.2, and a different response of the population

to the request of multiple quarantines in Appendix 7.1.2.

Figure 3.6: Quarantines, false positives and negatives, with 40% app adoption and R0 =

1.5. Temporal evolution of percentages of false negatives (Fig. top left), i.e. infected individuals not

quarantined, and false positives (Fig. top right), i.e. not infected individuals quarantined, over the

population for the five different policies, assuming an isolation efficiency of εI = 0.8. The graphs depict

the mean and standard error over 200 independent runs. Fig. in the bottom left shows the effectiveness

(low number of false negatives) vs. cost (total quarantines) of the policies. The table in the bottom right

reports the percentage of distinct individuals who have been quarantined over the entire population and

the percentage of them who were actually infected (true positive).

3.3 Discussion

3.3.1 Policies for digital contact tracing: implications and constraints

In the modeling of contact tracing, considering several scenarios of isolation efficiency,

app adoption and R0 values is of foremost importance in order to account for the complex
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and heterogeneous issues connected with concrete policy implementations.

These issues should be clear to any policy maker having to decide on containment mea-

sures, in order to understand that contact tracing is a viable containment strategy for

COVID-19 only in conjunction with complementary policies, as the results of the previous

sections show.

These considerations enter our modeling approach in several ways. On the one hand,

some parameters are related to the healthcare system capacity and to the socioeconomic

condition of the population. These include the isolation efficiency εI and the delay in

the case reporting, that should account for potential heterogeneities in the access to tests

and in the possibility of a person to isolate. This last involves in particular both the

access to appropriate spaces and the economic feasibility of a temporary cessation of the

working activity. Since each country has a different level of capacity to isolate individuals

we considered several levels of εI instead of prescribing a fixed setting. The delays in

turn depend on factors of different nature such as the delay in reporting, the availability

and response of the call centers and of the health authorities, the app- and app-backend-

related delays, etc. The analyses reported here take into account a delay of 2 days in

isolating infected cases (thus in tracing and quarantining their contacts). This realistic

delay does not prevent the proposed policies from keeping the epidemic under control,

which is possible under some conditions. However, we observe that a larger delay, even

of only one additional day, leads to a completely different scenario (reported in Appendix

7.1.2) where, assuming R0 = 1.5 and 40% app adoption, none of the proposed policies

proves able to contain the epidemic, even for maximal isolation efficiency, and despite the

higher numbers of quarantines, false positives and false negatives.

Moreover, we have analyzed the effect of the app within epidemic scenarios of limited

reproductive numbers (R0 = 1.2, 1.5, 2.0), which are the result of the implementation of

complementary policies in addition to DCT. Such measures include traditional manual

tracing, mask use and physical distancing.

Our model also includes the level of app adoption as an explicit parameter and we consider

20%, 40%, and 60%. It should be taken into account that factors like the limited access

to supported smartphones for different age and income brackets, but also the willingness

to adopt the app (strongly dependent on people’s trust in DCT and health system), are

crucial elements that contribute to these values.

All these parameters should be set with some care. The design of our model allows us to

treat them as tunable inputs and in particular no unrealistic or idealized assumption on

these parameter needs to be made.
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Privacy issues raised by digital tracing are also of great importance, and they have been

extensively discussed(80; 131; 99; 98). For these matters we refer to the decentralized

models that have been developed such as the Decentralized Privacy-Preserving Proximity

Tracing (DP-3T) (170), and to the discussion therein. In particular, we adopt a tracing

scheme that does not need to access the complete network of contacts at any time but is

based only on decentralized exchange of anonymized keys.

3.3.2 Digital contact tracing: insights and limitations

The general model that we developed for studying the effect of isolation and contact

tracing on controlling the COVID-19 epidemic is inspired from the work of Fraser et

al. (52). The main distinctive characteristics that we have introduced are the following:

(i) a general mathematical model that allows to evaluate the evolution of an epidemic in

the presence of isolation and DCT at finite time; (ii) the evaluation of tracing efficiency

by means of a numerical simulation on real contact data, and no more as an arbitrary

parameter of the model; (iii) the dependence of infectiousness on the actual duration and

physical proximity of contacts; and (iv) consequently, the design of appropriate policies.

The functional shape of the infectiousness that we devised is composed by three depen-

dencies: the time since primary infection ω(τ), the duration of a contact ωexposure(e), and

its proximity ωdist(ss). The first is originally suggested by Ferretti et al. (48), while the

other two were introduced in this work. We have shown that the implemented model is

robust to changes in all three contributions, see Appendix 7.1.1 and 7.1.1.

Our results suggest that an insufficient app adoption may render any digital tracing effort

helpless on its own if the reproductive number is too high. In view of these results, bridging

the gap between a realistic app adoption and the larger tracing capability required to

contain the disease appears crucial. This goal can only be reached with a joint effort

of policy makers and health authorities in organizing an effective manual tracing, and

of individual citizens in adopting the app. We therefore tested different levels of app

adoption and a range of possible values of R0, reduced from its original value by other

restrictive measures, like masks wearing and physical distancing.

Moreover, we found that the set of parameters that allow containment of the spread is

strongly influenced by the fraction of asymptomatic cases. By first assuming an ideal

setting where any pair of parameters εI , εT is possible, we showed (Fig. 3.1) that the area

of the phase space representing the setting where it is possible to control the epidemic is

reduced when considering 20% or, worst case scenario, 40% of asymptomatic individuals
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in the population.

We tested five policies to define risky contacts that should be traced (Fig. 3.3), with

different restriction levels. Our results highlight how isolation and tracing come at a price,

and allow us to quantify this cost using real data: the policies that are able to contain

the pandemic have the drawback that healthy persons are unnecessarily quarantined. In

other words, achieving a rapid containment and a low number of false negatives requires

accepting a high number of false positives. This stresses the importance of a fine tuning

of the tracing and isolation policies, in terms of the definition of what represents a risky

contact, to contain the social cost of quarantines. Let us observe that this last could be

mitigated by testing the quarantined population and revealing the false negatives, thus

translating the social cost in an economical burden due to swabs. Among the tested

policies, those that appear to provide the best balance between effectiveness and cost are

Policies 2 and 3, corresponding to considering as risky a contact longer than, respectively,

20 and 15 minutes, with distance shorter than, respectively, around 2 and around 3 meters.

This is in agreement with the European guidelines for high-risk contacts (45).

We modelled the tracing procedure assuming that contacts are stored in each user’s app

for 7 days. Such tracing memory seems a good balance between the too short 2 days,

which fails in containing the epidemic, and the too long 15 days, expensive in terms of

quarantines and not leading to strong improvements in the spread containment (Appendix

7.1.2).

We also included in our model a delay of 2 days in isolating the infected individuals.

This delay might however increase when the number of infected cases grows. For this

reason we tested a delay of 3 days too, revealing a much worse scenario (Appendix 7.1.2).

This highlights the importance of readiness in implementing the testing and isolation

procedure, as increased delays might neutralize the beneficial effects of the app.

Another important result concerns the issue of privacy: we numerically tested a second

order tracing, where also contacts of contacts of an infected individual are quarantined.

Such procedure leads to a strongly enhanced risk in terms of privacy, but we found that

it determines a useless massive quarantine while failing to bring any clear beneficial effect

on controlling the epidemic (Appendix 7.1.2).

Finally, we tested the possibility that people reduce their compliance if they are notified

multiple times and asked to quarantine despite not being infected. This might indeed

lead to some mistrust in the DCT procedure and in the healthcare and government in-

stitutions. The results that we obtain are very similar to those found with the standard

procedure, where the level of compliance is set at the beginning and does not depend on
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the multiplicity of quarantines. This further confirms the robustness of our general model

and of our results (Appendix 7.1.2).

Our study comes with a number of limitations. First, we have considered data corre-

sponding to a few limited social environments (a university campus, a high school and

a workplace) and we cannot provide an overall general study that includes multiple and

differentiated contexts and their mutual interplay. Moreover in each data set, only people

involved in the experiment have been tracked, neglecting other contacts occurring out-

side their school, university campus or workplace. Hence, the complete data sets only

provide access to part of the interactions of the involved individuals, which is useful to

analyze contact tracing in specific environments but does not provide a full picture of a

society, e.g. an entire city. This limitation is due to the current lack of larger data sets

involving people belonging to different environments, which would represent the general

interactions within the population of a city or a larger geographical area. In addition, the

implemented policies have been necessarily tailored to the specific CNS data set, depend-

ing on the available values of RSSI supported by the used smartphones. Those might differ

in actual implementations of DCT apps currently in use in different countries, probably

relying on a more advanced technology. Nevertheless, we emphasize that even if we used

the simulations performed on these data sets to obtain a realistic quantification of the

tracing ability, the controllability of the disease is itself assessed by the general mathemat-

ical framework. The results that we present are hence general, not bounded by specific

data sets, but only numerically supported by real data to have a realistic implementation

of tracing.

Moreover, our study is limited by the current knowledge of the contagion modalities

of the SARS-CoV-2 virus, in particular concerning its dependence on physical distance

among people and the duration of their contacts. The curve of infectiousness has been

designed based on previous contagion studies and on reasonable assumptions (also consid-

ering a reduced transmissibility of asymptomatic people). Additional refinements of the

transmission dynamic could be obtained by accounting for aerosol transmission, adding

a dependence from the environment characteristics, such as being indoors or outdoors,

and the presence or not of ventilation. This factor could in principle be modeled by con-

sidering information on the (co-)location of the individuals, which is available for some

SocioPatterns data sets (57). Should new insights emerge in the way the virus spreads,

these could be easily incorporated into our model.

Finally, we model delays in the case reporting and thus in the isolation process, but assume

that the quarantine notification of the traced contacts is instantaneous. This is reasonable

and it is one of the advantages of relying on DCT, but two factors may introduce a delay:
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the app may check for at-risk exposures only 3-4 times a day, and the backend servers

that distribute ”infected” keys to the app often batches them before notification. The

combination of these factors introduces an average delay of several hours (4-5 hours) and

a worst-case delay of half a day.

Despite these limitations, the presented model represents an important contribution to the

discussion about DCT, proposing a refined approach that allows to investigate a number

of features that are unattainable with other recent models.

In conclusion, this combination of a well-established epidemic model with state-of-the-art,

empirical interaction data collected via radio-based proximity-sensing methods, allows us

to understand the role played by intrinsic limitations of digital tracing efforts, affording a

viewpoint on the ambition of achieving containment with digital interventions. Namely,

we are able to test and quantify the role that a real contact network plays both for the

infectiousness of a contact and for the ability of a policy to detect it and to respond

optimally.

3.4 Code Availability

We are pleased to make available the source-code accompanying this research on GitHub

https://github.com/DigitalContactTracing/covid_code.
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Chapter 4

Egocentric Temporal Motifs Miner

From the previous chapter, it is easy to see how isolating users (i.e. removing temporal

edges) in a network directly implies a crucial change in the COVID-19 spreading. This

moves our attention to a deeper study of the characterization of temporal networks, throw

the lens of temporal motifs. We started with the work of Paranjape et al. (139) in which

they propose a mining strategy that extracts static motifs from the aggregate network and

expands them into temporal motifs by considering the order of appearance of edges within

a given temporal gap. we further extend the concept of temporal motifs going beyond the

traditional point of view. The standard approach is indeed based on observing temporal

networks from the outside and decomposing them into their small components. The idea

of our approach is instead to jump inside the network and follow the path of a specific

node, finding node-dependent spatio-temporal patterns. In particular, for each node, we

observe its neighbors and how its connections to them change in a given period. We

neglect the connections among neighbors of the chosen ”ego” node, and we only focus on

studying how the set of neighbors evolves in time, following an ego perspective. In social

settings this allows to identify the patterns of interactions of individuals, selecting the

most relevant behaviors as those which are most repeated in time by the same or different

persons. We give to these ones the name of egocentric temporal motifs (ETM).

The ego perspective allows to address the motif identification procedure very efficiently by

comparing egocentric temporal sub-networks in terms of their signature, simply consisting

of a bit vector. This represents a huge simplification with respect to mining standard

motifs, which necessarily requires to address the graph isomorphism problem, which slows

down the procedure and makes it hard to identify graph motifs with more than a handful

of nodes. A graphical summary of our approach is shown in Figure 4.1.
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Figure 4.1: Graphical summary of the procedure for extracting egocentric temporal motifs. The left

panel shows the egocentric temporal neighborhood of the ego node E (in green), with temporal order

two and initial time instant zero. Black edges connect the central node with its neighbors (in red) at

each time step, while green (resp. red) edges connect consecutive occurrences of the central (resp. a

neighboring) node along the time sequence. The right panel shows how the corresponding egocentric

temporal neighborhood signature (ETNS) is computed. Each neighboring node is encoded into a bit

vector indicating the time slots when it is present. The node encodings are lexicographically sorted first

and then concatenated to generate the signature.

We conducted an extensive experimental evaluation applying our mining algorithm to a

number of diverse interaction datasets. First, we analyzed a set of close proximity inter-

action networks, including three high schools, a hospital, a research institute, a primary

school and a university campus. Qualitative results indicate that, as compared to non-

egocentric alternatives, egocentric temporal motifs are more intuitive and representative

of the differences between these environments and the categories of the underlying egos.

Quantitative results show that a metric based on egocentric temporal motifs is more effec-

tive than existing micro-scale, meso-scale and global-scale alternatives in discriminating

between different types of graphs. Second, we studied the ability of egocentric temporal

motifs to discriminate distance communication networks based on the technology em-

ployed (phone calls, sms or emails) and to distinguish different types of synthetic networks

(i.e., temporal variants of Erdős-Rényi, scale-free and small-world networks). Results con-

firm the effectiveness and generality of the egocentric perspective in characterizing a wide

range of interactions and highlight the conditions under which this perspective can be

limiting.
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Temporal graph Temporal graph snapshots Egocentric temporal 
neighborhood

Time Time

Figure 4.2: The left panel shows a temporal graph G focused on a node E. The middle panel shows

three graph snapshots, and the right panel shows a k = 2 order ETN for E built from the sequence of its

egocentric neighborhoods

4.1 Method

4.1.1 Mining egocentric temporal motifs

Let us start by introducing the notions of egocentric neighborhood and egocentric temporal

neighborhood.

Definition 7 (Egocentric neighborhood). Given a (static) graph G = (V,E) and a node

v ∈ V , the egocentric neighborhood of v is the subgraph G(v) obtained by taking the

neighborhood of v and removing all edges not including v as one of the nodes.

Note that this simple variant of the node neighborhood focuses the attention on the

central node, dropping all information not related to it. We next show how to extend this

egocentric focus to the temporal aspect, by following the temporal evolution of the node

neighborhood.

Definition 8 (Egocentric temporal neighborhood – ETN ). Given a temporal graph G =

(V,E), a temporal gap ∆t, a temporal neighborhood order k and a node v ∈ V , the

egocentric temporal neighborhood of v is defined as follows. Let Gt1 , Gt2 , ..., Gtm be the

sequence of temporal graphs’ snapshots for G with gap ∆t. Let Gt1(v), Gt2(v), . . . , Gtm(v)

be the sequence of egocentric neighborhoods of v for such temporal graph snapshots. The

k-th order egocentric temporal neighborhood of v at time ti is a graph obtained taking

Gti(v), . . . , Gti+k
(v) and connecting each node to the next occurrence of the same node

(if any) along the sequence. In addition, each node is labelled with its position in the

sequence. We refer to this graph as Gk
ti
(v).

Figure 4.2 shows the extraction of an ETN from a temporal graph. The structure of

ETN graphs allows to efficiently compute graph isomorphism via a graph signature. To
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simplify the presentation of the signature generation algorithm, we assume a function id

that applied to a node in an ETN returns its identifier in the original temporal graph G
(the letters in Figure 4.2).

Definition 9 (Egocentric temporal neighborhood signature (ETNS)). Given a temporal

graph G = (V,E) and an egocentric temporal neighborhood graph Gk
t (v) for node v, time t

and order k, an egocentric temporal neighborhood signature skt (v) is a bit vector encoding

Gk
t (v). Two egocentric temporal neighborhoods Gk

t (v) and Gk
t′(v

′) have the same signature

if and only if they are isomorphic.

The procedure for computing the ETNS for a given ETN graph is shown in Algorithm 1.

The algorithm starts by initializing the signature s to an empty vector and collecting

all nodes of the ETN graph with distinct identifiers into a set V . Here Vt+i(v) indicates

the set of nodes in the t + i temporal slice of Gk
t (v), and the union discards duplicates

according to id. For each node u, with the exception of the central node v, the algorithm

then computes a bit vector encoding su. The encoding has length k and contains at each

position i a Boolean flag stating whether the node (represented by its identifier id) is

present in the corresponding temporal slice, i.e., u ∈ Vt+i(v). After computing this bit

vector, the algorithm appends it to s. Finally, the list of neighborhood node signatures is

sorted in lexicographic order and concatenated into the final signature. Figure 4.3 shows

some examples of ETN and corresponding ETNS for k = 2.

Algorithm 1 Procedure for computing the signature of an ETN graph.

procedure computeETNS(Gk
t (v))

s← [ ]

V ←
k⋃

i=0

Vt+i(v)

for u ∈ V do

if u ̸= v then

su ← [ ]

for i = 0, .., k do

if u ∈ Vt+i(v) then

append(su, 1)

else

append(su, 0)
append(s, su)

s← sort(s)

return flatten(s)

Theorem 1 (Isomorphic ETN ). Given two egocentric temporal neighborhoods Gk
t (v) and

Gk
t′(v

′), Algorithm 1 returns the same signature if and only if they are isomorphic.
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ETN and ETNS

ETNS = 011-100-110-111

ETNS = 001-010-100-110-111 ETNS = 011-100-110-111

ETNS = 010-011-100-101

Figure 4.3: Examples of ETN and ETNS for different temporal graphs with k = 2. The two highlighted

ETNS are identical and correspond to isomorphic ETN.

