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A geometric approach to the Herglotz problem is developed, based on the bundle of

affine scalars on the configuration manifold of the given system. The environment,

originally introduced to formalize the gauge structure of Lagrangian Mechanics1, pro-

vides the natural setting for the representation of the Herglotz functional as well as

for the study of its extremals. Various aspects of the problem are considered: the la-

grangian approach, leading to a generalization of the Poincaré-Cartan algorithm; the

parametric approach, involving the introduction of an appropriate super-Lagrangian;

the corresponding hamiltonian and super-hamiltonian counterparts; the relationship

between the Herglotz problem and a constrained variational problem; the evaluation

of the abnormality index2 of the resulting extremals; the gauge structure of the theory

and the consequent existence of Herglotz’s functionals gauge-equivalent to ordinary

action functionals.
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INTRODUCTION

In 1930 Herglotz proposed a variational principle in which the Lagrangian L(t, qi, u, q̇i)

involved in the definition of the action functional can also depend on the instantaneous value

u(t) =
∫ t

t0
Ldt of the action itself 3.

The original idea was published in 1979 in Herglotz’s collected works4. In this connec-

tion see also The Herglotz Lectures on Contact Transformations and Hamiltonian Systems,

published by Guenther and others in 19965.

In recent years, Herglotz’s variational principle and its application have attracted renewed

interest: in 2002, Georgieva, Guenther and Bodurov discussed the subject, obtaining some

interesting results in the direction of the first and second Noether theorem6–8. In the Confer-

ence on Geometry, Integrability and Quantization (Varna, June 2010) Georgieva presented

a list of problems admitting a variational formulation in the sense of Herglotz9.

In 2014 Donchev used Herglotz’s principle to obtain variational formulations of the Bôcher

equation, the nonlinear Schrödinger equation and other equations of Mathematical Physics10.

In 2017 Santos, Martins and Torres11, Garra, Taverna and Torres12 and Tavares, Almeida

and Torres13 worked on Herglotz’s problem considering time delay and fractional derivatives.

In 2020 Zhang summarized the state of art on the subject, discussing various related

problems, like Noether symmetries and conservation laws, as well as possible generalizations

of the principle to time-delay dynamics, fractional dynamics and time-scale dynamics14.

In 2023 de Leon, Lainz and Muñoz-Lecanda formulated Herglotz’s principle in the ge-

ometric environment of contact manifolds, following an approach based on Pontryagin’s

optimality principle15.

In this paper we propose a revisitation of the Herglotz problem in the geometrical setup

introduced some years ago for a gauge-invariant formulation of Lagrangian Mechanics1,16.

The construction, briefly reviewed in Sections I, III, involves the introduction of a prin-

cipal fibre bundle P
π
−→ Vn+1 over the configuration space time, referred to as the bundle

of affine scalars.

Strictly associated with P are two principal bundles over the velocity space, respectively

called the lagrangian and the co-lagrangian bundle, as well as two principal bundles over

the phase space, called the hamiltonian and the co-hamiltonian bundle.

The resulting environment is applied to the study of the Herglotz problem, interpreting
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the Lagrangian as the function involved in the representation of a map u̇ = L(t, qi, u, q̇i) of

the co-lagrangian bundle into the first-jet space j1(P,R).

Various approaches to the study of the extremals of the resulting action functional are

developed. Those more closely related to the lagrangian setup are presented in Section II: a

direct method, viewed as a natural generalization of the Poincaré-Cartan formalism, and a

parametric method, based on the conversion of the Herglotz problem into a free variational

problem involving a function L̃ over the tangent space T (P ), called the super-Lagrangian.

The argument is completed by an analysis of the behaviour of the formalism under arbi-

trary transformations of the fibred coordinates in the manifold P , and by a comparison of

the parametric approach with the method of Lagrange multipliers.

The hamiltonian and super-hamiltonian aspects of the problem are presented in Sec-

tion III, through a revisitation of the Legendre transformation, suitably adapted to the

context in study. The results are compared with those obtained applying Pontryagin’s max-

imum principle 2,17–19 to the Herglotz problem, viewed as a constrained variational problem.

The abnormality index of the extremals is explicitly evaluated.

The invariance properties of the Herglotz functional are discussed in Section IV, proving

the existence of a group of gauge transformations isomorphic to the group of diffeomorphisms

of the bundle P → Vn+1 fibred over the identity map of Vn+1 . The result is applied to the

characterization of the class of Herglotz Lagrangians gauge-equivalent to ordinary ones,

i.e. to Lagrangians giving rise to evolution equations not involving the variable u.

I. PRELIMINARIES

A geometric framework for the description of the gauge aspects of Classical Mechanics

has been described in Ref.1 For ease of reading, a brief outline of the topic is reported below.

(i) The basic environment is a double fibration P
π
−→ Vn+1

t
−→ R, where:

• Vn+1
t
−→ R, called the configuration space-time, is an (n+1)-dimensional fiber bundle,

referred to fibred coordinates t, q1, . . . , qn, with t representing absolute time;

• P
π
−→ Vn+1 is a principal fiber bundle with structural group (R,+), called the bundle

of affine scalars over Vn+1 , diffeomorphic, in a non canonical way, to the cartesian

product Vn+1 ×R.

3

    
Th

is 
is 

the
 au

tho
r’s

 pe
er

 re
vie

we
d, 

ac
ce

pte
d m

an
us

cri
pt.

 H
ow

ev
er

, th
e o

nli
ne

 ve
rsi

on
 of

 re
co

rd
 w

ill 
be

 di
ffe

re
nt 

fro
m 

thi
s v

er
sio

n o
nc

e i
t h

as
 be

en
 co

py
ed

ite
d a

nd
 ty

pe
se

t. 
PL

EA
SE

 C
IT

E 
TH

IS
 A

RT
IC

LE
 A

S 
DO

I:1
0.1

06
3/5

.01
65

64
1



Unless otherwise specified, P will be referred to coordinates t, q1, . . . , qn, u, with u repre-

senting a trivialization of P . In this way, the fundamental vector field of P coincides with

the field ∂
∂u

, while the group of allowed coordinate transformations reads

t̄ = t, q̄k = q̄k(t, q1, . . . , qn), ū = u+ f(t, q1, . . . , qn), (1)

with det
∂(q̄1,...,q̄n)
∂(q1,...,qn)

6= 0 . The coordinates in the tangent space T (P ) will be denoted by

t, qi, u, t′, q′i, u′.

(ii) The (pull-back of the) absolute time function provides a fibration P
t
−→ R . Closely

related with the latter are three significant bundles, namely:

• the first-jet space j1(P,R), referred to jet-coordinates t, qi, u, q̇i, u̇;

• the lagrangian bundle L(Vn+1), quotient of j1(P,R) with respect to the 1-parameter

group of diffeomorphisms generated by the field ∂
∂u

, referred to coordinates t, qi, q̇i, u̇;

• the co-lagrangian bundle L(c)(Vn+1), quotient of j1(P,R) with respect to the 1-pa-

rameter group generated by the field ∂
∂u̇

, referred to coordinates t, qi, u, q̇i.

Denoting by j1(Vn+1) the first-jet space j1(Vn+1,R), referred to coordinates t, qi, q̇i, the

previous definitions give rise to the commutative diagram1

j1(P,R)
π

−−−→ L(c)(Vn+1)

p





y





y

p

L(Vn+1)
π

−−−→ j1(Vn+1)

in which all arrows denote principal fibrations. Given a function f , either in F (Vn+1) or in

F (P ), the symbolic time derivative df
dt

will be denoted by ḟ .

Further significant aspects are:

• the identification of j1(P,R) with the hyperplane t′ = 1 in the tangent space T (P ), and

the consequent existence of a fibration ν : T+(P )→ j1(P,R) of the open submanifold

T+(P ) =
{

X |X ∈ T (P ),
〈

X, dt
〉

> 0
}

over the first-jet space j1(P,R), based on the

prescription ν(X) = X
〈X,dt〉

and described in coordinates as ν∗(q̇i) = q′
i

t′
, ν∗(u̇) = u′

t′
;

• the existence of an anti-derivation dv of the Grassmann algebra over j1(P,R), known
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as the fiber differential 1,20, uniquely defined by the prescriptions

dvf :=
∂f

∂q̇k
(

dqk − q̇kdt
)

+
∂f

∂u̇

(

du− u̇dt
)

∀ f ∈ F (j1(P,R));

dv · d + d · dv = −dt ∧ d.

For brevity, the notation ωk := dqk − q̇kdt will often be used.

(iii) In ordinary Lagrangian Mechanics, the invariance of Lagrange’s equations under ar-

bitrary transformations L′ = L + ḟ , f ∈ F (Vn+1) is conveniently accounted for 1 by in-

terpreting the Lagrangian as the representation of a section u̇ = L(t, qi, q̇i) of the bundle

L(Vn+1)→ j1(Vn+1) or, what is the same, of a section ℓ : L(c)(Vn+1)→ j1(P,R) equivariant

with respect to the action of the 1-parameter group of diffeomorphisms generated by the

field ∂
∂u

.

The same approach is also suited to a geometrization of the Herglotz problem: to this end

one has simply to drop the equivariance requirement, extending the analysis to the totality

of sections ℓ : L(c)(Vn+1)→ j1(P,R) described in coordinates as u̇ = L(t, qi, u, q̇i).

The function L involved in the representation of ℓ is still called a Lagrangian: more

specifically an ordinary Lagrangian in the equivariant case, corresponding to ∂L
∂u

= 0, and

a Herglotz Lagrangian in the opposite case.

