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ABSTRACT Multi-goal reinforcement learning (RL) with sparse rewards poses a significant challenge for
RL methods. Hindsight experience replay (HER) addresses this challenge by learning from failures and
replacing the desired goals with achieved states. However, HER often becomes inefficient when the desired
goals are far away from the initial states. This paper introduces co-adapting hindsight experience replay with
environment shifts (in short, COHER). COHER generates progressively more complex tasks as soon as the
agent’s success surpasses a predefined threshold. The generated tasks and agent are coupled to optimize the
behavior of the agent within each task-agent pair.We evaluate COHER on various sparse reward robotic tasks
that require obstacle avoidance capabilities and compare COHER with hindsight goal generation (HGG),
curriculum-guided hindsight experience replay (CHER), and vanilla HER. The results show that COHER
consistently outperforms the other methods and that the obtained policies can avoid obstacles without having
explicit information about their position. Lastly, we deploy such policies to a real Franka robot for Sim2Real
analysis. We observe that the robot can achieve the task by avoiding obstacles, whereas policies obtained
with other methods cannot. The videos and code are publicly available at: https://erdiphd.github.io/COHER/.

INDEX TERMS Curriculum learning-based reinforcement learning, hindsight experience replay, multi-goal
reinforcement learning, robotic control.

I. INTRODUCTION

Reinforcement Learning (RL) has shown outstanding
achievements in solving complex tasks, such as games [1],
[2] and robotics [3], [4]. Multi-goal RL aims to learn a goal-
conditioned policy that generalizes across different goals.
Learning a goal-conditioned policy for multiple goals re-
quires a significantly larger amount of data than single-task
learning, as the agent needs to collect data from different
goals. Off-policy RL algorithms are used to reduce the
amount of data needed for learning [5]. However, most of the
off-policy RL algorithms owe their success to well-designed
reward functions [6]. However, designing a proper reward
function for situations in which the admissible behavior is
unknown is not easy. Moreover, designing a reward function
usually requires expert knowledge in RL and a priori infor-
mation about the task. Thus, binary rewards [7], indicating
whether or not the task is accomplished, can be leveraged
to overcome the reward design issue. However, most of the
existing RL algorithms suffer under binary reward settings,
because of the sparse reward signal due to insufficiency of

successful experiences. Hindsight experience replay (HER)
[8] addresses the sparse reward issue by replacing the desired
goals with the achieved states sampled from failed episodes.
The main drawback of this method is that, if the desired goals
are far away from the achieved states, HER cannot solve these
tasks effectively, as no reward signal is provided. To overcome
this issue, curriculum learning-based RL algorithms [9]–
[12] have been proposed, that start from a simple task and
gradually increase its difficulty. However, many of these
methods rely on some sort of heuristic in order to decompose
the complex task into a simpler one. These heuristics might
not be optimal with respect to the environment. For instance,
in a robot manipulation task, if the desired goal is far from
the initial position of the end-effector of the robot, we might
divide the distance between the initial position and the desired
goal into smaller pieces and then guide the robot gradually
to the desired goal by replacing it with an intermediate goal
that gradually approaches the desired goal. In the end, the
agent learns how to achieve the task. However, what if there
are obstacles in the environment? In this case, we need to
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know the position of the obstacles in advance, in order to
design optimal heuristics. This knowledge may not always be
available though. Therefore, in this work, we try to address
the following question: Is it possible to build an RL algorithm
that adapts to changing environments without specific prior

knowledge about the task?

Previous works have address this question, e.g., by intro-
ducing the so-called minimal criterion co-evolution (MCC)
[13] and, based on it, the Paired Open-Ended Trailblazer
(POET) algorithm [14]. The concept of MCC was developed
to demonstrate that a very simple minimum criterion (MC)
can lead to an open-ended evolution of two co-evolving
populations: a population of agents, and a population of
environments with different levels of complexity. MCC was
demonstrated for the very first time in a maze navigation
problem [13]. Mazes are, in fact, a paradigmatic example
of tasks with sparse, delayed reward [15], for which various
approaches based on quality search [16], [17] or novelty [18]
have been proposed. According to the setting proposed in
[13], tasks (mazes) are co-evolved with agents (maze nav-
igators) controlled by neural networks. As a result, mazes
get more complicated while neural networks become more
efficient at navigating those mazes, to satisfy the MC. In the
original MCC method, agents are optimized via the Neu-
roEvolution of Augmenting Topologies (NEAT) algorithm
[19], which is an evolutionary algorithm that evolves both the
structure and the weights of the neural network. Moreover,
environments inMCC should be solved by the current popula-
tion of agents, otherwise they are discarded. UnlikeMCC, the
POET algorithm optimizes the current agents for a dedicated
amount of time, to then create slightly harder environments
once the current environments are solved by the agents in the
current generation. The optimization algorithm used for the
agents in POET is based on Evolution Strategies (ES) [20],
[21], a black-box optimization method that has been shown to
achieve promising results in several RL benchmark problems
[22], [23].
An alternative to these approaches is represented by cur-

riculum learning-based RL algorithms [9]–[12], [24]–[26],
which generate intermediate goals to help break down long-
term desired goals into more manageable subgoals, serving
as stepping stones towards achieving the desired goal in a
constant environment. However, these methods either lack
a mechanism to consider obstacles, require prior knowledge
about environments and obstacles or are limited in their
ability to perform different manipulation tasks. For example,
MHER [25] adds a dynamic model to the original HER
algorithm, i.e., it learns environmental dynamics using one-
step ahead models and generates virtual achieved goals from
model-based interactions rather than past collected states as
in the HER. However, this approach cannot learn efficiently
in complex robot manipulation tasks, such as those involving
interactionswith objects and collisions.MEGA [26] enhances
exploration by maximizing the entropy of the achieved goal
distribution, focusing on underexplored regions. This strat-
egy effectively steers exploration towards the frontier of the

