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Mixture distributions with dynamic weights are an efficient way of modeling loss data 
characterized by heavy tails. However, maximum likelihood estimation of this family of 
models is difficult, mostly because of the need to evaluate numerically an intractable 
normalizing constant. In such a setup, simulation-based estimation methods are an 
appealing alternative. The approximate maximum likelihood estimation (AMLE) approach 
is employed. It is a general method that can be applied to mixtures with any component 
densities, as long as simulation is feasible. The focus is on the dynamic lognormal-
generalized Pareto distribution, and the Cramér - von Mises distance is used to measure 
the discrepancy between observed and simulated samples. After deriving the theoretical 
properties of the estimators, a hybrid procedure is developed, where standard maximum 
likelihood is first employed to determine the bounds of the uniform priors required 
as input for AMLE. Simulation experiments and two real-data applications suggest that 
this approach yields a major improvement with respect to standard maximum likelihood 
estimation.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

Estimating the right tail of a non-negative probability distribution is very important in many fields such as hydrology, 
economics and finance. At the same time, the problem may be difficult from the modeling point of view, since the data-
generating processes of the tail and the body are often different, so that no single stochastic model guarantees a precise 
description of the entire distribution. On top of that, statistical inference for the tail is challenging, because samples of 
extreme observations are typically small.

A fundamental set of tools for estimating the tail is known as Extreme Value Theory (EVT), which focuses on the dis-
tribution of the largest observations, or of the excesses above a high threshold. However, EVT only fits the tail; if interest 
is in the whole distribution, it is advisable to resort to a spliced distribution combining two different models for the body 
and the tail. A possible drawback is the need of continuity and differentiability constraints that reduce the number of free 
parameters (Scollnik, 2007).

An even more flexible alternative is the dynamic model developed by Frigessi et al. (2002). This approach employs a 
non-negative distribution with a size distribution supported on [0, ∞) for the body and the Generalized Pareto distribution 
(GPD) for the tail. Unlike classical finite mixtures, the density f (x) of the resulting random variable X is based on a dynamic 
weight, which is a monotonically increasing function of x. In this way, the GPD is given more and more weight as we move 
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farther into the right tail, and the tail behavior is governed by the GPD. If the weight function is continuous, the density f
is continuous as well. Finally, this is an unsupervised method, because no threshold needs to be chosen or estimated.

Despite its interesting properties, to the best of our knowledge this model has not been used in practice. The likely 
reason is that maximum likelihood estimation (MLE) is rather complex. On one hand, the mixing weight and the component 
densities share all parameters, so that, as pointed out by Frigessi et al. (2002), the use of the EM algorithm is precluded. On 
the other hand, direct maximization of the likelihood is feasible, but the normalizing constant is given by an integral that 
cannot be computed explicitly, and whose numerical approximation is not trivial.

Given the difficulties related to MLE, simulation-based methods are an appealing alternative that avoids the evaluation 
of the normalizing constant, since there is no optimization of the likelihood function. Hence, the possible error caused by 
an inaccurate approximation of the normalizing constant is eliminated, at the price of the introduction of simulation error.

In this paper we explore the second strategy, and use the Approximate Maximum Likelihood Estimation (AMLE) method 
proposed by Rubio and Johansen (2013) and applied to similar setups by Bee et al. (2015), Bee et al. (2017a) and Tafakori 
et al. (2022). The approach is essentially a frequentist version of the family of Approximate Bayesian Computation (ABC) 
techniques, aimed at approximate estimation of the posterior distributions of model parameters; see, e.g., Sunnåker et al. 
(2013), Beaumont (2019), Drovandi and Frazier (2022). In the early stages of ABC, the crucial issue was the choice of the 
summary statistics used to assess the proximity of true and simulated data. This issue is shared by AMLE and is not easy to 
address in general, except for uncommon setups where sufficient statistics are available.

To overcome this problem, in recent years several papers have developed ABC versions that compare empirical distribu-
tions of observed and simulated data, thus bypassing the need of choosing summary statistics. This way of proceeding was 
first proposed by Park et al. (2016), who employed a non-parametric approach; a more comprehensive treatment was given 
by Bernton et al. (2019). See Drovandi and Frazier (2022) and the references therein for a thorough review. In the following, 
we will term these ways of proceeding full-data approaches, to emphasize the use of all the data, with no dimensionality 
reduction transformation. Among the various proposals in the literature, we base our implementation on the Cramér-von 
Mises (CvM) distance, which is a simple and effective measure.

AMLE and MLE are compared via simulation: our outcomes suggest that AMLE has smaller root-mean-squared-error 
(RMSE) in all setups considered in the experiments. Two empirical analyses confirm the suitability of the approach for 
modeling and estimating skewed and fat-tailed distributions. Furthermore, the estimated weight allows one to identify the 
approximate number of observations generated by the heavy-tailed component.

On the theoretical side, full-data AMLE yields a likelihood approximation that converges pointwise to the posterior 
distribution. Under slightly stronger conditions, the mode of the approximation converges pointwise to the mode of the 
likelihood.

The rest of the paper is organized as follows. In Section 2 we describe the dynamic mixture distribution. Section 3
contains a detailed account of the AMLE versions with and without summary statistics. In sections 4 and 5 we report the 
outcomes of the simulation experiments and of the empirical analysis, respectively. Finally, Section 6 concludes the paper 
and outlines open problems and possible further developments.