Under a change ū = u + f(t, qi) of the trivialization of P , the representation of ℓ trans-

forms into ¯̇u = L(t, qi, ū− f, q̇i) + ḟ := L̄(t, qi, ū, q̇i). When L is an ordinary Lagrangian, L̄

is also an ordinary Lagrangian, gauge-equivalent to L in the usual sense.

The section ℓ is called regular if and only if the associated Lagrangian L = ℓ∗(u̇) satisfies

the gauge invariant condition det
(

∂ 2L
∂q̇i ∂q̇j

)

6= 0.

(iv) After these preliminaries, let us focus on the formulation of the Herglotz problem.

To this end, in addition to the section ℓ : L(c)(Vn+1) → j1(P,R), we introduce another

section σ : Vn+1 → P , described in coordinates as u = s(t, qi). By means of the pair (ℓ, σ),

every curve γ : qi = qi(t), t0 ≤ t ≤ t1 in Vn+1 can be lifted to a curve γ̂ : qi = qi(t), u = u(t)

in P , with the function u(t) determined by the ordinary differential equation

du

dt
= L

(

t, qi(t), u,
dqi

dt

)

(2a)

with initial data u(t0) = s(t0, q
i(t0)) or, equivalently, by the integral equation

u(t) = u(t0) +

∫ t

t0

L

(

t, qi(t), u,
dqi

dt

)

dt. (2b)
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The functional I assigning to each curve γ in Vn+1 the difference I [γ] = u(t1)− u(t0) is

called the action integral determined by the pair ℓ, σ. When the section ℓ is ordinary, and

only then, the value of I [γ] is independent of the choice of σ.

In any case, given the necessary input, the Herglotz problem consists in the determination

of the extremals γ : [t0, t1] → Vn+1 of the functional I with respect to deformations of γ

preserving the endpoints γ(t0), γ(t1), and therefore also the initial value u(t0).

The issue is clearly equivalent to identifying the extremals of the functional

Î [γ̂] =

∫ t1

t0

L
(

t, qi, u, q̇i
)

dt

within the family of curves γ̂ : [t0, t1] → P satisfying the non-holonomic constraint

u̇ = L (t, qi, u, q̇i) and joining the initial point γ̂(t0) = σ(γ(t0)) with a final point γ̂(t1)

varying along the fiber π−1(γ(t1)).

The latter is not a variational problems with fixed endpoints. However, since its aim is to

characterize the curves along which the first variation of the difference Î [γ̂] = u(t1)−u(t0) is

zero, it can be approached with the standard techniques of constrained variational calculus,

requiring the vanishing of the first variation δÎ [γ̂] with respect to the totality of admissible

infinitesimal deformations null at both endpoints.

We will return to this aspect in Subsections IIB and IIIB. The analysis will show that

the fact that the vanishing of δu(t1) is not due to the assignment of the value u(t1) but to

the requirement of stationarity of Î [γ̂] does not affect the characterization of the extremals,

but their normality , assigning them an abnormality index equal to 1.

II. THE LAGRANGIAN SETUP

A. The direct approach

(i) Following the scheme outlined in Section I, we start with an analysis of the functional

I[γ] = u(t1) − u(t0) acting on curves γ : [t0, t1] → Vn+1 , with the function u(t) given by

eq. (2b). Every finite deformation γξ : q
i = ϕi(t, ξ) of the curve γ gives rise to a variation

u(t, ξ) = u(t0) +

∫ t

t0

L

(

t, ϕi(t, ξ), u(t, ξ),
∂ϕi

∂t

)

dt.

In particular, given an infinitesimal deformation X = X i(t)
(

∂
∂qi

)

γ
, the corresponding
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variation U :=
∂u(t,ξ)
∂ξ

∣

∣

∣

ξ=0
obeys the evolution equation

dU

dt
=
∂L

∂qk
Xk +

∂L

∂q̇k
dXk

dt
+
∂L

∂u
U. (3)

The latter entails the identification

U(t1)− U(t0) =

∫ t1

t0

(

∂L

∂qk
Xk +

∂L

∂q̇k
dXk

dt
+
∂L

∂u
U

)

dt =
dI [γξ]

dξ

∣

∣

∣

∣

ξ=0

(4)

characterizing the extremals of the Herglotz functional as curves γ : qi = qi(t) along which

the solution of eq. (3) with initial value U(t0) = 0 satisfies U(t1) = 0 for all infinitesimal

deformations X = X i(t)
(

∂
∂qi

)

γ
vanishing at the endpoints.

To speed up the subsequent analysis, in addition to the function u(t), along each curve

γ we introduce the auxiliary function g(t) = exp
(

−
∫ t

t0
∂L
∂u
dt
)

. We have then the identities

dg

dt
= −g

∂L

∂u
,

d

dt
(g U) = −g

∂L

∂u
U + g

dU

dt
= g

(

∂L

∂qk
Xk +

∂L

∂q̇k
Ẋk

)

, (5)

whence also

g(t1)U(t1) =

∫ t1

t0

g

(

∂L

∂qk
Xk +

∂L

∂q̇k
Ẋk

)

dt =

=

∫ t1

t0

[

g
∂L

∂qk
−

d

dt

(

g
∂L

∂q̇k

)]

Xkdt =

∫ t1

t0

g

(

∂L

∂qk
−

d

dt

∂L

∂q̇k
+
∂L

∂u

∂L

∂q̇k

)

Xkdt.

Being g(t) 6= 0, a necessary and sufficient condition for the vanishing of U(t1) for all

X i(t) null at the endpoints is the validity of the Herglotz equation

d

dt

∂L

∂q̇k
−
∂L

∂qk
−
∂L

∂u

∂L

∂q̇k
= 0. (6)

Parenthetically we observe that, along any extremal curve, eq. (6) yields the relation

d

dt

[

g

(

U −
∂L

∂q̇k
Xk

)]

= g

(

∂L

∂qk
Xk +

✚
✚
✚
✚∂L

∂q̇k
Ẋk −

d

dt

∂L

∂q̇k
Xk −

✚
✚
✚
✚∂L

∂q̇k
Ẋk +

∂L

∂u

∂L

∂q̇k
xk
)

= 0.

which, together with U(t0) = X i(t0), provides the equality

U =
∂L

∂q̇k
Xk. (7)
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Remark 1. If we introduce the quantities πi := g ∂L
∂q̇i

, π0 := g
(

L − q̇i ∂L
∂q̇i

)

, eqs. (2a), (5),

(6) yield the evolution equations

dπi
dt

= −g
∂L

∂u

∂L

∂q̇i
+ g

d

dt

∂L

∂q̇i
= g

∂L

∂qi
(8a)

dπ0
dt

= −g
∂L

∂u

(

✓✓L−
∂L

∂q̇i
q̇i
)

+ g

(

∂L

∂t
+
∂L

∂qi
q̇i +

�
�
��∂L

∂q̇i
q̈i +

�
�
�∂L

∂u
L−

d

dt

∂L

∂q̇i
q̇i −

�
�
��∂L

∂q̇i
q̈i
)

= g

[

∂L

∂t
−

(

d

dt

∂L

∂q̇i
−

∂L

∂qi
−
∂L

∂u

∂L

∂q̇i

)

q̇i
]

= g
∂L

∂t
, (8b)

pointing out a correlation between cyclicality of the variables qi, t and conservation laws.

More generally, eqs. (8a,b) may be combined into a Noether-type theorem. To this end,

let X = X0 ∂
∂t

+X i ∂
∂qi

(with X0 = const.) be a vector field over Vn+1 satisfying the condition

X0 ∂L

∂t
+X i ∂L

∂qi
+ Ẋ i ∂L

∂q̇i
= 0. (9)

Then, on account of eqs. (8), (9), the quantity X iπi +X0π0 = g
[

X i ∂L
∂q̇i

+X0
(

L− q̇i ∂L
∂q̇i

)]

obeys the conservation law

d

dt

(

X iπi +X0π0
)

= Ẋ iπi +X ig
∂L

∂qi
+X0g

∂L

∂t
= g

(

Ẋ i ∂L

∂q̇i
+X i ∂L

∂qi
+X0 ∂L

∂t

)

= 0.

It is worth noticing that, due to the presence of the term g = exp
(

−
∫ t

t0
∂L
∂u
dt
)

, the con-

served quantity thus obtained are not functions on the manifold L(c)(Vn+1) but functionals,

to be evaluated along the evolution of the system. Therefore, they do not represent first

integrals in the strict sense of the term.

(ii) An explicitly gauge-invariant approach to eq. (6) is obtained by assigning a primary role

to the section ℓ : L(c)(Vn+1)→ j1(P,R).