achievable goal set, effectively forming a curriculum that
narrows the gap between the initial state and the desired
goals. However, a limitation of this approach is the absence
of obstacle handling, necessitating the removal of goals with
low Q-values to ensure the proper functioning of the heuristic
function. HGG [9] generates curriculum goals by selecting
them from the visited state set, based on an objective that
jointly minimizes the Wasserstein distance and maximizes
the value function. Similarly, CHER [10] selects curriculum
goals based on the curiosity and proximity criteria. Specif-
ically, curiosity encourages the choice of curriculum goals
at diverse ranges, while proximity prefers curriculum goals
that are closer to the desired goal. However, HGG and CHER
use the Euclidean distance to approximate the measure of
the Wasserstein distance and design the proximity metric,
respectively. Hence, they are not applicable in environments
with obstacles. The studies [11], [24] introduce a graph-based
distance metric extension to HGG and CHER, to circumvent
the obstacle during the curriculum goal generation. However,
these methods require the position and dimension of the
obstacles in order to create a graph-based distance metric.
Furthermore, they require that obstacles have a convex shape.
Bbox-HGG [12], instead, addresses manipulation tasks in-
volving dynamic obstacles by utilizing image observations.
Objects from the environment are identified using BboxEn-
coder, which is trained to recognize the bounding boxes of
objects prior to initiating RL training. However, this approach
is limited to robot manipulation tasks that do not necessitate
gripper control such as slide and push tasks.
Following up on these works, in this paper we propose a

novel framework for curriculum generation through environ-
ment shifts in the context of sparse rewards andmulti-goal RL
in environments characterized by the presence of obstacles.
We call our proposed method ‘‘co-adapting hindsight expe-
rience replay with environment shift’’ (in short, COHER).
Differently from POET, which uses ES to optimize the agents,
in COHER we use the deep deterministic policy gradient
(DDPG) algorithm [4], because RL algorithms have been
shown to perform better than ES in dynamic environments
[23]. Another difference with POET is that, while in POET
environments are automatically evolved, in COHER we pre-
define a population of environments and allow the algorithm
to shift from one environment to the next one whenever the
test success rate on the current environment reaches a prede-
fined threshold. While this approach is not open-ended as in
POET, it allows us to achieve effective curriculum learning
with a limited number of environment shifts, hence resulting
in a computationally feasible computation. This is especially
important in computationally expensive tasks, such as the 3D
physics-based simulations of a robot interacting with an envi-
ronment with obstacles that we address in this work, where it
is not feasible to test hundreds or thousands of environments
as in the simpler 2D simulations of a bipedal walker [27]
considered in [14]. Finally, in contrast to HGG and CHER,
in COHER we generate the curriculum by breaking down
the most challenging environment into gradually increasing
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levels of difficulty, starting from the easiest and progressing
to the hardest one, while remaining entirely agnostic to the
obstacle properties such as shape, size, and position.
We test our proposed approach in a multi-goal RL task with

sparse rewards, considering a 7-DOF fetch robotic both in
the MuJoCo simulation environment [28] and in a real-world
setting. To summarize, the main contributions of this paper
are the following:
• We generate a curriculum through a novel DDPG-based co-
adapting approach that adapts agent-environment pairs to
progressively more challenging environments, specifically
on robot manipulation tasks, without explicitly providing
the algorithm neither the obstacles’ positions nor their
sizes.

• We perform Sim2Real transfer by deploying the trained
policy on a Franka robot in a real-world setting and demon-
strate the ability of the policy to successfully avoid obsta-
cles in increasingly more challenging environments.
The rest of the paper is structured as follows. In the next

Section, briefly review the related works. In Section III, we
introduce the background concepts on multi-goal RL and
DDPG. Then, we describe the proposedmethod in Section IV.
The experimental results are presented in Section V, followed
by the conclusions provided in Section VI.

II. RELATED WORK

Curriculum learning in multi-goal RL: Universal Value
Function Approximator (UVFA) parametrizes the goal using
a function approximator [29], which is then used to allow
the agent to learn multiple goals and generalize to unseen
goals in a single policy. As discussed earlier, HER [8] instead
replaces the desired goals with the achieved states sampled
from failed episodes. However, as we mentioned, although
HER can handle the sparse reward problem in multi-goal
RL settings, it fails at solving tasks in which the desired
goals are distant from the initial states. The reason is that
the achieved goals are sampled from failed episodes which
are mostly distributed around the initial state. Curriculum
learning-based RL algorithms resolve this issue by starting
from simple tasks and gradually increasing their difficulty.
HER can also be considered a form of implicit curriculum
learning because the achieved goals are easier to achieve than
the desired goals. The major drawback of HER is that the
achieved goals are sampled uniformly from the replay buffer.
However, these samples are substantially different from each
other. Therefore, Fang et al. [10] proposed curriculum-guided
HER (CHER) to select the achieved goals based on proximity
and diversity. Hindsight goal generation (HGG) [9] generates
intermediate goals that maximize a given value function and
minimize the Wasserstein distance between the target goal
and the achieved goal distribution. It should be noted that, be-
cause both CHER’s proximity metric and HGG’sWasserstein
distance are based on Euclidean distance, these algorithms
may yield an infeasible path for the robot, which may be
blocked by obstacles. As known, in fact, metrics based on
Euclidean distance measure only the distance over a straight

line between any two points, regardless of the presence of
obstacles in the environment.
To overcome this issue, Bing et al. [11] came up with

the idea of using a graph-based distance metric instead of
an Euclidean distance metric as an extension of HGG. This
algorithm, however, assumes that the position and size of the
obstacle are known in advance in order to create a graph.
Evolutionary Strategies: Evolution strategies (ES) [30]

is a family of black-box optimization techniques inspired by
natural evolution. In [14], authors used Natural Evolution
Strategies (NES) [21], a class of ES that iteratively update a
search distribution by calculating an estimated gradient with
respect to the distribution of the search parameters. Salimans
et al. [22] found that NES has appealing features, such as
being invariant to the action frequencies and being capable of
dealing with delayed rewards. Moreover, the NES algorithm
is highly parallelizable and as such it can be used as an
effective alternative to traditional RL methods. Zhang et al.
[23] compared ES with deep RL in continuous control tasks
and showed that ES can compete with deep RL algorithms,
apart from the cases where environments are dynamic.