2. The dynamic mixture model

The density of a dynamic mixture model is given by

f (x; θ) = (1 − p(x; θ0)) f1(x; θ1) + p(x; θ0) f2(x; θ2)

Z
, x ∈R+, (1)

where θ = (θ0, θ1, θ2), Z is a normalizing constant and θ i , i = 0, 1, 2, are the parameter vectors of the weights p(x; θ0), 
the body f1(x; θ1) and the tail f2(x; θ2), respectively. For the weight function it is convenient to employ the cumulative 
distribution function (cdf) of some continuous random variable, whereas f1 and f2 are continuous densities with positive 
support. Analogously to Frigessi et al. (2002), here p(x; θ0) is taken to be equal to the Cauchy cdf:

p(x;μc, τ ) = 1

2
+ 1

π
arctan

(
x − μc

τ

)
,

so that θ0 = (μc, τ ), where μc ∈R and τ ∈R+ are the location and scale parameter, respectively.
As for f1 and f2, we use the lognormal and the zero-mean generalized Pareto densities, respectively. The use of the latter 

for the tail is related to its importance in EVT, since it is the asymptotic distribution of the excesses (see, e.g., Embrechts et 
al., 1997). As of the lognormal, it is chosen for two reasons. First, its flexibility can accommodate various possible shapes. 
Second, in economics there is a long-standing debate about the proper data-generating process of various relevant variables, 
with theoretical reasons suggesting a lognormal distribution, possibly with a Pareto-type tail. See, e.g., D’Acci (2019) and 
the references therein for city size, Axtell (2001), Di Giovanni et al. (2011), Tang (2015), Bee et al. (2017b) and Kondo et al. 
(2021) for firm size.

Accordingly, in the lognormal-GPD case the density (1) is given by

f (x; θ) = (1 − p(x;μc, τ )) f1(x;μ,σ 2) + p(x;μc, τ ) f2(x;β, ξ)
, (2)
Z

2
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where μc, μ, ξ ∈R, τ , σ 2, β ∈R+ , θ = (μc, τ , μ, σ 2, β, ξ)′ , θ1 = (μ, σ 2), θ2 = (β, ξ), f1(x; μ, σ 2) is the lognormal density 
with parameters μ and σ 2, f2(x; β, ξ) is the GPD pdf centered at 0 with scale and shape parameters equal to β and ξ , 
respectively. Finally, the normalizing constant Z is equal to

Z = Z(θ) = 1 + 1

π
I,

where

I =
∞∫

0

[
1

β

(
1 + ξx

β

)−1/ξ−1

− 1√
2πσ x

e
− 1

2

(
log x−μ

σ

)2
]

arctan

(
x − μc

τ

)
dx. (3)

See Frigessi et al. (2002) for details.
From a modeling point of view, in the literature there are at least two possible alternatives to (2), both based on the 

Pareto instead of the GPD. Scollnik (2007) proposes a lognormal-Pareto mixture constrained to have a continuous and dif-
ferentiable density. The constraints reduce the number of free parameters by two; in particular, the mixing weight becomes 
a function of the lognormal variance and of the parameters of the Pareto distribution (Scollnik, 2007; Bee, 2015). Another 
possibility is the use of (2) with a mixing weight p(x) equal to the Heaviside function. In this setup, the density is no longer 
continuous; see Bee (2022a) for the analysis of this case.

3. Estimation

In the rest of the paper, we focus on the lognormal-GPD dynamic mixture, but other models corresponding to different 
component densities can be estimated via the same method. The only requirement for implementing the proposed AMLE 
approach is indeed the ability to simulate from the two distributions of the mixture.

3.1. Maximum likelihood

As usual, maximum likelihood estimators can be found by maximizing the log-likelihood function obtained by taking the 
natural logarithm of (2):

l(θ; x) =
n∑

i=1

log

{
(1 − p(xi;μc, τ )) f1(xi;μ,σ 2) + p(xi;μc, τ ) f2(xi;β, ξ)

Z

}
. (4)

Since the normalizing constant Z depends on all parameters, the evaluation of (3) is crucial for MLE. To achieve a sufficiently 
high level of precision in the approximation, Frigessi et al. (2002) suggest to split the integral on [0, ∞) in a sum of integrals 
on finite intervals, such as [0, 1], [1, 2], and so on.

Numerical maximization of (4) is implemented in the OpVaR R package, where the dmixing function carries out a 
numerical approximation of the whole improper integral from 0 to ∞. On the contrary, we have tackled the evaluation via 
the quadinf function of the pracma R package on non-overlapping intervals [n − 1, n], n ∈N. The stopping criterion is 
In−1,n < εI with εI = 10−4, where In−1,n is the value of the integral on [n − 1, n]. An unreported numerical comparison 
between the OpVaR and our procedure produced considerably better outcomes, especially in terms of variance, for the 
latter, which will always be used in the following.

The tolerance εI that defines the stopping criterion affects both the accuracy of the numerical evaluation of the nor-
malizing constant and the computational burden of MLE. The actual value εI = 10−4 employed in the following has been 
determined via simulation (see Sect. 4.1).

3.2. Approximate Maximum Likelihood: some background

The Approximate Maximum Likelihood method is a simulation-based estimation procedure (Rubio and Johansen, 2013). 
We give a general description in this section, and then detail the full-data algorithm (Section 3.2.1) and the approach based 
on summary statistics (Section 3.2.2). Finally, Section 3.3 describes the last stage of the procedure, which is common to both 
cases.

Given a sample x = (x1, . . . , xn)′ ∈ Rq×n from a distribution with density f (x; θ), let L(θ; x) be the likelihood function, 
where θ ∈ � ⊂Rp is a vector of parameters. We formally introduce the method by assuming a Bayesian setup with a prior 
distribution π(θ). This is done only for mathematical convenience: as discussed below, by using a uniform prior, in the 
following we carry out a likelihood analysis. The posterior π(θ |x) is given by

π(θ |x) = f (x|θ)π(θ)∫
� f (x|t)π(t)dt

. (5)

Let’s now introduce an approximation of the likelihood defined as follows:
3
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f̂ε(x|θ) =
∫
Rn

Kε(x|z) f (z|θ)dz, (6)

where Kε(x|z) is a normalized Markov kernel (Casella and Robert, 2004, Sect. 6.2; Heyer, 1982; for the specific form used 
here, see (7) below) depending on a scale parameter ε . Now we plug (6) into (5) to obtain the following approximation of 
the posterior:

π̂ε(θ |x) = f̂ε(x|θ)π(θ)∫
� f̂ε(x|t)π(t)dt

.

If the prior π(θ) is uniform, the maximization of the likelihood is equivalent to the maximization of the posterior.
Now we exploit the quantities defined above to give a pseudo-code of the algorithm.