Denoting by ϕ = u̇ − L(t, qi, u, q̇i) the corresponding trivialization of j1(P,R), the fiber

differential dvϕ = du− u̇dt− ∂L
∂q̇k

ωk , pulled back to L(c)(Vn+1), determines a 1-form

ϑ = ℓ∗
(

dvϕ
)

= du− Ldt−
∂L

∂q̇k
ωk, (10)

whose opposite may be viewed as the natural generalization of the Poincaré-Cartan 1-form

associated with L.21

Theorem 1. Let I denote the differential ideal generated by the 1-form (10). Then, under

the regularity assumption det
(

∂ 2L
∂q̇i ∂q̇j

)

6= 0, the integral lines of the characteristic distribu-

tion associated with I are (lifts of) solutions of the Herglotz equation.
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Proof. The ideal I is identical to the ideal generated by ϑ itself and by the 2-form

Ω : =
∂

∂u

(

ϑ ∧ dϑ
)

= dϑ − ϑ ∧ L∂/∂uϑ =

=

[(

∂L

∂qk
+
∂L

∂u

∂L

∂q̇k

)

dt− d

(

∂L

∂q̇k

)

+
∂ 2L

∂q̇k ∂u
ϑ

]

∧ ωk. (11)

The associated characteristic distribution includes the totality of vector fields Z ∈ D1(L(c)(Vn+1))

satisfying the conditions

Z ϑ = Z
(

du− Ldt−
∂L

∂q̇k
ωk

)

= 0 (12a)

Z Ω = Z

{[(

∂L

∂qk
+
∂L

∂u

∂L

∂q̇k

)

dt− d

(

∂L

∂q̇k

)

+
∂ 2L

∂q̇k ∂u
ϑ

]

∧ ωk
}

= αϑ. (12b)

Eqs. (11), (12) and the regularity assumption imply the relations

∂

∂u
Ω = 0 (13a)

α =
∂

∂u

(

Z Ω) = −Z

(

∂

∂u
Ω

)

= 0 =⇒ Z Ω = 0 (13b)

0 =
∂

∂q̇r
(

Z Ω) = −Z

(

∂

∂q̇r
Ω

)

= −
∂ 2L

∂q̇r ∂q̇k
Z ωk =⇒ Z ωk = 0 (13c)

Z(u) = Z(t)L (13d)

Z(t)

(

∂L

∂qk
+
∂L

∂u

∂L

∂q̇k

)

− Z

(

∂L

∂q̇k

)

= 0. (13e)

A straightforward check shows that every non-zero solution of eqs. (13c,d,e) satisfies

Z(t) 6= 0. Up to a multiplicative factor, we can therefore set Z(t) = 1. With this choice,

eqs. (13c,d,e) reduce to

Z(u) = L, Z(qk) = q̇k, Z

(

∂L

∂q̇k

)

−
∂L

∂qk
−
∂L

∂u

∂L

∂q̇k
= 0,

whence the thesis. The vector field Z = ∂
∂t

+ q̇i ∂
∂qi

+ L ∂
∂u

+ Z i ∂
∂q̇i

thus obtained is called

the dynamical flow associated with ϑ.

(iii) The content of Theorem 1 is further highlighted by noting that the differential ideal

generated by the 1-form ϑ is also generated by any multiple of it. This is related to the

fact that, in principle, the trivialization ϕ ∈ F (j1(P,R)) associated with the section ℓ may

be described in any coordinate system: the restricted choice adopted so far, based on the
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identification of u with a trivialization of the bundle P → Vn+1, although significant in many

respects (e.g. in the definition L = ℓ∗(u̇) of the Lagrangian) is not mandatory at all.

For example, starting with a coordinate system t, qi, u of the restricted type and given

a function ū = ū(t, qi, u) satisfying ∂ū
∂u
6= 0, we may adopt t, qi, ū as fibred coordinates in

P , and extend them to coordinates t, qi, ū, q̇i in L(c)(Vn+1) and t, qi, ū, q̇i, ¯̇u in j1(P,R), with

¯̇u = ∂ū
∂t

+ ∂ū
∂qk

q̇k + ∂ū
∂u
u̇.

The description of the section ℓ takes then the form ¯̇u = ∂ū
∂t

+ ∂ū
∂qk

q̇k + ∂ū
∂u
L := L̄, with

L̄ expressed in terms of the variables t, qi, ū, q̇i through the relation u = u(t, qi, ū) implicitly

defined by ū = ū(t, qi, u).

Recalling the representation ϕ = u̇ − L of the trivialization of j1(P,R) induced by ℓ we

have then the relation

¯̇u− L̄ =
∂ū

∂u
(u̇− L) =

∂ū

∂u
ϕ .

According to our conventions, L̄ is not a Lagrangian, but merely a function on the

manifold j1(P,R). Nevertheless, the equality

ℓ∗
[

dv(¯̇u− L̄)
]

= ℓ∗
[

∂ū

∂u
dvϕ

]

=
∂ū

∂u
ϑ

indicates that the 1-forms ϑ and ℓ∗
[

dv(¯̇u − L̄)
]

= dū − L̄dt − ∂L̄
∂q̇k

ωk determine the same

differential ideal, and therefore also the same characteristic distribution in L(c)(Vn+1).

Proceeding as in the proof of Theorem 1, with L and u replaced by L̄ and ū, we conclude:

Proposition 1. Independently of the choice of the coordinate ū along the fibres of P , given

any section ℓ : L(c)(Vn+1)→ j1(P,R), the extremals of the Herglotz functional are determined

by the differential equations

dū

dt
= L̄ ,

d

dt

∂L̄

∂q̇k
−
∂L̄

∂qk
−
∂L̄

∂ū

∂L̄

∂q̇k
= 0,

with L̄(t, qi, ū, q̇i) = ℓ∗(¯̇u).

Proposition 1 is essentially a restatement of the fact that, in its original formulation, the

Herglotz problem does not impose any condition on the function u, except the requirement

du
dt

= L. As such, it does not add anything to what was already known at the outset, but is

rather a test of self-consistency of the geometric setup.

In what follows we stick to the choice of u as a trivialization of P , thus preserving the

definition L = ℓ∗(u̇) of the Lagrangian and the consequent distinction between ordinary

Lagrangians and Herglotz ones. Different choices, when needed, will be explicitly declared.
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B. The super-Lagrangian

(i) The central role of the trivialization ϕ = u̇− L is further emphasized making use of the

projection ν(X) = X
〈X,dt〉

of the open submanifold T+(P ) ⊂ T (P ) onto the first-jet space

j1(P,R), described in coordinates as ν∗(q̇i) = q′
i

t′
, ν∗(u̇) = u′

t′
.

To analyse this aspect, we lift the opposite −ϕ to a function L̃ := ν∗(−ϕ) ∈ F (T+(P )),

homogeneous of degree 0 in the fiber variables, described in coordinates as

L̃ = L

(

t, qi, u,
q′i

t′

)

−
u′

t′
. (14)

The role of L̃, henceforth called the super-Lagrangian, is clarified by the following

Theorem 2. The solutions of the Herglotz problem based on the pair of sections (ℓ, σ)

are projections of solutions t = t(τ), qi = qi(τ), u = u(τ) of the Lagrange equations deter-

mined by the super-Lagrangian (14), completed with the initial and boundary data t(τ0) = t0,

t(τ1) = t1, q
i(τ0) = qi(t0), q

i(τ1) = qi(t1), u(τ0) = u0, L̃|τ=τ0 = 0.

Proof. The Lagrange equations generated by L̃ read

0 =
d

dτ

∂L̃

∂u′
−
∂L̃

∂u
= −

d

dτ

(

1

t′

)

−
∂L

∂u
, (15a)

0 =
d

dτ

∂L̃

∂q′k
−
∂L̃

∂qk
=

d

dτ

(

1

t′
∂L

∂q̇k

)

−
∂L

∂qk
=

1

t′
d

dτ

∂L

∂q̇k
−
∂L

∂u

∂L

∂q̇k
−
∂L

∂qk
, (15b)

0 =
d

dτ

∂L̃

∂t′
−
∂L̃

∂t
=

d

dτ

(

−
q′i

t′2
∂L

∂q̇i
+
u′

t′2

)

−
∂L

∂t
. (15c)

On account of the identity d
dτ

= t′ d
dt

, eq. (15a) entails the relation

t′
d

dt

1

t′
= −

∂L

∂u
=⇒

1

t′
=
dτ

dt
= Ae

−
∫ t

t0
∂L
∂u
dt
,

with the constant A determined by the conditions t(τ0) = t0, t(τ1) = t1.

In particular, no matter how the interval [τ0, τ1] is chosen, the inequality t(τ0) < t(τ1),

together with the positivity of the exponential, implies the positivity of both A and t′. This

ensures the self-consistency of the algorithm, i.e. the fact that the lifts of the solutions belong

to the submanifold T+(P ), as well as the possibility of using t rather than τ as a parameter

along the curves.
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Written in terms of t, eq. (15b) becomes identical to the Herglotz equation

d

dt

∂L

∂q̇i
−
∂L

∂u

∂L

∂q̇i
−
∂L

∂qi
= 0.

Moreover, in view of eqs. (15a,b), taking the non vanishing of t′ and the vanishing of ∂L̃
∂τ

into account, eq. (15c) may be replaced by the equation

0 = u′
(

d

dτ

∂L̃

∂u′
−
∂L̃

∂u

)

+ q′
k

(

d

dτ

∂L̃

∂q′k
−

∂L̃

∂qk

)

+ t′
(

d

dτ

∂L̃

∂t′
−
∂L̃

∂t

)

=
dH̃

dτ
, (16)

H̃ = u′ ∂L̃
∂u′

+ q′k ∂L̃

∂q′k
+ t′ ∂L̃

∂t′
− L̃ denoting the super-Hamiltonian associated with L̃.

On the other hand, the homogeneity of degree 0 of L̃ with respect to the variables t′, q′k, u′

entails the equality H̃ = −L̃. Eq. (16) is therefore equivalent to the conservation law dL̃
dτ

= 0.

The latter, together with the initial condition L̃|τ=τ0 = 0, implies the validity of the relation

L̃(t, qi, u, t′, q′
i
, u′) = L−

u′

t′
= L−

du

dt
= 0

along the whole evolution.

Summing up, we conclude that the Lagrange equations (15), together with the prescribed

initial and boundary data, reproduce the content of the Herglotz algorithm.