III. BACKGROUND

Multi-goal RL can be represented as a goal-oriented Markov
Decision Process (MDP) ⟨S,A,G, T ,R, p, γ⟩, where: S is a
continuous state space;A is a continuous action space; G is a
set of goals; T : S×A×S → [0, 1] is the unknown transition
probability function from state s to state s′ when taking action
a,R : S×A×G → R is a reward function; p(s0, g) is a joint
probability distribution over the initial state s0 and the desired
goal g; and γ ∈ [0, 1] is a discount factor.
A commonly used sparse reward function in multi-goal RL

can be defined as:

r(s, a, g) =

{

0 if ∥ϕ (s)− g∥22 ≤ ϵR,

−1 otherwise
(1)

where ϵR is a fixed threshold value and ϕ : S → G is a
mapping function from states to achieved goals. The objective
of multi-goal RL is to learn a policy π∗ : S × G → A
that maximizes the expected return. This problem can be
formalized as follows:

π∗ = argmax
π

J(π) where:

J(π) = Es0=s,at∼π(·|st ,g),st+1∼P(·|st ,at)

∞
∑

t=0

γtr(st , at , g).
(2)

In our proposed method, we train the agents by using
DDPG [4]. DDPG is an off-policy actor-critic algorithm that
consists of a deterministic policy πθ(s, g) : S × G →
A, parameterized by θ, and a state-action value function
Qη(s, a, g) : S ×A× G → R, parameterized by η. Gaussian
noise with zero mean (µ = 0) and constant std. dev. (σ = 0.2)
is added to the deterministic policy πθ to improve exploration.
The behavior policy, πb, is then used for collecting the results
on the episodes:

πb(s, g) = πθ(s, g) +N (µ, σ2). (3)
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The Q-value function approximator is trained by minimizing
the Temporal Difference (TD) error defined as a loss function
below:

Lcritic = E(s,a,r,s′,g)∼B

[

(y− Qη(s, a, g))
2
]

(4)

where B is the replay buffer and

y = r + γQη(s
′, πθ(s

′, g), g). (5)

Subsequently, the policy π is updated using policy gradient
on the following loss function.

Lactor = −E(s,g)∼B [(Q(s, πθ(s, g), g))] (6)

IV. PROPOSED METHOD

In the following, we assume that we are working on a robot
manipulation task in an environment with obstacles. There-
fore, in the description of the proposed method we will re-
fer to this specific task. Nevertheless, the method could be
in principle extended to other kinds of tasks, provided that
the environments can be characterized by different levels of
difficulty.
Our proposed method works as follows. We execute a

curriculum learning process in which we pre-define a popu-
lation of environments X (each one characterized by a dif-
ferent number of obstacles, in different positions and with
different sizes) and an agent Y (i.e., a neural network). The
environments can be generated either by the algorithm itself,
or manually (as we do in the present study), and added to
the environment population in order of increasing difficulty.
In the population, the first environment X0 is always the
most simple one, i.e., the one without obstacles. In order to
decide when to generate the next environment, we pair the
first environment X0 from the population X with the agent
Y and optimize the agent’s behavior in that environment
until it reaches a predefined success rate. After satisfying the
success rate, the new environmentX1, slightly harder than the
previous oneX0 is generated (e.g., by adding obstacles and/or
changing their positions or size). In principle, this process
could be continued in an open-ended manner, i.e., without
specific bounds. As a result, we could continuously create
ever more challenging environments, each one originating
from the previous one, and the training could continue in-
definitely. However, for practical experimental reasons, we
set an upper bound (E) to limit the maximum number of
environments.
With this approach, the agent seeks to solve the newly

generated environments by utilizing its existing skills, which
are acquired from the previous environments. In this way,
the agent transfers and adapts its existing behavior to the
new environment. Moreover, we ensure that the agents attain
the predefined success rate in the current environment before
solving the next one [31].
Algorithm 1 describes our method in the form of pseudo-

code. As shown in the pseudo-code, we start with a very sim-
ple environment and train it using the HER framework. When

the performance becomes greater than or equal to the prede-
fined success rate δ, the next (more challenging) environment
is created and the agent tries to solve the new environment
with its current skills. Success is defined as reaching a target
position within a distance set by a threshold ϵR, as shown
in equation (1). After each episode, we run a predefined
number of test rollouts (ntest−rollouts) with the current policy
and calculate the success rate δ based on how many rollouts
out of ntest−rollouts succeeded in the task. Table 2 provides the
values for the parameters defined in the algorithm.