Proof. We first show that if two ETNs are isomorphic they have the same signature. Let

π be a bijection for the two ETNs as from Definition 2. Note that this bijection will map

central nodes to central nodes1 (they are the only ones that can have a degree larger than

one on a given temporal slice). By specifying a mapping between nodes, π also implicitly

defines a mapping between node identifiers. The edge-preserving property of π implies

that the mapping of identifiers is consistent (if two non-central nodes share an edge they

have the same identifier). It also implies that the two paired node identifiers share the

same set of edges, and thus have the same encoding. Having the same encodings for each

pair of node identifiers, the resulting signatures are also the same. This concludes the

first part of the proof.

We next show that if the signatures are the same the ETNs are isomorphic. We prove this

by showing how to create the bijection function π. Recall that a signature is a flattened

sorted list of encodings of node identifiers, and that all encodings have the same length

k + 1. We start by pairing node identifiers in the two graphs by their positions in the

respective signatures. We then map nodes with paired identifiers by matching their node

labels (i.e., positions in the underlying graph sequence). Given that the node encodings of

the paired identifiers are the same, the corresponding nodes appear in the same positions

1Apart for the degenerate case consisting of a single neighbor running all along the sequence, where there is no distinction

between central node and neighbor and the proof is trivial.
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in the underlying sequence (thus matching by node labels produces a perfect match). We

repeat the same matching for the only unpaired node identifiers, which correspond to the

central node. Note that by definition of ETN the central node appears with all labels from

1 to k + 1. Being redundant we omit its encoding from the signature. By construction,

mapped nodes share the same label, i.e., ℓ(u) = ℓ(π(u)) for all u. Concerning edges, by

definition of ETN edges are only between the central node and the neighbors, and between

consecutive instances of the same node along the sequence. The former requirement is

easily satisfied as each (non-central) node is always connected to the central node having

the same label. The latter is satisfied because by construction if two node identifiers have

the same encoding their corresponding nodes have the same edges (recall that central

nodes have the same encoding even if it is not part of the signature). This concludes the

proof.

We are now ready to introduce the algorithm for extracting statistics on ETNs from a

temporal graph. The pseudocode of the algorithm is shown in Algorithm 2.

Algorithm 2 Procedure for extracting counts of ETN graphs from a temporal graph.

procedure countETN(G,∆t,k)

S ← ∅
Gt1,..,tm ← ExtractSnapshots(G,∆t)

for i = 1, ..,m− k do

for v ∈ Vti do

Gk
ti(v)← buildETN(Gti(v), . . . , Gti+k

(v))

skti(v)← computeETNS(Gk
ti(v))

if skti(v) ∈ S then

S[skti(v)]← S[s
k
ti(v)] + 1

else

S[skti(v)]← 1

return S

The algorithm takes as input a temporal graph G, a temporal gap ∆t and a temporal

neighborhood order k and returns a dictionary of counts S mapping ETNs to the number

of occurrences of the corresponding ETN in G. It starts by initializing S to the empty

set and extracting the sequence of temporal graph snapshots of G for gap ∆t. For each

time ti and node v (Vti is the set of nodes of graph Gti) it builds the corresponding ETN

and computes its associated signature using Algorithm 1. The signature is finally used to

update the ETN counts in S. Note that this update step is extremely efficient thanks to

the fact that ETNs are bit vectors.

Theorem 2 (Complexity of computeETNS). The worst-case complexity of computeETNS
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is O(d(k) log d(k)), where d(k) is the maximal degree of the network when considering edges

within a k ·∆t temporal range.

Proof. Building the signature requires to create an encoding of length k + 1 for each of

the nodes in Gk
ti
(v) with distinct identifier, which are |V |. The complexity is thus O(|V |).

Sorting the signature requires sorting each of these encodings, which costs O(|V | · log |V |).
The worst case complexity can be obtained setting |V | = d(k), giving O(d(k) log d(k)).

Theorem 3 (Complexity of countETN). The worst-case complexity of countETN

is O(n ·m · d(k) log d(k)), where n is the number of nodes in the network, m is the overall

number of temporal snapshots, and k and d(k) are as in Theorem 2. The number of

temporal snapshots is computed as m = (Tend − Tstart)/∆t, where Tstart and Tend are the

smallest tstart and the largest tend in the network respectively and ∆t is the temporal gap.

Proof. Note first that the procedure ExtractSnapshots is introduced to simplify the

explanation, but the underlying algorithm never explicitly materializes the sequence of

temporal graph snapshots for the whole network but directly extracts the ETN using

buildETN. This latter procedure costs |Gk
t (v)|, i.e., the number of nodes in the resulting

ETN, which is upper bounded by d(k) · k. The procedure is repeated n · (m − k) times.

Computing all ETNs thus costs O(n · m · d(k) · k), and converting them to ETNs costs

O(n ·m · d(k) log d(k)). The count update can be done in constant time thanks to the fact

that ETNs are bit vectors, so the overall worst-case complexity is O(n·m·d(k) log d(k)).

Note that for reasonable values of k and ∆t, d(k) is independent of the size of the network,

so that the overall complexity is O(n ·m).

To extract statistically significant ETN from a temporal graph G, we rely on the support

of a null model Ḡ, defined as follows (72; 73; 78):

Definition 10 (Temporal Graph Null Model). Given a temporal graph G, consider the

temporal graph snapshot Gt1 , Gt2 , . . . , Gtm (Definition 6) representation of G. The null

model Ḡ of G is obtained by randomly shuffling the snapshots Gt1 , Gt2 , . . . , Gtm.

Hence a null model Ḡ is a temporal graph with the same number of nodes, the same num-

ber of snapshots and the same number of connections between each couple of nodes but

without any temporal correlation. The procedure can be repeated an arbitrary number of

times to produce a set of null models that the original temporal graph can be compared

with.
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As will be shown in the experimental evaluation, this allows to identify non-trivial tem-

poral structures in a much more selective way with respect to alternative non-egocentric

mining approaches.

Finally, we define the Egocentric Temporal Motifs (ETM) as follows:

Definition 11 (Egocentric Temporal Motifs (ETM)). Given a temporal graph G, n null

models Ḡ, and the parameters α (over-representation), β (minimum deviation) and γ

(minimum frequency) appearing in Definition 4, the set of ETMs for G is obtained applying

Definition 4 to G where sub-graphs are represented by the set of its ETNs found according

to Definition 8 for each of its nodes.

We name the algorithm extracting ETM from a temporal graph ETMM, standing for

Egocentric Temporal Motif Miner.

4.1.2 ETM-based graph distance

To show the importance of the egocentric perspective in networks of social interactions,

we introduce a simple metric that measures the distance between graphs in terms of their

respective ETM. To do this, we first define the ETN-based embedding of a temporal

graph.

Definition 12 (ETN-based embedding). Given a temporal graph G and a list M of ETNs,

we define EMBM(G) as the embedding of G in a vector of cardinality |M |, in which the

ith element of EMBM(G) represents the number of occurrences of M [i] in G.

Given a list of ETN, the distance between two temporal graphs is then defined as the

distance between their respective ETN-based embeddings.

Definition 13 (ETN-based distance). Given two temporal graphs G1, G2 and a list M of

ETNs, we define distM(G1,G2) as the cosine distance between the ETN-based embeddings

of G1 and G2:

distM(G1,G2) = 1− EMBM(G1) · EMBM(G2)
||EMBM(G1)|| ||EMBM(G2)||

(4.1)

where · is the dot product and || · || is the Euclidean norm.

The distance between two temporal graphs can now be computed by first extracting their

respective lists of ETM, finding the set of ETM shared by the two graphs and computing

their ETN-based distance using this set.
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Definition 14 (ETM-based distance). Given two temporal graphs G1, G2, two correspond-

ing sets of n null models Ḡ1 and Ḡ2 and three parameters α, β and γ, we define dist(G1,G2)
as:

dist(G1,G2) = distM1,2(G1,G2) (4.2)

where M1,2 = M1 ∩M2 and M1 (resp. M2) is the list of ETM obtained applying Defini-

tion 11 to G1 (resp. G2).

4.1.3 Experimental setup

In the following, we describe the different groups of network datasets we employed in

our experiments and the non-egocentric miners and graph distances that we used as

competitors.

Close proximity interaction datasets

The first group of datasets focuses on close proximity interactions and contains three

high school datasets, a workplace, a hospital, a primary school and a university campus

(DTU ). For more details on those networks see chapter Background 2.

Distance communication datasets

The second group of datasets contains distance interactions with different communica-

tion technologies, namely phone calls, SMSs and emails. The idea is to check whether

ETMs are capable of distinguishing graphs according to the underlying communication

technology. The datasets are explained in the Backgroud chapter 2.

Synthetic datasets

The last group of datasets consists in synthetic temporal networks, and aims at checking

whether ETMs retain information concerning (temporal variants of) popular network

topologies. Each network is built as a temporal graph where the first timestamp is a static

synthetic network suitably generated, while the following temporal layers are recursively

generated imposing a fixed correlation with the previous ones. In details, the timestamp

n+1 is obtained by randomly swapping a fixed fraction f of couples of edges present in the

network at timestamp n. In this way the temporal network that we obtain is characterized

by a realistic temporal correlation between timestamps and each static network has the
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same degree distribution. We chose f = 0.3 and we used as initial static networks six

different graphs: two Erdős-Rényi (44) networks (with p = 0.01 and p = 0.001), two scale-

free networks (12) (with the same parameters α = 0.41, β = 0.54, γ = 0.05, δin = 0.2,

δout = 0 of the algorithm described in (24) but with two different random seeds), and two

small-world networks (178) (with p = 2 and p = 8, but k = 3 for both).

Table 4.1 shows the parameters of the generated graphs.

Name # nodes # edges Time stamps

Erdos Renyi (p=0.01) 64 1610 301

Erdos Renyi (p=0.001) 13 78 301

Scale Free (G1) 100 2748 301

Scale Free (G2) 100 3524 301

Small World (p=2) 100 4581 301

Small World (p=8) 100 4340 301

Table 4.1: Synthetic temporal graphs parameters

Non-egocentric miners

As previously stated, no alternative approaches exist that focus on mining egocentric

temporal motifs. However, to provide some comparative evaluation for the results of our

mining algorithm, we also ran the state of the art non-egocentric temporal motif mining

algorithm by Paranjape et al. (139). Note however that the motifs found by this method

are prototypical of what any non-egocentric mining approach can produce. As mentioned

in the related work, the method can be described as follows: (i) obtain the aggregate graph

of the input temporal graph (see Definition 5); (ii) extract (static) n-node l-edges motifs,

where n is the number of nodes in the motif and l is the number of edges (parameters of

the algorithm), using standard approaches for determining motifs (where the null models

have the same aggregate degree distribution of the input graph); and (iii) for each static

motif count its isomorphic sub-graphs on the temporal network, i.e. with edges possibly

appearing at different times. If the maximum distance in time among the different edges

is less than a given time δ, the sub-graph is denoted as a temporal motif. In the following,

we refer to the Paranjape et al. (139) method as TMM.
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Non-egocentric graph distances

In this subsection, we present four distances based on micro-scale, meso-scale and global

features of the temporal graph.

NetSimile: Berlingerio et al. (17) developed NetSimile, a tool for network distance. This

method relies on a set of seven features of the network’s nodes. Such features are: degree

of the nodes, clustering coefficient, average number or nodes in two-hop neighborhood,

average clustering coefficients of the neighbors of a node, number of edges in the node

egonet (induced sub-graph of node and neighbors), number of outgoing edges and number

of neighbors of the ego. First, the median, mean, standard deviation, skewness, and kur-

tosis are computed for each feature, producing a graph embedding of 7×5 = 35 elements.

Then, the distance among graphs is computed as the Canberra distance between their

respective embeddings.

To apply such method to the aforementioned datasets, we compute the aggregated net-

work, that is, the network obtained by removing the temporal dimension in the input

data and the duplicated edges.

Modified NetSimile: NetSimile is not originally conceived for temporal graphs. We thus

considered a variant of the method that includes the number of temporal interactions of

a node as an additional feature over which to compute the statistics, thus producing an

embedding of dimension 40.

Weighted Laplacian: While previous distances rely on local features of the input graph,

the Weighted Laplacian leverages global features. First of all, a weighted aggregated static

graph is created, in which the weights on an edge represent the number of interactions

(over time) that the edge has had. Then the Laplacian matrix is defined as L = D −W ,

where D is the degree matrix and W is the matrix of edge weights.

To compute the distance among two temporal graphs G1 and G2, we calculate the Lapla-

cian matrices L1 and L2, then we set k equal to the minimum number of nodes between

G1 and G2, and finally we compute the Euclidean distance between the first k eigenvalues

of L1 and L2.

Temporal motifs: To compute the distance between networks using meso-scale features,

we considered a distance induced by (non-egocentric) temporal motifs. This is achieved by

applying a variant of Definition 14 that uses temporal motifs as discussed in Section 4.1.3

in place of ETM.
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4.2 Results

We start by showing qualitative results in which we compare egocentric and non-egocentric

motifs, and then report a quantitative analysis of the effectiveness of our ETM-based graph

distance as compared to alternative non-egocentric graph distance measures.

4.2.1 Egocentric vs non-egocentric temporal motifs

We compare motifs found by our ETMM with those generated by TMM. We set the

number of temporal steps k = 2 for ETMM, while for TMM we consider 3-nodes and 3-

edges structures. These values allow to generate non-trivial motifs and to find a significant

amount of them in each dataset. As will be clear in the next, the difference between the

methods is evident and does not depend on the specific choice for these parameters. Note

that ETMM does not require to set the number of nodes and edges and it can in principle

extract motifs with an arbitrary number of neighbors. Following Milo et al. (124) we set

the number of null models n = 100, with parameters α = 0.01, β = 0.1 and γ = 5.

1,3 2 1,2 3 2,3 1 1,2 3 2,3 1 2,3 1 1,2 3 1,3 2 2,3 1 1,2 3

1,3 2 1,2 3 2,3 1 1,2 3 2,3 1 2,3 1 1,2 3 1,3 2 2,3 1 1,3 2

1,2 3 1,3 2 2,3 1 2,3 1 1,3 2 1,2 3 1,3 2 2,3 1 2,3 1 1,3 2

2,3 1 1,3 2 2,3 1 1,2 3 2,3 1

High School 11 High School 12

High School 13 Primary School

InVS13 LH10

DTU

Figure 4.4: Most frequent temporal motifs discovered by TMM on the seven networks for ∆t = 300.

To give an insight of the main differences between egocentric and non-egocentric motifs

and highlight the usefulness of the former in discovering patterns of social interaction,

we report the five most frequent motifs found by the different methods. We focus on a
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High School 11

High School 12

High School 13

Primary School

InVS13

LH10

DTU

a) b) c) d) e)

a) b) c) d) e)

a) b) c) d) e)

a) b) c) d) e)

a) b) c) d) e)

a) b) c) d) e)

a) b) c) d) e)

Figure 4.5: Most frequent egocentric temporal motifs discovered by ETMM on the three datasets for

∆t = 300.

temporal gap ∆t = 300 seconds, but results are quite similar for different temporal gaps.

Figure 4.4 shows the first five motifs found by TMM on the different datasets, ordered

by frequency. These motifs show some dynamics in the interaction, but it is difficult to

interpret them in terms of social interaction patterns or to identify some clear features

that distinguish the various datasets. Moreover, Figure 4.4 shows that the five most

frequent motifs are the same for all the datasets, with the only exception of the fifth

motifs of InVS13 and LH10.

The five most frequent motifs discovered by our method are reported in Figure 4.5. Note

that the egocentric focus allows to generate motifs which are quite interpretable in terms

of social interactions of the person under investigation (the ego). For instance, for High-
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VS13 LH10 HS11 HS12 HS13 PS DTU

450 155 303 687 1218 100 14495

0 0 0 0 0 471 0

287 119 1286 1726 4310 200 314440

Figure 4.6: The figure shows the frequencies of three ETM for each dataset. The ETMs are those with

the maximum variance among datasets.

School11 (first line) we identify a continuous interaction with another person (a) (c) (e),

possibly combined with a third person joining at the beginning (e) or at the end (c) of

the interaction.

Concerning the other datasets, even if the first two ETMs are the same (except for the

DTU dataset), our approach does identify some differences that can be related to the

different type of networks under investigation. For example, our method is able to identify

motifs characterized by rich and dynamic interactions among students in high school and

university, and by sparse and short interactions among employees in the research institute.

The last line of Figure 4.5 shows the motifs found by ETMM on the DTU dataset, and

it is easy to see that the structures of the discovered motifs are quite different and more

complex with respect to the structures of the motifs found in the other datasets. This

may also depend on the fact that the DTU dataset, collected using Bluetooth technology,

captures co-location and not face-to-face interactions.

To provide further insights on the relationship between motifs and types of networks, we

looked for the set of temporal motifs that most discriminates among different datasets.

