
PhD Dissertation

International Doctorate School in Information and
Communication Technologies

DISI - University of Trento

Analysis of Reactive Search Optimisation

Techniques for the Maximum Clique

Problem and Applications

Franco Mascia

Advisor:

Dr. Mauro Brunato

Università degli Studi di Trento

December 2010

Abstract

This thesis introduces analysis tools for improving the current state of

the art of heuristics for the Maximum Clique (MC) problem. The analy-

sis focusses on algorithmic building blocks, on their contribution in solving

hard instances of the MC problem, and on the development of new tools

for the visualisation of search landscapes. As a result of the analysis on

the algorithmic building blocks, we re-engineer an existing Reactive Local

Search heuristic for the Maximum Clique (RLS–MC). We propose imple-

mentation and algorithmic improvements over the original RLS–MC aimed

at faster restarts and greater diversification. The newly designed algorithm

(RLS–LTM) is one order of magnitude faster than the original RLS–MC

on some benchmark instances; but the proposed algorithmic changes im-

pact also on the dynamically adjusted tabu tenure, which grows wildly on

some hard instances. A more in depth analysis of the search dynamics of

RLS–MC and RLS–LTM reveals the reasons behind the tabu tenure explo-

sion and sheds some new light on the reactive mechanism. We design and

implement RLS–fast which cures the issues with the tabu tenure explosion

in RLS–LTM while retaining the performance improvement over RLS–MC.

Moreover, building on the knowledge gained from the analysis, we propose

a new hyper-heuristic which defines the new state of the art, and a novel

supervised clustering technique based on a clique-finding component.

Keywords

[Combinatorial Optimisation, Maximum Clique, Stochastic Local Search,

Reactive Local Search, Analysis]

4

Ai miei genitori.

5

Acknowledgements

My greatest thanks go to my friend and advisor Mauro Brunato, for the

uncountable things he taught me. I can not imagine how different (read

worse) my PhD studies would have been, without being contaminated with

his passion for precision, dedication, and love for his work, without his pa-

tience and constant encouragement, and without such pleasant and exciting

working atmosphere.

I want also to thank the coauthors of my research and publications: Mauro

Brunato again, Andrea Passerini, Elisa Cilia, Roberto Battiti, Wayne Pul-

lan, Antonio Masegosa Arredondo, David Pelta, and Marco Chiarandini.

Special thanks go to Thomas Stützle, Holger H. Hoos, Andrea Passerini

and Wayne Pullan for giving me the opportunity to appreciate them both

as teachers and collaborators.

I want to thank Thomas Stützle, Mauro Birattari and all the people at

IRIDIA for the pleasant and fruitful time spent at ULB.

I would also want to thank Paolo Campigotto, if and only if he thanked

me in his thesis.

This thesis is dedicated to my parents, I want to thank them for their love

and support during these years.

A special thank goes to Elisa Cilia, the best PhD and life companion I

could ever dream of.

7

Contents

1 Introduction 1

1.1 State of the Art and Related Works 5

1.2 Analysis and Re-engineering of Algorithms 7

1.2.1 Analysis of Algorithmic Building Blocks 7

1.2.2 Search Landscape Visualisation 8

1.2.3 Engineering an Efficient Algorithm 8

1.2.4 A Comparison of Tabu Search Variations 10

1.3 Applications . 11

1.3.1 Cooperating Local Search 11

1.3.2 Supervised Clustering 12

1.4 Publications . 14

I Analysis and Re-engineering of Algorithms 17

2 Analysis of Algorithmic Building Blocks 19

2.1 Prohibition- and Penalty-based Methods 19

2.2 Building Blocks of Increasing Complexity 22

2.2.1 Repeated Expansions 22

2.2.2 Expansion and Plateau Search 24

2.2.3 Algorithms Based on Penalties or Prohibitions . . . 25

2.3 Computational Experiments 27

i

2.3.1 Benchmark Graphs 27

2.3.2 Results Summary 29

2.3.3 Penalties Versus Prohibitions 33

2.4 Conclusions . 34

3 Search Landscape Visualisation 35

3.1 Introduction . 35

3.2 Previous and Related Work 37

3.3 Complete Three-Dimensional Landscapes 38

3.3.1 The Technique . 39

3.3.2 The Tool . 42

3.3.3 NURBS Covers . 43

3.4 Approximated Landscapes 44

3.4.1 Clusters of Solutions 44

3.4.2 Search Space Sampling 46

3.5 Dynamic Landscapes . 47

3.6 Conclusions . 51

4 Engineering an Efficient Algorithm 53

4.1 Introduction . 53

4.2 Implementation Details and Cost per Iteration 54

4.2.1 DIMACS Benchmark Set 57

4.3 Conclusions . 59

4.4 Notes on the Published Paper 61

5 A Comparison of Tabu Search Variations 65

5.1 Peeking Under the Hood of RLS–LTM 65

5.2 Long vs. Short Term Memory 71

5.2.1 A Good Tabu Tenure 72

5.3 A New Implementation . 83

ii

5.4 Conclusions . 86

II Applications 91

6 Cooperating Local Search 93

6.1 Introduction . 93

6.2 Analysis of the Characteristics of the Benchmark Instances 95

6.3 The CLS Hyper-heuristic 97

6.4 Empirical Performance Results 102

6.4.1 CLS Performance 103

6.5 Conclusions . 109

7 Supervised Clustering 111

7.1 Introduction . 111

7.2 Problem Description and Formalisation 113

7.3 Distance-based Clustering with Maximum-weight Cliques . 118

7.4 The Maximum-weight Clique Algorithm 119

7.5 Experimental results . 124

7.5.1 Predicting geometry of metal binding sites 124

7.5.2 Active sites prediction 127

7.6 Conclusions . 129

8 Conclusions 131

Bibliography 137

III Appendix 145

A A Comparison of Tabu Search Variations 147

A.1 Peeking Under the Hood of RLS–LTM 147

iii

A.2 Long vs. Short Term Memory 158

A.2.1 A Good Tabu Tenure 162

A.3 A New Implementation . 170

A.4 Robust Tabu Search . 173

A.5 Conclusions . 182

iv

List of Algorithms

2.1 Building Blocks: Greedy expansion. 23

2.2 Building Blocks: ExpPlat–Rand. 25

6.1 CLS hyper-heuristic pseudo-code. 99

7.1 RLS for Maxiumum Weighted-Clique pseudo-code. 121

7.2 Node choice in RLS for Maximum Weighted-Clique. 123

v

List of Tables

2.1 Best empirical maximum cliques in the benchmark graphs. 28

2.2 Performances of various combinations of building blocks. . 32

4.1 Speed improvement of RLS–LTM over RLS. 55

4.2 DIMACS: RLS–LTM vs. DLS–MC. 60

4.3 DIMACS: RLS-LTM with MAX T = 0.5(|Best|+1) vs. RLS-

LTM with MAX T = |Best|+ 0.5 63

5.1 DIMACS: reactive vs. random, MAX T = 0.5(|Best|+ 1). . 88

5.2 DIMACS: RLS–LTM vs. RLS 89

6.1 Mappings of CLS heuristics to CPU cores. 102

6.2 CLS performances on the DIMACS benchmark instances. . 104

6.3 CLS performances on the BHOSLIB benchmark instances. 105

6.4 CLS performance as compared to SAT Solvers. 105

6.5 CLS performances as compared to RLS and PLS. 106

6.6 CLS speedup on MANN a81 and frb50-23-4. 109

7.1 Detailed results on the metalloproteins dataset. 126

7.2 Performances on the metalloproteins dataset. 127

7.3 Performances in active site prediction. 128

A.1 DIMACS: reactive vs. random, MAX T = 0.5(|Best|+ 1). . 185

A.2 DIMACS: reactive vs. random, MAX T = 2.0(|Best|+ 1). . 186

A.3 DIMACS: RLS-LTM vs. RLS 187

vii

A.4 DIMACS: Ro-TS vs. RLS-fast 188

A.5 Comparison of different reactive and random implementations.189

viii

List of Figures

1.1 SATISFIABILITY instance transformed to CLIQUE. . . . 4

2.1 Neighbourhood of the current clique. 23

2.2 Iterations to find empirical maximum in GIL(n, 0.3) . . . 30

2.3 Iterations to find empirical maximum in PAT (n, n/3) . . . 30

2.4 Iterations to find empirical maximum in GIL(1100, 366) . 31

2.5 Success ratio of penalty- and prohibition-based algorithms. 33

3.1 Search Landscape of a Brockington-Culberson graph. . . . 40

3.2 Approximated Landscape of a Brockington-Culberson graph. 45

3.3 Landscape with sub-sampling. 46

3.4 Dynamic Landscape of a Brockington-Culberson graph. . . 48

3.5 Dynamic Landscape of a Brockington-Culberson graph. . . 49

3.6 A Maximum Clique instance with 155 nodes. 50

3.7 Dynamic Landscapes of the instance with 155 nodes. . . . 50

4.1 Empirical cost per iteration on Gilbert’s graphs. 58

4.2 Iter. of RLS–LTM: MAX T = 0.5(|Best| + 1) vs. MAX T =

|Best|+ 0.5. 62

4.3 CPU(s) of RLS–LTM: MAX T = 0.5(|Best|+1) vs. MAX T =

|Best|+ 0.5. 62

5.1 Adaptation of T on C500.9 (RLS–LTM). 66

5.2 Adaptation of T on brock2000 4 (RLS–LTM). 67

ix

5.3 Adaptation of T on MANN a45 (RLS–LTM). 67

5.4 Adaptation of T on C4000.5 (RLS–LTM). 67

5.5 Iter. of random vs. reactive. 69

5.6 CPU(s) of random vs. reactive. 70

5.7 Empirical QRTDs on the keller6 instance. 72

5.8 Iter. of RLS vs. RLS–LTM. 73

5.9 CPU(s) of RLS vs. RLS–LTM. 73

5.10 Adaptation of T on C500.9. 74

5.11 Adaptation of T on brock200 4. 74

5.12 Adaptation of T on MANN a45. 74

5.13 Adaptation of T on C4000.5. 75

5.14 Adaptation of T on C125.9 (no restarts and no MAX T). . 77

5.15 Adaptation of T on brock200 4 (no restarts and no MAX T). 77

5.16 Adaptation of T on hamming8-4 (no restarts and no MAX T). 78

5.17 Adaptation of T on C4000.5 (no restarts and no MAX T). . 78

5.18 Adaptation of T on keller5 (no restarts and no MAX T). . 79

5.19 Iter. of RLS vs. RLS-NBR. 80

5.20 Iter. of RLS vs. RLS–fix. 81

5.21 CPU(s) of RLS vs. RLS–fix. 82

5.22 Iter. of RLS vs RLS–fast. 84

5.23 CPU(s) of RLS vs RLS–fast. 85

5.24 Iter. of RLS–LTM vs RLS–fast. 85

5.25 CPU(s) of RLS–LTM vs RLS–fast. 86

5.26 Optimum tenure and restart for different DIMACS instances. 90

6.1 Sharing of information between the CLS heuristics. 98

6.2 Degree distribution and probability to belong to a MC. . . 107

6.3 Average vertex degree in GREEDY + PENALTY and FOCUS. 108

7.1 Histogram of catalytic propensity in HA superfamily 116

x

7.2 Sequence of the equine herpes virus-1. 117

7.3 Sequence of the cloroperoxidase T. 117

A.1 Adaptation of T on C500.9 (RLS–LTM). 148

A.2 Adaptation of T on brock2000 4 (RLS–LTM). 149

A.3 Adaptation of T on MANN a45 (RLS–LTM). 149

A.4 Adaptation of T on C4000.5 (RLS–LTM). 150

A.5 Iter. of random vs. reactive when MAX T = 0.5(|Best|+ 1). 151

A.6 CPU(s) of random vs. reactive when MAX T = 0.5(|Best|+1).152

A.7 Iter. of random vs. reactive when MAX T = 2(|Best|+ 1). 153

A.8 CPU(s) of random vs. reactive when MAX T = 2(|Best|+ 1). 154

A.9 Empirical QRTDs on gen400 p0.9 65 (MAX T = 2(|Best|+1)).155

A.10 Empirical QRTDs on brock400 4 (MAX T = 2(|Best|+ 1)). 156

A.11 Adaptation of T on C4000.5 (MAX T = 2(|Best|+ 1)). . . . 157

A.12 Number of non prohibited nodes (MAX T = 0.5(|Best|+ 1)). 157

A.13 Number of non prohibited nodes (MAX T = 2(|Best|+ 1)). 158

A.14 Empirical QRTDs on the keller6 instance. 159

A.15 Iter. of RLS vs. RLS–LTM. 159

A.16 CPU(s) of RLS vs. RLS–LTM. 160

A.17 Adaptation of T on C500.9 (RLS). 161

A.18 Adaptation of T for instance brock200 4 (RLS). 161

A.19 Adaptation of T for instance MANN a45 (RLS). 161

A.20 Adaptation of T on C4000.5 (RLS). 162

A.21 Adaptation of T on C125.9 (no restarts and no MAX T). . 164

A.22 Adaptation of T on brock200 4 (no restarts and no MAX T). 164

A.23 Adaptation of T on hamming8-4 (no restarts and no MAX T).165

A.24 Adaptation of T on C4000.5 (no restarts and no MAX T). . 165

A.25 Adaptation of T on keller5 (no restarts and no MAX T). . 166

A.26 Iter. of RLS vs. RLS-NBR. 167

xi

A.27 Iter. of RLS vs. RLS–fix. 168

A.28 CPU(s) of RLS vs. RLS–fix. 169

A.29 Iter. of RLS vs. RLS–fast. 171

A.30 CPU(s) of RLS vs. RLS–fast. 172

A.31 Iter. of RLS–LTM vs. RLS–fast. 172

A.32 CPU(s) of RLS–LTM vs. RLS–fast. 173

A.33 Iter. of RLS–fix vs RLS–fast. 174

A.34 CPU(s) of RLS–fix vs RLS–fast. 175

A.35 Iter. of RLS–fast vs. Ro–TS. 176

A.36 CPU(s) of RLS–fast vs. Ro–TS. 177

A.37 Iter. of RLS–fast vs. Ro–TS (instance-specific T). 178

A.38 CPU(s) of RLS–fast vs. Ro–TS (instance-specific T). . . . 179

A.39 Iter. of RLS–fast vs. Ro–TS (family-specific T). 180

A.40 CPU(s) of RLS–fast vs. Ro–TS (family-specific T). 181

A.41 Iter. of RLS–fast vs. Ro–TS (same T distribution). 182

A.42 CPU(s) of RLS–fast vs. Ro–TS (same T distribution). . . 183

A.43 Optimum tenure and restart for C500.9. 190

A.44 Optimum tenure and restart for brock200 4. 190

A.45 Optimum tenure and restart for MANN a27. 191

A.46 Optimum tenure and restart for MANN a45. 191

A.47 Optimum tenure and restart for brock200 2. 192

A.48 Optimum tenure and restart for brock400 2 192

A.49 Optimum tenure and restart for brock400 4. 193

A.50 Optimum tenure and restart for C1000.9. 193

A.51 Optimum tenure and restart for keller5. 194

A.52 Optimum tenure and restart for 4000.5. 194

A.53 Optimum tenure and restart for keller6. 195

A.54 Optimum tenure and restart for C2000.9. 195

xii

Chapter 1

Introduction

Optimisation problems arise from virtually all areas of science and engi-

neering, and are often characterised by a large number of variables. In com-

binatorial optimisation problems the optimum solution has to be sought

among a discrete but possibly very large set of feasible solution. The num-

ber of these solutions can grow exponentially with the size of the problem,

rendering an exhaustive search not feasible even for relatively small real

world instances.

Worst-case analysis of the hardest among these problems provides us

with strong theoretical results that tell us that in some case no efficient

algorithms can be devised to solve arbitrary instances of the problem ex-

actly. Therefore, a vast literature has been produced to propose and study

heuristic techniques, which are able to find reasonably good solutions to

real-world sized instances in polynomial time.

In spite of the massive amount of experimental data that can be col-

lected by testing these heuristics, the intrinsic complexity of many of these

techniques renders exceptionally difficult to understand thoroughly their

dynamics. Therefore, the need arises for the development of techniques and

tools that help understanding the complex behaviour of such heuristics and

their dependence on configuration parameters, and for the description of

1

CHAPTER 1. INTRODUCTION

their mutual interaction when they are assembled together forming a so-

called ‘hyper-heuristic’.

The Maximum Clique Problem is a combinatorial optimisation prob-

lem that asks to find the biggest completely connected component of a

graph. It has relevant applications in information retrieval, computer vi-

sion, social network analysis, computational biochemistry, bio-informatics

and genomics. Its generalisations can be mapped on even more clustering

related problems.

This thesis introduces analysis tools for improving the current state of

the art of heuristics for the Maximum Clique (MC) problem. The analysis

focusses on algorithmic building blocks, on their contribution in solving

hard instances of the MC problem, and on the development of new tools

for the visualisation of search landscapes. As a result of the analysis on

the algorithmic building blocks, we re-engineer an existing Reactive Local

Search algorithm improving its performance by an order of magnitude on

large instances. Moreover, building on the knowledge gained from the

analysis, we propose a new hyper-heuristic which defines the new state

of the art, and a novel supervised clustering technique based on a clique-

finding component.

Problem Definition The MC problem is a combinatorial optimisation prob-

lem that asks for finding the largest subset of vertices of a graph that are

all pairwise adjacent.

Notation Let G ≡ (V,E) be an undirected graph with a finite set of

vertices V = {1, 2, . . . , n} and a set of edges E ⊆ V × V . G[S] = (S,E ∩
S×S) is the subgraph induced by the subset S ∈ V on G, i.e. a subgraph

in which ∀ u, v ∈ S there exists an edge between u and v if and only

if {u, v} ∈ E. A graph G = (V,E) is complete if all edges are pairwise

2

CHAPTER 1. INTRODUCTION

adjacent, i.e., E = V × V . A clique is a complete graph.

NP-hardness Let G = (V,E) be an undirected graph and K ≤ |V | a

positive integer. The CLIQUE problem asks if there exists a set S ⊆ V

such that |S| ≥ K, and G[S] is complete. Its search version asks to find

the clique of maximum cardinality. CLIQUE is one of the twenty-one NP-

complete problems described originally by Karp in [40], therefore its search

version is NP-hard.

The reduction in [40] goes like follows. From a SATISFIABILITY in-

stance a graph is constructed by adding a vertex for every instance of a

literal appearing in each clause. Two vertices are connected by an edge if

the literals appear in two different clauses and they do not contradict each

other. If the SATISFIABILITY instance has K clauses then there exists

a truth assignment for the formula if and only if there exists a clique of

cardinality K in the graph. Figure 1.1 shows an example of this trans-

formation. A truth assignment that satisfies the formula in Figure 1.1 is

given by setting true the literals corresponding to nodes of the clique.

SATISFIABILITY has been shown by Cook [25] and independently by

Levin [43] to be NP-Complete. For an introduction to complexity and

intractability, and an extensive list of NP-Complete problems see [31].

Inapproximability The NP-hardness of the problem tells us that, unless

P = NP, there is no hope to find efficient algorithms for solving arbitrary

instances of the MC problem exactly. Even approximate solutions are hard:

H̊astad shows in [34] that unless NP = ZPP, CLIQUE is not approximable

within n1−ε.

Generalisations Among the possible generalisations of the problem, the

most relevant for our research are the quasi-clique (see for example [17]),

3

CHAPTER 1. INTRODUCTION

x1 x̄3 x̄5

x2

x̄4

x5

x̄1 x2 x3 x̄5

x̄1

x̄2

x4

︷ ︸︸ ︷
(x1 ∨ ¬x3 ∨ ¬x5)︸ ︷︷ ︸∧(x2∨¬x4∨x5)∧(¬x1∨x2∨x3∨¬x5)∧(¬x1∨¬x2∨x4)

Figure 1.1: An instance of SATISFIABILITY transformed into an instance of CLIQUE. The

boolean formula is satisfiable, i.e., there is a clique of cardinality greater or equal the number of

clauses.

and the weighted MC where vertices and/or edges are weighted. Let G ≡
(V,E, F) be a weighted undirected graph where V is the vertex set, E the

edge set, and F is a function from V × V to N that maps an edge e ∈ E
to an integer weight. The Edge-Weighted MC Problem (WMC) requires

to find the clique in V with the maximum weight:

V ′max = arg max
V ′⊆V

V ′ clique in G

∑
u,v∈V ′

F (u, v).

Being a generalisation of the MC problem, the edge-weighted version is

also NP-hard.

Another possible generalisation can be obtained by relaxing the con-

straint on the connectivity of the nodes belonging to the clique. Given an

undirected graph (V,E), and two parameters λ and γ with 0 ≤ λ ≤ γ ≤ 1,

the subgraph induced by a subset of the node set V ′ ⊆ V is a (λ, γ)-quasi-

4

CHAPTER 1. INTRODUCTION 1.1. SOA AND RELATED WORKS

clique if, and only if, the following two conditions hold:

∀v ∈ V ′ : degV ′(v) ≥ λ · (|V ′| − 1) (1.1)

|E ′| ≥ γ ·
(
|V ′|
2

)
, (1.2)

where E ′ = E ∩ (V ′ × V ′) and degV ′(v) is the number of elements of V ′

connected to v.

1.1 State of the Art and Related Works

The MC problem is a prominent and well studied combinatorial optimi-

sation problem. Among the Stochastic Local Search algorithms that have

been proposed in the literature, we cite Deep Adaptive Greedy Search

(DAGS) [32] that uses an iterated greedy construction procedure with ver-

tex weights; the k-opt heuristic [41] that is based on a conceptually simple

Variable Depth Search (VDS) procedure; VNS [37] that is a basic variable

neighbourhood search heuristic that combines greedy search with simplical

vertex tests in its descent steps; Reactive Local Search [13] (RLS) and Dy-

namic Local Search [54] (DLS) which will be described later; and Phased

Local Search [53], which sequentially cycles through greedy vertex degree

selection, random selection and vertex penalty based selection heuristics.

The theoretical grounds for the analysis of Stochastic Local Search (SLS)

can be found in [38] and [10]. Among the evolutionary algorithms we

cite [44], which proposes a combination of local search and Genetic Al-

gorithms for escaping from local optima; and [58], which proposes and

analyses four variants of an Ant Colony Optimisation algorithm for the

MC.

In this thesis the focus will be on two of these heuristics, namely RLS

and DLS. Reactive Search [14, 9] advocates the use of machine learning to

automate the parameter tuning process and make it an integral and fully

5

1.1. SOA AND RELATED WORKS CHAPTER 1. INTRODUCTION

documented part of the algorithm. Learning is performed on-line, there-

fore task-dependent and local properties of the configuration space can be

used. A Reactive Local Search algorithm for the MC problem (RLS–MC)

is proposed in [12, 13]. RLS–MC is based on tabu search complemented by

a history-sensitive feedback scheme to determine the amount of diversifi-

cation. The reaction acts on the prohibition tenure parameter that decides

the temporary prohibition of selected moves in the neighbourhood. The

performance obtained by [13] in computational tests appears to be signifi-

cantly better with respect to all algorithms tested at the second DIMACS

implementation challenge (1992-93).

The Dynamic Local Search algorithm for MC (DLS–MC) has been pro-

posed in 2006 [54]. It is based on a clique expansion phase followed by

a plateau search after a maximal clique is encountered. Diversification is

ensured by the introduction of vertex ‘penalties’ that change the contri-

bution of individual vertices to the objective function. Such penalties are

increased on vertices that appear in a clique and gradually decreased in

time. The frequency at which the penalties are decreased is controlled by

a ‘penalty delay’ parameter, which has been manually tuned for families

and sometimes even subfamilies of instances. The performances of DLS–

MC are highly dependent on the appropriate penalty delay value for the

instance at hand.

While most of this thesis is dedicated to the analysis of the contribution

of different building blocks to the performance of local search algorithms for

the MC problem and to the study of the dynamics of RLS, the introduction

of new tools for visualising search landscapes helps the intuition behind the

hardness of specific instance classes.

Work that combines visualisation and optimisation dates back to [51],

where multidimensional scaling and other techniques are applied to the vi-

sualisation of evolutionary algorithms, while other contributions are aimed

6

CHAPTER 1. INTRODUCTION 1.2. ANALYSIS AND RE-ENGINEERING

at human-guided search [1] where the computer finds local optima by hill-

climbing while the user identifies promising regions of the search space.

Visualisation of Pareto sets in Evolutionary Multi-Objective optimisation

is investigated in [42] by finding a mapping which maintains most of the

dominance relationships. In [36] the authors propose a visualisation suite

for designing and tuning SLS algorithms. Starting from a selection of can-

didate solutions, the visualisation tool uses a spring-based layout scheme to

represent the solutions in two dimensions. The algorithm execution traces

are then represented as trajectories around the laid out solutions, and the

resulting analysis is used by the researchers to tune the algorithm studied.

1.2 Analysis and Re-engineering of Algorithms

This section reports the main contribution of this thesis, both in terms of

analysis methodology and efficient algorithm implementation. The appli-

cations will be discussed in Section 1.3.

1.2.1 Analysis of Algorithmic Building Blocks

Chapter 2 describes a methodology to isolate and study the different algo-

rithmic components used by two of the aforementioned techniques, RLS–

MC and DLS–MC, with the aim to gain insights on the contribution of

the single components to the algorithm performance both in terms of so-

lution quality and run-times. The analysis focusses, in particular, on the

dynamics introduced in the behaviour of the local search algorithms by

three paradigmatic methods aimed at achieving a proper balance i) using

prohibitions to achieve diversification and avoid small cycles in the search

trajectory (limit cycles or the equivalent of ‘chaotic attractors’ in discrete

dynamical systems), ii) using restarts triggered by events happening dur-

ing the search, and iii) using modifications of the objective function to

7

1.2. ANALYSIS AND RE-ENGINEERING CHAPTER 1. INTRODUCTION

influence the trajectory and achieve diversification by modifying the fit-

ness surface instead of reducing the number of admissible (non-prohibited)

moves. In particular, the investigation considers the effects of using the

vertex degree information during the search.

1.2.2 Search Landscape Visualisation

As a useful complement to the analytical work, in Chapter 3 we propose a

set of techniques for the visualisation of search landscapes aimed at sup-

porting the researcher’s intuition on the behaviour of a SLS algorithm ap-

plied to a combinatorial optimisation problem. We discuss the scalability

issues posed to visualisation by the size of the problems and by the number

of potential solutions, and we propose approximate techniques to overcome

them. The proposed visualisation technique is also capable to rendering

explicitly the geographic metaphors used by researchers to describe areas

of interest of the landscape, and has therefore a tutorial valence.

1.2.3 Engineering an Efficient Algorithm

The analysis of the algorithmic building blocks described above tells just

part of the story. A comprehensive work on algorithmic efficiency needs

also considering low level implementation details, choices of data struc-

tures, programming languages, and knowledge on how the compiler opti-

mises the code.

Building on the results of the empirical analysis and from the profiling

of various algorithm implementations, we propose a new algorithm that

presents two kinds of changes with respect to the original RLS version.

The first changes are algorithmic and influence the search trajectory, while

the second one refers only to the more efficient implementation of the

supporting data structures, with no effect on the dynamics. In the previous

8

CHAPTER 1. INTRODUCTION 1.2. ANALYSIS AND RE-ENGINEERING

version of RLS, the search history was cleared at each restart, now, in order

to allow for a more efficient diversification, the entire search history is kept

in memory. To underline this fact, the new version is called RLS ‘Long

Term Memory’, or RLS–LTM. However, having a longer memory causes

the tabu tenure T to explode on some specific instances characterised by

many repeated configurations during the search; in fact, if the prohibition

becomes much larger than the current clique size, after a maximal clique

is encountered and one node has to be extracted from the clique, all other

nodes will be forced to leave the clique before the first node is allowed to

enter again. This may cause spurious oscillations in the clique membership

which may prevent discovering the globally optimal clique. An effective

way to avoid the above problem is to introduce an upper bound to the

tenure equal to a proportion of the current estimate of the maximum clique.

The improvement in the steps per seconds achieved by RLS–LTM over

the original RLS increases with the graph dimension reaching a factor of 22

for graphs with thousands nodes, see Chapter 4 for more details. The total

computational cost for solving a problem is the product of the number

of iterations times the cost of each iteration. More complex algorithms

like RLS risk that the higher cost per iteration is not compensated by a

sufficient reduction in the total number of iterations. In RLS, a single

operation can be the addition or the removal of a node from the current

configuration. To this aim, we propose an empirical model for the CPU

time per iteration which is linear in the graph size n = |V |, and the degree

in the complementary graph G of the node that has been added or removed

in the operation:

T (n, degG) = α n+ β degG + γ .

Fitting the model on our testing machine we get:

T (n, degG) = 0.0010 n+ 0.0107 degG + 0.0494 .

9

1.2. ANALYSIS AND RE-ENGINEERING CHAPTER 1. INTRODUCTION

Let us note that the cost for using the history data structure, which is

approximately included in the constant term in the above expression, be-

comes rapidly negligible as soon as the graph dimension and density are

not very small. In fact the memory access costs approximately less than

50 nanoseconds per iteration while the total cost reaches rapidly tens of

microseconds in the benchmark instances. These results drastically change

the overall competitiveness of the RLS technique.

1.2.4 A Comparison of Tabu Search Variations

A more focussed and extensive analysis of the Reactive Tabu Search (RTS)

algorithm and of the datasets reveals that for almost every instance of the

DIMACS benchmark set, there is a narrow range of good values that can

be assumed by the prohibition parameter T of a Tabu Search heuristics.

Outside this narrow range, the time needed by the heuristic to converge to

good quality solutions increases significantly.

What emerges from the study is that RTS is quite effective in the on-

line tuning of the tabu tenure, i.e., it quickly converges to good values

for the parameter with very little computational overhead. There is no

clue, at least not on the instances taken in consideration, that the reaction

mechanism is influenced by local characteristic of the instance. In fact,

uniform random updates of the parameter lead to results that are statisti-

cally indistinguishable from RTS. We can say that a Robust Tabu Search

heuristic [60] (RoTS) behaves like RTS, provided that RoTS is made to

operate on a range of values appropriate for the instance at hand.

Part of the analysis is also devoted to the study of the specific RLS–

LTM dynamics. The insights obtained led to the implementation of a new

version of RLS that shares the same performance of RLS–LTM but not

its issues with the convergence of the prohibition parameter discussed in

Chapter 4.

10

CHAPTER 1. INTRODUCTION 1.3. APPLICATIONS

1.3 Applications

The MC problem is a paradigmatic combinatorial optimisation problem

with relevant applications [48, 4], including information retrieval, computer

vision, and social network analysis. Recent interest includes computational

biochemistry, bio-informatics and genomics, see for example [39, 20, 50].

The outcomes of the analysis techniques presented in Section 1.2 are

of two kinds. In Section 1.3.1 we introduce a new hyper heuristic for the

MC, while in Section 1.3.2 we describe a different type of application, i.e.,

how a heuristics for the MC can be used in the context of learning with

structured output.

1.3.1 Cooperating Local Search

The analysis of the search dynamics and the improved RLS–LTM imple-

mentation described in the previous chapters led naturally to the design of

a new hyper-heuristic for the MC. The relatively recent explosion of avail-

ability of multi-core desktop and laptop computers has made the case for

the design of a parallel hyper-heuristic. Chapter 6 presents the research

that lead to the design and implementation of Cooperating Local Search

(CLS) for the MC problem.

CLS controls several copies of four low level heuristics that are the most

effective for the MC problem. Communication between the low level heuris-

tics allows to have truly complementary heuristics that focus on different

parts of the search space. Moreover, CLS dynamically reallocates copies

of the four heuristics to CPU cores, in order to ensure that the most ef-

fective mix of low level heuristics for the instance at hand is used. CLS

performance is comparable and sometimes improves over single heuristic

optimised for specific instances of the DIMACS benchmark dataset.

11

1.3. APPLICATIONS CHAPTER 1. INTRODUCTION

1.3.2 Supervised Clustering

As an application of the study in Section 1.2, we tackle the problem of

predicting the set of residues of a protein that are involved into the bind-

ing of metal ions and more generally participating in active sites. In this

introduction, we will try to abstract as much as possible from the specific

biological problem and omit why predicting active sites and metal binding

sites is fundamental for understanding the protein function. All the de-

tails about the specific problem and the results achieved can be found in

Chapter 7. We formulate the problem as learning with structured output.

Let us consider a protein as a string in Σ∗ over a small alphabet Σ. We

want to learn a function that given a string s ∈ Σ∗ maps it to a partial

clustering Y , i.e., a set of disjoint subsets of the positions in s, where each

subset contains the elements in the string that belong to the same active

site, or that cooperate in the binding of a metal ion. More formally, if the

length of the string is l, we define the set of all possible partial clusterings

of the l indices in the following way:

Cl =

{
Y ⊆ P({1, . . . , l}) :

⋃
Y ⊆ {1, . . . , l}∧

(A,B ∈ Y A 6= B ⇒ A ∩B = ∅) ∧ ∅ /∈ Y
}
.

The set Cl is finite since Cl ⊆ P(P({1, . . . , l})). We define the set C as:

C =
⋃
l∈N

Cl.

Given an example set of known mappings:

S ⊆ Σ∗ × C,

such that

[(s,Y), (s′,Y ′) ∈ S ∧ Y 6= Y ′]⇒ s 6= s′, (s,Y) ∈ S ⇒ Y ∈ C|s|,

12

CHAPTER 1. INTRODUCTION 1.3. APPLICATIONS

we want to learn a function:

f : Σ∗ → C, (1.3)

such that

(s,Y) ∈ S ⇒ f(s) = Y , f(s) ∈ C|s|.

We split the problem of predicting with structured output in two parts:

first we learn a pairwise similarity measure on the elements in each cluster

with a binary classifier, then we use it to construct a edge-weighted graph

and mine the clusters as weighted MC. We use as positive examples all

pairs of elements which belong to the same cluster. Hence, the training set

is:

S ′ ⊆ Σ∗ × N× N× {±1},

where

(s, u, v, y) ∈ S ′ ⇔
u, v ∈ {1, . . . , |s|}

∧∃Y ∈ C|s| : [(s,Y) ∈ S ∧ (y = +1⇔ u 6= v ∧ ∃C ∈ Y {u, v} ∈ C)].

We use S ′ to train a support vector machine SVM : Σ∗ ×N×N→ R that

given a string s and pair u, v returns a score that is a confidence that u, v

belong to the same cluster. In our case the score is the distance from the

margin of the trained classifier.

Given a string s ∈ Σ∗, we use the trained SVM margin function to build

a weighted graph Gs = (V s, Es, F s), where V s = {1, . . . , |s|}, F s(u, v) =

t(SVM(s, u, v)) with t being a scaling function in a suitable range, and

Es(esu,v) being the adjacency matrix where:

esu,v =

1 if SVM(s, u, v) ≥ θ

0 otherwise

13

1.4. PUBLICATIONS CHAPTER 1. INTRODUCTION

and θ is a suitable threshold value. By construction, it is clear that cliques

with the highest weight in Gs correspond to the desired clusters in s. The

threshold θ accounts for errors in the prediction of the weights on the edges.

The novel distance-based supervised clustering approach improves sub-

stantially over the only other existing approach in predicting metal-binding

sites from sequence to our knowledge [29]. The algorithm naturally handles

the lack of knowledge in the number of clusters, partial clusterings with

many outliers, and it can also be applied in the setting of overlapping clus-

ters. Significant improvements over the state of the art are also obtained

in predicting active sites from the protein 3D structure.

1.4 Publications in Connection with this Thesis

Part of the work presented in this thesis is based on several publications

by the authors and co-authors.

• Chapter 2 and 4 present the analysis of algorithmic building blocks

and a new implementation of RLS–MC. These chapters are based on:

Roberto Battiti and Franco Mascia. Reactive and dynamic

local search for max-clique: Engineering effective building

blocks. Computers & Operations Research, 37(3):534–542,

March 2010.

• The search visualisation techniques described in Chapter 3 are based

on:

Franco Mascia and Mauro Brunato. Techniques and tools

for local search landscape visualization and analysis. In Pro-

ceedings of SLS 2009, Engineering Stochastic Local Search

Algorithms. Designing, Implementing and Analyzing Effec-

14

CHAPTER 1. INTRODUCTION 1.4. PUBLICATIONS

tive Heuristics, International Workshop, Brussels, Belgium,

pages 92–104, 2009.

• Chapter 6 describes a novel hyper-heuristic for the MC problem. This

chapter is based on:

Wayne J. Pullan, Franco Mascia, and Mauro Brunato. Coop-

erating local search for the maximum clique problem. Journal

of Heuristics, 2010.

• The application of a weighted maximum clique heuristic to a super-

vised clustering problem presented in Chpater 7 is based on:

Franco Mascia, Elisa Cilia, Mauro Brunato, and Andrea Passerini.

Predicting Structural and Functional Sites in Proteins by

Searching for Maximum-Weight Cliques. In Proceedings of the

Twenty-Fourth AAAI Conference on Artificial Intelligence

(AAAI-10), pages 1274–1279. AAAI Press, July 2010.

• Finally Chapter 5 describes ongoing work that I started while at ULB,

and which will be published as soon as experimental data are finalised.

Other publications not directly reported in this thesis, but arising from

the work during the PhD are [2, 10, 23].

Acknowledgements

Part of this work has been conducted while visiting the Insitut de Recherches

Interdisciplinaires et de Développements en Intelligence Artificielle (IRIDIA),

Univeristé Libre de Bruxelles.

Part of this work has been supported by project BIONETS (FP6-027748)

funded by the FET program of the European Commission.

15

1.4. PUBLICATIONS CHAPTER 1. INTRODUCTION

Many thanks to Michèle Sebag for very fruitful discussions.

We thank Holger Hoos and Wayne Pullan for making available the software

corresponding to the DLS–MC algorithm.

16

Part I

Analysis and Re-engineering of

Algorithms

Chapter 2

Analysis of Algorithmic Building

Blocks

This chapter describes a methodology [11] to isolate and study the different

algorithmic components used by RLS and DLS–MC, with the aim to gain

insights on the contribution of the single components to the algorithm

performance both in terms of solution quality and run-times.

2.1 Prohibition- and Penalty-based Methods

The availability of heuristic solution techniques for relevant combinatorial

problems is now large and the scientific and practical issues arise of tuning,

adapting, combining and hybridising the different techniques. In hybrid

meta-heuristics, the potential for reaching either better average results, or

more robust results with less variability is large, but the task in complex.

First of all, if one naively tries to consider all possible combinations of

component and parameters a combinatorial explosion occurs. Secondly,

like in all scientific challenges, one aims not only at beating the competition

on specific benchmarks, but also at understanding the contribution of the

different parts to the whole and at discriminating the basic principles for

achieving successful hybrids.

19

2.1. PROHIBITIONS AND PENALTIES CHAPTER 2. BUILDING BLOCKS

The present investigation is focussed on algorithmic components used to

solve the maximum clique problem in graphs with state-of-the-art results.

In particular it is focussed on combining methods based on local search

with memory-based complements to achieve a proper balance of intensifi-

cation and diversification during the search. The considered paradigms are

of: i) using prohibitions to achieve diversification and avoid small cycles in

the search trajectory (limit cycles or the equivalent of ‘chaotic attractors’ in

discrete dynamical systems), ii) using restarts triggered by events happen-

ing during the search, and iii) using modifications of the objective function

to influence the trajectory and achieve diversification by modifying the fit-

ness surface instead of reducing the number of admissible (non-prohibited)

moves.

In addition, Stochastic Local Search Engineering methods are consid-

ered to develop efficient implementations of the single steps of the SLS-

based techniques, by considering data structures to support the choice of

the next move and the use of memory during the search. Let us briefly

summarise the considered techniques and the concentration of this chapter.

Reactive Search [14, 9] advocates the use of machine learning to au-

tomate the parameter tuning process and make it an integral and fully

documented part of the algorithm. Learning is performed on-line, and

therefore task-dependent and local properties of the configuration space

can be used. A Reactive Local Search (RLS) algorithm for the solution

of the Maximum-Clique problem is proposed in [12, 13]. RLS is based

on local search complemented by a feedback (history-sensitive) scheme to

determine the amount of diversification. The reaction acts on the single

parameter that decides the temporary prohibition of selected moves in the

neighbourhood. The performance obtained in computational tests appears

to be significantly better with respect to all algorithms tested at the the

20

CHAPTER 2. BUILDING BLOCKS 2.1. PROHIBITIONS AND PENALTIES

second DIMACS implementation challenge (1992/93)1.

In 2006, a stochastic local search algorithm (DLS–MC) is developed

in [54]. It is based on a clique expansion phase followed by a plateau

search after a maximal clique is encountered. Diversification uses vertex

penalties which are dynamically adjusted during the search, a ‘forgetting’

mechanism decreasing the penalties is added, and vertex degrees are not

considered in the selection. The authors report a very good performance on

the DIMACS instances after a preliminary extensive optimisation phase to

determine the optimal penalty delay parameter for each instance. While

the number of iterations (additions or deletions of nodes to the current

clique) is in some cases larger than that of competing techniques, the small

complexity of each iteration when the algorithm is realised through efficient

supporting data structures leads to smaller overall CPU times.

The motivation of this chapter is threefold. First, we want to investigate

how the different algorithmic building blocks contribute to effectively solv-

ing max-clique instances corresponding to random graphs with different

statistical properties. In particular, the investigation considers the effects

of using the vertex degree information during the search, starting from sim-

ple to more complex techniques. Second, we want to assess how different

implementations of the supporting data structures affect CPU times. For

example, it may be the case that larger CPU times are caused by using

a high-level language implementation w.r.t. low-level ‘pointer arithmetic’.

Having available the original software simplified the starting point for this

analysis. Third, the DIMACS benchmark set (developed in 1992) has been

around for more than a decade and there is a growing risk that the desire

to get better and better results on the same benchmark will bias the search

of algorithms in an unnatural way. We therefore decided to concentrate

the experimental part on two classes of random graphs, chosen to assess

1http://dimacs.rutgers.edu/Challenges/

21

2.2. ALGORITHMIC BLOCKS CHAPTER 2. BUILDING BLOCKS

the effect of degree variability on the effectiveness of different techniques.

2.2 Building Blocks of Increasing Complexity

In local search algorithms for MC, the basic moves consist of the addition

to or removal of single nodes from the current clique. A swap of nodes

can be trivially decomposed into two separate moves. The local changes

generate a search trajectory X{t}, the current clique at different iterations

t. Two sets are involved in the execution of basic moves: the set of the im-

proving neighbours PossibleAdd which contains nodes connected to all

the elements of the clique, and the set of the level neighbours OneMissing

containing the nodes connected to all but one element of the clique, see

Figure 2.1. The various simple building blocks considered are named fol-

lowing the BasicScheme–CandidateSelection structure. The BasicScheme

describes how the greedy expansion and plateau search strategies are com-

bined, possibly with prohibitions or penalties. The CandidateSelection

specifies whether the vertex degree information is used during the selec-

tion of the next candidate move. If it is used, there are two possibilities: of

using the static node degree in G or the dynamic degree in the subgraph

induced by the PossibleAdd set.

2.2.1 Repeated Expansions

The starting point for many schemes is given by expansion of a clique after

starting from an initial seed vertex. At each iteration the next vertex to

be added can be chosen from the PossibleAdd set through different levels

of ‘greediness’ when one considers the vertex degrees:

• Exp–Rand. The node is selected at random among the possible

additions. When a maximal clique is is encountered one restarts from

a random node. The pseudo-code is shown Listing 2.1.

22

CHAPTER 2. BUILDING BLOCKS 2.2. ALGORITHMIC BLOCKS

Clique
PossibleAdd

OneMissing

V

Figure 2.1: Neighbourhood of the current clique. Not all edges are depicted in the figure.

Listing 2.1: Greedy expansion algorithm.

1 function Exp–Rand (maxIterations)

2 iterations← 0

3 while iterations < maxIterations do

4 C ← random v ∈ V
5 expand (C)

7 function expand (C)

8 while PossibleAdd 6= ∅ do

9 C ← C ∪ random v ∈ PossibleAdd

10 iterations← iterations+ 1

23

2.2. ALGORITHMIC BLOCKS CHAPTER 2. BUILDING BLOCKS

• Exp–StatDegree. At each iteration, a random node is chosen among

the candidates having the highest degree in G. The expand sub-

routine in Listing 2.1 is modified by substituting line 9 with:

C ← C ∪ {rand v ∈ PossibleAdd : degG(v) is max}.

• Exp–DynDegree. In this version, the selection of the candidate

is not based on the degree of the nodes in G, but on the degree in

PossibleAdd. This greedy choice will maximise the number of nodes

remaining in PossibleAdd after the last addition. Line 9 becomes:

C ← C ∪ {rand v ∈ PossibleAdd : degPossibleAdd(v) is max}.

2.2.2 Expansion and Plateau Search

This algorithm alternates between a greedy expansion and a plateau phase,

choosing between the possible candidate nodes with different ways to con-

sider the vertex degrees:

• ExpPlat–Rand. During the expansion phase, new vertices are cho-

sen randomly from PossibleAdd and moved to the current clique. When

PossibleAdd is empty and therefore no further expansion is possible,

the plateau phase starts. In this phase, a node belonging to the level

neighbourhood OneMissing is swapped with the only node not con-

nected to it in the current clique. The plateau phase does not in-

crement the size of the current clique and it terminates as soon as

there is at least an element in the PossibleAdd set, or if no candidates

are available in OneMissing. As it is done in [54], nodes cannot be

selected twice in the same plateau phase. In order to avoid infinite

loops, the number of plateau searches is limited to maxPlateauSteps.

Starting from Exp–Rand, the base algorithm is adapted to deal with

the alternation of the two phases, see Listing 2.2. Let us note that, if

plateau returns with PossibleAdd 6= ∅ then a new expansion is tried

24

CHAPTER 2. BUILDING BLOCKS 2.2. ALGORITHMIC BLOCKS

Listing 2.2: ExpPlat–Rand alternates between expand and plateau phases.

1 function ExpPlat–Rand (maxIterations, maxP lateauSteps)

2 iterations← 0

3 while iterations < maxIterations do

4 C ← random v ∈ V
5 while PossibleAdd 6= ∅ do

6 expand (C)

7 plateau (C,maxP lateauSteps)

9 function plateau (C, maxP lateauSteps)

10 count← 0

11 while PossibleAdd = ∅ and OneMissing 6= ∅
12 and count < maxP lateauSteps do

13 C ← C ∪ random v ∈ OneMissing

14 remove from C the node not connected to v

15 iterations← iterations+ 2

16 count← count+ 1

as described in line 5–7. The iterations are incremented by 2 during

a swap because it is counted as a deletion followed by an addition.

• ExpPlat–StatDegree. This algorithm is a modified version of Exp-

Plat–Rand (Listing 2.2) with the static degree selection during the

expansion and the plateau.

• ExpPlat–DynDegree. This algorithm is the same of ExpPlat–

StatDegree, apart from the selection based on the dynamic degree

during the expansion phase.