Algorithm 1. (AMLE)

1. Obtain a sample θ∗
ε = (θ∗

ε,1, . . . , θ
∗
ε,�)

′ from the approximate posterior π̂ε(θ |x); � is commonly called ABC sample size;

2. Use this sample to construct a non-parametric estimator φ̂ of the density π̂ε(θ |x);
3. Compute the maximum of φ̂ , θ̃�,ε . This is an approximation of the MLE θ̂ .

Algorithmically, AMLE is slightly different in the full-data approach and in the setup based on summary statistics. In 
particular, Step 1 is usually based on the ABC rejection algorithm (Beaumont, 2010), whose implementation is not the same 
in the two frameworks. Accordingly, we provide the details of the two cases in sections 3.2.1 and 3.2.2.

3.2.1. Stage 1a: AMLE without summary statistics
In a full-data approach, the ABC sample mentioned at Step 1 of Algorithm 1 is obtained as follows.

Algorithm 2. (ABC rejection algorithm)

1. Simulate θ∗ from the uniform prior π(·);
2. Generate z = (z1, . . . , zn)′ from f (·|θ∗);
3. Accept θ∗ with probability ∝ Kε(x|z), otherwise return to Step 1.

Let P (n)
θ ∈ P denote the distribution of z|θ and P (n)

0 ∈ P the distribution of x, where P def= {P (n)
θ , θ ∈ � ⊂ Rp} is the 

class of probability measures that is assumed to have generated the data. Furthermore, let ρ : P ×P →R+ be a statistical 
distance on P . The kernel Kε is defined on the space of the true and simulated data:

Kε(x|z) ∝
{

1 if ρ(Pn
0, Pn

θ ) < ε,

0 otherwise.
(7)

Since Pn
0 is unknown and Pn

θ is intractable, (7) cannot be computed. The common workaround (Drovandi and Frazier, 2022) 
replaces the two distributions with the corresponding empirical counterparts, so that (7) becomes:

Kε(x|z) ∝
{

1 if ρ( F̂ (x), F̂θ (z)) < ε,

0 otherwise,

where F̂ (·) and F̂θ (·) are the empirical cdfs based on the observed data x and the simulated data z, respectively. As of ρ , 
there are various possibilities; in the following, we take it to be the Cramér-von Mises distance, given by

Ĉ( F̂ , F̂θ ) =
∫
Rq

[ F̂ (t) − F̂θ (t)]2dĤ(t), (8)

where Ĥ(t) = ( F̂ (t) + F̂θ (t))/2. Note that (8) can be easily computed in terms of the ranks of the observed and simulated 
samples. Moreover, it is robust to fat tails and outliers, which is a very desirable property in our application and is therefore 
the main reason for preferring it; see Drovandi and Frazier (2022, p. 7) for details and comparisons to other distances.

The full-data approach may give the false impression that ABC (of which AMLE is a reinterpretation) is a method that 
compares statistical distances between simulated and empirical distributions. However, the main goal of ABC is the ap-
proximation of properties of the posterior distribution of parameters. Historically, it has been first employed in population 
genetics to estimate parameters in setups where the likelihoods of the underlying probability models were intractable. 
Moreover, such early applications typically used summary statistics. See, e.g., Beaumont et al. (2002) or Tavaré (2018) for 
details.
4
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3.2.2. Stage 1b: AMLE with summary statistics
In the version of AMLE based on summary statistics, steps 1 and 2 of Algorithm 2 remain unchanged, whereas Step 3 is 

modified as follows.

3. Use x to compute an m-dimensional summary statistics η(x); accept θ∗ with probability ∝ K ρ
ε (η(x)|η(z)), otherwise 

return to Step 1.

The kernel is now defined on the space of the summary statistics:

K ρ
ε (η(x)|η(z)) ∝

{
1 ρ(η(x),η(z)) < ε,

0 otherwise.

Here ρ :Rm ×Rm →R+ is a metric; usually, but not necessarily, ρ is the Euclidean distance.
Rubio and Johansen (2013) show that the replacement of the observed sample with a (vector of) summary statistics 

implies no loss of information if and only if η is a jointly sufficient statistic for the unknown parameters of the model: in 
this case, conditioning upon the sufficient statistics is the same as conditioning upon the sample.

3.3. Stage 2: computing the estimator

The two approaches outlined in sections 3.2.1 and 3.2.2 yield a sample θ∗
ε of size �. The AMLE approach now exploits 

this sample to compute the estimate in the same way, regardless of the method used for obtaining it. Step 2 of Algorithm 1
requires to find the nonparametric estimator φ̂ and its maximum. For this task, we consider the following four techniques 
(Bee et al., 2017a):

(i) the sample mean vector (“M”);
(ii) the vector of the maxima of the univariate estimated kernel densities (“UK”);
(iii) the maximum of the multivariate kernel density (“MK”);
(iv) the maximum of the product of the univariate kernel densities, estimated using the marginal data (“PUK”);

In general, “M” is easy to compute but is only appropriate when the distribution of the simulated values is approximately 
symmetric. “MK” would in principle be the best approach, but it requires a large sample size, especially when the parameter 
space is high-dimensional. Hence, in practice, one should rather employ “UK” or “PUK”. While it is difficult to give a criterion 
for choosing between them, it is often the case that they yield similar estimates (see, e.g., Bee, 2022b).

Finally, the maximum of φ̂ computed via any of the methods (i)-(iv), denoted by θ̃ l,ε
def= maxθ φ̂, is the AMLE estimator, 

i.e. the AMLE approximation of the MLE θ̂ .
The first step of Algorithm 2 is based on uniform priors whose support must contain the true parameter value. Hence, it 

cannot be too narrow, or it may not contain the true parameter value. However, if it is too wide, the computational burden 
of the algorithm becomes unnecessarily large. In the present setup, since we can approximate and maximize numerically 
the likelihood, we exploit the MLEs to find the proper support of the uniform priors as follows.

• Compute the MLEs and their standard errors by means of non-parametric bootstrap;
• Discard possible outliers in each bootstrap distribution;
• For the lognormal and GPD parameters, the support of the uniform prior is set equal to the 99% confidence interval of 

the bootstrap distribution after discarding the outliers;
• For the Cauchy parameters, the support is given by the range of the bootstrap distribution after discarding the outliers.