We selected the three egocentric temporal motifs with maximum variance of occurrence

among the datasets, and report their frequencies in Figure 4.6. The difference between

the primary school and the other datasets is striking. The former contains a motif that is

totally missing in the other networks, namely the case where an individual briefly interacts

with another one (for less than 5 minutes) and has no more interactions in the following

20 minutes. This small set of motifs may seem a poor description of the analyzed social

settings. However, it is surprisingly accurate in catching differences and similarities among

datasets, as we will see in next section.
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NetSimile
VS13 LH10 HS11 HS12 HS13 PS DTU

InVS13 0 15.68 11.84 14.04 15.45 19.75 26.6
LH10 0 9.8 10.15 14.12 13.72 23.19
HighSchool11 0 9.61 14.32 14.85 23.09
HighSchool12 0 12.9 15.33 23.53
HighSchool13 0 16.32 23.7
primary school 0 19.74
DTU blue 0

Weighted Laplacian

VS13 LH10 HS11 HS12 HS13 PS DTU
InVS13 0 588.4 220.8 608.22 1474 849 38201
LH10 0 615 707 1584 845 37808
HighSchool11 0 570 1401 733 38319
HighSchool12 0 1158 567 37938
HighSchool13 0 1354 37006
primary school 0 37822
DTU blue 0

Modified NetSimile
VS13 LH10 HS11 HS12 HS13 PS DTU

InVS13 0 17.68 14.22 15.29 18.45 23.49 30.78
LH10 0 12.29 11.41 15.89 16.4 26.95
HighSchool11 0 11.61 16.79 16.71 27.36
HighSchool12 0 15.08 18.35 27.67
HighSchool13 0 18.33 26.81
primary school 0 23.92
DTU blue 0

Temporal motifs

VS13 LH10 HS11 HS12 HS13 PS DTU

InVS13 0 0.018 0.02 0.053 0.016 0.04 0.744
LH10 0 0.012 0.014 0.001 0.005 0.707
HighSchool11 0 0.049 0.017 0.019 0.678
HighSchool12 0 0.012 0.1 0.696
HighSchool13 0 0.007 0.695
primary school 0 0.651
DTU blue 0

ETMM-DIST

VS13 LH10 HS11 HS12 HS13 PS DTU
InVS13 0 0.07 0.29 0.22 0.29 0.67 0.47
LH10 0 0.29 0.22 0.30 0.66 0.45
HighSchool11 0 0.04 0.04 0.59 0.06
HighSchool12 0 0.02 0.61 0.13
HighSchool13 0 0.62 0.08
primary school 0 0.62
DTU blue 0

3ETMM-DIST

VS13 LH10 HS11 HS12 HS13 PS
InVS13 0 0.00 0.28 0.19 0.25 0.63 0.42
LH10 0 0.23 0.14 0.20 0.61 0.36
HighSchool11 0 0.01 0.00 0.58 0.02
HighSchool12 0 0.01 0.57 0.05
HighSchool13 0 0.58 0.03
primary school 0 0.61
DTU blue 0

DTU

Figure 4.7: Distances among networks using five different methods, namely: NetSimile, Modified Net-

Simile, Weighted Laplacian, Temporal motifs and ETM-based distance. Each element of the table is

colored in a color scale from green (minimum distance) to red (maximum distance). The last tables show

the distances obtained using ETM-based distance using ∆t = 300 and k = 4, with all motifs (left) and

the three most discriminative ones (right)

.

4.2.2 Egocentric vs non-egocentric graph distances

To give some quantitative estimate of the descriptiveness of the motifs found by our

method, we study their effectiveness in measuring the distance among the networks de-

scribed in Section 4.1.3. In particular, we show the importance of the egocentric perspec-

tive in identifying similar social contexts by means of network distances (Definition 14).

Figure 4.7 shows the distances computed with the four non-egocentric methods reported

in Section 4.1.3 (first two rows) and with our ETM-based distance (last row). Each ta-

ble reports the pairwise distances between networks and each element is colored with

a color scale starting from green (minimum distance) to red (maximum distance). The

figure clearly shows that all non-egocentric methods have serious problems in producing

meaningful distances between interaction networks. First, all of them consider DTU to

be the farthest away from all other networks. However, we expect that DTU network,

which collects the co-location behaviors of university students, should show some similar-
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ities with the ones capturing the face-to-face interactions of high school students, namely

HighSchool11, HighSchool12 and HighSchool13. These similarities seem not adequately

detected by these methods. As previously anticipated, the fact that DTU results appear

so different from those obtained with the other datasets may depend on the fact that

different technologies (RFID vs Bluetooth) have been used to collect the data, suggesting

that non-egocentric approaches fail in revealing social patterns when different technolo-

gies are at place. We also notice that both NetSimile and Modified NetSimile (first row)

detect hospital (LH10 ) as the closest network to primary school ; this appears as an un-

expected result, considering the differences between these two social contexts. Moreover,

the Weighted Laplacian method (first table second row) fails in identifying similar envi-

ronments, since we observe that InVS13 is very close to HighSchool11 but quite distant

from HighSchoo13.

Finally, according to (non-egocentric) temporal motifs (second table second row) the

network LH10 is very close to almost all datasets, being almost identical to HighSchool13.

The last row of Figure 4.7 shows the results of our ETM-based distance (for ∆t = 300

and k = 4), using all ETMs (left) and only the three most discriminative ones (right), i.e.,

those maximizing the variance of ETM frequencies among datasets (shown in Figure 4.6).

The reported network distances provide a more satisfactory description of the similarity

between the underlying datasets. First of all, the three high school networks are very close

to each other, with distances around 0, while presenting larger distances with all other

networks. Moreover, among the other networks, the closest one is represented by the one

capturing the co-location behavior of university students (DTU ), which are expected to

share some behavioral routines with high school students (e.g., class attendance). This

shows that ETM is capable of finding similar social interaction patterns despite the use

of different data collection technologies, something alternative non-egocentric measures

completely fail to achieve. The network which is farthest away from all the others is the

primary school network: this may be explained by the fact that primary school children

seem to experience interaction dynamics which are significantly different from the ones

characterizing the social settings of young adults and adults. Finally, we observe that

another sensible niche is represented by the two working places, namely the hospital and

the research institute, quite similar between each other and quite distinct from all other

settings. Interestingly, limiting the set of ETMs to the three most discriminative ones

produces results which are very similar to those obtained with the full set of motifs (around

six thousands). This is a surprising result and a confirmation of the effectiveness of the

egocentric perspective in characterizing different types of social interaction settings.
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4.2.3 Sensitivity analysis

In the following we provide a sensitivity analysis showing how the choice of the parameters,

namely the temporal gap ∆t and the temporal neighborhood order k, affect the ETM-

based distance. In Figure 4.8 we report the ETM-based distance among datasets using

∆t equal to 300 and 900 seconds2, and k ranging from 3 to 5. We observe that results are

quite stable. For intermediate values of the parameters, results are very similar to those

presented for ∆t = 300 and k = 4, with distances that tend to increase for increasing

values of ∆t and k. Intuitively, small values of both∆t and k (i.e., ∆t = 300 and k = 3, top

left matrix) produce small motifs, leading to a partial reduction in discriminative capacity,

with the primary school becoming (more) similar to workplaces and high schools. On the

other side, large values of both ∆t and k (i.e., ∆t = 900 and k = 5, bottom right matrix)

determine a slight decrease in the capacity of detecting similarities among related datasets

(namely between different high schools). This is again not surprising, as jointly increasing

∆t and k substantially increases the required length for a temporal fragment to match a

motif, making it more complex for the method to mine relevant motifs.

Δt = 300 k = 3 ETMM-DIST

VS13 LH10 HS11 HS12 HS13 PS DTU
InVS13 0.00 0.09 0.20 0.13 0.18 0.19 0.40
LH10 0.00 0.22 0.14 0.18 0.09 0.38
HighSchool11 0.00 0.04 0.03 0.18 0.07
HighSchool12 0.00 0.03 0.12 0.15
HighSchool13 0.00 0.12 0.09
primary school 0.00 0.27
DTU blue 0.00

k = 4 ETMM-DIST

VS13 LH10 HS11 HS12 HS13 PS DTU
InVS13 0.00 0.08 0.29 0.19 0.26 0.61 0.48
LH10 0.00 0.30 0.20 0.26 0.58 0.46
HighSchool11 0.00 0.04 0.03 0.57 0.06
HighSchool12 0.00 0.02 0.54 0.13
HighSchool13 0.00 0.55 0.08
primary school 0.00 0.60
DTU blue 0.00

Δt = 300 k = 5 ETMM-DIST

VS13 LH10 HS11 HS12 HS13 PS DTU
InVS13 0.00 0.06 0.37 0.24 0.33 0.65 0.57
LH10 0.00 0.37 0.26 0.35 0.64 0.56
HighSchool11 0.00 0.04 0.03 0.54 0.06
HighSchool12 0.00 0.02 0.54 0.14
HighSchool13 0.00 0.54 0.08
primary school 0.00 0.57
DTU blue 0.00

Δt = 900 k = 3 ETMM-DIST

VS13 LH10 HS11 HS12 HS13 PS DTU
InVS13 0.00 0.15 0.32 0.27 0.38 0.65 0.59
LH10 0.00 0.57 0.48 0.61 0.77 0.82
HighSchool11 0.00 0.03 0.05 0.21 0.10
HighSchool12 0.00 0.03 0.23 0.13
HighSchool13 0.00 0.25 0.10
primary school 0.00 0.18
DTU blue 0.00

Δt = 900 k = 4 ETMM-DIST

VS13 LH10 HS11 HS12 HS13 PS DTU
InVS13 0.00 0.15 0.36 0.30 0.42 0.93 0.68
LH10 0.00 0.61 0.54 0.68 0.96 0.40
HighSchool11 0.00 0.04 0.07 0.82 0.13
HighSchool12 0.00 0.05 0.83 0.17
HighSchool13 0.00 0.81 0.14
primary school 0.00 0.82
DTU blue 0.00

Δt = 900 k = 5 ETMM-DIST

VS13 LH10 HS11 HS12 HS13 PS DTU
InVS13 0.00 0.16 0.45 0.31 0.54 0.95 0.75
LH10 0.00 0.61 0.49 0.70 0.95 0.94
HighSchool11 0.00 0.17 0.22 0.75 0.29
HighSchool12 0.00 0.25 0.89 0.22
HighSchool13 0.00 0.93 0.35
primary school 0.00 0.90
DTU blue 0.00

Δt = 300

Figure 4.8: ETM-based distances obtained using ∆t = 300, 900 and k = 3, 4 and 5.

2A value of ∆t < 300 generates a too sparse network for the DTU dataset that relies on Bluetooth to detect interactions,

preventing the discovery of non-trivial motifs by any method. Results for the other datasets are similar for values of ∆t as

small as 60.
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4.2.4 Results on distance communication and synthetic datasets

In this section we evaluate the ability of the ETM-based distance to characterize networks

beyond close proximity interaction data. First of all we consider other typologies of social

data representing distance communication interactions (Fig. 4.9), then we explore the

algorithm performance on synthetic temporal graphs (Fig. 4.10).

NetSimile

Calls SMS Email
DTU C Frien C Dtu S Frien S Email DNC

Calls
DTU C 0.00 22.87 6.27 15.47 24.11 20.39

Calls
Friend C 0.00 23.86 21.57 18.53 23.37

SMS
Dtu S 0.00 13.90 25.60 20.57

SMS
0.00 26.19 22.89

Email
Email 0.00 20.79

Email
Email DNC 0.00

Weighted Laplacian

Calls SMS Email
DTU C Frien C Dtu S Frien S Email DNC

Calls DTU C 0 10922 3803 10691 6596 915 Calls
Friend C 0 3874 9054 8319 10405

SMS
Dtu S 0 10414 6303 4863

SMS
0 5808 10040

Email
Email 0 8378

Email
Email DNC 0

ETMM-DIST

Calls SMS Email
DTU C Frien C Dtu S Frien S Email DNC

Calls
DTU C 0.00 0.37 0.28 0.26 0.61 0.66
Friend C 0.00 0.34 0.33 0.59 0.58

SMS
Dtu S 0.00 0.06 0.65 0.64

0.00 0.65 0.64

Email
Email 0.00 0.38
Email DNC 0.00

Friend S

Friend S

Friend S

Modified NetSimile

Calls SMS Email
DTU C Frien C Dtu S Frien S Email DNC

DTU C 0.00 27.35 9.87 18.90 27.12 23.46
Friend C 0.00 27.13 22.78 21.04 27.89
Dtu S 0.00 17.74 28.81 22.97

0.00 28.58 27.22
Email 0.00 24.82

Email DNC 0.00

Temporal motifs

Calls SMS Email
DTU C Frien C Dtu S Frien S Email DNC

DTU C 0.00 0.96 0.29 0.96 0.66 0.73
Friend C 0.00 0.98 0.02 0.97 0.89
Dtu S 0.00 0.98 0.81 0.87

0.00 0.97 0.89
Email 0.00 0.07
Email DNC 0.00

Friend S

Friend S

Figure 4.9: Distances among different communication networks using five different methods, namely:

NetSimile, Modified NetSimile, Weighted Laplacian, Temporal motifs and ETM-based distance. Each

element of the table is colored in a color scale from green (minimum distance) to red (maximum distance).

The last table shows the distances obtained using ETM-based distance with ∆t = 3600 and k = 4.

The non-physical interaction datasets that we consider employ different communication

technologies (phone calls, SMSs and emails, see Section 4.1.3). For this experiment,

we choose k = 4 and ∆t = 3600, a temporal gap for which the six temporal networks

are characterized by a similar average degree (equal to 0.052 for phone calls, 0.049 for

SMSs and 0.051 for emails). Results are shown in Figure 4.9. Non-egocentric methods

manage to capture the similarity among some of the networks using the same technology

(e.g., SMSs for NetSimile and Modified NetSimile, emails for temporal motifs), but they

badly fail in most cases. On the other hand, the ETM-based distance is quite consistent in

capturing the similarity between networks employing the same communication technology.

Moreover, networks based on SMSs and phone calls are more similar to each other than
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networks based on emails, as expected. This is a further proof of the versatility of ETM

patterns to characterize temporal behaviors.

NetSimile

erdos renyi scale free small world
P 0.01 P 0.001 g1 g2 p2 k3 p8 k3

erdos renyi
P 0.01 0.00 26.66 16.00 16.10 15.29 16.79

erdos renyi
P 0.001 0.00 23.22 24.35 22.68 24.98

scale free
g1 0.00 7.96 17.16 14.28

scale free
g2 0.00 16.24 13.74

small world
p2 k3 0.00 9.31

small world
p8 k3 0.00

Weighted Laplacian

erdos renyi scale free small world
P 0.01 P 0.001 g1 g2 p2 k3 p8 k3

erdos renyi
P 0.01 0 384 253 288 1897 1972

erdos renyi
P 0.001 0 338 415 2085 2168

scale free
g1 0 121 2440 2526

scale free
g2 0 2337 2424

small world
p2 k3 0 170

small world
p8 k3 0

ETMM-DIST

erdos renyi scale free small world
P 0.01 P 0.001 g1 g2 p2 k3 p8 k3

erdos renyi
P 0.01 0.00 0.03 0.07 0.11 0.37 0.18
P 0.001 0.00 0.09 0.15 0.46 0.25

scale free
g1 0.00 0.03 0.39 0.14
g2 0.00 0.30 0.09

small world
p2 k3 0.00 0.14
p8 k3 0.00

Modified NetSimile

erdos renyi scale free small world
P 0.01 P 0.001 g1 g2 p2 k3 p8 k3

P 0.01 0.00 27.49 17.78 17.88 17.92 19.46
P 0.001 0.00 25.36 26.77 25.53 27.86
g1 0.00 9.42 20.29 17.46
g2 0.00 19.21 16.77
p2 k3 0.00 9.42
p8 k3 0.00

Temporal motifs

erdos renyi scale free small world
P 0.01 P 0.001 g1 g2 p2 k3 p8 k3

P 0.01 0.00 0.56 0.29 0.29 0.00 0.01
P 0.001 0.00 0.32 0.31 0.58 0.61
g1 0.00 0.00 0.33 0.37
g2 0.00 0.32 0.37
p2 k3 0.00 0.02
p8 k3 0.00

Figure 4.10: Distances among different synthetic networks using five different methods, namely: NetSim-

ile, Modified NetSimile, Weighted Laplacian, Temporal motifs and ETM-based distance. Each element of

the table is colored in a color scale from green (minimum distance) to red (maximum distance). The last

table shows the distances obtained using ETM-based distance with k = 4. No temporal gap is needed in

this case, as the networks are not extracted from time series but synthetically generated according to the

procedure described in Section 4.1.3.

Results for the synthetic datasets are shown in Figure 4.10. Our ETM-based distance

is clearly capable of detecting similarities among Erdős-Rényi graphs, outperforming all

competitors, and among scale-free ones, which are however modelled reasonably well by

all methods. On the other hand, the ETM-based distance lags behind all competitors in

detecting similarities between small-world networks. This result sheds some light on the

limitations of the egocentric perspective of our method. Indeed, ETMs deliberately dis-

card the information on connections among neighbors of the ego node (we only consider

the existence of neighbors and not their mutual behavior), thus neglecting the cluster-

ing structure of the network. This explains why the synthetic small-world networks,

characterized by high values of clustering coefficient, are less effectively described by our

method.
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4.3 Discussions

In this chapter, we proposed a novel approach for mining temporal motifs based on an

ego perspective. Each motif represents the evolution, during few time steps, of the set of

neighbors of a specific network node. Egocentric temporal motifs present some essential

characteristics that distinguish them from standard temporal motifs.

First of all, egocentric temporal motifs are simpler, at a topological level, with respect

to standard temporal motifs, since they only take into account the neighboring nodes of

the ego, ignoring the connections among them. This allows both to account for larger

neighborhoods and to explore more in detail the temporal aspect, including duration

of contacts and contemporary interactions, usually neglected in standard procedures for

temporal motif mining. This is a necessary requirement when analyzing social domains

like physical human interactions, where each individual can interact with multiple people

at a time, with various durations.

Second, the egocentric view has substantial advantages from a computational perspective.