Theorem 2, together with Hamilton’s principle, indicates that the super-Lagrangian ap-

proach transforms the Herglotz problem into a free variational problem for the action inte-

gral
∫ τ1
τ0
L̃ dτ , with the difference u̇−L converted into a first integral and the non-holonomic

constraint u̇ = L reduced to a condition on the initial data.

The same conclusion holds if, chosen t as the independent variable, we include the function

τ(t) among the unknowns. In this way, using the relation 1
t′
= dτ

dt
:= τ̇ , the action integral

reads
∫ τ1

τ0

[

L

(

t, qi, u,
q′i

t′

)

−
u′

t′

]

dτ =

∫ t1

t0

(L− u̇) τ̇ dt. (17)

The extremals of the latter, with qi(t0), q
i(t1), τ(t0), τ(t1) and u(t0) fixed, are determined

by the Euler-Lagrange equations

d

dt
(L− u̇) = 0, −

dτ̇

dt
− τ̇

∂L

∂u
= 0,

d

dt

(

τ̇
∂L

∂q̇k

)

− τ̇
∂L

∂qk
= 0, (18)

clearly equivalent to eqs. (15), due to the equality d
dτ

= t′ d
dt

.

(ii) The conversion of the Herglotz problem into a free variational problem through the

introduction of an auxiliary unknown closely resembles the method of Lagrange multipliers.
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This aspect is made explicit by observing that, by a mere change of notation (1−λ in place

of λ), the action functional involved in Lagrange’s method can be converted into the gauge-

equivalent one
∫ t1
t0

[

L+ (1 − λ)(u̇− L)− u̇
]

dt =
∫ t1
t0
λ(L − u̇)dt, identical to the functional

(17), up to the formal substitution λ = τ̇ .

The resulting Euler-Lagrange equations

L− u̇ = 0 , −
dλ

dt
− λ

∂L

∂u
= 0 ,

d

dt

(

λ
∂L

∂q̇k

)

− λ
∂L

∂qk
= 0

are then equivalent to eqs. (18), except for a minor difference related to the interpretation

of the multiplier: with the identification λ = τ̇ , the infinitesimal deformation δλ is the time-

derivative −dδτ
dt

of a parent deformation null at the endpoints, and is therefore subject to

the condition
∫ t1
t0
δλ = δτ(t1)−δτ(t0) = 0. Due to this fact, the vanishing of

∫ t1
t0
(u̇−L) δλ dt

for all admissible δλ’s is ensured by the condition u̇− L = const.

Conversely, if λ is regarded as an independent object — as in Lagrange’s method — the

vanishing of
∫ t1
t0
(u̇− L) δλ dt for arbitrary δλ requires the stronger condition u̇− L = 0.

This dissymmetry is reflected in the fact that, while in the super-lagrangian approach all

the unknowns are uniquely determined, in the method of Lagrange multipliers the function

λ(t) is determined only up to a multiplicative factor.

As we shall see, all these peculiarities are formally accounted for by the result, established

in Section IIIB, that the extremals of the Herglotz functional are abnormal in the sense of

variational calculus.2

III. THE HAMILTONIAN SETUP

A. The direct approach

(i) Paralleling the discussion in Section I, we now focus on the bundles associated with the

fibration P → Vn+1 . They include1

• the first-jet space j1(P,Vn+1), referred to jet-coordinates t, qi, u, p0, pi ;

• the hamiltonian bundle H(Vn+1), quotient of j1(P,Vn+1) with respect to the 1-

parameter group of diffeomorphisms generated by the field ∂
∂u

, referred to coordinates

t, qi, p0, pi ;

13

    
Th

is 
is 

the
 au

tho
r’s

 pe
er

 re
vie

we
d, 

ac
ce

pte
d m

an
us

cri
pt.

 H
ow

ev
er

, th
e o

nli
ne

 ve
rsi

on
 of

 re
co

rd
 w

ill 
be

 di
ffe

re
nt 

fro
m 

thi
s v

er
sio

n o
nc

e i
t h

as
 be

en
 co

py
ed

ite
d a

nd
 ty

pe
se

t. 
PL

EA
SE

 C
IT

E 
TH

IS
 A

RT
IC

LE
 A

S 
DO

I:1
0.1

06
3/5

.01
65

64
1



• the co-hamiltonian bundle H(c)(Vn+1), quotient of j1(P,Vn+1) with respect to the

1-parameter group generated by the field ∂
∂p0

, referred to coordinates t, qi, u, pi;

• the phase space Π(Vn+1), at the same time quotient of H(Vn+1) with respect to the

1-parameter group generated by the field ∂
∂p0

and quotient of H(c)(Vn+1) with respect

to the group generated by the field ∂
∂u

, referred to coordinates t, qi, pi .

The situation is summarized in the commutative diagram

j1(P,Vn+1) −−−→ H
(c)(Vn+1)





y





y

H(Vn+1) −−−→ Π(Vn+1)

in which all arrows denote principal fibrations.

(ii) Every regular section ℓ determines a Legendre diffeomorphism j1(P,R)
ψ
−→ j1(P,Vn+1),

uniquely defined by the requirement that the pull-back of the Liouville 1-form of j1(P,Vn+1)

coincides with the fiber-differential dv(u̇− L) of the trivialization of j1(P,R) induced by ℓ.

In coordinates, this entails the equality

du− u̇ dt−
∂L

∂q̇k
(

dqk − q̇kdt
)

= ψ∗
(

du− p0dt− pkdq
k
)

,

corresponding to the representation

p0 = u̇−
∂L

∂q̇k
q̇k, pk =

∂L

∂q̇k
. (19)

The diffeomorphism ψ induces a diffeomorphism ψ̂ : L(c)(Vn+1)→ H
(c)(Vn+1), expressed

in coordinates as pk =
∂L
∂q̇k

and satisfying the fibred diagram

j1(P,R)
ψ

−−−→ j1(P,Vn+1)




y





y

L(c)(Vn+1)
ψ̂

−−−→ H(c)(Vn+1)

Through the latter, every regular section ℓ : L(c)(Vn+1) → j1(P,R) determines a section

h := ψ · ℓ · ψ̂−1 : H(c)(Vn+1)→ j1(P,Vn+1), locally represented as p0 = −H(t, qi, u, pi).

The function H , called the Hamiltonian, satisfies the relation

H = −h∗(p0) = −
(

ψ̂−1
)∗
· ℓ∗ · ψ∗(p0) = −

(

ψ̂−1
)∗
(

L−
∂L

∂q̇k
q̇k
)

= pk q̇
k − L, (20)
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with all expressions at the right-hand side evaluated in terms of t, qi, u, pi through the inverse

diffeomorphism ψ̂−1 : H(c)(Vn+1)→ L(c)(Vn+1).

Eq. (20) entails the identity

dH = −
(

ψ̂−1
)∗
(

dL−
∂L

∂q̇k
dq̇k − q̇kd

∂L

∂q̇k

)

= −
(

ψ̂−1
)∗
(

∂L

∂t
dt+

∂L

∂q̇k
dqk+

∂L

∂u
du− q̇kdpk

)

,

mathematically equivalent to the relations

q̇k =
∂H

∂pk
,

∂H

∂qk
= −

∂L

∂qk
,

∂H

∂t
= −

∂L

∂t
,

∂H

∂u
= −

∂L

∂u
. (21)

In particular, according the last equality, the vanishing of ∂L
∂u

implies the vanishing of ∂H
∂u

,

i.e. the equivariance of the section h : H(c)(Vn+1)→ j1(P,Vn+1) under the action of the field

∂
∂u

. Consequently, every ordinary lagrangian section induces a section p0 = −H(t, qi, pi) of

the phase space Π(Vn+1) into the hamiltonian bundle H(Vn+1)
1.

(iii) In view of eqs. (19), (21), the Herglotz equation (6) can be written in the form

dpi
dt

= −
∂H

∂qi
− pi

∂H

∂u
. (22)

The equation du
dt

= L can be similarly reformulated as

du

dt
= −H + pi q̇

i = −H + pi
∂H

∂pi
. (23)

Eqs. (22), (23), completed by the relations

dqi

dt
=

∂H

∂pi
(24)

provide the hamiltonian counterpart of the Herglotz algorithm. In the resulting framework,

the Hamiltonian obeys the Jacobi-type evolution equation

dH

dt
=
∂H

∂t
+
∂H

∂qi
dqi

dt
+
∂H

∂pi

dpi
dt

+
∂H

∂u

du

dt
=
∂H

∂t
−H

∂H

∂u
.

B. The super-Hamiltonian

(i) An alternative formulation of the Herglotz problem in hamiltonian terms comes from the

use of the Legendre transformation T (P )→ T ∗(P ) induced by the super-Lagrangian (14).