2.2.3 Algorithms Based on Penalties or Prohibitions

More complex schemes can be obtained by using diversification strategies to

encourage the search trajectories to visit unexplored regions of the search

25

2.2. ALGORITHMIC BLOCKS CHAPTER 2. BUILDING BLOCKS

space. These methods are particularly effective for ‘deceptive’ instances

[16], where the sub-optimal solutions attract the search trajectories.

• ExpPlatProhibition–Rand. A simple diversification strategy can

be obtained by prohibiting selected moves in the neighbourhood. In

detail, after a node is added or deleted from the current clique, the

algorithm prohibits moving it for the next T iterations. Prohibited

nodes cannot be considered among the candidates of expansion and

plateau phases. When all the moves are prohibited a restart is per-

formed.

• DLS–MC. To achieve diversification during the search, penalties are

assigned to vertices of the graph [54]. The algorithm alternates be-

tween expansion and plateau phases. Selection is done by choosing

the best candidate among the set of the nodes in the neighbourhood

having minimum penalty.

When the algorithm starts, the penalty value of every node is ini-

tialised to 0 and when no further expansion or plateau moves are pos-

sible, the penalties of nodes belonging to the clique are incremented

by one. All penalties are decremented by one after pd (penalty delay)

restarts, see [54] for additional details and results.

• RLS. This algorithm alternates between expansion and plateau phases,

like DLS–MC, but it selects the nodes among the non-prohibited ones

which have the highest degree in PossibleAdd. The prohibition time is

adjusted reactively depending on the search history. In the ‘history’

a fingerprint of each configuration is saved in a hash-table. Restarts

are executed only when the algorithm cannot improve the current

configuration within a fixed number of iterations, see [13] for details.

To allow for a comparison between different amount of ‘greediness’

in the node selection, a modification of RLS is introduced (called

26

CHAPTER 2. BUILDING BLOCKS 2.3. COMPUTATIONAL EXPERIMENTS

RLS–StatDegree) which uses the static degree instead of the dynamic

degree selection.

2.3 Computational Experiments

The computational experiments, presented in this chapter are on two classes

of random graphs, and are aimed at comparing the different algorithmic

building blocks and their impact on average number of steps required to

find the maximum clique, as well as the cost per single iteration.

To ensure that hard instances are considered in the test, a preliminary

study investigates the empirical hardness as a function of the graph dimen-

sion.

2.3.1 Benchmark Graphs

Performance and scalability tests are made on two different classes of ran-

dom graphs:

Binomial random graphs A binomial graph GIL(n, p), belonging to

Gilbert’s model G(n, p) is constructed by starting from n nodes and

adding up to n(n−1)
2 undirected edges, independently with probability

0 < p < 1. See [8] for generation details.

Preferential Attachment Model A graph instance PAT (n, d), of the

preferential attachment model, introduced in [5] is built by starting

from d disconnected nodes and adding successively the remaining n−d
nodes. The edges of the the newly added nodes are connected to d ex-

isting nodes, with preferential attachment to nodes having a higher de-

gree, i.e., with probability proportional to the number of edges present

between the existing nodes.

27

2.3. COMPUTATIONAL EXPERIMENTS CHAPTER 2. BUILDING BLOCKS

Nodes GIL(n, 0.3) PAT(n, n/3)

100 6 13

200 7 19

300 8 25

400 8 31

500 8 37

600 8 42

700 9 48

800 9 54

900 9 57

1000 9 60

1100 10 64

1200 10 70

1300 10 74

1400 10 79

1500 10 86

Table 2.1: Best empirical maximum cliques in the benchmark graphs.

In binomial graphs, the degree distribution for the different nodes will

be peaked on the average value, while in the preferential attachment model,

the probability that a node is connected to k other nodes decreases follow-

ing a power-law i.e. P (k) ∼ k−γ with γ > 1.

In the experiments, the graphs are generated using the NetworkX li-

brary [35], for a number of nodes ranging from 100 to 1500. Because of

the hardness of MC, the optimal solutions of large instances cannot be

computed and one must resort to the empirical maximum. The empirical

maximum considered in the experiments is the best clique that RLS is able

to find in 10 runs of 5 million steps each. In no case DLS–MC with pd

equal to 1 is able to find bigger cliques for the same number of iterations.

The sizes of the empirical maximum cliques in the various graphs are listed

in Table 2.1.

The algorithms are tested against our data set, to compute the distri-

bution function of the iterations needed to find the empirical maximum.

The maximum number of steps per iteration is set to 10 million and each

test is repeated on the same graph instance 100 times. For the algorithms

having a plateau phase, maxPlateauSteps is set to 100.

We count as one iteration each add- or drop-move executed on the clique.

DLS–MC code was modified to count the steps in this manner, to be able

28

CHAPTER 2. BUILDING BLOCKS 2.3. COMPUTATIONAL EXPERIMENTS

to make comparisons with the other algorithms. The CPU time spent

by each iteration is measured on our reference machine, having one Xeon

processor at 3.4 GHz and 6 GB RAM. The operating system is a Debian

GNU/Linux 3.0 with kernel 2.6.15-26-686-smp. All the algorithms are

compiled with g++ compiler with ‘-O3 -mcpu=pentium4’.

Figure 2.2 and Figure 2.3 summarise with standard box-and-whisker

plots the medians, the quartiles, and the outliers of the iterations by

ExpPlat–Rand. Figure 2.2 shows that there are some instances which

are significantly harder than others. The sawtooth trend of the plot is

due to the fact that ExpPlat–Rand needs on average more iterations to

solve instances of the Gilbert model corresponding to the increase of the

expected clique size in Table 2.1. Instances become then easier when the

number of nodes increases and the maximum clique remains of the same

size while the number of optimal cliques increases. This is confirmed also

by all other algorithms considered and explained by the theoretical results

by Matula [47].

The sawtooth behaviour is hardly visible in Fig 2.3 because of the dif-

ferent granularity of the cliques dimension with respect to the graph sizes

considered.

Figure 2.4 reports the number of iterations to find the empirical max-

imum clique in PAT(1100,366) graphs by the most significant techniques

considered in this chapter. It can be observed that RLS achieves the best

results for this class of graphs. Furthermore, the variation in the num-

ber of iterations is smaller, implying a larger robustness of the technique.

Additional results and discussions are presented in Section 2.3.2.

2.3.2 Results Summary

Table 2.2 presents the results on two specific instances of random graphs:

GIL(1100, 0.3) and PAT (1100, 366). The choice of GIL(1100, 0.3) is de-

29

2.3. COMPUTATIONAL EXPERIMENTS CHAPTER 2. BUILDING BLOCKS

100 200 300 400 500 600 700 800 900 1100 1300 1500

1
e
+

0
1

1
e
+

0
2

1
e
+

0
3

1
e
+

0
4

1
e
+

0
5

number of nodes

it
e
ra

ti
o
n

Figure 2.2: Iterations of ExpPlat–Rand to find the empirical maximum clique in GIL(n, 0.3).

Y axis is logarithmic.

100 200 300 400 500 600 700 800 900 1100 1300 1500

1
0

2
0

5
0

1
0
0

2
0
0

5
0
0

1
0
0
0

number of nodes

it
e
ra

ti
o
n

Figure 2.3: Iterations of ExpPlat–Rand to find the empirical maximum clique in PAT (n, n/3).

Y axis is logarithmic.

30

CHAPTER 2. BUILDING BLOCKS 2.3. COMPUTATIONAL EXPERIMENTS

ite
ra

tio
ns

0

200

400

600

800

1000

1200

ExpPlat−
Rand

ExpPlat−
StatDegree

ExpPlat−
DynDegree

DLS−MC
(pd=2)

ExpPlat
Prohibitions−
Rand(T=2)

RLS RLS−
StatDegree

Figure 2.4: Iterations to find the empirical maximum clique in PAT (1100, 366). Results for the

most significant algorithms are reported.

termined by the fact that it is empirically the most difficult instance of our

data set, while PAT (1100, 366) is chosen with the same number of nodes.

The results are for 100 runs on 10 different instances.

From Table 2.2, it is clear that algorithms based only on expansions are

not always able to find the maximum clique in the given iteration bound,

especially on hard instances. The plateau phase increases dramatically the

success rate.

Degree consideration is effective in the Preferential Attachment model,

while in Gilbert’s graphs, where the nodes tend to have similar degrees,

penalty- or prohibition-based algorithms win. For example the reduction

in iterations achieved by ExpPlat–StatDegree over ExpPlat–Rand

on PAT (1100, 366) is about 31%. The results is confirmed by a Mann-

Whitney U-test (Wilcoxon rank-sum test) at significance level 0.05: p-

value is 3.768 ·10−15. On the contrary, algorithms using degree information

have poorer performances on Gilbert’s graphs, if compared with their com-

31

2.3. COMPUTATIONAL EXPERIMENTS CHAPTER 2. BUILDING BLOCKS

GIL(1100, 0.3) PAT (1100, 366)
Algorithm

Iter. µs/Iter. CPU (sec) Iter. µs/Iter. CPU (sec)

Exp–Rand [92%]* 8.90 - [0%]* 3.20 -

Exp–StatDegree [0%]* 8.30 - [40%]* 3.10 -

Exp–DynDegree [10%]* 104.00 - [0%]* 10.3 -

ExpPlat–Rand 74697 5.80 .433 273 3.10 .00084

ExpPlat–StatDegree [60%]* 5.70 - 189 3.10 .00058

ExpPlat–DynDegree 75577 27.20 2.055 191 7.55 .00144

DLS–MC(pd=2) 75943 5.90 .448 423 3.20 .00135

DLS–MC(pd=4) 63467 5.90 .374 [99%]* 3.20 -

DLS–MC(pd=8) 73831 5.90 .453 [85%]* 3.20 -

ExpPlatPro.–Rand(T=2) 65994 5.80 .382 310 3.10 .00096

ExpPlatPro.–Rand(T=4) 67082 5.90 .395 333 3.10 .00103

ExpPlatPro.–Rand(T=8) 67329 5.80 .390 329 3.15 .00103

RLS 49456 9.08 .454 75 5.23 .00039

RLS–StatDegree 44588 6.60 .294 86 4.47 .00038

Table 2.2: Results summary with the medians of the empirical steps distribution, the average

time per iteration and the total CPU time to reach a solution when it is reached in all tests.

(*) The algorithm is not always able to find the maximum clique; the percent of successes is

reported in these cases.

pletely random counterparts. For example ExpPlat–StatDegree finds

the maximum clique in GIL(1100, 0.3) only in the 60% of the runs.

Table 2.2 shows that ExpPlat–DynDegree spends less time per it-

eration (factor of 1.4) than Exp–DynDegree in PAT (1100, 366). The

results is confirmed by a Mann-Whitney U-test at significance level 0.05:

p-value is 1.593 · 10−4. The improvement is even bigger in GIL(1100, 0.3)

where degree-based selections are less appropriate. In this case the factor

is 3.8 and is also confirmed by a Mann-Whitney U-test at significance level

0.05: p-value is 1.649 · 10−4.

In case of dynamic degree selection, the incremental update routine

complexity depends also on the size of the PossibleAdd set. With plateau

phases the search is longer and the PossibleAdd set is on average smaller.

RLS, which has a different and less frequent restart policy, alternates

between short expansions and plateaus. Therefore the PossibleAdd set re-

mains on average smaller than in Exp–DynDegree or ExpPlat–DynDegree

and the cost per iteration is smaller.

32

CHAPTER 2. BUILDING BLOCKS 2.3. COMPUTATIONAL EXPERIMENTS

10 20 30 40

0
.8

8
0
.9

0
0
.9

2
0
.9

4
0
.9

6
0
.9

8
1
.0

0

penalty or prohibition parameter

s
u
c
c
e
s
s
 r

a
te

DLS−MC (10,000,000 iter.)

DLS−MC (1,000,000 iter.)

DLS−MC (100,000 iter.)

ExpPlatProhibitions−Rand (100,000 iter.)

Figure 2.5: Success ratio of penalty- and prohibition-based algorithms on instances of the Pref-

erential Attachment model.

2.3.3 Penalties Versus Prohibitions

As shown in Table 2.2, DLS–MC is not always able to find the best clique

on PAT graphs while prohibition-based heuristic is always successful. Our

results confirm that the penalty heuristic tends to be less robust than the

prohibition-based heuristic. A significant dependency between DLS–MC

performance and the choice of the penalty delay parameter is also discussed

in [54]. Further investigations, summarised in Figure 2.5, show the success

rate of DLS–MC compared with that of ExpPlatProhibition–Rand

for different values of the penalty delay and prohibition time parameters.

The tests are on all instances of the PAT graphs of our data set.

ExpPlatProhibition–Rand is always able to find the maximum

clique within 100,000 iterations, while DLS–MC fails for several penalty

delay values even incrementing the maximum number of iterations by a

factor of 10 or 100.

33

2.4. CONCLUSIONS CHAPTER 2. BUILDING BLOCKS

2.4 Conclusions

The results of the tests on the two graph classes show clearly that the

plateau search is necessary to find the maximum clique in hard instances

and in any case to reduce the average number of iterations. The complexity

added to the algorithms by the plateau search does not increase the cost per

iteration. On the contrary, especially for the algorithms using the dynamic

degree for candidate selections, it reduces the CPU time per iteration.

On Gilbert’s graphs, where the nodes have the same degree on average,

prohibition- or penalty-based algorithms perform better than pure random

selections. On instances of the Preferential Attachment model, algorithms

selecting the nodes using information about the degree are faster.

On the contrary, degree-based algorithms have poorer performance than

random-selection algorithms in Gilbert’s graphs, while prohibition- and

penalty-based algorithms are disadvantageous in the Preferential Attach-

ment model. The penalty heuristic is less robust than the prohibition

heuristic, depending on the appropriate selection of the penalty value.

RLS and RLS–StatDegree, always perform better then the other

algorithms. The cost per iteration of RLS–StatDegree is bigger than

the one of DLS–MC, although of the same order of magnitude. But

the fewer steps needed on average to find the best cliques make RLS the

best choice for the two graph models considered in this chapter, especially

considering that no detailed tuning is executed in RLS before running the

comparison.

34

Chapter 3

Search Landscape Visualisation

As a useful complement to the analytical work described in Chapter 2, we

propose a set of techniques for the visualisation of search landscapes [45]

aimed at supporting the researcher’s intuition on the behaviour of a SLS

algorithm applied to a combinatorial optimisation problem. We discuss the

scalability issues posed to visualisation by the size of the problems and by

the number of potential solutions, and we propose approximate techniques

to overcome them. The proposed visualisation technique is also capable

to rendering explicitly the geographic metaphors used by researchers to

describe areas of interest of the landscape, and has therefore a tutorial

valence.

3.1 Introduction

Optimisation problems are often characterised by a large number of vari-

ables. The set of admissible values for such variables is called search space,

and can usually be provided with a rich topological structure, which is

determined both by the problem’s intrinsic structure and by the solving

algorithm’s characteristics.

A search space complemented with the topological structure induced by

the local search algorithm (evaluation function and neighbourhood rela-

35

3.1. INTRODUCTION CHAPTER 3. SLV

tion) is called a search landscape, and its structure determines, by defini-

tion, the behaviour of the solving technique. Search landscape analysis is

a research field aimed at providing tools for the prediction of the search al-

gorithm’s performance and its consequent improvement. Relevant features

in this kind of analysis are, of course, the search space size and the number

of degrees of freedom (i.e., the dimensionality).

In this chapter, we will focus on Stochastic Local Search (SLS) tech-

niques [38], where a neighbourhood operator is defined in order to map

a configuration into a set of neighbouring ones; the relevant topological

structure is defined by the chosen neighbourhood operator. An impor-

tant feature influencing the behaviour of SLS algorithms is the relative

position and reachability of local optima with respect to the neighbour-

hood topology, and some problem instances are known to be hard with

respect to SLS algorithms precisely because of ‘misleading’ sets of good

configurations. Researchers often resort to landscape metaphors such as

peaks, valleys, plateaux and canyons to describe the possible pitfalls of the

techniques, but the sheer dimensionality of the search space often defeats

intuition.

We propose a tool for visual analysis of search landscapes for supporting

the researcher’s intuition via a careful selection of features to be maintained

while the space dimensionality is reduced to a convenient size (2 or 3)

for displaying. visualisation techniques for complex spaces usually suffer

from a number of problems. In particular, the size of the search space re-

quires the display technique to be highly scalable; moreover, the reduction

method must be consistent in time, so that subsequent optimisation steps

correspond to small variations in the visualised landscape: such continuity

is necessary to help the researcher consider the optimisation process as a

whole, rather than focus on single snapshots.

The Maximum Clique problem will be used as a paradigmatic example,

36

CHAPTER 3. SLV 3.2. PREVIOUS AND RELATED WORK

together with two state of the art SLS algorithms for its optimisation. By

means of such examples, the scalability and continuity issues presented

above will be discussed and tested, and the behaviour of the solving tech-

niques on hard instances will be analysed.

The remainder of the chapter is structured as follows. In Section 3.2

a brief overview of previous relevant work on visualisation for optimisa-

tion algorithms is presented. In Section 3.3 a representation of the search

landscape in three dimension is proposed. In Section 3.4 an approximated

representation is proposed, which scales better with the dimensions of the

search landscapes, because it does not require the enumeration of the ex-

ponential number of sub-optimal solutions. In Section 3.5 a case study is

presented, which shows how the behaviour of a penalty based algorithm

can be analysed from the changes in the landscape after the penalisation

phases. Finally, in Section 3.6 conclusions are drawn and some ideas for

further developing and leveraging this new type of analysis are presented.

3.2 Previous and Related Work

The last years have witnessed a boost in the research on complex systems

visualisation, due to the general availability of inexpensive hardware for

the fast computation of linear transformations involved in 3D polygon dis-

play. Graphics Processing Units (GPUs) are available in all display cards,

and specialised expansions with hundreds to thousands of GPUs are avail-

able for common bus architectures for co-processing purposes. Therefore,

the main scalability issues connected to large set visualisation can be over-

come by brute force. Work on dimensionality reduction via sampling with

preservation of relevant graph properties has been presented in [56]. On-

line drawing of graphs is studied, for instance, in [30], where the effort is

focused at preserving the presentation layout while the graph is changing.

37

3.3. COMPLETE THREE-DIMENSIONAL LANDSCAPES CHAPTER 3. SLV

Work that combines visualisation and optimisation dates back to [51],

where multidimensional scaling and other techniques are applied to the vi-

sualisation of evolutionary algorithms, while other contributions are aimed

at human-guided search [1] where the computer finds local optima by hill-

climbing while the user identifies promising regions of the search space.

visualisation of Pareto-Sets in Evolutionary Multi-Objective optimisation

is investigated in [42] by finding a mapping which maintains most of the

dominance relationships. In [36] the authors propose a visualisation suite

for designing and tuning SLS algorithms. Starting from a selection of can-

didate solutions, the visualisation tool uses a spring-based layout scheme to

represent the solutions in two dimensions. The algorithm execution traces

are then represented as trajectories around the laid out solutions, and the

resulting analysis used by the researchers to tune the algorithm studied.

While in [36] the authors focus on the behaviour of the optimisation al-

gorithm and on the human interaction for the tuning of the algorithm

parameters, we are interested in analysing the intrinsic properties of the

problem instance.

3.3 Complete Three-Dimensional Landscapes

The number of dimensions in the search space of a combinatorial optimi-

sation problem is equal to the number of variables in the instance. We

propose a new way to represent it in a lower-dimensional space, describing

the landscape as the variation of the solution quality (i.e., objective func-

tion) or the variation of a heuristic guidance function for the specific SLS

algorithm (i.e., evaluation function).

For example, in order to reduce the problem landscape from the n di-

mensions to just 2, one could represent the feasible solutions as points

plotted against their quality. In such two-dimensional plot, however, the

38

CHAPTER 3. SLV 3.3. COMPLETE THREE-DIMENSIONAL LANDSCAPES

ordering of the points representing the solutions is arbitrary, as it happens

for example with plateau connection graphs and barrier-level basin graphs

(see [38] for a thorough review of analysis methods).

A good layout for the solutions tries to preserve the distance (similar-

ity) among the solutions in the original n-dimensional space. Our aim is

to find a representation which can be easily visualised, therefore we will

concentrate on reductions of the search space to a three-dimensional land-

scape, which also allows for some intuitive representation of the possible

basic steps of a SLS algorithm.

In the following, we map the objective function value to the z axis, so

that the z quota of a solution will always be fixed. The aim of the pro-

posed techniques is to find convenient x and y coordinates of each solution.

Since in our experience natural landscapes are in three dimensions, also the

metaphor of landscape and of evaluation function can be easily represented

and understood in three dimensions. It allows for a natural visualisation

of valleys, plateaus, and peaks, and fits perfectly with the basic operations

of SLS algorithms.

3.3.1 The Technique

The first possible approach consists of computing a 3D layout of the search

landscape of the problem instance. Figure 3.1 shows the landscape of

an instance of the MC problem represented as a neighbourhood graph

in three dimensions, where nodes correspond to feasible solutions (cliques)

and edges correspond to the neighbourhood structure (i.e., cliques of Ham-

ming distance 1 or 2). Node heights represent the size of the corresponding

clique, and the horizontal layout tries to retain the topology of the neigh-

bourhood graph.

The lowest vertices represent cliques with the smallest size (2). In all

levels the number of vertices depends on the connectivity in the instance

39

3.3. COMPLETE THREE-DIMENSIONAL LANDSCAPES CHAPTER 3. SLV

Figure 3.1: Search Landscape corresponding to a Brockington-Culberson graph with 20 nodes,

edge density 0.5, and maximum clique of size 7. The four subfigures are four different perspec-

tives on the same 3D model. Brockington-Culberson graphs are designed with the aim of hiding

the maximum clique [16].

40

CHAPTER 3. SLV 3.3. COMPLETE THREE-DIMENSIONAL LANDSCAPES

graph, and in the instance depicted in Figure 3.1 are bounded from above

by
(

20
k

)
where k is the size of the cliques in the level, and 20 the number

of nodes in the specific instance.

The landscape depicted in Figure 3.1 is generated starting from 43 max-

imal cliques enumerated empirically with two state of the art heuristic al-

gorithms for the MC problem: RLS–MC and DLS–MC. It has to be noted

that a complete enumeration should always be used when possible, be-

cause using SLS algorithms for the empirical enumeration could lead to a

bias in the representation. From every maximal clique, a tree containing

all possible solutions within the maximal one is generated by means of a

backtracking algorithm. Solution trees originated from different maximal

cliques can overlap and share consistent parts of the search space. There-

fore, during the enumeration all the solutions are added to a hash table,

and when a solution is encountered twice the corresponding sub-tree is

pruned. Once all the solution are enumerated, they are connected with

arcs if a local search algorithm could move from one to the other by means

of one of the neighbourhood operations (add, drop, or swap). Once the

graph is constructed a spring-based method is used to lay out the graph

(with the further constraint that all vertices lay on the plane corresponding

to their objective value). The nodes are treated as point-wise unit masses

subject to pairwise forces of two types. The first is an attractive spring

force based on a smoother version of Hooke’s law [26]; it accounts for the

node adjacency. The force acting on node a due to node b is

FH
ab =

kab
b− a
‖b− a‖2

log
‖b− a‖2

rab if a and b are adjacent

0 otherwise,
(3.1)

where a and b are the coordinate vectors of a and b in the low dimensional

representation, rab is the ideal distance and kab is the spring stiffness, which

depends on the desired layout. The second force is of Coulombian type and

41

3.3. COMPLETE THREE-DIMENSIONAL LANDSCAPES CHAPTER 3. SLV

acts between every pair of nodes:

F C
ab =

qaqb

‖b− a‖Dab
2

a− b

‖b− a‖2
, (3.2)

where qa = qb and the exponent Dab depends on a threshold distance rth:

Dab =

2 if ‖b− a‖2 ≤ rth

4 otherwise.

The snapshots in Figure 3.1 show the landscape from the side, the front,

the top, and in perspective. The almost flat area corresponding to a plateau

bumped with several local optima is quite evident, as well as the clique of

size 7 and the barrier between the points on the plateau and the maximum

clique. This provides immediate information about the instance properties:

because of the low number of nodes shared by the optimum and the flat

area, algorithms with long plateau phases could be worse than algorithms

with shorter plateau phases and more frequent restart policies. The layout

can also embed extra information. For example, the vertices can be ren-

dered with different colours depending on how frequently they are visited

by the SLS algorithm, in order to analyse the attraction basins and how

they are distributed with respect to the global optimum. Another example

of information that could be easily embedded by means of a vertex colour-

ing is the average degree distribution of the nodes in the solutions, which

can give an immediate summary of the degree distribution and give some

hints on the performance of greedy local search algorithms.

3.3.2 The Tool

The described technique works with all combinatorial optimisation prob-

lems. Due to the way the application currently enumerates the possible so-

lutions, the visualisation is limited to the problems whose solutions can be

encoded with binary strings and all sub-strings are also feasible solutions.

42

CHAPTER 3. SLV 3.3. COMPLETE THREE-DIMENSIONAL LANDSCAPES

Figure 3.1, as well as all the following figures are produced with Graph

Visualizer, an application for Mac OS X that has been developed with

the specific purpose of helping the researchers’ intuition when studying

the landscapes of combinatorial optimisation problems1. Graph Visualizer

is a general purpose tool for laying out graph structured data. Custom-

designed tools for specific analysis purposes can be plugged into the main

program; in particular, the Search Landscape Visualisation (SLV) plugin

produces three dimensional landscapes starting from a set of maximal solu-

tions. The landscape generation is completely automated, the only input

required is the list of local optima for the given instance, which we as-

sume is automatically generated by the optimisation program. Both the

main multi-threaded application and the SLV plugin have been developed

in Objective-C using the OpenGL libraries for the 3D visualisation and

Cocoa libraries for the native Mac OS X user interface. The whole appli-

cation including the layout algorithm has been written from scratch by the

authors.

3.3.3 NURBS Covers

For easier visualisation, the search landscape can be covered with Non-

uniform rational B-spline (NURBS) surfaces. These surfaces are superim-

posed over the three-dimensional landscapes by setting the height of the

surface control points to the same heights of the corresponding vertices of

the three dimensional neighbourhood graph.

The NURBS surface has degree 3 and is controlled by a user-defined

number of evenly spaced control points. The more the control points the

more precise the representation, but too many control points can lead to

artificial local optima between the solutions where control point heights

are not set by any solution.

1The software is available for research purposes at http://graphvisualizer.org/

43

http://graphvisualizer.org/

3.4. APPROXIMATED LANDSCAPES CHAPTER 3. SLV

The colouring of the NURBS surfaces as well as the clusters in the

approximate landscapes varies from blue to red showing the quality of the

solutions.2

3.4 Approximated Landscapes

While the search space analysis of small instances is interesting per se, ev-

ery solution of size m contains
(
m
k

)
solutions of size k, and the enumeration

of all possible solutions at the lower levels (avoiding repetitions) does not

scale with solution size. In order to handle larger instances, a number of

approximated layouts can be introduced. The first solution considers clus-

ters of sub-cliques as a unique object, the second operates by subsampling

the solutions obtained by the SLS algorithm.

3.4.1 Clusters of Solutions

The following technique for generating an approximate landscape does not

require the enumeration of all sub-optimal solutions, but just clusters of

solutions having mutual Hamming distance 2.

Starting from local optimum solutions of size m, the cluster of solutions

of size m − k will contain
(

m
m−k
)

solutions having mutual Hamming dis-

tance 2. The clusters can be scaled properly depending on the number

of solutions they contain and the whole tree structure rooted in the local

optimum is reduced to a stack of clusters with different sizes. Of course

clusters belonging to stacks below different optimal solutions overlap for a

volume which is proportional with the number of common solutions.

Let C1 and C2 be two maximal solutions; let m = |C1| be the size of

the first, and s = |C1 ∩ C2| be the number of common components. The

fraction of the cluster of solutions of size k below C1 overlapping with

2Examples of coloured surfaces are available at http://graphvisualizer.org/slv.

44

http://graphvisualizer.org/slv

CHAPTER 3. SLV 3.4. APPROXIMATED LANDSCAPES

Figure 3.2: On the left an approximated Search Landscape corresponding to a Brockington-

Culberson graph with 20 nodes, edge density 0.5, and maximum clique of size 7. The approxi-

mated landscape retains the same shape as the complete landscape in Figure 3.1. On the right

the approximated landscape is covered with a NURBS surface with 30×30 evenly spaced control

points.

the corresponding cluster of solutions of the same quality below C2 is the

following: (
m

k

)(
s

k

)−1

=
m!(s− k)!

s!(m− k)!
. (3.3)

With this technique, there is no need to enumerate the exponentially large

number of sub-optimal solutions: knowing the size of the clusters and the

fraction of their volume that overlaps is enough to render an approximated

landscape like the one shown in Figure 3.2.

The multidimensional scaling is done with the spring based layout tech-

nique used in Section 3.3, but this time the vertices to be laid out are

the clusters, their size is reflected in the charges qa and qb that determine

their repulsive force in (3.2), and their overlapping volumes are encoded

in the spring elastic constants Kab and their zero-energy spring lengths rab

of (3.1).

The computation of large binomial coefficients is performed by the Stir-

ling approximation of the factorials:

lnn! ≈ (n+ 0.5) lnn− n+
ln(2π)

2

45

3.4. APPROXIMATED LANDSCAPES CHAPTER 3. SLV

Figure 3.3: Same Landscape of Figure 3.2 but subsampling the search space removing solutions

with quality less than 3. This highlights the barrier between the plateau and the optimum.

therefore (3.3) can be approximated by(
m

k

)(
s

k

)−1

≈ e(m+0.5) lnm+(s−k+0.5) ln(s−k)−(s+0.5) ln s−(m−k+0.5) ln(m−k) (3.4)

and it can be computed for large values of m and s.

3.4.2 Search Space Sampling

We can consider a reduction in the number of solutions around the global

optimum, by filtering out the solutions which share fewer components with

the global optimum. Another possible sampling strategy is to reduce the

depth of the trees rooted in the local optima. The SLV plugin supports

the combination of the two strategies. The sampled portion of the search

landscape can improve the visualisation by enhancing some of its features,

but it can also drastically change the properties of the landscape. For

example, Figure 3.3 shows the same landscape of Figure 3.2, obtained by

applying the approximation technique in Section 3.4.1 and restricting the

46

CHAPTER 3. SLV 3.5. DYNAMIC LANDSCAPES

solutions to be considered to the ones having a quality (size) of at least 3.

The restriction on the quality of the solutions to be considered makes the

barrier more evident, but it also makes the landscape disconnected.

3.5 Dynamic Landscapes

In the following section, we will show through an example how the pro-

posed analysis of the Search Landscape sheds some light on the dynamics

of penalty-based SLS algorithms, and on the changes of the evaluation

function g during the search.

When DLS–MC reaches a local optimum, all the components belonging

to such solution are penalised. The aim of the penalisation is to drop the

quality of the local optimum and render it less attractive in the subsequent

steps of local search. Nevertheless, the penalisation effect is not limited

to the local optimum, but impacts all the areas of the landscape having

solutions overlapping with the penalised one. Therefore, it is of particular

interest to study the behaviour of the penalisation and its impact on the

landscape.

The adopted technique is composed of two steps. First, the three di-

mensional landscape corresponding to the objective function f is laid out

by means of the force based multidimensional scaling technique described

in Section 3.3. Then a landscape corresponding to the evaluation func-

tion g for each penalisation step is produced. For the continuity reasons

stated in Section 3.1, the horizontal layout of the objective function search

landscape is retained throughout all penalisation steps, the only thing that

varies is the quality of the solutions whose components are penalised.

Figure 3.4 shows the penalisation effect which transforms the landscape

of the Brockington-Culberson instance of Figure 3.1. In Figure 3.4 the first

NURBS surface is produced from the complete representation of the objec-

47

3.5. DYNAMIC LANDSCAPES CHAPTER 3. SLV

Figure 3.4: Four penalisation steps of DLS–MC on the Brockington-Culberson instance of Fig-

ure 3.1. The steps are shown chronologically from left to right and from top to bottom.

tive function. The second landscape in figure retains the same horizontal

layout, and the plateau is partly flattened by the penalisation effect, which

is then partially reverted after the penalties expiration in the third land-

scape. The fourth landscape shows the last penalisation before DLS–MC

is able to find the optimum solution. The effect is more clear in Figure 3.5,

in which the plateau size reduction is quite evident. The increased num-

ber of levels in the graph after the penalisation is due to the fact that the

landscape corresponds to an evaluation function g and not an objective

function. The algorithm whose steps are shown in figure associates inte-

ger penalties to the solution components belonging to local optima. The

evaluation function g is computed as the cardinality of the solution minus

the penalties associated to its components, therefore the landscape is on

discrete levels, some of which have a negative quality.

The penalisation strategy was effective in finding the well hidden global

48

CHAPTER 3. SLV 3.5. DYNAMIC LANDSCAPES

Figure 3.5: Four penalisation steps of DLS–MC on the Brockington-Culberson instance of Fig-

ure 3.1. The steps are shown chronologically from left to right and from top to bottom.

optimum, which does not share solution components with the penalised

local optima.

On the contrary, in the instance of the MC problem depicted in Fig-

ure 3.6 the maximum clique has size 5, and the 30 smaller cliques of size

4 share a node with the maximum one. Therefore a penalisation of a local

maximum always impacts the global one.

Figure 3.7 represents the results of a DLS–MC run on the instance

described above. The NURBS landscape on the top-left represents the un-

modified objective function, and it shows in the middle the global optimum

slightly above the other optima. The other three landscapes in figure show

the evaluation function after subsequent penalisation steps. The penalisa-

tion always impacts on the global optimum.

In order to highlight the effect without using colours, the quality of the

solutions in Figure 3.7 has been emphasised.

49

3.5. DYNAMIC LANDSCAPES CHAPTER 3. SLV

Figure 3.6: A MC instance with 155 nodes. The maximum clique has size 5, and the 30 smaller

cliques of size 4 share a node with the maximum one.

Figure 3.7: Four penalisation steps of DLS–MC on the instance depicted in Figure 3.6. The first

landscape on the top-left shows the objective function with the global optimum in the middle.

50

CHAPTER 3. SLV 3.6. CONCLUSIONS

3.6 Conclusions

We have presented a set of techniques for the visualisation of search land-

scapes which can support the researcher’s intuition on the behaviour of a

SLS algorithm applied to combinatorial optimisation problems. The visual-

isation also renders explicitly the geographic metaphors used by researchers

to describe areas of interest of the landscape.

The examples presented in this chapter are small instances useful to

show how some features of the landscapes are rendered with the proposed

techniques. The approximation techniques presented in Section 3.4 allow

for the representation of instances otherwise intractable for the complete

representation, while maintaining the features of the complete enumera-

tion.

Current research is aimed towards more scalable layout algorithms with

no exogenous parameters that can lay out landscapes with more than few

thousand solutions and tens of thousands of relations among them. The

convergence of a non-hierarchical spring-based layout algorithm depends

strongly on the user provided parameters like the repulsion force, damping

factor, zero energy spring lengths, spring elastic constants, which have to

be appropriate for the graph structure.

The proposed techniques have been implemented in a Mac OS X appli-

cation that allows for real-time manipulation and animation. The program

is free for academic use and can be downloaded from

http://graphvisualizer.org/

51

3.6. CONCLUSIONS CHAPTER 3. SLV

52

Chapter 4

Engineering an Efficient Algorithm

Building on the results of the empirical analysis in Chapter 2 and from the

profiling of various algorithm implementations, in this chapter we propose

a new algorithm that presents two kinds of changes with respect to the

original RLS version. The first changes are algorithmic and influence the

search trajectory, while the second one refers only to the more efficient

implementation of the supporting data structures, with no effect on the

dynamics.

4.1 Introduction

The algorithmic changes suggested by prior analysis are the following ones.

In the previous version, the search history was cleared at each restart and

the tabu tenure reset to MIN T = 1.1. Now, in order to allow for a more

efficient diversification, the entire search history is kept in memory and the

tabu tenure is never reset. To underline this fact, the new version is called

RLS ‘Long Term Memory’, or RLS–LTM.

Having a longer memory causes the parameter T to explode on some

specific instances characterised by many repeated configuration during the

search. If the prohibition becomes much larger than the current clique size,

after a maximal clique is encountered and one node has to be extracted

53

4.2. COST MODEL CHAPTER 4. ENG. AN EFFICIENT ALGORITHM

from the clique, all other nodes will be forced to leave the clique before the

first node is allowed to enter again. This may cause spurious oscillations in

the clique membership which may prevent discovering the globally optimal

clique. An effective way to avoid the above problem is to put an upper-

bound MAX T equal to the current estimate of the maximum clique, i.e.,

MAX T = |Best| + 0.5, where |Best| is the size of the best clique found so

far.

4.2 Implementation Details and Cost per Iteration

The total computational cost for solving a problem is of course the product

of the number of iterations times the cost of each iteration. More complex

algorithms like RLS risk that the higher cost per iteration is not com-

pensated by a sufficient reduction in the total number of iterations. This

section is dedicated to exploring this issue.

The original implementation [13] focused on the algorithm and the ap-

propriate data structures but did not optimise low-level implementation

details. For example, every time a new configuration had to be inserted in

the table, the memory needed to store the element was allocated dynami-

cally. The new implementation moved from these on-demand allocations to

the more efficient allocation of a single bigger chunk of memory; the mem-

ory is used as a pool of available locations to be assigned to the elements

when needed.

Moreover, the hash table containing the configurations resolves key col-

lisions by means of chaining. In order to keep the frequent access operation

as close to a direct access as possible, these chains have to be kept as short

as possible. This has been achieved by doubling the size of the hash table

when the number of elements inside the table exceeds a specified load fac-

tor. In this way the amortised complexity of the access operations is kept

54

CHAPTER 4. ENG. AN EFFICIENT ALGORITHM 4.2. COST MODEL

Steps per second
Instance

RLS [13] RLS–LTM
Speedup

gilbert 1100 0.3 11202 107527 9.6

pa 1100 366 24839 168350 6.8

C125.9 371747 1162791 3.1

C250.9 281690 943396 3.3

C500.9 165289 714286 4.3

C1000.9 80451 471698 5.9

C2000.9 27285 265957 9.7

DSJC500 5 43290 295858 6.8

DSJC1000 5 17422 160000 9.2

C2000.5 5573 78125 14.0

C4000.5 1537 34965 22.8

MANN a27 485437 909091 1.9

MANN a45 293255 425532 1.5

MANN a81 14286 16667 1.2

brock200 2 109769 543478 5.0

brock200 4 147493 699301 4.7

brock400 2 103413 555556 5.4

brock400 4 105374 552486 5.2

brock800 2 33715 264550 7.8

brock800 4 33311 262467 7.9

gen200 p0.9 44 321543 1000000 3.1

gen200 p0.9 55 273224 943396 3.5

gen400 p0.9 55 210084 800000 3.8

gen400 p0.9 65 204499 740741 3.6

gen400 p0.9 75 205761 724638 3.5

hamming10-4 46339 316456 6.8

hamming8-4 113122 568182 5.0

keller4 140647 546448 3.9

keller5 55036 296736 5.4

keller6 7011 101626 14.5

p hat300-1 57870 308642 5.3

p hat300-2 112233 558659 5.0

p hat300-3 171821 729927 4.2

p hat700-1 21758 168350 7.7

p hat700-2 49358 337838 6.8

p hat700-3 88417 478469 5.4

p hat1500-1 7345 85470 11.6

p hat1500-2 13504 184843 13.7

p hat1500-3 30460 282486 9.3

Table 4.1: Speed improvement on random graphs and selected DIMACS benchmark instances

of the new RLS implementation. Some round figures are due to the internal clock resolution.

close to O(1).

The speedup results are reported in Table 4.1. They show the improve-

ment in the steps per seconds achieved by the new version, for two random

graphs and some representative DIMACS instances. The number of steps

per second is computed by measuring on every instance the CPU time

spent by the two algorithms to perform 1000000 iterations. Let us note

that the obtained speedup is substantial. For example, the improvement

for large random graphs increases with the graph dimension reaching a

factor of 22 for graphs with thousand nodes (C4000.5).

55

4.2. COST MODEL CHAPTER 4. ENG. AN EFFICIENT ALGORITHM

Let us now consider a simple model to capture the time spent by the

RLS algorithm on each iteration. Most the cost is spent on updating the

data structures after each addition or deletion. After a node deletion the

complexity for updating the data structures is O(degG(v)), degG(v) being

the degree of the just moved node v in the complementary graph G. After

a node addition the complexity is O(degG(v) · |PossibleAdd|), see [13] for

more details. Now, because the algorithm alternates between expansions

and plateau moves, for most of the run |PossibleAdd| oscillates between 0

and 1. We can therefore make the strong assumption that |PossibleAdd| is

substituted with a small constant. In both cases the dominant factor is

therefore O(degG(v)).

The computational complexity for using the history data-structure can

be amortised to a O(1) complexity per iteration. The restart operation

cannot be amortised: its complexity is O(n) but it is not performed regu-

larly. On the contrary, the number of restarts highly depends on the search

dynamics and on the hardness of the instance.

Under the above assumption we propose an empirical model for the time

per iteration which is linear in the number of node and the degree:

T (n, degG) = α n+ β degG + γ (4.1)

The last simplification is given by substituting the average node degree

instead of the actual degree.

Let us note that the above model is not precise if the size of the

PossibleAdd set remains large for a sizeable fraction of the iterations. For

example this is the case when a large graph is extremely dense, and the

clique is very large. In this case the size of the PossibleAdd set is a non-

negligible factor which multiplies degG(v), impacting significantly the over-

all algorithm performance. This happens for the MANN instances in the

DIMACS benchmark set which are not considered when fitting the above

56

CHAPTER 4. ENG. AN EFFICIENT ALGORITHM 4.2. COST MODEL

model.

We fit the model on our reference machine, having one Xeon processor

at 3.4 GHz and 6 GB RAM. The operating system is a Debian GNU/Linux

3.0 with kernel 2.6.15-26-686-smp. The algorithm is compiled with g++

compiler with ‘-O3 -mcpu=pentium4’. The fitted model is the following

one:

T (n, degG) = 0.0010 n+ 0.0107 degG + 0.0494 (4.2)

The fit residual standard errors for α, β and γ are 0.0004, 0.0009 and

0.2765 respectively.

Let us note that the cost for using the history data-structure, which

is approximately included in the constant term in the above expression,

becomes rapidly negligible as soon as the graph dimension and density are

not very small. In fact the memory access costs approximately less than

50 nanoseconds per iteration while the total cost reaches rapidly tens of

microseconds in the above instances.

To assess the scalability of RLS–LTM we show in Figure 4.1 the average

CPU time per iteration on Gilbert’s graphs of different sizes. The class of

graph instances as well as the algorithms depicted are described in Chap-

ter 2. The regression lines (in log-log scale) have a slope of 2.41, 0.92 and

0.95 for Exp–DynDegree RLS–LTM and DLS–MC(pd=2) respec-

tively, confirming an approximate cost per iteration of Exp–DynDegree

growing faster than n2, while RLS cost, even if the candidate selection is

based on the dynamic degree, grows approximately linearly.

4.2.1 DIMACS Benchmark Set

Table 4.2 compares DLS–MC(pd=opt) and RLS–LTM on a selected

‘snapshot’ of the DIMACS benchmark set. The results presented are aver-

57

4.2. COST MODEL CHAPTER 4. ENG. AN EFFICIENT ALGORITHM

600 800 1000 1200 1400

2
5

1
0

2
0

5
0

1
0
0

2
0
0

n

m
ic

ro
 s

e
c
o
n
d

Exp−DynDegree

RLS−LTM

DLS−MC(pd=2)

Figure 4.1: Empirical cost per iteration in µseconds on Gilbert’s graphs. Log-log scale.

ages on 100 runs of 100,000,000 maximum steps each. DLS–MC(pd=opt)

is DLS–MC with the pd parameter set to the optimal value for each single

instance as suggested in [54].

For each instance and both algorithms the table shows the median clique

size with the median percentage deviation from the best known. The CPU

time and iteration medians and interquartile ranges (IQRs) are reported

only for successful runs.

One algorithm dominates the other if it has a bigger median solution

quality, or a smaller median percentage deviation from the best known. If

both algorithms are able to find the maximum clique on every run, the

dominating algorithm is the one having either a smaller median CPU time

or, in the case of no measurable difference in the CPU times, a smaller

number of iterations. The comparisons are assessed statistically by means

of a Mann-Whitney U-test (Wilcoxon rank-sum test) at significance level

0.05. The dominating algorithm is highlighted in bold.

58

CHAPTER 4. ENG. AN EFFICIENT ALGORITHM 4.3. CONCLUSIONS

Let us note again that the comparison below is not fair, because in one

case (DLS–MC) one reports only the time corresponding to the optimal

setting of an individual pd parameter for each instance, while in the second

case this extensive tuning phase is absent.

In most cases, apart from the ‘camouflaged’ Brockington-Culberson

graphs [16], the optimal values obtained are the same. These graphs have

been designed to be difficult for greedy algorithms, therefore it is not sur-

prising that the greedy node selection of RLS negatively impacts on the

performance on those graphs. For the CPU times, in many cases the graph

dimension is so small that the measure becomes difficult, in some other

cases RLS has times which are larger but of the same order of magnitude.

For other instances RLS CPU time is shorter, which is quite unexpected

given the absence of the tuning phase.

4.3 Conclusions

The results of the investigation show that a careful implementation of the

data-structures considering also operating system services like memory al-

location achieves a significant reduction of the CPU time per iteration.