V. EXPERIMENTS

We conduct experiments on the MuJoCo simulation envi-
ronments provided by OpenAI Gym, which is a standard
benchmark for multi-goal RL. Two standard manipulation
tasks, both based on a 7-DOF fetch robotic manipulator [28],
are chosen, namely PickAndPlace and FetchPush. Because
the environments may be generated in an open-ended way but
training is computationally expensive, we limit the maximum
number of environments (E) to 4 for both tasks. That allows
us to train on both tasks multiple times to prove our concept
and provide statistics.
PickAndPlace: The PickAndPlace task with 4 different

environments is shown in Fig. 1. The objective is to grasp the
cube and bring it to the target position. The cube is shown as a
black box, and its initial position is sampled uniformly within
the yellow area. The target is the red dot, which is sampled
uniformly within the blue region. The obstacles are colored
in magenta. The task’s difficulty is gradually increased by
adding fixed blocks to the different locations on the table, and
four different environments are generated in total. In the first
environment, shown in Fig. 1a, the robot learns how to pick
up the cube and place it on the target position. In the second
environment, shown in Fig. 1b, an obstacle with 0.2m width,
0.02m depth, and 0.5m height is placed on the other side of
the robot on the table. In the third environment, shown in Fig.
1c, another obstacle with 0.3m width, 0.02m depth, and 0.3m
height is placed. In the last environment, shown in Fig. 1d,
an obstacle with 0.2m width, 0.02m depth, and 0.9m height
is placed in front of the target sampled area.
FetchPush: The FetchPush task with 4 different environ-

ments is shown in Fig. 2. A cube (the black box) and a target
(the red dot) are sampled uniformly within the yellow and
blue areas, respectively. The objective is to push the cube
into the target position with a clamped gripper. The task’s
difficulty is gradually increased by adding fixed obstacles
(colored in magenta) at different locations on the table, and
also in this case four different environments are generated
in total. In the first environment, shown in Fig. 2a, the robot
learns how to push the cube to the target point. In the second
environment, shown in Fig. 2b, the robot needs to adapt its
learned policy from the previous environment to avoid the
obstacle. In the third environment, shown in Fig. 2c, there is
only a 10cm gap between the two obstacles, and the robot
should push the cube through this gap. Another obstacle is
placed in the middle of the table in the fourth environment
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Algorithm 1 Co-adapting hindsight experience replay (COHER)
Input: Environment population X , maximum number of environment E , number of episodes M , number of timesteps T

Select an off-policy algorithm A ▷ In our case A is DDPG
Initialize replay buffer B ← ∅
Initialize X with the first environment X0

Initialize environment counter n← 0
ϵR ← 0.05, ntest−rollouts ← 99
while n < E do

Select environment Xn
for episode = 1 . . .M do

Sample a desired goal g and an initial state s0
for t = 0 . . . T do ▷ Rollout episode

at = π(st , g)
Execute the action at , obtain a next state st+1 and reward rt
Store transition (st , at , rt , st+1, g) in replay buffer B
Sample a set of additional goals from achieved states for replay G := S(episode)
for g′ ∈ G do ▷ Hindsight goal [8]

Recompute reward r ′t
Store transition (st , at , r ′t , st+1, g

′) in replay buffer B
end for

end for

Sample a mini batch b from replay buffer B
Update value function Q with b to minimize Lcritic in equation (4)
Update policy π with b to minimize Lactor in equation (6)
successrate← 0
for t = 0 . . . ntest−rollouts do ▷ Test rollouts

at = π(st , g)
Execute the action at , obtain a next state st+1 and reward rt
if ∥ϕ (st+1)− g∥

2
2 ≤ ϵR then

successrate← successrate+ 1/ntest−rollouts

end if

end for

if successrate ≥ δ then
Create the next environment Xn+1

n← n+ 1
end if

end for

end while

shown in Fig. 2d, and the robot must avoid it in order to reach
the target position.
We adopt the identical control actions and state configu-

rations as those presented in the paper proposing HER [8].
In both tasks, the state is a vector consisting of the position,
orientation, linear velocity, and angular velocity of the robot’s
end-effector, as well as the position of the cube and target.
The action space is a 4-dimensional vector, with the first three
elements specifying the desired relative gripper position at
the next timestep, and the last element specifying the desired
distance between the two fingers of the gripper. The control
is executed with a frequency of 1kHz, through the real-time
Ubuntu kernel and a Python wrapper to the Franka library1.
Note that the robotic agent learns to avoid obstacles through

1https://frankaemika.github.io/docs/libfranka.html

trial and error as an inherent part of RL, by experiencing col-
lisions. In particular, when the agent collides with obstacles
(or even with its own body) and becomes trapped, it fails
to complete the task and receives no reward. Of note, no
information about the obstacles is included in the state vector,
but the agent figures out the best actions to avoid collisions
with the help of the generated curriculum environments that
gradually increase in difficulty. It is assumed that the task
is accomplished if the cube reaches the goal within a given
distance threshold, see equation (1), in which case it receives
a non-negative reward 0.

A. COMPARATIVE ANALYSIS

We compare the performance of our framework (COHER)
against vanilla HER, HGG, and CHER. During training with
COHER, environments co-adapt with the agent. When the
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current environment Xn performance reaches the predefined
success rate δ, the next environment Xn+1 is selected and
the agent tries to solve the new environment with its learned
model. On the other hand, HER, HGG, and CHER are trained
directly on the last (i.e., the most difficult) environment in the
population considered in COHER. Our goal is to demonstrate
how the co-adapting training method accelerates learning.
PickAndPlace and FetchPush are run with 20 and 40 dif-

ferent seeds2, respectively. The success rate δ is chosen as 0.7
and 0.9, respectively for PickAndPlace and FetchPush tasks,
based the average success rates reported in the paper propos-
ing HGG [9], and remains constant during the training of each
different environment within a task. As the outcomes of each
episode can be influenced by multiple random factors in the
simulation, the agent completes the task by using a different
number of episodes at each run. Therefore, for illustration
purposes, in Fig. 3a and 4a (respectively for PickAndPlace
and FetchPush), we consider the worst-case training for CO-
HER and HER (i.e., the run that took the largest number of
episodes to successfully accomplish the task, if any) and the
best-case training for HGG and CHER (i.e., the run that took
the smallest number of episodes to solve the task, if any).
In this way, we can show that, in the worst-case for both
algorithms, COHER solves the task faster than HER (but,
it turns out that also the best-case for COHER needs less
episodes than the best-case for HER). Furthermore, we can
show that in the worst-case COHER needs less episodes than
HGG and CHER in their best-case training.
In the same figures, the environment transition points are