Resuming the notation t, qi, u, t′, q′i, u′ for the coordinates in T (P ) and referring the

cotangent space T ∗(P ) to coordinates t, qi, u, y0, yi , yu , the transformation reads

yu =
∂L̃

∂u′
= −

1

t′
, yi =

∂L̃

∂q′i
=

1

t′
∂L

∂q̇i
, y0 =

∂L̃

∂t′
= −

1

t′

(

∂L

∂q̇k
q′k

t′
−
u′

t′

)

, (25a)
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completed by the expression

H̃ = u′
∂L̃

∂u′
+ q′

k ∂L̃

∂q′k
+ t′

∂L̃

∂t′
− L̃ = −L̃ (25b)

for the super-Hamiltonian.22

Eqs. (14), (19), (20), (25a,b) yield the relations

yi
yu

= −
∂L

∂q̇i
= −pi , (26a)

y0
yu

=
∂L

∂q̇k
q̇k −

u′

t′
= H + L−

u′

t′
= H + L̃ = H − H̃. (26b)

From these, expressing everything in coordinates, we get the representation

H̃ = H

(

t, qi, u,−
yi
yu

)

−
y0
yu
. (27)

In view of eqs. (26), (27) it is easily seen that the Hamilton equations

dt

dτ
=
∂H̃

∂y0
= −

1

yu
,

dqi

dτ
=
∂H̃

∂yi
= −

1

yu

∂H

∂pi
,

dyu
dτ

= −
∂H̃

∂u
,

dyi
dτ

= −
∂H̃

∂qi
(28)

reproduce the content of eqs. (22), (24). In a similar way, the equation

du

dτ
=
∂H̃

∂yu
=
∂H

∂pi

yi
y 2
u

+
y0
y 2
u

=
1

yu

(

−
∂H

∂pi
pi +H − H̃

)

,

together with the first integral dH̃
dt

= 0, ensures the validity of eq. (23) along any extremal

satisfying the initial requirement H̃|τ=τ0 = −L̃|τ=τ0 = 0.

(ii) It is worth remarking the close analogy between the correspondences L → L̃ and

H → H̃ given by eqs. (14), (27), as well as between the equalities q̇i = q′
i

t′
, u̇ = u′

t′
and

pi = −
yi
yu

, p0 = − y0
yu

. The reason relies on the fact that, exactly as it happens with the

imbedding j1(P,R)→ T (P ), the first-jet space j1(P,Vn+1) can be viewed as a submanifold

of the cotangent space T ∗(P ), namely as the affine subbundle formed by the totality of

1-forms ω satisfying yu(ω) =
〈

ω, ∂
∂u

〉

= 1.

This allows to set up a fibration ν : T ∗
−(P ) → j1(P,Vn+1) of the open submanifold

T ∗
−(P ) =

{

ω ∈ T ∗(P ), yu(ω) < 0
}

onto j1(P,Vn+1), described in coordinates as 23

pi = −
yi
yu
, p0 = −

y0
yu
.
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Given any section h : H(c)(Vn+1)→ j1(P,Vn+1) locally represented as p0 = −H(t, qi, u, pi),

we can then lift the associated trivialization p0 + H to a function H̃ = ν∗(p0 + H) =

− y0
yu

+H
(

t, qi, u,− yi
yu

)

∈ F (T ∗
−(P )).

In this way, if h = ψ · ℓ · ψ̂−1 is the hamiltonian section associated with the lagrangian

section ℓ by the Legendre diffeomorphism (19), the function H̃ determined by h coincides

with the super-Hamiltonian (27) induced by L̃ through the Legendre transformation (25).

(iii) Just as the super-lagrangian approach is related to the method of Lagrange multipliers,

the super-hamiltonian one reminds the content of another classical tool for the solution of

constrained variational problems, known as Pontryagin’s maximum principle.17–19

To analyse this aspect, we denote by V ∗(P ) the bundle of virtual 1-forms over P , referred

to local coordinates t, qi, u, yi, yu and identified with the quotient of the cotangent space

T ∗(P ) with respect to the equivalence relation ω ∼ ω′ ⇐⇒ ω − ω′ ∝ dt.2

We recall that the quotient map π(ω) = [ω ] makes T ∗(P ) a principal fibre bundle over

V ∗(P ), with fundamental vector field ∂
∂y0

. We then exploit the fact that the extremals of the

Herglotz functional are in 1–1 correspondence with the solutions of the Hamilton equations

(28) belonging to the submanifold H̃ = 0 and that, by eq. (27), a representation of this

submanifold is provided by the section hP : V ∗(P )→ T ∗(P ) described in coordinates as

y0 = yuH

(

t, qi, u,−
yi
yu

)

:= −HP

(

t, qi, u, yi, yu
)

. (29)

On account of Maupertuis’ least action principle, denoted by Θ = y0dt+yidq
i+yudu the

Liouville 1-form of T ∗(P ), the aforesaid solutions are then extremals of the functional
∫

γ̃
Θ

evaluated on curves γ̃ = γ̃(t) belonging to the submanifold hP
(

V ∗(P )
)

, i.e. of the functional
∫

γ̃
h∗P (Θ) =

∫

γ̃
−HP dt+ yidq

i + yudu on the manifold V ∗(P ).

These curves, parameterized in terms of t, are solutions of the Hamilton equations

dqi

dt
=
∂HP

∂yi
,

du

dt
=
∂HP

∂yu
,

dyi
dt

= −
∂HP

∂qi
,

dyu
dt

= −
∂HP

∂u
(30)

determined by the Hamiltonian HP .

The same situation occurs in the study of the Hamilton-Jacobi equation: formulated in

terms of the Hamiltonian HP , the latter reads

∂S

∂t
+HP

(

t, qi, u,
∂S

∂qi
,
∂S

∂u

)

= 0, (31)

S(t, qi, u) denoting Hamilton’s principal function.
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If we adopt the super-Hamiltonian H̃ and focus on solutions with constant energy H̃ = 0

we must instead consider the equation

H̃

(

t, qi, u,
∂S

∂t
,
∂S

∂qi
,
∂S

∂u

)

= 0, (32)

with S representing now Hamilton’s characteristic function. But, on account of eq. (27),

eq. (32) can be written as

1
∂S
∂u

[

∂S

∂t
+HP

(

t, qi, u,
∂S

∂qi
,
∂S

∂u

)]

= 0

which, by the non vanishing of ∂S
∂u

= yu , is identical to eq. (31). Therefore, both procedures

lead to the same differential equation, the only difference being in the interpretation or,

more simply, in the denomination of the unknown function.

The relationship between the above discussion and Pontryagin’s maximum principle can

be highlighted as follows: in Pontryagin’s approach, the solution of the Herglotz problem is

converted into the search for the extremals of the functional

I[γ̃] =

∫ t1

t0

[

L + yi

(

dqi

dt
− q̇i

)

+ yu

(

du

dt
− L

)]

dt

in the independent variables t, qi, u, q̇i, yi, yu, with yi , yu playing the role of “multipliers”,

needed in order to incorporate the relations dqi

dt
= q̇i, du

dt
= L in the extremality conditions.

Writing yu + 1 in place of yu (a mere change of notation, similar to the one made in

Section IIB), subtracting a total time derivative du
dt

and introducing the function

H := yi q̇
i + yu L, (33)

the expression for I[γ̃] takes the form

I[γ̃] =

∫ t1

t0

(

−H + yi
dqi

dt
+ yu

du

dt

)

dt =

∫

γ̃

−H dt + yidq
i + yudu. (34)

The extremals of the functional (34) satisfy the equations

∂H

∂q̇i
= yi + yu

∂L

∂q̇i
= 0 (35)

dqi

dt
=
∂H

∂yi
,

du

dt
=

∂H

∂yu
,

dyi
dt

= −
∂H

∂qi
,

dyu
dt

= −
∂H

∂u
. (36)
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Eqs. (35), formally identical to eqs. (26a), can be solved with respect to the q̇i ’s, giving

rise to expressions of the form q̇i = q̇i(t, qi, yi, yu). Inserting these in eq. (33) and comparing

with eqs. (20), (29) we obtain the identification

H
(

t, qi, u, q̇i(t, qi, yi, yu), yi, yu
)

= −yu

(

∂L

∂q̇i
q̇i − L

)

= −yuH = HP ,

proving the complete equivalence between eqs. (30) and eqs. (36).

(iv) A noteworthy aspect of the Herglotz problem, viewed as a constrained variational prob-

lem, is the abnormality of its extremals. To analyse this aspect, referring to 2 for notation

and terminology, we note that, in the case in study, the controls zi are the variables q̇i them-

selves, while the representation of the constraints reads q̇i = ψi(t, qi, q̇i), u̇ = ψu(t, qi, u, q̇i),

with ψi = q̇i and ψu = L. We then recall that the abnormality index of a kinematically

admissible curve γ̂ : qi = qi(t), u = u(t) coincides with the dimension of the vector space

spanned by the solutions of the linear homogeneous system

ρk
∂ψk

∂q̇i
+ ρu

∂ψu

∂q̇i
= ρi + ρu

∂L

∂q̇i
= 0 (37a)

dρi
dt

+ ρk
∂ψk

∂qi
+ ρu

∂ψu

∂qi
=
dρi
dt

+ ρu
∂L

∂qi
= 0 (37b)

dρu
dt

+ ρk
∂ψk

∂u
+ ρu

∂ψu

∂u
=
dρu
dt

+ ρu
∂L

∂u
= 0 (37c)

in the unknowns ρi(t), ρu(t).

Eq. (37c) admits the solution ρu = Ae
−
∫
t

t0

∂L

∂u
dt

(A = const.). Moreover, on account of

eq. (37c), eqs. (37a,b) can be replaced by the pair of relations

ρi
ρu

= −
∂L

∂q̇i
,

d

dt

∂L

∂q̇i
= −

d

dt

ρi
ρu

= −
1

ρu

dρi
dt

+
ρi
ρ2u

dρu
dt

=
∂L

∂qi
+

∂L

∂q̇i
∂L

∂u

The first of these uniquely determines the ratio ρi
ρu

, while the second one holds identically

along any extremal, as a consequence of the Herglotz equation.