The implementation of the supporting data structures of the new version

has many improvements: i) the management of the dynamic memory, used

for storing the configuration fingerprints in the history, which is not allo-

cated when needed as in the first version, but rather pre-initialised and

shared among the steps of the actual run; ii) the usage of a dynamic hash

table where the size is adapted to the load factor; iii) the substitution of

all dynamic allocations in the functions with allocations executed at the

59

4.3. CONCLUSIONS CHAPTER 4. ENG. AN EFFICIENT ALGORITHM

D
L

S
–
M

C
(
p

d
=

o
p
t
)

R
L

S
–
L
T

M
I
n
s
t
a
n
c
e

B
e
s
t

S
o
lu

tio
n

q
u
a
lity

C
P
U
(s)

S
te

p
s

S
o
lu

tio
n

q
u
a
lity

C
P
U
(s)

S
te

p
s

C
1
2
5
.9

3
4

3
4

(0
.0
0
)

<
0
.0
0
1

1
7
5

(2
1
5
)

3
4

(
0
.0

0
)

<
0
.0
0
1

8
8

(
1
1
8
)

C
2
5
0
.9

4
4

4
4

(0
.0
0
)

<
0
.0
0
1

1
3
4
8

(1
7
7
0
)

4
4

(0
.0
0
)

<
0
.0
0
1

1
0
6
0

(1
0
1
0
)

C
5
0
0
.9

5
7

5
7

(
0
.0

0
)

0
.0

3
0

(
0
.0

4
0
)

5
9

7
8
0

(
7
6

9
0
0
)

5
7

(0
.0
0
)

0
.1
1
5

(0
.2
5
3
)

8
2

7
4
0

(1
8
1

0
1
0
)

C
1
0
0
0
.9

6
8

6
8

(
0
.0

0
)

0
.3

6
0

(
0
.6

3
0
)

4
0
9

5
0
0

(
7
1
6

3
0
0
)

6
8

(0
.0
0
)

1
.4
6
5

(2
.0
3
5
)

7
0
3

0
0
0

(9
7
3

4
0
0
)

C
2
0
0
0
.9

7
8

7
8

(0
.0
0
)

-
-

7
8

(0
.0
0
)

-
-

D
S
J
C
1
0
0
0

5
1
5

1
5

(0
.0
0
)

0
.3
3
0

(0
.5
2
7
)

8
1

5
6
0

(1
3
0

7
0
0
)

1
5

(
0
.0

0
)

0
.2

0
0

(
0
.3

3
5
)

3
1

7
2
0

(
5
3

2
2
0
)

D
S
J
C
5
0
0

5
1
3

1
3

(0
.0
0
)

0
.0
1
0

(0
.0
1
0
)

2
4
5
4

(3
9
5
4
)

1
3

(
0
.0

0
)

0
.0

0
0

(
0
.0

1
0
)

1
1
3
1

(
1

6
9
2
)

C
2
0
0
0
.5

1
6

1
6

(0
.0
0
)

0
.3
7
0

(0
.7
4
3
)

5
9

0
0
0

(1
1
7

1
8
0
)

1
6

(
0
.0

0
)

0
.4

6
5

(
0
.6

4
0
)

3
5

7
6
0

(
4
9

1
5
0
)

C
4
0
0
0
.5

1
8

1
8

(0
.0
0
)

1
1
9
.0
0
0

(1
4
3
.9
2
0
)

9
6
8
6

0
0
0

(1
1

7
1
0

0
0
0
)

1
8

(
0
.0

0
)

1
0
7
.0

0
0

(
1
4
7
.8

2
0
)

3
7
0
5

0
0
0

(
5

1
1
3

0
0
0
)

M
A
N
N

a
2
7

1
2
6

1
2
6

(
0
.0

0
)

0
.0

2
0

(
0
.0

1
0
)

6
0

2
4
0

(
2
6

8
2
0
)

1
2
6

(0
.0
0
)

0
.0
7
0

(0
.0
7
3
)

6
2

7
6
0

(7
2

0
6
0
)

M
A
N
N

a
4
5

3
4
5

3
4
4

(0
.2
9
)

-
-

3
4
4

(0
.2
9
)

-
-

M
A
N
N

a
8
1

1
0
9
9

1
0
9
8

(0
.0
9
)

-
-

1
0
9
8

(0
.0
9
)

-
-

b
ro

c
k
2
0
0

2
1
2

1
2

(
0
.0

0
)

0
.0

1
0

(
0
.0

2
0
)

1
2

2
3
0

(
2
0

6
8
0
)

1
2

(0
.0
0
)

0
.0
9
0

(0
.1
5
0
)

4
9

1
0
0

(8
3

6
7
0
)

b
ro

c
k
2
0
0

4
1
7

1
7

(
0
.0

0
)

0
.0

3
0

(
0
.0

4
0
)

3
9

9
6
0

(
5
1

0
2
0
)

1
7

(0
.0
0
)

0
.1
9
0

(0
.4
9
3
)

1
3
5

0
0
0

(3
4
6

4
8
0
)

b
ro

c
k
4
0
0

2
2
9

2
9

(
0
.0

0
)

0
.2

3
0

(
0
.3

6
2
)

2
3
2

8
0
0

(
3
7
1

3
0
0
)

2
9

(0
.0
0
)

-
-

b
ro

c
k
4
0
0

4
3
3

3
3

(
0
.0

0
)

0
.0

3
0

(
0
.0

4
0
)

2
8

7
7
0

(
3
7

7
2
0
)

3
3

(0
.0
0
)

3
.3
6
5

(4
.5
3
0
)

1
8
9
0

0
0
0

(2
5
2
1

3
0
0
)

b
ro

c
k
8
0
0

2
2
4

2
4

(
0
.0

0
)

7
.8

7
0

(
1
0
.1

7
8
)

3
3
9
7

0
0
0

(
4

3
8
7

0
0
0
)

2
1

(1
4
.2
9
)

-
-

b
ro

c
k
8
0
0

4
2
6

2
6

(
0
.0

0
)

3
.2

7
5

(
4
.4

4
2
)

1
4
1
0

0
0
0

(
1

9
1
4

6
0
0
)

2
1

(2
3
.8
1
)

-
-

g
e
n
2
0
0

p
0
.9

4
4

4
4

4
4

(0
.0
0
)

<
0
.0
0
1

1
9
3
4

(3
9
8
1
)

4
4

(0
.0
0
)

<
0
.0
0
1

1
5
3
5

(1
8
3
2
)

g
e
n
2
0
0

p
0
.9

5
5

5
5

5
5

(
0
.0

0
)

<
0
.0
0
1

3
3
3

(
8
2
7
)

5
5

(0
.0
0
)

<
0
.0
0
1

5
9
6

(5
6
2
)

g
e
n
4
0
0

p
0
.9

5
5

5
5

5
5

(
0
.0

0
)

0
.0

1
0

(
0
.0

2
0
)

3
3

9
2
0

(
5
7

9
1
0
)

5
5

(0
.0
0
)

0
.0
3
0

(0
.0
4
0
)

2
1

1
6
0

(3
0

1
5
0
)

g
e
n
4
0
0

p
0
.9

6
5

6
5

6
5

(
0
.0

0
)

<
0
.0
0
1

1
0
0
1

(
1

4
8
0
)

6
5

(0
.0
0
)

<
0
.0
0
1

1
2
9
4

(1
1
3
2
)

g
e
n
4
0
0

p
0
.9

7
5

7
5

7
5

(
0
.0

0
)

<
0
.0
0
1

5
0
7

(
7
7
7
)

7
5

(0
.0
0
)

<
0
.0
0
1

1
5
7
6

(1
1
8
4
)

h
a
m
m
in

g
8
-4

1
6

1
6

(0
.0
0
)

<
0
.0
0
1

2
8

(1
6
)

1
6

(
0
.0

0
)

<
0
.0
0
1

1
6

(
0
)

h
a
m
m
in

g
1
0
-4

4
0

4
0

(0
.0
0
)

0
.0
0
0

(0
.0
1
0
)

2
4
6
9

(3
2
4
1
)

4
0

(
0
.0

0
)

0
.0

0
0

(
0
.0

1
0
)

5
2
9

(
1

0
4
4
)

k
e
lle

r4
1
1

1
1

(0
.0
0
)

<
0
.0
0
1

4
0

(4
4
)

1
1

(
0
.0

0
)

<
0
.0
0
1

1
1

(
8
)

k
e
lle

r5
2
7

2
7

(0
.0
0
)

0
.0
1
0

(0
.0
2
0
)

6
3
4
5

(8
7
9
8
)

2
7

(
0
.0

0
)

0
.0

1
0

(
0
.0

3
0
)

2
8
2
8

(
7

1
5
0
)

k
e
lle

r6
5
9

5
9

(0
.0
0
)

-
-

5
9

(
0
.0

0
)

6
.7

6
5

(
1
2
.4

8
2
)

6
8
6

5
0
0

(
1

2
6
5

3
0
0
)

p
h
a
t3

0
0
-1

8
8

(0
.0
0
)

<
0
.0
0
1

1
6
3

(2
6
6
)

8
(0

.0
0
)

<
0
.0
0
1

1
2
8

(1
9
2
)

p
h
a
t3

0
0
-2

2
5

2
5

(0
.0
0
)

<
0
.0
0
1

1
1
3

(1
0
8
)

2
5

(
0
.0

0
)

<
0
.0
0
1

2
7

(
2
0
)

p
h
a
t3

0
0
-3

3
6

3
6

(0
.0
0
)

<
0
.0
0
1

5
3
0

(8
0
6
)

3
6

(0
.0
0
)

<
0
.0
0
1

6
3
3

(1
2
3
2
)

p
h
a
t7

0
0
-1

1
1

1
1

(0
.0
0
)

0
.0
1
0

(0
.0
1
0
)

2
0
1
4

(3
2
7
6
)

1
1

(
0
.0

0
)

0
.0

1
0

(
0
.0

2
0
)

1
3
3
6

(
1

8
9
8
)

p
h
a
t7

0
0
-2

4
4

4
4

(0
.0
0
)

<
0
.0
0
1

2
8
1

(3
2
2
)

4
4

(
0
.0

0
)

<
0
.0
0
1

1
1
2

(
8
3
)

p
h
a
t7

0
0
-3

6
2

6
2

(0
.0
0
)

<
0
.0
0
1

5
8
5

(5
0
1
)

6
2

(
0
.0

0
)

<
0
.0
0
1

2
1
9

(
2
8
2
)

p
h
a
t1

5
0
0
-1

1
2

1
2

(0
.0
0
)

1
.3
3
0

(1
.7
2
0
)

2
0
7

9
0
0

(2
6
9

2
3
0
)

1
2

(
0
.0

0
)

1
.6

9
0

(
2
.0

9
0
)

1
4
5

4
0
0

(
1
8
0

9
2
0
)

p
h
a
t1

5
0
0
-2

6
5

6
5

(
0
.0

0
)

0
.0

0
0

(
0
.0

1
0
)

7
8
4

(
1

0
6
1
)

6
5

(0
.0
0
)

0
.0
1
0

(0
.0
1
0
)

3
3
1

(1
2
4
4
)

p
h
a
t1

5
0
0
-3

9
4

9
4

(
0
.0

0
)

0
.0

0
0

(
0
.0

1
0
)

1
8
6
7

(
2

6
1
0
)

9
4

(0
.0
0
)

0
.0
1
0

(0
.0
1
0
)

1
2
5
3

(1
4
9
8
)

T
a
b

le
4.2:

A
lgorith

m
co

m
p

a
rison

on
a

selected
su

b
-set

of
th

e
D

IM
A

C
S

b
en

ch
m

ark
in

stan
ces.

T
h

e
tab

le
sh

ow
s

th
e

m
ed

ian
solu

tion

q
u

a
lity

an
d

w
ith

in
b

rackets
th

e
m

ed
ian

p
ercen

tage
d

ev
iation

from
th

e
b

est
k
n

ow
n

,
as

w
ell

as
C

P
U

secon
d

s
an

d
step

s
m

ed
ian

s
w

ith

IQ
R

w
ith

in
b
rackets.

T
h

e
d

om
in

a
tin

g
algo

rith
m

is
h

igh
ligh

ted
in

b
old

.

60

CHAPTER 4. ENG. AN EFFICIENT ALGORITHM 4.4. NOTES

beginning and reused throughout the run. Furthermore some algorith-

mic improvements to the original RLS have been introduced leading to

the final RLS–LTM proposal, including algorithmic and implementation

changes. RLS–LTM achieves an order of magnitude difference in CPU

times for graphs of reasonable sizes, and the difference appears to grow

with the problem dimension. This results drastically changes the overall

competitiveness of the Reactive Local Search technique.

The software corresponding to the algorithm, benchmark graphs and the

heuristically optimal values are available at request for research purposes.

4.4 Notes on the Published Paper

The results presented in this chapter have been published in [11]. The

original design of the algorithm described in the paper set the upper

bound on the tabu tenure to a fraction of the estimated maximum clique,

i.e., MAX T = 0.5(|Best| + 1). But a bug that went unnoticed before

the publication set the threshold wrongly to MAX T = |Best| + 0.5. In

the following chapter we will study the behaviour of RLS–LTM when

MAX T = 0.5(|Best| + 1) as originally designed in the published paper

because the results are virtually indistinguishable from those presented in

this chapter. Figure 4.2 and 4.3 present the performances of the two al-

gorithms on the DIMACS benchmark set, and a detailed comparison is

available in Table 4.3.

Moreover, a change in the algorithm dynamics went undocumented: the

original publication [11] does not report that the tabu tenure is never reset

during restarts.

61

4.4. NOTES CHAPTER 4. ENG. AN EFFICIENT ALGORITHM

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 10 100 1000 10000 100000 1e+06 1e+07

R
LS

-L
TM

 w
ith

 M
AX

_T
 =

 0
.5

(|B
es

t|
+

1)

RLS-LTM with MAX_T = |Best| + 0.5

Median run-times [steps] over 100 runs on selected DIMACS instances

 DSJC1000.5

 brock200_2

 hamming8-4

 p_hat300-3
 p_hat700-1

indistinguishable
different

Figure 4.2: Median number of steps to converge to the optimal solution. The empty dots

represent the instances for which a Mann-Whitney U-test could not reject the null hypothesis

of the algorithms having an identical performance at significance level α = 0.05.

 0.001

 0.01

 0.1

 1

 10

 100

 0.001 0.01 0.1 1 10 100

R
LS

-L
TM

 w
ith

 M
AX

_T
 =

 0
.5

(|B
es

t|
+

1)

RLS-LTM with MAX_T = |Best| + 0.5

Median run-times [CPU seconds] over 100 runs on selected DIMACS instances

 DSJC1000.5 brock200_2

 keller5 p_hat700-1 p_hat1500-3

indistinguishable
different

Figure 4.3: Median number of CPU seconds to converge to the optimal solution. The empty dots

represent the instances for which a Mann-Whitney U-test could not reject the null hypothesis

of the algorithms having an identical performance at significance level α = 0.05.

62

CHAPTER 4. ENG. AN EFFICIENT ALGORITHM 4.4. NOTES

R
L
S
-L

T
M

w
it
h

M
A
X

T
=

0
.5
(|
B
es
t|
+

1
)

R
L
S
-L

T
M

w
it
h

M
A
X

T
=

|B
es
t|
+

0
.5

In
st
a
n
c
e

B
e
st

S
o
lu
ti
o
n
q
u
a
li
ty

C
P
U
(s
)

S
te
p
s

S
o
lu
ti
o
n
q
u
a
li
ty

C
P
U
(s
)

S
te
p
s

C
1
2
5
.9

3
4

3
4
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

9
8
(1
4
1
)

3
4
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

8
8
(1
1
8
)

C
2
5
0
.9

4
4

4
4
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

1
0
3
1
(1

1
2
4
)

4
4
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

1
0
6
0
(1

0
1
0
)

C
5
0
0
.9

5
7

5
7
(0
.0
0
)

0
.0
6
1
(0
.0
7
2
)

8
7
7
2
0
(1
2
3
8
3
0
)

5
7
(0
.0
0
)

0
.0
6
1
(0
.1
3
0
)

8
2
7
4
0
(1
8
1
0
1
0
)

C
1
0
0
0
.9

6
8

6
8
(0
.0
0
)

0
.7
4
1
(1
.1
1
5
)

7
5
6
6
0
0
(1

1
4
4
6
0
0
)

6
8
(0
.0
0
)

0
.6
6
1
(0
.9
3
7
)

7
0
3
0
0
0
(9
7
3
4
0
0
)

C
2
0
0
0
.9

7
8

7
8
(0
.0
0
)

-
-

7
8
(0
.0
0
)

-
-

D
S
J
C
1
0
0
0
.5

1
5

1
5
(0
.0
0
)

0
.0
6
1
(0
.0
9
0
)

2
3
0
9
0
(3
7
9
5
0
)

1
5
(0
.0
0
)

0
.0
8
1
(0
.1
3
3
)

3
1
7
2
0
(5
3
2
2
0
)

D
S
J
C
5
0
0
.5

1
3

1
3
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

1
2
0
1
(1

4
5
4
)

1
3
(0
.0
0
)

0
.0
0
1
(0
.0
1
0
)

1
1
3
1
(1

6
9
2
)

C
2
0
0
0
.5

1
6

1
6
(0
.0
0
)

0
.1
7
1
(0
.2
5
3
)

3
2
1
7
0
(4
8
7
4
0
)

1
6
(0
.0
0
)

0
.1
9
1
(0
.2
6
0
)

3
5
7
6
0
(4
9
1
5
0
)

C
4
0
0
0
.5

1
8

1
8
(0
.0
0
)

4
7
.0
1
0
(6
2
.9
1
0
)

3
9
5
6
0
0
0
(5

2
4
9
0
0
0
)

1
8
(0
.0
0
)

4
4
.1
5
0
(6
0
.7
9
0
)

3
7
0
5
0
0
0
(5

1
1
3
0
0
0
)

M
A
N
N

a
2
7

1
2
6

1
2
6
(0
.0
0
)

0
.0
3
6
(0
.0
4
2
)

6
2
7
6
0
(7
2
0
6
0
)

1
2
6
(0
.0
0
)

0
.0
4
1
(0
.0
4
0
)

6
2
7
6
0
(7
2
0
6
0
)

M
A
N
N

a
4
5

3
4
5

3
4
4
(0
.2
9
)

-
-

3
4
4
(0
.2
9
)

-
-

M
A
N
N

a
8
1

1
0
9
9

1
0
9
8
(0
.0
9
)

-
-

1
0
9
8
(0
.0
9
)

-
-

b
ro
ck

2
0
0
2

1
2

1
2
(0
.0
0
)

0
.0
7
1
(0
.1
0
2
)

8
8
7
9
0
(1
2
9
6
6
0
)

1
2
(0
.0
0
)

0
.0
4
1
(0
.0
6
0
)

4
9
1
0
0
(8
3
6
7
0
)

b
ro
ck

2
0
0
4

1
7

1
7
(0
.0
0
)

0
.1
4
1
(0
.2
6
5
)

2
3
3
1
0
0
(4
0
6
7
0
0
)

1
7
(0
.0
0
)

0
.0
8
1
(0
.2
1
3
)

1
3
5
0
0
0
(3
4
6
4
8
0
)

b
ro
ck

4
0
0
2

2
9

2
9
(0
.0
0
)

-
-

2
9
(0
.0
0
)

-
-

b
ro
ck

4
0
0
4

3
3

3
3
(0
.0
0
)

1
.4
0
6
(2
.6
6
0
)

1
7
6
8
0
0
0
(3

2
2
3
3
0
0
)

3
3
(0
.0
0
)

1
.4
7
6
(1
.9
7
8
)

1
8
9
0
0
0
0
(2

5
2
1
3
0
0
)

b
ro
ck

8
0
0
2

2
4

2
1
(1
4
.2
9
)

-
-

2
1
(1
4
.2
9
)

-
-

b
ro
ck

8
0
0
4

2
6

2
1
(2
3
.8
1
)

-
-

2
1
(2
3
.8
1
)

-
-

g
en

2
0
0
p
0
.9

4
4

4
4

4
4
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

1
4
2
5
(2

2
0
4
)

4
4
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

1
5
3
5
(1

8
3
2
)

g
en

2
0
0
p
0
.9

5
5

5
5

5
5
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

6
1
3
(6
6
8
)

5
5
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

5
9
6
(5
6
2
)

g
en

4
0
0
p
0
.9

5
5

5
5

5
5
(0
.0
0
)

0
.0
1
6
(0
.0
2
0
)

2
2
2
7
0
(3
7
9
5
0
)

5
5
(0
.0
0
)

0
.0
1
1
(0
.0
1
0
)

2
1
1
6
0
(3
0
1
5
0
)

g
en

4
0
0
p
0
.9

6
5

6
5

6
5
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

1
5
7
4
(1

6
0
1
)

6
5
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

1
2
9
4
(1

1
3
2
)

g
en

4
0
0
p
0
.9

7
5

7
5

7
5
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

1
6
1
4
(1

2
8
5
)

7
5
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

1
5
7
6
(1

1
8
4
)

h
a
m
m
in
g
8
-4

1
6

1
6
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

1
6
(0
)

1
6
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

1
6
(0
)

h
a
m
m
in
g
1
0
-4

4
0

4
0
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

5
2
9
(1

0
4
4
)

4
0
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

5
2
9
(1

0
4
4
)

k
el
le
r4

1
1

1
1
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

1
1
(1
4
)

1
1
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

1
1
(8
)

k
el
le
r5

2
7

2
7
(0
.0
0
)

0
.0
0
1
(0
.0
1
0
)

2
0
0
7
(4

4
5
8
)

2
7
(0
.0
0
)

0
.0
1
1
(0
.0
1
0
)

2
8
2
8
(7

1
5
0
)

k
el
le
r6

5
9

5
9
(0
.0
0
)

2
.5
0
1
(4
.5
5
6
)

5
9
4
9
0
0
(1

1
1
1
9
0
0
)

5
9
(0
.0
0
)

2
.9
2
6
(5
.4
6
4
)

6
8
6
5
0
0
(1

2
6
5
3
0
0
)

p
h
a
t3
0
0
-1

8
8
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

1
0
2
(1
6
4
)

8
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

1
2
8
(1
9
2
)

p
h
a
t3
0
0
-2

2
5

2
5
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

2
9
(2
4
)

2
5
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

2
7
(2
0
)

p
h
a
t3
0
0
-3

3
6

3
6
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

4
1
8
(6
9
5
)

3
6
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

6
3
3
(1

2
3
2
)

p
h
a
t7
0
0
-1

1
1

1
1
(0
.0
0
)

0
.0
0
1
(0
.0
1
0
)

7
2
5
(1

6
3
6
)

1
1
(0
.0
0
)

0
.0
0
1
(0
.0
1
0
)

1
3
3
6
(1

8
9
8
)

p
h
a
t7
0
0
-2

4
4

4
4
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

1
1
2
(8
3
)

4
4
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

1
1
2
(8
3
)

p
h
a
t7
0
0
-3

6
2

6
2
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

2
1
2
(2
7
3
)

6
2
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

2
1
9
(2
8
2
)

p
h
a
t1
5
0
0
-1

1
2

1
2
(0
.0
0
)

0
.5
0
1
(0
.8
0
0
)

1
1
3
6
0
0
(1
8
9
5
2
0
)

1
2
(0
.0
0
)

0
.6
2
1
(0
.7
7
7
)

1
4
5
4
0
0
(1
8
0
9
2
0
)

p
h
a
t1
5
0
0
-2

6
5

6
5
(0
.0
0
)

0
.0
0
1
(0
.0
1
0
)

2
5
0
(9
9
5
)

6
5
(0
.0
0
)

0
.0
0
1
(0
.0
1
0
)

3
3
1
(1

2
4
4
)

p
h
a
t1
5
0
0
-3

9
4

9
4
(0
.0
0
)

0
.0
0
1
(0
.0
1
0
)

1
2
5
3
(1

4
9
8
)

9
4
(0
.0
0
)

0
.0
0
1
(0
.0
1
0
)

1
2
5
3
(1

4
9
8
)

T
a
b

le
4.

3:
A

lg
or

it
h

m
co

m
p

a
ri

so
n

on
a

se
le

ct
ed

su
b

-s
et

of
th

e
D

IM
A

C
S

b
en

ch
m

ar
k

in
st

an
ce

s.
T

h
e

ta
b

le
sh

ow
s

th
e

m
ed

ia
n

so
lu

ti
on

q
u

a
li

ty
a
n

d
w

it
h

in
b

ra
ck

et
s

th
e

p
er

ce
n
ta

ge
d

ev
ia

ti
on

fr
om

th
e

b
es

t
k
n

ow
n

,
as

w
el

l
as

C
P

U
se

co
n

d
s

an
d

st
ep

s
m

ed
ia

n
s

w
it

h
IQ

R

w
it

h
in

b
ra

ck
et

s.

63

4.4. NOTES CHAPTER 4. ENG. AN EFFICIENT ALGORITHM

64

Chapter 5

A Comparison of Tabu Search

Variations

RLS–LTM has been described in Chapter 4 as a more effective implemen-

tation of of the original RLS for MC [13]. Faster restarts and greater

diversification allowed to improve over the original RLS for MC, but also

caused the explosion of the value of T on some hard instances. In Chapter 4

it is conjectured that with a high value of T it is unlikely that all nodes be-

longing to the maximum clique are not prohibited and can be added to the

current configuration, therefore an upper bound MAX T = 0.5(|Best| + 1)

has been introduced.

In this chapter we present an in-depth analysis of the dynamics of RLS

and RLS–LTM. We study how the reactive mechanism impacts on the

overall performances, and its effectiveness in tuning the tabu tenure for

the instance at hand and the local characteristics of the search landscape.

Appendix A presents a more detailed version of this analysis.

5.1 Peeking Under the Hood of RLS–LTM

Reactive Tabu Search is a meta-heuristic that adapts the tabu tenure T of

the underlying Tabu Search. It automatically tunes the parameter T for

65

5.1. PEEKING UNDER THE HOOD OF RLS–LTM CHAPTER 5. ANALYSIS

 0

 50

 100

 150

 200

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

Fr
eq

ue
nc

y

T

 5

 10

 15

 20

 25

 30

 0 200 400 600 800 1000 1200 1400

T

update

Figure 5.1: Adaptation of tabu tenure T for the instance C500.9. The graph on the left shows

how many times the parameter T has been set to a particular value. The graph on the right

shows the evolution of the parameter in time. The dashed line shows the median value.

the instance at hand, and more importantly it adapts it throughout the

run by reacting on the local characteristics of the search space.

The aim of this study is at understanding how effective is the adaptation

of the tabu tenure in the case of RLS–LTM for the MC problem. More

specifically we want to understand if RLS–LTM is rapidly converging to

the best parameter T for the instance at hand, or if it is adapting it to

different values depending on the local characteristic of the search space.

In order to understand how the tabu tenure is adapted, we run the

algorithm on the DIMACS benchmark instances and trace the history of

the parameter T throughout 1,000,000 iterations. Figure 5.1, 5.2, 5.3,

and 5.4 are representative of the four different pictures we got across the

benchmark set. In Figure 5.1 the value converges immediately and stays

around the average with small oscillations. Also in Figure 5.2 the param-

eter converges in few iterations but the distribution of T is saturated on

the upper-bound MAX T. The opposite happens in Figure 5.3 where the

tenure is updated rarely, and for most of the iterations the parameter T

remains on the minimum value allowed. There are very few spikes corre-

sponding to repetitions encountered during the search. On some instances,

like in the case of C4000.5 in Figure 5.4, the picture is less clear.

66

CHAPTER 5. ANALYSIS 5.1. PEEKING UNDER THE HOOD OF RLS–LTM

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

2 3 4 5 6

Fr
eq

ue
nc

y

T

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 0 2000 4000 6000 8000 10000 12000 14000 16000

T

update

Figure 5.2: Adaptation of tabu tenure T for the instance brock200 4. The graph on the left

shows how many times the parameter T has been set to a particular value. The graph on the

right shows the evolution of the parameter in time. The dashed line shows the median value.

 0

 20

 40

 60

 80

 100

 120

 140

1 2 3 4

Fr
eq

ue
nc

y

T

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 20 40 60 80 100 120 140

T

update

Figure 5.3: Adaptation of tabu tenure T for the instance MANN a45. The graph on the left

shows how many times the parameter T has been set to a particular value. The graph on the

right shows the evolution of the parameter in time. The dashed line shows the median value.

 0

 200

 400

 600

 800

 1000

 1200

2 3 4 5 6 7 8 9

Fr
eq

ue
nc

y

T

 2

 3

 4

 5

 6

 7

 8

 9

 0 1000 2000 3000 4000 5000

T

update

Figure 5.4: Adaptation of tabu tenure T for the instance C4000.5. The graph on the left shows

how many times the parameter T has been set to a particular value. The graph on the right

shows the evolution of the parameter in time. The dashed line shows the median value.

67

5.1. PEEKING UNDER THE HOOD OF RLS–LTM CHAPTER 5. ANALYSIS

The overall picture emerging is the following: either there is a strong

threshold effect, or the parameter T quickly converges to an average value

with little oscillations around it during the search.

Looking at the instances with an evident threshold effect, it is clear that

the adaptation of the tabu tenure is not optimal at least in those cases.

To better understand how the reactive mechanism impacts on the perfor-

mances we try to update at each iteration the tenure T to a random value

in the interval [MIN T,MAX T]. Figure 5.5 shows the performance of a

reactive and a random tenure update on the subset of the DIMACS bench-

mark set where both find the maximum clique on all runs. The maximum

computational budget allocated is 100,000,000 iterations. Each dot in the

graph represents the median number of iterations over 100 successful runs

on a single instance. The performances are highly correlated: the Spear-

man’s rank order test rejects the hypothesis of no significant (monotone)

relationship between the samples with p-value 1.67 ·10−20. The empty dots

represent instances for which a Mann-Whitney U-test could not reject the

null hypothesis of the algorithms having an identical performance at sig-

nificance level α = 0.05. The white squares on the axes show instances

for which the one of the algorithm was not able to find the maximum

clique every run. For the other cases the name of the instances is reported.

The only notable differences are on the brock200 instances. A Wilcoxon

matched pairs signed rank test on the medians could not reject the null hy-

pothesis of the algorithms having an identical performance at significance

level α = 0.05. The same conclusions can be drawn also looking at the

CPU seconds in Figure 5.6. The detailed results are shown in Table 5.1.

The quite surprising results can be explained by the small interval

[MIN T,MAX T]. Such a small interval makes the reactive mechanism sta-

tistically indistinguishable from a Tabu Search selecting a tenure value

randomly around MIN TMAX T−MIN T
2 . The only cases in which the perfor-

68

CHAPTER 5. ANALYSIS 5.1. PEEKING UNDER THE HOOD OF RLS–LTM

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 10 100 1000 10000 100000 1e+06 1e+07

re
ac

tiv
e

random

Median run-times [steps] over 100 runs on selected DIMACS instances

 C125.9

 C500.9

 C1000.9

 C2000.5

 C4000.5

 brock200_2

 brock200_4

 gen200_p0.9_44

 gen400_p0.9_55

 hamming8-4

 keller5

 keller6

 p_hat300-3
 p_hat700-1

 p_hat1500-1

 p_hat1500-3

indistinguishable
different

less than 100% success

Figure 5.5: Median number of steps to converge to the optimal solution when setting the tenure

randomly or reactively. The empty dots represent the instances for which a Mann-Whitney

U-test could not reject the null hypothesis of the algorithms having an identical performance at

significance level α = 0.05. The white squares on the axes show instances for which the one of

the algorithm was not able to find the maximum clique every run.

69

5.1. PEEKING UNDER THE HOOD OF RLS–LTM CHAPTER 5. ANALYSIS

 0.001

 0.01

 0.1

 1

 10

 100

 0.001 0.01 0.1 1 10 100

re
ac

tiv
e

random

Median run-times [CPU seconds] over 100 runs on selected DIMACS instances

 C500.9

 C1000.9

 C2000.5

 C4000.5

 brock200_2
 brock200_4

 keller5

 keller6

 p_hat1500-3

indistinguishable
different

less than 100% success

Figure 5.6: Median number of CPU seconds to converge to the optimal solution when set-

ting the tenure randomly or reactively. The empty dots represent the instances for which a

Mann-Whitney U-test could not reject the null hypothesis of the algorithms having an identical

performance at significance level α = 0.05. The white squares on the axes show instances for

which the one of the algorithm was not able to find the maximum clique every run.

70

CHAPTER 5. ANALYSIS 5.2. LONG VS. SHORT TERM MEMORY

mance are worse are the brock200 instances in which a stronger diversifi-

cation would be necessary, and the random distribution of the values of T

is centred far from the threshold MAX T.

Increasing the upper bound MAX T deteriorates the performances both

of RLS–LTM and the algorithm setting the tabu tenure randomly, meaning

that both heuristics are strongly sensible to this meta-parameter. This

is especially true when the tenure value is adjusted randomly, since the

distribution of the tenure values is spread on a larger interval and centred

on a value far from the optimum one. The extended version of this chapter

in Appendix A has a detailed description of the comparison between the

two techniques for different values of MAX T.

5.2 Long vs. Short Term Memory

The results presented in Chapter 4 show the improved performance of RLS–

LTM over RLS both in terms of steps per second and number of steps to

converge to the optimum; but it has never been analysed how the algorith-

mic and the implementation changes contribute to the performance.

We are particularly interested in the algorithmic changes here, since

they also introduce undesired effects on the explosion of the tenure T, and

the consequent need for the introduction of a new upper bound.

We run RLS–LTM without the algorithmic changes in order to mea-

sure the performances of a possible efficient implementation of the original

RLS. From Figure 5.8 and 5.9 it emerges that other things being equal

the algorithmic changes introduced in RLS–LTM improve the overall per-

formances. The improvement measured on the DIMACS benchmark set

and detailed in Table 5.2 is due almost exclusively to the faster restarts.

In fact on most instances there is no difference in the median number of

steps to reach the optimum, but there is up to an order of magnitude in the

71

5.2. LONG VS. SHORT TERM MEMORY CHAPTER 5. ANALYSIS

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10000 100000 1e+06

Pr
(s

ol
ve

)

run-time [steps]

ECDF comparison on keller6

RLS
RLS-LTM

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1 1 10 100

Pr
(s

ol
ve

)

run-time [CPU seconds]

ECDF comparison on keller6

RLS
RLS-LTM

Figure 5.7: Empirical QRTDs on the keller6 instance.

CPU seconds. Figure 5.7 shows a comparison of the the empirical run time

distributions on the keller6 instance where RLS–LTM performs in median

half of the iterations than RLS in less than 5% of the CPU seconds.

Figure 5.10, 5.11, 5.12, and 5.13 show the adaptation of the tabu tenure

of RLS in the four cases discussed at the beginning of this Chapter, namely

C500.9, brock200 4, C4000.5, and MANN a45. Figure 5.12 is almost iden-

tical to Figure 5.3 depicting the adaptation of the tenure of RLS–LTM. The

small number of repetitions in the search history keeps the tabu tenure on

smaller values. Also for the instance C4000.5 (Figure 5.13) RLS keeps the

tenure T around small values, but in the case of the hardest brock200 4

(Figure 5.11) the explosion of T before the restarts is quite evident. In the

instance C500 depicted in Figure 5.10 the tenure does not explode, and the

high number of restarts can be seen from frequency of the smaller values

of T.

5.2.1 A Good Tabu Tenure

Figure 5.26(a), 5.26(c), 5.26(f), and 5.26(b) show the mean number of

iterations to find the optimum clique over 10 runs for the instances C500.9,

brock200 4, MANN a45, and C4000.5 respectively. The algorithm used to

measure the number of iterations is a Tabu search with the same operations

72

CHAPTER 5. ANALYSIS 5.2. LONG VS. SHORT TERM MEMORY

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 10 100 1000 10000 100000 1e+06 1e+07

R
LS

-L
TM

RLS

Median run-times [steps] over 100 runs on selected DIMACS instances

 DSJC1000.5

 DSJC500.5

 brock200_2

 hamming8-4

 keller6

 p_hat300-1

 p_hat700-1

indistinguishable
different

Figure 5.8: Median number of steps to converge to the optimal solution of efficient implementa-

tions of RLS and RLS–LTM. The empty dots represent the instances for which a Mann-Whitney

U-test could not reject the null hypothesis of the algorithms having an identical performance at

significance level α = 0.05.

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0.001 0.01 0.1 1 10 100 1000

R
LS

-L
TM

RLS

Median run-times [CPU seconds] over 100 runs on selected DIMACS instances

 C500.9

 C1000.9

 DSJC1000.5

 DSJC500.5

 C2000.5

 C4000.5

 MANN_a27
 brock200_2

 brock200_4

 brock400_4

 gen400_p0.9_55

 keller5

 keller6

 p_hat300-1 p_hat300-3 p_hat700-1

 p_hat1500-1

indistinguishable
different

Figure 5.9: Median number of CPU seconds to converge to the optimal solution of efficient

implementations of RLS and RLS–LTM. The empty dots represent the instances for which a

Mann-Whitney U-test could not reject the null hypothesis of the algorithms having an identical

performance at significance level α = 0.05.

73

5.2. LONG VS. SHORT TERM MEMORY CHAPTER 5. ANALYSIS

 0

 50

 100

 150

 200

 250

 300

 350

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 27 28 30 31 33 34 36 37 38 40 41 45 50

Fr
eq

ue
nc

y

T

 0

 10

 20

 30

 40

 50

 0 500 1000 1500 2000 2500 3000 3500

T

update

Figure 5.10: Adaptation of tabu tenure T for the instance C500.9. The graph on the left shows

how many times the parameter T has been set to a particular value. The graph on the right

shows the evolution of the parameter in time. The dashed line shows the median value.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

234567891011121314151617181920212223252627283031333437384041424546505556606166677374808182888990979899107108109118119120129130131132142143144145157158159172173174175190192198

Fr
eq

ue
nc

y

T

 0

 50

 100

 150

 200

 0 2000 4000 6000 8000 10000 12000 14000

T

update

Figure 5.11: Adaptation of tabu tenure T for the instance brock200 4. The graph on the left

shows how many times the parameter T has been set to a particular value. The graph on the

right shows the evolution of the parameter in time. The dashed line shows the median value.

 0

 20

 40

 60

 80

 100

 120

1 2 3 4

Fr
eq

ue
nc

y

T

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 20 40 60 80 100 120

T

update

Figure 5.12: Adaptation of tabu tenure T for the instance MANN a45. The graph on the left

shows how many times the parameter T has been set to a particular value. The graph on the

right shows the evolution of the parameter in time. The dashed line shows the median value.

74

CHAPTER 5. ANALYSIS 5.2. LONG VS. SHORT TERM MEMORY

 0

 200

 400

 600

 800

 1000

 1200

 1400

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 19 21 23 25 26 28 31 34

Fr
eq

ue
nc

y

T

 5

 10

 15

 20

 25

 30

 35

 0 1000 2000 3000 4000 5000 6000 7000

T

update

Figure 5.13: Adaptation of tabu tenure T for the instance C4000.5. The graph on the left shows

how many times the parameter T has been set to a particular value. The graph on the right

shows the evolution of the parameter in time. The dashed line shows the median value.

of RLS (expand, drop, and restart) and a fixed parameter for the tabu

tenure T, and for the restart frequency R. The iteration budget in the

10 runs is fixed to 10,000,000. When the algorithm reaches the maximum

amount of iterations, it means that it could not find the optimum solution.

In most cases there is a setting for the value of T for which the restart

frequency is not critical. There are few exceptions, e.g. very hard instances

like MANN a45 in Figure 5.26(f) and MANN a27 in Figure 5.26(e) in which

the opposite is true, i.e., the performances strongly depend on the restart

frequency and much less from the value of the tabu tenure T. The restarts

make the whole algorithm more robust: except for some extreme values,

restarts do not worsen the performances in the instances for which a right

value for the tenure is essential, and can be decisive in other instances.

Looking at the histograms in Figure 5.10, 5.11, 5.12, and 5.13 and com-

paring the mode of the tenure T with the plots in Figure 5.26(a), 5.26(c),

5.26(f), and 5.26(b) it’s clear that RLS is able to spot the most appropriate

value of T for the particular instance.

75

5.2. LONG VS. SHORT TERM MEMORY CHAPTER 5. ANALYSIS

The Bias in the Restarts

RLS is able to find a good value of T in most of the cases, but is it because

of the effectiveness of the reaction or is it because the frequent restarts

mitigate the tenure value?

In [13] restarts were introduced to deal with disconnected part of the

search space, but actually without restarts that periodically reset the value

of T, RLS could sometimes miss the right value of T for the instance at

hand. This is quite noticeable in brock200 4 (Figure 5.11) with the peak

on 198 in the histogram (maximum value reachable by T in the experiment

|V | − 2).

To further investigate this point we run a version of RLS in which there

is no upper bound MAX T and no restarts. Figure 5.15 shows a run on

brock200 4 where the explosion of the tenure T is confirmed. The issue

is noticeable not only in small and hard instances but also on small very

simple instances where this effect would go unnoticed because of the very

few steps required to find the optimum. For example in Figure 5.14 the

graph C125.9 has 125 nodes and the maximum clique has size 34, RLS

is able to find the max clique in few hundred steps and the explosion

of the parameter would be unnoticed. The same can be said for other

simple instances, e.g., hamming8-4 in Figure 5.16. Among the same family

of instances it happens just on the easiest ones. For hard instances like

C4000.5 or keller5 the average value of T determined by RLS (Figure 5.17

and 5.18) lies among the best ones possible for the instance (Figure 5.26(b)

and 5.26(d) respectively).

C4000.5 is the most surprising results, RLS–LTM clearly shows the ex-

plosion of the tenure and the consequent performance degradation when

MAX T is not small enough (see Section A.1 and Figure A.11 in the ap-

pendix). RLS has not this issue as depicted in Figure 5.13. One can

76

CHAPTER 5. ANALYSIS 5.2. LONG VS. SHORT TERM MEMORY

 0

 5

 10

 15

 20

 25

 30

 35

234567891011121314151617181920212223242526272829303132353842475156626875839110011012213414716217819621623726128731634838342146350956061667874682190399310931202132214541600176019362130234325512577280628353087339637354109452048734922497253605414546958966486706371357539761576927770784882108293837784618547894190319122983599341071010818115471166311781119001213812448125741270112830129591321813351134861369313832139711425014394145401468714985150631513615289154381551915594156751583415994160721607716234162391640316569166501681816900169821698817071171541715917243173271733317502175081767917685178571786318038180441812618220182261830918404184941858418590186801877118778188751905319066192521925919440194471945319541197391993820042201402023820244203432044220449205492064920749208572095921170212812138421496216002171321818219252193222039222612248622596228242305523175234092352323645238762400024117242432436124488246072485525107257412575026001262642652927068273412747428032283152860128890299193022230527308353114732582329113324433919342383493435470354823584136203369253766238043382413825438427386273864038815390173903039207392203941139425396033981040212404214061840829410284122841242414294164441861420654207942270422844247642490425044271142905429194293443128431434333843564435784377643791440044401944218442334444844463446654468044912451164533545351453664557245587457934580945824460474625646272462874651246723469824719547457476724815348420486404889348910491314937049387496274986949886501295037350652508825091651396526945322753764543075485654874568105738457964585495914159738618676249263123637606407165372680536838568741690756977370478711907190972635741107447174859752237598376751775267910080706815218191882345827468655987434892098967390110942639521596177971499813099121101626102653103689104737107943111789112918114058

Fr
eq

ue
nc

y

T

 0

 20000

 40000

 60000

 80000

 100000

 0 100 200 300 400 500 600

T

update

Figure 5.14: Adaptation of tabu tenure T for the instance C125.9 with no restarts and no MAX T.

The graph on the left shows how many times the parameter T has been set to a particular value.

The graph on the right shows the evolution of the parameter in time. The dashed line shows

the median value.

 0

 20

 40

 60

 80

 100

23456789101112131415161718192022242730333640444853586471788694104114126138152167184203223245270297327359395435479527579637701771848933102711291242136615031654181920012201242126632930322335103545386139004204424745784625467149865036508754305485554059135973603364396504657070127083715576377714779279898069815182338316840084858700878888768966905791489240947495709666103171042110527112351134911464122351235912484134591359514657148051596116123162861703617208173821755817735185521874018929191201931420204204082061421782220022222422449237202396024202244472557325832260932635627849281312841528702303283063430944326973302733361336983525135607359673633036697383883877639168395634222742654459854645048591490824957750078505845109552915534505399054535550865564357625582075879561505621266275463388640286765568339690296972674421786377943281044818638393284780856368650187375882578868789149895839004990488914029232593258942009515197556980649854199537100542101558106238107312115694116862118043124731125991127263128549135832137204138590139990147921149415150924157880159475161086162713164356170212171932173668175422177194178984183508185361187233189125191035201858203897205957219824222044232278236994239388241806244249252951255506258087260694263327265987278246281057286763303010306071326678329978333311336678359346362976366642391328395281421894426156430461434809459443464084468772473507505387510492555926

Fr
eq

ue
nc

y

T

 0

 100000

 200000

 300000

 400000

 500000

 0 100 200 300 400 500 600 700 800

T

update

Figure 5.15: Adaptation of tabu tenure T for the instance brock200 4 with no restarts and

no MAX T. The graph on the left shows how many times the parameter T has been set to a

particular value. The graph on the right shows the evolution of the parameter in time. The

dashed line shows the median value.

77

5.2. LONG VS. SHORT TERM MEMORY CHAPTER 5. ANALYSIS

 1

 1.01

 1.02

 1.03

 1.04

 1.05

234567891011121314161719212325283134384145505561677481899810811913114415817419221123225528130934037441145349854860366372980288297110681175129214211564172018922081228925182770304733193352365136873975401643294373441747624810518652395648570557636151621362756698676668347294736874427943802481058478856486508738882692339326942095159612995410055101561025910949110601117211924120441298513116132491414114284144281540015555157121677016940171111808018263184471863419298194931968919888200892029221015212272144221658218772243022657228852311723350241822442624673249222517425428263342660026869271402839128678289682926030918312313154631865336703401034354366673703737411391353953139930403334074142619430494348443923443674688047354505425105351569539455449055041555975615856725581595874759340599396054561156620756270263335639756462165274676006828268972696697037374360751118097881796881858907589975960339700397983105637106704115038116200124024125277126542127820136426137804139196148568150069160173161791163425165076174429176190177970179768189953191871193810206859208948211059223016225269227544229843245318247796250299267151269850290928293867296835320021323253348503352023375724379519383353387225401021405072409164413297417471421688436712441124445579450080454626480384485236528422581264632997639391696296703330765926

Fr
eq

ue
nc

y

T

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 0 50 100 150 200 250
T

update

Figure 5.16: Adaptation of tabu tenure T for the instance hamming8-4 with no restarts and

no MAX T. The graph on the left shows how many times the parameter T has been set to a

particular value. The graph on the right shows the evolution of the parameter in time. The

dashed line shows the median value.

 0

 200

 400

 600

 800

 1000

 1200

2 3 4 5 6 7 8 9 10 11 12 13 14 16 17

Fr
eq

ue
nc

y

T

 2

 4

 6

 8

 10

 12

 14

 16

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

T

update

Figure 5.17: Adaptation of tabu tenure T for the instance C4000.5 with no restarts and no

MAX T. The graph on the left shows how many times the parameter T has been set to a

particular value. The graph on the right shows the evolution of the parameter in time. The

dashed line shows the median value.

78

CHAPTER 5. ANALYSIS 5.2. LONG VS. SHORT TERM MEMORY

 0

 100

 200

 300

 400

 500

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 33

Fr
eq

ue
nc

y

T

 5

 10

 15

 20

 25

 30

 0 500 1000 1500 2000 2500 3000

T

update

Figure 5.18: Adaptation of tabu tenure T for the instance keller5 with no restarts and no MAX T.

The graph on the left shows how many times the parameter T has been set to a particular value.

The graph on the right shows the evolution of the parameter in time. The dashed line shows

the median value.

conjecture that the difference is due to the only difference between RLS

and RLS–LTM, i.e., the frequent restarts in RLS also reset the tenure T

and this prevents the explosion. Oddly, when no upper-bound is set, and

without the restarts, the parameter stays centred around good values of

T for this instance, see Figure 5.17. This effect does not depend from the

upper bound but from the restarts. In fact, adding the restarts leads to

the tenure explosion in both cases but in the case of RLS–LTM there is

nothing that keeps the value of T to small values like for RLS. The root of

this issue lies in the bias in the selection of the node seeding the current

configuration. In fact, RLS empties the current configuration during the

restarts and seeds it with a node that has never been included in a con-

figuration and with the highest degree. Ties are broken randomly. The

problem does not occur if one selects the node seeding the current clique

randomly regardless of their degree and regardless of the fact that they

have already been part of a solution.