The reason why the entire range is used for the Cauchy parameters is that, according to our Monte Carlo experiments, MLEs 
of these two parameters are less precise.

In the procedure outlined above, outliers are identified via the classical box-plot approach (Tukey, 1977). Since the 
histograms of the bootstrap distributions of the MLEs of μc and of τ (not shown here to save space) are skewed, we also 
resorted to the adjusted box-plot proposed by Hubert and Vandervieren (2008). With respect to the classical box-plot, the 
results only change for the MLEs of the Cauchy distribution parameters: in this case, the supports of the uniform priors 
are wider, since in presence of skewness the adjusted box-plot finds fewer outliers than the classical one (Hubert and 
Vandervieren, 2008). However, in our simulation experiments (see Section 4), the supports yielded by the classical box-
plot are wide enough (i.e., they contain the true parameter value with a rather large margin), so that wider supports only 
increase the computational burden. Nevertheless, it may not be generally true that the classical box-plot is preferable, hence 
it is worth considering the use of the adjusted box-plot, especially when the distributions of the MLEs are very skewed.
5
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3.4. Asymptotic properties

The limiting theory for the setup where AMLE is based on a summary statistic η is covered in Rubio and Johansen 
(2013): when η is non-sufficient, the AMLE approximation converges pointwise, under regularity conditions, to the posterior 
distribution. See Rubio and Johansen (2013, Proposition 2) for details.

In the full-data approach, stronger results hold true. Rubio and Johansen (2013) prove that, when sufficient statistics 
are available, under an additional assumption, the mode of the approximation π̂ε (θ |x) converges pointwise to the mode of 
the likelihood π(θ |x). Noting that the original data or its empirical distribution constitute a sufficient statistic, the present 
setup turns out to be a special case of the framework where sufficient statistics exist. For the sake of completeness, we state 
explicitly the main theorem and a corollary; the proofs are omitted, since they are almost identical to those in Rubio and 
Johansen (2013). Before stating the results, we need to introduce the following condition.

Condition 1. (Concentration Condition) A family of symmetric Markov kernels with densities Kε indexed by ε > 0 satisfies the con-
centration condition if the member densities become increasingly concentrated as ε decreases:∫

Bε (x)

Kε(x|y)d y =
∫

Bε (x)

Kε(y|x)dx = 1, ∀ε > 0,

where Bε(x) := z : |z − x| ≤ ε .

Proposition 1 below shows that the AMLE approximation converges pointwise to the posterior distribution.

Proposition 1. Let x = (x1, . . . , xn)′ ∈ Rq×n be a sample from f (·|θ), θ ∈ � ⊂ Rd, and let ρ : Rq×n × Rq×n → R be the CvM 
distance (8). Suppose further that f (·|θ) is ρ-continuous ∀θ ∈ D , where D ⊂Rd is compact. Assume also that

sup
(t,θ)∈Bε×D

f (·|θ) < ∞,

and let

Kε(x|y) =
{

1 if ρ(x, y) < ε,

0 otherwise.
(9)

Then, ∀θ ∈ D and the kernel (9),

lim
ε→0

π̂ε(θ |x) = π(θ |x).

Under the additional condition of equicontinuity of π̂ε (·|x), Proposition 1 can be used to show that the mode of the 
approximation π̂ε(·|x) converges to the mode of the likelihood π(·|x).

Proposition 2. Let θ̃ε be the unique maximum of π̂ε(·|x), ∀ε > 0, and assume that π(·|x) has a unique maximizer θ̃ . Under the 
conditions in Proposition 1, and if π̂ε(·|x) is equicontinuous on D, then

lim
ε→0

π̂ε(θ̃ε |x) = π(θ̃ |x).

4. Monte Carlo experiments

4.1. Simulation design and numerical details

Four experiments are run: we draw samples of size n ∈ {100, 500} from the dynamic mixture with parameters μc = 1, 
τ = 2, μ = 0, σ = 0.5, ξ ∈ {0.25, 0.5}, β = 3.5. The densities of the two distributions corresponding to ξ = 0.25 and ξ = 0.5
are displayed in Fig. 1.

MLEs result from the maximization of the log-likelihood function by means of the optim R command, where the 
normalizing constant is approximated as described in Section 3.1. Starting values for μ and σ are the lognormal MLEs 
computed with the observations below the median. Similarly, initial values for ξ and τ are the GPD MLEs obtained with 
the observations above the median. As for μc and τ , finding a reasonable initialization is more complicated. We use τ 0 =
log(sd(x)/2), where sd is the sample standard deviation, and μ0

c = q0.25(x), where q0.25 is the first quartile of the data. The 
former is identical to the initialization employed in the OpVaR package, whereas the latter is different: the package uses 
the third quartile, but according to a Monte Carlo study, this proposal strongly overestimates the true parameter value when 
the two distributions overlap considerably.
6
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Fig. 1. Densities of the two simulated distributions. The bodies (x < 15) are represented in the top panel, the tails (x ≥ 15) in the bottom panels.

Table 1
MLE. Computing times (in seconds) and RMSE of the MLEs in 100 replications of 
the simulation experiment for threshold εI ∈ {10−s}s=2,...,8. The true value of ξ is 
0.25 and the sample size is n = 100.

εI Time μc τ μ σ β ξ

10−2 5.26 5260.488 7771.369 0.260 0.235 1.902 0.271
10−3 11.43 4498.541 7423.595 0.215 0.241 1.777 0.255
10−4 17.44 3850.602 7006.747 0.182 0.187 1.334 0.232
10−5 52.09 4227.770 6312.171 0.173 0.201 1.389 0.242
10−6 124.61 4489.436 7123.037 0.180 0.186 1.330 0.239
10−7 233.14 3917.092 7107.936 0.176 0.192 1.332 0.241
10−8 385.21 3945.839 7216.598 0.175 0.191 1.330 0.234

The choice of the numerical value of the tolerance εI is based on a Monte Carlo simulation: we simulate n = 100 obser-
vations from (2) in the setup with ξ = 0.25 and compute the MLEs with εI ∈ {10−s}s=2,...,8. After repeating the experiment 
100 times, we calculate the average computing time and the RMSE of all parameters (see Table 1). The RMSEs suggest no 
significant improvement with εI < 10−4, hence in the following we set εI = 10−4. As a side remark, it is worth noting that 
the outcomes in Table 1 seem to denote a difficulty in identifying the Cauchy parameters, whose RMSEs remain quite large 
for all values of εI .