depicted as orange, brown, and purple dots. It can be seen
that, with COHER, the performance drops as soon as the
next challenging environment is generated, but the RL algo-
rithm adapts itself to the new environment until it reaches
the success rate. As indicated by the colored dots, COHER
requires 54400 and 34550 episodes to complete the task,
respectively for PickAndPlace and FetchPush. Concerning
PickAndPlace, the first environment takes 24850 episodes,
while the second and third environments are generated at
33800 and 46700 episodes, respectively. In other words, 8950
and 12900 episodes are required to reach the given success
rate for them. As for FetchPush, solving the first environment
takes 8950 episodes, while the second and third environments
are generated at 12150 and 16550 episodes, respectively. In
other words, 3200 and 4400 episodes are required to reach
the given success rate for them. Compared to COHER, HER
requires 223550 and 68200 episodes to reach the same suc-
cess rate, respectively for PickAndPlace and FetchPush. On
the other hand, HGG and CHER get stuck in most cases
in the presence of obstacles, because as discussed earlier
their heuristic method for generating the curriculum is based
on Euclidean distance. For PickAndPlace in particular, the
success rate of HGG is always 0.
The total number of episodes required to complete the two

2The number of runs is different for the two tasks due to limitations on the
computational resources.

tasks across the different runs is shown in Fig. 3b and Fig.
4b, respectively for PickAndPlace and FetchPush. The mean
and median values are shown as a black dashed line and a
black solid line, respectively. The corresponding numerical
values are reported in Table 1. The difference on the num-
ber of episodes is statistically significant for both tasks, i.e.
COHER uses less episodes than HER (Wilcoxon Rank-Sum
test, α = 0.05; PickAndPlace p = 0.000954; FetchPush
p = 0.01441).

Episodes COHER HER
Mean 22101 50502
Median 18800 31850
Std. dev. 9301 54767

Episodes COHER HER
Mean 21287 28594
Median 20450 27050
Std. dev. 4196 10032

TABLE 1: Descriptive statistics for the number of episodes
required to complete the PickAndPlace (left) and the Fetch-
Push (right) tasks.

Fig. 3c and Fig. 4c show the number of episodes required
for each environment in order to reach the predefined suc-
cess rate. On average, the environments require 6411.29,
2575.81, 7948.39, and 5216.13 episodes for PickAndPlace
and 5810.25, 2332.05, 3453.85, and 9741.03 episodes for
FetchPush. Moreover, the figures shed light on the difficulty
level of each environment. Since the robot starts in the first en-
vironment without knowing anything about the task, it takes
on average a little bit longer than the second environment. In
the second environment, the obstacle is located on the other
side of the robot arm, and the location of the obstacle does
not intersect with the sampled area of the initial position (i.e.,
the yellow area) of the cube. As a result, the robot can easily
apply the skills it learned in the first environment. After the
robot succeeds in the second environment, it learns to avoid
the obstacle either by pushing the cube around it or bymoving
the cube above it, depending on the task. When the third
environment is introduced, the robot arm is blocked more
often than in the second environment. The reason is that the
third environment has a much smaller gap than the second
one, and also that the robot has just learned to go through the
safe way, reaching the goal on the other side of the obstacle in
the second environment, but now another obstacle is located
on its safely learned path.
As for the last environment, the obstacle is located in the

middle of the table for FetchPush and on the left side of the
table for PickAndPlace. The last environment for FetchPush
takes the longest to be solved because a newly located obsta-
cle intersects with the sampled area of the target. Furthermore,
the robot needs to push the cube around it and bring it to the
target point.

B. SIM2REAL

Each individual training with a different seed in COHER
converges ultimately to the predefined success rate at certain
episodes. Once this criterion is met, the policy is chosen
as the final policy. We tested the final policy found on the
PickAndPlace task on a real 7-DOF Franka robot. Specif-
ically, we designed the fourth environment as a real-world
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(a) The 1st environment. (b) The 2nd environment. (c) The 3rd environment. (d) The 4th environment.

FIGURE 1: Environment shifts in the PickAndPlace task.

(a) The 1st environment. (b) The 2nd environment. (c) The 3rd environment. (d) The 4th environment.

FIGURE 2: Environment shifts in the FetchPush task.
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FIGURE 3: Results for the PickAndPlace task. (a) Success rate of the worst-case training of COHER and HER, and the best-case
training of HGG and CHER. Environment transitions during training with COHER are indicated by orange, brown, and purple
dots. (b) Number of episodes required to reach the success rate using the COHER and HER methods in 20 different runs. (c)
Number of episodes required to reach the success rate for each environment individually with COHER in 20 different runs.

replica of the simulation environment shown in Fig. 1d. The
resulting environment is shown in Fig. 5, which also shows
the measurement of the obstacles’ height. The output of the
policy is the linear motion of the end-effector in Cartesian
space relative to its current position, as well as the state of the
gripper gap. The output values from the linear motion are di-
rectly given to the Franka robot. On the other hand, the gripper
state of the robot receives in simulation one actuation value
at every timestep. If we fed these values directly to the real
Franka robot, this would slow down the robot’s movement
because at each timestep the robot would have to wait for the
gripper to finish its movement before executing the next one.
Moreover, the gripper would get clamped and in the long run

this would make the gripper unusable, due to hardware issues.
Therefore, we used a threshold to close and open the gripper.