The bias in the restart that is noticeable on certain instances in RLS–

LTM could also affect the diversification and therefore the performances of

RLS. In order to check if this is the case, we compare the median steps to

79

5.2. LONG VS. SHORT TERM MEMORY CHAPTER 5. ANALYSIS

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 10 100 1000 10000 100000 1e+06 1e+07

R
LS

-N
BR

RLS

Median run-times [steps] over 100 runs on selected DIMACS instances

 hamming8-4

indistinguishable
different

Figure 5.19: Median number of steps to converge to the optimal solution of efficient implementa-

tions of RLS and RLS-NBR. The empty dots represent the instances for which a Mann-Whitney

U-test could not reject the null hypothesis of the algorithms having an identical performance at

significance level α = 0.05.

reach the optimum solution for RLS and RLS-NBR. Figure 5.19 compares

the two restart implementation showing that the small differences are not

statistically significant.

Fixed Tenure T

If we compare RLS with an implementation having the same restart fre-

quency and the best tabu tenure T for the given instance the median steps

to converge to the optimal solution is slightly smaller on most instances

(see Figure 5.20). The difference in the median CPU seconds in Figure 5.21

is mostly due to the the cost of resetting the hash table during the restarts.

80

CHAPTER 5. ANALYSIS 5.2. LONG VS. SHORT TERM MEMORY

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 10 100 1000 10000 100000 1e+06 1e+07

R
LS

-F
IX

RLS

Median run-times [steps] over 100 runs on selected DIMACS instances

 C500.9

 C1000.9

 DSJC1000.5

 DSJC500.5

 C2000.5

 C4000.5

 brock200_4

 brock400_4

 gen200_p0.9_55

 gen400_p0.9_65 gen400_p0.9_75

 hamming8-4

 keller5

 p_hat300-1

 p_hat700-1

 p_hat700-2

 p_hat1500-1

 p_hat1500-3

indistinguishable
different

less than 100% success

Figure 5.20: Median number of steps to converge to the optimal solution of efficient implementa-

tions of RLS and RLS with best fixed T for the instance. The empty dots represent the instances

for which a Mann-Whitney U-test could not reject the null hypothesis of the algorithms having

an identical performance at significance level α = 0.05. The white squares on the axes show

instances for which the one of the algorithm was not able to find the maximum clique every run.

81

5.2. LONG VS. SHORT TERM MEMORY CHAPTER 5. ANALYSIS

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0.001 0.01 0.1 1 10 100 1000

R
LS

-F
IX

RLS

Median run-times [CPU seconds] over 100 runs on selected DIMACS instances

 C250.9

 C500.9

 C1000.9

 DSJC1000.5

 DSJC500.5

 C2000.5

 C4000.5

 MANN_a27
 brock200_2

 brock200_4

 brock400_4

 gen200_p0.9_44

 gen400_p0.9_55

 gen400_p0.9_65 gen400_p0.9_75 hamming10-4 p_hat300-1 p_hat300-3 p_hat700-1

 p_hat1500-1

 p_hat1500-2 p_hat1500-3

indistinguishable
different

less than 100% success

Figure 5.21: Median number of CPU seconds to converge to the optimal solution of efficient

implementations of RLS and RLS with best fixed T for the instance. The empty dots represent

the instances for which a Mann-Whitney U-test could not reject the null hypothesis of the

algorithms having an identical performance at significance level α = 0.05. The white squares on

the axes show instances for which the one of the algorithm was not able to find the maximum

clique every run.

82

CHAPTER 5. ANALYSIS 5.3. A NEW IMPLEMENTATION

5.3 A New Implementation

We have seen that RLS–LTM can be tricked by too much memory, and

without an upper-bound MAX T the tabu tenure T explodes preventing

the algorithm to find the optimum solution. RLS clears the search history

and resets the tabu tenure to MIN T at every restart, therefore it does

not show the same parameter explosion as RLS–LTM. Clearing the hash

table at every restarts is responsible for worse performances of RLS when

compared to RLS–LTM. Even if the median number of steps for the two

implementations to find the optimum solution are very similar, the differ-

ence in CPU seconds can be of one order of magnitude. Moreover, the

bias in the restarts towards highly connected nodes that have never been

part of a solution is accountable for the explosion of the tabu tenure in

RLS–LTM on some instances. Also in this case, it does not happen in RLS

where the restart reset the tabu tenure T.

Building on the analysis presented in the previous sections we build a

new implementation RLS–fast in which the restarts are performed seeding

the new solution with a completely random node, there is no artificial

bound MAX T, and during the restarts the tabu tenure is reset and the

search history cleared in an efficient manner.

The hash table in RLS–LTM starts with 224 elements and if necessary

it doubles them every time the fill factor of the table is greater than 0.6.

Conflicts are resolved with chaining, and the elements in the chains are are

picked up from a pool of pre-allocated memory to avoid expensive system

calls for memory allocations during the search.

In RLS–fast the hash table size is fixed to two million elements and does

not grow during the search. There is no chaining for resolving conflicts,

and locations holding elements older than the last restart are considered

empty. Clearing the hash table is as fast as storing the time of the last

83

5.3. A NEW IMPLEMENTATION CHAPTER 5. ANALYSIS

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 10 100 1000 10000 100000 1e+06 1e+07

R
LS

RLS-fast

Median run-times [steps] over 100 runs on selected DIMACS instances

 brock200_2

 hamming8-4

indistinguishable
different

Figure 5.22: Median number of steps to converge to the optimal solution of efficient implementa-

tions of RLS and RLS–fast. The empty dots represent the instances for which a Mann-Whitney

U-test could not reject the null hypothesis of the algorithms having an identical performance at

significance level α = 0.05.

restart. Since there is no chaining when the hash table is full a look up

operation could be as expensive as O(n) where n is the size of the table.

Therefore lookup in the hash table will stop as soon as one expired element

is found.

The lookup operations can have false positive since only the hash of the

solution are stored in the table, and also false negative because if a solution

is stored far from its location because of conflicts there is a probability that

after some iterations some location in between will expire.

Figure 5.22 shows how the median number of iteration for reaching the

optimum solution for RLS and RLS–fast is for most instances statistically

indistinguishable. The faster restarts allow for improving the performances

reaching those of RLS–LTM without the undesirable effects of keeping the

search history across restarts (see Figure 5.23). Figure 5.24 and 5.25 show

the same comparison between RLS–fast and RLS–LTM.

84

CHAPTER 5. ANALYSIS 5.3. A NEW IMPLEMENTATION

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0.001 0.01 0.1 1 10 100 1000

R
LS

RLS-fast

Median run-times [CPU seconds] over 100 runs on selected DIMACS instances

 C250.9

 C500.9

 C1000.9
 DSJC1000.5

 DSJC500.5

 C2000.5

 C4000.5

 MANN_a27

 brock200_2

 brock200_4
 brock400_4

 gen400_p0.9_55

 gen400_p0.9_65 hamming10-4

 keller5

 keller6

 p_hat300-1 p_hat300-2 p_hat300-3

 p_hat700-1

 p_hat1500-1

indistinguishable
different

Figure 5.23: Median number of CPU seconds to converge to the optimal solution of efficient

implementations of RLS and RLS–fast. The empty dots represent the instances for which a

Mann-Whitney U-test could not reject the null hypothesis of the algorithms having an identical

performance at significance level α = 0.05.

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 10 100 1000 10000 100000 1e+06 1e+07

R
LS

-L
TM

RLS-fast

Median run-times [steps] over 100 runs on selected DIMACS instances

 C500.9

 DSJC1000.5

 DSJC500.5

 hamming8-4

 keller6

 p_hat300-1

 p_hat700-1

indistinguishable
different

Figure 5.24: Median number of steps to converge to the optimal solution of RLS–LTM and

RLS–fast. The empty dots represent the instances for which a Mann-Whitney U-test could not

reject the null hypothesis of the algorithms having an identical performance at significance level

α = 0.05.

85

5.4. CONCLUSIONS CHAPTER 5. ANALYSIS

 0.001

 0.01

 0.1

 1

 10

 100

 0.001 0.01 0.1 1 10 100

R
LS

-L
TM

RLS-fast

Median run-times [CPU seconds] over 100 runs on selected DIMACS instances

 DSJC1000.5

 DSJC500.5

 MANN_a27

 keller6

indistinguishable
different

Figure 5.25: Median number of CPU seconds to converge to the optimal solution of RLS–LTM

and RLS–fast. The empty dots represent the instances for which a Mann-Whitney U-test could

not reject the null hypothesis of the algorithms having an identical performance at significance

level α = 0.05.

Section A.4 in the appendix, describes a comparison of RLS–fast with

Robust Tabu Search [60] (Ro–TS). The results show how the performances

are equal and in some cases better than RLS–fast provided that the interval

for the tabu tenure is centred around a good value for the instance at hand.

In the experiments the tabu tenure of RoTS is bounded to the size of

the current maximum clique, or a fraction of the best value for the instance

at hand. We also present the results when the tenure varies around a value

which is specific to an instance-family, or when the interval is the same

measured in RLS for the instance at hand.

5.4 Conclusions

Looking at the best possible diversification strategy, it seems that on the

DIMACS benchmark sets spotting the right value of T leads to the best

86

CHAPTER 5. ANALYSIS 5.4. CONCLUSIONS

performances regardless of the restart frequency, with the only notable

exception of MANN instances.

A robust tabu search centred around a correct setting for T performs as

well as RLS. This result implies that at least on the DIMACS benchmark

instances, there is no measurable effect showing that RLS effectively reacts

to the local characteristic of the search space.

The speedup in RLS–LTM can be ascribed to the faster restarts that do

not need to clear the search history. Avoiding to clear the search history is

one of the causes for the explosion of the tabu tenure parameter. Another

cause is the bias in the node selection during the restarts. The fact that

RLS–LTM also never resets the tabu tenure during the restarts makes the

parameter explosion more noticeable.

Knowing the reason for the speedup and for the explosion of the tabu

tenure, we implement RLS–fast, which is as efficient as RLS–LTM and does

not need for an upper bound for the tabu tenure.

The performances of RLS–fast are comparable to RLS–fix an algorithm

that knows a priori the best tabu tenure for every instance in the DIMACS

benchmark. This result shows how RLS is able to quickly converge to the

best tabu tenure for the instance at hand with very little overhead.

87

5.4. CONCLUSIONS CHAPTER 5. ANALYSIS

r
e
a
c
tiv

e
r
a
n
d
o
m

In
sta

n
c
e

B
e
st

S
o
lu
tio

n
q
u
a
lity

C
P
U
(s)

S
tep

s
S
o
lu
tio

n
q
u
a
lity

C
P
U
(s)

S
tep

s

C
1
2
5
.9

3
4

3
4
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

9
8
(1
4
1
)

3
4
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

6
0
(5
0
)

C
2
5
0
.9

4
4

4
4
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

1
0
3
1
(1

1
2
4
)

4
4
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

1
2
4
3
(1

8
4
2
)

C
5
0
0
.9

5
7

5
7
(0
.0
0
)

0
.0
6
1
(0
.0
7
2
)

8
7
7
2
0
(1
2
3
8
3
0
)

5
7
(0
.0
0
)

0
.0
2
1
(0
.0
4
0
)

3
0
9
3
0
(6
0
3
2
0
)

C
1
0
0
0
.9

6
8

6
8
(0
.0
0
)

0
.7
4
1
(1
.1
1
5
)

7
5
6
6
0
0
(1

1
4
4
6
0
0
)

6
8
(0
.0
0
)

0
.3
9
6
(0
.5
1
2
)

4
8
2
6
0
0
(6
2
3
0
0
0
)

C
2
0
0
0
.9

7
8

7
8
(0
.0
0
)

-
-

7
8
(0
.0
0
)

-
-

D
S
J
C
1
0
0
0
.5

1
5

1
5
(0
.0
0
)

0
.0
6
1
(0
.0
9
0
)

2
3
0
9
0
(3
7
9
5
0
)

1
5
(0
.0
0
)

0
.0
6
1
(0
.1
0
7
)

2
4
5
3
0
(4
6
1
6
4
)

D
S
J
C
5
0
0
.5

1
3

1
3
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

1
2
0
1
(1

4
5
4
)

1
3
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

1
2
3
5
(1

9
0
6
)

C
2
0
0
0
.5

1
6

1
6
(0
.0
0
)

0
.1
7
1
(0
.2
5
3
)

3
2
1
7
0
(4
8
7
4
0
)

1
6
(0
.0
0
)

0
.0
9
1
(0
.1
1
0
)

1
9
2
4
0
(2
3
1
9
1
)

C
4
0
0
0
.5

1
8

1
8
(0
.0
0
)

4
7
.0
1
0
(6
2
.9
1
0
)

3
9
5
6
0
0
0
(5

2
4
9
0
0
0
)

1
8
(0
.0
0
)

2
8
.2
8
0
(3
8
.9
6
0
)

2
4
4
9
0
0
0
(3

4
0
7
0
0
0
)

M
A
N
N

a
2
7

1
2
6

1
2
6
(0
.0
0
)

0
.0
3
6
(0
.0
4
2
)

6
2
7
6
0
(7
2
0
6
0
)

1
2
6
(0
.0
0
)

0
.0
4
1
(0
.0
4
0
)

7
5
2
9
0
(1
0
0
0
5
0
)

M
A
N
N

a
4
5

3
4
5

3
4
4
(0
.2
9
)

-
-

3
4
4
(0
.2
9
)

-
-

M
A
N
N

a
8
1

1
0
9
9

1
0
9
8
(0
.0
9
)

-
-

1
0
9
8
(0
.0
9
)

-
-

b
ro
ck

2
0
0
2

1
2

1
2
(0
.0
0
)

0
.0
7
1
(0
.1
0
2
)

8
8
7
9
0
(1
2
9
6
6
0
)

1
2
(0
.0
0
)

0
.7
6
1
(1
.2
9
2
)

1
2
1
2
0
0
0
(2

0
3
5
6
0
0
)

b
ro
ck

2
0
0
4

1
7

1
7
(0
.0
0
)

0
.1
4
1
(0
.2
6
5
)

2
3
3
1
0
0
(4
0
6
7
0
0
)

1
7
(0
.0
0
)

1
.5
8
1
(1
.7
9
5
)

2
9
3
6
0
0
0
(3

3
3
7
0
0
0
)

b
ro
ck

4
0
0
2

2
9

2
9
(0
.0
0
)

-
-

2
5
(1
6
.0
0
)

-
-

b
ro
ck

4
0
0
4

3
3

3
3
(0
.0
0
)

1
.4
0
6
(2
.6
6
0
)

1
7
6
8
0
0
0
(3

2
2
3
3
0
0
)

3
3
(0
.0
0
)

-
-

b
ro
ck

8
0
0
2

2
4

2
1
(1
4
.2
9
)

-
-

2
1
(1
4
.2
9
)

-
-

b
ro
ck

8
0
0
4

2
6

2
1
(2
3
.8
1
)

-
-

2
1
(2
3
.8
1
)

-
-

g
en

2
0
0
p
0
.9

4
4

4
4

4
4
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

1
4
2
5
(2

2
0
4
)

4
4
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

1
6
3
0
(4

2
9
8
)

g
en

2
0
0
p
0
.9

5
5

5
5

5
5
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

6
1
3
(6
6
8
)

5
5
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

7
4
1
(1

2
7
5
)

g
en

4
0
0
p
0
.9

5
5

5
5

5
5
(0
.0
0
)

0
.0
1
6
(0
.0
2
0
)

2
2
2
7
0
(3
7
9
5
0
)

5
5
(0
.0
0
)

0
.0
2
1
(0
.0
1
3
)

3
5
4
6
0
(3
8
5
0
0
)

g
en

4
0
0
p
0
.9

6
5

6
5

6
5
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

1
5
7
4
(1

6
0
1
)

6
5
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

1
3
5
1
(1

8
5
2
)

g
en

4
0
0
p
0
.9

7
5

7
5

7
5
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

1
6
1
4
(1

2
8
5
)

7
5
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

1
5
7
3
(2

4
5
8
)

h
a
m
m
in
g
8
-4

1
6

1
6
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

1
6
(0
)

1
6
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

1
6
(0
)

h
a
m
m
in
g
1
0
-4

4
0

4
0
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

5
2
9
(1

0
4
4
)

4
0
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

6
6
8
(1

0
9
0
)

k
eller4

1
1

1
1
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

1
1
(1
4
)

1
1
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

1
1
(1
0
)

k
eller5

2
7

2
7
(0
.0
0
)

0
.0
0
1
(0
.0
1
0
)

2
0
0
7
(4

4
5
8
)

2
7
(0
.0
0
)

0
.0
1
1
(0
.0
2
0
)

1
0
0
7
0
(1
6
9
5
6
)

k
eller6

5
9

5
9
(0
.0
0
)

2
.5
0
1
(4
.5
5
6
)

5
9
4
9
0
0
(1

1
1
1
9
0
0
)

5
9
(0
.0
0
)

3
.7
2
6
(6
.9
1
0
)

9
5
7
5
0
0
(1

7
5
7
5
0
0
)

p
h
a
t3
0
0
-1

8
8
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

1
0
2
(1
6
4
)

8
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

1
2
8
(2
4
6
)

p
h
a
t3
0
0
-2

2
5

2
5
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

2
9
(2
4
)

2
5
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

3
3
(2
0
)

p
h
a
t3
0
0
-3

3
6

3
6
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

4
1
8
(6
9
5
)

3
6
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

8
0
9
(2

1
3
6
)

p
h
a
t7
0
0
-1

1
1

1
1
(0
.0
0
)

0
.0
0
1
(0
.0
1
0
)

7
2
5
(1

6
3
6
)

1
1
(0
.0
0
)

0
.0
0
1
(0
.0
1
0
)

1
2
4
3
(1

9
3
9
)

p
h
a
t7
0
0
-2

4
4

4
4
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

1
1
2
(8
3
)

4
4
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

1
0
2
(8
0
)

p
h
a
t7
0
0
-3

6
2

6
2
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

2
1
2
(2
7
3
)

6
2
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

2
0
5
(2
3
8
)

p
h
a
t1
5
0
0
-1

1
2

1
2
(0
.0
0
)

0
.5
0
1
(0
.8
0
0
)

1
1
3
6
0
0
(1
8
9
5
2
0
)

1
2
(0
.0
0
)

0
.6
7
1
(0
.9
7
1
)

1
6
4
1
0
0
(2
4
4
9
4
0
)

p
h
a
t1
5
0
0
-2

6
5

6
5
(0
.0
0
)

0
.0
0
1
(0
.0
1
0
)

2
5
0
(9
9
5
)

6
5
(0
.0
0
)

0
.0
0
1
(0
.0
1
0
)

2
6
2
(7
0
9
)

p
h
a
t1
5
0
0
-3

9
4

9
4
(0
.0
0
)

0
.0
0
1
(0
.0
1
0
)

1
2
5
3
(1

4
9
8
)

9
4
(0
.0
0
)

0
.0
0
1
(0
.0
1
0
)

6
8
5
(1

0
0
4
)

T
a
b

le
5
.1

:
A

lg
orith

m
com

p
arison

on
a

selected
su

b
-set

of
th

e
D

IM
A

C
S

b
en

ch
m

ark
in

stan
ces.

T
h

resh
old

M
A
X

T
is

set
to

0.5(|B
est|+

1
).

T
h

e
ta

b
le

sh
ow

s
th

e
m

ed
ia

n
so

lu
tio

n
q
u

ality
an

d
w

ith
in

b
rackets

th
e

p
ercen

tage
d

ev
iation

from
th

e
b

est
k
n
ow

n
,

as
w

ell
as

C
P

U

seco
n

d
s

an
d

step
s

m
ed

ian
s

w
ith

IQ
R

w
ith

in
b

rack
ets.

88

CHAPTER 5. ANALYSIS 5.4. CONCLUSIONS

R
L
S
–
L
T
M

R
L
S

In
st
a
n
c
e

B
e
st

S
o
lu
ti
o
n
q
u
a
li
ty

C
P
U
(s
)

S
te
p
s

S
o
lu
ti
o
n
q
u
a
li
ty

C
P
U
(s
)

S
te
p
s

C
1
2
5
.9

3
4

3
4
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

9
8
(1
4
1
)

3
4
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

8
8
(1
5
0
)

C
2
5
0
.9

4
4

4
4
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

1
0
3
1
(1

1
2
4
)

4
4
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

1
1
9
2
(1

0
8
1
)

C
5
0
0
.9

5
7

5
7
(0
.0
0
)

0
.0
6
1
(0
.0
7
2
)

8
7
7
2
0
(1
2
3
8
3
0
)

5
7
(0
.0
0
)

2
.4
7
1
(3
.5
7
0
)

6
7
8
9
0
(9
2
2
8
0
)

C
1
0
0
0
.9

6
8

6
8
(0
.0
0
)

0
.7
4
1
(1
.1
1
5
)

7
5
6
6
0
0
(1

1
4
4
6
0
0
)

6
8
(0
.0
0
)

1
0
.7
8
0
(1
5
.0
5
1
)

7
6
3
4
0
0
(1

0
5
2
2
0
0
)

C
2
0
0
0
.9

7
8

7
8
(0
.0
0
)

-
-

7
8
(0
.0
0
)

-
-

D
S
J
C
1
0
0
0
.5

1
5

1
5
(0
.0
0
)

0
.0
6
1
(0
.0
9
0
)

2
3
0
9
0
(3
7
9
5
0
)

1
5
(0
.0
0
)

6
.2
9
1
(7
.7
0
9
)

4
0
9
3
0
(4
8
6
6
0
)

D
S
J
C
5
0
0
.5

1
3

1
3
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

1
2
0
1
(1

4
5
4
)

1
3
(0
.0
0
)

0
.2
2
1
(0
.4
3
0
)

1
6
8
1
(1

8
4
3
)

C
2
0
0
0
.5

1
6

1
6
(0
.0
0
)

0
.1
7
1
(0
.2
5
3
)

3
2
1
7
0
(4
8
7
4
0
)

1
6
(0
.0
0
)

4
.0
9
6
(6
.6
8
5
)

2
7
1
6
0
(4
2
7
5
0
)

C
4
0
0
0
.5

1
8

1
8
(0
.0
0
)

4
7
.0
1
0
(6
2
.9
1
0
)

3
9
5
6
0
0
0
(5

2
4
9
0
0
0
)

1
8
(0
.0
0
)

3
4
2
.6
0
0
(5
1
2
.3
0
0
)

3
5
5
6
0
0
0
(5

2
0
9
0
0
0
)

M
A
N
N

a
2
7

1
2
6

1
2
6
(0
.0
0
)

0
.0
3
6
(0
.0
4
2
)

6
2
7
6
0
(7
2
0
6
0
)

1
2
6
(0
.0
0
)

1
.1
9
1
(1
.7
2
5
)

6
2
7
6
0
(9
0
6
5
0
)

M
A
N
N

a
4
5

3
4
5

3
4
4
(0
.2
9
)

-
-

3
4
4
(0
.2
9
)

-
-

M
A
N
N

a
8
1

1
0
9
9

1
0
9
8
(0
.0
9
)

-
-

1
0
9
8
(0
.0
9
)

-
-

b
ro
ck

2
0
0
2

1
2

1
2
(0
.0
0
)

0
.0
7
1
(0
.1
0
2
)

8
8
7
9
0
(1
2
9
6
6
0
)

1
2
(0
.0
0
)

8
.2
0
6
(2
0
.0
6
9
)

4
2
3
7
0
(1
0
6
0
9
0
)

b
ro
ck

2
0
0
4

1
7

1
7
(0
.0
0
)

0
.1
4
1
(0
.2
6
5
)

2
3
3
1
0
0
(4
0
6
7
0
0
)

1
7
(0
.0
0
)

2
9
.1
2
0
(5
2
.6
2
0
)

2
2
8
3
0
0
(3
5
6
5
0
0
)

b
ro
ck

4
0
0
2

2
9

2
9
(0
.0
0
)

-
-

2
9
(0
.0
0
)

-
-

b
ro
ck

4
0
0
4

3
3

3
3
(0
.0
0
)

1
.4
0
6
(2
.6
6
0
)

1
7
6
8
0
0
0
(3

2
2
3
3
0
0
)

3
3
(0
.0
0
)

4
4
.2
4
0
(7
0
.0
9
0
)

1
7
4
1
0
0
0
(2

7
4
9
5
0
0
)

b
ro
ck

8
0
0
2

2
4

2
1
(1
4
.2
9
)

-
-

2
1
(1
4
.2
9
)

-
-

b
ro
ck

8
0
0
4

2
6

2
1
(2
3
.8
1
)

-
-

2
1
(2
3
.8
1
)

-
-

g
en

2
0
0
p
0
.9

4
4

4
4

4
4
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

1
4
2
5
(2

2
0
4
)

4
4
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

1
3
9
3
(1

9
8
2
)

g
en

2
0
0
p
0
.9

5
5

5
5

5
5
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

6
1
3
(6
6
8
)

5
5
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

5
9
6
(5
6
2
)

g
en

4
0
0
p
0
.9

5
5

5
5

5
5
(0
.0
0
)

0
.0
1
6
(0
.0
2
0
)

2
2
2
7
0
(3
7
9
5
0
)

5
5
(0
.0
0
)

0
.7
1
1
(1
.2
4
5
)

2
1
5
4
0
(3
0
5
7
2
)

g
en

4
0
0
p
0
.9

6
5

6
5

6
5
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

1
5
7
4
(1

6
0
1
)

6
5
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

1
2
9
4
(1

1
3
2
)

g
en

4
0
0
p
0
.9

7
5

7
5

7
5
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

1
6
1
4
(1

2
8
5
)

7
5
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

1
5
7
6
(1

1
8
4
)

h
a
m
m
in
g
8
-4

1
6

1
6
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

1
6
(0
)

1
6
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

1
6
(0
)

h
a
m
m
in
g
1
0
-4

4
0

4
0
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

5
2
9
(1

0
4
4
)

4
0
(0
.0
0
)

0
.0
0
1
(0
.0
1
0
)

5
2
7
(8
4
8
)

k
el
le
r4

1
1

1
1
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

1
1
(1
4
)

1
1
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

1
1
(4
)

k
el
le
r5

2
7

2
7
(0
.0
0
)

0
.0
0
1
(0
.0
1
0
)

2
0
0
7
(4

4
5
8
)

2
7
(0
.0
0
)

0
.0
1
1
(0
.2
5
0
)

2
7
2
7
(4

9
7
6
)

k
el
le
r6

5
9

5
9
(0
.0
0
)

2
.5
0
1
(4
.5
5
6
)

5
9
4
9
0
0
(1

1
1
1
9
0
0
)

5
9
(0
.0
0
)

4
2
.1
3
0
(8
6
.1
0
0
)

1
1
2
3
0
0
0
(2

0
6
4
9
0
0
)

p
h
a
t3
0
0
-1

8
8
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

1
0
2
(1
6
4
)

8
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

1
1
6
(2
2
7
)

p
h
a
t3
0
0
-2

2
5

2
5
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

2
9
(2
4
)

2
5
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

2
7
(2
0
)

p
h
a
t3
0
0
-3

3
6

3
6
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

4
1
8
(6
9
5
)

3
6
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

5
6
0
(8
7
9
)

p
h
a
t7
0
0
-1

1
1

1
1
(0
.0
0
)

0
.0
0
1
(0
.0
1
0
)

7
2
5
(1

6
3
6
)

1
1
(0
.0
0
)

0
.2
0
1
(0
.4
1
2
)

1
2
9
8
(1

9
3
8
)

p
h
a
t7
0
0
-2

4
4

4
4
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

1
1
2
(8
3
)

4
4
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

1
1
2
(8
3
)

p
h
a
t7
0
0
-3

6
2

6
2
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

2
1
2
(2
7
3
)

6
2
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

2
1
9
(2
8
2
)

p
h
a
t1
5
0
0
-1

1
2

1
2
(0
.0
0
)

0
.5
0
1
(0
.8
0
0
)

1
1
3
6
0
0
(1
8
9
5
2
0
)

1
2
(0
.0
0
)

3
3
.3
2
0
(4
9
.9
3
0
)

1
5
7
8
0
0
(2
2
6
2
5
0
)

p
h
a
t1
5
0
0
-2

6
5

6
5
(0
.0
0
)

0
.0
0
1
(0
.0
1
0
)

2
5
0
(9
9
5
)

6
5
(0
.0
0
)

0
.0
0
1
(0
.0
1
0
)

3
4
0
(1

2
8
8
)

p
h
a
t1
5
0
0
-3

9
4

9
4
(0
.0
0
)

0
.0
0
1
(0
.0
1
0
)

1
2
5
3
(1

4
9
8
)

9
4
(0
.0
0
)

0
.0
0
6
(0
.0
1
0
)

1
1
8
9
(1

6
9
9
)

T
a
b

le
5.

2:
A

lg
or

it
h

m
co

m
p

a
ri

so
n

on
a

se
le

ct
ed

su
b

-s
et

of
th

e
D

IM
A

C
S

b
en

ch
m

ar
k

in
st

an
ce

s.
T

h
e

ta
b

le
sh

ow
s

th
e

m
ed

ia
n

so
lu

ti
on

q
u

a
li

ty
a
n

d
w

it
h

in
b

ra
ck

et
s

th
e

p
er

ce
n
ta

ge
d

ev
ia

ti
on

fr
om

th
e

b
es

t
k
n

ow
n

,
as

w
el

l
as

C
P

U
se

co
n

d
s

an
d

st
ep

s
m

ed
ia

n
s

w
it

h
IQ

R

w
it

h
in

b
ra

ck
et

s.

89

5.4. CONCLUSIONS CHAPTER 5. ANALYSIS

 0
 5

 10
 15

 20
 25

 30
 35

 40
 45

 50

T

 1

 10

 100

 1000

 10000

 100000

R

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 8e+06

 9e+06

 1e+07

(a) DIMACS C500.9 instance.

 0
 5

 10
 15

 20
 25

 30
 35

 40
 45

 50

T

 1

 10

 100

 1000

 10000

 100000

R

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 8e+06

 9e+06

 1e+07

(b) DIMACS C4000.5 instance.

 0
 5

 10
 15

 20
 25

 30
 35

 40
 45

 50
T

 1

 10

 100

 1000

 10000

 100000

R

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 8e+06

 9e+06

 1e+07

(c) DIMACS brock200 2 instance.

 0
 5

 10
 15

 20
 25

 30
 35

 40
 45

 50
T

 1

 10

 100

 1000

 10000

 100000

R

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 8e+06

 9e+06

 1e+07

(d) DIMACS keller5 instance.

 0
 5

 10
 15

 20
 25

 30
 35

 40
 45

 50
T

 1

 10

 100

 1000

 10000

 100000

R

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 8e+06

 9e+06

 1e+07

(e) DIMACS MANN a27 instance.

 0
 5

 10
 15

 20
 25

 30
 35

 40
 45

 50
T

 1

 10

 100

 1000

 10000

 100000

R

 9e+06

 9.1e+06

 9.2e+06

 9.3e+06

 9.4e+06

 9.5e+06

 9.6e+06

 9.7e+06

 9.8e+06

 9.9e+06

 1e+07

(f) DIMACS MANN a45 instance.

Figure 5.26: Mean number of iteration to find the optimum solution for different instances. The

mean is over 10 runs of 10,000,000 iterations with fixed values for the tabu tenure and restarts

frequencies.

90

Part II

Applications

Chapter 6

Cooperating Local Search

The analysis of the search dynamics and the improved RLS–LTM imple-

mentation described in the previous chapters led naturally to the design of

a new hyper-heuristic for the MC. Moreover the relatively recent advent of

multi-core computers as the standard desktop (and laptop) computer has

strengthened the case for the development of parallel hyper-heuristics. This

chapter presents the results the research that lead to the design and imple-

mentation of Cooperating Local Search (CLS) for the MC problem [55].

6.1 Introduction

From the recent literature, it emerges clearly that there is no single heuristic

for the MC problem which dominates on all benchmark instances. Even

looking at the two state-of-the art meta-heuristics that have been analysed

in the previous chapters, the DIMACS benchmark dataset can be clearly

split in families that are solved quickly either by DLS–MC or by RLS–LTM.

As explicitly stated in [54] and shown experimentally in Chapter 2,

DLS–MC is quite sensitive to the penalty delay parameter which depends

on the instance family and sometimes has to be tuned to sub-family of

instances. This issue has been recently rectified by Phased Local Search

(PLS) [53]. PLS is a meta-heuristic which goes through three phases during

93

6.1. INTRODUCTION CHAPTER 6. CLS

the search: a greedy vertex selection phase, a random selection phase, and a

penalty selection phase in which the penalty delay is dynamically adjusted

removing the need for extensive parameter tuning. The performances of

PLS are comparable to those of DLS–MC.

PLS is clearly the first step towards the design of an algorithm that

could perform consistently on all benchmark instances. In fact, by cy-

cling through the Greedy, Random and Penalty phases, it has a larger set

of heuristics which could be effective in solving an heterogeneous set of

instances.

In this chapter we present Cooperating Local Search (CLS) a novel

hyper-heuristic [18] for the MC problem. A Hyper-heuristic is a search

algorithm that automates the process of selecting and combining, or gen-

erating / adapting low level heuristics for the problem at hand. See [21]

for a survey with the most recent developments. Hyper-heuristics can be

classified in two main categories: those that select among a set of avail-

able low level heuristics and those that generate low level heuristics for the

instance at hand. CLS belongs to the first family group.

The relatively recent explosion of availability of multi-core desktop and

laptop computers has made the case for the design of a parallel hyper-

heuristic for the MC problem. In fact, specialised hardware or clusters

of computers are no longer necessary to run a parallel heuristic. On the

contrary the design of a parallel algorithm is necessary to fully exploit the

computational power of these multi-core architectures.

CLS controls several copies of four low level heuristics that are the most

effective for the MC problem. The low level heuristics are run in paral-

lel and are dynamically reallocated depending on the number of available

computing cores and more importantly according to the characteristic of

the instance at hand. During the search the low level heuristics collect

and share information that is exploited to further improve the overall per-

94

CHAPTER 6. CLS 6.2. BENCHMARK INSTANCES

formances. CLS does not depend on exogenous run-time parameters and

therefore requires no tuning phase.

6.2 Analysis of the Characteristics of the Benchmark

Instances

Looking at Table 4.2 in Chapter 4, it is clear that RLS–LTM and DLS–MC

(likewise PLS) can solve effectively all instances of the DIMACS benchmark

sets with the notable exceptions of the brock family for RLS–LTM, and

keller and MANN families for DLS–MC (and analogously for PLS).

By analysing the instance properties, the two characteristics that better

explain the difference in performances are: the size of the plateau areas in

the search space, and the vertex degree distribution.

If the size of the plateau area near optimal cliques is high, then an effec-

tive heuristic must be able to thoroughly explore the search space without

cycling. However this ability could harm the performance on instances

with smaller plateaus.

Vertex degree distribution is the second property that can impact on the

performances of heuristics using the node degree information differently.

A greedy heuristics constructs a clique by selecting the nodes having the

highest degree, an example of such greedy heuristic is RLS–LTM. Such

strategy is effective when the degree distribution of the vertices belonging

to the optimum solution is high relatively to the average degree of the

instance. Even without a greedy selection, the vertices that have a higher

probability to belong to a clique are those with a high degree. Penalty

based algorithm like DLS–MC tend to explore the regions of the search

space with vertices having on average a lower degree. This diversification

strategy is achieved by penalising the nodes that more frequently are part

of maximal solution. The most difficult instances for the Maximum clique

95

6.2. BENCHMARK INSTANCES CHAPTER 6. CLS

appear to be those where the distribution of vertex degrees of the optimum

solution corresponds to the distribution of vertex degrees in the instance.

Taking into consideration the two instance characteristics described

above, one can divide the DIMACS and the BHOSLIB benchmark in-

stances in the the following categories:

• Most DIMACS instance families have optimum solutions that con-

sists in vertices having degree higher than the instance average de-

gree. Such classes of instances (for example the C family) are tackled

effectively by RLS–MC or the greedy phase of PLS.

• A small part of the DIMACS instances (for example the brock fam-

ily) has maximum cliques whose average degree is smaller than the

graph average vertex degree. Those instances are tackled effectively

by penalty based algorithms like DLS–MC or the penalty phase of

PLS.

• A small part of the DIMACS instances (for example the MANN fam-

ily) have very large plateau areas near the optimum solutions. Those

instances are effectively tackled by algorithms (like RLS-MC) that are

able to explore the plateaus while avoiding cycling. In Chapter 5 the

analysis of the repeated configurations encountered by RLS is an indi-

rect confirmation of the large plateaus encountered by the algorithm

in the MANN family.

• The BHOSLIB instances have optimum solutions with a vertex degree

distribution that closely matches that of the whole instance. These

instances are hard both for greedy and penalty based heuristics.

In order to be effective on all DIMACS and BHOSLIB instances, a parallel

hyper-heuristic should be composed of low level heuristics that focus the

search towards set of vertices with different degree distributions. Moreover

96

CHAPTER 6. CLS 6.3. THE CLS HYPER-HEURISTIC

the heuristics should be able to deal efficiently with the presence or lack of

large plateau areas.

6.3 The CLS Hyper-heuristic

CLS is a parallel hyper-heuristic for the MC problem that selects, combines

and co-ordinates four low level heuristics

• Greedy Search (GREEDY) which constructs the current solution by

selecting randomly among the candidate nodes having highest degree.

This heuristic performs limited plateau search.

• Level Search (LEVEL) which selects the candidates vertices among

those having highest degree and performs extensive plateau search.

• Penalty Search (PENALTY), which selects the candidate vertices among

those having minimum penalty. This low level heuristics focusses on

lower degree nodes.

• Focus Search (FOCUS) which focuses on a vertex degree for the current

iteration and selects vertices trying to build a clique with an average

degree as close as possible to the degree currently on focus. This

allows to focus and change the bias dynamically during the search.

The CLS hyper-heuristics goes through two phases. In the first one,

at the beginning of the search, the low level heuristics are assigned to

computing cores following a predefined schedule. After a short period of

time, CLS uses the feedback from the GREEDY heuristic to reconfigure the

allocation of the low level heuristics. This reallocation tries to maximise the

performances by increasing the number of copies of the LEVEL heuristics

in case GREEDY heuristic detected large plateau areas.

97

6.3. THE CLS HYPER-HEURISTIC CHAPTER 6. CLS

GREEDY

PENALTY

FOCUS

LEVEL

Vertex Penalty

Values

Average Vertex Degree

Average Vertex Degree

Figure 6.1: Sharing of information between the CLS heuristics.

Figure 6.1 depicts how the information is shared among the low level

heuristics. PENALTY heuristic uses the penalties accumulated by GREEDY.

Moreover, by measuring the average vertex degree of the configurations

visited by GREEDY and PENALTY, the FOCUS heuristic is directed toward

areas of the search space not already covered by other low level heuristics.

CLS pseudocode is depicted in Listing 6.1. It alternates between an iter-

ative improvement phase (lines 7–11) and a plateau search phase (lines 12–

14). In the former a maximal solution is constructed by repeatedly ex-

panding the current configuration C by selecting a candidate vertex from

PossibleAdd. In the latter, a vertex from OneMissing is swapped with a

non adjacent vertex in C. When PossibleAdd = ∅ and OneMissing = ∅ the

search terminates for GREEDY, FOCUS and PENALTY. LEVEL continues

with an extensive plateau search using a reactive tabu heuristic to pre-

vent cycling. At this point C is perturbed and the search restarted from a

different initial configuration.

The different low level heuristic define their behaviour in the Select,

Continue, and Restart functions:

• Select:

– GREEDY and LEVEL select uniformly random from the vertices

having highest degree in the subgraph induced by PossibleAdd.

When selecting from the OneMissing set, GREEDY selects a ver-

98

CHAPTER 6. CLS 6.3. THE CLS HYPER-HEURISTIC

Listing 6.1: CLS hyper-heuristic pseudo-code.

1 Input: integer tcs (target clique size); max-time

2 Output: Clique of cardinality tcs or ‘failed’

3 function CLS (tcs, max-time)

4 C ← random v ∈ V
5 do

6 do

7 while PossibleAdd 6= ∅ do

8 v ← Select(PossibleAdd)

9 C ← C ∪ {v}
10 if |C| = tcs

11 return C

12 if OneMissing 6= ∅
13 v ← Select (OneMissing)

14 C ← [C ∪ {v}] \ {i}, where {i} = C \N(v)

15 while Continue

16 Restart

17 while time < max-time

18 return ’failed ’

99

6.3. THE CLS HYPER-HEURISTIC CHAPTER 6. CLS

tex uniformly random among those having highest degree, while

LEVEL selects the vertex which causes the maximum increase in

|PossibleAdd| (like in RLS–MC).

– FOCUS selects uniformly random among the candidate vertices in

whose degree is the closest to vertex degree which is on focus.

– PENALTY selects uniformly random among the candidate vertices

having minimum vertex penalty.

• Continue: GREEDY, FOCUS and PENALTY will continue to explore

the search landscape until PossibleAdd is empty, and OneMissing is

empty or contains vertices that have already been in C (like in DLS–

MC). LEVEL keeps exploring the search space by extensive plateau

search using a reactive tabu mechanism to avoid cycles (like RLS–

MC).

• Restart: Perturbation is performed by adding a random vertex v ∈
V to C and removing from C all vertices not connected to v. This

allows to have bigger cliques immediately after the restart.

The four low level heuristics coordinated by CLS have been devised to be

complementary and share useful information during the search. The design

rationale and the information shared by each heuristic is the following:

• GREEDY: This heuristic is particularly effective on the instances where

the search space is rugged, i.e., it has a small amount of plateau areas,

and the maximum clique has a high average vertex degree. Moreover

it collects penalties that are passed to the PENALTY heuristic forcing

it to explore a part of the search space not already visited by GREEDY.

• LEVEL: This heuristic uses a greedy selection method like GREEDY

but it also performs an extensive plateau search using a reactive tabu

technique to detect and avoid cycles.

100

CHAPTER 6. CLS 6.3. THE CLS HYPER-HEURISTIC

• PENALTY: This heuristic uses a selection method that exploits the

penalties created by GREEDY. This diversification is useful when the

maximum clique has few or even no vertices in common with the

current solution C. In these cases without penalties even with a

strong restart there is the risk that the heuristic guidance function

of GREEDY leads the hyper heuristic towards the same solutions vis-

ited before the restart. In Section 5.2.1 we have analysed one of the

problems that could arise when restart are not able to diversify prop-

erly.

• FOCUS: This heuristic targets areas of the search space that the three

other heuristics tend to ignore. The average vertex degrees of the

configurations visited by GREEDY and PENALTY is fed to FOCUS so

that it focuses on constructing cliques having an average vertex degree

which is different from the ones produced by GREEDY and PENALTY.

The focus average degree is updated at each Restart.

The initial allocation of heuristics to cpu cores is shown in Table 6.1. All

heuristics run in parallel until a specified solution quality is matched or the

specified maximum amount of selections is reached. After after 1, 000, 000

selections GREEDY determines if there are large plateau areas and forces

the hyper-heuristic to reallocate the low level heuristics to a Plateau or

Non-Plateau configuration. These configurations remain fixed until the

end of the search.

We have developed two versions of CLS, both implemented in C / C++.

The first requires LAM / MPI ([19], [59]) software to run it on either a single

machine or a cluster of machines. In the latter case, all computing cores of

each machine in the cluster can be exploited by CLS. All low level heuristics

are independent and communicate asynchronously by means of the MPI

library. The second implementation is based on pthreads on Unix and can

101

6.4. EMPIRICAL PERFORMANCE RESULTS CHAPTER 6. CLS

Number of Core CLS Configuration

available cores Number Initial Plateau Non-Plateau

1 1 GREEDY, PENALTY GREEDY, PENALTY GREEDY, PENALTY

LEVEL, FOCUS LEVEL, FOCUS LEVEL, FOCUS

2 1 GREEDY, PENALTY GREEDY, PENALTY GREEDY, PENALTY

2 LEVEL, FOCUS LEVEL, FOCUS LEVEL, FOCUS

3 1 GREEDY, PENALTY GREEDY, PENALTY GREEDY, PENALTY

2 LEVEL LEVEL, FOCUS LEVEL, FOCUS

3 FOCUS LEVEL FOCUS

4 1 GREEDY GREEDY, PENALTY GREEDY, PENALTY

2 PENALTY LEVEL, FOCUS LEVEL, FOCUS

3 LEVEL LEVEL FOCUS

4 FOCUS LEVEL FOCUS

> 4 1 GREEDY GREEDY, PENALTY GREEDY, PENALTY

2 PENALTY LEVEL, FOCUS LEVEL, FOCUS

3 LEVEL LEVEL FOCUS

4 FOCUS LEVEL FOCUS

> 4 FOCUS LEVEL FOCUS

Table 6.1: Mappings of CLS heuristics to cores. Heuristics sharing a core run with the same

priority.

be run on a single multicore machine. Also in this case all heuristics run

independently and communicate by means of a synchronised shared data

structure. All results presented in the next sections are from the LAM /

MPI version. Both implementations have comparable performances.

6.4 Empirical Performance Results

We evaluate the performances of CLS on the Second DIMACS Implemen-

tation Challenge (1992–1993) 1, which has been used throughout the lit-

erature to assess the performances of MC heuristics.

We also assess the performances by means of the Benchmarks with Hid-

den Optimum Solutions for Graph problems2 (BHOSLIB). The MC in-

stances in this benchmark are transformed from satisfiable SAT instances

of Model RB. This allows to hide an exact solution in a large random graph,

with the hidden maximum clique having a vertex degree distribution which

contains many low and high degree vertices (see Figure 6.2).

The empirical assessment of the performances has been performed on

1http://dimacs.rutgers.edu/Challenges/
2http://www.nlsde.buaa.edu.cn/∼kexu/benchmarks/graph-benchmarks.htm

102

CHAPTER 6. CLS 6.4. EMPIRICAL PERFORMANCE RESULTS

a machine that executing the DIMACS Maximum Clique Machine Bench-

mark3 requires 0.24 CPU seconds for r300.5, 1.49 CPU seconds for r400.5

and 5.65 CPU seconds for r500.5. On this reference machine four out of

the eight computing cores have been allocated to CLS.

6.4.1 CLS Performance

To evaluate the performance on both benchmark sets, we run the CLS

hyper-heuristic for 100 independent trials on each instance. The trials

terminate after a fixed number of iterations or when the optimum solution

for the instance is reached. In case no such value is known, the best

putative maximum clique in literature is used as target clique size. There

are three exception for this second case namely C2000.9, MANN a45 and

MANN a81. In these cases we let CLS run for a longer amount of iterations

for 10 trials in order to give an estimate of the hardness of these instances

for CLS.

Table 6.2 shows the results of CLS on the DIMACS benchmark for those

instances in which it required more than 0.01 seconds to find the optimum

with a 100% success rate. CLS is able to solve all 80 benchmark instances

with a 100% success rate for all the 80 DIMACS instances with an average

runtime of less than 1 second for 72 of the 80 instances. For 3 of the

remaining 8 instances, having at least 800 vertices, the runtime is greater

than 10 seconds.