The space of solutions of the system (37) is therefore 1-dimensional, thus assigning the

value 1 to the abnormality index of the extremals of the Herglotz functional.24

This feature is reflected in the fact — easily verifiable — that eqs. (35), (36) do not deter-

mine the functions yi(t), yu(t) uniquely, but only up to a common multiplicative factor. The

same argument explains the indeterminacy of the multiplier λ pointed out in Section IIB.
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IV. GAUGE STRUCTURE OF THE HERGLOTZ FUNCTIONAL

A. Dynamically equivalent lagrangian sections

As a final topic, we discuss the possibility that different sections ℓ : L(c)(Vn+1)→ j1(P,R)

determine the same extremal curves in Vn+1 . To this end, let P
κ
−→ P denote a diffeomor-

phism of the manifold P fibred over the identity map Vn+1
id
−→ Vn+1, described in coordinates

as κ∗(u) = G(t, qi, u), with ∂G
∂u

> 0. 25

The inverse diffeomorphism κ−1 is similarly described by (κ−1)∗(u) = N(t, qi, u), with G

and N satisfying the condition

u = G
(

t, qi, N(t, qi, u)
)

= N
(

t, qi, G(t, qi, u)
)

. (38)

The map κ (as well as κ−1) can be raised to a bundle diffeomorphism

L(c)(Vn+1)
κ

−−−→ L(c)(Vn+1)




y





y

j1(Vn+1) j1(Vn+1)

indicated by the same symbol κ, and to a diffeomorphism δκ : j1(P,R) → j1(P,R), fibred

on the previous one and described in coordinates as

(δκ)∗(u) = G(t, qi, u) , (δκ)∗(u̇) =
∂G

∂t
+
∂G

∂qk
q̇k +

∂G

∂u
u̇ := Ġ .

Given a regular section ℓ : L(c)(Vn+1) → j1(P,R), let L(t, qi, u, q̇i) = ℓ∗(u̇) denote the

corresponding Lagrangian. Then, the composite map ℓ ′ = δκ ·ℓ ·κ−1 : L(c)(Vn+1)→ j1(P,R)

is itself a regular section, with Lagrangian ℓ ′∗(u̇) = L′(t, qi, u, q̇i) given by the equation

L′ = (κ−1)∗ · ℓ∗ · (δκ)∗(u̇) = (κ−1)∗ · ℓ∗(Ġ) = (κ−1)∗
(

∂G

∂t
+
∂G

∂qk
q̇k +

∂G

∂u
L

)

, (39a)

more conveniently written as

∂G

∂t
+
∂G

∂qk
q̇k +

∂G

∂u
L = κ∗(L′). (39b)

Returning to the original formulation of the Herglotz problem — which, in addition to

the section ℓ : L(c)(Vn+1) → j1(P,R), involves a second section σ : Vn+1 → P , necessary to

specify the initial value u(t0) — we can now state
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Theorem 3. The diffeomorphism κ : P → P transforms the extremals γ̂ : [t0, t1] → P of

the Herglotz functional determined by the pair of sections ℓ, σ into extremals γ̂ ′ = κ · γ̂ of

the analogous functional determined by the pair ℓ ′ = δκ · ℓ · κ−1, σ′ = κ · σ.

Proof. Preserving the notation G = κ∗(u), we adopt t, qi and ū = G(t, qi, u) as fiber co-

ordinates in P , and transform consequently the coordinates in L(c)(Vn+1) and in j1(P,R).

In this way, denoting by h : L(c)(Vn+1)→ R
2n+2 and h′ : L(c)(Vn+1)→ R

2n+2 the coordinate

maps determined by the functions (t, qi, u, q̇i) and (t, qi, ū, q̇i) — and also, by abuse of lan-

guage, the coordinate maps P → R
n+2 determined by the functions (t, qi, u) and (t, qi, ū)

in P — we have the relation h′ = h · κ, mathematically equivalent to κ = h−1 · h′ .

In the coordinate system h′, the section ℓ is represented by the pull-back

L̄ := ℓ∗(¯̇u) = ℓ∗
(

∂G

∂t
+
∂G

∂qk
q̇k +

∂G

∂u
u̇

)

=
∂G

∂t
+
∂G

∂qk
q̇k +

∂G

∂u
L.

Together with eq. (39b), the last expression entails the equality

L̄ = κ∗(L′) = L′ · κ = L′ · h−1 · h′ =⇒ L̄ · h′
−1

= L′ · h−1,

indicating that the function L̄ depends on the variables t, qi, ū, q̇i exactly in the same way

as L′ depends on t, qi, u, q̇i.

According to Proposition 1 this means that, up to the exchange ū ↔ u, the Herglotz

equations for the unknowns t, qi, ū derivable from L̄ are identical to the equations for the

unknowns t, qi, u derivable from L′.

Therefore, if γ̂ ′ : qi = ri(t), u = s(t) is an extremal of the functional
∫ t1
t0
L′dt subject to

the constraint u̇ = L′, the curve γ̂ : qi = ri(t), ū = s(t) is an extremal of the functional
∫ t1
t0
L̄dt subject to the constraint ¯̇u = L̄, i.e. a solution of the Herglotz problem determined

by the section ℓ : L(c)(Vn+1)→ j1(P,R), described in the coordinate system h′.

This entails the identification h · γ̂ ′ = h′ · γ̂, whence γ̂ ′ = h−1 · h′ · γ̂ = κ · γ̂ and therefore

also γ̂ ′(t0) = κ · γ̂(t0) = κ · σ(t0, q
i(t0)) = σ′(t0, q

i(t0)), with σ′ = κ · σ.

Since the diffeomorphism κ : P → P is fibred over Vn+1, the projections on Vn+1 of the

curves γ̂ and γ̂ ′ = κ · γ̂ coincide: as far as the Herglotz problem is concerned, the pairs

(ℓ, σ) and (ℓ ′, σ′) = (δκ · ℓ · κ−1, κ · σ) determine the same solutions.

In the stated circumstance, the Lagrangians L = ℓ∗(u̇) and L′ = ℓ ′∗(u̇) are said to be

gauge-equivalent. In the Herglotz framework, the gauge transformations are therefore in 1–1

correspondence with the fibred diffeomorphism of P .

21

    
Th

is 
is 

the
 au

tho
r’s

 pe
er

 re
vie

we
d, 

ac
ce

pte
d m

an
us

cri
pt.

 H
ow

ev
er

, th
e o

nli
ne

 ve
rsi

on
 of

 re
co

rd
 w

ill 
be

 di
ffe

re
nt 

fro
m 

thi
s v

er
sio

n o
nc

e i
t h

as
 be

en
 co

py
ed

ite
d a

nd
 ty

pe
se

t. 
PL

EA
SE

 C
IT

E 
TH

IS
 A

RT
IC

LE
 A

S 
DO

I:1
0.1

06
3/5

.01
65

64
1



B. Reducible dynamical flows

(i) As established in Section IIA, for a non-singular Lagrangian the extremals of the Herglotz

functional are integral lines of the dynamical flow Z = ∂
∂t

+ q̇i ∂
∂qi

+ L ∂
∂u

+ Z i ∂
∂q̇i

uniquely

determined by the Herglotz equations

Z

(

∂L

∂q̇k

)

−
∂L

∂qk
−
∂L

∂u

∂L

∂q̇k
= 0 . (40)

A dynamical flow p-related to a vector field on j1(Vn+1), i.e. satisfying ∂Zi

∂u
= 0 is said to

be reducible. In this special situation, the determination of the unknowns qk(t) is decoupled

from the evaluation of u(t), and constitutes a dynamic problem in the ordinary sense.

Several examples of reducible flows may be found in Georgieva.9 Others can easily be en-

visaged, taking advantage of the fact that every dynamical flow determined by a Lagrangian

gauge-equivalent to an ordinary one is automatically reducible.

A geometric approach to the subject can be based on the following observations:

a) for non-singular Lagrangians, the fields ∂
∂u
, Z span the characteristic distribution D

associated with the ideal I(Ω) generated by the 2-form (11);

b) the vanishing of ∂Zi

∂u
is mathematically equivalent to

[

∂
∂u
, Z

]

= ∂L
∂u

∂
∂u

, i.e. to the

complete integrability of the distribution D ;

c) eq. (40) entails the relation

Z

(

∂ 2L

∂u ∂q̇k

)

=
∂

∂u

(

Z

(

∂L

∂q̇k

))

−

[

∂

∂u
, Z

](

∂L

∂q̇k

)

=

=
∂

∂u

(

∂L

∂qk
+
∂L

∂u

∂L

∂q̇k

)

−
∂L

∂u

∂ 2L

∂u ∂q̇k
−
∂Zr

∂u

∂ 2L

∂q̇k ∂q̇r
.

The vanishing of ∂Zi

∂u
is therefore equivalent to the request

Z

(

∂ 2L

∂u ∂q̇k

)

−
∂ 2L

∂u ∂qk
−
∂ 2L

∂u2

∂L

∂q̇k
= 0 .

By Frobenius Theorem, statement b) ensures that a sufficient condition for reducibility

is the differential nature of the ideal I(Ω). We will return to this point in Appendix.