Traditional techniques for motif mining rely on an isomorphism test for assessing if two

sub-networks are equivalent or not, and this limits their applicability to mine motifs

containing a handful of nodes. The focus on an ego node allows us to sidestep this

problem. We show how an egocentric temporal neighborhood, which is the sub-structure

representing a candidate motif, can be encoded into a bit vector in a way such that two

neighborhoods have the same encoding if and only if they are isomorphic.

We made use of seven different datasets representing social interactions and applied our

egocentric temporal motif miner, comparing the results with a state of the art non-

egocentric temporal motif miner. Our method is shown to be more effective in terms

of selectivity and quality of the extracted motifs. By visually inspecting the most fre-

quent motifs found in each dataset, it is apparent that our method succeeds in grasping

some of the peculiarities of each dataset: more rich and dynamical interactions among

students in high school and university, sparser and shorter interactions for the research

institute, a combination of the two in the hospital, and a different behavior at the primary

school. Importantly, differences and similarities between datasets are quantified by defin-

ing a correlation measure between egocentric signatures. The results that we obtain fully

reflect the social context represented by the network, especially if compared with standard

non-egocentric approaches to measure temporal networks’ distance. Later, we show how

the egocentric perspective is crucial for the discrimination among different communication

technologies, like phone calls, SMSs and emails, and how it also allows to characterize
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temporal variants of popular network topologies, like Erdős-Rényi and scale-free.

The egocentric perspective surely represents an important limitation too, since we are

neglecting all the second order interactions, i.e., the interactions between neighbors of

an ego node. This is especially limiting in networks which are characterized by a high

clustering coefficient, as shown by the suboptimal results that we achieve on small-world

networks. On the other hand, this is a necessary requirement for the bit vector encoding

and hence for the extreme velocity of our method (which scales linearly with the number

of nodes and the timesteps of the temporal network). This allows to mine motifs covering

larger structures and longer time sequences with respect to alternative solutions. Our

extensive experimental results show that, even renouncing to represent second-order in-

teractions, the proposed method is able to recognize different social settings, substantially

outperforming existing alternatives.

In conclusion, we are proposing a novel efficient method to obtain temporal motifs from

the node point of view. This method is not conceived to completely replace existing

temporal motif mining methods, but rather to complement them in revealing a different

kind of motifs. As shown in our experimental evaluation, this can be particularly useful

to study social interaction networks, which could not be properly analyzed with existing

approaches.

4.4 Code availability

The code used for the mining process is publicly available on GitHub: ETMM https:

//github.com/AntonioLonga/Egocentric-Temporal-Motifs-Miner-ETMM.
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Chapter 5

Generating Temporal Networks

The ability to decompose temporal networks in Egocentric temporal neighborhood, not

only gives the possibility to a better characterization of temporal networks but also al-

lows to development of a novel generative model for fine-grained temporal networks. In

this chapter, we propose a method able to generate high temporal resolution surrogate

networks that are able to match real networks in terms of a wide range of topological

and dynamic measures. Our generative algorithm is based on the idea of the egocentric

temporal neighborhood(110) Gk
{t−k,...,t}(n) for node n at time t, including a small number

k of prior time steps. Here we assume that the network is represented in discrete time

with each time step corresponding to a static graph, also referred to as a ‘layer’ of the

network. Crucially, Gk
{t−k,...,t}(n) does not include interactions between the neighbors of

n. To avoid excessive notation in the following, we simply use the term ‘neigborhood’ to

describe the egocentric temporal neighborhood when there is no risk of confusion.

Conceptually our algorithm does the following. We first characterize a given real-world

network in terms of neighborhoods, and then use those neighborhoods as building blocks

for a new synthetic network. When we match up neighborhoods, conflicts among the

egocentric perspectives of different nodes are globally solved by combining overlapping

sub-networks so as to preserve as much as possible each node’s desired neighborhood.

In order to extend the network into subsequent time steps, we build a local probabilistic

model for suggesting new temporal interactions at time t + 1 for each node, given the

behavior during {t − k, . . . , t}. We can further increase realism corresponding to activ-

ity modulation, such as day/night and week/weekend by building distinct probabilistic

models for different times of the day or days of the week. In the Appendix (section 7.2.4)

we show how a single probabilistic model fails to grasp temporal periodicity patterns.
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A major advantage of the egocentric perspective (that ignores connections among neigh-

bors of an ego node) is that it allows us to linearize the concept of node neighborhood

sidestepping the subgraph isomorphism problem (61), making the generation process fast

and scalable both in terms of the number of nodes and the number of temporal snapshots.

Speed turns out to be a fundamental feature, because the other existing methods rely on

algorithms of considerably higher complexity that prevent those methods from scaling to

even moderately-sized networks.

We test the method, named Egocentric Temporal Neighborhood Generator (ETN-gen), on

a range of different temporal networks. In our testing, we mainly use social interactions

datasets, because of the richness and availability of these datasets, but the method is

general and can be used to generate any kind of graph. The simplicity of our algorithm

makes it easily interpretable, extendable and algorithmically scalable. As we show below,

the surrogate networks that we generate match original networks with a high degree of

accuracy, not just in terms of local features, as one might anticipate from the local gener-

ating mechanism, but with respect to global features, such as the number of interactions,

the number of interacting individuals in time and density of their connections. The ability

to generate surrogate temporal graphs that reproduce real behaviors allows us to obtain

large as desired data, without resolution limits, while mitigating key privacy issues.

5.1 Method

We first present the temporal graph generation process. Then, we use our method to

generate temporal graphs which reproduce the temporal interaction patterns of a diverse

set of face-to-face interaction networks, including a hospital (172), a workplace (58), and

a high school (50).

5.1.1 The neighborhood generation process

Figure 5.1 shows a graphical representation of the Egocentric Temporal Neighborhood

generation process for a small temporal network with three timesteps (see Methods for

details). Panel A shows the egocentric temporal network(110) Gk
{t−k,...,t}(n) – or simply

‘neighborhood’ – of a node n. We extract this neighborhood for each node in a graph.

Specifically, for a given time horizon k (k = 2 in the figure) and a given egocentric node

n (n = E in the figure), Gk
{t−k,...,t}(n) is defined as the network fragment which contains n

and its neighbors at each of k+1 consecutive timestamps, discarding connections between
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Figure 5.1: ETN-gen. The top panel shows how egocentric temporal neighbourhood signatures are

extracted and computed. Panel B shows how to build the probability distribution of neighborhoods,

necessary to generate a provisional layer. Panel C shows how to generate a provisional layer, while panel

D explains how to convert the provisional layer into a definitive one.

the neighbors of n, and adding (temporal) connections among instances of the same node

at different timestamps. Having discarded links between neighbors, Gk
{t−k,...,t}(n) can be

encoded as a binary string, where for each neighbor node and timestamp 1 (resp. 0)

indicates the presence (resp. absence) of a link connecting to the node at that timestamp.
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Such neighborhoods are extracted for all nodes and all timestamps by using a sliding

window over time.

Second (panel B), we build a local probability distribution designed to enable simulation

of activity in future time steps. This distribution to extend the graph into future time

steps is based on past neighborhood activity. Specifically the local distribution maps

neighborhoods of length k − 1 (i.e. temporal neighborhoods involving k steps) to the

set of all possible extensions into the future (i.e. neighborhoods of temporal depth k,

involving k + 1 steps), with associated probabilities estimated by Maximum Likelihood

(i.e., normalized counts) over the entire original temporal network. Third (panel C),

for each node in the network we generate a provisional temporal extension by sampling

from the probability distribution described above. We thus obtain a provisional temporal

layer of the network. Last (panel D), this provisional layer is finalized by combining

provisional temporal extensions of all nodes, resolving conflicts and dangling links. To

connect neighborhoods, we consider a connection from node i to node j in the provisional

layer a ‘request’ of i to be connected to j. If this request is reciprocal, the link is validated

and added to the new temporal layer (see the second step in panel D). All remaining one-

directional links are validated with probability α = 1/2 (third step), to preserve the

overall number of connections (an i − j connection can be requested by i or by j). The

procedure is repeated as many times as the desired length of the final temporal graph,

always considering the last k timestamps as seeds and generating an additional one.

Above, we have described the simplest possible strategy for extending a layer into the

future, but note that all random choices in the link validation process could become pref-

erential choices in order to optimize a specific characteristic of the final network (see

Section Topological similarity evaluation). Further – which we explore below – the tem-

poral extension can include novel nodes that are not present in the current temporal

neighborhood of the ego node, and thus their identity is not known (the question mark

in panel C). These nodes are connected by a ‘stub’ rather than a real connection, rep-

resenting a link-to-be, and stubs are pairwise matched up at random (last step in panel

D).

With the basic mechanisms in place, we take a step back and explain how to initialize the

process, i.e. how to obtain the first k layers of the graph. The graph at the first timestamp

is generated using a configuration model (129; 134) reproducing the degree distribution

of the first layer of the original graph. The following layers up to k are generated by

applying the procedure in Figure 5.1 to the first layer with k′ = 1, to the first two layers

with k′ = 2 and so on until k′ = k.
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Finally, temporal networks are often characterized by an intrinsic periodicity (74). In so-

cial interactions data for instance this can be due to the day-night cycle or to the difference

between week days and weekends, and the organization of our societies. This is accounted

for in our generation procedure by using distinct local probability distributions to extend

the graph during different days of the week or times of the day. In the experiments in this

paper we use distinct week/weekends or daily local probability distributions, depending

on the length and variability of the input network.

Neighbourhood generation process: parameters. The gap between two consecutive

temporal snapshots has been set to 5 minutes for face-to-face interaction networks. The

time horizon k defining the egocentric temporal neighbourhood has been set to k = 2 in

all experiments, which is the minimal horizon that preserves some temporal correlation.

Local probability models have a granularity of 1 hour and a periodicity of 1 day (i.e.,

between 8 and 9 am in each day we use the same probability model, and the same holds

for all 1 hour slots in the day), for all networks but the ones including weekends, namely

Workplace and High school 2, for which the periodicity is set to 1 week.

5.1.2 Model evaluation

To evaluate the quality of the generated networks based on interaction statistics, we

compare the networks to empirical data as well as networks generated by a suite of state-of-

the-art temporal network generation methods described below. We evaluate performance

in terms of individual layer topology as well as temporal behaviour. The key new feature of

our network generation procedure is the ability to approximately reproduce the interaction

statistics of real-world data, something the existing alternatives cannot do.

It is important to underscore that these network generation methods have not necessarily

been developed with the aim of generating large temporal networks with low computa-

tional cost (see sub section 5.1.3). This means that, for example, they require much more

training data, need denser temporal snapshots, and therefore cannot generate high tem-

poral resolution networks. In this regard ETN-gen, thanks to the linearization due to the

egocentric perspective, is the first method that allows researchers to scale to arbitrarily

sized temporal networks. In the rest of the paper, in order to evaluate our work relative

to the other methods, we will report experiments only on the three smallest face-to-face

interactions datasets, collected in the hospital (172), in the workplace (58), and in one

of the high schools (50) respectively. Results applying ETN-gen to larger datasets are

reported in the Appendix.
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5.1.3 Computational complexity and space complexity

In this section, we report the time and space complexity of our model.

Time complexity: as depicted in figure 5.1, the method can be decomposed in four

steps: 1) mine Egocentric Temporal Neighborhoods 2) build a local probability distribu-

tion 3) generate a provisional layer for each timestamp and 4) validate layer connections.

Longa et al.(110) proved that the computational cost to count all Egocentric Temporal

Neighborhoods in a graph is equal to O(n ·morig · dk · log dk), where n is the number of

nodes, morig is the number of timestamps in the original network, d is the maximal degree

of the network and k is the length of the temporal neighborhood. The second step can be

done in linear time with respect to the size of the mined Egocentric Temporal Neighbors.

In the third step, we query the local probabilistic model in constant time for each node

for each timestamp of the generated network (mgen), thus the complexity is O(n ·mgen).

Finally, in the validation step, for each node and each timestamp we have to go through

each edge (there are at most d of them), with a complexity of O(n ·mgen · d). The overall
complexity is thus O(n ·morig ·dk · log dk+n ·mgen ·d). Note that for reasonable values of k,
dk is independent of the size of the network, so that the overall complexity is O(n ·mgen),

assuming that mgen ≫ morig.

Space complexity: the space complexity of the method is dominated by the storage of

local probabilistic models. Storing a single Egocentric Temporal Neighborhood Signature

of length k costs O((k+1) ·d), where d is the maximal degree of the network. The number

of Egocentric Temporal Neighborhoods is the number of all possible ordered sequences of

k − bit strings of length d, which corresponds to
(
d+2k−1

d

)
and is loosely upper bounded

by 2kd. The overall space complexity is thus O(2(k+1)d). As discussed in the case of time

complexity, for reasonable values of k, d is independent of the size of the network, so that

the space complexity does not depend on it.

5.1.4 Size expansion: preserving interaction density.

The seed graphs for the size expansion experiment are generated by artificially reducing

the original dataset (so that the original graph can be used as ground-truth). In this

reduction process, whenever a node is dropped all its connections are dropped too. As

a consequence, the resulting seed graph has a reduced mean degree with respect to the

original one, and the expanded graph generated from it would inherit this reduced mean
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degree. This problem can be avoided by adjusting the α parameter of the generation

process (the probability to confirm the unidirectional links in each provisional layer, set

to 1/2 by default). In particular, we would need to set α = 1− 1
2
L̂
L
, where L̂ is the average

number of links in the seed graph and L the desired number of links in the generated

graph. However, L is unknown and needs to be estimated.

Something that we know, and that we want in this case to preserve, is the density,

defined as d = L̂

N̂ ·(N̂−1)/2
i.e. the fraction between the number of links in the seed graph

and all possible links (N̂ is the number of nodes in the seed graph). If we assume a

linear growth with respect to the number of all possible edges in the network, we also

have: d = L
N ·(N−1)/2

, with N as the number of nodes of the generated graph (that we

can choose). Combining these two equations we obtain an estimate for L, from which

we obtain: α = 1 − N̂ · (N̂ − 1)

N · (N − 1)
· 1
2
. Hence, when we consider a seed with only 30% of

the nodes of the high school dataset (so N = 126 and N̂ = 38) we should use α = 0.96

to reproduce the same density. While if we start with 50% and 70% of the nodes (i.e.

N̂ = 63 and N̂ = 88) in the seed we should use respectively α = 0.88 and 0.76.

5.1.5 Alternatives approaches for generating networks.

The state-of-the-art methods we consider are: Dymond (179), a model which uses the

distribution of 3-nodes structures in the original graph (triads with one, two or three

connections) as building blocks to generate a new temporal network; STM (143), a gener-

ative model based on the distribution of small temporal motifs; and TagGen (185), based

on deep learning, which uses a generative adversarial network to generate temporal walks

that are then combined into a temporal graph. Dymond and STM only consider local

information, while TagGen is more global.

Dymond (179) builds a temporal network considering (i) the dynamics of temporal motifs

in the graph and (ii) the roles nodes play in motifs (e.g., in a wedge – two links connecting

three nodes – one node plays the hub, while the remaining two act as spokes). The method

has no parameters to be set. Structural Temporal Modeling (STM) (143) extracts counts

for a predefined library of (non-egocentric) temporal motifs from the original network,

and turns them into generation probabilities from which to create the temporal network.

This methods has no tunable parameters. TagGen (185) is a neural-network based ap-

proach that extracts temporal random walks from the original graph and feeds them to

an assembling module for generating temporal networks. TagGen has been trained with

the parameters used in the original paper, namely 30 epochs with a batch size of 64 and
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stochastic gradient descent with a learning rate of 0.001.

5.2 Results

We evaluate the quality of the generated networks in terms of interaction statistics, con-

sidering both static and temporal network properties, highlighting the advantage of our

proposed method relative to the state-of-the-art. Finally, we show how the approach can

be used to expand existing temporal networks, both in time and in number of nodes,

something which is not possible using competing methods for temporal network genera-

tion.

5.2.1 Temporal periodicity

Figure 5.2 reports the total number of interactions for each temporal snapshot (left) and

the average number of nodes (right) in the original network, ETN-gen and the three

competitors. The first clear finding from this figure is that ETN-gen (orange curves)

results in time-series that are remarkably similar to those appearing in the original datasets

(black curves). This is true, not just in terms of generating a number of interactions which

is of the same order of magnitude as the original data (notice that different datasets have

different scales on the y-axis), but also in terms of temporal patterns which are preserved

with considerable accuracy, including daily and weekly periodicity.

This result, even if outstanding relative to Dymond , STM , and TagGen should not come

as a surprise, as it is a direct consequence of our network generation procedure. The local

probabilistic models store the probability distributions of the neighborhoods appearing

in the original graph and this indirectly contains the key information about how nodes

degree evolves in time. Further, our seed-network has the same degree distribution as

the original graph, which allows us to statistically preserve the overall average number of

interactions of the original graph. Moreover, we manually input periodicity via different

local probabilistic models for different times and days of the week. We highlight, however,

that while using only a single local probabilistic model would remove our ability to model

periodic changes in graph over time, we would still be able to model the average number

of interactions, as these are automatically reproduced by the rest of the algorithm. A

detailed analysis is reported in the Appendix (section 7.2.4).

In contrast to ETN-gen, the results that we obtain from the current methods are signifi-

cantly different from the empirical ones. To start, the curves representing TagGen, only
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Figure 5.2: Number of interactions in the generated network vs. competitors. Number of

interactions at each timestamp, each color represents a different generation algorithm, while the original

graph is depicted in black. TagGen produces a number of interactions ten times the order of the original

network and it only appears in the insets for visibility.

appear in the insets, which report the same data with different y-axes. The number of

interactions generated by TagGen is orders of magnitude larger than that of the other

methods and of the original network. TagGen, however, does manage to capture day-

night periodicity, which is completely lost by Dymond and STM , both of which produce

a number of interactions that is stable over time. Overall, ETN-gen is the only method

capable of accurately reproducing both aggregated and temporal interaction statistics.