As the cube’s initial position is stationary, its position in
relation to the robot’s reference frame could be found either
by using a camera with a red filter or by measuring it w.r.t. the
robot’s origin. However, when the cube is grasped, it might
be occluded by the gripper, making it infeasible to obtain its
position either by using a camera or by measuring it at each
timestep. Therefore, in our experiments, the gripper position
was assigned to the cube position as soon as the gripper was
clamped. The gripper position, along with the relevant infor-
mation on the state of the robot, could be obtained using the
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FIGURE 4: Results for the FetchPush task. (a) Success rate of the worst-case training of COHER and HER, and the best-case
training of HGG and CHER. Environment transitions during training with COHER are indicated by orange, brown, and purple
dots. (b) Number of episodes required to reach the success rate using the COHER and HER methods in 40 different runs. (c)
Number of episodes required to reach the success rate for each environment individually with COHER in 40 different runs.

Parameter Value

Number of environments (E) 4

Episodes (M ) 50

Timesteps (T ) 100

γ 0.98

Replay buffer (B) size 10
4

Mini batch (b) size 256

Polyak-averaging coefficient 0.95
Probability of HER experience replay 0.8
Replay Prioritization Energy-Based Prioritization [32]
Success rates δ for PickAndPlace

env1 0.7
env2 0.7
env3 0.7
env4 0.7

Success rates δ for Push
env1 0.9
env2 0.9
env3 0.9
env4 0.9

TABLE 2: Hyperparameter settings for COHER.

Frankx library3. The final policy achieved by COHER could
avoid obstacles and complete the task successfully. On the
other hand, the policies found in the first environment could
not complete the task without colliding with obstacles. We
implemented Sim2Real for four different target locations and
captured the video of the robot from different perspectives.
Sim2real videos and code are available on our project website
at the following link: https://erdiphd.github.io/COHER/.

VI. CONCLUSIONS

We presented a novel framework for co-adapting curriculum
learning with sparse rewards and multi-goal RL, dubbed CO-
HER, and tested in simulation on two different robot ma-
nipulation tasks: PickAndPlace and FetchPush. Furthermore,
the PickAndPlace task was chosen for Sim2Real implemen-
tation using a Franka robot. We proved that the proposed
co-adapting method is more sample-efficient than the vanilla

3https://github.com/pantor/frankx

(a) (b)

FIGURE 5: PickAndPlace Sim2Real scenario. (a) The real-
world environment, replicating the one of Fig. 1d. (b) The
measurement of the obstacles’ height.

HER method. Furthermore, we were able to solve both tasks
with COHERwithout explicitly giving the algorithm obstacle
positions, whereas the vanilla HER requires more samples
while HGG, as well as CHER, get stuck in obstacles.

Limitations and future works The present study involves
a manual design of the environments, with the underlying
principle of making the task increasingly more difficult as it
is accomplished. Since such manual design could be time-
consuming, using an intelligent algorithm to design a (poten-
tially large) number of environments would be an interesting
direction for future research. However, one potential issue
associatedwith this approachwould be that the computational
time required would significantly increase. On the other hand,
the difference in difficulty between any two subsequent en-
vironments would decrease as the number of environments
increases, making it easier for the agent to accomplish the
overall task. Beyond a certain number of environments, the
difficulty of two consecutive environments may not differ
significantly anymore. This could potentially decrease our
sample efficiency, as the agent might require many training
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steps to master an environment that is almost the same as the
previous one. Our general intuition is that there exists a trade-
off between number of environments and sample efficiency.
However, finding this trade-off automatically is hard, and
more investigation is needed in this direction. Furthermore,
while in this work we assumed that the agent should reach the
same pre-defined success rate for each environment before
changing to the next slightly harder environment, in some
scenarios it might be possible that different success rates
should be set for different environments, such that the optimal
success rate, resulting in the smallest number of total training
episodes, should be determined for each environment.
Lastly, it should be noted that the proposed method can be

generalized to tasks beyond robot manipulation, such as maze
navigation, robot locomotion, puzzle solving, urban planning,
and assembly tasks. In those cases, the level of difficulty will
obviously have to be defined differently from what we did
in this study (i.e., based on the presence and configuration
of obstacles), e.g. one may need to take into account the
steepness of roughness of terrain for locomotion, the number
and inter-dependency of assembly tasks, etc. Future research
should be aimed at applying our method to those tasks, also
addressing any possible scalability issues.

REFERENCES

[1] Mnih, Volodymyr and Kavukcuoglu, Koray and Silver, David and
Graves, Alex and Antonoglou, Ioannis and Wierstra, Daan and Ried-
miller, Martin, ‘‘Playing Atari with Deep Reinforcement Learning,’’ 2013,
arXiv:1312.5602.

[2] Mnih, Volodymyr and Kavukcuoglu, Koray and Silver, David and Rusu,
Andrei A. and Veness, Joel and Bellemare, Marc G. and Graves, Alex
and Riedmiller, Martin and Fidjeland, Andreas K. and Ostrovski, Georg
and Petersen, Stig and Beattie, Charles and Sadik, Amir and Antonoglou,
Ioannis and King, Helen and Kumaran, Dharshan and Wierstra, Daan and
Legg, Shane and Hassabis, Demis, ‘‘Human-level control through deep
reinforcement learning,’’ Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[3] Kober, Jens and Bagnell, J. Andrew and Peters, Jan, ‘‘Reinforcement
learning in robotics: A survey,’’ The International Journal of Robotics
Research, vol. 32, no. 11, pp. 1238–1274, 2013.

[4] Lillicrap, Timothy P. and Hunt, Jonathan J. and Pritzel, Alexander and
Heess, Nicolas and Erez, Tom and Tassa, Yuval and Silver, David and
Wierstra, Daan, ‘‘Continuous control with deep reinforcement learning,’’
arXiv:1509.02971.

[5] Haarnoja, Tuomas and Zhou, Aurick and Abbeel, Pieter and Levine,
Sergey, ‘‘Soft Actor-Critic: Off-Policy Maximum Entropy Deep Rein-
forcement Learning with a Stochastic Actor,’’ arXiv:1801.01290.