We have implemented AMLE with and without summary statistics, as in sections 3.2.1 and 3.2.2, respectively. In the 
former approach, the summary statistic is the empirical characteristic function, which has proved to be an effective choice 
in other cases (see, e.g., Bee and Trapin, 2018; Bee, 2022b; Tafakori et al., 2022). However, a small simulation experiment 
suggested a better performance of the full-data approach, both in statistical and computational terms (smaller root-mean-
squared-error and shorter computing time). Hence, only the outcomes of the full-data approach based on the CvM distance 
are shown in this section.

The ABC sample size is � = 100, with k = 5 · 105, since a small pilot simulation with k = 2 · 106 did not suggest any 
significant improvement in the statistical properties of the estimators with respect to k = 5 · 105. The supports of the 
uniform priors are determined via the procedure outlined in Section 3.2.2. Non-parametric bootstrap is replaced in this 
section by parametric bootstrap, since here we repeatedly simulate the true distribution.
7



M. Bee Computational Statistics and Data Analysis 185 (2023) 107764
Table 2
Case ξ = 0.25. Bias, standard deviation and RMSE of the estimates obtained via AMLE and MLE 
in B = 100 replications of the simulation experiment. The true value of ξ is 0.25.

n μc τ μ σ β ξ

100

Bias
AMLE 0.554 0.879 0.090 0.114 0.375 0.008
MLE −428.537 686.732 0.053 0.034 0.300 −0.028

Sd
AMLE 0.554 0.221 0.123 0.088 0.571 0.045
MLE 4273.488 6823.124 0.190 0.200 1.132 0.197

RMSE
AMLE 0.784 0.907 0.152 0.144 0.683 0.046
MLE 4294.921 6857.596 0.197 0.203 1.171 0.199

500

Bias
AMLE 0.201 0.283 0.0179 0.035 0.184 −0.013
MLE −0.018 0.429 −0.000 −0.004 0.029 0.007

Sd
AMLE 0.225 0.348 0.049 0.046 0.319 0.054
MLE 0.839 3.198 0.069 0.080 0.526 0.097

RMSE
AMLE 0.302 0.448 0.052 0.056 0.368 0.056
MLE 0.839 3.227 0.069 0.080 0.527 0.097

Table 3
Case ξ = 0.5. Bias, standard deviation and RMSE of the estimates obtained via AMLE 
and MLE in B = 100 replications of the simulation experiment. The true value of ξ is 
0.5.

n μc τ μ σ β ξ

100

Bias
AMLE 0.881 2.084 0.049 0.087 0.780 −0.094
MLE 0.677 0.447 0.018 0.019 0.652 −0.066

Sd
AMLE 1.217 1.542 0.121 0.114 0.923 0.146
MLE 2.093 2.953 0.158 0.168 1.093 0.193

RMSE
AMLE 1.502 2.592 0.131 0.143 1.208 0.174
MLE 2.199 2.980 0.159 0.169 1.271 0.204

500

Bias
AMLE 0.403 0.062 0.027 0.035 0.158 −0.005
MLE 0.048 0.330 0.009 0.004 0.085 −0.001

Sd
AMLE 0.443 0.605 0.059 0.053 0.413 0.075
MLE 0.708 1.251 0.067 0.063 0.496 0.083

RMSE
AMLE 0.599 0.608 0.065 0.062 0.442 0.075
MLE 0.709 1.293 0.068 0.063 0.503 0.083

In each experiment, we compute the bias, the standard deviation and the RMSE of all parameters, with B = 100 replica-
tions. The AMLE outcomes shown in this section are based on the sample mean, since the results of the other approaches 
(“UK, “MK” and “PUK”) are nearly identical.

Computer-intensive methods are usually characterized by a much larger computational burden, and AMLE makes no 
exception. When n = 500, regardless of the true value of ξ , AMLE needs about 55 minutes, whereas MLE takes 32 seconds 
(see Table 1). When n = 100, these times reduce to 12.5 minutes for AMLE and 17 seconds for MLE.1

4.2. Simulation results

Tables 2 and 3 display bias, standard deviation and root-mean-squared-error (RMSE) of both AMLEs and MLEs of the 
parameters. The tables suggest that AMLE is always preferable to MLE in terms of RMSE, by a larger amount when ξ = 0.25; 
in most cases, the gain in RMSE results from a smaller standard deviation of AMLE, which more than compensates a slightly 
larger bias. Moreover, the advantage is larger for small sample sizes.

For the case ξ = 0.25, the simulated distributions of the AMLEs of the parameters are displayed in Fig. 2 (for n = 100) 
and Fig. 3 (for n = 500), along with the supports of the uniform distributions used in the AMLE algorithm; the corresponding 
plots when ξ = 0.5 are very similar and therefore omitted. The histograms are approximately bell-shaped for both sample 
sizes, which explains why the four AMLE approaches yield very similar outcomes.

Similarly to Frigessi et al. (2002), our analysis suggests that estimation of the dynamic weight parameters is difficult, in 
particular with the MLE method: as can be seen from the large bias and standard deviation of μ̂MLE

c and τ̂ MLE in Table 2, 
there are cases where the numerical optimization of the log-likelihood function does not yield sensible outcomes. It is 
also worth noting that in a few cases (approximately 2-5% of the replications, with the largest values when ξ = 0.25 and 
n = 100) the numerical maximization of the log-likelihood broke down without producing a result. In such cases we have 
discarded the sample and simulated the observations again.

1 These computing times are based on R codes run on a Windows machine with an i7-6700 CPU @ 3.40 GHz. The simulation experiments have been run 
in parallel on the HPC computer cluster of the University of Trento, with a total time of about 22 hours for 100 replications when n = 500.
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Fig. 2. Simulated distributions of the AMLE estimators with n = 100. The number of replications is B = 100 and the true parameter values are 
(μc, τ , μ, σ , ξ, β) = (1, 2, 0, 0.5, 0.25, 3.5). The dashed vertical lines are the lower and upper bounds of the uniform priors.