The histograms on the right part of the figure show mean and standard deviation of the

number of nodes in the networks generated by the different methods, with the horizontal

dashed line representing the number of nodes in the original network. These histograms

show another important result: only our method and TagGen always generate networks

75



5.2. RESULTS CHAPTER 5. GENERATING TEMPORAL NETWORKS

with the same number of nodes of the input graph, with the difference that, as shown by

the insets on the left, TagGen generates orders of magnitude more interactions. Dymond

and STM , on the other hand, respectively under and over represent the number of nodes,

so that only ETN-gen manages to reproduce both the number of nodes and the number

of interactions in the original network.

5.2.2 Topological similarity evaluation

Having studied the temporal development, we now turn to structural similarity between

the surrogate data and the original networks. We consider ten metrics for structural

similarity: number of interactions, density (179), interacting individuals (163), new con-

versations (163), S-metric (101), duration of contacts (163), edge strength in the projected

weighted network (163), global clustering coefficient (116; 177), assortativity (133), and

average shortest path length (74).

The topological metrics can be divided into eight global metrics, which are computed for

each temporal layer as it was a static network, and for which we report distributions over

temporal layers:

• Number of interactions. The number of edges.

• Density. The ratio of edges in the graph versus the number of edges if it was a

complete graph (179).

• Interacting individuals. The number of individuals that are interacting (163).

• New conversations. The number of conversations starting at this specific times-

tamp (163).

• S-metric. A measure of the extent to which a graph has a hub-like core, maximized

when high-degree nodes are connected to other high-degree nodes. (101).

• Global clustering coefficient. The ratio of the number of closed triplets to the

total number of open and closed triplets (116; 177).

• Assortativity. The degree-degree correlation of nodes that are connected (133).

• Average shortest path length. The average shortest path length for all possible

pairs of nodes of the largest connected component for each temporal layer (74).

And two local metrics (distributions over edges):
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Figure 5.3: Topological similarity. Similarity of the original network with those generated by ETN-

gen, STM , TagGen and Dymond . Each bar reports the Kolmogorov-Smirnov distance between the two

distributions (original and generated) for a specific structural metric. The shorter is a bar the more

similar are the distributions. Standard deviations are obtained over 10 stochastic realizations of each

network. In the top inset we report the distributions of the number of interactions in real and in one

instance of generated networks for the Workplace dataset.

• Duration of contacts. The mean duration (in timestamps) of interactions between

each couple of nodes (163).
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• Edge strength in the projected weighted network. The total number of in-

teractions in time between each couple of nodes (163).

To compare distributions, we rely, inspired by Zeno et al. (179), on the Kolmogorov-

Smirnov distance (119) to compare generated and original graphs. Distances between

distributions are reported in Figure 5.3, where we compare graphs obtained with ETN-

gen with those from the three alternative approaches.

ETN-gen (orange bars) clearly generates surrogate networks that are closest to the em-

pirical networks for almost all measures, regardless of the dataset considered. Moreover,

our method is substantially more stable than the competitors, as shown by the error bars

which were obtained over 10 stochastic realizations of each network.

The measures for which ETN-gen performes best are those that, together with the number

of interactions (see Figure 5.2), are preserved by construction: the density and the number

of interacting individuals in time. Here, the similarity originates from the neighborhood

probability distributions, which ensure that from a statistical viewpoint, the surrogate

network has the same number of interactions and the same number of individuals involved

in an interaction. The same holds for the number of times that a new link appears, as

these statistics are also stored in the neighborhood probability distributions. Another

characteristic that is entirely captured by the egocentric temporal neighborhoods is the

hub-like structure that we can find in each static layer, which is measured by the S-

metric (101).

Going beyond these ‘trivial’ consequenses of the mechanics of the generating mechanisms,

the method does well at preserving interaction durations. The k-steps memory makes

various duration possible, even long durations (because of the sliding window) unlike the

case of independent layers. Moreover, the ETN distributions also encode the number of

times that an interaction ends, so interactions tend not to be extremely long.

Another interesting property is the distribution of edge strengths in the projected graph.

Edge strength is simply the number of times that each edge has appeared over the duration

of the graph. Here, we would not necessarily expect ETN-gen to do well as the method

will tend to create networks with quite homogeneous distributions of strength. This is

because it can only rely on a memory of order k for edge repetitions, and does not have a

long-term memory. Hence all the heterogeneous behaviors that we can find for instance in

social datasets, where individuals tend to establish relationships with specific nodes and

have repeated (but not necessarily consecutive) interactions with them, are not preserved

by ETN-gen. Nevertheless, we find that for the considered datasets ETN-gen remains
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competitive with the other methods.

If edge strength is partially affected by the absence of long memory, the most important

limitations of the egocentric perspective are highlighted by clustering, degree assortativity

and average shortest path length, which are related to second-order interactions. This

is the cost we pay for having a computationally efficient model applicable to arbitrary

networks. Notice that while this is a problem in theory, it seems not to affect the work-

place dataset, at least for clustering coefficient and average shortest path length. This

is explained by the fact that the dataset is substantially sparser, hence characterized by

low clustering and short paths. More importantly, it must be stressed that the other

approaches also are not able to reproduce these metrics, thus our method is still the most

competitive on average.

At this point we note that the limitations with respect to second-order measures could

be mitigated during the last step of our new temporal layer generation. In the current

version we go from a prospective layer to the actual new layer by matching up nodes

with a one-way suggested connection at random. At this step, we could however apply a

preferential attachment devoted to maximize or minimize a specific variable. For instance,

to maximize clustering we could prefer to keep edges whose nodes have one or more

common neighbors, to maximize (minimize) assortativity we could connect stubs with

similar (dissimilar) degree.

5.2.3 Dynamical similarity evaluation

Having tested our method from the structural point of view, we now test the usefulness of

the surrogate networks in terms of dynamical processes unfolding upon them. We study

two dynamical models: random walk and a spreading model.

Random walk

We simulate a temporal random walk (163; 73) on the original and generated networks.

The random walk starts in a randomly chosen node and proceeds by moving to a neighbor

chosen uniformly at random.

We compute two metrics: coverage and mean first passage time (MFPT), and compare

distributions over different realizations between the input and the generated temporal

network using again the Kolmogorov-Smirnov distance.
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• Coverage. The number of (distinct) visited nodes starting from a random node at

an initial timestamp (163). The simulation is repeated 1000 times using a random

initial node and the initial time is set equal to the first timestamp.

• Mean First Passage Time (MFPT). The average time taken by the random

walker to arrive for the first time at a specific node i, starting from a random initial

position j in the network (163). We consider each couple of nodes (i, j) in the network

and repeat the simulation five times for each of them.
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Figure 5.4: Dynamic similarity. The figure shows the Kolmogorov-Smirnov distance for coverage and

mean first passage time in the random walk model (left panel) and the distance for distribution of R0

values on a SIR model simulation (right panel) in each generated network. Our method is represented in

orange, while the solid black line shows the stability (i.e., the same simulation on the original network).

In Figure 5.4 (left) we report the Kolmogorov-Smirnov distance for coverage and MFPT

with our method and the competitors with respect to the original network. The horizontal

dashed line shows the stability of each measure on the original network. The black line

is obtained comparing different performances (average over 1000 simulations of random

walk for coverage, and 5 times each couple of nodes for mean first passage time) by

means of the Kolmogorov-Smirnov distance. We observe that in terms of the mean first

passage time ETN-gen performs better than the competitors, while in terms of coverage

performance depends on the datasets: for the most dense networks (hospital and high

school) the highest similarity with the original network is achieved by Dymond (but

ETN-gen is ranked second), while for the workplace ETN-gen again largely outperforms

all the competitors, that produce very different distributions from the original one. In

general we can say that the random walk process on the ETN-gen’s surrogate networks

is quite similar to the random walk on the original graph, especially if compared with

surrogate data from the other methods.
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Spreading model

We simulate a Susceptible-Infectious-Recovered (SIR) model (5), with three possible val-

ues for the probability of disease transmission (λ ∈ {0.25, 0.13, 0.01}), and the recovery

rate fixed at µ = 0.055. In each simulation, the initial infected node is randomly selected

among non-isolated nodes.

We compute the reproduction value R0 defined as follow:

• Reproduction value R0. The average number of individuals infected by the first

one, with a single random node infected as seed.

Each experiment was repeated 100 times and the distribution of R0 obtained on the

original network is, again, compared with those obtained on synthetic networks by means

of the Kolmogorov-Smirnov distance. Results are shown in Figure 5.4 (right), where

again a horizontal black line shows the stability of each measure on the original network

(computed averaging over 100 simulations). We observe that the results obtained with

ETN-gen are highly similar to those of the original graph and show a large degree of

stability with respect to this similarity. The other methods produce networks where the

dynamical behavior similarity is sometimes high and sometimes severely low, being quite

sensitive to parameters and datasets. In conclusion, the method that we propose almost

always produces the most similar networks to the original ones, and certainly the most

stable results across datasets, across dynamical systems and across parameters.

5.2.4 Dataset expansion and extension

In the previous sections we have argued that ETN-gen creates realistic surrogate temporal

networks that mimic real social dynamics (both in terms of structure and in reproducing

dynamical systems) – and that our method outperforms alternative solutions.

Now we ask the question: How can this tool be useful in practice? A relevant application

is represented by the possibility of enlarging a given temporal dataset, both in time and

in size. It is indeed common that a specific analysis, in order to yield reliable results,

requires a larger population or a longer time than those characterizing collected real data.

In those cases we deal with the long-standing problem of data augmentation, for which we

now argue that ETN-gen represents a promising solution. In the following we show how

our method can be used for augmenting a temporal dataset, by adding temporal layers

(temporal extension), but also by increasing the size of the network in terms of number
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of nodes (size expansion).

Temporal extension

The temporal extension of a dataset is straight forward: once we have calculated the

neighborhood probability distributions summarizing the original graph, we can repeat

the process of temporal layer addition as long as needed. At the top of Figure 5.5 we

show an example of temporal extension of the workplace network. We have selected this

dataset to show that ETN-gen is capable of capturing weekends (with no interactions) as

well. To evaluate the quality of the extension, we use only the the first week of the original

two-week dataset (from the beginning to the vertical line) to estimate the neighborhood

probability distributions. We now generate an ensemble of 10 two week networks based

on that first week. The mean and standard deviation of the number of interactions in

the generated graph are reported in orange. The number of interactions of the original

graph are reported in black dashed curves for the first week (the “train” dataset), and in

black solid curves for the following week (the “original” dataset). Results show how the

generated networks accurately recreate the original behavior beyond the timespan that

was used to estimate the local probability distributions.

Size expansion

Here we explore the fidelity of surrogate networks with an increased number of nodes.

As discussed above, it is possible to increase the size beyond that of the original network

within the ETN-gen framework because the number of nodes is simply a parameter to

set for the method. That said, however, the concept of size expansion requires more

attention than time extension. Because, as we change the number of nodes in a network

we should also consider how the density of the graph and the mean degree should change

accordingly.

In the following we describe an experiment of data augmentation, assuming that we only

have access to incomplete data. Incomplete data are obtained by randomly removing part

of the nodes from the original network. We use the high school dataset which, with its 126

nodes, is the largest among our datasets, and we consider two reduced versions, with 30%

and 70% of the nodes respectively. When removing part of the nodes from a network,

we naturally remove also part of the links (all those which were before connecting the

eliminated nodes to the remaining ones), we hence reduce the mean degree. We should

consider that an incomplete dataset has in general a reduced mean degree with respect to
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Figure 5.5: Temporal extension and node expansion. The mean and standard deviation of our

method are shown in orange (and brown). Black dashed (and dotted) lines show the original data used

to train our model, while black solid lines show the original data used to evaluate the quality of the

generated network. In experiments involving temporal expansion, a vertical bar separates the temporal

range used to collect training data from the one where expansion is performed. See the main text for the

details.

the real-world network, and that when we try to reconstruct the original network via data

augmentation we should increase the mean degree too. See Methods for a quantification

of the needed increase.

Anyway, once the desired connectivity has been chosen, ETN-gen allows us to generate

a surrogate network with the desired number of nodes and the desired degree, while

maintaining the pattern of egocentric interactions of the original dataset.

The results of the experiment on the high school dataset are shown in the middle panel of

Figure 5.5. For each of the two reduced temporal networks we generate a temporal network

with 126 nodes to try to reconstruct the original graph. We generate the initial snapshot

using the configuration model based on the degree distribution of the first snapshot of

the original (not reduced) graph. Then we build local probability distributions only using
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information from the reduced networks and use these local probability distributions to

generate surrogate expanded networks from them. The expanded networks have the same

number of nodes of the original one (126), enabling direct comparison. The expedient

that we use to augment the mean degree from the reduced seed graph is to increase

the parameter α of the generation process, which is the probability to confirm the uni-

directional directed links in each provisional layer (set to 1/2 by default). See Methods

for the details on how to compute the correct value of α given the original number of links

and the desired density of the generated graph.

In the middle panel of Figure 5.5 the black solid curve represents the number of interac-

tions in the original network, the black dashed curve those in the “train” network with

30% of the nodes and the black dotted curve those in the one with 70% of the nodes.

The corresponding values for the generated networks with their standard deviations are

reported in orange and brown respectively. Again, we observe the ability of our method

to correctly replicate the pattern of interaction in the original network, even if fed with a

small percentage of nodes from the original graph as seed.

Temporal extension and size expansion

We can also combine the two techniques above to simultaneously increase the number of

nodes and the temporal snapshots. The results are shown in bottom panel of Figure 5.5

for the high school network, where the synthetic graph has been obtained by only using

50% of the nodes and the first two days of the original dataset (from the beginning to

the vertical line), see the black dashed curve. Also in this case, our method is able to

extend an input graph in both the temporal and the node size dimensions with remarkable

accuracy.

5.3 Discussion

Here, we have proposed a model to generate surrogate temporal networks, i.e. synthetic

networks that realistically capture the properties of real-world datasets, only making

use of the information contained in egocentric temporal neighborhoods. Specifically, we

generate temporal networks which accurately reproduce structural characteristics like

density, number of interacting individuals, number of interactions in time, number of

new conversations, and the possible presence of hubs.

The fidelity of our surrogate networks suggest that the egocentric temporal neighborhoods
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are fundamental building blocks; building blocks which are sufficient in terms of recon-

structing temporal networks, which preserve the essential characteristics of the original

graph. In this sense our work illustrates the importance of the egocentric perspective in

temporal networks (158; 70) opening a new direction in generating these networks.

The usefulness of surrogate networks can be evaluated by simulating dynamical systems

on them, such as random walks and a SIR model. We observe that in both topological

and dynamical tests, the networks generated by our model are generally closer to the

original graph than those generated by different literature models. The comparison with

competitors mostly highlights the fact that those models tend to neglect fundamental

features that our approach is able to preserve. Indeed, even in the few cases where

competing methods reproduce a single measure with slightly higher accuracy, they all

have at least one measure exhibiting an extreme difference with the original graph (also

including basic features like, e.g. the number of nodes).

Moreover, our approach is able to generate temporal network that have different sizes

than the original one. This property can be used to increase the number of nodes and

extend the network in time, providing a powerful tool for data augmentation.

The real strength of the method, however, is its simplicity. As noted above, this simplicity

reveals something about the minimal fundamental building blocks of a temporal network.

The same simplicity, moreover, has allowed us to formulate a fast and scalable algorithm,

able to first process and then generate very large networks, with high temporal resolution,

something which the existing alternatives cannot do.

The other side of the coin is that this simplicity does not capture certain topological fea-

tures. This is the main limitation of the model. For instance, disregarding second-order

interactions translates to a reduced ability to preserving clustering, degree correlations

and average shortest path length. Similarly, the absence of long-term memory means that

the model currently does not capture recurrent interactions between pairs of nodes. These

features are instead well captured by more theoretical models of network generation that

include aging (126; 127), edge reinforcement (56; 166), or in general some mechanism for

memory such that contact durations and inter-event times are heterogeneous and depend

on the past interactions (149; 174). Memory can also be used to generate a synthetic

temporal network that is organized in groups, i.e. subsets of nodes highly connected

among them and less connected with the other ones (183; 182). This is a characteristic

often occurring in real networks, especially social networks, and it cannot be captured

by small local subnetworks like egocentric temporal neighborhoods. However, long-term

memory appears in literature only in theoretical models for temporal network generation,
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for which the goal is to obtain realistic networks by recovering some particular character-

istics of the observed dynamics in real networks, but usually do not aim at reconstructing

specific real networks or environments. A model which instead is built to obtain surrogate

networks with an alternative approach is the one proposed by Presigny et al. (142). This

model does not generate a new network from scratch, it instead individuates a backbone

of a real temporal network, defined as the global subnetwork composed of the most sig-

nificant edges, and then reconstructs the missing links. This is based on a conceptually

different idea, assuming that the important information concerns the global structure of

the network, while the method that we are proposing focuses on how nodes behave given

their interactions in last time steps. By recalling two different long-standing traditions in

network science, a socio-centric versus an ego-centric perspective (177), we can assert that

if the first one is covered, for what concerns surrogate temporal networks, by the model

of Presigny et al., our model places itself in the remaining gap, filling the unexplored case

of the ego-centric perspective.

Finally, the sequential nature of the method that we are proposing allows us to easily

extend it in many directions. For instance using a preferential attachment in the edge

validation step of the procedure. Hence many additional features could be included in

future developments of the model. Possible future applications may also include the pos-

sibility to share sensitive data while preserving privacy and also the possibility of merging

data from different environments, simply building multiple local probability distributions.