[6] Ng, Andrew Y. and Coates, Adam and Diel, Mark and Ganapathi, Varun
and Schulte, Jamie and Tse, Ben and Berger, Eric and Liang, Eric, ‘‘Au-
tonomous Inverted Helicopter Flight via Reinforcement Learning,’’ in
Experimental Robotics IX, Ang, Marcelo H. and Khatib, Oussama, Ed.
Berlin Heidelberg: Springer, 2006, vol. 21, pp. 363–372, Series Title:
Springer Tracts in Advanced Robotics.

[7] Seo, Minah and Vecchietti, Luiz Felipe and Lee, Sangkeum and Har, Dong-
soo, ‘‘Rewards Prediction-Based Credit Assignment for Reinforcement
LearningWith Sparse Binary Rewards,’’ IEEE Access, vol. 7, pp. 118 776–
118 791, 2019.

[8] Andrychowicz, Marcin and Wolski, Filip and Ray, Alex and Schneider,
Jonas and Fong, Rachel and Welinder, Peter and McGrew, Bob and Tobin,
Josh and Abbeel, Pieter and Zaremba, Wojciech, ‘‘Hindsight Experience
Replay,’’ arXiv:1707.01495.

[9] Ren, Zhizhou and Dong, Kefan and Zhou, Yuan and Liu, Qiang and Peng,
Jian, ‘‘Exploration via Hindsight Goal Generation,’’ arXiv:1906.04279.

[10] Fang, Meng and Zhou, Tianyi and Du, Yali and Han, Lei and Zhang,
Zhengyou, ‘‘Curriculum-guided Hindsight Experience Replay,’’ in Ad-

vances in Neural Information Processing Systems, Wallach, H. and

Larochelle, H. and Beygelzimer, A. and Alché-Buc, F. d’ and Fox, E. and
Garnett, R., Ed., vol. 32. Curran Associates, Inc., 2019.

[11] Bing, Zhenshan and Brucker, Matthias and Morin, Fabrice O. and Li, Rui
and Su, Xiaojie and Huang, Kai and Knoll, Alois, ‘‘Complex Robotic
Manipulation via Graph-Based Hindsight Goal Generation,’’ IEEE Trans-
actions on Neural Networks and Learning Systems, pp. 1–14, 2021.

[12] Z. Bing, E. Álvarez, L. Cheng, F. O. Morin, R. Li, X. Su, K. Huang, and
A. Knoll, ‘‘Robotic manipulation in dynamic scenarios via bounding-box-
based hindsight goal generation,’’ IEEE Transactions on Neural Networks
and Learning Systems, vol. 34, no. 8, pp. 5037–5050, 2023.

[13] Brant, Jonathan C. and Stanley, Kenneth O., ‘‘Minimal criterion coevolu-
tion: a new approach to open-ended search,’’ in Proceedings of the Genetic
and Evolutionary Computation Conference. ACM, 2017-07, pp. 67–74.

[14] Wang, Rui and Lehman, Joel and Clune, Jeff and Stanley, Kenneth O.,
‘‘Paired Open-Ended Trailblazer (POET): Endlessly Generating Increas-
ingly Complex and Diverse Learning Environments and Their Solutions,’’
arXiv:1901.01753.

[15] Yaman, Anil and Iacca, Giovanni and Mocanu, Decebal Constantin and
Fletcher, George and Pechenizkiy, Mykola, ‘‘Learning with Delayed
Synaptic Plasticity,’’ in Genetic and Evolutionary Computation Confer-
ence. ACM, 2019, pp. 152–160.

[16] Auerbach, Joshua E and Iacca, Giovanni and Floreano, Dario, ‘‘Gaining
insight into quality diversity,’’ in Genetic and Evolutionary Computation
Conference Companion. ACM, 2016, pp. 1061–1064.

[17] Bizzotto, Edoardo and Yaman, Anil and Iacca, Giovanni, ‘‘Promoting
Behavioral Diversity via Multi-Objective/Quality-Diversity Novelty Pro-
ducing Synaptic Plasticity,’’ in 2021 IEEE Symposium Series on Computa-

tional Intelligence (SSCI). IEEE, 2021, pp. 01–08.
[18] Yaman, Anil and Iacca, Giovanni and Mocanu, Decebal Constantin and

Fletcher, George and Pechenizkiy, Mykola, ‘‘Novelty Producing Synaptic
Plasticity,’’ in Genetic and Evolutionary Computation Conference Com-
panion. ACM, 2020, pp. 93–94.

[19] Stanley, Kenneth O. and Miikkulainen, Risto, ‘‘Evolving Neural Networks
through Augmenting Topologies,’’ Evolutionary Computation, vol. 10,
no. 2, pp. 99–127, 2002.

[20] Hansen, Nikolaus andArnold, Dirk V. andAuger, Anne, ‘‘Evolution Strate-
gies,’’ in Springer Handbook of Computational Intelligence, Kacprzyk,
Janusz and Pedrycz, Witold, Ed. Springer Berlin Heidelberg, 2015, pp.
871–898.

[21] Wierstra, Daan and Schaul, Tom and Glasmachers, Tobias and Sun,
Yi and Schmidhuber, Jürgen, ‘‘Natural Evolution Strategies,’’ 2011,
arXiv:1106.4487.

[22] Salimans, Tim and Ho, Jonathan and Chen, Xi and Sidor, Szymon and
Sutskever, Ilya, ‘‘Evolution Strategies as a Scalable Alternative to Rein-
forcement Learning,’’ arXiv:1703.03864.

[23] Zhang, Shangtong and Zaiane, Osmar R., ‘‘Comparing Deep Rein-
forcement Learning and Evolutionary Methods in Continuous Control,’’
arXiv:1712.00006.