At the moment, we focus on statement c). Its content is enhanced by the following
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Lemma 1. A necessary and sufficient condition for a function g ∈ F (L(c)(Vn+1)) to admit

a local representation of the form g = Z(f), where f = f(t, qi, u) is the pull-back of a

function on P , is the validity of the relations

∂ 2g

∂q̇k ∂q̇r
= au(t, q

i, u)
∂ 2L

∂q̇k ∂q̇r
(41)

Z

(

∂g

∂q̇k

)

−
∂g

∂qk
−
∂g

∂u

∂L

∂q̇k
= 0 . (42)

Proof. Necessity: if g = ∂f
∂t

+ ∂f
∂qk

q̇k + ∂f
∂u
L, eq. (41) holds identically. Moreover

Z

(

∂g

∂q̇k

)

= Z

(

∂f

∂qk
+
∂f

∂u

∂L

∂q̇k

)

= Z

(

∂f

∂qk

)

+ Z

(

∂f

∂u

)

∂L

∂q̇k
+
∂f

∂u
Z

(

∂L

∂q̇k

)

.

But, by elementary calculations

Z

(

∂f

∂qk

)

=
∂

∂qk
Z(f)−

[

∂

∂qk
, Z

]

(

f
)

=
∂

∂qk
Z(f)−

∂L

∂qk
∂f

∂u
=

∂g

∂qk
−

∂L

∂qk
∂f

∂u

Z

(

∂f

∂u

)

=
∂

∂u
Z(f)−

[

∂

∂u
, Z

]

(

f
)

=
∂

∂u
Z(f)−

∂L

∂u

∂f

∂u
=
∂g

∂u
−
∂L

∂u

∂f

∂u
,

whence, recalling eq. (40) and the identification g = Z(f)

Z

(

∂g

∂q̇k

)

=
∂g

∂qk
−

✚
✚
✚
✚✚∂f

∂u

∂L

∂qk
+
∂g

∂u

∂L

∂q̇k
−

✟✟✟✟✟✟∂f

∂u

∂L

∂u

∂L

∂q̇k
+

✟✟✟✟✟✟✟∂f

∂u
Z

(

∂L

∂q̇k

)

.

Sufficiency: on account of eqs. (41), (42), g admits the representation

g = au(t, q
i, u)L + a0(t, q

i, u) + ai(t, q
i, u)q̇i, (43)

with the functions au, a0, ai satisfying the condition

Z

(

au
∂L

∂q̇k
+ ak

)

−
∂au
∂qk

L − au
∂L

∂qk
−
∂a0
∂qk
−
∂ai
∂qk

q̇i−

−

(

∂au
∂u

L + au
∂L

∂u
+
∂a0
∂u

+
∂ai
∂u

q̇i
)

∂L

∂q̇k
= 0. (44)

In view of eq. (40), trough elementary calculations eq. (44) reduces to

[

∂au
∂t
−
∂a0
∂u

+

(

∂au
∂qi
−
∂ai
∂u

)

q̇i
]

∂L

∂q̇k
+

+

(

∂ak
∂u
−
∂au
∂qk

)

L +

(

∂ak
∂t
−
∂a0
∂qk

)

+

(

∂ak
∂qi
−
∂ai
∂qk

)

q̇i = 0. (45)
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Deriving with respect to q̇s yields
[

∂au
∂t
−
∂a0
∂u

+

(

∂au
∂qi
−
∂ai
∂u

)

q̇i
]

∂ 2L

∂q̇k ∂q̇s
+

+

(

∂au
∂qs
−
∂as
∂u

)

∂L

∂q̇k
+

(

∂ak
∂u
−
∂au
∂qk

)

∂L

∂q̇s
+
∂ak
∂qs
−
∂as
∂qk

= 0.

Separating the symmetric and the antisymmetric parts entails the relations

∂au
∂t
−
∂a0
∂u

+

(

∂au
∂qi
−
∂ai
∂u

)

q̇i = 0 =⇒
∂au
∂t
−
∂a0
∂u

=
∂au
∂qi
−
∂ai
∂u

= 0

✘✘✘✘✘✘✘✘
(

∂au
∂qs
−
∂as
∂u

)

∂L

∂q̇k
+

✘✘✘✘✘✘✘✘
(

∂ak
∂u
−
∂au
∂qk

)

∂L

∂q̇s
+
∂ak
∂qs
−
∂as
∂qk

= 0.

In view of these, the original equation (45) reduces to ∂ak
∂t
− ∂a0

∂qk
= 0. Summing up we

conclude that, under the stated assumptions, the 1-form ω = a0dt+ aidq
i + audu is closed.

As such, it admits the local representation ω = df ⇐⇒ a0 =
∂f
∂t
, ai =

∂f
∂qi

, au = ∂f
∂u

, with

f = f(t, qi, u). Eq. (43) then takes the form

g =
∂f

∂t
+

∂f

∂qi
q̇i +

∂f

∂u
L = Z(f),

as required.

(ii) Returning to the problem of reducibility we now state:

Theorem 4. The validity of a local relation of the form

∂L

∂u
= Z(f), (46)

with f = f(t, qi, u) is necessary and sufficient for the Lagrangian L to be gauge-equivalent

to an ordinary Lagrangian LC(t, q
i, q̇i).

Proof. Setting f = − log
(

∂G
∂u

)

we have the equality

∂

∂u
Z(G) = Z

(

∂G

∂u

)

+

[

∂

∂u
, Z

]

(

G
)

= Z

(

∂G

∂u

)

+
∂L

∂u

∂G

∂u
= e−f

(

∂L

∂u
− Z(f)

)

,

showing that eq. (46) is mathematically equivalent to the relation ∂
∂u
Z(G) = 0.

But, on account of eq. (39b), under the assumption ∂G
∂u

> 0 — here identically satisfied

by construction — the Lagrangian L is gauge-equivalent to the Lagrangian (κ−1)∗
(

Z(G)
)

which, for ∂
∂u
Z(G) = 0, coincides with Z(G) itself. The conclusion then follows by setting

LC = Z(G).
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Remark 2. The content of Theorem 4 is confirmed by the fact that, as a consequence of

eq. (46), the Herglotz equation (6) takes the form Z
(

∂L
∂q̇k

)

− ∂L
∂qk
−Z(f) ∂L

∂q̇k
= 0, mathemat-

ically equivalent to

Z

(

∂

∂q̇k
(

e−fL
)

)

− e−f
∂L

∂qk
= 0. (47)

Restoring the notation e−f = ∂G
∂u

, Z(G) = LC(t, q
i, q̇i) and employing the relations

Z

(

∂G

∂qk

)

=
∂

∂qk
Z(G)−

[

∂

∂qk
, Z

]

(

G
)

=
∂LC
∂qk

−
∂L

∂qk
∂G

∂u

∂

∂q̇k

(

∂G

∂u
L

)

=
∂

∂q̇k

(

Z(G) −
∂G

∂qr
q̇r
)

=
∂LC
∂q̇k

−
∂G

∂qk
,

eq. (47) may be rewritten in the form

0 = Z

[

∂

∂q̇k

(

∂G

∂u
L

)]

−
∂G

∂u

∂L

∂qk
= Z

(

∂LC
∂q̇k

−
∂G

∂qk

)

−
∂G

∂u

∂L

∂qk
= Z

(

∂LC
∂q̇k

)

−
∂LC
∂qk

,

showing that the functions qk(t) are solutions of the Lagrange equations determined by the

ordinary Lagrangian LC .

The previous discussion is summarized in the following

Proposition 2. Given a Lagrangian L(t, qi, u, q̇i), the condition

Z

(

∂ 2L

∂u ∂q̇k

)

−
∂ 2L

∂u ∂qk
−
∂ 2L

∂u2

∂L

∂q̇k
= 0 (48a)

is necessary and sufficient for the associated dynamical flow to be reducible. In particular,

L is gauge-equivalent to an ordinary Lagrangian LC if and only if, in addition to eq. (48a),

it fulfils the additional relation

∂ 3L

∂u ∂q̇k ∂q̇r
= au

∂ 2L

∂q̇k ∂q̇r
, (48b)

with au = au(t, q
i, u).

The validity of both conditions (48a,b) is mathematically equivalent to the existence of a

function G(t, qi, u) ∈ F (P ) satisfying the equation

∂G

∂u
6= 0 ,

∂

∂u

(

∂G

∂t
+
∂G

∂qk
q̇k +

∂G

∂u
L

)

= 0 . (49)

In terms of G, the Lagrangian LC gauge-equivalent to L is expressed by the relation

LC(t, q
i, u, q̇i) =

∂G

∂t
+
∂G

∂qk
q̇k +

∂G

∂u
L. (50)
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Remark 3. Eq. (50) includes the gauge-equivalence between ordinary Lagrangians, simply

restricting the choice of the fibred diffeomorphism κ : P → P to the class of principal bundle

isomorphisms of P , i.e. requiring the condition ∂G
∂u

= 1. In the stated circumstance, setting

G = u+ h(t, qi) and renaming LC as L′, eq. (50) returns the familiar expression

L′ = L+
∂h

∂t
+

∂h

∂qk
q̇k := L +

dh

dt
.

Another indication of the fact that the “classical” Lagrangian gauge is implicitly present

in eq. (50) comes from the observation that if G(t, qi, u) is a solution of eqs. (49), any other

function G′ = G + h(t, qi) is itself a solution. The ordinary Lagrangian (50) is therefore

defined up to a transformation LC → LC + dh
dt

.

(iii) According to Proposition 2, the most general Lagrangian L(t, qi, u, q̇i) gauge-equivalent

to an ordinary one admits the representation

L =
1
∂G
∂u

[

LC −
∂G

∂t
−
∂G

∂qk
q̇k
]

(51)

for arbitrary LC = LC(t, q
i, q̇i) and for G(t, qi, u) satisfying the condition ∂G

∂u
> 0.