5.4 Code availability

The codes used for the generation of temporal netowork are publicly available at

• ETN-gen https://github.com/AntonioLonga/ETNgen

• STM https://github.com/temporal-graphs/STM

• TagGen https://github.com/davidchouzdw/TagGen

• Dymond https://github.com/zeno129/DYMOND
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Chapter 6

Conclusion

In this thesis, we showed how modifying the topology of a temporal network directly

affects the dynamic in the network. In the second chapter we showed how modifying

the topology of a temporal network directly affects the spreading dynamics taking place

on it. The modifications we introduced in the network consisted in quarantining and

isolating individuals, practically cutting their connections with the rest of the population.

We tested several quarantine policies for COVID-19 containment without pharmaceutical

interventions. We explored the trade-off between quarantining the minimum amount of

people and containing the infection spreading.

The strong relation between topology and dynamics led us to a deep investigation of the

temporal substructure of a given temporal network, proposing the novel notion of egocen-

tric temporal neighborhood (ETN) and egocentric temporal motifs (ETM). We proved the

benefit of ETMs in distinguishing among different social contexts, being able to identify

similar networks, for instance: high school students tend to interact with each other in

a way that is closer to how university students interact, as opposed to how individuals

engage with each other in a professional setting like a workplace or a hospital. Later,

being able to decompose temporal networks into ETN, we developed a novel generative

algorithm. We compared our algorithm with three state of the art algorithms on 10 dif-

ferent temporal networks, showing a higher ability to generate networks similar to the

original ones. We further showed that beyond generating realistic interaction patterns,

our method is able to capture the intrinsic temporal periodicity of temporal networks, all

with an execution time lower than competing methods by multiple orders of magnitude.

Our algorithm is able not only to extend (increase the number of temporal snapshots) but

also to expand (increase the number of nodes) a given temporal network. Being able to

build bigger realistic temporal networks permits us to tackle an important issue in both
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Network Science and CSS. In fact, even in our first work, we had to simulate the epidemic

in a relatively small network, thus we tried naive models to generate bigger temporal net-

works. Those experiments pointed out the difficulty of creating large realistic synthetic

temporal networks.

6.1 Limitations & Future Directions

A crucial concept of this thesis relies on the notion of temporal motifs, which need a null

model to be defined. However, the choice of null models directly affects the statistical

significance of substructures(159). An interesting future direction would be the one to

identify statistically significant substructures without relying on null models, bypassing

the bias introduced in the definition of the null model. Another crucial issue of temporal

motifs consists in their application(106), in fact so far they are counted or used in the

generation of surrogate networks. One may explore the usefulness of temporal motifs in

understanding how the type of agents interacts with other types of agents, e.g. are the

structures created by doctors similar to those created by nurses in the hospital dataset? if

not, can we explore these structures for a better understanding of agents in different social

contexts? Another promising direction to investigate consists in the possibility to relax

the definition of temporal motifs by considering similar motifs as the same. For instance,

if the ego node interacts with a group of nodes, the important piece of information may

be just the existence of the group, while the exact number of neighbors may not be

significant. This possibility is not included in Egocentric Temporal Motifs but it could

be admitted in a mitigated definition of motifs, like inexact motifs based on similarities.

The strength of our method relies on the ability to construct a signature, which allows

computing exact matching in polynomial time. The fast computation is due to the fact

that second-order connections are not considered. This, however, leads to the leak of triad

closure, fundamental in social interactions. To cope with this issue, one may investigate

an extension of Egocentric Temporal Neighborhood Signature able to handle higher-order

networks(19; 15).

We have clearly proven the superiority of our network generation model, not only in

terms of similarity with the input network but also in terms of computation time with

respect to state of the art algorithms. However, ETN-gen is not able to generate specific

node identities, i.e. doctors, nurses, patients, etc. This issue could be easily solved by

substituting ones and zeros into the ETNS with fixed-length identity encoding. This

simple solution not only would give the possibility to generate labelled temporal networks

but also would open the doors to the challenging task of policy optimization, i.e. it would
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be interesting to study for instance how an epidemic spreading is affected by network

modifications like addition or removal of specific nodes with specific roles, e.g. teachers

in schools or medical doctors in hospitals. Moreover, being able to generate labelled

networks would allow generating temporal networks that combine social contexts, e.g.

different kinds of interactions during working hours and during free time. This kind of

face-to-face interaction data containing multiple individuals and multiple social contexts

would be fundamental for epidemic and infodemic studies.
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[85] Sadamori Kojaku, Laurent Hébert-Dufresne, and Yong-Yeol Ahn. The effectiveness

of contact tracing in heterogeneous networks. arXiv preprint arXiv:2005.02362,

2020.

[86] Joel R Koo, Alex R Cook, Minah Park, Yinxiaohe Sun, Haoyang Sun, Jue Tao

Lim, Clarence Tam, and Borame L Dickens. Interventions to mitigate early spread

of SARS-CoV-2 in singapore: a modelling study. The Lancet Infectious Diseases,

2020.

[87] Gregory Kossinets, Jon Kleinberg, and Duncan Watts. The structure of information

pathways in a social communication network. In Proceedings of the 14th ACM

SIGKDD international conference on Knowledge discovery and data mining, pages

435–443, 2008.

[88] Gregory Kossinets and Duncan Watts. Empirical analysis of an evolving social

network. Science, 311(5757):88–90, 2006.

[89] Orestis Kostakis, Nikolaj Tatti, and Aristides Gionis. Discovering recurring activity

in temporal networks. Data Mining and Knowledge Discovery, 31(6):1840–1871,

2017.

[90] Chrysanthi Kosyfaki, Nikos Mamoulis, Evaggelia Pitoura, and Panayiotis Tsaparas.

Flow motifs in interaction networks. arXiv preprint arXiv:1810.08408, 2018.

[91] Lauri Kovanen, Márton Karsai, Kimmo Kaski, János Kertész, and Jari Saramäki.
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[174] Christian L Vestergaard, Mathieu Génois, and Alain Barrat. How memory generates

heterogeneous dynamics in temporal networks. Physical Review E, 90(4):042805,

2014.

[175] Patrick Vinck, Phuong N Pham, Kenedy K Bindu, Juliet Bedford, and Eric J Nilles.

Institutional trust and misinformation in the response to the 2018–19 ebola outbreak

in north kivu, dr congo: a population-based survey. The Lancet Infectious Diseases,

19(5):529–536, 2019.

[176] Jingjing Wang, Yanhao Wang, Wenjun Jiang, Yuchen Li, and Kian-Lee Tan. Effi-

cient sampling algorithms for approximate temporal motif counting. In Proceedings

of the 29th ACM International Conference on Information & Knowledge Manage-

ment, pages 1505–1514, 2020.

[177] Stanley Wasserman, Katherine Faust, et al. Social network analysis: Methods and

applications, volume 8. Cambridge university press, 1994.

[178] Duncan J Watts and Steven H Strogatz. Collective dynamics of ‘small-

world’networks. nature, 393(6684):440–442, 1998.

[179] Giselle Zeno, Timothy La Fond, and Jennifer Neville. Dymond: Dynamic motif-

nodes network generative model. In Proceedings of the Web Conference 2021, pages

718–729, 2021.

[180] Juanjuan Zhang, Maria Litvinova, Yuxia Liang, YanWang, Wei Wang, Shanlu Zhao,

Qianhui Wu, Stefano Merler, Cécile Viboud, Alessandro Vespignani, Marco Ajelli,

and Hongjie Yu. Changes in contact patterns shape the dynamics of the COVID-19

outbreak in China. Science, 2020.

[181] Juanjuan Zhang, Maria Litvinova, Wei Wang, Yan Wang, Xiaowei Deng, Xinghui

Chen, Mei Li, Wen Zheng, Lan Yi, Xinhua Chen, et al. Evolving epidemiology

of novel coronavirus diseases 2019 and possible interruption of local transmission

outside Hubei Province in China: a descriptive and modeling study. medRxiv, 2020.

[182] Xiao Zhang, Cristopher Moore, and Mark EJ Newman. Random graph models for

dynamic networks. The European Physical Journal B, 90(10):1–14, 2017.
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Chapter 7

Appendix

7.1 Digital Contact Tracing

7.1.1 Characteristic parameters of the disease

In this section we provide details on the various parameters that represent the epidemic

spread in both the continuous model and the network model. Moreover, we demonstrate

that the model is robust with respect to the choice of the infectiousness probability as a

function of the time since infection.

Infectiousness parameters in the continuous model

The choice of the infectiousness function and the epidemic parameters that describe the

COVID-19 spreading in the continuous model follow the work of Ferretti et al. (48), with

some modifications that we describe here and summarize in Supplementary Table 7.2.

The infectiousness ω(τ) is a function of the days since infection, proposed by Ferretti et

al. (48). It takes into account four different contributions: asymptomatic, pre-symptomatic

and symptomatic infectiousness, plus environmental transmission representing the indirect

contagion occurring for instance via contaminated surfaces. The symptomatic infectious-

ness has been obtained by Ferretti et al. by making use of generation time data. The

pre-symptomatic infectiousness is assumed to be equal to the symptomatic one, while

the asymptomatic individuals are considered to have only 10% of the infection potential,

according to the recent literature (107; 103). An alternative shape of the curve ω(τ) is

discussed in 7.1.1. The infectiousness is a probability distribution and as such it is nor-
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malized to one. It appears in the model equation (3.1) in the main text multiplied by

R0, that we consider equal to 3 when no measure is implemented. All the analyses are

however performed using reduced values, R0 = 1.2, 1.5, 2.0, which take into account the

combined effect of all the alternative measures (masks, physical distancing, etc.) in a

range suggested by recent literature (33; 144; 84; 60).

For the cumulative distribution s(τ) of onset times (i.e. time between infection and

appearance of symptoms), we adopt the assumptions of Ferretti et al. (48) with two

modifications. This function actually gives the fraction of the infected population that

becomes known as infected by the health authorities, and does not distinguish between

symptomatic individuals and asymptomatics identified by randomized testing. This is

the same assumption as in Ferretti et al. (48), and it is motivated by the fact that the

tracing and quarantining policy is activated independently of the source of knowledge of

the infected status. The first modification to the onset time is that we rescale the function

s so that its cumulative probability s(τ) reaches p = 0.8 at large times instead of 1. This

models our assumption that even at infinite time only 80% of the infected population is

detected, instead of 100%. This describes a situation in which 60% of infected are symp-

tomatic, and additionally 50% of asymptomatics are identified by randomized testing, or

equivalently to a situation with 80% symptomatics and no randomized testing. The sec-

ond modification is that we shift the symptom onset forward in time by 2 days, modelling

a delay in the functioning of the testing and reporting policy. Different assumptions on

this delay are discussed in 7.1.2.

Name Inputs Definition Description

ω(τ) time τ (days) Weibull distribution with

shape = 2.826 and scale =

5.665.

Probability for an infected in-

dividual to transmit the dis-

ease at time τ .

R0 1.2, 1.5, 2 Reproductive number.

onset time(τ) time τ (days) Lognormal distribution with

µ = 1.54, σ = 0.47, shifted

by the delay of 2 days, and

scaled in [0, 0.8].

Probability for an infected in-

dividual to be detected ex-

actly at time τ .

s(τ) time τ (days) Cumulative distribution of

onset time(τ).

Probability for an infected in-

dividual to be detected within

time τ .

Table 7.2: Characteristic parameters of the disease that are used in the continuous model.
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Parameter tuning to validate the infection probabilities

As mentioned in the main text in Section 3.2.2, the CNS data set provides us with the

opportunity to explore the dependence of the infectiousness from duration and proximity,

a question to which the literature is not yet able to express a specific answer. We rely

on some simplifying assumptions by supposing that in occasion of a contact between

an infected and a susceptible person the contagion probability depends only on their

proximity, on the duration of the contact and on the time since the infectious individual

has been infected. We moreover assume that those probabilities are independent from

each other and require that, if simulated on the CNS data set without any restriction, the

resulting reproductive number is equal to R0 = 3, in agreement with recent literature on

the COVID-19. Given a choice of the infectiousness parameters, the corresponding value

of R0 is estimated by computing an empirical value Rdata
0 . This is obtained by numerically

simulating the epidemic spreading, assuming one random individual initially infected, and

counting the number of secondary infections caused by this patient zero (167). The average

of this value over multiple independent runs is the estimated value Rdata
0 .

The infectiousness function is thus defined as:

ωdata(τ, e, ss) = rR0 · pR0 · ω(τ) · ωexposure(e) · ωdist(ss) (7.1)

where ω(τ) is the probability for an infected individual to transmit the disease at time

τ after its own infection, ωexposure(e) is the probability to transmit the disease given the

duration e of a contact, and ωdist(ss) is the probability as a function of the signal strength

ss of the contact. The constant rR0 is a reduction factor that can be tuned to obtain the

desired value of R0, and pR0 is a scaling factor. Using two distinct scaling factors allows

us to decouple the estimate of the parameters to obtain the target value of R0 = 3, and

the computation of the reduction factor needed to obtain a smaller value.

Considering everything fixed except for ωexposure(e) and ωdist(ss) we can play with the free

parameters of these functions so as to explore different scenarios while keeping a balance

between time and space dependencies corresponding to an R0 around 3 (with rR0 = 1).

The shape of ωexposure has been inspired by the literature (51; 167; 13):

ωexposure(e) = (1− β0)
e/dt , (7.2)

where dt is a time step and β0 a free parameter. The value of β0 can be set by requiring

that a specific probability σ for an infected individual to transmit the disease is reached

for a given contact duration eσ:

ωexposure(eσ) = σ. (7.3)
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The parameter β0 can thus be expressed as a function of eσ and σ as:

β0 (eσ, σ) = 1− (1− σ)dt/eσ . (7.4)

Supplementary Table 7.3 reports some examples. For instance, to obtain a 90% probability

of infection for contacts of 1 hour, the parameter β0 needs to be set equal to 0.038.

eσ [hours] σ β0

• 1.0 0.9 0.038

• 2.0 0.9 0.019

• 4.0 0.9 0.010

Table 7.3: Numerical values for β0 for three different sets of physical scenarios (eσ, σ). The value of β0

highlighted in bold is the one chosen for the simulations reported in all the other sections.

The term ωdist(ss) instead depends on the Bluetooth signal strength (RSSI), expressed in

dBm, which is considered as a proxy for the distance between individuals. We thus define

the function ω̃(x) = ωdist(ss(x)), where x indicates distances in meters. We emphasize

here again that the relationship between RSSI and distance is far from trivial (160; 130),

so in the main text we will rely on signal strength as a proxy for distance.

To our knowledge, the literature on COVID-19 has not yet produced some evidence re-

garding the probability of contagion as a function of the distance between an infected

individual and a susceptible one. We make the realistic assumption that infectiousness is

large when the individuals are in close proximity and that it decreases with distance. In

particular we hypothesize that it follows a sigmoid function:

ω̃dist(x) =
s

log (1 + eb)

(
1− 1

1 + eb−sx

)
, (7.5)

where s and b are free parameters. As we have two parameters, we need to specify two

physical conditions to find their values. We then require that the probability for an

infected individual to transmit the disease to a contact within a distance xi (i = 1, 2)

should be wi (i = 1, 2): 
∫ x1

0
ω̃dist(x)dx = w1∫ x2

0
ω̃dist(x)dx = w2 .

(7.6)

Computing explicitly the integrals using Eq. (7.5), we obtain
1− log (1+eb−sx1)

log (1+eb)
= w1

1− log (1+eb−sx2)
log (1+eb)

= w2

(7.7)

which is a transcendental system, that can be numerically solved once we have set the

two couples (xi, wi)i=1,2. Some examples are reported in Supplementary Table 7.4.
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x1 [m] w1 x2 [m] w2 s [m−1] b

• 1.7 0.5 6.0 0.99 1.16 3.65

• 2.5 0.5 7.0 0.99 1.34 6.67

• 4.0 0.5 10.0 0.99 1.16 9.31

Table 7.4: Numerical solutions (s, b) for the system (7.7) for three different sets of physical requests

(xi, wi)i=1,2. The values of s and b highlighted in bold are the ones chosen for the simulations reported

in all the other sections.

The three curves that we obtain using the values in Supplementary Table 7.3 and Sup-

plementary Table 7.4 are shown in Supplementary Fig. 7.1.

While the reproductive number of COVID-19 is estimated to be around 3 (30), there is

small evidence for the dependence on proximity and duration. Therefore, we combine the

two functions ωexposure(e) and ω̃dist(x) and choose the parameters β0, b and s to obtain

R0 = 3 in each combination. In particular, given a possible choice for (β0, b, s), we run

a set of 800 simulations on the CNS data set without any restrictive policy, i.e. with

εI = 0 and one initial infected. We then count the number of secondary infections caused

by this first individual and average this number on all the 800 simulations to obtain an

estimate of R0. The constraint R0 = 3 requires to find a balance between ωexposure and ω̃dist

and combine the parameters accordingly. If for instance we suppose that infectiousness

decreases slowly even at long distances (like in the last row of Supplementary Table 7.4)

we should set β0 such that the infectiousness of contacts has a slow increase with duration

(like in the last row of Supplementary Table 7.3), in order not to have a huge R0, and

we obtain the pink curves in Supplementary Fig. 7.1. Vice-versa, if ω̃dist is adjusted such

that only close contacts are contagious, we should give more importance to duration and

suppose that also short durations are at risk (e.g. blue curves in Supplementary Fig. 7.1).