On the C2000.9 instance CLS found maximal cliques of size 78 for all

100 trials. The best solution known in literature has size 80 [33]. On the

MANN a45 instance CLS finds cliques of size 344 on 100 trials while [37]

and [13] are able to find cliques of size 345. The same can be said with and

MANN a81 where all 100 trials achieved 1098 as compared to 1099 [41].

CLS is also able to find the maximal clique with 79 vertices in C2000.9

3dmclique, ftp://dimacs.rutgers.edu in directory /pub/dsj/clique

103

6.4. EMPIRICAL PERFORMANCE RESULTS CHAPTER 6. CLS

PLS CLS PLS / RLS CLS
Instance ω

Success CPU(s) Success RT
Instance ω

Success CPU(s) Success RT

brock200 2 12 100 0.01 100 0.01 c500.9 57 100 0.07 100 0.04

brock200 4 17 100 0.03 100 0.05 dsjc1000.5 15 100 0.18 100 0.05

brock400 1 27 100 0.42 100 0.44 gen400 p0.9 55 55 100 0.10 100 0.04

brock400 2 29 100 0.15 100 0.11 keller6* 59 100 7.16 100 1.19

brock400 3 31 100 0.07 100 0.05 MANN a27 126 100 0.01 100 0.03

brock400 4 33 100 0.04 100 0.03 MANN a45* 344 100 35.24 100 20.03

brock800 1 23 100 11.73 100 2.63 MANN a81* 1098 100 64.64 100 27.04

brock800 2 24 100 9.51 100 2.25 p hat1500-1 12 100 1.28 100 0.48

brock800 3 25 100 5.88 100 1.64 san1000 15 100 1.84 100 0.53

brock800 4 26 100 2.55 100 0.76 san400 0.5 1 13 100 0.02 100 0.01

c1000.9 68 100 0.73 100 0.18 san400 0.7 1 40 100 0.02 100 0.01

c2000.5 16 100 0.28 100 0.09 san400 0.7 2 30 100 0.04 100 0.01

c2000.9 78 100 43.96 100 9.47 san400 0.7 3 22 100 0.07 100 0.06

c4000.5 18 100 58.31 100 17.73

Table 6.2: CLS performance results, averaged over 100 successful independent trials, for the

DIMACS benchmark instances where the average run time was greater than 0.01 seconds. For

all the remaining 53 DIMACS benchmark instances, CLS achieved a 100% success rate in less

than 0.01 seconds. The ‘CPU(s)’ column is the PLS CPU time in seconds from [53] scaled to

the reference machine while ‘RT’ is the CLS run-time in seconds. The CPU(s) column for the

instances followed by ‘*’ correspond to RLS–LTM run on the reference machine.

in 10 out of 10 trials with an average run time of 273.71 seconds. It finds

the clique of 80 vertex in C2000.9 in 1 of 10 trials with a maximum run time

allowed for each trial of 2150 seconds. The 345 vertex clique is found for

MANN a45 in 1 out of 10 trials with a maximum runtime of 2000 seconds

per trial. For the MANN a81 instance, CLS is able to find the clique with

1099 nodes in 1 out of 10 trials with a maximum runtime of 5800 seconds

for each trial.

Table 6.3 shows the results averaged over 100 trials on the BHOSLIB

benchmark instances. The only other algorithm in literature that has been

tested on the same benchmark is PLS [53]. The performances of PLS are

reported in Table 6.3.

Looking at the most difficult instances for which both CLS and PLS are

able to find the optimum solution on all 100 trials, CLS outperforms PLS

even if we divide the CPU seconds of PLS by four, which is the number

of cores utilised by PLS. More importantly CLS is able to solve more

instances with a 100% success rate. For the frb100-40 instance, CLS is able

104

CHAPTER 6. CLS 6.4. EMPIRICAL PERFORMANCE RESULTS

PLS CLS PLS CLS
Instance ω

Success CPU(s) Success RT
Instance ω

Success CPU(s) Success RT FT

30-15-1 30 100 0.05 100 0.01 50-23-1 50 72 803.75 100 114.51

30-15-2 30 100 0.07 100 0.01 50-23-2 50 45 900.27 99 270.07 1510

30-15-3 30 100 0.53 100 0.17 50-23-3 50 16 800.53 36 589.38 1420

30-15-4 30 100 0.03 100 0.00 50-23-4 50 100 97.20 100 11.49

30-15-5 30 100 0.25 100 0.12 50-23-5 50 99 335.38 100 36.19

35-17-1 35 100 3.20 100 1.81 53-24-1 53 6 1312.48 19 683.61 1550

35-17-2 35 100 0.95 100 0.30 53-24-2 53 23 1190.64 100 291.86

35-17-3 35 100 0.20 100 0.04 53-24-3 53 66 911.44 100 211.66

35-17-4 35 100 4.34 100 1.01 53-24-4 53 46 1094.08 90 469.25 1650

35-17-5 35 100 0.61 100 0.19 53-24-5 53 85 753.22 100 55.19

40-19-1 40 100 2.55 100 0.55 56-25-1 56 12 953.34 94 613.35 1800

40-19-2 40 100 41.59 100 11.20 56-25-2 56 6 1308.64 87 562.36 1700

40-19-3 40 100 3.71 100 0.83 56-25-3 56 8 1135.08 97 478.29 1800

40-19-4 40 100 17.72 100 8.69 56-25-4 56 68 1002.42 100 97.60

40-19-5 40 100 76.67 100 12.49 56-25-5 56 81 837.18 100 246.55

45-21-1 45 100 31.79 100 7.28 59-26-1 59 0 −− 29 751.56 1600

45-21-2 45 100 63.50 100 12.74 59-26-2 59 0 −− 6 774.57 1900

45-21-3 45 100 318.27 100 17.04 59-26-3 59 6 1482.88 46 804.35 1850

45-21-4 45 100 45.57 100 8.42 59-26-4 59 5 1571.94 33 780.22 1900

45-21-5 45 100 83.70 100 10.98 59-26-5 59 78 917.24 100 153.65

Table 6.3: CLS performance results, averaged over 100 successful independent trials, for the

BHOSLIB benchmark instances. The ‘CPU(s)’ column is the PLS CPU time in seconds from [53]

scaled to the reference machine while ‘RT’ is the CLS run-time in seconds. The ‘FT’ column

denotes the maximum number of seconds allocated to CLS.

SAT 2004 CLS SAT 2004 CLS
Instance

Results Success
Instance

Results Success

frb40-19-1 Solved by 28 solvers 100 frb53-24-1 Unsolved 19

frb40-19-2 Solved by 27 solvers 100 frb53-24-2 Unsolved 100

frb45-21-1 Solved by 8 solvers 100 frb56-25-1 Unsolved 94

frb45-21-2 Solved by 5 solvers 100 frb56-25-2 Unsolved 87

frb50-23-1 Solved by 1 solver 100 frb59-26-1 Unsolved 29

frb50-23-2 Solved by 1 solver 99 frb59-26-2 Unsolved 6

Table 6.4: CLS performance compared to 55 SAT solvers of the SAT Competition 2004.

to find a clique of size 97 (optimum has size 100). Some corresponding SAT

instances were used in the SAT Competition 2004. The results of CLS are

an improvement also over the 55 SAT solvers partecipating whose results

are reported in Table 6.4.

These results demonstrate that CLS achieves excellent and robust per-

formance on both the DIMACS and the BHOSLIB benchmark datasets.

See [54, 53] for comparisons among other state-of-the-art heuristics.

Since we run CLS on four cores in all the test of our empirical assess-

ment, we present in Table 6.5 a comparison with all possible combina-

tions of RLS and PLS running in parallel with different random initiali-

105

6.4. EMPIRICAL PERFORMANCE RESULTS CHAPTER 6. CLS

Instance RRRR RRRP RRPP RPPP PPPP CLS GREEDY LEVEL FOCUS PENALTY

C2000.9 9.55 11.40 12.12 23.49 49.30 9.47 58 24 18 0

C4000.5 9.38 9.49 10.03 16.53 20.54 17.73 26 53 16 5

MANN a45 18.22 14.16 18.71 18.45 22.78 20.03 0 85 0 15

MANN a81 15.07 19.88 28.58 54.49 216.75 27.04 0 95 0 5

keller6 0.43 0.40 0.63 1.18 413.15 1.19 0 97 3 0

brock800 1 −− 8.94 5.18 4.01 2.81 2.63 0 0 1 99

brock800 2 −− 5.71 3.30 2.23 1.64 2.25 0 0 2 98

frb53-24-2 −− −− −− −− −− 291.86 2 2 96 0

frb56-25-4 −− −− −− −− −− 97.60 1 11 88 0

Table 6.5: Average run-times, over 100 successful trials for CLS and all possible combinations

of parallel copies of RLS and PLS. An entry of −− means that the combination of runners is

not able to solve the instance successfully on 100 runs. The last four columns denote the low

level heuristic which actually solved the instance in the 100 runs.

sations. The comparison is performed on the most challenging DIMACS

and BHOSLIB instances. The combination of RLS and PLS runners is

stopped once one of the copies of the heuristics finds the optimum solu-

tion. It is clear from the table that no combination of single heuristics is

able to outperform CLS on any of the selected instances.

The results presented in Table 6.5 can be explained looking at right-

most columns of the table. For example, MANN a81 is almost always

solved by RLS or a LEVEL heuristic. After 1,000,000 selections, CLS re-

configures to a Plateau configuration with 2.5 cores dedicated to the LEVEL

heuristic; therefore, the performances should lie be between a RRPP and

a RRRP combination. Since CLS has also the startup time before the

re-configuration, the performances are more similar to RRPP than RRRP.

On the BHOSLIB selected instances there is no combination of RLS and

PLS which solves the problem in all 100 runs. The lack of the FOCUS

heuristic, which is the most effective on these hard instances, is the reason

for the poorer performances.

Figure 6.3 shows the average vertex degree distributions of the candidate

solutions encountered by GREEDY, PENALTY, and FOCUS. The combined

curve of GREEDY and PENALTY has two peaks corresponding to the bias

towards low degree vertices of the penalty based heuristic and to the high

106

CHAPTER 6. CLS 6.4. EMPIRICAL PERFORMANCE RESULTS

940 960 980 1000 1020 1040 1060
0

1

2

3

4

5
frb50−23−1

C
o
u
n
t

940 960 980 1000 1020 1040 1060
0

5

10

15

20

25

Vertex Degree

C
o
u
n
t

Figure 6.2: For frb50-23-1, the top graph shows, how frequently a vertex with a specific degree

appeared in a maximal solution. The dashed line indicates the average vertex degree of the

maximum clique. Minimum and maximum vertex degree are 941 and 1065 respectively. The

distribution of the 1150 vertices is shown in the graph on the bottom.

107

6.4. EMPIRICAL PERFORMANCE RESULTS CHAPTER 6. CLS

940 960 980 1000 1020 1040 1060
10

0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

frb50−23−1

C
o
u
n
t

Vertex Degree

GS + PS
FS

Figure 6.3: For frb50-23-1, the frequencies of the average vertex degree of maximal cliques

encountered by GREEDY + PENALTY (GS + PS) and FOCUS.

108

CHAPTER 6. CLS 6.5. CONCLUSIONS

Cores
Instance

1 2 3 4 5 6 7 8

MANN a81 141.35 78.81 31.30 27.04 19.09 17.56 11.31 10.88

frb56-25-4 881.00 406.19 158.61 97.60 76.45 60.75 52.25 48.89

Table 6.6: CLS average run time in seconds averaged over 100 trials for two hard instances from

the DIMACS and BHOSLIB benchmark datasets.

degree vertices of the greedy heuristic. Using the information received

from GREEDY and PENALTY, the FOCUS heuristic is able to fill the gap

between the two peaks. The average degree of the optimum solution for

this instance (see Figure 6.2) lies exactly in this gap.

Table 6.6 shows the speedup of CLS on two representative instances of

the DIMACS and BHOSLIB benchmarks. These two instances have been

chosen because they are hard instances and represent the two extreme

cases: one is tackled effectively by a Plateau configuration (MANN a81)

while the other (frb56-25-4) by a Non-Plateau configuration. The table

shows how the performance of CLS improves when more cores are avail-

able. In the case of the MANN a81 instance, the LEVEL heuristic which is

essential for effectively solving the instance, goes from one quarter of a CPU

core in the single core configuration up to 6.5 cores in the eight cores con-

figuration. Conversely in the case of the frb56-25-4 where the fundamental

heuristic is FOCUS a Non-Plateau configurations allocates one quarter of

a core in the single core version up to 6.5 cores in the eight cores version.

6.5 Conclusions

This chapter presented CLS, a new hyper-heuristic for the MC problem

that improves over the state-of-the-art gaining unprecedented robustness

and consistency on the DIMACS and BHOSLIB benchmark datasets.

CLS combines in parallel four low level heuristics which are effective on

a heterogeneous set of instances. Moreover communication between the

109

6.5. CONCLUSIONS CHAPTER 6. CLS

low level heuristics allows to have truly complementary heuristics that fo-

cus on different parts of the search space. The first heuristic, GREEDY

(based on PLS greedy phase), uses the vertex degrees to guide the search

towards candidate solutions having a high average vertex degree. The

second heuristic, LEVEL (based on RLS–LTM), is characterised by exten-

sive plateau searches and uses a reactive tabu mechanism to avoid cycling

through the same configurations. Also LEVEL uses the vertex degree to

guide the search towards candidate solutions having a high vertex degree.

The PENALTY heuristics (based on PLS penalty phase) uses the penalty

values collected by GREEDY to bias the search towards solutions having

a low average vertex degree. Information on the average vertex degree of

the maximal configurations visited by GREEDY and PENALTY is regularly

passed to FOCUS: a fourth low level heuristic which explores areas of the

search space that GREEDY and PENALTY tend to ignore. In addition, af-

ter an initial explorative phase, CLS dynamically reallocates copies of the

four heuristics to CPU cores, in order to ensure that the most effective mix

of low level heuristics for the instance at hand is used. The decision of the

most appropriate mix is driven by the analysis of the size of plateau areas

performed by GREEDY during the explorative phase.

CLS performance is comparable and sometimes improves over single

heuristic optimised for specific instances of the DIMACS benchmark dataset.

Moreover the overall robustness and consistency on both DIMACS and

BHOSLIB instances clearly demonstrates the effectiveness of the underly-

ing paradigm of combining dynamic local search heuristics. The technique

can also provide a basis for the design of novel hyper-heuristics for weighted

maximum cliques and other related optimisation problems.

110

Chapter 7

Supervised Clustering

As an application of the study described in the previous chapters, we tackle

the problem of predicting the set of residues of a protein that are involved

into the binding of metal ions and more generally participating in active

sites. We propose in this chapter a supervised clustering method [46] that

achieves substantial improvements over a previous structured-output ap-

proach for metal binding site prediction. Significant improvements over

the current state-of-the-art are also achieved in predicting catalytic sites

from 3D structure in enzymes.

7.1 Introduction

In order to accomplish their biological function, proteins often interact with

different types of external molecules such as metal ions, prosthetic groups

and various organic compounds. Metalloproteins [15] bind metal ions in

order to stabilise their three-dimensional structure, induce conformational

changes or assist protein function, such as electron transfer in cytochromes.

Metal binding sites are characterised by the set of protein atoms directly

involved in binding the ion, called ligands, and the overall geometry of the

site. Furthermore, the same protein often binds multiple ions, with typical

numbers ranging from one to four. Enzymes are a fundamental type of

111

7.1. INTRODUCTION CHAPTER 7. SUPERVISED CLUSTERING

proteins which accelerate chemical processes within a cell, by complexing

with the substrate and thus lowering the activation energy of the reaction.

Functional residues play various roles in the catalytic process, such as do-

nating electrons or polarising cofactor bonds [6]. Solely binding substrates,

cofactors or metals, which are often involved in enzymatic reactions, does

not characterise a residue as catalytic according to the Catalytic Site Atlas

(CSA) [52].

Being able to predict metal binding sites as well as enzyme active sites

in novel proteins is a fundamental step in understanding their functioning.

Both problems have been mostly addressed as a binary classification task

at the residue level: given a protein sequence, predict for each residue

whether it is involved in a metal binding site [49], [57] or an active site [61],

[24] respectively. Most existing approaches for modelling the full metal

binding geometry assume knowledge of the 3D structure of the protein [27,

3] and focus on detecting apo-proteins, i.e. proteins solved without the

ion. A recent attempt [29] to predict metal binding geometry from sequence

formulates the problem as a structured-output task. The proposed solution

is a search algorithm greedily assigning residues to ions (or a default nil ion

if predicted as free) guided by a scoring function trained to rank correct

moves higher than incorrect ones. The algorithm is guaranteed to find

the solution maximising the overall score, given the matroid structure of

the problem. However, the scoring function is learned from examples and

there is no guarantee that it correctly approximates the true underlying

function.

We take here a different viewpoint and formalise the problem as a

distance-based supervised clustering task [7]. Given a set of training in-

stances, we first learn a similarity function predicting whether two residues

jointly participate in a certain metal or active site. The learned similarity

measure is subsequently fed to a maximum-weight clique algorithm collect-

112

CHAPTER 7. SUPERVISED CLUSTERING 7.2. FORMALISATION

ing sets of residues maximising their pairwise similarities. The algorithm

has a number of desirable features including automatic selection of the

number of clusters, natural handling of overlapping clusters, and scalabil-

ity to large datasets. Experimental results show a substantial improvement

over the structured-output approach for metal binding geometry predic-

tion. Significant improvements over the state-of-the-art are also obtained

for active site prediction from protein 3D structure, where both node and

edge weights are employed in order to exploit both local predictions and

spatial constraints.

7.2 Problem Description and Formalisation

As already formalised in Chapter 1, let us consider a protein as a string

in Σ∗ over a small alphabet Σ. We want to learn a function that given a

string s ∈ Σ∗ maps it to a partial clustering Y , i.e., a set of disjoint subsets

of the positions in s, where each subset contains the elements in the string

that belong to the same active site, or that cooperate in the binding of a

metal ion. More formally, if the length of the string is l, we define the set

of all possible partial clusterings of the l indices in the following way:

Cl =

{
Y ⊆ P({1, . . . , l}) :

⋃
Y ⊆ {1, . . . , l}∧

(A,B ∈ Y A 6= B ⇒ A ∩B = ∅) ∧ ∅ /∈ Y
}
.

The set Cl is finite since Cl ⊆ P(P({1, . . . , l})). We define the set C as:

C =
⋃
l∈N

Cl.

Given an example set of known mappings:

S ⊆ Σ∗ × C,

113

7.2. FORMALISATION CHAPTER 7. SUPERVISED CLUSTERING

such that each string in the example set S has a mapping to only one clus-

tering Y :

[(s,Y), (s′,Y ′) ∈ S ∧ Y 6= Y ′]⇒ s 6= s′, (s,Y) ∈ S ⇒ Y ∈ C|s|,

we want to learn a function:

f : Σ∗ → C, (7.1)

that extends the map defined by S:

(s,Y) ∈ S ⇒ f(s) = Y , f(s) ∈ C|s|.

We split the problem of predicting with structured output in two parts:

first we learn a pairwise similarity measure on the elements in each cluster

with a binary classifier, then we use it to construct a edge-weighted graph

and mine the clusters as weighted MC. We use as positive examples all pairs

of elements which belong to the same cluster, and as negative examples all

other pairs, obtaining the training set S ′:

S ′ ⊆ Σ∗ × N× N× {±1},

where

(s, u, v, y) ∈ S ′ ⇔
u, v ∈ {1, . . . , |s|}

∧∃Y ∈ C|s| : [(s,Y) ∈ S ∧ (y = +1⇔ u 6= v ∧ ∃C ∈ Y {u, v} ∈ C)].

We use S ′ to train a support vector machine SVM : Σ∗ ×N×N→ R that

given a string s and pair u, v returns a score that is a confidence that u, v

belong to the same cluster. In our case the score is the distance from the

margin of the trained classifier.

Given a string s ∈ Σ∗, we use the trained SVM margin function to build

a weighted graph Gs = (V s, Es, F s), where V s = {1, . . . , |s|}, F s(u, v) =

114

CHAPTER 7. SUPERVISED CLUSTERING 7.2. FORMALISATION

t(SVM(s, u, v)) with t being a scaling function in a suitable range, and

Es(esu,v) being the adjacency matrix where:

esu,v =

1 if SVM(s, u, v) ≥ θ

0 otherwise

and θ is a suitable threshold value. By construction, it is clear that cliques

with the highest weight in Gs correspond to the desired clusters in s. The

threshold θ accounts for errors in the prediction of the weights on the edges.

Back to the biological details, given a protein sequence as a string of

characters in the alphabet of 20 amino acids, the problem consists of: de-

tecting the number of binding or catalytic sites; collecting for each site

the set of protein residues involved. Metal binding sites tend to be rather

specific in terms of possible ligands with cysteine (C), histidine (H), aspar-

tic (D) and glutamic (E) acids being by far the most common ligands in

transition metals. Cysteines and histidines are the vast majority of ligands

in structural sites, while aspartic and glutamic acids are quite common

in proteins and their relative binding frequency is thus very limited [49].

A more complex situation can be observed with alkali and alkaline-earth

metals, which often bind proteins through the oxygen in backbone car-

bonyl groups. Catalytic propensity is even less specific, given the number

of different roles that a residue can play within the active site. Figure 7.1

reports the catalytic propensity of the whole set of amino acids, show-

ing that only few of them can be safely discarded. Previous results [24]

on the simpler binary classification task actually indicate that keeping all

candidates produces slightly better results on average: the predictor occa-

sionally manages to correctly predict rare amino acids as catalytic without

significantly affecting precision.

Concerning the number of sites, metalloproteins usually contain between

one and three sites, sometimes four and occasionally more. The coordina-

115

7.2. FORMALISATION CHAPTER 7. SUPERVISED CLUSTERING

Figure 7.1: Histogram of the catalytic propensities of the residues in the experimental dataset

HA superfamily (see experimental section for details).

tion number of a bound ion, i.e. the total number of its ligands, varies

from one to about eight depending on the metal. Values between two and

four are the most frequent for transition metals. Figure 7.2 shows the

metal binding geometry of the equine herpes virus-1 (PDB code 1CHC),

where candidate ligands in L = {C,H} not binding any ion are marked

in lightest shade of grey. Contrarily total metal binding sites, enzymes

tend to have a single catalytic site involving a larger number of residues,

ranging from 1 to 9 in the experimental dataset we used. Multiple ac-

tive sites can actually be found in some multimeric proteins, such as the

3-isopropylmalate dehydrogenase (PDB code 1A05). Figure 7.3 shows the

active site of cloroperoxidase T (PDB code 1A7U and UniProtKB entry

O31168) with seven residues corresponding to seven different amino acids

involved. Note that proximity in sequence only partially relates to involve-

ment in the same site, as the three-dimensional arrangement of the protein

116

CHAPTER 7. SUPERVISED CLUSTERING 7.2. FORMALISATION

MATVAERCPICLEDPSNYSMALPCLHAFCYVC ITRWIRQNPTCPLCKVPVESVVHTIESDSEFGDQLI

ZN1 ZN2 nil

Figure 7.2: Sequence of the equine herpes virus-1 (PDB code 1CHC). Residues composing the

metal binding sites are highlighted in different shades of grey.

MPFITVGQEN STSIDLYYED HGAGQPVVLI HGFPLSGHSW 40

ERQSAALLDA GYRVITYDRR GFGQSSQPTT GYDYDTFAAD 80

LNTVLETLDL QDAVLVGFSM GTGEVARYVS SYGTARIAKV 120

AFLASLEPFL LKTDDNPDGA APKEFFDGIV AAVKADRYAF 160

YTGFFNDFYN LDENLGTRIS EEAVRNSWNT AASGGFFAAA 200

AAPTTWYTDF RADIPRIDVP ALILHGTGDR TLPIENTARV 240

FHKALPSAEY VEVEGAPHGL LWTHAEEVNT ALLAFLAK

Figure 7.3: Sequence of the cloroperoxidase T (PDB code 1A7U and UniProtKB entry O31168).

Residues composing the active site are highlighted in bold.

can bring quite distant residues closer. However, additional features con-

tribute to characterise target residues, such as conservation profile and

residue neighbourhood.

Given these premises, we formulate the problem as a supervised clus-

tering task. We provide a common formulation for both metal binding

site and active site prediction. Slightly abusing terminology, we refer to

residues involved in either type of site as ligands. While the two problems

are treated as separate tasks in the experiments, they are indeed highly

correlated as metal binding sites are often part of a larger active site. We

are planning to extend our work to predict a structured set of sites in order

to jointly address these problems.

A protein sequence is represented as the set x of its candidate ligands,

117

7.3. WEIGHTED CLIQUES CHAPTER 7. SUPERVISED CLUSTERING

that is residues belonging to L. The output y for the sequence is a subset

of the powerset of x, i.e. y ⊆ P(x). Outputs for proteins in Figures 7.2

and 7.3, for instance, would be represented as {{c1, c2, c4, c5}, {c3, h1, c6, c7}}
and {f2, s8,m2, a14, p7, d18, h6} respectively, assuming L is equal to {C,H}
for metal binding sites and the whole set of amino acids for catalytic sites.

The desired output is thus a partial clustering of residues, where only pre-

dicted ligands are reported. Furthermore, at least for metal binding sites,

clusters can overlap, as the same residue can simultaneously bind two ions,

as happens for glutamic and aspartic acids with their two side-chain oxy-

gen atoms. For comparison with previous approaches, experiments only

deal with non-overlapping clusters, but our approach can naturally handle

overlaps, as described in the next section.

7.3 Distance-based Clustering with Maximum-weight

Cliques

A training set of labelled proteins can be easily obtained from experimen-

tally solved protein structures and catalytic annotations, and a supervised

clustering approach can thus be pursued. We opt for a distance-based

supervised approach [7], where training instances are used to learn an ap-

propriate distance (or similarity) measure to be later used in the clustering.

The learning stage simply consists of training a pairwise classification func-

tion F (xi, xj) predicting for each pair of residues xi and xj in x whether

they belong to the same site. We employ a pairwise support vector machine

(SVM) as the underlying classification function. More complex alternatives

can be pursued, as will be detailed in the Discussion.

Given a learned similarity function F , we represent a set x as a weighted

graph, removing edges whose weight is below a certain threshold θ and

rescaling remaining weights to be positive. A maximum-weight clique al-

118

CHAPTER 7. SUPERVISED CLUSTERING 7.4. WEIGHTED CLIQUES

gorithm is then run on the graph in order to return a set of maximal cliques,

which correspond to the predicted sites. The rationale for the approach is

that given a reasonable pairwise similarity measure, the algorithm should

isolate few densely connected components which correspond to the desired

solution while discarding most of the nodes in the graph. The algorithm

can be asked to return a single large cluster, as typical of the active site

prediction task, or a set of possibly overlapping maximal cliques, as for the

metal binding site case, where the number of clusters cannot be specified

a priori.

7.4 The Maximum-weight Clique Algorithm

In the following we introduce our heuristic algorithm. We describe it for

weighted edges only. Its extension for dealing with weights on both nodes

and edges, as well as the case where weights are averaged on the number

of nodes, is straightforward.

Given a set of residues R, in the previous section we defined a learned

symmetric similarity function F that maps each pair of residues onto a

measure of likelihood that they belong to the same cluster. Given a positive

threshold value θ, we define a weighted undirected graph as a triplet Gθ ≡
(R,Eθ, F) where the vertex set R is composed by the residues, the edge

set Eθ is defined by vertex pairs whose similarity function F is above the

threshold θ

Eθ =
{
{u, v} ⊂ R : u 6= v ∧ F (u, v) ≥ θ

}
,

and the weight of every edge e ∈ Eθ is given by F (e). From now on,

subscript θ shall be removed for clarity.

The Edge-Weighted Maximum Clique Problem requires to find the clique

119

7.4. WEIGHTED CLIQUES CHAPTER 7. SUPERVISED CLUSTERING

in R that maximises the sum of weights:

R′max = arg max
R′⊆R

R′ clique in G

∑
u,v∈R′

F (u, v).

Being a generalisation of the Maximum Clique Problem, the edge-weighted

version is also NP-hard. In this chapter, we introduce the Reactive Local

Search optimisation heuristic for Weighted Maximum Clique finding (RLS-

WMC, in the following WMC for short), based on the RLS–MC heuristic

for Maximum Clique finding [13], with a novel dynamic behaviour adapted

from the one described in Chapter 4.

The reaction technique of the WMC heuristic, described below, offers an

effective diversification mechanism that provides a thorough exploration of

the search space, and is therefore capable of dealing with problem instances

for which exhaustive enumeration is infeasible.

The WMC heuristic, whose main section is shown in Listing 7.1, is

a stochastic local search (SLS) algorithm. In SLS algorithms for the MC

problem, a ‘current’ configuration (subset of vertices) R̄ ⊆ R is maintained

throughout the search, being initially the empty set (line 4), and is modified

by incremental moves consisting in the addition or in the removal of a

node (lines 8–11). At every step the ‘current’ configuration is required to

be a clique in the original graph (the system generally moves only within

feasible solutions), therefore the addition move will only consider nodes

that maintain the clique property, i.e., that are connected to all nodes in

R̄. Such set of eligible nodes is called P in Listing 7.1, and is maintained

incrementally during the search.

The WMC heuristic completes the generic SLS framework by defining

the criteria by which the incremental moves are selected. In particular, a

parameter T, called prohibition period, is set and a vector (Lv)v∈R, storing

the last iteration at which node v was added or removed to the current

clique R̄, is initialised (line 4) and maintained (line 13). Nodes that have

120

CHAPTER 7. SUPERVISED CLUSTERING 7.4. WEIGHTED CLIQUES

Listing 7.1: Main section of WMC; bookkeeping operations such as best configuration main-

tenance are not shown.

1

Input Meaning

R,E, FE Edge-weighted undirected graph

Variable Meaning

t Current iteration index

T Prohibition period

Lv Last iteration when v ∈ R was added/removed

R̄ Current configuration

P List of nodes that can be added to R̄

w Clique weight

v Chosen node

a Action to be taken (Add or Drop)

2 function WMC(R,E, FE)

3 Lv ← −∞ for v ∈ R
4 t← 0; R̄← ∅;P ← R;w ← 0

5 repeat

6 UpdateProhibition(R̄, T)

7 (v, a)← ChooseNode(L, R̄, P, T, t, E, FE)

8 if a = Add

9 R̄← R̄ ∪ {v}
10 else

11 R̄← R̄ \ {v}
12 recompute P and w incrementally

13 Lv ← t

14 if too many iterations without improvements

15 Restart()

16 t← t+ 1

17 until termination condition is met

18 return best R̄ found

121

7.4. WEIGHTED CLIQUES CHAPTER 7. SUPERVISED CLUSTERING

been used in the last T iterations, called prohibited, are not considered for

addition or removal. This mechanism, known as Tabu Search, prevents the

system from getting stuck in local optima and encourages diversification.

The move selection routine ChooseNode, whose purpose is the choice

of the next node to be added or removed, is outlined in Listing 7.2. Array

(Lv) is used to check prohibitions. Since more than one non-prohibited

node is usually eligible for addition to R̄, other selection criteria intervene

in order to maximise the chance that a large clique will be obtained, for

instance by choosing the node that maximises the average edge weight

(line 3), with ties broken randomly (line 8). If no nodes are eligible for

insertion in the current configuration R̄ (either because there are no more

nodes connected to all nodes in R̄, or all of them are prohibited), then a

non-prohibited node chosen within R̄ is selected for removal (lines 5–7).

The value of the prohibition period T is critical for the good behaviour

of the algorithm. Small values of T tend to be insufficient for the system

to efficiently escape local optima, while high values highly reduce the flex-

ibility of the search procedure by reducing the number of eligible nodes.

Rather than relying on an ideal value of T as a function of the graph size

and of its density, WMC determines it dynamically (line 6 of Listing 7.1)

by calling a function, UpdateProhibition, that detects anomalous sit-

uations where a change would benefit the search. To achieve this, recent

configurations are stored in a hash table; if a configuration is visited (i.e.,

becomes the current one) too often, then the T parameter is increased in

order to improve the differentiation capabilities of the algorithm. If, on

the other hand, no configuration is revisited for a given time, T is reduced.

Further details on the dynamic adaptation of T have been described in

Chapter 5.

Finally, a Restart mechanism is provided (lines 14–15): if the best

solution is not improved in a while, then the algorithm is restarted, so that

122

CHAPTER 7. SUPERVISED CLUSTERING 7.4. WEIGHTED CLIQUES

Listing 7.2: ChooseNode chooses the non-prohibited node having the best chance to lead to

better cliques in the future; if no nodes can be added, it picks one for removal.

1

Input Meaning

Lv Last iteration when node v was added/removed

R̄ Current configuration

P List of nodes that can be added to R̄

T Prohibition period

t Current iteration index

E,FE Edges and weights

Variable Meaning

S Set of nodes eligible for adding or removing

Output Meaning

v Chosen node

a Action to be taken (Add or Drop)

2 function ChooseNode(L, R̄, P, T, t, E, FE)

3 S ←
{
w ∈ P :

Lw > t− T ∧
∧w maximises future expectations

}
4 a← Add

5 if S = ∅

6 S ←
{
w ∈ R̄ :

Li > t− T ∧
∧w maximises future expectations

}
7 a← Drop

8 Pick v ∈ S
9 return (v, a)

123

7.5. EXPERIMENTAL RESULTS CHAPTER 7. SUPERVISED CLUSTERING

new regions of the search space are visited. The RLS-WMC algorithm

maintains the weight of the current configuration R̄ by incrementally up-

dating it at every move.

For the purposes of this chapter, cliques within the expected size are

stored along with their weight, and are post-processed in order to determine

which ones represent the correct clusters. Bookkeeping operations such as

the computation of the clique weight, storage of the visited cliques and of

the best clique are not detailed here.

7.5 Experimental results

7.5.1 Predicting geometry of metal binding sites

We tested our method on the task of predicting metal binding sites in met-

alloproteins. We used the same setting described in [29], with 30 random

80/20 train/test splits. We encoded pairs of residues by concatenating their

features vectors, thus comparing residues according to their order in the

sequence. This option was shown [29] to provide better results with respect

to alternative approaches such as averaged pairwise comparisons, possibly

because sequential ordering is relevant in characterising sites. Pairs were

labeled positive if both residues bind to the same metal ion and negative

otherwise, and an SVM was used as the pairwise classifier.

All parameters concerning the SVM and the maximum weighted clique

algorithm described below were selected by an inner-fold cross-validation

on the training set of the first split and kept fixed for all remaining folds.

As a result of this model selection phase, we employed a second degree

polynomial kernel and a cost factor j = 3 outweighing error on positive with

respect to negative examples. In building the weighted graph, we discarded

edges having weight smaller than -0.9, and rescaled remaining weights to

have positive values. Since the maximum-clique algorithms accepts only

124

CHAPTER 7. SUPERVISED CLUSTERING 7.5. EXPERIMENTAL RESULTS

positive integer weights, we scaled the margins mapping them to unsigned

integers in the following way: m′ = bm ∗ 10pc − θ, where m is the margin

outputted by the SVM, p = 3 is the number of decimals to be considered,

and θ is a threshold that allows to embed also negative margins (up to

−0.9) in the graph. The θ parameter has been learned in the inner-fold

cross-validation. The graph is not completely connected, and can actually

be very sparse, since edges for negative margins m′ are not reported in the

graph. The weight of each clique was averaged over the number of its nodes.

Now, the maximum clique algorithm, enumerates all cliques of size up to 4,

which average weight is maximal. The choice of the model describing the

most relatively heavy solution, has also been performed in the inner-fold

cross-validation. The model used in the experiments averages the overall

weight of a configuration R̄ by dividing it by its size:

FE(R̄) =

∑
{u,v}∈R̄ FE({u, v})

|R̄|
.

By doing so, the algorithm outputs not the heaviest cliques, but the heav-

iest relative to the their size. These solutions are maximal, which means

that any other possible node added would decrement the average weight of

the solution. For example, among the alternative models, one could also

average the solution by dividing the total weight by the number of edges:

FE(R̄) =

∑
{u,v}∈R̄ FE({u, v})(

|R̄|
2

) ;

but this would give a negative bias to bigger cliques. The algorithm re-

turned the set of non-overlapping solutions with at most four residues. We

made no further selection of the returned solutions, except for limiting the

number of solutions to 4. We present here a set of measures including

those reported in [29]. Note that we are not trying to predict the identity

125

7.5. EXPERIMENTAL RESULTS CHAPTER 7. SUPERVISED CLUSTERING

SVM + WMC [29]
sites

PE RE FE PE RE FE

any 79± 3• 59± 5• 62± 5• 66± 5 52± 4 53± 4

1 84± 4 73± 7 73± 6 66± 7 58± 6 57± 6

2 70± 8 33± 5 42± 6 67± 7 44± 9 48± 9

3 70± 15 22± 8 32± 11 69± 19 24± 13 32± 12

4 42± 30 16± 13 23± 18 42± 31 20± 19 26± 22

PS RS FS PS RS FS

any 42± 7• 30± 7• 31± 7• 20± 7 17± 6 16± 6

1 50± 8 41± 9 41± 9 25± 10 22± 8 22± 8

2 25± 14 8± 7 11± 9 15± 9 7± 7 7± 7

3 23± 32 4± 7 5± 11 0± 2 0± 1 0± 2

4 9± 21 3± 6 5± 9 2± 7 1± 5 1± 5

PB RB FB PB RB FB

any 88± 3• 63± 5 67± 4• 79± 4 64± 6 64± 4

1 84± 4 73± 7 73± 6 74± 5 68± 7 65± 6

2 92± 8 45± 6 58± 7 88± 5 60± 11 66± 10

3 100± 0 34± 12 49± 15 98± 5 38± 22 50± 20

4 67± 45 25± 18 36± 25 65± 44 32± 28 40± 31

Table 7.1: Comparison on the metalloproteins dataset. The means and standard deviations

are computed on the 30 random splits. A bullet indicates that the performance differences are

statistically significant (p < 0.05).

of an ion (e.g. the ‘first’ zinc, the ‘second’ iron or so), but only the subset

of residues which jointly bind the same one. Thus, when evaluating the

quality of a certain clustering, we assign each ion to the cluster containing

the highest number of its true ligands (if any). An equivalent approach

was employed in [29]. PE, RE, and FE are the precision, recall, and F1 of

the correct assignment between a ligand and a metal ion. PS, RS, and FS

are the precision, recall, and F1 of the correct prediction of binding sites,

i.e., how many sites are entirely correctly predicted over the total number

of sites in the chain. PB, RB, and FB are the precision, recall, and F1 of

the correct prediction of the bonding state of the residues in the chain,

i.e. regardless of which ion they actually bind. Tables 7.1 and 7.2 report

the mean and standard deviation of these performance measures averaged

over the 30 splits. The breakdown of these measures for proteins binding

different numbers of metal ions (i.e. from 1 to 4) is also reported.

Our SVM+WMC approach achieves significant improvements over the

previous structured-output approach in edge, site and bonding state pre-

diction, as measured by paired Wilcoxon tests (p < 0.05).

126

CHAPTER 7. SUPERVISED CLUSTERING 7.5. EXPERIMENTAL RESULTS

sites

any 1 2 3 4

SVM + WMC 27± 6• 40± 9 1± 4 0± 0 0± 0

[29] 14± 6 20± 8 3± 7 0± 0 0± 0

Table 7.2: Experimental results on the metalloproteins dataset. AG is the accuracy at a chain

level, i.e., the number of entire configurations correctly predicted. A bullet indicates that the

performance differences are statistically significant (p < 0.05).

The most significative improvement over [29] lies in the number of sites

entirely correctly predicted. The overall PS, RS, and FS, is consistently

better for any number of metal ions in the protein.

7.5.2 Active sites prediction

We applied our approach to the prediction of active sites in enzymes. We

focused on the HA superfamily dataset [22], the largest dataset employed

as benchmark in the literature. Prediction of catalytic residues was pre-

viously addressed starting from either sequence or structural information.

We considered both settings, relying on previous state-of-the-art results

by a simple support vector machine exploiting residue structural neigh-

bourhood [24]. The detailed description of the features employed for both

sequence-based and structure-based predictions can be found in this pre-

vious work. Given that most proteins contain a single active site, and the

labelling found in the CSA [52] does not include information on different

sites, we considered a single site prediction setting. Common examples

of multiple active sites are those of polymeric proteins in which a pair of

specular sites is found at the interface of two identical chains. We plan to

extract this additional information from known 3D structures in order to

fully characterise overall geometry in an extended version of the work.

For sequence-based prediction, we employed a setting analogous to the

metal binding site case, with pairs of residues represented as ordered pairs

of feature vectors from [24]. Following [24], we employed a linear kernel

127

7.5. EXPERIMENTAL RESULTS CHAPTER 7. SUPERVISED CLUSTERING

[24] SVM+WMC

P R F1 P R F1

seq. 20 ± 4 59 ± 7 25 ± 4 22 ± 2 41 ± 4 27 ± 3 •
struct. 23 ± 3 65 ± 6 28 ± 3 35 ± 7 43 ± 7 34 ± 6 •

Table 7.3: Comparison of the results (performance ± st.d.) obtained in active site prediction.

A bullet indicates that the performance differences are statistically significant (p < 0.05).

and a 6 to 1 subsampling of negative (i.e. non-catalytic) residues, resulting

in a 61/1 proportion of negative vs. positive residue pairs. Following the

site size distribution in training instances, we fixed the maximum size of

cliques to six.

For structure-based prediction, we took a slightly different approach,

since we could also exploit the spatial information provided by the protein

structure. We modified the maximum-weight clique algorithm in order

to consider both edge and node weights. Edge weights were in this case

inverse Euclidean distances between corresponding residues, pruned for

distances over 14 Å. This threshold was chosen according to the distribution

of distances between catalytic residues in the training set. The idea of

constraining candidate solutions based on their pairwise 3D distances was

actually used in the MBG prediction approach by Babor et al. [3] as an

initial filtering stage. However the 3D constraint is much less stringent in

catalytic sites, as shown by the quite large threshold (14 Å) we derived

from data. Node weights encoded catalytic propensity as predicted by the

state-of-the-art support vector machine predictor described in [24]. Node

and edge weights were normalised in order to fall within the same range of

values.

Experimental comparisons with the local approach in [24] are shown in

Table 7.3, where the protein-level precision, recall and F1 measures aver-

aged across folds are reported.

The SVM+WMC approach achieves significant improvements at p <

0.05 in both sequence-based and structure-based predictions according to

128

CHAPTER 7. SUPERVISED CLUSTERING 7.6. CONCLUSIONS

a paired Wilcoxon test. Note that the average protein-level F1 of the

local predictor is quite lower than the F1 computed from average protein-

level precision and recall. This happens because the local SVM produces

rather unbalanced predictions, either maximising recall with low precision

or (more rarely) vice versa, and for a number of proteins it outputs com-

pletely wrong predictions. The SVM+WMC approach is much more stable

and balanced in its predictions. Note also that the improvement in F1 is

not simply due to a better choice of the decision threshold with respect to

the standard local approach. The best F1 value which could be obtained

with local sequence-based predictions by optimising the threshold (on the

test set) is just 0.256. Results from the structured-based prediction sig-

nificantly improve the current state-of-the-art thanks to an effective use of

the spatial geometry information. In particular, the algorithm finds cliques

that discard many of the classifier false positives.

7.6 Conclusions

We address the problem of predicting geometry of structural and func-

tional sites in proteins by casting it into a supervised clustering task. We

propose a novel distance-based supervised clustering approach in which

the learned pairwise distance is employed to turn instances into weighted

graphs. A maximum-weight clique algorithm is executed on the graph

to return a small set of densely connected components corresponding to

candidate sites. Supervised clustering is an active area of research and a

number of different approaches have been proposed in the literature [7].

We use a very simple distance learning approach based on pairwise classi-

fication of instances. The maximum-weight clique clustering algorithm is

however independent of this stage, and can be easily integrated in more

complex supervised clustering approaches such as the structured-output

129

7.6. CONCLUSIONS CHAPTER 7. SUPERVISED CLUSTERING

formulation proposed in [28].

The algorithm substantially improves over the only existing approach in

predicting geometry of metal binding sites from sequence alone. Focusing

on small components with large overall weights, our algorithm is more

robust to a possibly incorrect bonding state prediction. On the other hand,

the structured-output approach in [29] is capable of exploiting the full

relational structure of partial solutions in order to evaluate them, instead

of being limited to networks of pairwise interactions. Indeed, such approach

is superior when bonding state information is assumed to be known. We are

planning to extend our algorithm in order to deal with clique-based weights,

thus combining some of the advantages of the two formulations: the ability

of a structured-output approach to better model the quality of candidate

solutions, and the robustness of stochastic local search strategies in dealing

with a scoring function which only approximates conditions guaranteeing

greedy optimality [29].

Significant improvements over the state-of-the-art are also obtained in

predicting active sites from 3D structure. The algorithm naturally handles

the lack of knowledge in the number of clusters, partial clusterings with

many outliers and overlapping clusters. We are planning to extend it to

return a structured set of solutions, such as metal binding sites as parts of

wider active sites, a quite common situation in enzymes.

130

Chapter 8

Conclusions

This thesis introduces analysis tools for improving the current state of the

art of heuristics for the Maximum Clique (MC) problem. The analysis

focussed on algorithmic building blocks of increasing complexity in order

to understand their contribution in solving instances of the MC problem.

In Chapter 2, the experimental analysis on the two random graph classes

show clearly that the plateau search is necessary to find the maximum

clique in hard instances and in any case to reduce the average number of

iterations. The complexity added to the algorithms by the plateau search

does not increase the cost per iteration. On the contrary, especially for the

algorithms using the dynamic degree for candidate selections, it reduces

the CPU time per iteration. Moreover degree-based heuristics are more

effective in more structured random instances, and are responsible for per-

formance deterioration on pure random graphs. In general, the penalty

heuristic is less robust than the prohibition heuristic, depending on the

appropriate selection of the penalty value. Comparing more complex al-

gorithms, RLS and RLS–StatDegree, always perform better then the

other algorithms considered. The cost per iteration of RLS–StatDegree

is bigger than the one of DLS–MC, although of the same order of magni-

tude. But the fewer steps needed on average to find the best cliques make

131

CHAPTER 8. CONCLUSIONS

RLS the best choice for the two graph models considered in the analysis.

As a useful complement to the analytical work, in Chapter 3 we have

presented a set of techniques for the visualisation of search landscapes

which can support the researcher’s intuition on the behaviour of a SLS

algorithm applied to combinatorial optimisation problems. The visualisa-

tion also renders explicitly the geographic metaphors used by researchers

to describe areas of interest of the landscape. The examples presented

in this chapter are small instances useful to show how some features of

the landscapes are rendered with the proposed techniques. The approx-

imation techniques presented in Section 3.4 allow for the representation

of instances otherwise intractable for the complete representation, while

maintaining the features of the complete enumeration. Current research is

aimed towards more scalable layout algorithms with no exogenous param-

eters that can lay out landscapes with more than few thousand solutions

and tens of thousands of relations among them.