5. Empirical analysis

5.1. Operational risk

An important application of the model considered in this paper is the analysis of loss distributions, since they are 
typically skewed and heavy-tailed. In many cases, the final goal is the estimation of risk measures such as the Value-at-Risk 
(VaR) or the Expected Shortfall (ES). For this purpose, the tail must be estimated with a high level of precision, so that 
accurate models of the tail are of paramount importance.

In this section, we use operational risk losses collected at the Italian bank Unicredit between 2005 and 2014. In particular, 
we model the monetary amounts of the losses in the Business Disruption and System Failure (BDSM) business class. The sample 
size is n = 152. The data are displayed in Fig. 4, along with the densities estimated via AMLE and MLE. Table 4 shows the 
MLEs and AMLEs; standard errors are computed via non-parametric bootstrap with B = 100 replications.

There is a considerable difference between AMLE and MLE when estimating τ , β and, to a lesser extent, μc . The large 
standard errors imply that, for these parameters, the precision is low, but in terms of variability AMLEs are definitely 
preferable. Notwithstanding the differences in the estimated values of some parameters, the densities in Fig. 4 are rather 
similar: this suggests that the errors in the estimates of individual parameters are likely to offset each other (Frigessi et 
al., 2002). Notice also that the observations above 50 in Fig. 4 are very likely to come from the GPD, since the expected 
values of the lognormal and GPD (computed using the PUK estimators) are as different as exp{1.307 + 0.322/2} = 3.889 and 
5.348/(1 − .916) = 63.667, respectively.
M. Bee Computational Statistics and Data Analysis 185 (2023) 107764
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Fig. 3. Simulated distributions of the AMLE estimators with n = 500. The number of replications is B = 100 and the true parameter values are 
(μc, τ , μ, σ , ξ, β) = (1, 2, 0, 0.5, 0.25, 3.5). The dashed vertical lines are the lower and upper bounds of the uniform priors.

Table 4
Parameter estimates and standard errors obtained via AMLE and MLE in the oper-
ational risk example. Standard errors are computed via non-parametric bootstrap 
with B = 100 bootstrap replications.

μc τ μ σ ξ β

AMLE M
3.882 0.587 1.309 0.330 0.921 5.557
(0.626) (0.352) (0.079) (0.053) (0.119) (0.819)

AMLE UK
3.410 0.435 1.303 0.330 0.912 5.466
(12.742) (0.673) (0.082) (0.055) (0.137) (1.497)

AMLE MK
3.362 0.453 1.295 0.293 0.908 4.930
(0.846) (0.389) (0.106) (0.080) (0.197) (1.682)

AMLE PUK
3.423 0.447 1.307 0.320 0.916 5.348
(0.692) (0.224) (0.090) (0.064) (0.160) (1.503)

MLE
4.947 3.116 1.197 0.290 0.706 7.871
(1.402) (1.276) (0.103) (0.082) (0.191) (2.836)
10
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Fig. 4. The operational risk data with superimposed the dynamic lognormal-GPD density estimated via AMLE (continuous) and MLE (dashed). The upper 
and lower panel respectively show the body (x ≤ 50) and the tail (x > 50). AMLE estimators are based on the “PUK” method.

Fig. 5. The ABC samples of the six parameters in the operational risk data.

With regard to the four AMLE methods, there is some difference mostly when estimating μc and τ . To understand why, 
Fig. 5 displays the distribution of the ABC samples corresponding to the six parameters. The distributions of the samples of 
μ̂c and τ̂ are the least symmetric. In such cases, it is not recommended to estimate the maximum with the sample mean, 
11
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Table 5
Estimated quantiles obtained via AMLE, MLE and the POT method 
in the operational risk example. Empirical quantiles of the observed 
data are reported as well.

50% 90% 95% 99% 99.5%

AMLE M 4.493 39.404 81.632 385.415 731.770
AMLE UK 4.911 40.916 82.406 369.166 688.687
AMLE MK 4.703 37.343 75.060 323.465 617.791
AMLE PUK 4.907 40.298 82.216 390.626 750.067
MLE 4.222 36.763 66.717 230.602 385.943
GPD - 39.941 84.153 257.865 380.208
EMP 4.990 37.176 73.569 274.323 355.255

Table 6
Estimated tail probabilities obtained via AMLE, MLE and the POT method in the 
operational risk example. Empirical tail probabilities of the observed data are 
reported as well.

100 150 200 300 400 500 600

AMLE M 0.038 0.025 0.019 0.012 0.009 0.007 0.005
AMLE UK 0.041 0.027 0.020 0.013 0.009 0.007 0.006
AMLE MK 0.037 0.025 0.018 0.012 0.009 0.007 0.006
AMLE PUK 0.041 0.027 0.020 0.013 0.010 0.007 0.006
MLE 0.030 0.018 0.012 0.007 0.005 0.003 0.003
GPD 0.041 0.024 0.015 0.008 0.005 0.003 0.002
EMP 0.039 0.026 0.026 0.013 0.000 0.000 0.000

Table 7
Estimated Expected Shortfall obtained via AMLE, MLE and the POT method 
in the operational risk example. The empirical ES of the observed data is 
reported as well.

50% 90% 95% 99% 99.5%

AMLE M 80.632 346.086 634.897 2535.654 4555.332
AMLE UK 85.142 368.395 680.077 2764.897 5010.873
AMLE MK 80.161 343.524 628.964 2490.805 4438.181
AMLE PUK 109.452 490.383 922.963 3961.587 7399.500
MLE 38.756 142.389 235.664 716.620 1133.496
GPD - 137.637 216.876 528.209 747.477
EMP 35.933 123.898 194.493 368.010 393.020

hence we suggest using either “UK” or “PUK”, which are approximately identical. Notwithstanding the small sample size, 
“MK” also yields estimates close to “UK” and “PUK”.

Tables 5 and 6 respectively show quantiles at different levels and estimated tail probabilities P (X ≥ t) for various values 
of t . Note that, in this setup, the α-quantile can be interpreted as the Value-at-Risk at level α (see, e.g., McNeil et al., 2015, 
Section 2.3.2).