Common examples of Lagrangians of the form (51) are generated by functions G(t, qi, u)

depending linearly on u, namely G = A(t, qi)u+B(t, qi), with A(t, qi) 6= 0.

From eq. (51) it can be seen that the term B(t, qi) has the effect of replacing the La-

grangian LC with the gauge-equivalent one LC−
dB
dt

, and is therefore dynamically irrelevant.

Omitting it and writing A in exponential notation we have G = ue−f(t,q
k) , whence

L = ef
(

LC + ue−f ḟ
)

:= L̂(t, qk, q̇k) + uḟ , (52)

with L̂ = ef(t,q
k)LC .

The family (52) includes the ordinary Lagrangians L = L̂ (⇔ f = const.), and most of

the Herglotz Lagrangians found in the literature. For example, with the notation of Ref.9,

we have the translation table

L = 1
2
(ẋ2 − kx2)− au ←→ L̂ = 1

2
(ẋ2 − kx2), f = −at,

L = 1
2
+ x(n+1)

n+1
− 2u

t
←→ L̂ = 1

2
ẋ2 + x(n+1)

n+1
, f = −2 log t,

L = 1
2
ẋ2 − [2a(x)ẋ+ b(t)]u ←→ L̂ = 1

2
ẋ2, f = −2

∫

a dx−

∫

b dt,
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As established in Remark 2, every Lagrangian of the form (52) generates a set of evo-

lution equations in j1(Vn+1) identical to those determined by the ordinary Lagrangian

LC = e−f(t,q
i)L̂ or by any other Lagrangian gauge-equivalent to it.

Infact, the choice G = ue−f(t,q
k) is just one of the infinitely many possibilities available.

For example, setting G(t, qi, u) = α g
(u
α

)

e−f(t,q
i) with g′

(u
α

)

6= 0 generates the Lagrangian

L =
ef

g′

[

LC + αge−f ḟ
]

:=
1

g′
(u
α

)

[

L̂+ αg
(u

α

)

ḟ

]

,

with L̂ = efLC . In particular, for g
(u
α

)

= eu/α the latter reads

L = e−u/αL̂ + αḟ . (53)

Although of little practical interest, eq. (53) highlights the fact, already ascertained on

theoretical grounds, that adding a symbolic time derivative to a Lagrangian explicitly depen-

dent on the variable u does not mean performing a gauge transformation: the Lagrangian

(53) is not equivalent to e−u/αL̂ but to the ordinary Lagrangian LC = e−f L̂ .

Remark 4. In a mechanical context, the Herglotz formalism is often presented as a tool

for enlarging the class of admissible Lagrangians L = T + U , keeping the identification

T = 1
2

∑

miv
2
i , and allowing “hyper-generalized” potentials U = U0(t, q

i, u) + Ak(t, q
i, u)q̇k,

able to represent a wider class of lagrangian forces. The resulting expression for L is then

L = 1
2
aij(t, q

i)q̇iq̇j + bi(t, q
i, u)q̇i + c(t, qi, u). (54)

Actually, the effects of this generalization are more apparent than real. In fact, in order

for the procedure to be dynamically significant, the Lagrangian L must generate a reducible

flow, i.e. it must fulfil the requirement (48a). On the other hand, every Lagrangian of the

form (54) automatically fulfils eq. (48b), with au = 0. Therefore, if the associated flow is

reducible, L is gauge-equivalent to — and generates the same equations of motion as — an

ordinary Lagrangian.

Appendix: Reducibility revisited

For completeness, given a non-singular section ℓ : L(c)(Vn+1) → j1(P,R), we present an

alternative approach to the study of reducibility, based on the theory of exterior differential

systems.
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To this end, we refer to eqs. (10), (11), rewritten here for the reader’s convenience:

ϑ = du− Ldt−
∂L

∂q̇k
ωk, (A.1)

Ω = dϑ − ϑ ∧ L∂/∂uϑ. (A.2)

Preserving the notation I(Ω) for the ideal generated by the 2-form (A.2) and Z for the

dynamical flow generated by ℓ , we have then the properties:

• the characteristic distribution associated with I(Ω) coincides with the 2-dimensional

module D spanned by the fields ∂
∂u
, Z ;

• the complete integrability of D is equivalent to the reducibility of Z . In particular,

a sufficient condition for Z to be reducible is the differential nature of I(Ω), i.e. the

existence of a 1-form λ fulfilling the requirement dΩ = λ ∧ Ω.

Theorem 5. For n > 1, a necessary and sufficient condition for I(Ω) to be a differential

ideal is the existence of a function f(t, qi, u) satisfying the relation

L∂/∂u
(

e−fϑ
)

= de−f ⇐⇒ L∂/∂uϑ −
∂f

∂u
ϑ = −df. (A.3)

Proof. Sufficiency: eq. (A.3) entails the relation

e−f Ω = e−f
(

dϑ+ ϑ ∧ df
)

= d
(

e−fϑ
)

=⇒ d
(

e−f Ω
)

= 0 =⇒ dΩ = df ∧ Ω .

Necessity: setting dΩ = λ∧Ω and choosing a function g(t, qi, u, q̇i) satisfying the requirement

∂g
∂u

= ∂
∂u

λ, we have the equality

0 = L∂/∂uΩ −
∂g

∂u
Ω = L∂/∂udϑ − ϑ ∧L∂/∂u

(

L∂/∂uϑ
)

−
∂g

∂u

(

dϑ− ϑ ∧L∂/∂uϑ
)

. (A.4)

Introducing the 1-form ω = L∂/∂uϑ−
∂g
∂u

ϑ+ dg and employing the relations

L∂/∂udϑ = dω +
∂g

∂u
dϑ + d

(

∂g

∂u

)

∧ ϑ

ϑ ∧L∂/∂uϑ = ϑ ∧
(

ω − dg
)

ϑ ∧L∂/∂u

(

L∂/∂uϑ
)

= ϑ ∧L∂/∂u

(

ω +
∂g

∂u
ϑ− dg

)

= ϑ ∧

[

L∂/∂uω +
∂g

∂u

(

ω − dg
)

− d

(

∂g

∂u

)]

,

eq. (A.4) reduces to

0 = dω +
∂g

∂u
dϑ − ϑ∧d

(

∂g

∂u

)

− ϑ ∧

[

L∂/∂uω +
∂g

∂u

(

ω − dg
)

− d

(

∂g

∂u

)]

−

−
∂g

∂u
dϑ +

∂g

∂u
ϑ ∧

(

ω − dg
)

= dω − ϑ ∧L∂/∂uω. (A.5)
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From eq. (A.5) we get the pair of relations

L∂/∂udω = L∂/∂uϑ ∧L∂/∂uω + ϑ ∧L∂/∂u

(

L∂/∂uω
)

dϑ ∧L∂/∂uω − ϑ ∧L∂/∂udω = 0,

whence also

(

Ω + ϑ ∧L∂/∂uϑ
)

∧L∂/∂uω − ϑ ∧L∂/∂uϑ ∧L∂/∂uω = Ω ∧L∂/∂uω = 0. (A.6)

Being rankΩ = 2n, for n > 1 eq. (A.6) implies L∂/∂uω = 0. In view of eq. (A.5) this

entails dω = d
(

L∂/∂uϑ−
∂g
∂u

ϑ
)

= 0, thus ensuring the validity of a local representation of

the form

L∂/∂uϑ−
∂g

∂u
ϑ = −df. (A.7)

in which, on account of the identities ∂
∂q̇k

ϑ = ∂
∂q̇k

L∂/∂uϑ = ∂
∂u

L∂/∂uϑ = 0, the

function f is subject to the conditions

∂g

∂u
=
∂f

∂u
,

∂f

∂q̇k
= 0.

These make eq. (A.7) identical to (A.3), thus completing the proof.

Let us now see the implications of Theorem 5. In view of eq. (A.1), the content of

eq. (A.3) is expressed by the equation

∂L

∂u
dt+

∂ 2L

∂u ∂q̇k
ωk +

∂f

∂u

(

du− Ldt−
∂L

∂q̇k
ωk

)

=
∂f

∂u
du +

(

∂f

∂t
+

∂f

∂qk
q̇k
)

dt+
∂f

∂qk
ωk,

with f = f(t, qi, u). The latter implies the relations

∂L

∂u
=
∂f

∂t
+

∂f

∂qk
q̇k + L

∂f

∂u
(A.8a)

∂ 2L

∂u ∂q̇k
=
∂f

∂u

∂L

∂q̇k
+

∂f

∂qk
, (A.8b)

the second of which is identically satisfied as a consequence of the first.

Eq. (A.3) is therefore equivalent to the single condition (A.8a) which, as proved in The-

orem 4, is necessary and sufficient for the existence of an ordinary Lagrangian gauge equiv-

alence to L. Summing up, we conclude

Proposition 3. The following statements are equivalent:
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• the ideal I(Ω) generated by the 2-form (A.2) is a differential ideal;

• there exists a function f(t, qi, u) satisfying eq. (A.8a);

• there exists a function G(t, qi, u) satisfying ∂G
∂u
6= 0 and ∂

∂u

(

∂G
∂t

+ ∂G
∂qk

q̇k+ ∂G
∂u

L
)

= 0;

• the Lagrangian L is gauge-equivalent to an ordinary Lagrangian.

Remark 5. Proposition 3 does not exclude the existence of reducible dynamical flows gener-

ated by Lagrangians not gauge-equivalent to ordinary ones: it simply restricts this possibility

to the case in which the characteristic distribution associated with the ideal I(Ω) is com-

pletely integrable, without I(Ω) being a differential ideal.
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