[24] Bing, Zhenshan and Zhou, Hongkuan and Li, Rui and Su, Xiaojie and
Morin, Fabrice Oliver and Huang, Kai and Knoll, Alois, ‘‘Solving Robotic
Manipulation with Sparse Reward Reinforcement Learning via Graph-
Based Diversity and Proximity,’’ IEEE Transactions on Industrial Elec-

tronics, pp. 1–1, 2022.
[25] R. Yang, M. Fang, L. Han, Y. Du, F. Luo, and X. Li, ‘‘Mher: Model-based

hindsight experience replay,’’ arXiv preprint arXiv:2107.00306, 2021.
[26] S. Pitis, H. Chan, S. Zhao, B. Stadie, and J. Ba, ‘‘Maximum entropy

gain exploration for long horizon multi-goal reinforcement learning,’’ in
International Conference on Machine Learning. PMLR, 2020, pp. 7750–
7761.

[27] Ha, David, ‘‘Reinforcement Learning for Improving Agent Design,’’ Arti-
ficial Life, vol. 25, no. 4, pp. 352–365, 2019.

[28] Plappert, Matthias and Andrychowicz, Marcin and Ray, Alex andMcGrew,
Bob and Baker, Bowen and Powell, Glenn and Schneider, Jonas and Tobin,
Josh and Chociej, Maciek and Welinder, Peter and Kumar, Vikash and
Zaremba, Wojciech, ‘‘Multi-Goal Reinforcement Learning: Challenging
Robotics Environments and Request for Research,’’ arXiv:1802.09464.

[29] Schaul, Tom and Horgan, Daniel and Gregor, Karol and Silver, David,
‘‘Universal value function approximators,’’ in International conference on
machine learning. PMLR, 2015, pp. 1312–1320.

[30] Rechenberg, I., ‘‘Evolutionsstrategien,’’ in Simulationsmethoden in der

Medizin und Biologie, Schneider, Berthold andRanft, Ulrich, Ed. Springer
Berlin Heidelberg, 1978, vol. 8, pp. 83–114, Series Title: Medizinische
Informatik und Statistik.

VOLUME 11, 2023 9

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3382264

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Sayar et al.: Curriculum learning for robot manipulation tasks with sparse reward through environment shifts

[31] Fujimoto, Scott and Hoof, Herke andMeger, David, ‘‘Addressing Function
Approximation Error in Actor-Critic Methods,’’ in Proceedings of the 35th
International Conference on Machine Learning. PMLR, 2018, pp. 1587–
1596, ISSN: 2640-3498.

[32] Zhao, Rui and Tresp, Volker, ‘‘Energy-based hindsight experience priori-
tization,’’ in Conference on Robot Learning. PMLR, 2018, pp. 113–122.

ERDI SAYAR (Student, IEEE) received B.Sc. and
B.Eng. degrees from Kocaeli University, Turkey,
and Bochum Applied Science, Germany, respec-
tively. In 2020, he obtained his M.Sc. degree from
RWTH Aachen, Germany. Currently, he is a Ph.D.
student at the Informatics 6 Department, Techni-
cal University of Munich. His research interests
primarily focus on robotics controlled by artificial
neural networks and their related applications.

GIOVANNI IACCA (SM) is an Associate Profes-
sor in Information Engineering at the Department
of Information Engineering and Computer Sci-
ence of the University of Trento, Italy, where he
founded theDistributed Intelligence andOptimiza-
tion Lab (DIOL). Previously, he worked as a post-
doctoral researcher in Germany (RWTH Aachen,
2017-2018), Switzerland (University of Lausanne
and EPFL, 2013-2016), and The Netherlands (IN-
CAS3, 2012-2016), as well as in industry in the

areas of software engineering and industrial automation. He is co-PI of
the PATHFINDER-CHALLENGE project "SUSTAIN" (2022-2026). Pre-
viously, he was co-PI of the FET-Open project "PHOENIX" (2015-2019).
He has received two best paper awards (EvoApps 2017 and UKCI 2012).
His research focuses on computational intelligence, distributed systems, and
explainable AI applied e.g. to medicine. In these fields, he co-authored more
than 140 peer-reviewed publications. He is actively involved in organizing
tracks and workshops at some of the top conferences in computational
intelligence, and he regularly serves as a reviewer for several journals and
conference committees. He is an Editorial Board Member for Applied Soft
Computing and Associate Editor for Frontiers in Robotics and AI.

ALOIS KNOLL (Fellow, IEEE) received the M.Sc.
degree in electrical/communications engineering
from the University of Stuttgart, Stuttgart, Ger-
many, in 1985, and the Ph.D. degree (summa cum
laude) in computer science from the Technical Uni-
versity of Berlin (TU Berlin), Berlin, Germany, in
1988. He served on the faculty of the Computer
Science Department, TU Berlin, until 1993. He
joined the University of Bielefeld, Bielefeld, Ger-
many, as a Full Professor, where he served as the

Director of the Technical Informatics ResearchGroup until 2001. Since 2001,
he has been a Professor at the Department of Informatics, Technical Uni-
versity of Munich (TUM), Munich, Germany. His research interests include
cognitive, medical, and sensor-based robotics; multi-agent systems; data
fusion; adaptive systems; multimedia information retrieval; model-driven
development of embedded systems with applications to automotive software
and electric transportation; and simulation systems for robotics and traffic.
Dr. Knoll was a member of the EU’s highest advisory board on information
technology, the Information Society Technology Advisory Group (ISTAG),
from 2007 to 2009, and its subgroup on Future and Emerging Technologies
(FETs). In this capacity, he was actively involved in developing the concept
of the European Union (EU) FET flagship projects.

10 VOLUME 11, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3382264

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/


	Introduction
	Related work
	Background
	Proposed method
	Experiments
	Comparative analysis
	Sim2Real

	Conclusions
	REFERENCES
	Erdi Sayar
	Giovanni Iacca
	Alois Knoll