The analysis of the algorithmic building blocks described above tells

just part of the story. A comprehensive work on algorithmic efficiency

needs also considering low level implementation details, choices of data

structures, programming languages, and knowledge on how the compiler

optimises the code. The results of the investigation in Chapter 4 show that

a careful implementation of the data-structures considering also operating

system services like memory allocation achieves a significant reduction of

the CPU time per iteration. The implementation of the supporting data

structures of the new version has many improvements in the management of

the dynamic memory and in the storage of the search history. Furthermore

some algorithmic improvements to the original RLS have been introduced

leading to the final RLS–LTM proposal. RLS–LTM achieves an order

of magnitude difference in CPU times for graphs of reasonable sizes, and

the difference appears to grow with the problem dimension. This results

132

CHAPTER 8. CONCLUSIONS

drastically changes the overall competitiveness of the Reactive Local Search

technique.

In Chapter 5, a more focussed and extensive analysis of the Reactive

Tabu Search (RTS) algorithm and of the datasets reveals that for almost

every instance of the DIMACS benchmark set, there is a narrow range

of good values that can be assumed by the prohibition parameter T of a

Tabu Search heuristics. Outside this narrow range, the time needed by

the heuristic to converge to good quality solutions increases significantly.

The only notable exception are the MANN instances. A Robust Tabu

Search centred around a correct setting for T performs as well as RLS.

This result implies that at least on the DIMACS benchmark instances,

there is no measurable effect showing that RLS effectively reacts to the

local characteristic of the search space. The speedup in RLS–LTM can be

ascribed to the faster restarts that do not need to clear the search history.

Avoiding to clear the search history is one of the causes for the explosion of

the tabu tenure parameter. Another cause is the bias in the node selection

during the restarts. The fact that RLS–LTM also never resets the tabu

tenure during the restarts makes the parameter explosion more noticeable.

Knowing the reason for the speedup and for the explosion of the tabu

tenure, we implement RLS–fast, which is as efficient as RLS–LTM and

does not need for an upper bound for the tabu tenure. The performances

of RLS–fast are comparable to RLS–fix an algorithm that knows a priori

the best tabu tenure for every instance in the DIMACS benchmark. This

result shows how RLS is able to quickly converge to the best tabu tenure

for the instance at hand with very little overhead.

The analysis of the search dynamics and the improved RLS implemen-

tation, led naturally to the design of a new hyper-heuristic for the MC. In

Chapter 6 we present Cooperating Local Search (CLS): a parallel hyper-

heuristic that improves the state-of-the-art for the MC problem on the

133

CHAPTER 8. CONCLUSIONS

DIMACS and BHOSLIB benchmark instances. CLS combines in parallel

four low level heuristics which are effective on a heterogeneous set of in-

stances. After an initial explorative phase, CLS dynamically reallocates

copies of the four heuristics to CPU cores, in order to ensure that the

most effective mix of low level heuristics for the instance at hand is used.

Moreover, communication between the low level heuristics allows to have

truly complementary heuristics that focus on different parts of the search

space. CLS performance is comparable and sometimes improves over sin-

gle heuristic optimised for specific instances of the DIMACS benchmark

dataset. The overall robustness and consistency on both DIMACS and

BHOSLIB instances clearly demonstrates the effectiveness of the underly-

ing paradigm of combining dynamic local search heuristics. The technique

can also provide a basis for the design of novel hyper-heuristics for weighted

maximum cliques and other related optimisation problems.

As an application of the study presented in this thesis, in Chapter 7

we address the problem of predicting geometry of structural and func-

tional sites in proteins by casting it into a supervised clustering task. We

propose a novel distance-based supervised clustering approach in which

the learned pairwise distance is employed to turn instances into weighted

graphs. A maximum-weight clique algorithm is executed on the graph

to return a small set of densely connected components corresponding to

candidate sites. The algorithm substantially improves over the only exist-

ing approach in predicting geometry of metal binding sites from sequence

alone. Focusing on small components with large overall weights, our al-

gorithm is more robust to a possibly incorrect bonding state prediction.

On the other hand, the structured-output approach in [29] is capable of

exploiting the full relational structure of partial solutions in order to eval-

uate them, instead of being limited to networks of pairwise interactions.

Significant improvements over the state-of-the-art are also obtained in pre-

134

CHAPTER 8. CONCLUSIONS

dicting active sites from 3D structure. The algorithm naturally handles

the lack of knowledge in the number of clusters, partial clusterings with

many outliers and overlapping clusters. We are planning to extend it to

return a structured set of solutions, such as metal binding sites as parts of

wider active sites, a quite common situation in enzymes.

Although the work in this thesis has been very focussed and applied on a

narrow class of algorithms for a single combinatorial optimisation problem,

the insights gained from the analysis are much more general. Understand-

ing the reasons behind the performances of single algorithmic build blocks

helps not only in designing new algorithms for the problem at hand, but

also for different, even unrelated problems. For example, knowing the

bias of algorithmic components towards solutions having particular prop-

erties helps in designing hyper-heuristics or portfolio of techniques able

to thoroughly explore the search space. The hyper-heuristic described in

Chapter 6 goes exactly in this direction. In fact CLS is composed of low

level heuristics that, thanks to information exchanges among them, can

explore the search space looking for solutions with different average vertex

degree, diversifying efficiently the search. Even more importantly the in-

sight on the behaviour of the algorithmic building blocks is so important

that, without it, it would be impossible to design the FOCUS heuristic

that overcomes the limitation of the other building blocks, and is of ex-

treme importance for solving particular classes of hard instances for the

MC problem. The same can be said for the reallocation of heuristics to

cores: without a proper knowledge of the extent and efficiency in explor-

ing plateau areas, no informed decision about the characteristics of the

instance, and consequently the best mix of heuristics to tackle it, could

be taken. Researchers are becoming increasingly convinced that no sin-

gle heuristic can solve efficiently all classes of instances of a combinatorial

optimisation problem, therefore more effective solvers must have different

135

CHAPTER 8. CONCLUSIONS

algorithmic components to be selected and coordinated or generated for

the instance at hand.

Understanding the role and performances of the building block helps in

building better meta-heuristics and hyper-heuristics. But to design new

and better building blocks one has to understand the reason behind their

performance. While in Chapter 2 the performance of every building block

was studied as a whole and the insights gained in such analysis applied

in Chapter 4, in Chapter 5 we present a more fine-grained analysis. This

latter analysis helps, for example, to understand the reason behind the

tabu tenure explosion in RLS–LTM or the impact of a greedy selection

of a seeding node in a restart on the overall search diversification. Hav-

ing these insights could lead to the design of algorithms having the same

performances of RLS without the burden of the complexity of managing

a history of the configurations visited or, on the contrary, it could lead

to the design of an algorithm that uses even more search history to make

informed decisions on the amount of diversification in the restarts for the

specific instance being optimised. There is no right or wrong answer, there

are just fine-grained components that need to be carefully crafted and

balanced together for the problem being optimised. This can be done au-

tomatically or manually, but in any case, in our opinion, it can not be done

without the knowledge gained from in-depth analysis, aided by theoretical,

experimental or even visual tools, of each algorithmic component.

136

Bibliography

[1] David Anderson, Emily Anderson, Neal Lesh, Joe Marks, Ken Per-

lin, David Ratajczak, and Kathy Ryall. Human-guided simple search:

combining information visualization and heuristic search. In Proceed-

ings of the 1999 workshop on new paradigms in information visualiza-

tion and manipulation in conjunction with the eighth ACM interna-

tional conference on Information and knowledge management, pages

21–25. ACM New York, NY, USA, 1999.

[2] David Pelta Antonio D. Masegosa, Franco Mascia and Mauro Brunato.

Cooperative strategies and reactive search: A hybrid model proposal.

In Proceedings of Learning and Intelligent Optimization Third Interna-

tional Conference, LION 3, Trento, Italy, January 14-18, 2009, pages

206–220, 2009.

[3] Mariana Babor, Sergey Gerzon, Barak Raveh, Vladimir Sobolev, and

Marvin Edelman. Prediction of transition metal-binding sites from

apo protein structures. Proteins, 70(1):208–217, 2008.

[4] Egon Balas and Chang Sung Yu. Finding a maximum clique in an

arbitary graph. SIAM Journal of Computing, 15(4):1054–1068, 1986.

[5] Albert László Barabasi and Réka Albert. Emergence of scaling in

random networks. Science, 286:509–512, October 1999.

137

BIBLIOGRAPHY BIBLIOGRAPHY

[6] Gail J. Bartlett, Craig T. Porter, Neera Borkakoti, and Janet M.

Thornton. Analysis of Catalytic Residues in Enzyme Active Sites.

J Mol Bio 2002, 324(1):105–121, 2002.

[7] Sugato Basu. Semi-supervised clustering: probabilistic models, algo-

rithms and experiments. PhD thesis, University of Texas at Austin,

2005.

[8] Vladimir Batagelj and Ulrik Brandes. Efficient Generation of Large

Random Networks. Physical Review E, 71(3):36113, March 2005.

[9] Roberto Battiti and Alan Albert Bertossi. Greedy, Prohibition, and

Reactive Heuristics for Graph Partitioning. IEEE Transactions on

Computers, 48(4):361–385, April 1999.

[10] Roberto Battiti, Mauro Brunato, and Franco Mascia. Reactive Search

and Intelligent Optimization. Operations research/Computer Science

Interfaces. Springer Verlag, 2008.

[11] Roberto Battiti and Franco Mascia. Reactive and dynamic local search

for max-clique: Engineering effective building blocks. Computers &

Operations Research, 37(3):534–542, March 2010.

[12] Roberto Battiti and Marco Protasi. Reactive Local Search for the

Maximum Clique Problem. Technical Report TR-95-052, ICSI, 1947

Center St.- Suite 600 - Berkeley, California, September 1995.

[13] Roberto Battiti and Marco Protasi. Reactive Local Search for the

Maximum Clique Problem. Algorithmica, 29(4):610–637, 2001.

[14] Roberto Battiti and Giampietro Tecchiolli. The Reactive Tabu Search.

ORSA Journal on Computing, 6(2):126–140, 1994.

[15] Ivano Bertini, Astrid Sigel, and Helmut Sigel, editors. Handbook on

Metalloproteins. Marcel Dekker, New York, 1 edition, 2001.

138

BIBLIOGRAPHY BIBLIOGRAPHY

[16] Mark Brockington and Joseph C. Culberson. Camouflaging indepen-

dent sets in quasi-random graphs. In Cliques, Coloring and Satis-

fiability: Second DIMACS Implementation Challenge, volume 26 of

DIMACS Series. American Mathematical Society, 1996.

[17] Mauro Brunato, Holger H. Hoos, and Roberto Battiti. On Effectively

Finding Maximal Quasi-Cliques. In Proceedings of the 2nd Learning

and Intelligent Optimization Workshop, Trento, 2009. Springer Verlag.

[18] Edmund Burke, Emma Hart, Graham Kendall, JimNewall, Peter Ross,

and Sonia Schulenburg. Hyper-heuristics: an emerging direction in

modern search technology. In Fred Glover, editor, Handbook of Meta-

heuristics, pages 457–474. Kluwer, 2003.

[19] Greg Burns, Raja Daoud, and James Vaigl. LAM: An Open Cluster

Environment for MPI. In Proceedings of Supercomputing Symposium,

pages 379–386, 1994.

[20] Sergiy Butenko and Wilbert E. Wilhelm. Clique-detection models

in computational biochemistry and genomics. European Journal of

Operational Research, 173:1–17, 2005.

[21] Konstantin Chakhlevitch and Peter I. Cowling. Hyper-heuristics: Re-

cent Developments. In C Cotta, M Sevaux, and K Sörensen, editors,

Adaptive and Multilevel Metaheuristics, volume 136 of Studies in Com-

putational Intelligence, pages 3–29. Springer, 2008.

[22] Eric Chea and Dennis R Livesay. How accurate and statistically robust

are catalytic site predictions based on closeness centrality? BMC

Bioinformatics, 8:153+, May 2007.

[23] Marco Chiarandini and Franco Mascia. A hash function breaking

symmetry in partitioning problems and its application to tabu search

139

BIBLIOGRAPHY BIBLIOGRAPHY

for graph coloring. Technical Report 2010-025, IRIDIA, Université

Libre de Bruxelles, Brussels, Belgium, December 2010.

[24] Elisa Cilia and Andrea Passerini. Automatic prediction of catalytic

residues by modeling residue structural neighborhood. BMC Bioin-

formatics, 11(1):115, 2010.

[25] Stephen A. Cook. The complexity of theorem-proving procedures. In

STOC ’71: Proceedings of the third annual ACM symposium on The-

ory of computing, pages 151–158, New York, NY, USA, 1971. ACM.

[26] Peter Eades. A Heuristic for Graph Drawing. Congressus Numeran-

tium, 42:149–160, 1984.

[27] Jessica C. Ebert and Russ B. Altman. Robust recognition of zinc

binding sites in proteins. Protein Sci, 17(1):54–65, 2008.

[28] Thomas Finley and Thorsten Joachims. Supervised Clustering with

Support Vector Machines. In ICML, 2005.

[29] Paolo Frasconi and Andrea Passerini. Predicting the Geometry of

Metal Binding Sites from Protein Sequence. In NIPS, pages 465–472,

2008.

[30] Yaniv Frishman and Ayellet Tal. Online Dynamic Graph Draw-

ing. IEEE Transactions on Visualization and Computer Graphics,

14(4):727–740, July 2008.

[31] Michael R. Garey and David S. Johnson. Computers and Intractability:

A Guide to the Theory of NP-Completeness (Series of Books in the

Mathematical Sciences). W. H. Freeman & Co Ltd, January 1979.

[32] Andrea Grosso, Marco Locatelli, and Federico Della Croce. Combin-

ing swaps and node weights in an adaptive greedy approach for the

maximum clique problem. Journal of Heuristics, 10:135–152, 2004.

140

BIBLIOGRAPHY BIBLIOGRAPHY

[33] Andrea Grosso, Marco Locatelli, and Wayne J. Pullan. Randomness,

plateau search, penalties, restart rules: simple ingredients leading to

very efficient heuristics for the maximum clique problem. Journal of

Heuristics, 2007.

[34] Johan H̊astad. Clique is hard to approximate within n1−ε. In Pro-

ceedings 37th Annual IEEE Symposium on Foundations of Computer

Science, pages 627–636. IEEE Computer Society, 1996.

[35] Aric Hagberg, Dan Schult, and Pieter Swart. No Title, 2004.

[36] Steven Halim and Roland H. C. Yap. Designing and Tuning SLS

through Animation and Graphics: an Extended Walk-through. In

Proceedings of SLS 2007, Engineering Stochastic Local Search Algo-

rithms. Designing, Implementing and Analyzing Effective Heuristics,

International Workshop, Brussels, Belgium, pages 16–30, 2007.

[37] Pierre Hansen, Nenad Mladenović, and Dragan Urošević. Variable

neighborhood search for the maximum clique. Discrete Applied Math-

ematics, 145:117–125, 2004.

[38] Holger H. Hoos and Thomas Stützle. Stochastic Local Search: Foun-

dations and Applications. Morgan Kaufmann Publishers, USA, 2004.

[39] Yongmei Ji, Xing Xu, and Gary D. Stormo. A graph theoretical ap-

proach to predict common RNA secondary structure motifs includ-

ing pseudoknots in unaligned sequences. Bioinformatics, 20(10):1591–

1602, 2004.

[40] Richard M. Karp. Reducibility Among Combinatorial Problems. In

R E Miller and J W Thatcher, editors, Complexity of Computer Com-

putations, pages 85–103. Plenum Press, 1972.

141

BIBLIOGRAPHY BIBLIOGRAPHY

[41] Kengo Katayama, Akihiro Hamamoto, and Hiroyuki Narihisa. Solving

the maximum clique problem by k-opt local search. In Proceedings of

the 2004 ACM Symposium on Applied computing, pages 1021–1025,

2004.

[42] Mario Koppen and Kaori Yoshida. Visualization of Pareto-Sets in Evo-

lutionary Multi-Objective Optimization. Hybrid Intelligent Systems,

2007. HIS 2007. 7th International Conference on, pages 156–161, 2007.

[43] Leonid A. Levin. Universal Sequential Search Problems. Problems of

Information Transmission, 9(3), 1973.

[44] Elena Marchiori. Genetic, iterated and multistart local search for the

maximum clique problem. In Stefano Cagnoni, Jens Gottlieb, Emma

Hart, Martin Middendorf, and Günther Raidl, editors, Applications of

Evolutionary Computing, volume 2279 of Lecture Notes in Computer

Science, pages 112–121. Springer Berlin / Heidelberg, 2002.

[45] Franco Mascia and Mauro Brunato. Techniques and tools for local

search landscape visualization and analysis. In Proceedings of SLS

2009, Engineering Stochastic Local Search Algorithms. Designing, Im-

plementing and Analyzing Effective Heuristics, International Work-

shop, Brussels, Belgium, pages 92–104, 2009.

[46] Franco Mascia, Elisa Cilia, Mauro Brunato, and Andrea Passerini.

Predicting Structural and Functional Sites in Proteins by Searching

for Maximum-Weight Cliques. In Proceedings of the Twenty-Fourth

AAAI Conference on Artificial Intelligence (AAAI-10), pages 1274–

1279. AAAI Press, July 2010.

[47] David W. Matula. The Largest Clique Size in a Random Graph. Dept.

of Computer Science, Southern Methodist University, 1976.

142

BIBLIOGRAPHY BIBLIOGRAPHY

[48] Panos M. Pardalos and Jue Xue. The maximum clique problem. Jour-

nal of Global Optimization, 4:301–328, 1994.

[49] Andrea Passerini, Marco Punta, Alessio Ceroni, Burkhard Rost, and

Paolo Frasconi. Identifying cysteines and histidines in transition-

metal-binding sites using support vector machines and neural net-

works. Proteins, 65(2):305–316, 2006.

[50] Pavel A. Pevzner and Sing-Hoi Sze. Combinatorial Approaches to

Finding Subtle Signals in DNA Sequences. In Proceedings of the Eighth

International Conference on Intelligent Systems for Molecular Biology,

pages 269–278. AAAI Press, 2000.

[51] Hartmut Pohlheim. Visualization of evolutionary algorithms-set of

standard techniques and multidimensional visualization. In Proceed-

ings of the Genetic and Evolutionary Computation Conference, vol-

ume 1, pages 533–540. Morgan Kaufmann, 1999.

[52] Craig T. Porter, Gail J. Bartlett, and Janet M. Thornton. The Cat-

alytic Site Atlas: a resource of catalytic sites and residues identified in

enzymes using structural data. Nucleic Acids Res, 32(Database issue),

January 2004.

[53] Wayne J. Pullan. Phased Local Search for the Maximum Clique Prob-

lem. Journal of Combinatorial Optimization, 12(3):303–323, Novem-

ber 2006.

[54] Wayne J. Pullan and Holger H. Hoos. Dynamic Local Search for the

Maximum Clique Problem. Journal of Artificial Intelligence Research,

25:159–185, February 2006.

143

BIBLIOGRAPHY BIBLIOGRAPHY

[55] Wayne J. Pullan, Franco Mascia, and Mauro Brunato. Cooperating

local search for the maximum clique problem. Journal of Heuristics,

2010.

[56] Davood Rafiei and Stephen Curial. Effectively Visualizing Large Net-

works Through Sampling. In WWW2005 Proceedings, 2005.

[57] Nanjiang Shu, Tuping Zhou, and Sven Hovmoller. Prediction of zinc-

binding sites in proteins from sequence. Bioinformatics, 24(6):775–

782, 2008.

[58] Christine Solnon and Serge Fenet. A study of aco capabilities for solv-

ing the maximum clique problem. Journal of Heuristics, 12(3):155–

180, 2006.

[59] Jeffrey M. Squyres and Andrew Lumsdaine. A Component Architec-

ture for LAM/MPI. In Proceedings, 10th European PVM/MPI Users’

Group Meeting, number 2840 in Lecture Notes in Computer Science,

pages 379–387, Venice, Italy, September 2003. Springer-Verlag.

[60] Éric D. Taillard. Robust taboo search for the quadratic assignment

problem. Parallel computing, 17(4-5):443–455, 1991.

[61] Wenxu Tong, Ying Wei, Leonel F. Murga, Mary Jo Ondrechen, and

Ronald J. Williams. Partial Order Optimum Likelihood (POOL):

Maximum Likelihood Prediction of Protein Active Site Residues Using

3D Structure and Sequence Properties. PLoS Computational Biology,

5(1):e1000266+, January 2009.

144

Part III

Appendix

Appendix A

A Comparison of Tabu Search

Variations

RLS–LTM has been described in Chapter 4 as a more effective implemen-

tation of of the original RLS for MC [13]. Faster restarts and greater

diversification allowed to improve over the original RLS for MC, but also

caused the explosion of the value of T on some hard instances. In Chapter 4

it is conjectured that with a high value of T it is unlikely that all nodes be-

longing to the maximum clique are not prohibited and can be added to the

current configuration, therefore an upper bound MAX T = 0.5(|Best| + 1)

has been introduced.

In this chapter we present an in-depth analysis of the dynamics of RLS

and RLS–LTM. We study how the reactive mechanism impacts on the

overall performances, and its effectiveness in tuning the tabu tenure for

the instance at hand and the local characteristics of the search landscape.

A.1 Peeking Under the Hood of RLS–LTM

Reactive Tabu Search is a meta-heuristic that adapts the tabu tenure T of

the underlying Tabu Search. It automatically tunes the parameter T for

the instance at hand, and more importantly it adapts it throughout the

147

A.1. PEEKING UNDER THE HOOD OF RLS–LTM APPENDIX A. ANALYSIS

 0

 50

 100

 150

 200

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

Fr
eq

ue
nc

y

T

 5

 10

 15

 20

 25

 30

 0 200 400 600 800 1000 1200 1400

T

update

Figure A.1: Adaptation of tabu tenure T for the instance C500.9 (RLS–LTM). The graph on

the left shows how many times the parameter T has been set to a particular value. The graph

on the right shows the evolution of the parameter in time. The dashed line shows the median

value.

run by reacting on the local characteristics of the search space.

The aim of this study is at understanding how effective is the adaptation

of the tabu tenure in the case of RLS–LTM for the MC problem. More

specifically we want to understand if RLS–LTM is rapidly converging to

the best parameter T for the instance at hand, or if it is adapting it to

different values depending on the local characteristic of the search space.

In order to understand how the tabu tenure is adapted, we run the

algorithm on the DIMACS benchmark instances and trace the history of

the parameter T throughout 1,000,000 iterations. Figure A.1, A.2, A.3,

and A.4 are representative of the four different pictures we got across the

benchmark set. In Figure A.1 the value converges immediately and stays

around the average with small oscillations. Also in Figure A.2 the param-

eter converges in few iterations but the distribution of T is saturated on

the upper-bound MAX T. The opposite happens in Figure A.3 where the

tenure is updated rarely, and for most of the iterations the parameter T

remains on the minimum value allowed. There are very few spikes corre-

sponding to repetitions encountered during the search. On some instances,

like in the case of C4000.5 in Figure A.4, the picture is less clear.

148

APPENDIX A. ANALYSIS A.1. PEEKING UNDER THE HOOD OF RLS–LTM

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

2 3 4 5 6

Fr
eq

ue
nc

y

T

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 0 2000 4000 6000 8000 10000 12000 14000 16000

T

update

Figure A.2: Adaptation of tabu tenure T for the instance brock200 4 (RLS–LTM). The graph

on the left shows how many times the parameter T has been set to a particular value. The graph

on the right shows the evolution of the parameter in time. The dashed line shows the median

value.

 0

 20

 40

 60

 80

 100

 120

 140

1 2 3 4

Fr
eq

ue
nc

y

T

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 20 40 60 80 100 120 140

T

update

Figure A.3: Adaptation of tabu tenure T for the instance MANN a45 (RLS–LTM). The graph

on the left shows how many times the parameter T has been set to a particular value. The graph

on the right shows the evolution of the parameter in time. The dashed line shows the median

value.

149

A.1. PEEKING UNDER THE HOOD OF RLS–LTM APPENDIX A. ANALYSIS

 0

 200

 400

 600

 800

 1000

 1200

2 3 4 5 6 7 8 9

Fr
eq

ue
nc

y

T

 2

 3

 4

 5

 6

 7

 8

 9

 0 1000 2000 3000 4000 5000

T

update

Figure A.4: Adaptation of tabu tenure T for the instance C4000.5 (RLS–LTM). The graph on

the left shows how many times the parameter T has been set to a particular value. The graph

on the right shows the evolution of the parameter in time. The dashed line shows the median

value.

The overall picture emerging is the following: either there is a strong

threshold effect, or the parameter T quickly converges to an average value

with little oscillations around it during the search.

Looking at the instances with an evident threshold effect, it is clear that

the adaptation of the tabu tenure is not optimal at least in those cases.

To better understand how the reactive mechanism impacts on the perfor-

mances we try to update at each iteration the tenure T to a random value

in the interval [MIN T,MAX T]. Figure A.5 shows the performance of a

reactive and a random tenure update on the subset of the DIMACS bench-

mark set where both find the maximum clique on all runs. The maximum

computational budget allocated is 100,000,000 iterations. Each dot in the

graph represents the median number of iterations over 100 successful runs

on a single instance. The performances are highly correlated: the Spear-

man’s rank order test rejects the hypothesis of no significant (monotone)

relationship between the samples with p-value 1.67 ·10−20. The empty dots

represent instances for which a Mann-Whitney U-test could not reject the

null hypothesis of the algorithms having an identical performance at sig-

nificance level α = 0.05. The white squares on the axes show instances

150

APPENDIX A. ANALYSIS A.1. PEEKING UNDER THE HOOD OF RLS–LTM

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 10 100 1000 10000 100000 1e+06 1e+07

re
ac

tiv
e

random

Median run-times [steps] over 100 runs on selected DIMACS instances

 C125.9

 C500.9

 C1000.9

 C2000.5

 C4000.5

 brock200_2

 brock200_4

 gen200_p0.9_44

 gen400_p0.9_55

 hamming8-4

 keller5

 keller6

 p_hat300-3
 p_hat700-1

 p_hat1500-1

 p_hat1500-3

indistinguishable
different

less than 100% success

Figure A.5: Median number of steps to converge to the optimal solution when setting the tenure

randomly or reactively. The empty dots represent the instances for which a Mann-Whitney

U-test could not reject the null hypothesis of the algorithms having an identical performance at

significance level α = 0.05. The white squares on the axes show instances for which the one of

the algorithm was not able to find the maximum clique every run.

for which the one of the algorithm was not able to find the maximum

clique every run. For the other cases the name of the instances is reported.

The only notable differences are on the brock200 instances. A Wilcoxon

matched pairs signed rank test on the medians could not reject the null hy-

pothesis of the algorithms having an identical performance at significance

level α = 0.05. The same conclusions can be drawn also looking at the

CPU seconds in Figure A.6. The detailed results are shown in table A.1.

The quite surprising results can be explained by the small interval

[MIN T,MAX T]. Such a small interval makes the reactive mechanism

statistically indistinguishable from a Tabu Search selecting a tabu value

randomly around MIN TMAX T−MIN T
2 . The only cases in which the perfor-

mance are worse are the brock200 instances in which a stronger diversifi-

cation would be necessary, and the random distribution of the values of T

151

A.1. PEEKING UNDER THE HOOD OF RLS–LTM APPENDIX A. ANALYSIS

 0.001

 0.01

 0.1

 1

 10

 100

 0.001 0.01 0.1 1 10 100

re
ac

tiv
e

random

Median run-times [CPU seconds] over 100 runs on selected DIMACS instances

 C500.9

 C1000.9

 C2000.5

 C4000.5

 brock200_2
 brock200_4

 keller5

 keller6

 p_hat1500-3

indistinguishable
different

less than 100% success

Figure A.6: Median number of CPU seconds to converge to the optimal solution when set-

ting the tenure randomly or reactively. The empty dots represent the instances for which a

Mann-Whitney U-test could not reject the null hypothesis of the algorithms having an identical

performance at significance level α = 0.05. The white squares on the axes show instances for

which the one of the algorithm was not able to find the maximum clique every run.

152

APPENDIX A. ANALYSIS A.1. PEEKING UNDER THE HOOD OF RLS–LTM

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 10 100 1000 10000 100000 1e+06 1e+07

re
ac

tiv
e

random

Median run-times [steps] over 100 runs on selected DIMACS instances

 C125.9

 C250.9

 DSJC1000.5

 DSJC500.5

 C2000.5
 MANN_a27

 brock200_4

 gen200_p0.9_44

 gen200_p0.9_55

 gen400_p0.9_55

 gen400_p0.9_65 gen400_p0.9_75

 hamming8-4

 hamming10-4

 keller5

 p_hat300-2

 p_hat300-3

 p_hat700-2
 p_hat700-3

 p_hat1500-1

 p_hat1500-2

 p_hat1500-3

indistinguishable
different

less than 100% success

Figure A.7: Median number of steps to converge to the optimal solution when setting the tenure

randomly or reactively and MAX T = 2(|Best| + 1). The empty dots represent the instances

for which a Mann-Whitney U-test could not reject the null hypothesis of the algorithms having

an identical performance at significance level α = 0.05. The white squares on the axes show

instances for which the one of the algorithm was not able to find the maximum clique every run.

is centred far from the threshold MAX T.

In order to understand the impact of MAX T on the performances of

the two heuristics we increase its value from 0.5(|Best|+1) to 2(|Best|+1),

and run the same experiments again.

Figure A.7, and A.8 show the performance of both implementations on

the subset of the DIMACS benchmark set where both find the maximum

clique on all runs. For example, the plots do not show the median values

for the instance C4000.5, since the algorithm which sets the tenure ran-

domly finds the optimum solution only in the 93% of the runs, and the

algorithm setting the tenure reactively performs even worse, being able to

find the optimum only in 30% of the runs. The detailed results are shown

in Table A.2.

With a less stringent upper bound on the tenure value, the perfor-

153

A.1. PEEKING UNDER THE HOOD OF RLS–LTM APPENDIX A. ANALYSIS

 0.001

 0.01

 0.1

 1

 10

 0.001 0.01 0.1 1 10

re
ac

tiv
e

random

Median run-times [CPU seconds] over 100 runs on selected DIMACS instances

 C250.9

 DSJC1000.5

 DSJC500.5

 C2000.5

 MANN_a27
 brock200_2

 brock200_4

 gen200_p0.9_44 gen200_p0.9_55

 gen400_p0.9_55

 gen400_p0.9_65 gen400_p0.9_75 hamming8-4 hamming10-4 keller4 keller5 p_hat300-3 p_hat700-2 p_hat700-3

 p_hat1500-1

 p_hat1500-2 p_hat1500-3

indistinguishable
different

less than 100% success

Figure A.8: Median number of CPU seconds to converge to the optimal solution when setting

the tenure randomly or reactively and MAX T = 2(|Best| + 1). The empty dots represent the

instances for which a Mann-Whitney U-test could not reject the null hypothesis of the algorithms

having an identical performance at significance level α = 0.05. The white squares on the axes

show instances for which the one of the algorithm was not able to find the maximum clique

every run.

154

APPENDIX A. ANALYSIS A.1. PEEKING UNDER THE HOOD OF RLS–LTM

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1000 10000 100000

Pr
(s

ol
ve

)

run-time [steps]

ECDF comparison on gen400p0.965

random
reactive

Figure A.9: Empirical QRTDs on the gen400 p0.9 65 instance when MAX T = 2(|Best|+ 1).

mances of both algorithm are deteriorated, meaning that both heuristics

are strongly sensible to the meta-parameter MAX T. This is especially true

when the tenure value is adjusted randomly, since the distribution of the

tenure values is spread on a larger interval and centred on a value which is

4 times bigger in the case of of MAX T = 0.5(|Best|+ 1). The consequent

search stagnation is evident in Figure A.9.

On the contrary, in the instances where there are many repeated con-

figurations, the reactive algorithm saturates the parameter T to a too high

upper bound MAX T, while the lower average value for the random setting

performs better as depicted in Figure A.10.

The performances are strongly influenced by the selection of the right

value for T, this is evident looking at the position of the brock200 instances

in Figure A.6 and A.8 where in the first case the reactive algorithm was

limited by a too stringent MAX T and the random selection performed even

worse with a lower average value. In the second case, while the reactive

algorithm focusses on too high values the random one finds a better average

155

A.1. PEEKING UNDER THE HOOD OF RLS–LTM APPENDIX A. ANALYSIS

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10000 100000 1e+06 1e+07 1e+08

Pr
(s

ol
ve

)

run-time [steps]

ECDF comparison on brock4004

random
reactive

Figure A.10: Empirical QRTDs on the brock400 4 instance when MAX T = 2(|Best|+ 1).

T.

Table A.5 shows a pairwise comparison between reactive and random

settings of the tenure with the two different upper-bounds seen so far.

This means that the reactive mechanism in RLS–LTM is not able to

find a good value for T without the correct MAX T meta-parameter, be-

cause it is somehow tricked by the high number of repeated configurations

encountered. But how does the ‘wrong’ value of T impact on the search

dynamics? A possible answer to this question is that the impact is given by

the reduced number of choices that the algorithm can make due to the too

many prohibited nodes. The reduction in the number of available choices,

if confirmed, should have a stronger impact on the performances, than the

original assumption that lead to the introduction of MAX T, i.e., that for

high values of T it was improbable to have all nodes belonging to the op-

timal solution to be non-prohibited. Hints that this intuition could be

correct come from at least the case of the instance C4000.5, in which the

increase of MAX T rendered the reactive algorithm incapable of finding the

156

APPENDIX A. ANALYSIS A.1. PEEKING UNDER THE HOOD OF RLS–LTM

 0

 2000

 4000

 6000

 8000

 10000

 12000

2 3 4 5 6 7 8 9 10 11 12 13 14 16 17 19 21 23 26 28 31 32 34 35 36

Fr
eq

ue
nc

y

T

 5

 10

 15

 20

 25

 30

 35

 0 2000 4000 6000 8000 10000 12000 14000

T

update

Figure A.11: Adaptation of tabu tenure T for the instance C4000.5 when MAX T = 2(|Best|+1).

The graph on the left shows how many times the parameter T has been set to a particular value.

The graph on the right shows the evolution of the parameter in time. The dashed line shows

the median value.

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

0 1 2 3 4 5 6 7 8

Fr
eq

ue
nc

y

choices for expanding

 0

 50000

 100000

 150000

 200000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Fr
eq

ue
nc

y

choices for dropping

Figure A.12: Number of non prohibited nodes during add or drops for RLS–LTM when MAX T =

0.5(|Best|+ 1).

maximum clique. The explosion the tabu tenure is visible in Figure A.11,

especially when compared to Figure A.4. Figure A.12 and A.13 show the

choices that are available for expanding or dropping a node, when MAX T is

equal to 0.5(|Best|+1) or 2(|Best|+1) respectively. The pictures show that

although there is no much difference in the intensification, the increased T

value has a strong negative impact on the diversification.

157

A.2. LONG VS. SHORT TERM MEMORY APPENDIX A. ANALYSIS

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

0 1 2 3 4 5 6 7

Fr
eq

ue
nc

y

choices for expanding

 0

 50000

 100000

 150000

 200000

 250000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Fr
eq

ue
nc

y

choices for dropping

Figure A.13: Number of non prohibited nodes during add or drops for RLS–LTM when MAX T =

2(|Best|+ 1).

A.2 Long vs. Short Term Memory

The results presented in Chapter 4 show the improved performance of RLS–

LTM over RLS both in terms of steps per second and number of steps to

converge to the optimum; but it has never been analysed how the algorith-

mic and the implementation changes contribute to the performance.

We are particularly interested in the algorithmic changes here, since

they also introduce undesired effects on the explosion of the tenure T, and

the consequent need for the introduction of a new upper bound.

We run RLS–LTM without the algorithmic changes in order to measure

the performances of a possible efficient implementation of the original RLS.

From Figure A.15 and A.16 it emerges that other things being equal the

algorithmic changes introduced in RLS–LTM improve the overall perfor-

mances. The improvement measured on the DIMACS benchmark set and

detailed in Table A.3 is due almost exclusively to the faster restarts. In

fact on most instances there is no difference in the median number of steps

to reach the optimum, but there is up to an order of magnitude in the CPU

seconds. Figure A.14 shows a comparison of the the empirical run time

distributions on the keller6 instance where RLS–LTM performs in median

half of the iterations than RLS in less than 5% of the CPU seconds.

158

APPENDIX A. ANALYSIS A.2. LONG VS. SHORT TERM MEMORY

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10000 100000 1e+06

Pr
(s

ol
ve

)

run-time [steps]

ECDF comparison on keller6

RLS
RLS-LTM

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1 1 10 100

Pr
(s

ol
ve

)

run-time [CPU seconds]

ECDF comparison on keller6

RLS
RLS-LTM

Figure A.14: Empirical QRTDs on the keller6 instance.

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 10 100 1000 10000 100000 1e+06 1e+07

R
LS

-L
TM

RLS

Median run-times [steps] over 100 runs on selected DIMACS instances

 DSJC1000.5

 DSJC500.5

 brock200_2

 hamming8-4

 keller6

 p_hat300-1

 p_hat700-1

indistinguishable
different

Figure A.15: Median number of steps to converge to the optimal solution of efficient implementa-

tions of RLS and RLS–LTM. The empty dots represent the instances for which a Mann-Whitney

U-test could not reject the null hypothesis of the algorithms having an identical performance at

significance level α = 0.05.

159

A.2. LONG VS. SHORT TERM MEMORY APPENDIX A. ANALYSIS

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0.001 0.01 0.1 1 10 100 1000

R
LS

-L
TM

RLS

Median run-times [CPU seconds] over 100 runs on selected DIMACS instances

 C500.9

 C1000.9

 DSJC1000.5

 DSJC500.5

 C2000.5

 C4000.5

 MANN_a27
 brock200_2

 brock200_4

 brock400_4

 gen400_p0.9_55

 keller5

 keller6

 p_hat300-1 p_hat300-3 p_hat700-1

 p_hat1500-1

indistinguishable
different

Figure A.16: Median number of CPU seconds to converge to the optimal solution of efficient

implementations of RLS and RLS–LTM. The empty dots represent the instances for which a

Mann-Whitney U-test could not reject the null hypothesis of the algorithms having an identical

performance at significance level α = 0.05.

Figure A.17, A.18, A.19, and A.20 show the adaptation of the tabu

tenure of RLS in the four cases discussed at the beginning of this Chap-

ter, namely C500.9, brock200 4, C4000.5, and MANN a45. Figure A.19

is almost identical to Figure A.3 depicting the adaptation of the tenure of

RLS–LTM. The small number of repetitions in the search history keeps the

tabu tenure on smaller values. Also for the instance C4000.5 (Figure A.20)

RLS keeps the tenure T around small values, but in the case of the hardest

brock200 4 (Figure A.18) the explosion of T before the restarts is quite

evident. In the instance C500 depicted in Figure A.17 the tenure does not

explode, and the high number of restarts can be seen from frequency of

the smaller values of T.

160

APPENDIX A. ANALYSIS A.2. LONG VS. SHORT TERM MEMORY

 0

 50

 100

 150

 200

 250

 300

 350

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 27 28 30 31 33 34 36 37 38 40 41 45 50

Fr
eq

ue
nc

y

T

 0

 10

 20

 30

 40

 50

 0 500 1000 1500 2000 2500 3000 3500

T

update

Figure A.17: Adaptation of tabu tenure T for the instance C500.9. The graph on the left shows

how many times the parameter T has been set to a particular value. The graph on the right

shows the evolution of the parameter in time. The dashed line shows the median value.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

234567891011121314151617181920212223252627283031333437384041424546505556606166677374808182888990979899107108109118119120129130131132142143144145157158159172173174175190192198

Fr
eq

ue
nc

y

T

 0

 50

 100

 150

 200

 0 2000 4000 6000 8000 10000 12000 14000

T

update

Figure A.18: Adaptation of tabu tenure T for the instance brock200 4. The graph on the left

shows how many times the parameter T has been set to a particular value. The graph on the

right shows the evolution of the parameter in time. The dashed line shows the median value.

 0

 20

 40

 60

 80

 100

 120

1 2 3 4

Fr
eq

ue
nc

y

T

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 20 40 60 80 100 120

T

update

Figure A.19: Adaptation of tabu tenure T for the instance MANN a45. The graph on the left

shows how many times the parameter T has been set to a particular value. The graph on the

right shows the evolution of the parameter in time. The dashed line shows the median value.

161

A.2. LONG VS. SHORT TERM MEMORY APPENDIX A. ANALYSIS

 0

 200

 400

 600

 800

 1000

 1200

 1400

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 19 21 23 25 26 28 31 34

Fr
eq

ue
nc

y

T

 5

 10

 15

 20

 25

 30

 35

 0 1000 2000 3000 4000 5000 6000 7000

T

update

Figure A.20: Adaptation of tabu tenure T for the instance C4000.5. The graph on the left shows

how many times the parameter T has been set to a particular value. The graph on the right

shows the evolution of the parameter in time. The dashed line shows the median value.

A.2.1 A Good Tabu Tenure

Figure A.43, A.47, A.46, and A.52 show the mean number of iterations to

find the optimum clique over 10 runs for the instances C500.9, brock200 4,

MANN a45, and C4000.5 respectively. The algorithm used to measure the

number of iterations is a Tabu search with the same operations of RLS

(expand, drop, and restart) and a fixed parameter for the tabu tenure T,

and for the restart frequency R. The iteration budget in the 10 runs is

fixed to 10,000,000. When the algorithm reaches the maximum amount

of iterations, it means that it could not find the optimum solution. In

most cases there is a setting for the value of T for which the restart fre-

quency is not critical. There are few exceptions, e.g. very hard instances

like MANN a45 in Figure A.46 and MANN a27 in Figure A.45 in which

the opposite is true, i.e., the performances strongly depend on the restart

frequency and much less from the value of the tabu tenure T. The restarts

make the whole algorithm more robust: except for some extreme values,

restarts do not worsen the performances in the instances for which a right

value for the tenure is essential, and can be decisive in other instances.

Looking at the histograms in Figure A.17, A.18, A.19, and A.20 and

comparing the mode of the tenure T with the plots in Figure A.43, A.47,

162

APPENDIX A. ANALYSIS A.2. LONG VS. SHORT TERM MEMORY

A.46, and A.52 it’s clear that RLS is able to spot the most appropriate

value of T for the particular instance.

The Bias in the Restarts

RLS is able to find a good value of T in most of the cases, but is it because

of the effectiveness of the reaction or is it because the frequent restarts

mitigate the tenure value?

In [13] restarts were introduced to deal with disconnected part of the

search space, but actually without restarts that periodically reset the value

of T, RLS could sometimes miss the right value of T for the instance at

hand. This is quite noticeable in brock200 4 (Figure A.18) with the peak

on 198 in the histogram (maximum value reachable by T in the experiment

|V | − 2).

To further investigate this point we run a version of RLS in which there

is no upper bound MAX T and no restarts. Figure A.22 shows a run on

brock200 4 where the explosion of the tenure T is confirmed. The issue

is noticeable not only in small and hard instances but also on small very

simple instances where this effect would go unnoticed because of the very

few steps required to find the optimum. For example in Figure A.21 the

graph C125.9 has 125 nodes and the maximum clique has size 34, RLS

is able to find the max clique in few hundred steps and the explosion

of the parameter would be unnoticed. The same can be said for other

simple instances, e.g., hamming8-4 in Figure A.23. Among the same family

of instances it happens just on the easiest ones. For hard instances like

C4000.5 or keller5 the average value of T determined by RLS (Figure A.24

and A.25) lies among the best ones possible for the instance (Figure A.52

and A.51 respectively).

C4000.5 is the most surprising results, in Figure A.11 RLS–LTM clearly

shows the explosion of the tenure and the consequent performance degra-

163

A.2. LONG VS. SHORT TERM MEMORY APPENDIX A. ANALYSIS

 0

 5

 10

 15

 20

 25

 30

 35

234567891011121314151617181920212223242526272829303132353842475156626875839110011012213414716217819621623726128731634838342146350956061667874682190399310931202132214541600176019362130234325512577280628353087339637354109452048734922497253605414546958966486706371357539761576927770784882108293837784618547894190319122983599341071010818115471166311781119001213812448125741270112830129591321813351134861369313832139711425014394145401468714985150631513615289154381551915594156751583415994160721607716234162391640316569166501681816900169821698817071171541715917243173271733317502175081767917685178571786318038180441812618220182261830918404184941858418590186801877118778188751905319066192521925919440194471945319541197391993820042201402023820244203432044220449205492064920749208572095921170212812138421496216002171321818219252193222039222612248622596228242305523175234092352323645238762400024117242432436124488246072485525107257412575026001262642652927068273412747428032283152860128890299193022230527308353114732582329113324433919342383493435470354823584136203369253766238043382413825438427386273864038815390173903039207392203941139425396033981040212404214061840829410284122841242414294164441861420654207942270422844247642490425044271142905429194293443128431434333843564435784377643791440044401944218442334444844463446654468044912451164533545351453664557245587457934580945824460474625646272462874651246723469824719547457476724815348420486404889348910491314937049387496274986949886501295037350652508825091651396526945322753764543075485654874568105738457964585495914159738618676249263123637606407165372680536838568741690756977370478711907190972635741107447174859752237598376751775267910080706815218191882345827468655987434892098967390110942639521596177971499813099121101626102653103689104737107943111789112918114058

Fr
eq

ue
nc

y

T

 0

 20000

 40000

 60000

 80000

 100000

 0 100 200 300 400 500 600
T

update

Figure A.21: Adaptation of tabu tenure T for the instance C125.9 with no restarts and no

MAX T. The graph on the left shows how many times the parameter T has been set to a

particular value. The graph on the right shows the evolution of the parameter in time. The

dashed line shows the median value.

 0

 20

 40

 60

 80

 100

23456789101112131415161718192022242730333640444853586471788694104114126138152167184203223245270297327359395435479527579637701771848933102711291242136615031654181920012201242126632930322335103545386139004204424745784625467149865036508754305485554059135973603364396504657070127083715576377714779279898069815182338316840084858700878888768966905791489240947495709666103171042110527112351134911464122351235912484134591359514657148051596116123162861703617208173821755817735185521874018929191201931420204204082061421782220022222422449237202396024202244472557325832260932635627849281312841528702303283063430944326973302733361336983525135607359673633036697383883877639168395634222742654459854645048591490824957750078505845109552915534505399054535550865564357625582075879561505621266275463388640286765568339690296972674421786377943281044818638393284780856368650187375882578868789149895839004990488914029232593258942009515197556980649854199537100542101558106238107312115694116862118043124731125991127263128549135832137204138590139990147921149415150924157880159475161086162713164356170212171932173668175422177194178984183508185361187233189125191035201858203897205957219824222044232278236994239388241806244249252951255506258087260694263327265987278246281057286763303010306071326678329978333311336678359346362976366642391328395281421894426156430461434809459443464084468772473507505387510492555926

Fr
eq

ue
nc

y

T

 0

 100000

 200000

 300000

 400000

 500000

 0 100 200 300 400 500 600 700 800

T

update

Figure A.22: Adaptation of tabu tenure T for the instance brock200 4 with no restarts and

no MAX T. The graph on the left shows how many times the parameter T has been set to a

particular value. The graph on the right shows the evolution of the parameter in time. The

dashed line shows the median value.