Given that we focus on the tail, as a benchmark we also compute the quantiles based on the GPD asymptotic approxima-
tion fitted to the excesses xi − u, where u is taken to be equal to the 90-th quantile, by means of the Peaks-over-Threshold 
(POT) method (McNeil et al., 2015, Section 5.3.2). Since this is a theoretically well-grounded approach aimed at tail ap-
proximation, it is expected to be a reliable benchmark. Finally, we also report the sample quantiles of the observed data 
(Table 5) and the empirical estimate of the tail probabilities pt =: #{xi : xi ≥ t}/n (Table 6). Tables 5 and 6 suggest that the 
AMLE approaches yield quite similar results; only MK gives slightly smaller estimated quantiles. For the smallest quantile 
levels (90 and 95%) and the smallest thresholds (≤ 200), the AMLE estimates are closer than MLE to both the GPD and the 
empirical estimates. On the other hand, when one moves farther into the tail, the MLE-based estimates are very close to 
the GPD-based estimates. It is interesting to notice that, even though the densities in Fig. 4 look very close to each other, 
when the quantile level is high the difference between AMLE and MLE becomes non-negligible.

In terms of Expected Shortfall, Table 7 shows that the dynamic mixture, especially when estimated via AMLE, yields 
numerical values larger than both the empirical and the GPD-based measure. However, interpreting such a comparison in 
terms of ES with a small sample size requires some care, since ES is very sensitive to a few very large observations.

Finally, to assess the quality of the VaR and ES estimates obtained, we use the Mean Absolute Relative Error (MARE) 
proposed by Naderi et al. (2020):

M AR E = 1

nl

nl∑∣∣∣∣∣ Mi − M̂i

Mi

∣∣∣∣∣ ,

i=1
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Table 8
Mean absolute relative error for AMLE, MLE and the POT method in the 
operational risk example.

M UK MK PUK MLE GPD

MARE VaR 0.264 0.210 0.223 0.219 0.103 0.087
MARE ES 7.316 6.262 8.248 9.298 3.001 1.670

Fig. 6. The metropolitan cities data with superimposed the dynamic lognormal-GPD density estimated via AMLE (continuous) and MLE (dashed). The upper 
and lower panel respectively show the body (x ≤ 300) and the tail (x > 300). AMLE estimators are based on the “PUK” method.

where nl is the number of levels and Mi and M̂i denote the empirical and estimated risk measure at the i-th level, respec-
tively. Table 8 displays the results, which confirm that MLE is closer to the empirical values.

5.2. Metropolitan cities

In the last two decades or so, city size data have often been the focus of a lively dispute between scholars: while some 
argue that the whole distribution is lognormal, others claim that the body is lognormal but the tail follows a Pareto-type 
distribution. See, e.g., D’Acci (2019) and the references therein.

Here we study the distribution of the 2019 population estimate, divided by 10 000, of the 415 US metropolitan areas 
computed by the US Census Bureau2; for an earlier investigation of US metropolitan areas, see Gabaix and Ibragimov (2011). 
The data and the two estimated densities are shown in Fig. 6. Whereas in the previous application the two densities were 
very similar to each other (see Fig. 4), in this case the MLE-based density gives less weight to the body and more weight to 
the tail; this fact is confirmed by the estimated quantiles in Table 10.

Parameter estimates and standard errors are shown in Table 9. Once again, the Cauchy parameters are difficult to esti-
mate, and one can notice large differences between AMLE and MLE in the estimated value of the location parameter μc . In 
terms of variability, the standard errors of AMLEs are almost always smaller than those of MLEs, and for some parameters 
the gain is considerable.

Analogously to the previous section, Table 10 shows selected quantiles estimated via both methods, and Table 11 reports 
estimated tail probabilities P (X ≥ t) for various values of t .

Tables 10 and 11 suggest that the AMLE-based estimated quantiles and tail probabilities are closer than the MLE-based 
quantities to both the GPD-based and the empirical measures. MLE-based quantiles and tail probabilities are considerably 
larger, especially at high levels and thresholds. The ES measures in Table 12 essentially confirm these remarks.

2 www.census .gov /data /datasets /time -series /demo /popest /2010s -total -metro -and -micro -statistical -areas .html.
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Table 9
Parameter estimates and standard errors obtained via AMLE and MLE in the 
metropolitan cities example. Standard errors are computed via non-parametric 
bootstrap with B = 100 bootstrap replications.

μc τ μ σ ξ β

AMLE M
26.493 2.667 2.869 0.455 0.595 55.770
(0.913) (0.288) (0.039) (0.021) (0.078) (2.427)

AMLE UK
24.361 3.991 2.873 0.456 0.590 55.216
(1.367) (0.391) (0.039) (0.022) (0.081) (2.354)

AMLE MK
23.975 2.499 2.887 0.475 0.583 50.971
(1.775) (0.685) (0.049) (0.037) (0.107) (3.359)

AMLE PUK
24.714 3.246 2.895 0.467 0.547 54.523
(1.470) (0.501) (0.047) (0.038) (0.098) (2.526)

MLE
15.002 4.504 2.829 0.359 0.680 56.602
(2.992) (0.426) (0.079) (0.046) (0.118) (9.570)

Table 10
Estimated quantiles obtained via AMLE, MLE and the POT method in the 
metropolitan cities example. Empirical quantiles of the observed data are 
reported as well.

50% 90% 95% 99% 99.5%

AMLE M 29.417 205.714 359.239 1108.211 1747.710
AMLE UK 27.615 190.465 326.674 1002.483 1625.888
AMLE MK 28.791 204.030 347.917 1090.096 1708.617
AMLE PUK 28.302 195.501 337.762 1069.634 1716.508
MLE 34.223 273.854 487.290 1567.529 2576.189
GPD - 227.171 366.553 884.398 1231.582
EMP 27.32 225.09 342.88 919.46 1170.91

Table 11
Estimated tail probabilities obtained via AMLE, MLE and the POT method in the metropolitan 
cities example. Empirical tail probabilities of the observed data are reported as well.