In the numerical simulations discussed in the main text, we use the intermediate curves

in Figure 7.1 (in orange) as infectiousness functions. We report in Supplementary Fig. 7.2

some results obtained by using in the simulations the two other sets of curves. The left

and central panels represent the growth or decrease of the epidemic with the different poli-

cies assuming respectively the pink curves (thus assuming that contagion can take place

even at long distance but only for long contact duration) and the blue ones (assuming

contagion even for short durations but only at close proximity). We observe that for what

concerns the controllability of the epidemics the two choices of proximity-duration depen-

dence of infectiousness do not bring significantly different results. Nevertheless, the right

panel in Supplementary Fig. 7.2 shows effectiveness and cost of each policy for the three

proposed curves of infectiousness, and we notice that circles and diamonds have a similar
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Figure 7.1: Infectiousness as a function of distance (left panel) or duration (right panel) of the contact,

for three different parameters configurations. By combining the two curves corresponding to each color

we obtain R0 = 3 in each case. The blue configuration implies an infectiousness increasing rapidly with

duration but decreasing fast with distance. On the contrary, the pink curves correspond to an infec-

tiousness that increases slowly with contact duration but has a broader spatial range. All the simulation

results in the manuscript are obtained assuming the infectiousness to be ruled by the intermediate orange

configuration.

trend (respectively corresponding to orange and blue curves in Supplementary Fig. 7.1),

the choice of the pink curve (triangular symbols) would lead to a more optimized bal-

ance between cost and effectiveness, with lower numbers of both false negatives and total

quarantined for each policy. This strengthens the idea that a better knowledge of infec-

tiousness as a function of duration and proximity of contacts would be fundamental to

devise appropriate policies to fight the pandemic.

It is worth mentioning the two constant factors pR0 and rR0 that appear in Eq. (7.1). The

first one is just a scaling factor, that we fix to the same constant value in all settings.

The second one instead plays a pivotal role. Indeed, the procedure described above for

parameters’ setting is aimed to reconstruct a scenario without restrictions, where the

epidemic of COVID-19 is free to spread with R0 = 3. In this work, we analyze the

effect of isolation and tracing in a context where other protective measures contribute to

mitigate the spreading. These general precautions are described in our model as an overall

reduction of R0, obtained by using the reduction factor rR0 ∈ [0, 1], with values reported in

Supplementary Table 7.5. The chosen reduced values of R0 take into account the combined

effect of all the alternative measures in a range suggested by recent literature (33; 144;

84; 60).

Let us notice that the two functions ωexposure and ωdist are in principle defined as two
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34 pink 33 blueFigure 7.2: Left and central panels: Growth or decrease rate of the number of newly infected individuals

for each policy, assuming respectively that the dependence of infectiousness from duration and proximity

follows the pink curves and the blues curves of Supplementary Fig. 7.1. The reducing factor rR0 is set

to have R0 = 1.5 and we assume 40% app adoption. All the points have been obtained as mean values

over n = 200 simulations and the error bars represent the standard error. Right panel: corresponding

average values of false negatives vs total quarantines for the different policies assuming for infectiousness

the curves in pink (triangles), in orange (circles), and in blue (diamonds) of Supplementary Fig. 7.1.

independent functions reflecting respectively the dependency from duration and proximity.

We however chose to set their free parameters simultaneously combining these two effects

so as to explore how their mutual contributions change in shaping the contagions, while

keeping pR0 fixed.

R0 3.0 2.0 1.5 1.2

rR0 1.0 0.53 0.39 0.26

Table 7.5: In the first row the desired values of R0 are reported, while the second row shows the corre-

sponding values of the reduction factor rR0
needed to obtain them, with a scaling factor pR0

= 60.

Robustness of the model with respect to the definition of the infectiousness probability

We consider here another infectiousness curve that has been derived in the recent literature

by He et al. (66) . We follow here the author-correction version (65), that followed a critic

and correction suggestion (8) on the first version.

We show that, although this curve is different from the curve ω that we use in this paper,

the predictions of the model do not change significantly, showing their robustness with

respect to changes in the infectiousness curve.

In the cited works the infectiousness is defined by means of two probability density func-

tions (PDFs): The incubation time g(t) (probability of symptom onset as a function of
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the time t since infection), and the infectiousness probability f(t), which is a function

of the time t elapsed since the symptom onset (t can take negative values because of

pre-symptomatic infectiousness). In more details, the function g is in turn taken from Li

et al. (102), and it is a lognormal distribution with mean 1.434065 and std 0.6612. The

function f is instead estimated by He et al. (65): it is assumed to be a gamma distri-

bution, and via a max-likelihood approach it is estimated to have shape 20.516508 and

scale 1.592124, and to be shifted by an offset 12.272481. A numerical PDF of the two

distributions, computed over 105 samples, and the analytical expression of the two PDFs

are shown in Supplementary Fig. 7.3a.

From these g, f , we can reconstruct a PDF ωHe(τ) to be used in our model. This can

be done simply by sampling two values from g and f and adding them (the total time

from infection to secondary infection is simply split into two intervals separated by the

time of symptoms onset). A numerical PDF of this distribution ωHe, computed over the

same 105 samples, is in Supplementary Fig. 7.3b. This function ωHe may also be obtained

analytically by convolution as

ωHe(τ) =

∫ ∞

−∞
f(τ − t)g(t)dt,

using the analytically known f and g. The discretized convolution is also shown in

Supplementary Fig. 7.3b, and it coincides indeed with the numerical values of ωHe.

Observe that this distribution assigns a positive probability (6.01%, see below) also to

infectiousness at negative times (i.e. an individual may infect another one before being

itself infected). We assume that this is due to the fact that the two distributions f and

g are estimated from two different populations (65), and thus statistical errors may be

present. For our aims this is not a limitation, as it just mean that the (cumulative)

probability of infection at zero is strictly positive.

Supplementary Fig. 7.3b shows also the PDF ω that we used in the paper. Both dis-

tributions peak roughly at the same time (ω at 5 days, while ωHe at 4 days). On the

other hand, ωHe has a wider support and a larger right tail, meaning that it models a

non negligible probability of secondary infection also several days after the infection of

the spreader.

To have an analytical expression of ωHe we try to fit shifted lognormal, gamma, and

Weibull distributions to ωHe by least-squares minimization over the PDF obtained by

convolution. The best results are obtained with a gamma distribution with density h(τ) =
p
p1
2

Γ(p1)
τ p1−1e−p2τ with parameters p1 = 5.73, p2 = 0.55, and shifted by 4.67, which is plotted

in Supplementary Fig. 7.3c. This allows also to derive an explicit cumulative density
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function CDFHe of ωHe, which gives an estimate of CDFHe(0) = 0.0601 (the fraction of

negative-time infections).

10 0 10 20 30 40 500.000
0.025
0.050
0.075
0.100
0.125
0.150
0.175 PDF onset after contagion (lognormal)

PDF infectiousness after onset (gamma)

(a)
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0.100
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Figure 7.3: Visualization and estimation of the infectiousness probability density function (PDF) ωHe.

PDFs f and g (Supplementary Fig. 7.3a); estimated PDF ωHe, and PDF ωHe (Supplementary Fig. 7.3b);

fit of ωHe with a gamma distribution (Supplementary Fig. 7.3c).

We can now use this modified infectiousness ωHe in our model and compare the results with

the ones of Fig. 3.5 of the main text. First, we estimate again the reduction parameter

defining ωdata (see Section 3.2.2 of the main text), and we get rR0 = 0.35.

Using this functional form of ωHe in the model, we obtain the results of Supplemen-

tary Fig. 7.4 (see central panel in Fig. 3.5 of the main text for the corresponding results

with ω). It is clear that the difference is quite limited since only Policy 1 and Policy 2 for

εI = 0.8 move from being ineffective (Fig. 3.5, main text) to being effective. We can thus

conclude that no significant change in our conclusions would be introduced by adopting

this alternative infectiousness function in place of the current one. In particular, the pre-

dictions using ω appear to be less optimistic in the prediction of the policies’ effectiveness,

since they estimate that not all policies are successful for εI = 0.8.

Contact patterns in the CNS data set

To further guarantee the reproducibility of the results of this paper, we provide additional

details on the CNS data set.

As mentioned before, the CNS data set (157) contains one month of data that is used

here as it is. Thus, for any detail we refer to the cited paper, and we only visualize

in Supplementary Fig. 7.5a the temporal distribution of the total number of contacts

contained in the data set. It is immediate to observe that the number of contacts has a

periodical behavior that reflects the day/night periods and the days of the week. Moreover,

a certain uniformity is present between different weeks.
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Figure 7.4: Tracing policy efficiency for alternative infectiousness. Growth or decrease rate of the

number of newly infected individuals using the modified infectiousness curve ωHe. The points correspond

to the parameter pairs such that εI is an input and εT an output of the simulations on real contact data,

for the policies of Fig. 3.3. Here R0 = 1.5 with 40% app adoption. All the points have been obtained as

mean values over n = 200 simulations and the error bars represent the standard error.

For the simulations discussed in SI 7.1.2 we need to use a longer time period, that is

extracted from data that are not publicly shared in the CNS data set (157). We extract

the period from the 1st of September to the 30th of November 2013, and remove the

week between 7th and 13th of October, since it corresponds to a holiday week with very

few contacts. In this way, the whole timespan used for the simulations has an amount of

contacts that remains on average homogeneous in time. Supplementary Fig. 7.5b shows

the distribution of contacts in this case.

7.1.2 Evaluation of additional containment measures and refined policies

Longer and shorter tracing memory

We explore here how the outcomes of the different policies depend on the memory length

of the contact history, which has been set to 7 days in the previous simulations (see

Supplementary Notes 3.2.3 of the main text).

First, to understand whether or not an increased memory would improve the effectiveness

of each policy, we repeat the experiments assuming that the contacts of each individual

are recorded for 15 days in the past, and report the results in Supplementary Fig. 7.6.

When comparing Supplementary Fig. 7.6a with the original setting, it is clear that the

increased memory brings a negligible advantage. This is confirmed by the total number
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Figure 7.5: Temporal distribution of the total number of contacts in the CNS data set. The

figures show the total number of contacts in the CNS data set (Supplementary Figure 7.5a), and in the

extended version (Supplementary Figure 7.5b) as a function of time. The vertical red line represents the

cut of the holiday week. The aggregation is computed with a temporal gap of 300 seconds.

of false negatives in Supplementary Fig. 7.6b if compared with Fig. 3.6 of the main text,

and this is at the price of increased storage requirements, see total quarantines.

Second, it is worth investigating if a shorter tracing memory would give improvements in

terms of the numbers of false positives. We thus repeat the simulations assuming that

the memory is reduced to 2 days (still including the 2 days delay in the case reporting as

in all other settings). Supplementary Fig. 7.7 shows that the shorter memory reduces the

effectiveness of the policies of a significant amount, none of them crossing the black line

for εI = 0.8. Apparently, storing only 2 days of contacts reduces too much the number of

quarantined individuals (see Supplementary Fig. 7.7b), affecting the effectiveness.

Longer delay

The implemented model, for the sake of realism, includes a variable delay between the

instant when a person is recognized as infected and the instant when that person is

isolated. We set the delay to 2 days in all the other simulations and we test here the

effect of a longer delay: 3 days, which is a good estimate for a system which is over-

burdened but not close to collapse. From Supplementary Fig. 7.8a we observe that even

one additional day of delay has a strong impact on the behavior of the epidemic, with none

of the proposed policies able to cross the threshold of controllability, even for maximal

isolation efficiency. Moreover Supplementary Fig. 7.8b shows that high levels of false

negatives are reached for each policy, around twice those obtained with only two days of
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Figure 7.6: Tracing policy efficiency with longer contact memory: 15 (instead of 7) days. 7.6a:

Growth or decrease rate of the number of newly infected individuals and efficiency of the containment

policies. 7.6b: Cross plot of the cost (number of quarantines) versus the effectiveness (low number of

false negatives) for each policy. 7.6c and 7.6d: Temporal evolution of respectively the percentages of

false negatives, i.e. infected individuals not quarantined, and false positives, i.e. not infected individuals

quarantined, over the entire population, assuming an isolation efficiency of εI = 0.8, a reproductive

number R0 = 1.5, and 40% app adoption. The points in the first two panels and the curves in the last

two have been obtained as mean values over 200 independent simulations, the corresponding error bars

and the curve shadings represent the standard error.

delay (see Fig. 3.6 in the main text) even if the total number of people in quarantine is

slightly higher.

This highlights how rapid interventions are fundamental in containment policies based on

contact tracing.
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Figure 7.7: Tracing policy efficiency with shorter contact memory: 2 (instead of 7) days. 7.7a:

Growth or decrease rate of the number of newly infected individuals and efficiency of the containment

policies. 7.6b: Cross plot of the cost (number of quarantines) versus the effectiveness (low number of

false negatives) for each policy. 7.7c and 7.7d: Temporal evolution of respectively the numbers of false

negatives, i.e. infected individuals not quarantined, and false positives, i.e. not infected individuals

quarantined, assuming an isolation efficiency of εI = 0.8, a reproductive number R0 = 1.5, and 40% app

adoption. The points in the first two panels and the curves in the last two have been obtained as mean

values over 200 independent simulations, the corresponding error bars and the curve shadings represent

the standard error.

Second order tracing

We additionally explore the possibility to keep track of contacts in a recursive way.

Namely, when an individual is isolated, not only its contacts are quarantined, but also

its contacts’ contacts. This obviously means an enhanced risk in terms of preserving the
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Figure 7.8: Tracing policy efficiency with a longer reporting delay: 3 (instead of 2) days.

7.8a: Growth or decrease rate of the number of newly infected individuals and efficiency of the containment

policies. 7.6b: Cross plot of the cost (number of quarantines) versus the effectiveness (low number of

false negatives) for each policy. 7.8c and 7.8d: Temporal evolution of respectively the percentages of

false negatives, i.e. infected individuals not quarantined, and false positives, i.e. not infected individuals

quarantined, over the entire population, assuming an isolation efficiency of εI = 0.8, a reproductive

number R0 = 1.5, and 40% app adoption. The points in the first two panels and the curves in the last

two have been obtained as mean values over 200 independent simulations, the corresponding error bars

and the curve shadings represent the standard error.

privacy of individuals, and hence the major open question regarding this kind of policies

is whether or not the increased intrusiveness into an individual’s social network provides

a tangible improvement of the virus containment efforts.

A complete study of this scenario is beyond the scope of this paper for a specific reason:
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the continuous model does not take into consideration this kind of tracing, and there is

thus no way to use the information provided by the study of the data set in this framework.

Nevertheless, we find meaningful to report here the results 0of this additional experiment.

We simulated the epidemic on the CNS data set, considering R0 = 1.5, a delay of 2 days

in isolating infected individuals and an app adoption of 40%. The numerical results are

shown in Supplementary Fig. 7.9. We immediately notice that such intrusive tracing

policy does not provide a significantly beneficial effect. Indeed, comparing Supplemen-

tary Fig. 7.9 top left and top right with respectively Fig. 3.6 top left and 3.6 top right

in the main text, which are the corresponding results for first order tracing, we notice

that the levels reached by both false negatives and false positives are slightly reduced

with second order tracing but not of a large amount. This appears clear also observing

Supplementary Fig. 7.9 (bottom left) and the table, where the values of both total false

negative and total quarantines are similar to those obtained with first order tracing (see

Fig. 3.6 of the main text), with a slightly higher cost (larger percentages of quarantines)

and a slightly larger effectiveness (lower false negatives).

This preliminary study seems to suggest that such a high level of tracing, which implies

privacy issues (possibly even leading to lower adoption and compliance levels (80)), does

not seem to be worth it since it is not going to provide meaningful improvements to the

tracing system. We however remark once more that the reliability of this result is limited,

being linked to a specific data set and not to a general theory. For this reason we observe

that the concept of second-order tracing, a topic of recent discussions, deserves further

investigation and may possibly be expanded in future works.

Variations in the number of asymptomatic individuals

In order to additionally verify the robustness of our predictions with respect to the epi-

demiological modelling, we assume here that the number of asymptomatic individuals is

20%, and additionally that a randomized testing policy that covers 25% of the asymp-

tomatic population is in place.

In this case, little changes in the predictions of the model (Supplementary Fig. 7.10a)

with respect to the case of 40% asymptomatics that was analyzed in the main text, since

all the policies are effective for εI = 1, while Policy 1 is the only one that fails to contain

the epidemic for εI = 0.8. No policy is effective for lower isolation efficiency. Similarly,

the quarantine dynamics (false negative and false positive, Supplementary Fig. 7.10c and

7.10d) appear to have a similar behavior as in the basic setting. Despite these seemingly
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Figure 7.9: Numerical simulations with second order tracing. Figure at the top left and top

right: Temporal evolution of percentages of false negatives, i.e. infected individuals not quarantined,

and false positives, i.e. not infected individuals quarantined, assuming an isolation efficiency of εI = 0.8.

Figure bottom left: plot of the effectiveness (low number of false negatives) vs. cost (total quarantines)

of the policies. The parameters are set so as to have R0 = 1.5 and 40% app adoption. The table

reports the percentage of distinct individuals who have been quarantined over the entire population and

the percentage of them who were actually infected (true positive). The curves in the first two panels

and the points in the third have been obtained as mean values over 100 independent simulations, the

corresponding curve shadings and error bars represent the standard error.
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Figure 7.10: Tracing policy efficiency with 20% asymptomatic and 25% random testing. 7.10a:

Growth or decrease rate of the number of newly infected individuals and efficiency of the containment

policies, assuming that symptomatic people account for the 80% of the infected individuals, that they can

be isolated and that an additional 25% of asymptomatics can be identified via randomized testing. 7.10b:

Cross plot of the cost (number of quarantines) versus the effectiveness (low number of false negatives) for

each policy. 7.10d and 7.10d: Temporal evolution of respectively the percentages of false positives, i.e.

not infected individuals quarantined, and false negatives, i.e. infected individuals not quarantined, over

the entire population, assuming an isolation efficiency of εI = 0.8, a reproductive number R0 = 1.5, and

40% app adoption. The points in the first two panels and the curves in the last two have been obtained

as mean values over 200 independent simulations, the corresponding error bars and the curve shadings

represent the standard error.

small changes in the success of the policies and in their cost, the cross visualization of

Supplementary Fig. 7.10b shows that in this scenario it is harder to find a clear tradeoff

between cost and effectiveness, since the two scores change smoothly between the five
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policies.