164

APPENDIX A. ANALYSIS A.2. LONG VS. SHORT TERM MEMORY

 1

 1.01

 1.02

 1.03

 1.04

 1.05

234567891011121314161719212325283134384145505561677481899810811913114415817419221123225528130934037441145349854860366372980288297110681175129214211564172018922081228925182770304733193352365136873975401643294373441747624810518652395648570557636151621362756698676668347294736874427943802481058478856486508738882692339326942095159612995410055101561025910949110601117211924120441298513116132491414114284144281540015555157121677016940171111808018263184471863419298194931968919888200892029221015212272144221658218772243022657228852311723350241822442624673249222517425428263342660026869271402839128678289682926030918312313154631865336703401034354366673703737411391353953139930403334074142619430494348443923443674688047354505425105351569539455449055041555975615856725581595874759340599396054561156620756270263335639756462165274676006828268972696697037374360751118097881796881858907589975960339700397983105637106704115038116200124024125277126542127820136426137804139196148568150069160173161791163425165076174429176190177970179768189953191871193810206859208948211059223016225269227544229843245318247796250299267151269850290928293867296835320021323253348503352023375724379519383353387225401021405072409164413297417471421688436712441124445579450080454626480384485236528422581264632997639391696296703330765926

Fr
eq

ue
nc

y

T

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 0 50 100 150 200 250

T

update

Figure A.23: Adaptation of tabu tenure T for the instance hamming8-4 with no restarts and

no MAX T. The graph on the left shows how many times the parameter T has been set to a

particular value. The graph on the right shows the evolution of the parameter in time. The

dashed line shows the median value.

 0

 200

 400

 600

 800

 1000

 1200

2 3 4 5 6 7 8 9 10 11 12 13 14 16 17

Fr
eq

ue
nc

y

T

 2

 4

 6

 8

 10

 12

 14

 16

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

T

update

Figure A.24: Adaptation of tabu tenure T for the instance C4000.5 with no restarts and no

MAX T. The graph on the left shows how many times the parameter T has been set to a

particular value. The graph on the right shows the evolution of the parameter in time. The

dashed line shows the median value.

165

A.2. LONG VS. SHORT TERM MEMORY APPENDIX A. ANALYSIS

 0

 100

 200

 300

 400

 500

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 33

Fr
eq

ue
nc

y

T

 5

 10

 15

 20

 25

 30

 0 500 1000 1500 2000 2500 3000

T

update

Figure A.25: Adaptation of tabu tenure T for the instance keller5 with no restarts and no

MAX T. The graph on the left shows how many times the parameter T has been set to a

particular value. The graph on the right shows the evolution of the parameter in time. The

dashed line shows the median value.

dation when MAX T is not small enough. RLS has not this issue as shown

in Figure A.20. One can conjecture that the difference is due to the only

difference between RLS and RLS–LTM, i.e., the frequent restarts in RLS

also reset the tenure T and this prevents the explosion. Oddly, when no

upper-bound is set, and without the restarts, the parameter stays centred

around good values of T for this instance, see Figure A.24. This effect does

not depend from the upper bound but from the restarts. In fact, adding

the restarts leads to the tenure explosion in both cases but in the case of

RLS–LTM there is nothing that keeps the value of T to small values like

for RLS. The root of this issue lies in the bias in the selection of the node

seeding the current configuration. In fact, RLS empties the current config-

uration during the restarts and seeds it with a node that has never been

included in a configuration and with the highest degree. Ties are broken

randomly. The problem does not occur if one selects the node seeding the

current clique randomly regardless of their degree and regardless of the

fact that they have already been part of a solution.

The bias in the restart that is noticeable on certain instances in RLS–

LTM could also affect the diversification and therefore the performances of

166

APPENDIX A. ANALYSIS A.2. LONG VS. SHORT TERM MEMORY

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 10 100 1000 10000 100000 1e+06 1e+07

R
LS

-N
BR

RLS

Median run-times [steps] over 100 runs on selected DIMACS instances

 hamming8-4

indistinguishable
different

Figure A.26: Median number of steps to converge to the optimal solution of efficient implementa-

tions of RLS and RLS-NBR. The empty dots represent the instances for which a Mann-Whitney

U-test could not reject the null hypothesis of the algorithms having an identical performance at

significance level α = 0.05.

RLS. In order to check if this is the case, we compare the median steps to

reach the optimum solution for RLS and RLS-NBR. Figure A.26 compares

the two restart implementation showing that the small differences are not

statistically significant.

Fixed Tenure T

If we compare RLS with an implementation having the same restart fre-

quency and the best tabu tenure T for the given instance the median steps

to converge to the optimal solution is slightly smaller on most instances (see

Figure A.27). The difference in the median CPU seconds in Figure A.28 is

mostly due to the the cost of resetting the hash table during the restarts.

167

A.2. LONG VS. SHORT TERM MEMORY APPENDIX A. ANALYSIS

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 10 100 1000 10000 100000 1e+06 1e+07

R
LS

-F
IX

RLS

Median run-times [steps] over 100 runs on selected DIMACS instances

 C500.9

 C1000.9

 DSJC1000.5

 DSJC500.5

 C2000.5

 C4000.5

 brock200_4

 brock400_4

 gen200_p0.9_55

 gen400_p0.9_65 gen400_p0.9_75

 hamming8-4

 keller5

 p_hat300-1

 p_hat700-1

 p_hat700-2

 p_hat1500-1

 p_hat1500-3

indistinguishable
different

less than 100% success

Figure A.27: Median number of steps to converge to the optimal solution of efficient imple-

mentations of RLS and RLS with best fixed T for the instance. The empty dots represent the

instances for which a Mann-Whitney U-test could not reject the null hypothesis of the algo-

rithms having an identical performance at significance level α = 0.05. The white squares on the

axes show instances for which the one of the algorithm was not able to find the maximum clique

every run.

168

APPENDIX A. ANALYSIS A.2. LONG VS. SHORT TERM MEMORY

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0.001 0.01 0.1 1 10 100 1000

R
LS

-F
IX

RLS

Median run-times [CPU seconds] over 100 runs on selected DIMACS instances

 C250.9

 C500.9

 C1000.9

 DSJC1000.5

 DSJC500.5

 C2000.5

 C4000.5

 MANN_a27
 brock200_2

 brock200_4

 brock400_4

 gen200_p0.9_44

 gen400_p0.9_55

 gen400_p0.9_65 gen400_p0.9_75 hamming10-4 p_hat300-1 p_hat300-3 p_hat700-1

 p_hat1500-1

 p_hat1500-2 p_hat1500-3

indistinguishable
different

less than 100% success

Figure A.28: Median number of CPU seconds to converge to the optimal solution of efficient

implementations of RLS and RLS with best fixed T for the instance. The empty dots represent

the instances for which a Mann-Whitney U-test could not reject the null hypothesis of the

algorithms having an identical performance at significance level α = 0.05. The white squares on

the axes show instances for which the one of the algorithm was not able to find the maximum

clique every run.

169

A.3. A NEW IMPLEMENTATION APPENDIX A. ANALYSIS

A.3 A New Implementation

We have seen that RLS–LTM can be tricked by too much memory, and

without an upper-bound MAX T the tabu tenure T explodes preventing

the algorithm to find the optimum solution. RLS clears the search history

and resets the tabu tenure to MIN T at every restart, therefore it does

not show the same parameter explosion as RLS–LTM. Clearing the hash

table at every restarts is responsible for worse performances of RLS when

compared to RLS–LTM. Even if the median number of steps for the two

implementations to find the optimum solution are very similar, the differ-

ence in CPU seconds can be of one order of magnitude. Moreover, the

bias in the restarts towards highly connected nodes that have never been

part of a solution is accountable for the explosion of the tabu tenure in

RLS–LTM on some instances. Also in this case, it does not happen in RLS

where the restart reset the tabu tenure T.

Building on the analysis presented in the previous sections we build a

new implementation RLS–fast in which the restarts are performed seeding

the new solution with a completely random node, there is no artificial

bound MAX T, and during the restarts the tabu tenure is reset and the

search history cleared in an efficient manner.

The hash table in RLS–LTM starts with 224 elements and if necessary

it doubles them every time the fill factor of the table is greater than 0.6.

Conflicts are resolved with chaining, and the elements in the chains are are

picked up from a pool of pre-allocated memory to avoid expensive system

calls for memory allocations during the search.

In RLS–fast the hash table size is fixed to two million elements and does

not grow during the search. There is no chaining for resolving conflicts,

and locations holding elements older than the last restart are considered

empty. Clearing the hash table is as fast as storing the time of the last

170

APPENDIX A. ANALYSIS A.3. A NEW IMPLEMENTATION

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 10 100 1000 10000 100000 1e+06 1e+07

R
LS

RLS-fast

Median run-times [steps] over 100 runs on selected DIMACS instances

 brock200_2

 hamming8-4

indistinguishable
different

Figure A.29: Median number of steps to converge to the optimal solution of efficient implementa-

tions of RLS and RLS–fast. The empty dots represent the instances for which a Mann-Whitney

U-test could not reject the null hypothesis of the algorithms having an identical performance at

significance level α = 0.05.

restart. Since there is no chaining when the hash table is full a look up

operation could be as expensive as O(n) where n is the size of the table.

Therefore lookup in the hash table will stop as soon as one expired element

is found.

The lookup operations can have false positive since only the hash of the

solution are stored in the table, and also false negative because if a solution

is stored far from its location because of conflicts there is a probability that

after some iterations some location in between will expire.

Figure A.29 shows how the median number of iteration for reaching the

optimum solution for RLS and RLS–fast is for most instances statistically

indistinguishable. The faster restarts allow for improving the performances

reaching those of RLS–LTM without the undesirable effects of keeping the

search history across restarts (see Figure A.30). Figure A.31 and A.32

show the same comparison between RLS–fast and RLS–LTM.

171

A.3. A NEW IMPLEMENTATION APPENDIX A. ANALYSIS

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0.001 0.01 0.1 1 10 100 1000

R
LS

RLS-fast

Median run-times [CPU seconds] over 100 runs on selected DIMACS instances

 C250.9

 C500.9

 C1000.9
 DSJC1000.5

 DSJC500.5

 C2000.5

 C4000.5

 MANN_a27

 brock200_2

 brock200_4
 brock400_4

 gen400_p0.9_55

 gen400_p0.9_65 hamming10-4

 keller5

 keller6

 p_hat300-1 p_hat300-2 p_hat300-3

 p_hat700-1

 p_hat1500-1

indistinguishable
different

Figure A.30: Median number of CPU seconds to converge to the optimal solution of efficient

implementations of RLS and RLS–fast. The empty dots represent the instances for which a

Mann-Whitney U-test could not reject the null hypothesis of the algorithms having an identical

performance at significance level α = 0.05.

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 10 100 1000 10000 100000 1e+06 1e+07

R
LS

-L
TM

RLS-fast

Median run-times [steps] over 100 runs on selected DIMACS instances

 C500.9

 DSJC1000.5

 DSJC500.5

 hamming8-4

 keller6

 p_hat300-1

 p_hat700-1

indistinguishable
different

Figure A.31: Median number of steps to converge to the optimal solution of RLS–LTM and

RLS–fast. The empty dots represent the instances for which a Mann-Whitney U-test could not

reject the null hypothesis of the algorithms having an identical performance at significance level

α = 0.05.

172

APPENDIX A. ANALYSIS A.4. ROBUST TABU SEARCH

 0.001

 0.01

 0.1

 1

 10

 100

 0.001 0.01 0.1 1 10 100

R
LS

-L
TM

RLS-fast

Median run-times [CPU seconds] over 100 runs on selected DIMACS instances

 DSJC1000.5

 DSJC500.5

 MANN_a27

 keller6

indistinguishable
different

Figure A.32: Median number of CPU seconds to converge to the optimal solution of RLS–LTM

and RLS–fast. The empty dots represent the instances for which a Mann-Whitney U-test could

not reject the null hypothesis of the algorithms having an identical performance at significance

level α = 0.05.

Figure A.33 and A.34 compare the performances of RLS–fast with a

version having the same restart frequency as RLS–fast and the best fixed

value of T for the given instance. Although on some instances the version

having fixed T performs still better, the difference in CPU seconds is not

so evident like in Figure A.29 when comparing with RLS.

A.4 Robust Tabu Search

In this section we compare a Robust Tabu Search [60] (Ro–TS) approach

with RLS–fast. In Ro–TS the tabu tenure is adapted by selecting through-

out the search values randomly within an interval [Tmin,Tmax]. In [60] the

value is updated every 2Tmax steps, in our implementation the tenure is

initialised to T = 2 and updated at every restart selecting uniformly ran-

domly an integer between Tmin = 0.375|Best| and Tmax = 0.625|Best|.

173

A.4. ROBUST TABU SEARCH APPENDIX A. ANALYSIS

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 10 100 1000 10000 100000 1e+06 1e+07

R
LS

-F
IX

RLS-fast

Median run-times [steps] over 100 runs on selected DIMACS instances

 C500.9

 C1000.9

 DSJC1000.5

 DSJC500.5

 C4000.5

 MANN_a27 brock200_2

 brock400_4

 gen200_p0.9_55

 gen400_p0.9_55

 gen400_p0.9_65 gen400_p0.9_75

 hamming8-4

 keller5

 p_hat300-1

 p_hat700-1

 p_hat700-2

 p_hat1500-3

indistinguishable
different

less than 100% success

Figure A.33: Median number of steps to converge to the optimal solution of RLS with best

fixed T for the instance and RLS–fast. The empty dots represent the instances for which a

Mann-Whitney U-test could not reject the null hypothesis of the algorithms having an identical

performance at significance level α = 0.05. The white squares on the axes show instances for

which the one of the algorithm was not able to find the maximum clique every run.

174

APPENDIX A. ANALYSIS A.4. ROBUST TABU SEARCH

 0.001

 0.01

 0.1

 1

 10

 100

 0.001 0.01 0.1 1 10 100

R
LS

-F
IX

RLS-fast

Median run-times [CPU seconds] over 100 runs on selected DIMACS instances

 C500.9

 C1000.9

 DSJC1000.5

 DSJC500.5

 C2000.5

 C4000.5

 MANN_a27
 brock200_2

 brock200_4

 brock400_4

 gen200_p0.9_44

 gen400_p0.9_55

 gen400_p0.9_75 hamming8-4

 keller5

 p_hat1500-2

indistinguishable
different

less than 100% success

Figure A.34: Median number of CPU seconds to converge to the optimal solution of RLS with

best fixed T for the instance and RLS–fast. The empty dots represent the instances for which a

Mann-Whitney U-test could not reject the null hypothesis of the algorithms having an identical

performance at significance level α = 0.05. The white squares on the axes show instances for

which the one of the algorithm was not able to find the maximum clique every run.

175

A.4. ROBUST TABU SEARCH APPENDIX A. ANALYSIS

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 10 100 1000 10000 100000 1e+06 1e+07

R
o-

TS

RLS-fast

Median run-times [steps] over 100 runs on selected DIMACS instances

 C125.9

 C500.9

 DSJC500.5

 C2000.5

 brock200_2
 brock200_4

 gen200_p0.9_55

 gen400_p0.9_55

 gen400_p0.9_65 gen400_p0.9_75

 hamming8-4

 hamming10-4

 p_hat300-1
 p_hat300-2

 p_hat700-2

 p_hat700-3 p_hat1500-2

 p_hat1500-3

indistinguishable
different

less than 100% success

Figure A.35: Median number of steps to converge to the optimal solution of RLS–fast and

Ro–TS. The empty dots represent the instances for which a Mann-Whitney U-test could not

reject the null hypothesis of the algorithms having an identical performance at significance level

α = 0.05. The white squares on the axes show instances for which the one of the algorithm was

not able to find the maximum clique every run.

The uniform distribution is centred around µ = 0.5|Best| and its support

ranges from 0.75µ to 1.25µ.

This range is narrower than the previous algorithm tested in Section A.1,

namely ‘random T ∈ [1, 0.5(|Best|+ 1)]’; and the update of the tenure is

not performed at every iteration but just during the restarts.

The range [Tmin,Tmax] seem to be appropriate for the DIMACS bench-

mark instances. In fact, keeping the restart frequency fixed to R = 100,

the best tabu tenure for most instances lies around 0.5 ∗ |Optimum|, or

0.33 ∗ |Optimum|, or 0.24 ∗ |Optimum| depending from the instance family.

Figure A.35 and A.36 show the performance of Ro–TS compared to

RLS–fast. Ro–TS performances are slightly worse especially consider-

ing that on two instances is not able to find the optimum solution in

100,000,000 iterations. Table A.4 shows the detailed comparison.

176

APPENDIX A. ANALYSIS A.4. ROBUST TABU SEARCH

 0.001

 0.01

 0.1

 1

 10

 100

 0.001 0.01 0.1 1 10 100

R
o-

TS

RLS-fast

Median run-times [CPU seconds] over 100 runs on selected DIMACS instances

 C500.9

 DSJC1000.5

 DSJC500.5

 C2000.5

 MANN_a27

 gen200_p0.9_44

 gen400_p0.9_55

 gen400_p0.9_75 hamming8-4 p_hat700-3

 p_hat1500-3

indistinguishable
different

less than 100% success

Figure A.36: Median number of CPU seconds to converge to the optimal solution of RLS–fast

and Ro–TS. The empty dots represent the instances for which a Mann-Whitney U-test could

not reject the null hypothesis of the algorithms having an identical performance at significance

level α = 0.05. The white squares on the axes show instances for which the one of the algorithm

was not able to find the maximum clique every run.

177

A.4. ROBUST TABU SEARCH APPENDIX A. ANALYSIS

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 10 100 1000 10000 100000 1e+06 1e+07

R
o-

TS

RLS-fast

Median run-times [steps] over 100 runs on selected DIMACS instances

 MANN_a27 brock200_2

 gen200_p0.9_55

 gen400_p0.9_65 gen400_p0.9_75

 hamming8-4

 p_hat300-1 p_hat700-2

 p_hat1500-1

 p_hat1500-3

indistinguishable
different

less than 100% success

Figure A.37: Median number of steps to converge to the optimal solution of RLS–fast and Ro–

TS selecting a tenure randomly around the best value for the specific instance. The empty dots

represent the instances for which a Mann-Whitney U-test could not reject the null hypothesis

of the algorithms having an identical performance at significance level α = 0.05. The white

squares on the axes show instances for which the one of the algorithm was not able to find the

maximum clique every run.

In order to check if the worse performances of RoTS depend on the

selected interval for the tabu tenure we try with [Tmin,Tmax] where Tmin =

0.375 fixT, Tmax = 0.625 fixT, and fixT is the best value for the specific

instance.

Figure A.37 and A.38 show how in this case Ro–TS performances are

comparable or better than RLS–fast. The picture does not change if in-

stead of the best value for the specific instance the algorithm selects ran-

domly around a good value of T for the instance family. Figure A.39

and A.40 show the performances of a Ro–TS selecting randomly values

around 0.5|Optimum| for brockn k, kellerk, genn p0.p k instances; 0.33|Optimum|
for MANN an and phatn-k instances; 0.25|Optimum| for Cn instances;

0.2|Optimum| for DSJCn.p and hammingn-d instances.

178

APPENDIX A. ANALYSIS A.4. ROBUST TABU SEARCH

 0.001

 0.01

 0.1

 1

 10

 100

 0.001 0.01 0.1 1 10 100

R
o-

TS

RLS-fast

Median run-times [CPU seconds] over 100 runs on selected DIMACS instances

 C500.9

 C1000.9

 DSJC500.5

 MANN_a27 brock200_2

 brock200_4

 brock400_4

 gen400_p0.9_55

 gen400_p0.9_75 hamming8-4

 p_hat1500-1

 p_hat1500-2

indistinguishable
different

less than 100% success

Figure A.38: Median number of CPU seconds to converge to the optimal solution of RLS–fast

and Ro–TS selecting a tenure randomly around the best value for the specific instance. The

empty dots represent the instances for which a Mann-Whitney U-test could not reject the null

hypothesis of the algorithms having an identical performance at significance level α = 0.05. The

white squares on the axes show instances for which the one of the algorithm was not able to find

the maximum clique every run.

179

A.4. ROBUST TABU SEARCH APPENDIX A. ANALYSIS

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 10 100 1000 10000 100000 1e+06 1e+07

R
o-

TS

RLS-fast

Median run-times [steps] over 100 runs on selected DIMACS instances

 C500.9

 C1000.9

 DSJC1000.5

 brock400_4

 gen200_p0.9_44

 gen200_p0.9_55

 gen400_p0.9_55

 gen400_p0.9_75

 hamming8-4

 p_hat300-1

 p_hat700-3

indistinguishable
different

Figure A.39: Median number of steps to converge to the optimal solution of RLS–fast and Ro–

TS selecting a tenure randomly around a good value for the instance family. The empty dots

represent the instances for which a Mann-Whitney U-test could not reject the null hypothesis

of the algorithms having an identical performance at significance level α = 0.05. The white

squares on the axes show instances for which the one of the algorithm was not able to find the

maximum clique every run.

180

APPENDIX A. ANALYSIS A.4. ROBUST TABU SEARCH

 0.001

 0.01

 0.1

 1

 10

 0.001 0.01 0.1 1 10

R
o-

TS

RLS-fast

Median run-times [CPU seconds] over 100 runs on selected DIMACS instances

 C500.9

 C1000.9

 DSJC1000.5

 DSJC500.5

 MANN_a27

 brock400_4

 gen200_p0.9_44

 gen400_p0.9_55

 gen400_p0.9_75 p_hat1500-2

indistinguishable
different

Figure A.40: Median number of CPU seconds to converge to the optimal solution of RLS–

fast and Ro–TS selecting a tenure randomly around a good value for the instance family. The

empty dots represent the instances for which a Mann-Whitney U-test could not reject the null

hypothesis of the algorithms having an identical performance at significance level α = 0.05. The

white squares on the axes show instances for which the one of the algorithm was not able to find

the maximum clique every run.

181

A.5. CONCLUSIONS APPENDIX A. ANALYSIS

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 10 100 1000 10000 100000 1e+06 1e+07

R
o-

TS

RLS-fast

Median run-times [steps] over 100 runs on selected DIMACS instances

 C250.9

 brock200_4

 brock400_4

 gen200_p0.9_44

 gen400_p0.9_55

 gen400_p0.9_75

 hamming8-4

 hamming10-4

 keller5

 keller6

 p_hat300-1

 p_hat700-1

 p_hat700-2

 p_hat1500-2

indistinguishable
different

Figure A.41: Median number of steps to converge to the optimal solution of RLS–fast and Ro–TS

selecting a tenure with the same distribution of RLS for the specific instance. The empty dots

represent the instances for which a Mann-Whitney U-test could not reject the null hypothesis

of the algorithms having an identical performance at significance level α = 0.05. The white

squares on the axes show instances for which the one of the algorithm was not able to find the

maximum clique every run.

Figure A.41 and A.42 compare the performances of RLS-fix with a Ro–

TS that selects a tabu tenure randomly with the same distribution of RLS

for the specific instance.

A.5 Conclusions

RLS [13] is able to adapt the tabu tenure T to a value which is among the

bests for the instance at hand. The only noticeable exceptions are small

instances in which without a frequent restart policy the tenure T would

explode. This happens in the case of small easy instances and small hard

instances. In the first case the explosion would go unnoticed because of

the small number of steps to find the optimum solution. In the second one

182

APPENDIX A. ANALYSIS A.5. CONCLUSIONS

 0.001

 0.01

 0.1

 1

 10

 100

 0.001 0.01 0.1 1 10 100

R
o-

TS

RLS-fast

Median run-times [CPU seconds] over 100 runs on selected DIMACS instances

 C500.9
 MANN_a27

 brock200_4

 hamming8-4 hamming10-4

 keller5

 keller6

 p_hat300-1 p_hat300-2

 p_hat700-1
 p_hat1500-3

indistinguishable
different

Figure A.42: Median number of CPU seconds to converge to the optimal solution of RLS–fast

and Ro–TS selecting a tenure with the same distribution of RLS for the specific instance. The

empty dots represent the instances for which a Mann-Whitney U-test could not reject the null

hypothesis of the algorithms having an identical performance at significance level α = 0.05. The

white squares on the axes show instances for which the one of the algorithm was not able to find

the maximum clique every run.

183

A.5. CONCLUSIONS APPENDIX A. ANALYSIS

because of the frequent restarts.

Looking at the best possible diversification strategy, it seems that on the

DIMACS benchmark sets spotting the right value of T leads to the best

performances regardless of the restart frequency, with the only notable

exception of MANN instances.

A robust tabu search centred around a correct setting for T performs as

well as RLS. This result implies that at least on the DIMACS benchmark

instances, there is no measurable effect showing that RLS effectively reacts

to the local characteristic of the search space.

The speedup in RLS–LTM can be ascribed to the faster restarts that do

not need to clear the search history. Avoiding to clear the search history is

one of the causes for the explosion of the tabu tenure parameter. Another

cause is the bias in the node selection during the restarts. The fact that

RLS–LTM also never resets the tabu tenure during the restarts makes the

effect more noticeable.

Knowing the reason for the speedup and for the explosion of the tabu

tenure, we implement RLS–fast, which is fast as RLS–LTM and does not

need for an upper bound for the tabu tenure.

The performances of RLS–fast are comparable to RLS–fix an algorithm

that knows a priori the best tabu tenure for every instance in the DIMACS

benchmark. This result shows how RLS is able to quickly converge to the

best tabu tenure for the instance at hand with very little overhead.

184

APPENDIX A. ANALYSIS A.5. CONCLUSIONS

r
e
a
c
ti
v
e

r
a
n
d
o
m

In
st
a
n
c
e

B
e
st

S
o
lu
ti
o
n
q
u
a
li
ty

C
P
U
(s
)

S
te
p
s

S
o
lu
ti
o
n
q
u
a
li
ty

C
P
U
(s
)

S
te
p
s

C
1
2
5
.9

3
4

3
4
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

9
8
(1
4
1
)

3
4
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

6
0
(5
0
)

C
2
5
0
.9

4
4

4
4
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

1
0
3
1
(1

1
2
4
)

4
4
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

1
2
4
3
(1

8
4
2
)

C
5
0
0
.9

5
7

5
7
(0
.0
0
)

0
.0
6
1
(0
.0
7
2
)

8
7
7
2
0
(1
2
3
8
3
0
)

5
7
(0
.0
0
)

0
.0
2
1
(0
.0
4
0
)

3
0
9
3
0
(6
0
3
2
0
)

C
1
0
0
0
.9

6
8

6
8
(0
.0
0
)

0
.7
4
1
(1
.1
1
5
)

7
5
6
6
0
0
(1

1
4
4
6
0
0
)

6
8
(0
.0
0
)

0
.3
9
6
(0
.5
1
2
)

4
8
2
6
0
0
(6
2
3
0
0
0
)

C
2
0
0
0
.9

7
8

7
8
(0
.0
0
)

-
-

7
8
(0
.0
0
)

-
-

D
S
J
C
1
0
0
0
.5

1
5

1
5
(0
.0
0
)

0
.0
6
1
(0
.0
9
0
)

2
3
0
9
0
(3
7
9
5
0
)

1
5
(0
.0
0
)

0
.0
6
1
(0
.1
0
7
)

2
4
5
3
0
(4
6
1
6
4
)

D
S
J
C
5
0
0
.5

1
3

1
3
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

1
2
0
1
(1

4
5
4
)

1
3
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

1
2
3
5
(1

9
0
6
)

C
2
0
0
0
.5

1
6

1
6
(0
.0
0
)

0
.1
7
1
(0
.2
5
3
)

3
2
1
7
0
(4
8
7
4
0
)

1
6
(0
.0
0
)

0
.0
9
1
(0
.1
1
0
)

1
9
2
4
0
(2
3
1
9
1
)

C
4
0
0
0
.5

1
8

1
8
(0
.0
0
)

4
7
.0
1
0
(6
2
.9
1
0
)

3
9
5
6
0
0
0
(5

2
4
9
0
0
0
)

1
8
(0
.0
0
)

2
8
.2
8
0
(3
8
.9
6
0
)

2
4
4
9
0
0
0
(3

4
0
7
0
0
0
)

M
A
N
N

a
2
7

1
2
6

1
2
6
(0
.0
0
)

0
.0
3
6
(0
.0
4
2
)

6
2
7
6
0
(7
2
0
6
0
)

1
2
6
(0
.0
0
)

0
.0
4
1
(0
.0
4
0
)

7
5
2
9
0
(1
0
0
0
5
0
)

M
A
N
N

a
4
5

3
4
5

3
4
4
(0
.2
9
)

-
-

3
4
4
(0
.2
9
)

-
-

M
A
N
N

a
8
1

1
0
9
9

1
0
9
8
(0
.0
9
)

-
-

1
0
9
8
(0
.0
9
)

-
-

b
ro
ck

2
0
0
2

1
2

1
2
(0
.0
0
)

0
.0
7
1
(0
.1
0
2
)

8
8
7
9
0
(1
2
9
6
6
0
)

1
2
(0
.0
0
)

0
.7
6
1
(1
.2
9
2
)

1
2
1
2
0
0
0
(2

0
3
5
6
0
0
)

b
ro
ck

2
0
0
4

1
7

1
7
(0
.0
0
)

0
.1
4
1
(0
.2
6
5
)

2
3
3
1
0
0
(4
0
6
7
0
0
)

1
7
(0
.0
0
)

1
.5
8
1
(1
.7
9
5
)

2
9
3
6
0
0
0
(3

3
3
7
0
0
0
)

b
ro
ck

4
0
0
2

2
9

2
9
(0
.0
0
)

-
-

2
5
(1
6
.0
0
)

-
-

b
ro
ck

4
0
0
4

3
3

3
3
(0
.0
0
)

1
.4
0
6
(2
.6
6
0
)

1
7
6
8
0
0
0
(3

2
2
3
3
0
0
)

3
3
(0
.0
0
)

-
-

b
ro
ck

8
0
0
2

2
4

2
1
(1
4
.2
9
)

-
-

2
1
(1
4
.2
9
)

-
-

b
ro
ck

8
0
0
4

2
6

2
1
(2
3
.8
1
)

-
-

2
1
(2
3
.8
1
)

-
-

g
en

2
0
0
p
0
.9

4
4

4
4

4
4
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

1
4
2
5
(2

2
0
4
)

4
4
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

1
6
3
0
(4

2
9
8
)

g
en

2
0
0
p
0
.9

5
5

5
5

5
5
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

6
1
3
(6
6
8
)

5
5
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

7
4
1
(1

2
7
5
)

g
en

4
0
0
p
0
.9

5
5

5
5

5
5
(0
.0
0
)

0
.0
1
6
(0
.0
2
0
)

2
2
2
7
0
(3
7
9
5
0
)

5
5
(0
.0
0
)

0
.0
2
1
(0
.0
1
3
)

3
5
4
6
0
(3
8
5
0
0
)

g
en

4
0
0
p
0
.9

6
5

6
5

6
5
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

1
5
7
4
(1

6
0
1
)

6
5
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

1
3
5
1
(1

8
5
2
)

g
en

4
0
0
p
0
.9

7
5

7
5

7
5
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

1
6
1
4
(1

2
8
5
)

7
5
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

1
5
7
3
(2

4
5
8
)

h
a
m
m
in
g
8
-4

1
6

1
6
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

1
6
(0
)

1
6
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

1
6
(0
)

h
a
m
m
in
g
1
0
-4

4
0

4
0
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

5
2
9
(1

0
4
4
)

4
0
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

6
6
8
(1

0
9
0
)

k
el
le
r4

1
1

1
1
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

1
1
(1
4
)

1
1
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

1
1
(1
0
)

k
el
le
r5

2
7

2
7
(0
.0
0
)

0
.0
0
1
(0
.0
1
0
)

2
0
0
7
(4

4
5
8
)

2
7
(0
.0
0
)

0
.0
1
1
(0
.0
2
0
)

1
0
0
7
0
(1
6
9
5
6
)

k
el
le
r6

5
9

5
9
(0
.0
0
)

2
.5
0
1
(4
.5
5
6
)

5
9
4
9
0
0
(1

1
1
1
9
0
0
)

5
9
(0
.0
0
)

3
.7
2
6
(6
.9
1
0
)

9
5
7
5
0
0
(1

7
5
7
5
0
0
)

p
h
a
t3
0
0
-1

8
8
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

1
0
2
(1
6
4
)

8
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

1
2
8
(2
4
6
)

p
h
a
t3
0
0
-2

2
5

2
5
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

2
9
(2
4
)

2
5
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

3
3
(2
0
)

p
h
a
t3
0
0
-3

3
6

3
6
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

4
1
8
(6
9
5
)

3
6
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

8
0
9
(2

1
3
6
)

p
h
a
t7
0
0
-1

1
1

1
1
(0
.0
0
)

0
.0
0
1
(0
.0
1
0
)

7
2
5
(1

6
3
6
)

1
1
(0
.0
0
)

0
.0
0
1
(0
.0
1
0
)

1
2
4
3
(1

9
3
9
)

p
h
a
t7
0
0
-2

4
4

4
4
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

1
1
2
(8
3
)

4
4
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

1
0
2
(8
0
)

p
h
a
t7
0
0
-3

6
2

6
2
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

2
1
2
(2
7
3
)

6
2
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

2
0
5
(2
3
8
)

p
h
a
t1
5
0
0
-1

1
2

1
2
(0
.0
0
)

0
.5
0
1
(0
.8
0
0
)

1
1
3
6
0
0
(1
8
9
5
2
0
)

1
2
(0
.0
0
)

0
.6
7
1
(0
.9
7
1
)

1
6
4
1
0
0
(2
4
4
9
4
0
)

p
h
a
t1
5
0
0
-2

6
5

6
5
(0
.0
0
)

0
.0
0
1
(0
.0
1
0
)

2
5
0
(9
9
5
)

6
5
(0
.0
0
)

0
.0
0
1
(0
.0
1
0
)

2
6
2
(7
0
9
)

p
h
a
t1
5
0
0
-3

9
4

9
4
(0
.0
0
)

0
.0
0
1
(0
.0
1
0
)

1
2
5
3
(1

4
9
8
)

9
4
(0
.0
0
)

0
.0
0
1
(0
.0
1
0
)

6
8
5
(1

0
0
4
)

T
a
b

le
A

.1
:

A
lg

o
ri

th
m

co
m

p
ar

is
o
n

on
a

se
le

ct
ed

su
b

-s
et

of
th

e
D

IM
A

C
S

b
en

ch
m

ar
k

in
st

an
ce

s.
T

h
re

sh
ol

d
M
A
X

T
is

se
t

to
0.

5(
|B
es
t|

+

1)
.

T
h

e
ta

b
le

sh
ow

s
th

e
m

ed
ia

n
so

lu
ti

on
q
u

al
it

y
an

d
w

it
h

in
b

ra
ck

et
s

th
e

p
er

ce
n
ta

ge
d

ev
ia

ti
on

fr
om

th
e

b
es

t
k
n
ow

n
,

as
w

el
l

as
C

P
U

se
co

n
d

s
a
n

d
st

ep
s

m
ed

ia
n

s
w

it
h

IQ
R

w
it

h
in

b
ra

ck
et

s.

185

A.5. CONCLUSIONS APPENDIX A. ANALYSIS

r
e
a
c
tiv

e
r
a
n
d
o
m

In
sta

n
c
e

B
e
st

S
o
lu
tio

n
q
u
a
lity

C
P
U
(s)

S
tep

s
S
o
lu
tio

n
q
u
a
lity

C
P
U
(s)

S
tep

s

C
1
2
5
.9

3
4

3
4
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

8
8
(1
5
0
)

3
4
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

3
6
1
(6
4
9
)

C
2
5
0
.9

4
4

4
4
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

1
0
6
8
(1

0
3
9
)

4
4
(0
.0
0
)

0
.0
0
1
(0
.0
1
0
)

9
7
8
8
(1
4
1
4
2
)

C
5
0
0
.9

5
7

5
7
(0
.0
0
)

0
.0
5
6
(0
.1
2
5
)

8
2
7
4
0
(1
8
1
0
1
0
)

5
7
(0
.0
0
)

-
-

C
1
0
0
0
.9

6
8

6
8
(0
.0
0
)

-
-

6
6
(3
.0
3
)

-
-

C
2
0
0
0
.9

7
8

7
8
(0
.0
0
)

-
-

7
4
(5
.4
1
)

-
-

D
S
J
C
1
0
0
0
.5

1
5

1
5
(0
.0
0
)

0
.0
8
6
(0
.1
3
2
)

3
4
8
8
0
(5
4
7
5
0
)

1
5
(0
.0
0
)

0
.2
6
1
(0
.4
8
3
)

1
0
5
4
0
0
(1
9
6
3
9
0
)

D
S
J
C
5
0
0
.5

1
3

1
3
(0
.0
0
)

0
.0
0
1
(0
.0
1
0
)

1
6
2
9
(2

2
2
7
)

1
3
(0
.0
0
)

0
.0
1
1
(0
.0
1
0
)

4
3
5
8
(8

5
7
5
)

C
2
0
0
0
.5

1
6

1
6
(0
.0
0
)

0
.1
7
6
(0
.2
4
3
)

3
3
0
8
0
(4
5
1
9
0
)

1
6
(0
.0
0
)

0
.5
0
6
(0
.8
1
0
)

9
6
7
0
0
(1
5
8
8
4
0
)

C
4
0
0
0
.5

1
8

1
7
(5
.8
8
)

-
-

1
8
(0
.0
0
)

-
-

M
A
N
N

a
2
7

1
2
6

1
2
6
(0
.0
0
)

0
.0
4
1
(0
.0
4
0
)

6
2
7
6
0
(7
2
0
6
0
)

1
2
6
(0
.0
0
)

0
.0
1
1
(0
.0
3
0
)

2
7
4
5
0
(4
2
0
9
0
)

M
A
N
N

a
4
5

3
4
5

3
4
4
(0
.2
9
)

-
-

3
4
4
(0
.2
9
)

-
-

M
A
N
N

a
8
1

1
0
9
9

1
0
9
8
(0
.0
9
)

-
-

1
0
9
8
(0
.0
9
)

-
-

b
ro
ck

2
0
0
2

1
2

1
2
(0
.0
0
)

0
.0
7
1
(0
.1
3
3
)

6
8
8
4
0
(1
2
6
4
1
0
)

1
2
(0
.0
0
)

0
.0
4
1
(0
.0
5
0
)

6
0
1
5
0
(7
7
5
0
0
)

b
ro
ck

2
0
0
4

1
7

1
7
(0
.0
0
)

1
.1
6
1
(2
.0
4
5
)

1
3
3
5
0
0
0
(2

3
3
4
8
0
0
)

1
7
(0
.0
0
)

0
.0
9
1
(0
.1
5
2
)

1
7
2
7
0
0
(2
9
2
0
2
0
)

b
ro
ck

4
0
0
2

2
9

2
5
(1
6
.0
0
)

-
-

2
9
(0
.0
0
)

-
-

b
ro
ck

4
0
0
4

3
3

3
2
(3
.1
2
)

-
-

3
3
(0
.0
0
)

1
.2
4
6
(2
.2
5
0
)

1
7
1
2
0
0
0
(3

0
9
9
0
0
0
)

b
ro
ck

8
0
0
2

2
4

2
1
(1
4
.2
9
)

-
-

2
1
(1
4
.2
9
)

-
-

b
ro
ck

8
0
0
4

2
6

2
1
(2
3
.8
1
)

-
-

2
1
(2
3
.8
1
)

-
-

g
en

2
0
0
p
0
.9

4
4

4
4

4
4
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

1
5
5
6
(1

9
0
6
)

4
4
(0
.0
0
)

0
.0
1
1
(0
.0
1
0
)

1
3
3
1
0
(2
0
4
2
3
)

g
en

2
0
0
p
0
.9

5
5

5
5

5
5
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

5
9
6
(5
6
2
)

5
5
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

2
6
8
5
(6

0
8
1
)

g
en

4
0
0
p
0
.9

5
5

5
5

5
5
(0
.0
0
)

0
.0
1
1
(0
.0
1
0
)

2
1
5
3
0
(2
8
3
9
0
)

5
5
(0
.0
0
)

1
.8
9
6
(3
.7
2
5
)

3
4
4
0
0
0
0
(6

8
2
0
0
0
0
)

g
en

4
0
0
p
0
.9

6
5

6
5

6
5
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

1
2
9
4
(1

1
3
2
)

6
5
(0
.0
0
)

0
.0
2
1
(0
.0
3
0
)

3
4
2
1
0
(6
4
6
3
0
)

g
en

4
0
0
p
0
.9

7
5

7
5

7
5
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

1
5
7
6
(1

1
8
4
)

7
5
(0
.0
0
)

0
.0
2
1
(0
.0
3
0
)

3
3
8
7
0
(6
3
1
1
0
)

h
a
m
m
in
g
8
-4

1
6

1
6
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

1
6
(0
)

1
6
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

1
6
(0
)

h
a
m
m
in
g
1
0
-4

4
0

4
0
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

5
2
9
(1

0
4
4
)

4
0
(0
.0
0
)

0
.0
1
6
(0
.0
2
0
)

1
1
2
2
0
(1
5
6
6
9
)

k
eller4

1
1

1
1
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

1
1
(4
)

1
1
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

1
1
(2
2
)

k
eller5

2
7

2
7
(0
.0
0
)

0
.0
0
1
(0
.0
1
0
)

2
8
9
2
(5

6
9
9
)

2
7
(0
.0
0
)

0
.0
1
1
(0
.0
2
0
)

7
5
3
8
(1
2
2
2
9
)

k
eller6

5
9

5
9
(0
.0
0
)

-
-

5
6
(5
.3
6
)

-
-

p
h
a
t3
0
0
-1

8
8
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

1
3
8
(2
7
8
)

8
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

1
6
0
(2
6
1
)

p
h
a
t3
0
0
-2

2
5

2
5
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

2
7
(2
0
)

2
5
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

3
8
(2
4
2
)

p
h
a
t3
0
0
-3

3
6

3
6
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

6
3
3
(1

2
3
2
)

3
6
(0
.0
0
)

0
.0
0
1
(0
.0
1
0
)

6
9
5
6
(1
1
9
5
6
)

p
h
a
t7
0
0
-1

1
1

1
1
(0
.0
0
)

0
.0
0
1
(0
.0
1
0
)

1
1
4
3
(2

8
6
4
)

1
1
(0
.0
0
)

0
.0
0
1
(0
.0
1
0
)

1
8
7
7
(3

1
0
4
)

p
h
a
t7
0
0
-2

4
4

4
4
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

1
1
2
(8
3
)

4
4
(0
.0
0
)

0
.0
0
1
(0
.0
1
0
)

2
3
9
4
(3

8
9
2
)

p
h
a
t7
0
0
-3

6
2

6
2
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

2
1
9
(2
8
2
)

6
2
(0
.0
0
)

0
.0
1
1
(0
.0
1
0
)

1
5
4
5
0
(2
4
6
4
0
)

p
h
a
t1
5
0
0
-1

1
2

1
2
(0
.0
0
)

3
.3
2
6
(7
.4
5
1
)

6
7
2
8
0
0
(1

4
7
5
2
0
0
)

1
2
(0
.0
0
)

1
.0
8
6
(1
.5
8
6
)

2
5
5
4
0
0
(3
6
4
1
0
0
)

p
h
a
t1
5
0
0
-2

6
5

6
5
(0
.0
0
)

0
.0
0
1
(0
.0
1
0
)

3
3
1
(1

2
4
4
)

6
5
(0
.0
0
)

0
.0
4
1
(0
.0
6
2
)

1
8
8
8
0
(3
3
8
1
2
)

p
h
a
t1
5
0
0
-3

9
4

9
4
(0
.0
0
)

0
.0
0
1
(0
.0
1
0
)

1
2
5
3
(1

4
9
8
)

9
4
(0
.0
0
)

0
.7
6
6
(0
.9
6
7
)

5
3
6
5
0
0
(6
5
9
3
0
0
)

T
a
b

le
A

.2
:

A
lgo

rith
m

com
p

ariso
n

on
a

selected
su

b
-set

of
th

e
D

IM
A

C
S

b
en

ch
m

ark
in

stan
ces.

T
h

resh
old

M
A
X

T
is

set
to

2.0(|B
est|+

1).
T

h
e

tab
le

sh
ow

s
th

e
m

ed
ian

solu
tion

q
u

ality
an

d
w

ith
in

b
rackets

th
e

p
ercen

tage
d

ev
iation

from
th

e
b

est
k
n
ow

n
,

as
w

ell
as

C
P

U

secon
d

s
a
n

d
step

s
m

ed
ia

n
s

w
ith

IQ
R

w
ith

in
b

rack
ets.