200 400 600 700 800 900 1000 1500

AMLE M 0.101 0.041 0.024 0.019 0.0153 0.0129 0.011 0.006
AMLE UK 0.095 0.039 0.022 0.018 0.015 0.012 0.011 0.006
AMLE MK 0.099 0.041 0.023 0.019 0.0153 0.0126 0.011 0.006
AMLE PUK 0.097 0.041 0.023 0.019 0.016 0.014 0.012 0.007
MLE 0.138 0.062 0.037 0.030 0.026 0.022 0.019 0.011
GPD - 0.043 0.021 0.016 0.012 0.001 0.008 0.003
EMP 0.123 0.046 0.029 0.019 0.012 0.012 0.001 0.002

Table 12
Estimated Expected Shortfall obtained via AMLE, MLE and the POT method in 
the metropolitan cities example. The empirical ES of the observed data is re-
ported as well.

50% 90% 95% 99% 99.5%

AMLE M 194.015 648.499 1036.208 2944.561 4530.217
AMLE UK 199.711 680.113 1097.263 3222.347 5102.488
AMLE MK 190.648 631.351 996.834 2693.999 3989.616
AMLE PUK 201.276 685.638 1108.676 3272.185 5207.477
MLE 303.493 1106.343 1857.966 6094.621 10193.591
GPD - 516.622 747.522 1605.441 2180.643
EMP 162.353 495.473 720.431 1275.270 1475.528

Table 13 displays the MARE results, which allow us to conclude that AMLE-based risk measures are preferable to MLE-
based measures.

In this application it is relevant to study the degree of overlap of the two component distributions, and the possible 
presence of a GPD tail. Most of the investigations carried out in the literature try to find a threshold where the power-
law distribution starts, as if the two distributions did not overlap. This way of proceeding is not correct, since the two 
distributions actually overlap. The present approach, however, does not suffer from this drawback.
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Table 13
Mean absolute relative error for AMLE, MLE and the POT method in the 
metropolitan cities example.

M UK MK PUK MLE GPD

MARE VaR 0.175 0.174 0.163 0.174 0.611 0.042
MARE ES 2.790 2.892 2.937 3.331 5.381 1.021

Fig. 7. Estimated dynamic weight functions obtained via AMLE “PUK” and MLE in the metropolitan cities example.

Table 14
Estimated values x : p(x; μc , τ ) > α obtained with all the methods 
for various values of α. The numbers of observations exceeding the 
corresponding value xα are reported in parentheses.

0.90 0.95 0.99 0.995

AMLE M 10.313 11.129 15.260 (304) 25.883 (219)
AMLE UK 10.401 11.577 18.167 (263) 52.672 (137)
AMLE MK 10.227 10.983 14.966 (311) 22.925 (232)
AMLE PUK 10.313 11.351 16.753 (288) 32.620 (184)
MLE 10.081 11.129 19.769 (256) 68.386 (113)

Bee (2022a) analyzes the same dataset; even though the model is different, it is interesting to compare the number of 
Pareto observations found in that paper to the number of observations that are likely to be GPD in the present dynamic 
mixture model.

The likelihood of an observation being GPD can be measured by means of the estimated weight p(x; μc , τ ), by setting a 
high probability level α and finding the smallest x : p(x; μc, τ ) > α. This value (xα , say) can be interpreted as a threshold 
above which almost all the observations are GPD. Fig. 7 shows the weights estimated via AMLE “PUK” and MLE.

Table 14 displays thresholds xα : p(xα; μc, τ ) = α estimated with all the methods for various values of α. Given α, 
the probability that an observation x > xα is generated from the GPD is thus larger than α. The number of observations 
exceeding a given xα is reported in parentheses: for example, there are 304 observations larger than 15.26. In each row, 
these numbers give an idea of the number of GPD observations, since in the two rightmost columns only 1% and 0.5% of 
the observations are not GDP. For comparison, by fitting a lognormal-Pareto model with fixed mixing weight to the same 
dataset, Bee (2022a) found 214 Pareto observations.

For high values of α, the difference between the estimation methods is non-negligible, but in all cases there is a rather 
large number of GPD observations, consistently with the findings in Bee (2022a).

6. Conclusion

In this paper we have proposed a simulation-based procedure for the estimation of the parameters of a dynamic mixture. 
The motivation of this choice is that numerical MLE of this model is complicated by the need of approximating numerically 
the normalizing constant of the distribution.

To this aim, we have implemented an approximate maximum likelihood approach in the lognormal-GPD case, using the 
Cramér-von Mises distance to measure the discrepancy between observed and simulated samples. On the theoretical side, 
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we have proved pointwise convergence of the AMLE approximation to the likelihood. In addition, we have given conditions 
under which the mode of the approximation converges to the mode of the likelihood. Simulation results suggest that AMLE 
outperforms MLE in terms of RMSE, albeit with a higher computational cost. Two empirical applications confirm that the 
approach is successful at fitting skewed datasets in economics and finance.

Various issues need further research. First, it is possible to carry out a thorough comparison between the dynamic 
mixture considered in this paper and the lognormal-Pareto model mentioned in Section 2 (Scollnik, 2007), in terms of both 
goodness of fit and numerical difficulty of the estimation procedures. Second, since the main issue with standard MLE is 
the evaluation of the normalizing constant, this approach could be dramatically improved by finding a weighting function 
that allows one to solve the integral in closed form, possibly at the price of some loss in flexibility. Third, computing 
bootstrap standard errors is time-consuming. Wang and Lin (2016) have developed the score vector and Hessian matrix 
for multivariate t mixtures, extending earlier work by Boldea and Magnus (2009) for multivariate Gaussian mixtures. Since 
their results cannot be directly applied to our setup, which is somewhat different, further research on a possible extension 
to dynamic mixtures is necessary. Fourth, setting up a more parsimonious model may help to reduce estimation difficulties: 
one possibility would be to replace the Cauchy cdf with a single-parameter cdf, such as the exponential. Similarly, exploring 
the performance of a model based on distributions different from the lognormal and the GPD may be of interest. Finally, 
when the scale parameter of the Cauchy cdf tends to zero, the dynamic weight converges to the Heaviside function: it may 
therefore be of interest to exploit the estimated value of this parameter to select the type of weight that is more appropriate 
for a given dataset.
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