Close-range short-exposure vs long-range long-exposure interactions

We test here two additional policies obtained by mixing a low space resolution and a

high time resolution, and viceversa. The policies are defined in Supplementary Fig. 7.12.

Policy 6 delimits the risk to short exposure but close range interactions, while Policy 7

captures long exposure but long range interactions.

Signal strength Duration Fraction

ID (dBm) (min)

• Policy 6 −70 5 17.9%

• Policy 7 −91 30 2.1%

Table 7.6: Parameters defining the two additional policies, and fraction of the total number of interactions

of the CNS data set that they are able to detect.

Supplementary Fig. 7.11, in analogy with Supplementary Fig. 3.4 of the main text, shows

the new policies overlaid to the histograms of duration and signal strength of the CNS

data set contacts.

The values of the parameters (εI , εT ) characterizing the numerical simulations for the

new policies with R0 = 1.5 are shown in Supplementary Fig. 7.12a (see Fig. 3.5 in the

main text, central panel, for a comparison with the policies in Fig. 3.3, main text), and

it is clear that Policy 7 is as effective as the most restrictive policies (Policy 2 to Pol-

icy 5), while Policy 6 fails to contain the virus for an isolation efficiency smaller than 1.

As for the policies of Fig. 3.3, this effectiveness comes at the cost of a larger number of

quarantines (Supplementary Fig. 7.12c and Supplementary Fig. 7.12d). However, Supple-

mentary Fig. 7.12b shows that the cost of Policy 7 is in larger than the ones of Policy 2

and Policy 3, but smaller than the ones of Policy 4 and Policy 5, while achieving a similar

effectiveness.

We deduce that the ability to control the contagion seems to be more sensitive to duration

of contacts than to their spatial distance. Indeed, policies which capture close range but

short exposure interactions happen to be less performative in quarantining people than

those signaling long range interactions with long exposure. In other words, quarantining

individuals who have had a short interaction with an infected one, even if at close-range,

is unnecessary. On the other hand, it appears to be important to track contacts with a

high spatial resolution, including the ones that happens at a rather long distance, if their
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(a)

(b)

(c)

Figure 7.11: Distribution of the duration, panel (c), and signal strength (taken as a proxy for proximity),

panel (b), of the contacts in the CNS data set. Panel (a) gives a scatterplot of signal strength vs duration,

and displays the thresholds defining the two policies of Supplementary Table 7.6.

duration is significant.

However, we remark once more that these results are depending on the infectiousness

model that we have defined here, and that they could possibly change in a different

setting.

Compliance to quarantine decreases if notified multiple times

In the main text we consider compliance as encoding the compliance to all parts of the

contact tracing and quarantine procedure. In other words, if some of the participants

install the app but then do not quarantine if notified, then they should be counted among

the non-compliant individuals since the effect would be the same than that of not adopting

the app at all. The non-compliance (or impossibility) to quarantine is therefore already

considered when choosing the percentage of app adoption. However, despite the fact

that people who adopt the app are aware that they could be required to quarantine

even if not infected, they may underestimate the possibility to be notified multiple times.

A repeated quarantine could represent a relevant problem under social and economical

aspects for many people, especially if unjustified. For this reason we decided to run an
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Figure 7.12: Tracing policy efficiency with additional policies.

7.12a: Growth or decrease rate of the number of newly infected individuals and efficiency of the contain-

ment policies. 7.12b: Cross plot of the cost (number of quarantines) versus the effectiveness (low number

of false negatives) for each policy. 7.12c and 7.12d: Temporal evolution of respectively the percentages

of false positives, i.e. not infected individuals quarantined, and false negatives, i.e. infected individuals

not quarantined, over the entire population, assuming an isolation efficiency of εI = 0.8, a reproductive

number R0 = 1.5, and 40% app adoption. The points in the first two panels and the curves in the last

two have been obtained as mean values over 200 independent simulations, the corresponding error bars

and the curve shadings represent the standard error.

additional set of simulations where adoption of the app does not necessarily coincide with

compliance to quarantine, and in particular it decreases if the same person is wrongly

notified multiple times.

In particular we assume that compliance to quarantine can drop due to repeated notifica-
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tions because the trust in healthcare and government institutions would drop too (171; 21;

175). Therefore the progressive decrease can be roughly estimated by considering the most

classical game based on trust: the prisoner’s dilemma (145; 9). We focus in particular

on an experiment of repeated game (6) where people were asked to play multiple rounds,

each one with a different person. The experiment showed that willingness to cooperate

decreased at each round and was measured for 10 rounds in total. We consider that the

same reduction in trust can be applied to the willingness to quarantine if notified. In a

broad sense, these two settings are indeed similar: in the prisoner’s dilemma each person

can choose to cooperate, which they know would be the best option for everybody, but

they do it at their own expenses, while in alternative they can choose an egoistic strategy,

putting the others at risk. In case of notification from the contact tracing app, people

would undergo a sort of “quarantine dilemma”. Indeed there are two possible choices: the

compliant one (for the social benefit, but possibly in detriment of their own social and

economic life) and the egoistic one where a person decides not to quarantine, putting at

risk all the others.

We therefore consider that the first time that people are traced and identified as possible

infected they quarantine with probability 1. The second time it happens, if the person

did not develop symptoms during the first quarantine, the probability drops to 0.86. The

third time to 0.6, and so on, according to the values in Supplementary Table 7.7.

Previous quar. 0 1 2 3 4 5 6 7 8 9

Compliance 1 0.86 0.60 0.57 0.49 0.46 0.43 0.41 0.40 0.29

Table 7.7: The second row reports the probabilities of compliance to quarantine if notified by the app,

given that the same person has already been quarantined, even if not infected, a number of times reported

in the first row. The level of compliance have been chosen according to Ref. (6).

We simulated this setting on an extended version of the CNS data set, containing contacts

for a period of three months instead of one, in order to be able to catch all the repeated

notifications (see SI 7.1.1 for a description of the extended time period).

Notice that this modification can be inserted into the mathematical model if we consider

that the εT , that we compute as explained in Section 3.1.3 of the main text, changes its

meaning. In this case it does not represent the ability to trace people but the possibility

to quarantine them, since traced individuals could refuse to quarantine. Only for this

case we thus rename εT into εQ. The controllability of the epidemic is depicted in Sup-

plementary Fig. 7.13a, while in Supplementary Fig. 7.13b we report the number of people

who have been requested to quarantine as a function of the number of repetitions of these

requests, for the five different policies. The time evolution of false negatives is depicted in
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Supplementary Fig. 7.13c. In general, in Supplementary Fig. 7.13 we observe a similar be-

havior to the one obtained in the original setting (Fig. 3.5 central panel and Fig. 3.6 in the

main text), with a slightly general reduction of the efficacy of containment. Indeed, only

few people are asked to quarantine multiple times, as shown by Supplementary Fig. 7.13b.

We can therefore assume that the original setting that we chose – and used in all other

simulations – depicts a scenario which is not far from the one that we obtain with this

additional characteristic making the system more realistic, thus confirming the robustness

of our model.
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Figure 7.13: Compliance to quarantine variable in time. 7.13a: Growth or decrease rate of the

number of newly infected individuals and efficiency of the containment policies. 7.13b: Number of people

who have been requested to quarantine as a function of the number of repetitions of these requests,

for the five different policies. 7.13c and 7.13d: Temporal evolution of the percentages of respectively

false negatives, i.e. infected individuals not quarantined, and false positives, i.e. not infected individuals

quarantined, over the entire population, assuming an isolation efficiency of εI = 0.8, a reproductive

number R0 = 1.5, and 40% app adoption. The points in the first two panels and the curves in the last

two have been obtained as mean values over n = 100 independent simulations, the corresponding error

bars and the curve shadings represent the standard error.
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The possibility to run the code on the extended data set provides in addition the possibility

to observe the phenomenon of growth and decrease of the active infected, which after one

month and a half dampen down, almost extinguishing the epidemic. The false negative

peak is followed by the false positive and unjustified quarantines are reduced to almost

zero in a couple of months (see Supplementary Fig. 7.13d).
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7.2 Generating Temporal Networks

7.2.1 Execution time comparison

The egocentric perspective, that ignores interactions among neighbors of each ego node,

implies a huge simplification with respect to mining standard motifs. Traditional tech-

niques for motifs mining indeed rely on an isomorphism test for assessing sub-network

equivalence, which is a major bottleneck for the entire procedure. For this reason, stan-

dard motifs mining techniques usually limit the search to small motifs containing a handful

of nodes. The strength of ETN-gen lies in the possibility of encoding neighborhoods into

a unique bit vector, boiling down sub-network equivalence to bit vector matching. This

hence results in a very computationally efficient model, and the time required for network

generation is drastically lower than that of the competitors. This is evident from table

7.8, where we report the time (in seconds) required to generate networks for the three

face-to-face datasets with our algorithm and the competitors. ETN-gen is more than 15

times faster than the fastest competitor on each network, and there is a difference in time

of three orders of magnitude with the slowest one.

Hospital Workplace High School

ETN-gen 17s 52s 22s

Dymond 3.6× 104s 1.4× 103s 3.2× 105s

STM 1.4× 103s 9.6× 102s 1.6× 103s

TagGen 2.7× 104s 8.7× 103s 2.4× 104s

Table 7.8: Execution time. Time in seconds required to train and generate networks with each method

on three different networks.

7.2.2 Scalability

To show the scalability of our approach we extend the analysis to other seven networks,

briefly described bellow.

• High school 2 (50). The dataset has been collected in 2012 in Lycée Thiers,

Marseilles, France, over seven days (Monday to Tuesday of the following week). It

contains interactions among students in five different high school classes. Number

of edges: 2220, number of nodes: 180. As stated by the research group responsi-

ble for the data collection, a signed informed consent was obtained for each study
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participant (all involved students were at least 18). Moreover, the study was ap-

proved by the “Commission Nationale de l’Informatique et des Libertés” (CNIL,

http://www.cnil.fr), the French national body responsible for ethics and privacy, and

by the high school authorities. More details can be found in the paper describing

the data collection (50).

• High school 3 (120). The dataset has been collected in 2013 in Lycée Thiers,

Marseilles, France, over five days in December. It contains interactions among stu-

dents in nine different high school classes. Number of edges: 5818, number of nodes:

327. As stated by the research group responsible for the data collection, a signed

informed consent was obtained for each study participant (all involved students were

at least 18). Moreover, the study was approved by the “Commission Nationale de

l’Informatique et des Libertés” (CNIL, http://www.cnil.fr), the French national body

responsible for ethics and privacy, and by the high school authorities. More details

can be found in the paper describing the data collection (120).

• Primary school (168). The dataset has been collected in a primary school in

France, over two days in October 2009. It contains interactions among 232 children

and 10 teachers. Number of edges: 8317, number of nodes: 242. As stated by

the research group responsible of the data collection, the “Commission Nationale

de l’Informatique et des Libertés” (CNIL, http://www.cnil.fr) and the “Comité de

Protection des personnes” (http://www.cppsudest2.com/) were notified of the study.

The study was also approved by the relevant academic authorities of the primary

school in which the study took place. Finally, parents, teachers, and the director of

the school expressed a verbal informed consent. More detailes can be found in the

paper describing the data collection (168).

• SMS 1 (156). The dataset represents SMSs among university freshmen students

in the Copenhagen University. Number of edges: 697, number of nodes: 568. The

dataset was collected within the Copenhagen Network Study and the data collection

was approved by the Danish Data Supervision Authority. Each study participant

was asked to sign an informed consent.

• SMS 2 (2). The dataset represents SMSs among members of a young-family resi-

dential living community adjacent to a major research university in North America.

Number of edges: 153, number of nodes: 85. The dataset was collected within the

Friends and Family Study and the data collection was approved by the Institutional

Review Board (IRB). The participation was optional and each study participant was

asked to explicitly adhere.
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• Calls 1 (156). The dataset represents phone calls among university freshmen stu-

dents in the Copenhagen University. Number of edges: 605, number of nodes: 525.

The dataset was collected within the Copenhagen Network Study and the data collec-

tion was approved by the Danish Data Supervision Authority. Each study participant

was asked to sign an informed consent.

• Calls 2 (2). The dataset represents phone calls among members of a young-family

residential living community adjacent to a major research university in North Amer-

ica. Number of edges: 432, number of nodes: 129. The dataset was collected

within the Friends and Family Study and the data collection was approved by the

Institutional Review Board (IRB). The participation was optional and each study

participant was asked to explicitly adhere.

Each face-to-face interaction network has been aggregated with a temporal resolution

of five minutes, while SMS and phone calls networks have been aggregated within ten

minutes. We opt for this different aggregations due to the natural sparsity of SMS and

phone calls networks.

In Figure 7.14 we show the original number of interactions (in black) and those generated

by our method (in orange) for each network. The figure clearly shows the ability of our

method in mimicking day/night and week/weekend periodicity. Moreover, our algorithm

perfectly operates with different network sizes in both number of individuals and temporal

length. Finally, our method is able to capture multiple picks within the same day, that

could be associated to the period before and after lunch (i.e. high schools).

7.2.3 Varying K

In this section, we evaluate the performance of our method when k varies. In particular,

we generate the hospital network using several k (k ∈ {2, 3, 4, 5}). As one may expect as

far as k increases, the execution time increases (see table 7.9).

k 2 3 4 5

Time (seconds) 17 25 40 55

Table 7.9: Execution time (in seconds) when varying K

The first panel of figure 7.15 shows the number of interaction in the hospital network.

From the figure, can be seen that for each k the periodicity is not affected. However, as

136



CHAPTER 7. APPENDIX 7.2. GENERATING TEMPORAL NETWORKS

day 0
day 1

day 2
day 3

day 4
0

25

50

Hospital

day 0
day 1

day 2
day 3

day 4
day 5

day 6
day 7

day 8
day 9

day 10
day 11

0

5

Workplace

day 0
day 1

day 2
day 3

0

25

50

High school

day 0
day 1

day 2
day 3

day 4
day 5

day 6
day 7

day 8
0

25

50

High school 2

day 0
day 1

day 2
day 3

day 4
0

100

200

High school 3

day 0
day 1

0

250

500

Primary school

day 0
day 1

day 2
day 3

day 4
day 5

day 6
day 7

0.0

2.5

5.0

SMS 1

day 0
day 1

day 2
day 3

day 4
day 5

day 6
day 7

0

1

SMS 2

day 0
day 1

day 2
day 3

day 4
day 5

day 6
day 7

0

1

2

Calls 1

day 0
day 1

day 2
day 3

day 4
day 5

day 6
day 7

0

2

Calls 2

Original ETN-Gen
Timestamps

N
um

be
r o

f i
nt

er
ac

tio
ns

Figure 7.14: Number of interactions in the generated network for different datasets. Each

panel shows the number of interactions of the original (black curve) and ETN-gen (orange curve) graphs.

We use a temporal gap of 5 minutes for face-to-face interactions and 10 minutes for calls and SMS

(intrinsically sparser networks).

much as k increases, the average number of interactions decreases. The second panel of

figure 7.15 shows the topological similarity of several metrics with the original network.

First of all, it is easy to see that for the first five metrics (number of interactions, density,

interacting individuals, new conversation and s-metric) we can see a similar trend. In

particular, the best results are obtained with k ∈ {2, 3}. Even in the edge strength and

assortativity, the best score is obtained with k = 2. In the remaining metrics, we have

different behaviours. Overall, with k ∈ {2, 3} we have the best topological similarity with

the original network. Finally, The last panel of figure 7.15 shows the dynamic similarity.

The best coverage similarity is obtained with k = 3, while, the best MFPT similarity is

obtained with k = 5. Overall, the best R0 similarity is achived with k = 2.
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Figure 7.15: Number of interactions, topological and dynamic similarity on hospital network when K

varies.

In conclusion, since we obtained similar results in others networks, in the manuscript we

opt to use a fixed k equal to 2

7.2.4 Multiple versus single probabilistic model

In this section, we show that using an unique probabilistic model does not capture the

daily/night periodicity. However, re are able to capture the average number of interac-
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tions.

In the first panel of figure 7.16, it is shown the number of interactions of the original

network (in black) the one generated by our method using multiple local probabilistic

models (in orange) the number of interactions of the generated network with an unique

local probabilistic model (in red) and those generated by Dymond and STM. It is worth

to mention that our model with an unique probabilistic model match the average number

of interactions, while competitors does not. In particular, the original average number of

interactions is 8.27, while, our method has an average number of interaction equal to 8.27

and 8.19 for multiple and unique probabilistic model, respectively. On the other hand,

the average number of interactions of Dymond and STM are 1.65 and 3.89.

In conclusion, it is true that using multiple probabilistic models stores more information

of the input network. However, even using an unique probabilistic model, our method

performs better than competitors.

day 0
day 1

day 2
day 3

0

10

20

30

40

N
um

be
r o

f i
nt

er
ac

tio
ns

High school unique vs multiple dictionaries

Original
Avg. original
Multiple dict.
Unique dict.
Dymond
STM

Figure 7.16: Number of interactions on high school network with multiple, an unique local probabilistic

model and competitors.
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