186

APPENDIX A. ANALYSIS A.5. CONCLUSIONS

R
L
S
-L

T
M

R
L
S

In
st
a
n
c
e

B
e
st

S
o
lu
ti
o
n
q
u
a
li
ty

C
P
U
(s
)

S
te
p
s

S
o
lu
ti
o
n
q
u
a
li
ty

C
P
U
(s
)

S
te
p
s

C
1
2
5
.9

3
4

3
4
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

9
8
(1
4
1
)

3
4
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

8
8
(1
5
0
)

C
2
5
0
.9

4
4

4
4
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

1
0
3
1
(1

1
2
4
)

4
4
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

1
1
9
2
(1

0
8
1
)

C
5
0
0
.9

5
7

5
7
(0
.0
0
)

0
.0
6
1
(0
.0
7
2
)

8
7
7
2
0
(1
2
3
8
3
0
)

5
7
(0
.0
0
)

2
.4
7
1
(3
.5
7
0
)

6
7
8
9
0
(9
2
2
8
0
)

C
1
0
0
0
.9

6
8

6
8
(0
.0
0
)

0
.7
4
1
(1
.1
1
5
)

7
5
6
6
0
0
(1

1
4
4
6
0
0
)

6
8
(0
.0
0
)

1
0
.7
8
0
(1
5
.0
5
1
)

7
6
3
4
0
0
(1

0
5
2
2
0
0
)

C
2
0
0
0
.9

7
8

7
8
(0
.0
0
)

-
-

7
8
(0
.0
0
)

-
-

D
S
J
C
1
0
0
0
.5

1
5

1
5
(0
.0
0
)

0
.0
6
1
(0
.0
9
0
)

2
3
0
9
0
(3
7
9
5
0
)

1
5
(0
.0
0
)

6
.2
9
1
(7
.7
0
9
)

4
0
9
3
0
(4
8
6
6
0
)

D
S
J
C
5
0
0
.5

1
3

1
3
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

1
2
0
1
(1

4
5
4
)

1
3
(0
.0
0
)

0
.2
2
1
(0
.4
3
0
)

1
6
8
1
(1

8
4
3
)

C
2
0
0
0
.5

1
6

1
6
(0
.0
0
)

0
.1
7
1
(0
.2
5
3
)

3
2
1
7
0
(4
8
7
4
0
)

1
6
(0
.0
0
)

4
.0
9
6
(6
.6
8
5
)

2
7
1
6
0
(4
2
7
5
0
)

C
4
0
0
0
.5

1
8

1
8
(0
.0
0
)

4
7
.0
1
0
(6
2
.9
1
0
)

3
9
5
6
0
0
0
(5

2
4
9
0
0
0
)

1
8
(0
.0
0
)

3
4
2
.6
0
0
(5
1
2
.3
0
0
)

3
5
5
6
0
0
0
(5

2
0
9
0
0
0
)

M
A
N
N

a
2
7

1
2
6

1
2
6
(0
.0
0
)

0
.0
3
6
(0
.0
4
2
)

6
2
7
6
0
(7
2
0
6
0
)

1
2
6
(0
.0
0
)

1
.1
9
1
(1
.7
2
5
)

6
2
7
6
0
(9
0
6
5
0
)

M
A
N
N

a
4
5

3
4
5

3
4
4
(0
.2
9
)

-
-

3
4
4
(0
.2
9
)

-
-

M
A
N
N

a
8
1

1
0
9
9

1
0
9
8
(0
.0
9
)

-
-

1
0
9
8
(0
.0
9
)

-
-

b
ro
ck

2
0
0
2

1
2

1
2
(0
.0
0
)

0
.0
7
1
(0
.1
0
2
)

8
8
7
9
0
(1
2
9
6
6
0
)

1
2
(0
.0
0
)

8
.2
0
6
(2
0
.0
6
9
)

4
2
3
7
0
(1
0
6
0
9
0
)

b
ro
ck

2
0
0
4

1
7

1
7
(0
.0
0
)

0
.1
4
1
(0
.2
6
5
)

2
3
3
1
0
0
(4
0
6
7
0
0
)

1
7
(0
.0
0
)

2
9
.1
2
0
(5
2
.6
2
0
)

2
2
8
3
0
0
(3
5
6
5
0
0
)

b
ro
ck

4
0
0
2

2
9

2
9
(0
.0
0
)

-
-

2
9
(0
.0
0
)

-
-

b
ro
ck

4
0
0
4

3
3

3
3
(0
.0
0
)

1
.4
0
6
(2
.6
6
0
)

1
7
6
8
0
0
0
(3

2
2
3
3
0
0
)

3
3
(0
.0
0
)

4
4
.2
4
0
(7
0
.0
9
0
)

1
7
4
1
0
0
0
(2

7
4
9
5
0
0
)

b
ro
ck

8
0
0
2

2
4

2
1
(1
4
.2
9
)

-
-

2
1
(1
4
.2
9
)

-
-

b
ro
ck

8
0
0
4

2
6

2
1
(2
3
.8
1
)

-
-

2
1
(2
3
.8
1
)

-
-

g
en

2
0
0
p
0
.9

4
4

4
4

4
4
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

1
4
2
5
(2

2
0
4
)

4
4
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

1
3
9
3
(1

9
8
2
)

g
en

2
0
0
p
0
.9

5
5

5
5

5
5
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

6
1
3
(6
6
8
)

5
5
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

5
9
6
(5
6
2
)

g
en

4
0
0
p
0
.9

5
5

5
5

5
5
(0
.0
0
)

0
.0
1
6
(0
.0
2
0
)

2
2
2
7
0
(3
7
9
5
0
)

5
5
(0
.0
0
)

0
.7
1
1
(1
.2
4
5
)

2
1
5
4
0
(3
0
5
7
2
)

g
en

4
0
0
p
0
.9

6
5

6
5

6
5
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

1
5
7
4
(1

6
0
1
)

6
5
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

1
2
9
4
(1

1
3
2
)

g
en

4
0
0
p
0
.9

7
5

7
5

7
5
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

1
6
1
4
(1

2
8
5
)

7
5
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

1
5
7
6
(1

1
8
4
)

h
a
m
m
in
g
8
-4

1
6

1
6
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

1
6
(0
)

1
6
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

1
6
(0
)

h
a
m
m
in
g
1
0
-4

4
0

4
0
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

5
2
9
(1

0
4
4
)

4
0
(0
.0
0
)

0
.0
0
1
(0
.0
1
0
)

5
2
7
(8
4
8
)

k
el
le
r4

1
1

1
1
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

1
1
(1
4
)

1
1
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

1
1
(4
)

k
el
le
r5

2
7

2
7
(0
.0
0
)

0
.0
0
1
(0
.0
1
0
)

2
0
0
7
(4

4
5
8
)

2
7
(0
.0
0
)

0
.0
1
1
(0
.2
5
0
)

2
7
2
7
(4

9
7
6
)

k
el
le
r6

5
9

5
9
(0
.0
0
)

2
.5
0
1
(4
.5
5
6
)

5
9
4
9
0
0
(1

1
1
1
9
0
0
)

5
9
(0
.0
0
)

4
2
.1
3
0
(8
6
.1
0
0
)

1
1
2
3
0
0
0
(2

0
6
4
9
0
0
)

p
h
a
t3
0
0
-1

8
8
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

1
0
2
(1
6
4
)

8
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

1
1
6
(2
2
7
)

p
h
a
t3
0
0
-2

2
5

2
5
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

2
9
(2
4
)

2
5
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

2
7
(2
0
)

p
h
a
t3
0
0
-3

3
6

3
6
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

4
1
8
(6
9
5
)

3
6
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

5
6
0
(8
7
9
)

p
h
a
t7
0
0
-1

1
1

1
1
(0
.0
0
)

0
.0
0
1
(0
.0
1
0
)

7
2
5
(1

6
3
6
)

1
1
(0
.0
0
)

0
.2
0
1
(0
.4
1
2
)

1
2
9
8
(1

9
3
8
)

p
h
a
t7
0
0
-2

4
4

4
4
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

1
1
2
(8
3
)

4
4
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

1
1
2
(8
3
)

p
h
a
t7
0
0
-3

6
2

6
2
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

2
1
2
(2
7
3
)

6
2
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

2
1
9
(2
8
2
)

p
h
a
t1
5
0
0
-1

1
2

1
2
(0
.0
0
)

0
.5
0
1
(0
.8
0
0
)

1
1
3
6
0
0
(1
8
9
5
2
0
)

1
2
(0
.0
0
)

3
3
.3
2
0
(4
9
.9
3
0
)

1
5
7
8
0
0
(2
2
6
2
5
0
)

p
h
a
t1
5
0
0
-2

6
5

6
5
(0
.0
0
)

0
.0
0
1
(0
.0
1
0
)

2
5
0
(9
9
5
)

6
5
(0
.0
0
)

0
.0
0
1
(0
.0
1
0
)

3
4
0
(1

2
8
8
)

p
h
a
t1
5
0
0
-3

9
4

9
4
(0
.0
0
)

0
.0
0
1
(0
.0
1
0
)

1
2
5
3
(1

4
9
8
)

9
4
(0
.0
0
)

0
.0
0
6
(0
.0
1
0
)

1
1
8
9
(1

6
9
9
)

T
a
b

le
A

.3
:

A
lg

o
ri

th
m

co
m

p
a
ri

so
n

on
a

se
le

ct
ed

su
b

-s
et

of
th

e
D

IM
A

C
S

b
en

ch
m

ar
k

in
st

an
ce

s.
T

h
e

ta
b

le
sh

ow
s

th
e

m
ed

ia
n

so
lu

ti
on

q
u

a
li

ty
a
n

d
w

it
h

in
b

ra
ck

et
s

th
e

p
er

ce
n
ta

ge
d

ev
ia

ti
on

fr
om

th
e

b
es

t
k
n

ow
n

,
as

w
el

l
as

C
P

U
se

co
n

d
s

an
d

st
ep

s
m

ed
ia

n
s

w
it

h
IQ

R

w
it

h
in

b
ra

ck
et

s.

187

A.5. CONCLUSIONS APPENDIX A. ANALYSIS

R
o
-T

S
R
L
S
-fa

st
In

sta
n
c
e

B
e
st

S
o
lu
tio

n
q
u
a
lity

C
P
U
(s)

S
tep

s
S
o
lu
tio

n
q
u
a
lity

C
P
U
(s)

S
tep

s

C
1
2
5
.9

3
4

3
4
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

6
2
(6
2
)

3
4
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

8
8
(1
5
0
)

C
2
5
0
.9

4
4

4
4
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

1
0
7
1
(1

6
6
3
)

4
4
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

1
1
4
4
(1

0
3
1
)

C
5
0
0
.9

5
7

5
7
(0
.0
0
)

0
.3
0
6
(0
.4
1
0
)

5
8
6
1
0
0
(7
7
7
6
0
0
)

5
7
(0
.0
0
)

0
.0
4
1
(0
.0
6
0
)

5
8
8
2
0
(7
2
9
3
0
)

C
1
0
0
0
.9

6
8

6
8
(0
.0
0
)

-
-

6
8
(0
.0
0
)

0
.6
4
6
(1
.2
1
0
)

6
1
5
6
0
0
(1

1
7
6
9
0
0
)

C
2
0
0
0
.9

7
8

7
6
(2
.6
3
)

-
-

7
8
(0
.0
0
)

-
-

D
S
J
C
1
0
0
0
.5

1
5

1
5
(0
.0
0
)

0
.0
7
1
(0
.1
1
3
)

3
1
7
3
0
(4
8
0
1
8
)

1
5
(0
.0
0
)

0
.1
0
1
(0
.1
7
2
)

4
2
2
3
0
(6
8
9
0
0
)

D
S
J
C
5
0
0
.5

1
3

1
3
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

1
3
5
3
(1

7
6
2
)

1
3
(0
.0
0
)

0
.0
0
1
(0
.0
1
0
)

1
6
4
6
(2

1
0
4
)

C
2
0
0
0
.5

1
6

1
6
(0
.0
0
)

0
.1
9
6
(0
.2
5
7
)

3
9
7
6
0
(5
2
1
3
0
)

1
6
(0
.0
0
)

0
.1
2
6
(0
.2
3
3
)

2
3
4
0
0
(4
3
8
6
8
)

C
4
0
0
0
.5

1
8

1
8
(0
.0
0
)

5
0
.3
7
0
(7
7
.5
0
0
)

4
3
6
4
0
0
0
(6

7
1
3
0
0
0
)

1
8
(0
.0
0
)

4
4
.8
9
0
(5
8
.0
5
0
)

3
8
1
3
0
0
0
(4

9
3
6
0
0
0
)

M
A
N
N

a
2
7

1
2
6

1
2
6
(0
.0
0
)

0
.0
2
6
(0
.0
4
0
)

5
0
2
7
0
(1
1
2
5
5
0
)

1
2
6
(0
.0
0
)

0
.0
5
6
(0
.0
7
3
)

8
7
7
6
0
(1
2
5
0
4
0
)

M
A
N
N

a
4
5

3
4
5

3
4
4
(0
.2
9
)

-
-

3
4
4
(0
.2
9
)

-
-

M
A
N
N

a
8
1

1
0
9
9

1
0
9
8
(0
.0
9
)

-
-

1
0
9
8
(0
.0
9
)

-
-

b
ro
ck

2
0
0
2

1
2

1
2
(0
.0
0
)

0
.0
6
6
(0
.1
1
2
)

1
2
0
3
0
0
(1
9
7
6
6
0
)

1
2
(0
.0
0
)

0
.0
7
1
(0
.1
0
3
)

8
3
5
8
0
(1
3
9
5
1
0
)

b
ro
ck

2
0
0
4

1
7

1
7
(0
.0
0
)

0
.1
0
6
(0
.1
9
0
)

2
5
1
1
0
0
(4
3
1
7
9
0
)

1
7
(0
.0
0
)

0
.1
2
1
(0
.1
8
0
)

1
5
7
6
0
0
(2
4
7
0
8
0
)

b
ro
ck

4
0
0
2

2
9

2
9
(0
.0
0
)

-
-

2
9
(0
.0
0
)

-
-

b
ro
ck

4
0
0
4

3
3

3
3
(0
.0
0
)

0
.9
8
6
(1
.5
3
5
)

1
6
0
0
0
0
0
(2

3
6
9
6
0
0
)

3
3
(0
.0
0
)

1
.3
1
1
(2
.1
7
8
)

1
5
8
8
0
0
0
(2

6
1
8
9
0
0
)

b
ro
ck

8
0
0
2

2
4

2
1
(1
4
.2
9
)

-
-

2
1
(1
4
.2
9
)

-
-

b
ro
ck

8
0
0
4

2
6

2
1
(2
3
.8
1
)

-
-

2
1
(2
3
.8
1
)

-
-

g
en

2
0
0
p
0
.9

4
4

4
4

4
4
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

1
2
9
9
(1

8
6
1
)

4
4
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

1
5
7
1
(1

9
1
6
)

g
en

2
0
0
p
0
.9

5
5

5
5

5
5
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

3
7
0
(4
3
2
)

5
5
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

5
9
6
(5
6
2
)

g
en

4
0
0
p
0
.9

5
5

5
5

5
5
(0
.0
0
)

0
.0
3
1
(0
.0
5
0
)

6
0
5
1
0
(9
0
1
5
0
)

5
5
(0
.0
0
)

0
.0
2
1
(0
.0
2
0
)

2
5
9
0
0
(3
3
8
2
0
)

g
en

4
0
0
p
0
.9

6
5

6
5

6
5
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

9
7
5
(8
0
6
)

6
5
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

1
2
9
4
(1

1
3
2
)

g
en

4
0
0
p
0
.9

7
5

7
5

7
5
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

7
2
9
(8
0
5
)

7
5
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

1
5
7
6
(1

1
8
4
)

h
a
m
m
in
g
8
-4

1
6

1
6
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

1
6
(0
)

1
6
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

1
6
(0
)

h
a
m
m
in
g
1
0
-4

4
0

4
0
(0
.0
0
)

0
.0
0
1
(0
.0
0
3
)

1
0
7
5
(1

5
5
6
)

4
0
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

6
3
5
(1

0
4
9
)

k
eller4

1
1

1
1
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

1
1
(4
)

1
1
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

1
1
(1
2
)

k
eller5

2
7

2
7
(0
.0
0
)

0
.0
0
1
(0
.0
1
0
)

2
4
4
0
(4

4
1
0
)

2
7
(0
.0
0
)

0
.0
0
1
(0
.0
1
0
)

2
8
8
0
(4

5
1
3
)

k
eller6

5
9

5
9
(0
.0
0
)

5
.7
9
6
(1
1
.4
3
2
)

1
4
5
6
0
0
0
(2

7
9
9
4
0
0
)

5
9
(0
.0
0
)

5
.3
1
6
(9
.6
8
7
)

1
2
1
2
0
0
0
(2

2
2
7
6
0
0
)

p
h
a
t3
0
0
-1

8
8
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

8
8
(1
3
3
)

8
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

1
6
9
(2
7
3
)

p
h
a
t3
0
0
-2

2
5

2
5
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

3
9
(4
8
)

2
5
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

2
7
(2
0
)

p
h
a
t3
0
0
-3

3
6

3
6
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

7
3
0
(7
4
8
)

3
6
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

5
9
0
(1

0
3
6
)

p
h
a
t7
0
0
-1

1
1

1
1
(0
.0
0
)

0
.0
0
1
(0
.0
1
0
)

1
0
7
2
(1

3
3
2
)

1
1
(0
.0
0
)

0
.0
0
1
(0
.0
1
0
)

1
3
9
8
(1

7
8
6
)

p
h
a
t7
0
0
-2

4
4

4
4
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

1
9
8
(2
7
0
)

4
4
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

1
1
2
(8
3
)

p
h
a
t7
0
0
-3

6
2

6
2
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

8
8
6
(1

0
9
5
)

6
2
(0
.0
0
)

0
.0
0
1
(0
.0
0
0
)

2
1
9
(2
8
2
)

p
h
a
t1
5
0
0
-1

1
2

1
2
(0
.0
0
)

0
.3
4
1
(0
.7
1
5
)

7
8
8
4
0
(1
6
6
2
4
0
)

1
2
(0
.0
0
)

0
.5
6
1
(0
.7
6
0
)

1
2
4
4
0
0
(1
6
3
8
8
0
)

p
h
a
t1
5
0
0
-2

6
5

6
5
(0
.0
0
)

0
.0
0
1
(0
.0
1
0
)

8
1
6
(1

4
0
1
)

6
5
(0
.0
0
)

0
.0
0
1
(0
.0
1
0
)

3
3
3
(1

2
9
0
)

p
h
a
t1
5
0
0
-3

9
4

9
4
(0
.0
0
)

0
.0
1
1
(0
.0
2
0
)

7
3
2
1
(1
1
9
2
5
)

9
4
(0
.0
0
)

0
.0
0
1
(0
.0
1
0
)

1
0
9
5
(1

5
4
6
)

T
a
b

le
A

.4
:

A
lgo

rith
m

co
m

p
a
riso

n
on

a
selected

su
b

-set
of

th
e

D
IM

A
C

S
b

en
ch

m
ark

in
stan

ces.
T

h
e

tab
le

sh
ow

s
th

e
m

ed
ian

solu
tion

q
u

a
lity

a
n

d
w

ith
in

b
ra

ck
ets

th
e

p
ercen

tag
e

d
ev

iation
from

th
e

b
est

k
n

ow
n

,
as

w
ell

as
C

P
U

secon
d

s
an

d
step

s
m

ed
ian

s
w

ith
IQ

R

w
ith

in
b

ra
ck

ets.

188

APPENDIX A. ANALYSIS A.5. CONCLUSIONS

R
T
S
−
−
LT

M

T
∈

[1
,
0
.5
(|
B
es
t|

+
1
)]

 0
.0

01

 0
.0

1

 0
.1 1 1
0 0

.0
01

 0
.0

1
 0

.1
 1

 1
0

 D
SJ

C
10

00
.5

 D
SJ

C
50

0.
5

 b
ro

ck
20

0_
4

 g
en

40
0_

p0
.9

_6
5

 k
el

le
r4

 k
el

le
r5

 p
_h

at
70

0-
1

 p
_h

at
15

00
-1

in
di

st
in

gu
is

ha
bl

e
di

ffe
re

nt
le

ss
 th

an
 1

00
%

 s
uc

ce
ss

 0
.0

01

 0
.0

1

 0
.1 1 1
0

 1
00

 0
.0

01
 0

.0
1

 0
.1

 1
 1

0
 1

00

 C
50

0.
9

 C
10

00
.9

 C
20

00
.5

 C
40

00
.5

 b
ro

ck
20

0_
2

 b
ro

ck
20

0_
4

 k
el

le
r5

 k
el

le
r6

 p
_h

at
15

00
-3in
di

st
in

gu
is

ha
bl

e
di

ffe
re

nt
le

ss
 th

an
 1

00
%

 s
uc

ce
ss

 0
.0

01

 0
.0

1

 0
.1 1 1
0 0

.0
01

 0
.0

1
 0

.1
 1

 1
0

 C
25

0.
9

 D
SJ

C
10

00
.5

 D
SJ

C
50

0.
5

 C
20

00
.5

 M
AN

N
_a

27

 b
ro

ck
20

0_
2

 b
ro

ck
20

0_
4

 g
en

20
0_

p0
.9

_4
4

 g
en

20
0_

p0
.9

_5
5

 g
en

40
0_

p0
.9

_5
5

 g
en

40
0_

p0
.9

_6
5

 g
en

40
0_

p0
.9

_7
5

 h
am

m
in

g1
0-

4
 k

el
le

r4
 k

el
le

r5
 p

_h
at

30
0-

3
 p

_h
at

70
0-

1
 p

_h
at

70
0-

2
 p

_h
at

70
0-

3

 p
_h

at
15

00
-1

 p
_h

at
15

00
-2

 p
_h

at
15

00
-3

in
di

st
in

gu
is

ha
bl

e
di

ffe
re

nt
le

ss
 th

an
 1

00
%

 s
uc

ce
ss

 1
0

 1
00

 1
00

0

 1
00

00

 1
00

00
0

 1
e+

06

 1
e+

07

 1
0

 1
00

 1
00

0
 1

00
00

 1
00

00
0

 1
e+

06
 1

e+
07

 D
SJ

C
10

00
.5

 D
SJ

C
50

0.
5

 b
ro

ck
20

0_
2

 b
ro

ck
20

0_
4

 h
am

m
in

g8
-4

 p
_h

at
30

0-
1 p

_h
at

30
0-

3
 p

_h
at

70
0-

1

 p
_h

at
15

00
-1

in
di

st
in

gu
is

ha
bl

e
di

ffe
re

nt
le

ss
 th

an
 1

00
%

 s
uc

ce
ss

R
T
S
−
−
LT

M

T
∈

[1
,
2
(|
B
es
t|

+
1
)]

 0
.0

01

 0
.0

1

 0
.1 1 1
0 0

.0
01

 0
.0

1
 0

.1
 1

 1
0

 C
50

0.
9

 D
SJ

C
10

00
.5

 D
SJ

C
50

0.
5

 C
20

00
.5

 b
ro

ck
20

0_
2

 h
am

m
in

g8
-4

 k
el

le
r5

 p
_h

at
70

0-
1

 p
_h

at
15

00
-1

in
di

st
in

gu
is

ha
bl

e
di

ffe
re

nt
le

ss
 th

an
 1

00
%

 s
uc

ce
ss

 0
.0

01

 0
.0

1

 0
.1 1 1
0 0

.0
01

 0
.0

1
 0

.1
 1

 1
0

 C
25

0.
9

 D
SJ

C
10

00
.5

 D
SJ

C
50

0.
5

 C
20

00
.5

 M
AN

N
_a

27
 b

ro
ck

20
0_

2

 b
ro

ck
20

0_
4

 g
en

20
0_

p0
.9

_4
4

 g
en

20
0_

p0
.9

_5
5

 g
en

40
0_

p0
.9

_5
5

 g
en

40
0_

p0
.9

_6
5

 g
en

40
0_

p0
.9

_7
5

 h
am

m
in

g8
-4

 h
am

m
in

g1
0-

4
 k

el
le

r4
 k

el
le

r5
 p

_h
at

30
0-

3
 p

_h
at

70
0-

2
 p

_h
at

70
0-

3

 p
_h

at
15

00
-1

 p
_h

at
15

00
-2

 p
_h

at
15

00
-3

in
di

st
in

gu
is

ha
bl

e
di

ffe
re

nt
le

ss
 th

an
 1

00
%

 s
uc

ce
ss

 1
0

 1
00

 1
00

0

 1
00

00

 1
00

00
0

 1
e+

06

 1
e+

07

 1
0

 1
00

 1
00

0
 1

00
00

 1
00

00
0

 1
e+

06
 1

e+
07

 C
12

5.
9

 C
50

0.
9

 C
10

00
.9

 C
20

00
.5

 C
40

00
.5

 b
ro

ck
20

0_
2

 b
ro

ck
20

0_
4

 g
en

20
0_

p0
.9

_4
4

 g
en

40
0_

p0
.9

_5
5

 h
am

m
in

g8
-4

 k
el

le
r5

 k
el

le
r6

 p
_h

at
30

0-
3

 p
_h

at
70

0-
1

 p
_h

at
15

00
-1

 p
_h

at
15

00
-3

in
di

st
in

gu
is

ha
bl

e
di

ffe
re

nt
le

ss
 th

an
 1

00
%

 s
uc

ce
ss

 1
0

 1
00

 1
00

0

 1
00

00

 1
00

00
0

 1
e+

06

 1
e+

07

 1
0

 1
00

 1
00

0
 1

00
00

 1
00

00
0

 1
e+

06
 1

e+
07

 C
12

5.
9

 C
50

0.
9

 D
SJ

C
10

00
.5

 D
SJ

C
50

0.
5

 C
20

00
.5

 b
ro

ck
20

0_
2

 b
ro

ck
20

0_
4

 g
en

40
0_

p0
.9

_5
5

 h
am

m
in

g8
-4

 k
el

le
r5

 p
_h

at
15

00
-1

 p
_h

at
15

00
-3

in
di

st
in

gu
is

ha
bl

e
di

ffe
re

nt
le

ss
 th

an
 1

00
%

 s
uc

ce
ss

ra
n
d
o
m

T
∈

[1
,
0
.5
(|
B
es
t|

+
1
)]

 0
.0

01

 0
.0

1

 0
.1 1 1
0 0

.0
01

 0
.0

1
 0

.1
 1

 1
0

 C
25

0.
9

 D
SJ

C
10

00
.5

 D
SJ

C
50

0.
5

 C
20

00
.5

 M
AN

N
_a

27

 b
ro

ck
20

0_
2

 b
ro

ck
20

0_
4

 g
en

20
0_

p0
.9

_4
4

 g
en

20
0_

p0
.9

_5
5

 g
en

40
0_

p0
.9

_5
5

 g
en

40
0_

p0
.9

_6
5

 g
en

40
0_

p0
.9

_7
5

 h
am

m
in

g8
-4

 h
am

m
in

g1
0-

4
 p

_h
at

30
0-

3
 p

_h
at

70
0-

1
 p

_h
at

70
0-

2
 p

_h
at

70
0-

3

 p
_h

at
15

00
-1

 p
_h

at
15

00
-2

 p
_h

at
15

00
-3

in
di

st
in

gu
is

ha
bl

e
di

ffe
re

nt
le

ss
 th

an
 1

00
%

 s
uc

ce
ss

 1
0

 1
00

 1
00

0

 1
00

00

 1
00

00
0

 1
e+

06

 1
e+

07

 1
0

 1
00

 1
00

0
 1

00
00

 1
00

00
0

 1
e+

06
 1

e+
07

 C
12

5.
9

 C
25

0.
9

 D
SJ

C
10

00
.5

 D
SJ

C
50

0.
5

 C
20

00
.5

 M
AN

N
_a

27
 b

ro
ck

20
0_

2

 g
en

20
0_

p0
.9

_4
4

 g
en

20
0_

p0
.9

_5
5

 g
en

40
0_

p0
.9

_5
5

 g
en

40
0_

p0
.9

_6
5

 g
en

40
0_

p0
.9

_7
5

 h
am

m
in

g8
-4

 h
am

m
in

g1
0-

4
 k

el
le

r5

 p
_h

at
30

0-
1 p

_h
at

30
0-

3

 p
_h

at
70

0-
1

 p
_h

at
70

0-
2

 p
_h

at
70

0-
3

 p
_h

at
15

00
-1

 p
_h

at
15

00
-2 p

_h
at

15
00

-3

in
di

st
in

gu
is

ha
bl

e
di

ffe
re

nt
le

ss
 th

an
 1

00
%

 s
uc

ce
ss

 1
0

 1
00

 1
00

0

 1
00

00

 1
00

00
0

 1
e+

06

 1
e+

07

 1
0

 1
00

 1
00

0
 1

00
00

 1
00

00
0

 1
e+

06
 1

e+
07

 C
12

5.
9

 C
25

0.
9

 D
SJ

C
10

00
.5

 D
SJ

C
50

0.
5

 C
20

00
.5

 M
AN

N
_a

27

 b
ro

ck
20

0_
4

 g
en

20
0_

p0
.9

_4
4

 g
en

20
0_

p0
.9

_5
5

 g
en

40
0_

p0
.9

_5
5

 g
en

40
0_

p0
.9

_6
5

 g
en

40
0_

p0
.9

_7
5

 h
am

m
in

g8
-4

 h
am

m
in

g1
0-

4 k
el

le
r5

 p
_h

at
30

0-
2

 p
_h

at
30

0-
3

 p
_h

at
70

0-
2

 p
_h

at
70

0-
3

 p
_h

at
15

00
-1

 p
_h

at
15

00
-2 p
_h

at
15

00
-3

in
di

st
in

gu
is

ha
bl

e
di

ffe
re

nt
le

ss
 th

an
 1

00
%

 s
uc

ce
ss

 1
0

 1
00

 1
00

0

 1
00

00

 1
00

00
0

 1
e+

06

 1
e+

07

 1
0

 1
00

 1
00

0
 1

00
00

 1
00

00
0

 1
e+

06
 1

e+
07

 C
12

5.
9

 C
25

0.
9

 D
SJ

C
10

00
.5

 D
SJ

C
50

0.
5

 C
20

00
.5

 M
AN

N
_a

27
 b

ro
ck

20
0_

2

 b
ro

ck
20

0_
4

 g
en

20
0_

p0
.9

_4
4

 g
en

20
0_

p0
.9

_5
5

 g
en

40
0_

p0
.9

_5
5

 g
en

40
0_

p0
.9

_6
5

 g
en

40
0_

p0
.9

_7
5

 h
am

m
in

g8
-4

 h
am

m
in

g1
0-

4

 p
_h

at
30

0-
2

 p
_h

at
30

0-
3

 p
_h

at
70

0-
1

 p
_h

at
70

0-
2

 p
_h

at
70

0-
3

 p
_h

at
15

00
-1

 p
_h

at
15

00
-2

 p
_h

at
15

00
-3

in
di

st
in

gu
is

ha
bl

e
di

ffe
re

nt
le

ss
 th

an
 1

00
%

 s
uc

ce
ss

ra
n
d
o
m

T
∈

[1
,
2
(|
B
es
t|

+
1
)]

T
a
b

le
A

.5
:

M
ed

ia
n

n
u

m
b

er
of

st
ep

s
(l

ow
er

tr
ia

n
gu

la
r)

an
d

m
ed

ia
n

n
u

m
b

er
of

C
P

U
se

co
n

d
s

(u
p

p
er

tr
ia

n
gu

la
r)

to
co

n
ve

rg
e

to
th

e

op
ti

m
al

so
lu

ti
on

.
T

h
e

em
p

ty
d

o
ts

re
p

re
se

n
t

th
e

in
st

an
ce

s
fo

r
w

h
ic

h
a

M
an

n
-W

h
it

n
ey

U
-t

es
t

co
u

ld
n

ot
re

je
ct

th
e

n
u

ll
h
y
p

ot
h

es
is

of

th
e

a
lg

o
ri

th
m

s
h

av
in

g
a
n

id
en

ti
ca

l
p

er
fo

rm
an

ce
at

si
gn

ifi
ca

n
ce

le
ve

l
α

=
0
.0

5.
T

h
e

w
h

it
e

sq
u

ar
es

on
th

e
ax

es
sh

ow
in

st
an

ce
s

fo
r

w
h

ic
h

th
e

o
n

e
of

th
e

al
go

ri
th

m
w

a
s

n
o
t

ab
le

to
fi

n
d

th
e

m
ax

im
u

m
cl

iq
u

e
ev

er
y

ru
n

.
T

h
e

w
h

it
e

sq
u

ar
es

on
th

e
ax

es
sh

ow
in

st
an

ce
s

fo
r

w
h

ic
h

th
e

on
e

o
f

th
e

al
go

ri
th

m
w

a
s

n
ot

ab
le

to
fi

n
d

th
e

m
ax

im
u

m
cl

iq
u

e
ev

er
y

ru
n

.

189

A.5. CONCLUSIONS APPENDIX A. ANALYSIS

 0 5 10 15 20 25 30 35 40 45 50
T 1

 10

 100

 1000

 10000

 100000

R

 0
 1e+06
 2e+06
 3e+06
 4e+06
 5e+06
 6e+06
 7e+06
 8e+06
 9e+06
 1e+07

mean seteps

 0 5 10 15 20 25 30 35 40 45 50

T

 1

 10

 100

 1000

 10000

 100000

R

 0
 1e+06
 2e+06
 3e+06
 4e+06
 5e+06
 6e+06
 7e+06
 8e+06
 9e+06
 1e+07

mean seteps

 0 5 10 15 20 25 30 35 40 45 50
T 1

 10

 100

 1000

 10000

 100000

R

 10000

 100000

 1e+06

 1e+07

mean seteps

 0 5 10 15 20 25 30 35 40 45 50

T

 1

 10

 100

 1000

 10000

 100000

R

 10000

 100000

 1e+06

 1e+07

mean seteps

Figure A.43: Mean number of iteration to find the optimum solution of C500.9. The mean is over

10 runs of 10,000,000 iterations with fixed values for the tabu tenure and restarts frequencies.

From left to right two different rotations around the y axis, and from top to bottom the z axis

is in linear and log scale.

 0 5 10 15 20 25 30 35 40 45 50
T 1

 10

 100

 1000

 10000

 100000

R

 0
 1e+06
 2e+06
 3e+06
 4e+06
 5e+06
 6e+06
 7e+06
 8e+06
 9e+06
 1e+07

mean seteps

 0 5 10 15 20 25 30 35 40 45 50

T

 1

 10

 100

 1000

 10000

 100000

R

 0
 1e+06
 2e+06
 3e+06
 4e+06
 5e+06
 6e+06
 7e+06
 8e+06
 9e+06
 1e+07

mean seteps

 0 5 10 15 20 25 30 35 40 45 50
T 1

 10

 100

 1000

 10000

 100000

R

 10000

 100000

 1e+06

 1e+07

mean seteps

 0 5 10 15 20 25 30 35 40 45 50

T

 1

 10

 100

 1000

 10000

 100000

R

 10000

 100000

 1e+06

 1e+07

mean seteps

Figure A.44: Mean number of iteration to find the optimum solution of brock200 4. The mean is

over 10 runs of 10,000,000 iterations with fixed values for the tabu tenure and restarts frequencies.

From left to right two different rotations around the y axis, and from top to bottom the z axis

is in linear and log scale.

190

APPENDIX A. ANALYSIS A.5. CONCLUSIONS

 0 5 10 15 20 25 30 35 40 45 50
T 1

 10

 100

 1000

 10000

 100000

R

 0
 1e+06
 2e+06
 3e+06
 4e+06
 5e+06
 6e+06
 7e+06
 8e+06
 9e+06
 1e+07

mean seteps

 0 5 10 15 20 25 30 35 40 45 50

T

 1

 10

 100

 1000

 10000

 100000

R

 0
 1e+06
 2e+06
 3e+06
 4e+06
 5e+06
 6e+06
 7e+06
 8e+06
 9e+06
 1e+07

mean seteps

 0 5 10 15 20 25 30 35 40 45 50
T 1

 10

 100

 1000

 10000

 100000

R

 100

 1000

 10000

 100000

 1e+06

 1e+07

mean seteps

 0 5 10 15 20 25 30 35 40 45 50

T

 1

 10

 100

 1000

 10000

 100000

R

 100

 1000

 10000

 100000

 1e+06

 1e+07

mean seteps

Figure A.45: Mean number of iteration to find the optimum solution of MANN a27. The

mean is over 10 runs of 10,000,000 iterations with fixed values for the tabu tenure and restarts

frequencies. From left to right two different rotations around the y axis, and from top to bottom

the z axis is in linear and log scale.

 0 5 10 15 20 25 30 35 40 45 50
T 1

 10

 100

 1000

 10000

 100000

R

 9e+06
 9.1e+06
 9.2e+06
 9.3e+06
 9.4e+06
 9.5e+06
 9.6e+06
 9.7e+06
 9.8e+06
 9.9e+06

 1e+07

mean seteps

 0 5 10 15 20 25 30 35 40 45 50

T

 1

 10

 100

 1000

 10000

 100000

R

 9e+06
 9.1e+06
 9.2e+06
 9.3e+06
 9.4e+06
 9.5e+06
 9.6e+06
 9.7e+06
 9.8e+06
 9.9e+06

 1e+07

mean seteps

 0 5 10 15 20 25 30 35 40 45 50
T 1

 10

 100

 1000

 10000

 100000

R

 1e+06

 1e+07

mean seteps

 0 5 10 15 20 25 30 35 40 45 50

T

 1

 10

 100

 1000

 10000

 100000

R

 1e+06

 1e+07

mean seteps

Figure A.46: Mean number of iteration to find the optimum solution of MANN a45. The

mean is over 10 runs of 10,000,000 iterations with fixed values for the tabu tenure and restarts

frequencies. From left to right two different rotations around the y axis, and from top to bottom

the z axis is in linear and log scale.

191

A.5. CONCLUSIONS APPENDIX A. ANALYSIS

 0 5 10 15 20 25 30 35 40 45 50
T 1

 10

 100

 1000

 10000

 100000

R

 0
 1e+06
 2e+06
 3e+06
 4e+06
 5e+06
 6e+06
 7e+06
 8e+06
 9e+06
 1e+07

mean seteps

 0 5 10 15 20 25 30 35 40 45 50

T

 1

 10

 100

 1000

 10000

 100000

R

 0
 1e+06
 2e+06
 3e+06
 4e+06
 5e+06
 6e+06
 7e+06
 8e+06
 9e+06
 1e+07

mean seteps

 0 5 10 15 20 25 30 35 40 45 50
T 1

 10

 100

 1000

 10000

 100000

R

 10000

 100000

 1e+06

 1e+07

mean seteps

 0 5 10 15 20 25 30 35 40 45 50

T

 1

 10

 100

 1000

 10000

 100000

R

 10000

 100000

 1e+06

 1e+07

mean seteps

Figure A.47: Mean number of iteration to find the optimum solution of brock200 2. The mean is

over 10 runs of 10,000,000 iterations with fixed values for the tabu tenure and restarts frequencies.

From left to right two different rotations around the y axis, and from top to bottom the z axis

is in linear and log scale.

 0 5 10 15 20 25 30 35 40 45 50
T 1

 10

 100

 1000

 10000

 100000

R

 3e+06
 4e+06
 5e+06
 6e+06
 7e+06
 8e+06
 9e+06
 1e+07

mean seteps

 0 5 10 15 20 25 30 35 40 45 50

T

 1

 10

 100

 1000

 10000

 100000

R

 3e+06
 4e+06
 5e+06
 6e+06
 7e+06
 8e+06
 9e+06
 1e+07

mean seteps

 0 5 10 15 20 25 30 35 40 45 50
T 1

 10

 100

 1000

 10000

 100000

R

 1e+06

 1e+07

mean seteps

 0 5 10 15 20 25 30 35 40 45 50

T

 1

 10

 100

 1000

 10000

 100000

R

 1e+06

 1e+07

mean seteps

Figure A.48: Mean number of iteration to find the optimum solution of brock400 2. The mean is

over 10 runs of 10,000,000 iterations with fixed values for the tabu tenure and restarts frequencies.

From left to right two different rotations around the y axis, and from top to bottom the z axis

is in linear and log scale.

192

APPENDIX A. ANALYSIS A.5. CONCLUSIONS

 0 5 10 15 20 25 30 35 40 45 50
T 1

 10

 100

 1000

 10000

 100000

R

 0
 1e+06
 2e+06
 3e+06
 4e+06
 5e+06
 6e+06
 7e+06
 8e+06
 9e+06
 1e+07

mean seteps

 0 5 10 15 20 25 30 35 40 45 50

T

 1

 10

 100

 1000

 10000

 100000

R

 0
 1e+06
 2e+06
 3e+06
 4e+06
 5e+06
 6e+06
 7e+06
 8e+06
 9e+06
 1e+07

mean seteps

 0 5 10 15 20 25 30 35 40 45 50
T 1

 10

 100

 1000

 10000

 100000

R

 100000

 1e+06

 1e+07

mean seteps

 0 5 10 15 20 25 30 35 40 45 50

T

 1

 10

 100

 1000

 10000

 100000

R

 100000

 1e+06

 1e+07

mean seteps

Figure A.49: Mean number of iteration to find the optimum solution of brock400 4. The mean is

over 10 runs of 10,000,000 iterations with fixed values for the tabu tenure and restarts frequencies.

From left to right two different rotations around the y axis, and from top to bottom the z axis

is in linear and log scale.

 0 5 10 15 20 25 30 35 40 45 50
T 1

 10

 100

 1000

 10000

 100000

R

 0
 1e+06
 2e+06
 3e+06
 4e+06
 5e+06
 6e+06
 7e+06
 8e+06
 9e+06
 1e+07

mean seteps

 0 5 10 15 20 25 30 35 40 45 50

T

 1

 10

 100

 1000

 10000

 100000

R

 0
 1e+06
 2e+06
 3e+06
 4e+06
 5e+06
 6e+06
 7e+06
 8e+06
 9e+06
 1e+07

mean seteps

 0 5 10 15 20 25 30 35 40 45 50
T 1

 10

 100

 1000

 10000

 100000

R

 100000

 1e+06

 1e+07

mean seteps

 0 5 10 15 20 25 30 35 40 45 50

T

 1

 10

 100

 1000

 10000

 100000

R

 100000

 1e+06

 1e+07

mean seteps

Figure A.50: Mean number of iteration to find the optimum solution of C1000.9. The mean is

over 10 runs of 10,000,000 iterations with fixed values for the tabu tenure and restarts frequencies.

From left to right two different rotations around the y axis, and from top to bottom the z axis

is in linear and log scale.

193

A.5. CONCLUSIONS APPENDIX A. ANALYSIS

 0 5 10 15 20 25 30 35 40 45 50
T 1

 10

 100

 1000

 10000

 100000

R

 0
 1e+06
 2e+06
 3e+06
 4e+06
 5e+06
 6e+06
 7e+06
 8e+06
 9e+06
 1e+07

mean seteps

 0 5 10 15 20 25 30 35 40 45 50

T

 1

 10

 100

 1000

 10000

 100000

R

 0
 1e+06
 2e+06
 3e+06
 4e+06
 5e+06
 6e+06
 7e+06
 8e+06
 9e+06
 1e+07

mean seteps

 0 5 10 15 20 25 30 35 40 45 50
T 1

 10

 100

 1000

 10000

 100000

R

 100

 1000

 10000

 100000

 1e+06

 1e+07

mean seteps

 0 5 10 15 20 25 30 35 40 45 50

T

 1

 10

 100

 1000

 10000

 100000

R

 100

 1000

 10000

 100000

 1e+06

 1e+07

mean seteps

Figure A.51: Mean number of iteration to find the optimum solution of keller5. The mean is over

10 runs of 10,000,000 iterations with fixed values for the tabu tenure and restarts frequencies.

From left to right two different rotations around the y axis, and from top to bottom the z axis

is in linear and log scale.

 0 5 10 15 20 25 30 35 40 45 50
T 1

 10

 100

 1000

 10000

 100000

R

 1e+06
 2e+06
 3e+06
 4e+06
 5e+06
 6e+06
 7e+06
 8e+06
 9e+06
 1e+07

mean seteps

 0 5 10 15 20 25 30 35 40 45 50

T

 1

 10

 100

 1000

 10000

 100000

R

 1e+06
 2e+06
 3e+06
 4e+06
 5e+06
 6e+06
 7e+06
 8e+06
 9e+06
 1e+07

mean seteps

 0 5 10 15 20 25 30 35 40 45 50
T 1

 10

 100

 1000

 10000

 100000

R

 1e+06

 1e+07

mean seteps

 0 5 10 15 20 25 30 35 40 45 50

T

 1

 10

 100

 1000

 10000

 100000

R

 1e+06

 1e+07

mean seteps

Figure A.52: Mean number of iteration to find the optimum solution of C4000.5. The mean is

over 10 runs of 10,000,000 iterations with fixed values for the tabu tenure and restarts frequencies.

From left to right two different rotations around the y axis, and from top to bottom the z axis

is in linear and log scale.

194

APPENDIX A. ANALYSIS A.5. CONCLUSIONS

 0 5 10 15 20 25 30 35 40 45 50
T 1

 10

 100

 1000

 10000

 100000

R

 0
 1e+06
 2e+06
 3e+06
 4e+06
 5e+06
 6e+06
 7e+06
 8e+06
 9e+06
 1e+07

mean seteps

 0 5 10 15 20 25 30 35 40 45 50

T

 1

 10

 100

 1000

 10000

 100000

R

 0
 1e+06
 2e+06
 3e+06
 4e+06
 5e+06
 6e+06
 7e+06
 8e+06
 9e+06
 1e+07

mean seteps

 0 5 10 15 20 25 30 35 40 45 50
T 1

 10

 100

 1000

 10000

 100000

R

 100000

 1e+06

 1e+07

mean seteps

 0 5 10 15 20 25 30 35 40 45 50

T

 1

 10

 100

 1000

 10000

 100000

R

 100000

 1e+06

 1e+07

mean seteps

Figure A.53: Mean number of iteration to find the optimum solution of keller6. The mean is over

10 runs of 10,000,000 iterations with fixed values for the tabu tenure and restarts frequencies.

From left to right two different rotations around the y axis, and from top to bottom the z axis

is in linear and log scale.

 0 5 10 15 20 25 30 35 40 45 50
T 1

 10

 100

 1000

 10000

 100000

R

 4e+06

 5e+06

 6e+06

 7e+06

 8e+06

 9e+06

 1e+07

mean seteps

 0 5 10 15 20 25 30 35 40 45 50

T

 1

 10

 100

 1000

 10000

 100000

R

 4e+06

 5e+06

 6e+06

 7e+06

 8e+06

 9e+06

 1e+07

mean seteps

 0 5 10 15 20 25 30 35 40 45 50
T 1

 10

 100

 1000

 10000

 100000

R

 1e+06

 1e+07

mean seteps

 0 5 10 15 20 25 30 35 40 45 50

T

 1

 10

 100

 1000

 10000

 100000

R

 1e+06

 1e+07

mean seteps

Figure A.54: Mean number of iteration to find the optimum solution of C2000.9. The mean is

over 10 runs of 10,000,000 iterations with fixed values for the tabu tenure and restarts frequencies.

From left to right two different rotations around the y axis, and from top to bottom the z axis

is in linear and log scale.

195

	Introduction
	State of the Art and Related Works
	Analysis and Re-engineering of Algorithms
	Analysis of Algorithmic Building Blocks
	Search Landscape Visualisation
	Engineering an Efficient Algorithm
	A Comparison of Tabu Search Variations

	Applications
	Cooperating Local Search
	Supervised Clustering

	Publications

	I Analysis and Re-engineering of Algorithms
	Analysis of Algorithmic Building Blocks
	Prohibition- and Penalty-based Methods
	Building Blocks of Increasing Complexity
	Repeated Expansions
	Expansion and Plateau Search
	Algorithms Based on Penalties or Prohibitions

	Computational Experiments
	Benchmark Graphs
	Results Summary
	Penalties Versus Prohibitions

	Conclusions

	Search Landscape Visualisation
	Introduction
	Previous and Related Work
	Complete Three-Dimensional Landscapes
	The Technique
	The Tool
	NURBS Covers

	Approximated Landscapes
	Clusters of Solutions
	Search Space Sampling

	Dynamic Landscapes
	Conclusions

	Engineering an Efficient Algorithm
	Introduction
	Implementation Details and Cost per Iteration
	DIMACS Benchmark Set

	Conclusions
	Notes on the Published Paper

	A Comparison of Tabu Search Variations
	Peeking Under the Hood of RLS–LTM
	Long vs. Short Term Memory
	A Good Tabu Tenure

	A New Implementation
	Conclusions

	II Applications
	Cooperating Local Search
	Introduction
	Analysis of the Characteristics of the Benchmark Instances
	The CLS Hyper-heuristic
	Empirical Performance Results
	 CLS Performance

	Conclusions

	Supervised Clustering
	Introduction
	Problem Description and Formalisation
	Distance-based Clustering with Maximum-weight Cliques
	The Maximum-weight Clique Algorithm
	Experimental results
	Predicting geometry of metal binding sites
	Active sites prediction

	Conclusions

	Conclusions
	Bibliography

	III Appendix
	A Comparison of Tabu Search Variations
	Peeking Under the Hood of RLS–LTM
	Long vs. Short Term Memory
	A Good Tabu Tenure

	A New Implementation
	Robust Tabu Search
	Conclusions

